
F 2007 © ABorgida	
 1	

Information Retrieval	

(Slides occasionally based on those of Prof. Rao Kambhampati)	

F 2007 © ABorgida	
 2	

Data retrieval with files of text (multimedia)
Functional View 	

ASK	
TELL	
 Info Manager	

Lquestion	

Lanswer	

Ltell	

Ldeclare/constrain	

DECLARE / CONSTRAIN	

 	

•  Lquestion : user’s “information needs” 	

•  Lanswer : collection of “relevant” documents	

•  query answering spec.: definition of “relevant”, ...	

• Ltell : collection of “documents” (unstructured data):	

email, news article, paragraph, journal article, book	

F 2007 © ABorgida	
 3	

I. Boolean retrieval	

ASK	
TELL	
 Info Manager	

Lquestion	

Lanswer	

Ltell	

	

•  Lquestion : Boolean expression of words 	

–  e.g., “tiramisu and liqueur and not cake”	

•  Lanswer : collection of “relevant” documents	

•  Specification of relevant: 	

–  reduce formula to Disjunctive Normal Form
(w11/\w12/\...) \/ (w21/\w22/\...) \/ (wn1/\wn2/\...)	

–  treat docs as sets of words; return all docs with
every word in some conjunct (wk1 /\ wk2 /\ ...)	

F 2007 © ABorgida	
 4	

Boolean retrieval	

Implementation: 	

–  could be done using relational databases with clobs &
“like”	

–  index (hash, B+ tree) from words to documents (“simple
inverted file”)	

Examples: Lexus/Nexus, medical reports, AltaVista	

Problems:	

1.  users have “information”, not “data” needs	

•  word variants (liquor, liqueur, liqueurs) often not relevant	

•  polysemy; ambiguity; word location might be relevant

(AltaVista “near”)	

•  too brittle (single missing word makes document ineligible; word

might not have been so important)	

2.  naive users seem to have problems expressing their needs

in this semi-formal notation	

3.  the number of documents returned is too large for users to

examine individually 	

F 2007 © ABorgida	
 5	

Information Retrieval: “normalization”	

To address problems 1:	

a)  Lexical analysis: normalize “words” 	

§  eliminate hyphens (but MS-DOS ?)	

§  punctuation marks (but John’s vs Johns, ‘03)	

§  normalize case of letters (but us vs US)	

§  Another problem: users can’t tell what system has done	

 (check out google, altavista, other web search engines and see
what they do)	

F 2007 © ABorgida	
 6	

b) Stemming	

Identify morphological variants, creating groups	

	
– system / systems	

	
– forget / forgetting / forgetful	

	
– analyse / analysed / analysing / analysis / analytical	

Possible uses:	

	
– replace word by group representative (in document)	

	
– replace word by all variants in its group (in query)	

Well known algorithm by Porter, makes 5 passes; based on
condition-action rules (available in public Bow collection)	

IT IS HEURISTIC!!! (because it does not use a dictionary, to make it
fast)	

	
 	

Too aggressive	

– organization / organ	

– policy / police	

– army / arm	

– executive / execute	

Too timid	

– european / europe	

– cylindrical / cylinder	

F 2007 © ABorgida	
 7	

c) Enriching/normalizing	

•  Forming compound nouns: ‘computer science’	

•  Thesaurus:	

	
create non-morphologically related group of words (“tree”):	

–  synonyms (arbor), 	

–  hypernyms -more general/broader than (plant), 	

–  hyponyms - more specific/narrower than (sapling)	

e.g.,	

§  Roget’s Thesaurus - more useful for literature	

§  WordNet [Miller] - becoming widely used as a simple ontology	

•  Domain-specific thesaurus:	

–  more powerful: terminology of comp science	

–  automatically generated thesaurus from the given document

corpus: based on correlated occurrence of terms in the same
“context” (what is context: document, paragraph, sentence structure?);
works well statistically, when there are MANY documents 	

F 2007 © ABorgida	
 8	

II. Boolean Retrieval with Controlled Vocab.	

•  Alternative approach to “information needs” problem: 	

describe ahead of time what text is about	

e.g., rather than view text as a collection of its words, assign to each
document a small collection of words from a controlled
vocabulary (e.g., the NASA thesaurus for the aerospace
discipline, the MESH thesaurus for medicine, CACM/dmoz/
yahoo subject hierarchy,) representing its content	

Ltell = (doc, {keyword1,keyword2,...}) pairs	

•  Who annotates the documents? 	

