RUTGERS UNIVERSITY
The State University of New Jersey
School of Engineering
Department of Electrical and Computer Engineering

332:348 — Digital Signal Processing Laboratory

DSP Lab Manual

Sophocles J. Orfanidis

Spring 2013

ccs ,
‘ mterrupt
| ' |
oy ‘
sample | X - «—— analog input
processing McBSP AIC23 g 1np
algorithm 7] codec = analog output

TMS320C6713 DSP Tfs

Lab Schedule - Spring 2013

Week | Group | Labs
2/04 A . . . N . . .
211 B Labl - CCS introduction, aliasing, quantization, data transfers, guitar distortion
2/18 A .]]
2 /5 B Lab2 - CCS, sinusoids, wavetables, AM/FM, ring modulators, tremolo
3/04 A) .]
311 B Lab3 - Delays, circular buffers, FIR filters, voice scrambler
3/18
3/25 A &B | Lab4 - FIR filtering experiments (software lab)
4/08 A
4/15 B Lab5 - Digital audio effects, reverb, multi-delay, guitar strings, flangers, vibrato
4/22 A &B | Lab6 - IIR filtering experiments (software lab)

Notes

1. Labs meet in room ELE-209.

2. The lab sessions have a duration of two periods. Attendance in all labs is required (it is not possible
to get an “A” in the lab course if one of these sessions is missed.) Due to the limited number of

workstations, missed hardware labs cannot be made up.

3. Each lab section has been split into two groups, A & B, that meet on alternate weeks as shown on
the above schedule. The groups are as follows, divided according to student last names (please

note that these may change until registration is closed):

Section

Group A Group B

Section-1, Th 10:20 AM - 1:20 PM | Anandamohan - Moffitt | Odira - Youssef

Section-2, W 3:20 PM - 6:20 PM Ahmed - Juang Kim - Zoppina

Section-3, F 8:40 AM - 11:40 AM | Bertelli - Young

TA

Haroon Raja Talal Ahmed

Contents

0

Introduction

0.1 Lab Guidelines i i e e e e e e e e e e e e e e
0.2 Running CPrograms o i v i i e e e e e e e e e e e e e e e e e e
0.3 Using MATLAB o e e e e e e e e e e e e e e e
0.4 References. i i i i i i i e e e e e e e e e e

TMS320C6713 DSK and Code Composer Studio

1.1 Introduction. i i e e e e e e e e e e e e e e e
1.2 Lab Tasks o e e e e e e e e e e e e e e e
1.3 Template Program i i e e e e e e e e e e e e e e e e e e
1.4 AASINg e e e e e e e e e e e e e
1.5 Quantization e e e e e e e e e e e e e e e e e
1.6 Data Transfers from/to Codec i i i i i i it e e e e e e e e e e e
1.7 Guitar Distortion Effects e e e e e e e
1.8 References o i i i e e e e e e e e e e e e e

Wavetable Generators, AM/FM Modulation

2.1 Lab Tasks e e e e e e e e e e
2.2 Wavetable GENnerators i i i e e e e e e e e e e e e e e e e e e
2.3 Sinusoidal Wavetable e e e e e e e e
2.4 AMModulation e e e e e e e e e e e e e e e e
2.5 FMModulation e e e e e e e e e e e e e e
2.6 Ring Modulators and Tremolo e
2.7 Scrambler as Ring Modulator e e e e e
2.8 ReferencCes o i e

Delays and FIR Filtering

3.1 IntroducClion o e e e e e e e e e e e e e e e e e e
3.2 Delays Using Linear and Circular Buffers
3.3 FIR Comb Filters Using Circular Buffers
3.4 FIR Filters with Linear and Circular Buffers
3.5 Voice Scrambler. e e e e e e e e e e
3.6 References i i i i e e e e e e e e e e e e e e e e

FIR Filtering Experiments

4.1 Introduction e e e e e e e e e e e e e e e e e e
4.2 Convolution o e e e e e e e e e e e e e e e e e
4.3 Filtering of Noisy Signals e e e e e e
4.4 Voice Scrambler in MATLAB i e e e e e e e e e e e e e
4.5 References i e e e e e e e e e e e e e e e e

Digital Audio Effects

5.1 Plain Reverb e e e e e e e e e e e e
5.2 Allpass Reverb e e e e e e e
5.3 Lowpass Reverb L e e e e e e e e e e e e
5.4 Schroeder’s Reverb Algorithm e
5.5 Stereo Reverb e e e e e e e e e e e e e e e e
5.6 Reverberating Delay e e e e
5.7 Multi-Delay Effects o e e e e e e e
5.8 Multitap Delay Effects e e e e e e e e
5.9 Karplus-Strong String Algorithm e
5.10Flangers and Vibrato L e e e e e e e e
S.A1References o e e e e e e e e e e e e e e e e e e e

O W = =

CONTENTS

6 IIR Filtering Experiments
6.1 Signal Enhancement and Noise Reduction
6.2 Transient and Steady-State Properties i i i it e e e e
6.3 Filtering of Periodic Signals e e e

6.4 References

References

70
70
72
75
77

78

0 INTRODUCTION 1

Lab 0 - Introduction

The DSP lab consists of four of hardware experiments illustrating the programming of real-time pro-
cessing algorithms on the Texas Instruments TMS320C6713 floating-point DSP. Programming of the DSP
chip is done in C (and some assembly) using the Code Composer Studio (CCS) integrated development
environment. In addition, the lab includes two MATLAB-based software experiments on digital filtering.

Familiarity with C programming is necessary in order to successfully complete this lab course. All
of the C filtering functions in the textbook [1] translate with minor changes to the CCS environment.
MATLAB is also necessary and will be used in the software experiments and to generate input signals to
the DSP and to design the filters used in the various hardware examples.

The hardware experiments are real-time sample-by-sample processing examples and include alias-
ing and quantization effects; the circular buffer implementation of delays, FIR, and IIR filters; voice
scramblers; wavetable generators; and several digital audio effects, such as comb filters, plain, allpass,
and lowpass reverberators, Schroeder’s reverberator, and several multi-tap, multi-delay, and stereo-delay
type effects, tremolo, vibrato, flangers, wah-wah filters and phasers, as well as the Karplus-Strong string
algorithm; various guitar distortion effects, such as fuzz and overdrive.

The lab assignments contain a short introduction to the required theory. More details, as well as
several concrete C and MATLAB implementations, may be found in the book [1], which may be freely
downloaded from the web page:

http://www.ece.rutgers.edu/~orfanidi/intro2sp/

0.1. Lab Guidelines

Attendance is required in all lab sessions (see the lab schedule at the beginning of this manual.) It is
not possible to receive a grade of “A” if one of these sessions is missed. Due to the limited number of
workstations and tight space, missed hardware labs cannot be made up. In addition, a 1-2 page lab report
on each hardware lab must be submitted at the next lab session. A full multi-page reports is required for
the software experiments (Lab-4 and Lab-6).

Students work in pairs on each workstation. Each lab section section has been split into two groups,
A & B, that meet on alternate weeks (see lab schedule on the lab web page). Please make sure that you
attend the right group (if in doubt please contact your TA).

0.2. Running C Programs

Most of the C programs will be written and run under the CCS IDE. However, practicing with and learning
C can be done on any departmental computer in ELE-103. Computer accounts on ece. rutgers.edu may
be obtained by contacting the system administrator of the ECE department, Mr. John Scafidi.

C programs may be compiled using the standard Unix C compiler cc or the GNU C compiler gcc. Both
have the same syntax. It is recommended that C programs be structured in a modular fashion, linking the
separate modules together at compilation time. Various versions of GCC, including a Windows version,
and an online introduction may be found in the web sites:

http://gcc.gnu.org/
http://www.delorie.com/djgpp/
http://www.network-theory.co.uk/docs/gccintro/

Some reference books on C are given in Ref. [3]. As an example of using gcc, consider the following
main program sines.c, which generates two noisy sinusoids and saves them (in ASCII format) into the
data files yl.dat and y2.dat:

/* sines.c - noisy sinusoids */

#include <stdio.h>
#include <math.h>

0 INTRODUCTION 2

#define L 100
#define f1 0.05
#define f2 0.03
#define A1 5
#define A2 Al

double gran(Q); /* gaussian random number generator */

void main(Q)

{
int n;
Tong iseed=2001; /* gran requires iseed to be long int */
double yl1l, y2, mean = 0.0, sigma = 1.0, pi = 4 * atan(1.0);
FILE *fpl, *fp2;
fpl = fopen("yl.dat", "w"); /* open file yl.dat for write */
fp2 = fopen("y2.dat", "w"); /* open file y2.dat for write */
for (n=0; n<L; n++) { /* iseed is passed by address */
yl = Al * cos(2 * pi * f1 * n) + gran(mean, sigma, &iseed);
y2 = A2 * cos(2 * pi * f2 * n) + gran(mean, sigma, &iseed);
fprintf(fpl, "%12.6f\n", yl);
fprintf(fp2, "%12.6f\n", y2);
}
fclose(fpl);
fclose(fp2);
}

The noise is generated by calling the gaussian random number generator routine gauss, which is defined
in the separate module gran.c:

