Information Retrieval

(Slides occasionally based on those of Prof. Rao Kambhampati)

- •*L_{tell}* : collection of "documents" (<u>unstructured data</u>): email, news article, paragraph, journal article, book
- L_{question}: user's "information needs"
- *L_{answer}*: collection of "relevant" documents

• query answering spec.: definition of "relevant", ...

I. Boolean retrieval

- L_{question}: Boolean expression of words – e.g., "tiramisu and liqueur and not cake"
- *L_{answer}* : collection of "relevant" documents
- Specification of relevant:
 - reduce formula to Disjunctive Normal Form $(w_{11} \land w_{12} \land ...) \lor (w_{21} \land w_{22} \land ...) \lor (w_{n1} \land w_{n2} \land ...)$
 - treat docs as sets of words; return all docs with every word in *some* conjunct $(w_{k1} \land w_{k2} \land ...)$

Boolean retrieval

Implementation:

- could be done using relational databases with clobs & "like"
- index (hash, B+ tree) from words to documents ("simple inverted file")

Examples: Lexus/Nexus, medical reports, AltaVista *Problems*:

- 1. users have "information", not "data" needs
 - word variants (liquor, liqueur, liqueurs) often not relevant
 - polysemy; ambiguity; word location might be relevant (AltaVista "near")
 - **too brittle** (single missing word makes document ineligible; word might not have been so important)
- 2. naive users seem to have problems expressing their needs in this semi-formal notation
- 3. the number of documents returned is too large for users to examine individually

Information Retrieval: "normalization"

To address problems 1:

- a) Lexical analysis: normalize "words"
 - eliminate hyphens (but MS-DOS ?)
 - punctuation marks (*but* John's vs Johns, '03)
 - normalize case of letters (but us vs US)
 - *Another problem:* users can't tell what system has done

(check out google, altavista, other web search engines and see what they do)

b) Stemming

Identify morphological variants, creating groups

- system / systems

-forget / forgetting / forgetful

- analyse / analysed / analysing / analysis / analytical

Possible uses:

- replace word by group representative (in document)

- replace word by all variants in its group (in query)

Well known algorithm by Porter, makes 5 passes; based on condition-action rules (available in public Bow collection)

IT IS HEURISTIC !!! (because it does not use a dictionary, to make it fast)

Too aggressive

ization / organ

- organization / organ
- policy / police
- army / arm
- executive / execute

Too timid

- european / europe
- cylindrical / cylinder

c) Enriching/normalizing

- Forming compound nouns: 'computer science'
- Thesaurus:
 - create non-morphologically related group of words ("tree"):
 - synonyms (arbor),
 - hypernyms -more general/broader than (plant),
 - hyponyms more specific/narrower than (sapling)

e.g.,

- Roget's Thesaurus more useful for literature
- WordNet [Miller] becoming widely used as a simple ontology

• Domain-specific thesaurus:

- more powerful: terminology of comp science
- automatically generated thesaurus from the given document corpus: based on correlated occurrence of terms in the same "context" (what is context: document, paragraph, sentence structure?); works well statistically, when there are MANY documents

II. Boolean Retrieval with Controlled Vocab.

• Alternative approach to "information needs" problem: *describe ahead of time* what text is about

e.g., rather than view text as a collection of its words, assign to each document a *small* collection of words from a controlled vocabulary (e.g., the NASA thesaurus for the aerospace discipline, the MESH thesaurus for medicine, CACM/dmoz/ yahoo subject hierarchy,) **representing its content**

L_{tell} = (doc, {keyword1,keyword2,...}) pairs

- Who annotates the documents?
 - author, librarian, machine ((semi) automatic classifier, possibly based on machine learning)

Approximate Query Answering

- Note that all the previous steps are *heuristic*: they may improve answers, but occasionally they can cause problems (e.g., introduce additional ambiguity)
- So we are giving up on the idea of "perfect data answer", as in databases, in order to get better "information answer"
- Additional possibilities:
 - provide ranked list of answers: present first those most sure to be of interest to the user; this addresses problem #3 (*"too many answers"*)
 - co-operative answering (e.g., iterative refinement, automatic weakening when answer set is empty)

Alternate Model of IR

- *L_{question}*: another (unstructured) document, even if it is short (e.g., English sentence): describes user interests //addresses problem #2: difficulty of expressing queries
- \mathcal{L}_{answer} : *ranked/ordered list* of relevant documents { doc_i }
- Specification of "ranking" (and hence "relevance") :