–  author, librarian, machine ((semi) automatic classifier,

possibly based on machine learning)	

F 2007 © ABorgida	
 9	

Approximate Query Answering	

•  Note that all the previous steps are heuristic: they may

improve answers, but occasionally they can cause problems
(e.g., introduce additional ambiguity)	

•  So we are giving up on the idea of “perfect data answer”, as in
databases, in order to get better “information answer”	

•  Additional possibilities:	

–  provide ranked list of answers: present first those most sure to

be of interest to the user; this addresses problem #3 (“too
many answers”)	

–  co-operative answering (e.g., iterative refinement, automatic
weakening when answer set is empty)	

F 2007 © ABorgida	
 10	

Alternate Model of IR	

ASK	
TELL	
 Info Manager	

Lquestion

Lanswer
Ltell

	

•  Lquestion : another (unstructured) document, even if it is

short (e.g., English sentence): describes user interests //addresses
problem #2: difficulty of expressing queries	

•  Lanswer : ranked/ordered list of relevant documents { doci }	

•  Specification of “ranking” (and hence “relevance”) : 	

–  based on a similarity function sim(doci , query)	

F 2007 © ABorgida	
 11	

II. Vector Space model of similarity	

•  Document = set of words/index terms.	

	
represent collection as term/document boolean matrix W[j, k]	

a: System and human system engineering
testing of EPS	

b: A survey of user opinion of computer
system response time 	

c: The EPS user interface management
system 	

d: Human machine interface for ABC
computer applications 	

e: Relation of user perceived response time to
error measurement 	

f: The generation of random, binary, ordered
trees 	

g: The intersection graph of paths in trees 	

h: Graph minors IV: Widths of trees and

well-quasi-ordering 	

	

a b c d e f g h q
Interface 0 0 1 0 0 0 0 0 1
User 0 1 1 0 1 0 0 0 1
System 1 1 1 0 0 0 0 0 1
Human 1 0 0 1 0 0 0 0 0
Computer 0 1 0 1 0 0 0 0 0
Response 0 1 0 0 1 0 0 0 0
Time 0 1 0 0 1 0 0 0 0
EPS 1 0 1 0 0 0 0 0 0
Survey 0 1 0 0 0 0 0 0 0
Trees 0 0 0 0 0 1 1 1 0
Graph 0 0 0 0 0 0 1 1 0
Minors 0 0 0 0 0 0 0 1 0

Alternatively, consider each document k as a binary vector wk [j]	

q: User interface management systems	

F 2007 © ABorgida	
 12	

II. Vector Space model of Similarity	

e.g., Collection of 6 documents, with term occurrences:	

	

§  Doc A	
 	
care, cat, persian	

§  Doc B	
 	
care, care, care, cat, cat, cat, persian, persian, persian	

§  Doc C	
 	
cat, cat, cat, cat, cat, cat, cat, cat, cat	

§  Doc D	
 	
care, cat, dog, dog, dog, dog, dog, dog, persian	

§  Doc E	
 	
care, cat, dog	

§  Doc F	
 	
care	

General idea: each document will be represented by 	

a vector of weights -- one corresponding to each term. 	

F 2007 © ABorgida	
 13	

(i)e.g., Binary Vector of term occurrences in
documents	

Put terms in some order (alphabetical often):	

	
 “care”, “cat”, “dog” “persian”. 	

Use 0 or 1 as weights.	

	

§ DocVec_ A 	
 	
= <1, 1, 0, 1>	

§ DocVec_ B 	
 	
= <1, 1, 0, 1>	

§ DocVec_ C 	
 	
= <0, 1, 0, 0>	

§ DocVec_ D 	
 	
= <1, 1, 1, 1>	

§ DocVec_ E 	
 	
= <1, 1, 1, 0>	

§ DocVec_ F 	
 	
= <1, 0, 0, 0>	

	

F 2007 © ABorgida	
 14	

Vector space model	

What are reasonable models of “similarity” in this case?	

Think of each document Dock as vector Wk in n-dimensional space

of index terms. (Query Q will also be thought of as a vector.)	