/* gran.c - gaussian random number generator */
doubTle ranQ); /* uniform generator */

double gran(mean, sigma, iseed) /* x = gran(mean,sigma,&iseed) */

double mean, sigma; /* mean, variance = sigmaA2 */
long *iseed; /* iseed passed by reference */
{
double u = 0;
int 1i;
for (i =0; i < 12; i++) /* add 12 uniform random numbers */
u += ran(iseed);
return sigma * (u - 6) + mean; /* adjust mean and variance */
3

In turn, gran calls a uniform random number generator routine, which is defined in the file ran.c:

/* ran.c - uniform random number generator in [0, 1) */

#define a 16807 /* a = T7A5 %/

#define m 2147483647 /* m = 2A31 - 1 */

#define q 127773 /* g =m/ a=quotient */
#define r 2836 /* r=m% a = remainder */

0 INTRODUCTION 3

double ran(iseed) /* usage: u = ran(&iseed); */
long *iseed; /* iseed passed by address */
{
*iseed = a * (¥iseed % q) - r * (*iseed / q); /* update seed */
if (*iseed < 0) /* wrap to positive values */

*iseed += m;

return (double) *iseed / (double) m;
3

The three programs can be compiled and linked into an executable file by the following command-line
call of gcc:

gcc sines.c gran.c ran.c -o sines -1m (unix version of gcc)
gcc sines.c gran.c ran.c -o sines.exe -1Im (MS-DOS version of gcc)

The command-line option - Tm links the math library and must always be last. The option -o creates the
executable file sines (or, sines.exe for MS-DOS.) If this option is omitted, the executable filename is
a.out (or, a.exe) by default. Another useful option is the warning message option -Wall:

gcc -Wall sines.c gran.c ran.c -o sines -1m

If the command line is too long and tedious to type repeatedly, one can use a so-called response file,
which may contain all or some of the command-line arguments. For example, suppose the file argfile
contains the lines:

-Wall
sines.c
gran.c
ran.c

-0 sines
-Tm

Then, the following command will have the same effect as before, where the name of the response file
must be preceded by the at-sign character @:

gcc @argfile

To compile only, without linking and creating an executable, we can use the command-line option -c:

gcc -c sines.c gran.c ran.c

This creates the object-code modules * . o, which can be subsequently linked into an executable as follows:

gcc -o sines sines.o gran.o ran.o -1m

0.3. Using MATLAB

The plotting of data created by C or MATLAB programs can be done using MATLAB’s extensive plotting
facilities. Here, we present some examples showing how to load and plot data from data files, how to
adjust axis ranges and tick marks, how to add labels, titles, legends, and change the default fonts, how
to add several curves on the same graph, and how to create subplots.

Suppose, for example, that you wish to plot the noisy sinusoidal data in the files y1l.dat and y2.dat
created by running the C program sines. The following MATLAB code fragment will load and plot the
data files:

0 INTRODUCTION 4

load yl.dat; % load data into vector yl
load y2.dat; % load data into vector y2
plot(yl); % plot yl

hold on; % add next plot

plot(y2, 'r--"); % plot y2 in red dashed style
axis([0, 100, -10, 101); % redefine axes limits
set(gca, ’'ytick’, -10:5:10); % redefine yticks
legend(’yl.dat’, ’y2.dat’); % add Tegends

xlabel(’time samples’); % add Tabels and title

ylabel (’amplitude’);
title(’Noisy Sinusoids’);

The resulting plot is shown below. Note that the command Toad yl.dat strips off the extension part of
the filename and assigns the data to a vector named y1.

Noisy Sinusoids

10

amplitude

The command hold on leaves the first plot on and adds the second plot. The axis command increases
the y-range in order to make space for the legends. The legends, labels, and title are in the default font
and default size (e.g., Helvetica, size 10 for the Windows version.)

A more flexible and formatted way of reading and writing data from/to data files is by means of the
commands fscanf and fprintf, in conjunction with fopen and fclose. They have similar usage as in
C. See Ref. [2] for more details.

The next example is similar to what is needed in Lab-1. The example code below generates two
signals x(t) and y(t) and plots them versus t. It also generates the time-samples y (t,;) at the time
instants t, = nT. All three signals x(t), y(t), y(t,) span the same total time interval [0, tjmax], but
they are represented by arrays of different dimension (x(t) and y (t) have length 101, whereas y (t,;) has
length 11). All three can be placed on the same graph as follows:

tmax = 1; % max time interval

Nmax = 100; % number of time instants

Dt = tmax/Nmax; % continuous-time increment
T=0.1; % sampling time interval

t = 0:Dt:tmax; % continuous t
X = sin(4*pi*t) + sin(16*pi*t) + 0.5 * sin(24*pi*t); % signal x(t)
y = 0.5 * sin(4*pi*t); % signal y(t)
tn = 0:T:tmax; % sampled version of t

yn = 0.5 * sin(4*pi*tn); % sampled version of y(t)
plot(t, x, t, y, ’--’, tn, yn, ’0’); % plot x(t), y(t), y(tn)

axis([0, 1, -2, 2D % redefine axis limits

0 INTRODUCTION 5

set(gca, ’'xtick’, 0:0.1:1); % redefine x-tick Tocations
set(gca, ’'ytick’, -2:1:2); % redefine y-tick locations
set(gca, ’'fontname’, ’'times’); % Times font

set(gca, ’'fontsize’, 16); % 16-point font size

grid; % default grid

xlabel(’t (sec)’);
ylabel(’amplitude’);
titleCx(t), y(t), y(tn)’);

axes(legend(’original’, ’aliased’, ’sampled’)); % legend over grid

The following figure shows the results of the above commands. Note that the x-axis tick marks have been
redefined to coincide with the sampled time instants t,, = nT.

x(1), y(v), y(tn)

— original
- - aliased
o sampled

amplitude

72() (J.‘l 0‘.2 0‘.3 014 015 016 017 018 0.‘9 1

t (sec)
The 0’ command plots the sampled signal y (t,;) as circles. Without the ’o’, the plot command would
interpolate linearly between the 11 points of y (t;).

The font has been changed to Times-Roman, size 16, in order to make it more visible when the graph
is scaled down for inclusion in this manual. The command axes creates a new set of axes containing the
legends and superimposes them over the original grid (otherwise, the grid would be visible through the
legends box.)

The next program segment shows the use of the command subplot, which is useful for arranging
several graphs on one page. It also illustrates the stem command, which is useful for plotting sampled
signals.

subplot(2, 2, 1); % upper Tleft subplot
plot(t, x, t, y, ’--’, tn, yn, ’0’); % plot x(t), y(t), y(tn)
xlabel1(’t (sec)’);

ylabel(’amplitude’);
titleCx(t), y(t), y(tn)’);

subplot(2, 2, 2); % upper right subplot
plot(t, y); % plot y(t)

hold on; % add next plot
stem(tn, yn); % stem plot of y(tn)
axis([0, 1, -0.75, 0.75]); % redefine axis Timits

xlabel(’t (sec)’);
ylabelCCy(t), y(tn)’);
title(’stem plot’);

0 INTRODUCTION

The resulting graph is shown below. Note that a 2x2 subplot pattern was used instead of a 1X2, in
order to get a more natural aspect ratio.

(1), y(t), y(tn) stem plot
0.5
“’ g m
© =
2 =S
a = [0¢
& 3
-0.5
0 0.5 1 0 0.5 1
t (sec) t (sec)

Finally, we mention some MATLAB resources. Many of the MATLAB functions needed in the exper-

iments are included in Appendix D of the text [1]. Many MATLAB on-line tutorials can be found at the
following web sites:

http://www.mathworks.com/academia/student_center/tutorials/index.htm]l
http://www.eece.maine.edu/mm/matweb.html

0.4. References
(1]

S. J. Orfanidis, Introduction to Signal Processing, online book, 2010, available from:
http://www.ece.rutgers.edu/~orfanidi/intro2sp/
[2] MATLAB Documentation: http://www.mathworks.com/help/techdoc/

[3] B.W.Kernighan and D. M. Ritchie, The C Programming Language, 2nd ed., Prentice Hall, Englewood

Cliffs, NJ, 1988.

S. P. Harbison and G. L. Steele, C: A Reference Manual, Prentice Hall, Englewood Cliffs, NJ, 1984.
A. Kelly and I. Pohl, A Book on C, 2nd ed., Benjamin/Cummings, Redwood City, CA, 1990.

1 TMS320C6713 DSK AND CODE COMPOSER STUDIO 7

Lab 1 - TMS320C6713 DSK and Code Composer Studio

1.1. Introduction

The hardware experiments in the DSP lab are carried out on the Texas Instruments TMS320C6713 DSP
Starter Kit (DSK), based on the TMS320C6713 floating point DSP running at 225 MHz. The basic clock cycle
instruction time is 1/ (225 MHz) = 4.44 nanoseconds. During each clock cycle, up to eight instructions
can be carried out in parallel, achieving up to 8x225 = 1800 million instructions per second (MIPS).
The C6713 processor has 256KB of internal memory, and can potentially address 4GB of external
memory. The DSK board includes a 16MB SDRAM memory and a 512KB Flash ROM. It has an on-board
16-bit audio stereo codec (the Texas Instruments AIC23B) that serves both as an A/D and a D/A converter.
There are four 3.5 mm audio jacks for microphone and stereo line input, and speaker and head-phone
outputs. The AIC23 codec can be programmed to sample audio inputs at the following sampling rates:

fs =8, 16, 24, 32, 44.1, 48, 96 kHz

The ADC part of the codec is implemented as a multi-bit third-order noise-shaping delta-sigma con-
verter (see Ch. 2 & 12 of [1] for the theory of such converters) that allows a variety of oversampling
ratios that can realize the above choices of fs. The corresponding oversampling decimation filters act
as anti-aliasing prefilters that limit the spectrum of the input analog signals effectively to the Nyquist
interval [—fs/2,fs/2]. The DAC part is similarly implemented as a multi-bit second-order noise-shaping
delta-sigma converter whose oversampling interpolation filters act as almost ideal reconstruction filters
with the Nyquist interval as their passband.