- based on a similarity function $sim(doc_i, query)$

II. Vector Space model of similarity Document = set of words/index terms.

represent collection as term/document boolean matrix W[j,k]

a: System and human system engineering		/ 	
testing of EPS			а
b: A survey of user opinion of computer	Interface		0
system response time	User		0
c: The EPS user interface management	System		1
system	Human		1
d: Human machine interface for ABC	Computer		0
Computer applications	Response		0
e: Relation of user perceived response time to error measurement	Time		0
f. The generation of random binary ordered	EPS		1
trees	Survey		0
g: The intersection graph of paths in trees	Trees		0
h: Graph minors IV: Widths of trees and	Graph		0
well-quasi-ordering	Minors		0
q: User interface management systems		1	

	• • •			· • • • •
Alternatively,	consider each	document k	as a binary	vector $\mathbf{w}_{\mathbf{k}}$ [j]

f

е

d

b

С

h

g

II. Vector Space model of Similarity

e.g., Collection of 6 documents, with term occurrences:

• Doc A	care, cat, persian
 Doc B 	care, care, care, cat, cat, cat, persian, persian, persian
• Doc C	cat, cat, cat, cat, cat, cat, cat, cat
 Doc D 	care, cat, dog, dog, dog, dog, dog, dog, persian
Doc E	care, cat, dog

• Doc F care

General idea: each document will be represented by a vector of <u>weights</u> -- one corresponding to each term.

(i)e.g., Binary Vector of term occurrences in documents

Put terms in some <u>order</u> (alphabetical often): "care", "cat", "dog" "persian". Use 0 or 1 as weights.

- DocVec_A = <1, 1, 0, 1>
- DocVec_B = <1, 1, 0, 1>
- DocVec_C = <0, 1, 0, 0>
- DocVec_D

DocVec E

- = <1, 1, 1, 1> = <1, 1, 1, 0>
- DocVec_F
- = <1, 0, 0, 0>

Vector space model

What are reasonable models of "similarity" in this case?

Think of each document Doc_k as <u>vector</u> W_k in n-dimensional space of index terms. (Query Q will also be thought of as a vector.)

Vector space model

Desiderata 4: longer documents are likely to contain more words in common with the query (though such docs are not likely to be more relevant) -- so should "normalize" for this use length IWI

W • *Q*

• Another possible measure of similarity between vectors is the angle Θ between the vectors jInterestingly: $\frac{W \cdot Q}{|W||Q|} = \operatorname{cosine}(\Theta) \quad !!!$

As angle decreases from 90 to 0, cosine increases from 0 (less sim.) to 1 (more sim.), so there is no need to find angle itself – can compare cosines.

Í

Vector Space model of similarity - 2

- **Desiderata 5:** prefer documents in which shared terms occur more often! (⇒ treat document as **bag** of words, and vectors as count of terms **term frequency TF**)
 - Doc A care, cat, persian
 - **Doc B** care, care, care, cat, cat, cat, persian, persian, persian

 - Doc D care, cat, dog, dog, dog, dog, dog, dog, persian
 - Doc E care, cat, dog
 - Doc F care

Terms, in order: "care", "cat", "dog" "persian". (Within document frequency) TF weight vectors:

TF_ A	= <1, 1, 0, 1>
■ TF_ B	=<3,3,0,3>
■ TF_C	=<0,9,0,0>
■ TF_ D	=<1,1,6,1>
■ TF_ E	=<1,1,1,0>
■ TF_ F	= <1, 0, 0, 0>

Vector Space model of similarity - 3

• Desiderata 6. for similarity measure:

 more frequent words (e.g., *the*, *computer*) are likely to be shared, yet not significant. So <u>shared **infrequent** words are</u> <u>more significant</u>.

To address this, add a document (in)frequency factor into the weighing: **INVERSE DOCUMENT FREQUENCY idf**

idf[j] = measures how infrequently term t_j appears in the entire
 document set

example (temporary)

Terms, in order: "care", "cat", "dog" "persian".