	

	

	

Intuitively, want similarity measures that 	

1.  allow partial match 	

2.  favor documents with more words in common	

3.  have bounded value (e.g, between 0 and 1) 	

4.  for ease of similarity comparison	

Mathematicians have studied lots of “distance measures” 	

•  “Euclidean distance”: √∑j(wk[j] - q[j])2	

•  “Dot product” 	

	
 	
 Wk • Q = ∑j(wk[j] × q[j]) 	

	
 	
 for Boolean vectors, = count of all shared index terms 	

	
 	
(good for 1. and 2.)	

	

i	

j	

Wk	

Q	

F 2007 © ABorgida	
 15	

Vector space model	

	

Desiderata 4: longer documents are likely to contain more words in

common with the query (though such docs are not likely to be
more relevant) -- so should “normalize” for this use length |W| 	

	

	

•  Another possible measure of similarity between vectors is the

angle Θ between the vectors 	

 Interestingly:	

	

|	
||	
|	
 Q	
W	

Q	
W	
•	
 = cosine(Θ) !!!	

	

As angle decreases from 90 to 0, cosine increases from 0 (less sim.)	

to 1 (more sim.), so there is no need to find angle itself – can compare 	

cosines.	

|	
||	
|	
 Q	
W	

Q	
W	
•	

i	

j	

Wk	

Q	

Θ	

F 2007 © ABorgida	
 16	

Vector Space model of similarity - 2	

Terms, in order: “care”, “cat”, “dog” “persian”. 	

(Within document frequency) TF weight vectors:	

§ TF_ A 	
 	
= <1, 1, 0, 1>	

§ TF_ B 	
 	
= <3, 3, 0, 3>	

§ TF_ C 	
 	
= <0, 9, 0, 0>	

§ TF_ D 	
 	
= <1, 1, 6, 1>	

§ TF_ E 	
 	
= <1, 1, 1, 0>	

§ TF_ F 	
 	
= <1, 0, 0, 0>	

•  Desiderata 5: prefer documents in which shared terms occur
more often! (⇒ treat document as bag of words, and vectors as
count of terms term frequency TF)	
	

§  Doc A	
 	
care, cat, persian	

§  Doc B	
 	
care, care, care, cat, cat, cat, persian, persian, persian	

§  Doc C	
 	
cat, cat, cat, cat, cat, cat, cat, cat, cat	

§  Doc D	
 	
care, cat, dog, dog, dog, dog, dog, dog, persian	

§  Doc E	
 	
care, cat, dog	

§  Doc F	
 	
care	

F 2007 © ABorgida	
 17	

Vector Space model of similarity - 3	

•  Desiderata 6. for similarity measure: 	

–  more frequent words (e.g., the, computer) are likely to be
shared, yet not significant. So shared infrequent words are
more significant.	

To address this, add a document (in)frequency factor into the
weighing: INVERSE DOCUMENT FREQUENCY idf	

 idf[j] = measures how infrequently term tj appears in the entire
document set	

	

F 2007 © ABorgida	
 18	

example (temporary)	

Terms, in order: “care”, “cat”, “dog” “persian”. 	
	

•  Within document frequency, TF vectors:	

§ TF_ A 	
 	
= <1, 1, 0, 1>	

§ TF_ B 	
 	
= <3, 3, 0, 3>	

§ TF_ C 	
 	
= <0, 9, 0, 0>	

§ TF_ D 	
 	
= <1, 1, 6, 1>	

§ TF_ E 	
 	
= <1, 1, 1, 0>	

§ TF_ F 	
 	
= <1, 0, 0, 0>	

•  Number of document occurrences per term:	

	
 	
ncare=5, ncat=5, ndog=2, npersian=3	

•  So, one might try 	

	
 	
IDF[‘care’]=1/5, IDF[‘cat’]=1/5, IDF[‘dog’]=1/2	

F 2007 © ABorgida	
 19	

Vector Space model of similarity - 3	

•  Combine TF and IDF	

	

	
TF-IDF (TermFrequency -InverseDocumentFrequency) model	

–  general form of weight for j’th index term tj in dock , which
used to be 	

	
 	
 	
wk[j]= tfk[j] = frequencyOfTerm[j,k] 	

	
becomes 	

	
 	
 	
 wk[j]= tfk[j] × idf[j] 	

F 2007 © ABorgida	
 20	

TF-IDF	

The following formula is one of many; developed empirically	

•  Let	

–  N be the total number of docs in the collection	

–  nj be the number of docs which contain index term tj	

–  freq(j,k) number of times term tj occurs in document dk	

•  tfk[j] = freq(j,k) (or some scaled version like freq(j,k)/max freq(i,k))	

•  The idf factor for term tj is computed as	

	
 	
 	
idf[j]= log (N/nj)	

the log is used to reduce the weight of idf. It can also be interpreted as the

amount of information associated with the term tj. 	
	