The DSK also has four user-programmable DIP switches and four LEDs that can be used to control
and monitor programs running on the DSP.

All features of the DSK are managed by the CCS, which is a complete integrated development envi-
ronment (IDE) that includes an optimizing C/C++ compiler, assembler, linker, debugger, and program
loader. The CCS communicates with the DSK via a USB connection to a PC. In addition to facilitating all
programming aspects of the C6713 DSP, the CCS can also read signals stored on the DSP’s memory, or
the SDRAM, and plot them in the time or frequency domains.

The following block diagram depicts the overall operations involved in all of the hardware experiments
in the DSP lab. Processing is interrupt-driven at the sampling rate f§, as explained below.

ccs ,
‘ interrupt
L] ‘
sample X log inout
processing McBSP AIC23 «—— analog inpu
algorithm [3 » codec [—» analog output
TMS320C6713 DSP '

The AIC23 codec is configured (through CCS) to operate at one of the above sampling rates fs. Each
collected sample is converted to a 16-bit two’s complement integer (a short data type in C). The codec
actually samples the audio input in stereo, that is, it collects two samples for the left and right channels.

At each sampling instant, the codec combines the two 16-bit left/right samples into a single 32-bit
unsigned integer word (an unsigned int, or Uint32 data type in C), and ships it over to a 32-bit receive-
register of the multichannel buffered serial port (McBSP) of the C6713 processor, and then issues an
interrupt to the processor.

Uponreceiving the interrupt, the processor executes an interrupt service routine (ISR) that implements
a desired sample processing algorithm programmed with the CCS (e.g., filtering, audio effects, etc.).
During the ISR, the following actions take place: the 32-bit input sample (denoted by x in the diagram) is
read from the McBSP, and sent into the sample processing algorithm that computes the corresponding

1 TMS320C6713 DSK AND CODE COMPOSER STUDIO 8

32-bit output word (denoted by y), which is then written back into a 32-bit transmit-register of the
McBSP, from where it is transferred to the codec and reconstructed into analog format, and finally the
ISR returns from interrupt, and the processor begins waiting for the next interrupt, which will come at
the next sampling instant.

Clearly, all processing operations during the execution of the ISR must be completed in the time
interval between samples, that is, T = 1/fs. For example, if fg = 44.1 kHz, then, T = 1/fs = 22.68 usec.
With an instruction cycle time of T = 4.44 nsec, this allows T /T, = 5108 cycles to be executed during
each sampling instant, or, up to 8xX5108 = 40864 instructions, or half of that per channel.

Resources

Most of the hardware experiments in the DSP lab are based on C code from the text [1] adapted to the
CCS development environment. Additional experiments are based on the Chassaing-Reay text [2].

The web page of the lab, http://www.ece.rutgers.edu/~orfanidi/ece348/, contains additional
resources such as tutorials and user guides. Some books on C and links to the GNU GCC C compiler are
given in Ref. [5].

As a prelab, before you attend Lab-1, please go through the powerpoint presentations of Brown’s
workshop tutorial in Ref. [3], Part-1, and Dahnoun’s chapters 1 & 3 listed in Ref. [4]. These will give you
a pretty good idea of the TMS320C6000 architecture and features.

The help file, C:\CCStudio_v3.1\docs\hT1p\c6713dsk.h1p, found in the CCS installation directory
of each PC, contains very useful information on the C6713 processor and DSK kit. The following pictures
are from that help file:

Line In Headphone
Line Out

Mic In

DIP LEDs Reset Config External Hurricane

Jack Port Switches Switch Switch JTAG Header
HEERERS
ol (4 g [2
ENENENE jromeeseeseseeof Memory Exp AIC23 Codec
T T T i H =2
EMIE -~ e
l' ,I' = B JQ\E;HTHF‘\/\EL -
] — -
£ 232 £ Fmo MeBSPO ce| |Gl
(=] CLGD me——e SO S
[FOWERDOWH |
T = E ﬁ o b SPIFormat SDIN ; %;mrw — ;
HI MUY DSP 5 i (=] g S [| SAPLERATE kN
- 7] T [Cigfal| [@ | DIBACT Analog |
Voltage T T 1‘ R'ESIET : - [ONE OUT |
Reg i : or1 MEBSP1 I :%«
Embedded i i 5 FEX| etiffmm | DOUT f -ﬂ-'—, MICIN
: + += Peripheral Exp CLkRA LREOLLT, i ! LNE M F 2%
fL | JTAG izEfp cusa PP .
E H § EEL H FSR1 e DAD : LHE OUT
T HERSoE~ i D3 ==
T FEERE b ! e vt e
7 m Ext. ¢ ololdle] e
s 8 JTAG e 0123 0123

L

1 TMS320C6713 DSK AND CODE COMPOSER STUDIO 9

1.2. Lab Tasks

In this lab, you will learn how to use some basic features of the Code Composer Studio (CCS), such as
creating projects, compiling and linking them to the run-time libraries, loading them for execution on
the DSP chip, using GEL files for changing program parameters during run-time.

You will hear what aliasing effects sound like (i.e., distortions arising from using the wrong sampling
rate). You will hear what quantization effects sound like (i.e., when you use too few bits for your audio
samples). You will find out how the stereo A/D converter packs the two 16-bit samples from the left and
right audio channels into a 32-bit word and sends it over to the processor, and how it gets unpacked
into the two individual 16-bit left/right words by the processor. You will also study panning between
speakers, and several nonlinear input/output functions such as fuzz (hard clipping) and tube amplifier
(soft clipping) for guitar distortion.

1.3. Template Program

You will begin with a basic talkthrough program, listed below, that simply reads input samples from
the codec and immediately writes them back out. This will serve as a template on which to build more
complicated sample processing algorithms by modifying the interrupt service routine isr().

// template.c - to be used as starting point for interrupt-based programs

/=
#include "dsplab.h" // DSK initialization declarations and function prototypes
short xL, xR, yL, yR; // left and right input and output samples from/to codec
float g=1; // gain to demonstrate watch windows and GEL files

// here, add more global variable declarations, #define’s, #include’s, etc.

A
void main() // main program executed first
{
initialize(); // initialize DSK board and codec, define interrupts
sampTling_rate(8); // possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz
audio_source(LINE); // LINE or MIC for Tline or microphone input
while(1); // keep waiting for interrupt, then jump to isr()
}
B LI
interrupt void isr(Q) // sample processing algorithm - interrupt service routine
{
read_inputs(&xL, &xR); // read left and right input samples from codec
yL = g * xL; // replace these with your sample processing algorithm
yR = g * xR;
write_outputs(yL,yR); // write left and right output samples to codec
return;
}
/) S oo

// here, add more functions to be called within isr() or main(Q)

The template has three sections. In the top section, global variables are declared and defined, such as
the left/right input/output audio samples x;, Xgr, Y1, Vr, whose scope is the entire file and are known to
all functions in the file. Additional #define and #include statements, such as #include <math.h>,
and additional global variable declarations may be added in this section.

1 TMS320C6713 DSK AND CODE COMPOSER STUDIO 10

The second section consists of the function main(), which is executed first, and performs the initial-
ization of the DSK board, sets the sampling rate, selects the audio input, and then goes into an infinite
loop waiting for an interrupt. Upon receiving the interrupt, it jumps to the function isr(). Additional
local variables and other preliminary operations, such as the zeroing of delay-line buffers, may be added
in this section before the wait(1) statement.

The third section consists of the interrupt service routine isr(), which implements the desired
sample processing algorithm. Note that the keyword interrupt has been added to the C language imple-
mentation of the CCS. In the template file, the ISR function reads the left/right input samples, process
them by multiplying them by a gain, sends them to the output, and returns back to main().

The reading and writing of the input and output samples are done with the help of the functions
read_inputs() and write_outputs(), which are declared in the header file dsplab.h and defined in
dsplab.c. These two files must always be included in your programs and reside in the common directory
C:\dsplab\common\.

Besides the above three basic sections, other sections may be added that define additional functions
to be called within isr() or main(Q).

Working with CCS

For each application to be run on the C6713 processor, one must create a “project” in the Code Composer
Studio, which puts together all the information about the required C source files, header files, and C
libraries, including all the compiler and linker build options. During the lab session, you will be working
in the temporary folders:

C:\1abuser
C:\labuser\dsplab
C:\Tabuser\dsplab\template
C:\Tabuser\dsplab\examples

Before you start work, please double-click on the desktop icon called cleanup. This refreshes the
above Tabuser directory and removes all files created by previous students. Consequently, before you
leave the lab, you must save your work files in a thumb-drive or email them to yourselves.