• Within document frequency, TF vectors:

■ TF_ A	= <1, 1, 0, 1>
■ TF_B	= <3, 3, 0, 3>
■ TF_C	=<0,9,0,0>
■ TF_D	= <1, 1, 6, 1>
■ TF_E	= <1, 1, 1, 0>
■ TF_ F	= <1,0,0,0>

• Number of document occurrences per term:

$$n_{care}=5$$
, $n_{cat}=5$, $n_{dog}=2$, $n_{persian}=3$

• So, one might try *IDF['care']=1/5*, *IDF['cat']=1/5*, *IDF['dog']=1/2*

Vector Space model of similarity - 3

• Combine TF and IDF

TF-IDF (TermFrequency -InverseDocumentFrequency) **model**

- general form of weight for j'th index term t_j in doc_k , which used to be

 $w_k[j] = tf_k[j] = frequencyOfTerm[j,k]$

becomes

 $w_k[j] = tf_k[j] \times idf[j]$

TF-IDF

The following formula is one of many; developed *empirically*

- Let
 - -N be the total number of docs in the collection
 - $-n_i$ be the number of docs which contain index term t_i
 - -freq(j,k) number of times term t_j occurs in document d_k
- $tf_k[j] = freq(j,k)$ (or some scaled version like freq(j,k)/max freq(i,k))
- The *idf* factor for term t_j is computed as $idf[j] = log(N/n_j)$

the *log* is used to reduce the weight of *idf*. It can also be interpreted as the *amount of information* associated with the term t_i .

• (For the *query document q*, one might use a different variant)

Now use cosine distance between vectors $w_k[]$, q[] to rank answers

Example TF-IDF Computation

Collection of 6 documents, with term occurrences:

Doc A	care, cat, persian
Doc B	care, care, care, cat, cat, cat, persian, persian, persian
 Doc C 	cat, cat, cat, cat, cat, cat, cat, cat
 Doc D 	care, cat, dog, dog, dog, dog, dog, dog, persian
Doc E	care, cat, dog
N N	

• Doc F care

Example

Terms, in order: "care", "cat", "dog" "persian".

- TF_A= <1, 1, 0, 1 >TF_B= <3, 3, 0, 3 >TF_C= <0, 9, 0, 0 >TF_D= <1, 1, 6, 1 >TF_E= <1, 1, 1, 0 >TF_F= <1, 0, 0, 0 >
- Number of document occurrences per term:

 $n_{care}=5$, $n_{cat}=5$, $n_{dog}=2$, $n_{persian}=3$ • Number of documents N=6

 $IDF(term) = \log_2 (N/n_{term})$

 $idf_{care} = log(6/5) = 0.26$, ..., $idf_{persian} = log(6/3) = 1.00$

IDF vector $< \log_2(6/5), \log_2(6/5), \log_2(6/2), \log_2(6/3) > = < 0.26, 0.26, 1.58, 1.00 >$

Example

Terms, in order: "care",	"cat", "dog" "persian".	
 TF_ A 	= <1, 1, 0, 1>	
■ TF_ B	= <i><</i> 3 <i>,</i> 3 <i>,</i> 0 <i>,</i> 3 <i>></i>	
 TF_C 	= <0,9,0,0>	
 TF_ D 	= <1, 1, 6, 1>	
■ TF_E	= <1, 1, 1, 0>	
TF_ F	= <1, 0, 0, 0>	
IDF	= < 0.26, 0.26, 1.58	3 , 1.00 >
WT_A = $<1 \times 0.26, 1 \times$: 0.26, 0 × 1.58, 1 × 1.00>	
=<0.20	6, 0.26, 0.00, 1.00>	
WT_B = $<3 \times 0.26, 3 \times$: 0.26, 0 × 1.58, 3 × 1.00>	
= <0.79	9, 0.79, 0.00, 3.00>	
$WT_C = <0 \times 0.26, 9 \times 0.$	× 0.26, 0 × 1.58, 0 × 1.00>	$\mathbf{W}\mathbf{I}_{k} = \mathbf{I}\mathbf{\Gamma}_{k} \times \mathbf{ID}\mathbf{\Gamma}$
= <0.00, 2.37	, 0.00, 0.00>	
$WT_D = <1 \times 0.26, 1 \times 0.$	× 0.26, 6 × 1.58, 1 × 1.00>	
= <0.26, 0.26	, 9.51, 1.00>	
WT_E = $<1 \times 0.26, 1 \times$: 0.26, 1 × 1.58, 0 × 1.00>	
= <0.26, 0.26	, 1.58, 0.00>	
WT_F = $<1 \times 0.26, 0 \times$	<pre>< 0.26, 0 × 1.58, 0 × 1.00> = <0</pre>	.26, 0.00, 0.00, 0.00>

Example

Terms, in order: "care", "cat", "dog" "persian". Doc AWT_A = <0.26, 0.26, 0.00, 1.00> ...

Query Q: "Do cats care for other cats?"