•  (For the query document q, one might use a different variant)	

Now use cosine distance between vectors wk[] , q[] to rank answers	

F 2007 © ABorgida	
 21	

Example TF-IDF Computation	

Collection of 6 documents, with term occurrences:	

	

§  Doc A	
 	
care, cat, persian	

§  Doc B	
 	
care, care, care, cat, cat, cat, persian, persian, persian	

§  Doc C	
 	
cat, cat, cat, cat, cat, cat, cat, cat, cat	

§  Doc D	
 	
care, cat, dog, dog, dog, dog, dog, dog, persian	

§  Doc E	
 	
care, cat, dog	

§  Doc F	
 	
care	

	

total number of docs N=6	

F 2007 © ABorgida	
 22	

Example	

Terms, in order: “care”, “cat”, “dog” “persian”. 	

§ TF_ A 	
 	
= <1, 1, 0, 1>	

§ TF_ B 	
 	
= <3, 3, 0, 3>	

§ TF_ C 	
 	
= <0, 9, 0, 0>	

§ TF_ D 	
 	
= <1, 1, 6, 1>	

§ TF_ E 	
 	
= <1, 1, 1, 0>	

§ TF_ F 	
 	
= <1, 0, 0, 0>	

•  Number of document occurrences per term:	

	
 	
ncare=5, ncat=5, ndog=2, npersian=3	

•  Number of documents N = 6	

	

 idfcare=log(6/5)=0.26, ..., idfpersian=log(6/3)=1.00	

	

IDF vector < log2(6/5), log2(6/5), log2(6/2), log2(6/3) >	

	
 	
 	
= < 0.26, 0.26, 1.58, 1.00 >	

IDF(term) = log2 (N/nterm)	

F 2007 © ABorgida	
 23	

Example	

Terms, in order: “care”, “cat”, “dog” “persian”. 	

§  TF_ A 	
 	
= <1, 1, 0, 1>	

§  TF_ B 	
 	
= <3, 3, 0, 3>	

§  TF_ C 	
 	
= <0, 9, 0, 0>	

§  TF_ D 	
 	
= <1, 1, 6, 1>	

§  TF_ E 	
 	
= <1, 1, 1, 0>	

§  TF_ F	
 	
 	
= <1, 0, 0, 0>	

	
 	
 IDF 	
 	
 	
= < 0.26, 0.26, 1.58, 1.00 >	

 WT_A 	
= <1 × 0.26, 1 × 0.26, 0 × 1.58, 1 × 1.00>	

 	
 	
 	
= <0.26, 0.26, 0.00, 1.00>	

 WT_B 	
= <3 × 0.26, 3 × 0.26, 0 × 1.58, 3 × 1.00>	

	
 	
= <0.79, 0.79, 0.00, 3.00>	

 WT_C 	
= <0 × 0.26, 9 × 0.26, 0 × 1.58, 0 × 1.00>	

	
= <0.00, 2.37, 0.00, 0.00>	

 WT_D 	
= <1 × 0.26, 1 × 0.26, 6 × 1.58, 1 × 1.00>	

	
= <0.26, 0.26, 9.51, 1.00>	

WT_E 	
= <1 × 0.26, 1 × 0.26, 1 × 1.58, 0 × 1.00>	

	
= <0.26, 0.26, 1.58, 0.00>	

WT_F 	
= <1 × 0.26, 0 × 0.26, 0 × 1.58, 0 × 1.00> = <0.26, 0.00, 0.00, 0.00>	

WTk = TFk × IDF	

F 2007 © ABorgida	
 24	

Example	

	

	

Query Q: “Do cats care for other cats?”	

§ TF_ Q 	
 	
= <1, 2, 0, 0>	

We do not weight the query by idf (empirically seems better), so this

is also WT_Q 	
 	
= <1, 2, 0, 0>	

To compare query Q and document A, compute cosine	

	

	

	

	

	

W_Q • W_A = 1×0.26 + 2×0.26 + 0×0 + 0×1 = .78	

|W_Q| = sqrt(1+4+0+0) = 2.23	

|W_A| = sqrt(.26×.26+.26×.26+0+1) = 1.07 	

€

COSQ ,A =

WQ [j]×WA [j]()
j=1

j=M T

∑

WQ [j]
2() × WA [j]

2()
j=1

j=M T

∑
j=1

j=M T

∑

sim(Q,A)	

 = .78/(2.23×1.07)	

 = .33	

Terms, in order: “care”, “cat”, “dog” “persian”.	