To save you time, the project file, template.pjt, for the above template has already been created,
and may be simply edited for all other projects. To proceed, copy the following three files from the
template directory C:\labuser\dsplab\template:

template.c
template.pjt
template.gel

into your temporary working directory, e.g., C:\Tabuser, and double-click the project file, template.pjt,
which will open in an ordinary text editor. The first few lines of that file are shown below:

[Project Settings]
ProjectDir="C:\dsplab\template\"
ProjectType=Executable
CPUFami1y=TMS320C67XX
Tool="Compiler"
Tool="CustomBuilder"
Tool="DspBiosBuilder"
Tool="Linker"

Config="Debug"

Config="Release"

[Source Files]
Source="C:\CCStudio_v3.1\C6000\cgtools\1ib\rts6700.11ib"
Source="C:\CCStudio_v3.1\C6000\cs1\1ib\cs16713.11ib"
Source="C:\CCStudio_v3.1\C6000\dsk6713\1ib\dsk6713bs1.Tib"
Source="C:\dsplab\common\dsplab.c"
Source="C:\dsplab\common\vectors.asm"

Source="template.c"

1 TMS320C6713 DSK AND CODE COMPOSER STUDIO 11

Only the second and bottom lines in the above listing need to be edited. First, edit the project directory
entry to your working directory, e.g.,

ProjectDir="C:\Tabuser"

Alternatively, you may delete that line—it will be recreated by CCS when you load the project. Then,
edit the source-file line Source="template.c" to your new project’s name, e.g.,

Source="new_project.c"

Finally, rename the three files with your new names, e.g.,

new_project.c
new_project.pjt
new_project.gel

Next, turn on the DSK kit and after the initialization beep, open the CCS application by double-clicking
on the CCS desktop icon. Immediately after it opens, use the keyboard combination “ALT+C” (or the menu
item Debug -> Connect) to connect it to the processor. Then, with the menu item Project -> Open or the
key combination “ALT+P O”, open the newly created project file by navigating to the project’s directory,
e.g., C:\labuser. Once the project loads, you may edit the C source file to implement your algorithm.
Additional C source files can be added to your project by the keyboard combination “ALT+P A” or the
menu choices Project -> Add Files to Project.

Set up CCS to automatically load the program after building it, with the menu commands: Option
-> Customize -> Program/Project Load -> Load Program After Build. The following key combinations or
menu items allow you to compile and load your program, run or halt the program:

compile & load: F7, Project -> Build
run program: F5, Debug -> Run
halt program: Shift+F5, Debug -> Halt

It is possible that the first time you try to build your program you will get a warning message:

warning: creating .stack section with default size of 400 (hex) words

In such case, simply rebuild the project, or, in the menu item Project -> Build Options -> Linker, enter a
value such as 0x500 in the stack entry.

When you are done, please remember to save and close your project with the keyboard combinations
“ALT+P S” and “ALT+P C”, and save your programs in your account on ECE.

Lab Procedure

a. Copy the template files into your temporary working directory, edit the project’s directory as described
above, and build the project in CCS. Connect your MP3 player to the line input of the DSK board and
play your favorite song, or, you may play one of the wave files in the directory: c:\dsplab\wav.

b. Review the template project’s build options using the menu commands: Project -> Build Options. In
particular, review the Basic, Advanced, and Preprocessor options for the Compiler, and note that the
optimization level was set to none. In future experiments, this may be changed to -02 or -03.

For the Linker options, review the Basic and Advanced settings. In particular, note that the default
output name a.out can be changed to anything else. Note also the library include paths and that the
standard included libraries are:

rts6700.11ib (run-time 1ibrary), C:\CCStudio_v3.1\C6000\cgtooTs\1ib\rts6700.11ib
cs16713.T1b (chip support Tibrary), C:\CCStudio_v3.1\C6000\csT\Tib\cs16713.11ib
dsk6713bs1.1ib (board support library), C:\CCStudio_v3.1\C6000\dsk6713\1ib\dsk6713bs1.11ib

1 TMS320C6713 DSK AND CODE COMPOSER STUDIO 12

The run-time library must always be included. The board support library (BSL) contains functions for
managing the DSK board peripherals, such as the codec. The chip support library (CSL) has functions
for managing the DSP chip’s features, such as reading and writing data to the chip’s McBSP. The user
manuals for these may be found on the TI web site listed on the lab’s web page.

¢. The gain parameter g can be controlled in real-time in two ways: using a watch window, or using a
GEL file. Open a watch window using the menu item: View -> Watch Window, then choose View ->
Quick Watch and enter the variable g and add it to the opened watch window using the item Add to
Watch. Run the program and click on the g variable in the watch window and enter a new value, such
as g = 0.5 or g = 2, and you will hear the difference in the volume of the output.

d. Close the watch window and open the GEL file, template.gel, with the menu File -> Load GEL. In the
GEL menu of CCS a new item called “gain” has appeared. Choose it to open the gain slider. Run the
program and move the slider to different positions. Actually, the slider does not represent the gain g
itself, but rather the integer increment steps. The gain g changes by 1/10 at each step. Open the GEL
file to see how it is structured. You may use that as a template for other cases.

e. Modify the template program so that the output pans between the left and right speakers every 2
seconds, i.e., the left speaker plays for 2 sec, and then switches to the right speaker for another 2 sec,
and so on. There are many ways of doing this, for example, you may replace your ISR function by

#define D 16000 // represents 2 sec at fs = 8 kHz
short d=0; // move these before main()

interrupt void isr(Q)

{
read_inputs(&xL, &xR);

(d < D) * xL;
(d >= D) * xR;

yL
yR

if (++d >= 2*D) d=0;
write_outputs(yL,yR);

return;

Rebuild your program with these changes and play a song. In your lab write-up explain why and how
this code works.

1.4. Aliasing

This part demonstrates aliasing effects. The smallest sampling rate that can be defined is 8 kHz with
a Nyquist interval of [—4,4] kHz. Thus, if a sinusoidal signal is generated (e.g. with MATLAB) with
frequency outside this interval, e.g., f = 5 kHz, and played into the line-input of the DSK, one might
expect that it would be aliased with f; = f — fs = 5 — 8 = —3 kHz. However, this will not work because
the antialiasing oversampling decimation filters of the codec filter out any such out-of-band components
before they are sent to the processor.

An alternative is to decimate the signal by a factor of 2, i.e., dropping every other sample. If the
codec sampling rate is set to 8 kHz and every other sample is dropped, the effective sampling rate will
be 4 kHz, with a Nyquist interval of [—2,2] kHz. A sinusoid whose frequency is outside the decimated
Nyquist interval [—2, 2] kHz, but inside the true Nyquist interval [—4, 4] kHz, will not be cut off by the
antialiasing filter and will be aliased. For example, if f = 3 kHz, the decimated sinusoid will be aliased
with fz =3 — 4 = —1 kHz.

1 TMS320C6713 DSK AND CODE COMPOSER STUDIO 13

Lab Procedure

Copy the template programs to your working directory. Set the sampling rate to 8 kHz and select line-
input. Modify the template program to output every other sample, with zero values in-between. This can
be accomplished in different ways, but a simple one is to define a “sampling pulse” periodic signal whose
values alternate between 1 and 0, i.e., the sequence [1,0,1,0,1,0,...] and multiply the input samples
by that sequence. The following simple code segment implements this idea:

pulse * xL;
pulse * xR;

yL
yR

pulse = (pulse==0);

where pulse must be globally initialized to 1 before main() and isr(). Why does this work? Next,
rebuild the new program with CCS.

Open MATLAB and generate three sinusoids of frequencies f; = 1 kHz, f> = 3 kHz, and f3 = 1 kHz,
each of duration of 1 second, and concatenate them to form a 3-second signal. Then play this out of the
PCs sound card using the sound() function. For example, the following MATLAB code will do this:

fs = 8000; f1 = 1000; f2 = 3000; f3 = 1000;

L = 8000; n = (0:L-1);

A =1/5; % adjust playback volume
x1 = A * cos(Q*pi*n*fl/fs);

x2 = A * cos(2*pi*n*f2/fs);

x3 = A * cos(*pi*n*f3/fs);

sound([x1,x2,x3], fs);

a. Connect the sound card’s audio output to the line-input of the DSK and rebuild/run the CCS down-
sampling program after commenting out the line:

pulse = (pulse==0);

This disables the downsampling operation. Send the above concatenated sinusoids to the DSK input
and you should hear three distinct 1-sec segments, with the middle one having a higher frequency.

b. Next, uncomment the above line so that downsampling takes place and rebuild/run the program.
Send the concatenated sinusoids to the DSK and you should hear all three segments as though they
have the same frequency (because the middle 3 kHz one is aliased with other ones at 1 kHz). You
may also play your favorite song to hear the aliasing distortions, e.g., out of tune vocals.

c. Set the codec sampling rate to 44 kHz and repeat the previous two steps. What do you expect to
hear in this case?

d. To confirm the antialiasing prefiltering action of the codec, replace the first two lines of the above
MATLAB code by the following two:

fs = 16000; f1l = 1000; f2 = 5000; f3 = 1000;
L = 16000; n = (0:L-1);

Now, the middle sinusoid has frequency of 5 kHz and it should be cutoff by the antialiasing prefilter.
Set the sampling rate to 8 kHz, turn off the downsampling operation, rebuild and run your program,
and send this signal through the DSK, and describe what you hear.