TF_Q = <1, 2, 0, 0>
 We do not weight the query by idf (empirically seems better), so this is also WT_Q = <1, 2, 0, 0>

To compare query Q and document A, compute cosine

$$COS_{Q,A} = \frac{\sum_{j=1}^{j=M_{T}} \left(W_{Q}[j] \times W_{A}[j]\right)}{\sqrt{\sum_{j=1}^{j=M_{T}} \left(W_{Q}[j]^{2}\right) \times \sum_{j=1}^{j=M_{T}} \left(W_{A}[j]^{2}\right)}}$$

$$W_Q \bullet W_A = 1 \times 0.26 + 2 \times 0.26 + 0 \times 0 + 0 \times 1 = .78$$

$$W_Q = sqrt(1+4+0+0) = 2.23$$

$$W_A = sqrt(.26 \times .26 + .26 \times .26 + 0 + 1) = 1.07$$

$$Sim(Q,A) = .78/(2.23 \times 1.07)$$

$$= .33$$

F 2007 © ABorgida

IV. InfoRetr with Relevance Feedback

- $\begin{array}{c} \mathcal{L}_{question} : \text{ query document (as before)} \\ \mathcal{L}_{answer} : ranked/ordered \ list \ of \ documents (but hopefully more useful/relevant to user) \end{array}$
- **L**_{tell2}: preliminary list of docs (*presumed* relevant by the system) <u>annotated by human</u> with +, to indicate *actual* relevance (i.e. $\mathcal{L}_{tell2} = \{(D_1, +), (D_2, +), (D_3, -), (D_4, +), ...\}$

Idea: improve notion of "relevance" being used for that query

Relevance feedback for vector model

• Can be shown that *if* you knew complete set of relevant documents, the optimal query for it would be

$$Q_{opt} = \frac{1}{|Cr|} \sum_{dj \in Cr} dj - \frac{1}{N - |Cr|} \sum_{dj \notin Cr} dj$$

• **Rocchio method** $Q_1 = \alpha Q_0 + \frac{\beta}{|Dr|} \sum_{dj \in Dr} dj - \frac{\gamma}{|Dn|} \sum_{dj \in Dn} dj$

 Q_0 is initial query. Q_1 is "improved query" $D_r = \text{set of docs retrieved marked relevant by user}$ $D_n = \text{set of irrelevant docs retrieved}$ $\alpha = 1; \beta = .75, \gamma = .25$ typically.

- So, terms in original query are "reweighted", <u>and</u> query is "expanded" with terms appearing in relevant documents, and somewhat "trimmed" of terms in irrelevant documents
- Simple, gives reasonable results empirically, but unprincipled

Measuring the *Performance* of Retrieval

Precision -

- what percentage of the retrieved documents are relevant to the query
 - low precision --> many irrelevant documents for the user to look at and discard --> bad

Recall -

- what percentage of the documents relevant to the query (from the point of view of the user) were retrieved
 - low recall --> many documents missed --> very bad

Recall vs. precision

One could increase recall by retrieving many documents (down to a low level of relevance ranking), but then many irrelevant documents would be fetched, reducing precision.

Measuring *Performance* of IR techniques

- **Precision** tp + fp
 - Proportion of selected items that are correct

• Recall

 Proportion of target items that were selected

• Precision-Recall curve

- But a system could returns just 1 doc, sure to be right!? Or return all docs to be fully precise!?
- Prevision vs Recall curve

Precision/Recall Curves - one approach 11-point recall-precision curve

Example: Suppose for a given query, 10 documents are relevant (in blue below). Suppose when all documents are ranked in descending similarities, we have

 $\frac{d_1}{d_2} \frac{d_3}{d_3} d_4 d_5 \frac{d_6}{d_6} d_7 d_8 d_9 \frac{d_{10}}{d_{10}} d_{11} \frac{d_{12}}{d_{12}} \frac{d_{13}}{d_{14}} d_{15} d_{16} \frac{d_{17}}{d_{18}} d_{19} \frac{d_{20}}{d_{20}} d_{21} d_{22} d_{23} d_{24} \frac{d_{25}}{d_{25}} d_{26} d_{27} d_{28} \frac{d_{29}}{d_{29}} d_{30} d_{31} \dots$

After each relevant *blue* document, compute precision & recall *up to that point:*

(1/1,1/10), (2/3,2/10), (3/6,3/10), (4/10,4/10), (5/12,5/10), ..., (10/29,10/10)Note pattern: (k/m,k/10) where m is how many docs where retrieved by the time the k'th relevant one came out (ie., d_m) Then plot a graph of these pairs.

Precision Recall Curves...

When evaluating the retrieval effectiveness of different text retrieval systems or methods, a large number of queries are used and their average 11-point recall-precision curve is plotted.

- Methods 1 and 2 are better than method 3.
- Method 1 is better than method 2 when high recall is needed.