Doc A WT_A = <0.26, 0.26, 0.00, 1.00>	

...	
	

F 2007 © ABorgida	
 25	

IV. InfoRetr with Relevance Feedback	

ASK	

TELL	

Info Manager	

Lquestion

Lanswer

Ltell

	

•  Lquestion : query document (as before)	

•  Lanswer : ranked/ordered list of documents (but hopefully

more useful/relevant to user)	

•  Ltell2 : preliminary list of docs (presumed relevant by the system)

annotated by human with +,- to indicate actual relevance
(i.e. Ltell2 = {(D1,+),(D2,+),(D3,-),(D4,+),...}	

Idea: improve notion of “relevance” being used for that query 	

TELL2	
Ltell2

F 2007 © ABorgida	
 26	

Relevance feedback for vector model	

•  Can be shown that if you knew complete set of relevant

documents, the optimal query for it would be	

•  Rocchio method	

	
 	
Q0 is initial query. Q1 is “improved query”	

	
 	
Dr = set of docs retrieved marked relevant by user	

	
 	
Dn = set of irrelevant docs retrieved	

	
 	
α =1; β =.75, γ =.25 typically.	

•  So, terms in original query are “reweighted”, and query is
“expanded” with terms appearing in relevant documents, and
somewhat “trimmed” of terms in irrelevant documents	

•  Simple, gives reasonable results empirically, but unprincipled	

∑∑
∉

−
∈

−=
Crdj

CrN
Crdj

Cropt
djdjQ 11

∑∑
∈∈

−+=
Dndj

Dn
Drdj

Dr djdjQQ ||||01
γβα

F 2007 © ABorgida	
 27	

Measuring the Performance of Retrieval 	

Precision - 	

•  what percentage of the retrieved documents are relevant to the

query	

–  low precision --> many irrelevant documents for the user to look at and

discard --> bad	

Recall - 	

•  what percentage of the documents relevant to the query (from the

point of view of the user) were retrieved	

–  low recall --> many documents missed --> very bad	

	

Recall vs. precision	

 One could increase recall by retrieving many documents (down to a

low level of relevance ranking), but then many irrelevant
documents would be fetched, reducing precision.	

F 2007 © ABorgida	
 28	

Measuring Performance of IR techniques	

•  Precision	

– Proportion of selected

items that are correct	

•  Recall	

– Proportion of target items

that were selected	

•  Precision-Recall curve	

–  But a system could returns
just 1 doc, sure to be right!?
Or return all docs to be fully
precise!?	

– Prevision vs Recall curve	

tn	

fp	
 tp	
 fn	

System returned these	

Actual relevant docs	

fptp
tp
+

fntp
tp
+

Recall	

Precision	

F 2007 © ABorgida	
 29	

Precision/Recall Curves - one approach	

11-point recall-precision curve	

Example: Suppose for a given query, 10 documents are relevant (in

blue below). Suppose when all documents are ranked in
descending similarities, we have	

 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20 d21
d22 d23 d24 d25 d26 d27 d28 d29 d30 d31 …	

After each relevant blue document, compute precision & recall up
to that point:	

 (1/1,1/10), (2/3,2/10), (3/6,3/10), (4/10,4/10),(5/12,5/10),...,(10/29,10/10)	

Note pattern: (k/m,k/10) where m is how many docs where retrieved by the time

the k’th relevant one came out (ie., dm) Then plot a graph of these pairs.	

recall	

pr
ec

isi
on
	

.1	
 .3	
 1.0	
.2	

1.0	

.2	

F 2007 © ABorgida	
 30	

Precision Recall Curves…	

When evaluating the retrieval effectiveness of different text
retrieval systems or methods, a large number of queries are
used and their average 11-point recall-precision curve is
plotted.	

	

	

	

	

	

	

•  Methods 1 and 2 are better than method 3.	

•  Method 1 is better than method 2 when high recall is needed.	

recall	

pr
ec

isi
on
	

Method 1	

Method 2	

Method 3	