1 TMS320C6713 DSK AND CODE COMPOSER STUDIO 14

1.5. Quantization

The DSK’s codec is a 16-bit ADC/DAC with each sample represented by a two’s complement integer.
Given the 16-bit representation of a sample, [b1b> - - - bys], the corresponding 16-bit integer is given by

X = (—b12‘1 + b22_2 + b32_3 + -+ b162_16)216 (1.1)

The MSB bit b, is the sign bit. The range of representable integers is: —32768 < x < 32767. As
discussed in Ch. 2 of Ref. [1], for high-fidelity audio at least 16 bits are required to match the dynamic
range of human hearing; for speech, 8 bits are sufficient. If the audio or speech samples are quantized
to less than 8 bits, quantization noise will become audible.

The 16-bit samples can be requantized to fewer bits by a right/left bit-shifting operation. For example,
right shifting by 3 bits will knock out the last 3 bits, then left shifting by 3 bits will result in a 16-bit
number whose last three bits are zero, that is, a 13-bit integer. These operations are illustrated below:

[b11b21""b13lb141b15,b16] : [Ololo’bl’bz""’b13] :> [bllbzl"'JblS’Ojoio]

Lab Procedure

a. Modify the basic template program so that the output samples are requantized to B bits, where 1 <
B < 16. This requires right/left shifting by L = 16 — B bits, and can be implemented very simply in C
as follows:

(xL >> L) << L;
(xR >> L) << L;

yL
yR

Start with B = 16, set the sampling rate to 8 kHz, and rebuild/run the program. Send a wave file as
input and listen to the output.

b. Repeat with the following values: B = 8, 6,4, 2, 1, and listen to the gradual increase in the quantization
noise.

1.6. Data Transfers from/to Codec

We mentioned in the introduction that the codec samples the input in stereo, combines the two 16-bit
left/right samples x;, Xg into a single 32-bit unsigned integer word, and ships it over to a 32-bit receive-
register of the McBSP of the C6713 processor. This is illustrated below.

l<— 16 bits —>=— 16 bits — — X.Cc[1] —»=— Xx.c[0] —~

[% %] ox=[% [% |

32 bits { o XU —
combined word union data structure

The packing and unpacking of the two 16-bit words into a 32-bit word is accomplished with the help
of a union data structure (see Refs. [2,3]) defined as follows:

union { // union structure to facilitate 32-bit data transfers
Uint32 u; // both channels packed as codec.u = 32-bits
short c[2]; // Tleft-channel = codec.c[1], right-channel = codec.c[0]
} codec;

The two members of the data structure share a common 32-bit memory storage. The member codec.u
contains the 32-bit word whose upper 16 bits represent the left sample, and its lower 16 bits, the right
sample. The two-dimensional short array member codec.c holds the 16-bit right-channel sample in its
first component, and the left-channel sample in its second, that is, we have:

1 TMS320C6713 DSK AND CODE COMPOSER STUDIO 15

xL = codec.c[1];
xR codec.c[0];

The functions read_inputs () andwrite_outputs (), which are defined in the common file dsp1ab.c,
use this structure in making calls to low-level McBSP read/write functions of the chip support library.
They are defined as follows:

/oo
void read_inputs(short *xL, short *xR) // read left/right channels
f codec.u = MCBSP_read(DSK6713_AIC23_DATAHANDLE); // read 32-bit word
*xL = codec.c[1]; // unpack the two 16-bit parts
*XR = codec.c[0];
}
[
F A R R R
void write_outputs(short yL, short yR) // write left/right channels
t codec.c[1] = yL; // pack the two 16-bit parts
codec.c[0] = yR; // into 32-bit word
) MCBSP_write(DSK6713_AIC23_DATAHANDLE, codec.u); // output left/right samples
/=

Lab Procedure

The purpose of this lab is to clarify the nature of the union data structure. Copy the template files into
your working directory, rename them unions.*, and edit the project file by keeping in the source-files
section only the run-time library and the main function below.

// unions.c - test union structure

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

void main(void)

{
unsigned int v;
short xL,xR;

union {
unsigned int u;
short c[2];

1 x;

xL = 0x1234;
xR = 0x5678;
v = 0x12345678;

printf("\n%x %x %d %d\n", xL,xR, xL,xR);

x.c[1] = xL;

x.c[0] = xR;

printf("\n%x %x %x %d %d\n", x.u, x.c[1], x.c[0], x.c[1], x.c[0]);

X.U = V;
printf("%x %x %x %d %d\n", x.u, x.c[1], x.c[0], x.c[1], x.c[0]);

1 TMS320C6713 DSK AND CODE COMPOSER STUDIO 16

x.u = (((int) xL)<<16 | ((int) xR) & OX0000FFF);
printfC%x %x %x %d %d\n", x.u, x.c[1], x.c[0], x.c[1], x.c[0]);

The program defines first a union structure variable x of the codec type. Given two 16-bit left/right
numbers xL, xR (specified as 4-digit hex numbers), it defines a 32-bit unsigned integer v which is the
concatenation of the two. The first printf statement prints the two numbers xL, xR in hex and decimal
format. Note that the hex printing conversion operator %x treats the numbers as unsigned (some caution
is required when printing negative numbers), whereas the decimal operator %d treats them as signed
integers.

Next, the numbers xL, xR are assigned to the array members of the union x, such that x.c[1] = xL
and x.c[0] = xR, and the second printf statement prints the contents of the union x, verifying that
the 32-bit member x.u contains the concatenation of the two numbers with xL occupying the upper 16
bits, and xR, the lower 16 bits. Explain what the other two printf statements do.

Build and run the project (you may have to remove the file vectors.asm from the project’s list of
files). The output will appear in the stdout window at the bottom of the CCS. Alternatively, you may
run this outside CCS using GCC. To do so, open a DOS window in your working directory and type the
DOS command djgpp. This establishes the necessary environment variables to run GCC, then, run the
following GCC command to generate the executable file unions.exe:

gcc unions.c -0 unions.exe -1m

Repeat the run with the following choice of input samples:

xL 0x1234;
xR Oxabcd;
v = 0x1234abcd;

Explain the outputs of the print statements in this case by noting the following properties, which you
should prove in your report:

(oxfff£0000) =2% 216

unsigned

(0xFfffabed) pgignea = 2°° + (Oxabed)

signed

(Oxffffabed) gnea = (0xabed) gignea

1.7. Guitar Distortion Effects

In all of the experiments of Lab-2, the input/output maps are memoryless. We will study implementation
of delays in a later lab. A memoryless mapping can be linear but time-varying, as was for example the case
of panning between the speakers or the AM/FM wavetable experiments discussed discussed in another
lab. The mapping can also be nonlinear.

Many guitar distortion effects combine delay effects with such nonlinear maps. In this part of Lab-1,
we will study only some nonlinear maps in which each input sample x is mapped to an output sample
vy by a nonlinear function y = f(x). Typical examples are hard clipping (called fuzz) and soft clipping
that tries to emulated the nonlinearities of tube amplifiers. A typical nonlinear function is y = tanh(x).
It has a sigmoidal shape that you can see by the quick MATLAB plot:

fplot(’tanh(x)’, [-4,4]); grid;
As suggested in Ref. [6], by keeping only the first two terms in its Taylor series expansion, that is,
tanh (x) = x — x3/3, we may define a more easily realizable nonlinear function with built-in soft clipping:
+2/3, x=1

y=f(x)=1x-x3/3, —-1=<x<1 (1.2)
—2/3, x<-1

1 TMS320C6713 DSK AND CODE COMPOSER STUDIO 17

This can be plotted easily with
fplot(’ (abs(x)<1).*(x-1/3*x.A3) + sign(x).*(abs(x)>=1)*2/3’, [-4,4]); grid;

The threshold value of 2/3 is chosen so that the function f (x) is continuous at x = =1. To add some
flexibility and to allow a variable threshold, we consider the following modification:

+c, X=c
y=f(x)=1x—-Bc(x/c)3, —-c<x=<c , B=1-«x (1.3)
-, X<-—

where we assume that ¢ > 0 and 0 < &« < 1. The choice B = 1 — « is again dictated by the continuity
requirement at x = +c. Note that setting & = 1 gives the hard-thresholding, fuzz, effect:

+c, X>c¢
y=f(X)=1Xx, -Cc=<Xx<c (1.4)
-c, X< -—c

Lab Procedure

First, run the above two fplot commands in MATLAB to see what these functions look like. The following
program is a modification of the basic tempTlate.c program that implements Eq. (1.3):

// soft.c - guitar distortion by soft thresholding
ittt L et

#include "dsplab.h" // init parameters and function prototypes
#include <math.h>

/e
#define a 0.67 // approximates the value 2/3
#define b (1-a)
short xL, xR, yL, yR; // codec input and output samples
int x, y, on=1, c=2048; // on/off variable and initial threshold c
int f(int); // function declaration
/e
void main() // main program executed first
{

initialize(); // initialize DSK board and codec, define interrupts

sampling_rate(16); // possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz

audio_source(LINE); // LINE or MIC for Tline or microphone input

while(1); // keep waiting for interrupt, then jump to isr()
}
/e
interrupt void isr(Q) // sample processing algorithm - interrupt service routine
{

read_inputs(&xL, &xR); // read left and right input samples from codec
if (on) {
yL = (short) f((int) xL); yL = yL << 1; // amplify by factor of 2
yR = (short) f((int) xR); yR = yR << 1;

}

1 TMS320C6713 DSK AND CODE COMPOSER STUDIO 18

else
{yL = xL; yR = xR;}

write_outputs(yL,yR); // write left and right output samples to codec
return;
}
et
int f(int x)
{
float y, xc = x/c; // this y 1is local to f(Q
y=x%*(1-b*xc?* xc);
if (x>c) y = a*c; // force the threshold values
if (x<-0) y = -a*c;
return ((int) y);
}
/e

a. Create a project for this program. In addition, create a GEL file that has two sliders, one for the on
variable that turns the effect on or off in real time, and another slider for the threshold parameter c.
Let c vary over the range [0, 2!4] in increments of 512.

Build and run the program, load the gel file, and display the two sliders. Then, play your favorite guitar
piece and vary the slider parameters to hear the changes in the effect. (The wave file turn-turn3.wav
in the directory c:\dsplab\wav is a good choice.)

Repeat the previous part by turning off the nonlinearity (i.e., setting o« = 1), which reduces to a fuzz

effect with hard thresholding.

1.8. References

(1]

(2]

(3]

[4]

[5]

S. J. Orfanidis, Introduction to Signal Processing, online book, 2010, available from:
http://www.ece.rutgers.edu/~orfanidi/intro2sp/

R. Chassaing and D. Reay, Digital Signal Processing and Applications with the TMS320C6713 and
TMS320C6416 DSK, 2nd ed., Wiley, Hoboken, NJ, 2008.

D. R. Brown III, 2009 Workshop on Digital Signal Processing and Applications with the TMS320C6713
DSK, Parts 1 & 2, available online from:
http://spinlab.wpi.edu/courses/dspworkshop/dspworkshop_partl_2009.pdf
http://spinlab.wpi.edu/courses/dspworkshop/dspworkshop_part2_2009.pdf

N. Dahnoun, "DSP Implementation Using the TMS320C6711 Processors," contained in the Texas
Instruments "C6000 Teaching Materials" CD ROM, 2002-04, and available online from TI:
http://www.ti.com/ww/cn/uprogram/share/ppt/c6000/Chapterl.ppt
http://www.ti.com/ww/cn/uprogram/share/ppt/c6000/Chapter2.ppt
http://www.ti.com/ww/cn/uprogram/share/ppt/c6000/Chapter3.ppt

B. W. Kernighan and D. M. Ritchie, The C Programming Language, 2nd ed., Prentice Hall, Englewood
Cliffs, NJ, 1988.

S. P. Harbison and G. L. Steele, C: A Reference Manual, Prentice Hall, Englewood Cliffs, NJ, 1984.

A. Kelly and I. Pohl, A Book on C, 2nd ed., Benjamin/Cummings, Redwood City, CA, 1990.

GNU gcc, http://gcc.gnu.org/
DJGPP - Windows version of GCC, http://www.delorie.com/djgpp/
GCC Introduction, http://www.network-theory.co.uk/docs/gccintro/

1 TMS320C6713 DSK AND CODE COMPOSER STUDIO 19

[6] C.R. Sullivan. “Extending the Karplus-Strong Algorithm to Synthesize Electric Guitar Timbres with
Distortion and Feedback,” Computer Music J., 14, 26, (1990).

2 WAVETABLE GENERATORS, AM/FM MODULATION 20

Lab 2 - Wavetable Generators, AM/FM Modulation

2.1. Lab Tasks

The concept of a wavetable is introduced and applied first to the generation of sinusoidal signals of
different frequencies and then to square waves. AM and FM examples are constructed by combining two
wavetables. Ring modulation and tremolo audio effects are studied as special cases of AM modulation.

2.2. Wavetable Generators

Wavetable generators are discussed in detail in Sect. 8.1.3 of the text [1]. A wavetable is defined by a
circular buffer w whose dimension D is chosen such that the smallest frequency to be generated is:

_fs _Is
fmin_D - D_fmin

For example, if f; = 8 kHz and the smallest desired frequency is fimin = 10 Hz, then one must choose
D = 8000/10 = 800. The D-dimensional buffer holds one period at the frequency fimin of the desired
waveform to be generated. The shape of the stored waveform is arbitrary, and can be a sinusoid, a square
wave, sawtooth, etc. For example, if it is sinusoidal, then the buffer contents will be:

w[n]=sin(2nfmmn> :sin<2n—n> , n=0,1,...,.D-1
fs D

Similarly, a square wave whose first half is +1 and its second half, —1, will be defined as:

win]= +1, if 0<n<D/2
~|-1, if D/2<n<D

To generate higher frequencies (with the Nyquist frequency fs/2 being the highest), the wavetable is
cycled in steps of ¢ samples, where c is related to the desired frequency by:

f:Cfmmzcé => C=D£EDF, F:L

D fs fs

where F = f/fs is the frequency in units of [cycles/sample]. The generated signal of frequency f and
amplitude A is obtained by the loop:

repeat forever: A———wjamp
y=Awlq] out y (2.1)
q = (g + c)mod (D) F > freq

The shift ¢ need not be an integer. In such case, the quantity g + ¢ must be truncated to the integer
just below it. The text [1] discusses alternative methods, for example, rounding to the nearest integer,
or, linearly interpolating. For the purposes of this lab, the truncation method will suffice.

The following function, wavgen (), based on Ref. [1], implements this algorithm. The mod-operation
is carried out with the help of the function qwrap():

R
// wavgen.c - wavetable generator
// Usage: y = wavgen(D,w,A,F,&q);
B

int gqwrap(int, int);
float wavgen(int D, float *w, float A, float F, int *q)

{
float y, c=D*F;

2 WAVETABLE GENERATORS, AM/FM MODULATION 21

%

y = A * wl*ql;
*q = gqwrap(D-1, (int) (*g+c));

return y;

We note that the circular index g is declared as a pointer to int, and therefore, must be passed by
address in the calling program. Before using the function, the buffer w must be loaded with one period
of length D of the desired waveform. This function differs from the one in Ref. [1] in that it loads the
buffer in forward order and cycles the index g forward.

2.3. Sinusoidal Wavetable

The following program, sine0. c, generates a 1 kHz sinusoid from a wavetable of length D = 4000. At a
sampling rate of 8 kHz, the smallest frequency that can be generated is fimin = fs/D = 8000/4000 = 2
Hz. In order to generate f = 1 kHz, the step size willbe c = D - f/fs = 4000 - 1/8 = 500 samples.

In this example, we will not use the function wavgen but rather apply the generation algorithm of
Eq. (2.1) explicitly. In addition, we will save the output samples in a buffer array of length N = 128 and
inspect the generated waveform both in the time and frequency domains using CCS’s graphing capabili-
ties.

// sinex.c - sine wavetable example

//

// 332:348 DSP Lab - Spring 2012 - S. J. Orfanidis
ittt b B
#include "dsplab.h" // DSK initialization declarations and function prototypes

#include <math.h>
//#define PI 3.141592653589793

short xL, xR, yL, yR; // left and right input and output samples from/to codec
#define D 4000 // fmin = fs/D = 8000/4000 = 2 Hz
#define N 128 // buffer length
short fs=8; // fs = 8 kHz
float c, A=5000, f=1; // f =1 kHz
float w[D]; // wavetable buffer
float buffer[N]; // buffer for plotting with CCS
int g=0, k=0;
/e
void main() // main program executed first
{
int n;

float PI = 4*atan(1l);

for (n=0; n<D; n++) w[n] = sin(2*PI*n/D); // load wavetable with one period

c = D*f/fs; // step into wavetable buffer

initialize(); // initialize DSK board and codec, define interrupts
sampling_rate(fs); // possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz
// audio_source(LINE); // LINE or MIC for line or microphone input

while(1); // wait for interrupts

2 WAVETABLE GENERATORS, AM/FM MODULATION

/]

interrupt void isrQ)

{
yL = (short) (A * wlql); //
q = (int) (q+c); if (q >=D) q = 0; //
buffer[k] = (float) yL; //
if (++k >= N) k=0; //
write_outputs(yL,yL); //

}

[/

22

generate sinusoidal output
cycle over wavetable in steps c

save into buffer for plotting
cycle over buffer

audio output

The wavetable is loaded with the sinusoid in main(). At each sampling instant, the program does
nothing with the codec inputs, rather, it generates a sample of the sinusoid and sends it to the codec,
and saves the sample into a buffer (only the last N generated samples will be in present in that buffer).

Lab Procedure

a. Create a project for this program and run it. The amplitude was chosen to be A = 5000 in order to
make the wavetable output audible. Hold the processor after a couple of seconds (SHIFT-F5).

Using the keyboard shortcut, “ALT-V RT”, or the menu commands View -> Graph -> Time/Frequency,

open a graph-properties window as that shown below:

= Graph Property Dialog

~

TR Single Time =

Graph Title
Start Address buffer
Acquisiion Buffer Size 128
Indext Increment 1
Dizplay Data Size 128

Graphical Display

DSP Data Type 32-hit IEEE floating paint

Sarnpling Rate (Hz) 8

Plot Data From Lettto Right

Lett-shitted Data Display “es

Autoscale On

DCValue 0

Axes Display On

Tirne Display Unit 5

Status Bar Display On

Magnitude Display Scale Linear

Data Plot Style Line ~
OK Cancel ‘ Help |

Select the starting address to be, buffer, set the sampling rate to 8 and look at the time waveform.
Count the number of cycles displayed. Can you predict that number from the fact that N samples
are contained in that buffer? Next right-click on the graph and select “Properties”, and choose “FFT
Magnitude” as the plot-type. Verify that the peak is at f = 1 kHz.

c. Reset the frequency to 500 Hz. Repeat parts (a,b).

Create a GEL file with a slider for the value of the frequency over the interval 0 < f < 1 kHz in steps

of 100 Hz. Open the slider and run the program while changing the frequency with the slider.

e. Set the frequency to 30 Hz and run the program. Keep decreasing the frequency by 5 Hz at a time and
determine the lowest frequency that you can hear (but, to be fair don’t increase the speaker volume;
that would compensate the attenuation introduced by your ears.)

f. Replace the following two lines in the isr() function:

yL = (short) (A * w[ql);
g = (int) (g+c); if (g >=D) q = 0;

2 WAVETABLE GENERATORS, AM/FM MODULATION

23

by a single call to the function wavgen, and repeat parts (a,b).

g. Replace the sinusoidal table of part (f) with a square wavetable that has period 4000 and is equal to
+1 for the first half of the period and —1 for the second half. Run the program with frequency f = 1

kHz and f = 200 Hz.

h. Next, select the sampling rate to be g = 96 kHz and for the sinusoid case, start with the frequency
f = 8 kHz and keep increasing it by 2 kHz at a time till about 20 kHz to determine the highest frequency
that you can hear—each time repeating parts (a,b).

2.4. AM Modulation

Here, we use two wavetables to illustrate AM modulation. The picture below shows how one wavetable
is used to generate a modulating amplitude signal, which is fed into the amplitude input of a second

wavetable.
Aenv

EE——
Fen v

The AM-modulated signal is of the form:

x(t)= A(t)sin(27ft),

A(n)

—

F

w y(n)

where A (t)= Acny Sin (2T fenyt)

The following program, amex.c, shows how to implement this with the function wavgen(). The
envelope frequency is chosen to be 2 Hz and the signal frequency 200 Hz. A common sinusoidal wavetable
sinusoidal buffer is used to generate both the signal and its sinusoidal envelope.

// amex.c - AM example

e T

#include "dsplab.h" // DSK initialization declarations and function prototypes

#include <math.h>
//#define PI 3.141592653589793

short xL, xR, yL, yR; // left and right input and output samples from/to codec
#define D 8000 // fmin = fs/D = 8000/8000 = 1 Hz

float w[D]; // wavetable buffer

short fs=8;

float A, f=0.2;
float Ae=10000, fe=0.002;
int q, ge;

float wavgen(int, float *, float, float, int *);

void main()

{
int i;
float PI = 4*atan(l);

g=qe=0;

for (i=0; i<D; i++) w[il = sin(2*PI*i/D);

initialize();
sampling_rate(fs);
audio_source(LINE);

while(1);

// fil1l sinusoidal wavetable

2 WAVETABLE GENERATORS, AM/FM MODULATION 24

interrupt void isr(Q)

{
float y;
// read_inputs(&xL, &xR); // inputs not used

A
y

wavgen(D, w, Ae, fe/fs, &ge);
wavgen(D, w, A, f/fs, &);

yL = yR = (short) y;
write_outputs(yL,yR);

return;

}

Although the buffer is the same for the two wavetables, two different circular indices, g, g, are used
for the generation of the envelope amplitude signal and the carrier signal.
Lab Procedure

a. Run and listen to this program with the initial signal frequency of f = 200 Hz and envelope frequency
of feny = 2 Hz. Repeat for f = 2000 Hz. Repeat the previous two cases with feny = 20 Hz.

b. Repeat and explain what you hear for the cases:

f =200Hz, feny = 100 Hz

f =200Hz, feny =190 Hz

f =200Hz, fenv =200 Hz
2.5. FM Modulation

The third program, fmex.c, illustrates FM modulation in which the frequency of a sinusoid is time-
varying. The generated signal is of the form:

x(t)= sin[27f (t)t]
The frequency f (t) is itself varying sinusoidally with frequency f,:
f(t) = fO + Am Sil’l(Z'leml')

Its variation is over the interval fo— A, < [(t) < fo+Am. In this experiment, we choose the modulation
depth A, = 0.3fy, so that 0.7fy < f (t) < 1.3fy. The center frequency is chosen as fy = 500 Hz and the
modulation frequency as fj,, = 1 Hz. Again two wavetables are used as shown below, with the first one
generating f (t), which then drives the frequency input of the second generator.

Ay ——> w y(n)

Win
Fy,—» % F(n)

2 WAVETABLE GENERATORS, AM/FM MODULATION 25

// fmex.c - FM example
e

#include "dsplab.h" // DSK initialization declarations and function prototypes
#include <math.h>
//#define PI 3.141592653589793

short xL, xR, yL, yR; // left and right input and output samples from/to codec
#define D 8000 // fmin = fs/D = 8000/8000 = 1 Hz

float w[D]; // wavetable buffer

short fs=8;

float A=5000, f=0.5;
float Am=0.3, fm=0.001;
int g, qgm;

float wavgen(int, float *, float, float, int *);

void mainQ)

{
int i;
float PI = 4*atan(l);
q=qgm=0;

for (i=0; i<D; i++) w[i] = sin(2*PI*i/D); // load sinusoidal wavetable
//for (i=0; i<D; 1i++) w[i] = (i<D/2)? 1 : -1; // square wavetable

initialize();
sampling_rate(fs);

audio_source(LINE);

while(1);

interrupt void isr(Q)
{
float y, F;
// read_inputs(&xL, &xR); // inputs not used

F = (1 + wavgen(D, w, Am, fm/fs, &m)) * f/fs; // modulated frequency

y = wavgen(D, w, A, F, &); // FM signal
yL = yR = (short) y;
write_outputs(yL,yR);

return;

}

Lab Procedure

a. Compile, run, and hear the program with the following three choices of the modulation depth: A, =
0.3fo, Am = 0.8f0, Am = fo, Am = 0.1f). Repeat these cases when the center frequency is changed to
fo = 1000 Hz.

b. Replace the sinusoidal wavetable with a square one and repeat the case fo = 500 Hz, A, = 0.3fy. You

2 WAVETABLE GENERATORS, AM/FM MODULATION 26

will hear a square wave whose frequency switches between a high and a low value in each second.

c. Keep the square wavetable that generates the alternating frequency, but generate the signal by a sinu-
soidal wavetable. To do this, generate a second sinusoidal wavetable and define a circular buffer for
itin main(). Then generate your FM-modulated sinusoid using this table. The generated signal will
be of the form:

x(t)= sin[27f (t)t], f (t)= 1 Hz square wave

2.6. Ring Modulators and Tremolo

Interesting audio effects can be obtained by feeding the audio input to the amplitude of a wavetable
generator and combining the resulting output with the input, as shown below:

P
(24
x(n) - amp
w (1)
——»freq B
Fo

For example, for a sinusoidal generator of frequency Fy = fy/fs, we have:
y(n)= ax(n)+Bx(n)cos(2mFon)= x(n) [+ Bcos(2Fyn) | (2.2)
The ring modulator effect is obtained by setting @ = 0 and S = 1, so that
y(n)= x(n)cos(2mwFyn) (2.3)
whereas, the tremolo effect corresponds to « =1 and 8 # 0
y(n)=x(n)+px(n)cos(2mmFon) = x(n)[1 + Bcos(21wFyn) | (2.4)

The following ISR function implements either effect:

T
interrupt void isr(Q)
{
float x, y;
read_inputs(&xL, &xR);
x = (float) xL;
y = alpha * x + beta * wavgen(D, w, x, f/fs, &q);
yL = yR = (short) y;
write_outputs(yL,yR);
return;
}
A

Lab Procedure

a. Modify the amex.c project to implement the ring modulator/tremolo effect. Set the carrier frequency
to fo = 400 Hz and & = 8 = 1. Compile, run, and play a wavefile with voice in it (e.g., dsummer.)

b. Experiment with higher and lower values of fj.

c. Repeat part (a) when @ = 0 and B = 1 to hear the ring-modulator effect.

2 WAVETABLE GENERATORS, AM/FM MODULATION 27

2.7. Scrambler as Ring Modulator

In the frequency domain, Eq. (2.3) is equivalent to frequency translation:

Y(f)= %[w —fo>+x<f+fo>] 2.5)

As f is chosen closer and closer to the Nyquist frequency f5/2, the shifted replicas begin to resemble
the inverted spectrum of X (f). In particular, if fo = f5/2, then,

Y (f)= %[X(f —fs/2)+X(f+fs/2)]

Using the periodicity property X (f = fs) = X (f), we then obtain the equivalent expressions:

V() = 3| X (- fr2eX (s fz =10 | =X -fu2), 0<f<b
V(D) = 2] X Fr2+ f0 X0+ 102) | = X(F 4 £12), Lorso

which imply that the positive (negative) frequency part of Y (f) is equal to the negative (positive) fre-
quency part of X (f), in other words, Y (f) is the inverted version of X (f). This is depicted below.
i

520 f2 /
!

PO

520 LR /

Because in this case Fg = fo/fs = (fs/2)/fs = 1/2, the carrier waveform is simply the alternating
sequence of +1:
cos (2mrFon) = cos(mrn)= (-1)"

and the modulator output becomes
y(n)= (=1)"x(n) (2.6)

Lab Procedure

Modify the template.c program to implement the frequency-inversion or scrambling operation of
Eq. (2.6). This can be done easily by introducing a global index:

int g = 1;

and keep changing its sign at each interrupt call, i.e., after reading the left/right codec inputs, define the
corresponding codec outputs by:

yL = q * xL;
YR = g * xR;

q=-9;

2 WAVETABLE GENERATORS, AM/FM MODULATION 28

Compile and run this program. Send the wave file JB.wav into it. First comment out the line q = -q,

and hear the file as pass through. Then, enable the line, recompile, and hear the scrambled version of
the file.

The scrambled version was recorded with MATLAB and saved into another wave file, JBm.wav. If you

play that through the scrambler program, it will get unscrambled. In Labs 3 & 4, we will implement the
frequency inversion in alternative ways.

2.8. References

1]

(2]

(3]
[4]
[5]

[6]

[7]

S. J. Orfanidis, Introduction to Signal Processing, online book, 2010, available from:
http://www.ece.rutgers.edu/~orfanidi/intro2sp/

R. Chassaing and D. Reay, Digital Signal Processing and Applications with the TMS320C6713 and
TMS320C6416 DSK, 2nd ed., Wiley, Hoboken, NJ, 2008.

F. R. Moore, Elements of Computer Music, Prentice Hall, Englewood Cliffs, NJ, 1990.
C. Dodge and T. A. Jerse, Computer Music, Schirmer/Macmillan, New York, 1985.

J. M. Chowning, “The Synthesis of Complex Audio Spectra by Means of Frequency Modulation,” J.
Audio Eng. Soc., 21, 526 (1973).

M. Kahrs and K. Brandenburg, eds., Applications of Digital Signal Processing to Audio and Acoustics,
Kluwer, Boston, 1998.

Udo Zolzer, ed., DAFX - Digital Audio Effects, Wiley, Chichester, England, 2003. See also the DAFX
Conference web page: http://www.dafx.de/.

3 DELAYS AND FIR FILTERING 29

Lab 3 - Delays and FIR Filtering

3.1. Introduction

In this lab you will study sample by sample processing methods for FIR filters and implement them
on the TMS320C6713 processor. Once you know how to implement a multiple delay on a sample by
sample basis, it becomes straightforward to implement FIR and IIR filters. Multiple delays are also the
key component in various digital audio effects, such as reverb.

Delays can be implemented using linear or circular buffers, the latter being more efficient, especially
for audio effects. The theory behind this lab is developed in Ch. 4 of the text [1] for FIR filters, and used
in Ch. 8 for audio effects.

3.2. Delays Using Linear and Circular Buffers

A D-fold delay, also referred to as a delay line, has transfer function H (z) = z~P and corresponds to a

time delay in seconds:
D
Tp =DT = F > D=fTp (3.1)
N
where T is the time interval between samples, related to the sampling rate by fs = 1/T. A block diagram
realization of the multiple delay is shown below:

l«—— ddelays —+ y

ol —i5;
so s Z]s, Z Tsq Z Isp

' Ddelays —————+

Fig. 3.1 Tapped delay line.

There are D registers whose contents are the “internal” states of the delay line. The dth state sy, i.e.,
the content of the dth register, represents the d-fold delayed version of the input, that is, at time n we
have: sj(n)=x(n—-d),ford =1,...,D; the case d = 0 corresponds to the input so(n)= x(n).

At each time instant, all D contents are available for processing and can be “tapped” out for further
use (e.g., to implement FIR filters). For example, in the above diagram, the dth tap is being tapped, and
the corresponding transfer function from the input x to the output y = sy is the partial delay z 9.

The D contents/states s4,d = 1,2,...,D, and the input s, = x must be stored in memoryina (D+1)-
dimensional array or buffer. But the manner in which they are stored and retrieved depends on whether
a linear or a circular buffer is used. The two cases are depicted below.

So S Sy ... Sq .. Sp
. ~1i int
lincar buffer w= | w{0] | w1l [wi2) |-+ |wlal| |- |wpy| 7 neArROIE
p =W
t ot 0 4
W Wt e))
P

5o 8o S p = circular pointer

wlq] ‘ ‘ e ‘W[D] ‘ q = circular index
pP=w+q

circular buffer w = ‘ w(0] ‘ w[l1] ‘ w[2] ‘ . ‘

p+D p P+l
Fig. 3.2 Linear and circular buffers.

In both cases, the buffer can be created in C by the declaration:

float w[D+1];

3 DELAYS AND FIR FILTERING 30

Its contents are retrieved as w[i],i = 0,1,...,D. Thinking of w as a pointer, the contents can also
be retrieved by * (w + i) = w[i], where % denotes the de-referencing operator in C.
In the linear buffer case, the states are stored in the buffer sequentially, or linearly, that is, the ith
state is:
si=wlil=xw+1i), i=0,1,...,D

At each time instant, after the contents s; are used, the delay-line is updated in preparation for the
next time instant by shifting its contents to the right from one register to the next, as suggested by the
block diagram in Fig. 3.1. This follows from the definition s;(n)= x(n — i), which implies for the next
time instant s;(n+1)= x(n+1-1i) = s;_7 (n). Thus, the current s;_; becomes the next s;. Since s; = w[i],
this leads to the following updating algorithm for the buffer contents:

fori=D downtoi=1,do:
wlil=wli-1]

where the shifting is done from the right to the left to prevent the over-writing of the correct contents.
It is implemented by the C function deTay() of the text [1]:

// delay.c - linear buffer updating

/] =mmmmmm e
void delay(int D, float *w)
{

int i;

for (i=D; i>=1; i--)

wlil = w[i-1];

}
A

For large values of D, this becomes an inefficient operation because it involves the shifting of large
amounts of data from one memory location to the next. An alternative approach is to keep the data
unshifted but to shift the beginning address of the buffer to the left by one slot.

This leads to the concept of a circular buffer in which a movable pointer p is introduced that always
points somewhere within the buffer array, and its current position allows one to retrieve the states by
si=*x(p+1i),i=0,1,...,D. If the pointer p + i exceeds the bounds of the array to the right, it gets
wrapped around to the beginning of the buffer.

To update the delay line to the next time instant, the pointer is left-shifted, i.e., by the substitution
p = p — 1, or, ——p, and is wrapped to the right end of the buffer if it exceeds the array bounds to the
left. Fig. 3.3 depicts the contents and pointer positions at two successive time instants for the linear and
circular buffer cases for D = 3. In both cases, the states are retrieved by s; = x(p +1i),1 = 0,1, 2,3,
but in the linear case, the pointer remains frozen at the beginning of the buffer, i.e., p = w, and the
buffer contents shift forwards, whereas in the circular case, p shifts backwards, but the contents remain
in place.

circular buffer linear buffer
time=n | Xn_ ‘ Xn-3 ‘ Xn | Xn—1 ‘ ‘ Xn | Xn-1 ‘ Xn—z‘ Xn-3 ‘
pP+2 P43 V4 P+1 V4 P+l p+2 p43
<« pointer data —
time = n41 | ¥n-2 ‘ Xntl | Xn | Xn-] ‘ ‘ Xngl | Xn | Xn-] ‘ x,,,z‘
p+3 P P+l p+2 p P+l p4+2 p+3

Fig. 3.3 Buffer contents at successive time instants for D = 3.

3 DELAYS AND FIR FILTERING 31

In the text [1], the functions tap() and cdelay() are used for extracting the states s; and for the
circular back-shifting of the pointer. Although these two functions could be used in the CCS environment,
we prefer instead to use a single function called pwrap () that calculates the new pointer after performing
the required wrapping. The function is declared in the common header file dsplab.h and defined in the
file dsplab. c in the directory C:\dspTab\common. Its listing is as follows:

// pwrap.c - pointer wrapping relative to circular buffer
// Usage: p_new = pwrap(D,w,p)
/e

float *pwrap(int D, float *w, float *p)
{
if (p > w+D)
p -= D+1;

if (p < w)
p += D+1;

return p;

}

The ith state s; and the updating of the delay-line can be obtained by the function calls:
s; = xpwrap(D,w,p+1i), i=1,2,...,D
Pnext = pwrap (D, w, ——p)

We will use this function in the implementation of FIR filters and in various audio effects. It will allow
us to easily translate a sample processing algorithm expressed in pseudo-code into the actual C code.
As an example, let us consider the circular buffer implementation of the partial delay z=4. The block
diagram of Fig. 3.1 and the pseudo-code computational algorithm are as follows:

e ddelays —+ y for each input x do:
x y=38a=x(p+d)
-1 -1 -1 -1
s e e p - x
e Ddelays —— -—p
We may translate this into C by the following operations using pwrap:
y = *pwrap(D,w,p+d); // delay output
*p = X; // delay-Tine input
p = pwrap(D,w,--p); // backshift circular buffer pointer

In the last line, we must pre-decrement the pointer inside pwrap, that is, --p, instead of post-
decrementing it, p--. Why? By comparison, the linear buffer implementation, using a (D+1)-dimensional
buffer, is as follows:

y = w[d]; // delay output
w[0] = x; // delay-Tine 1input
for (i=D; i>=0; i--) // update linear buffer

wli] = w[i-1];

An alternative approach to circular buffers is working with circular indices instead of pointers. The
pointer p always points at some element of the buffer array w, that is, there is a unique integer g such
that p = w + g, with corresponding content xp = w[q]. This is depicted in Fig. 3.2. The index g is
always bound by the limits 0 < g < D and wrapped modulo-(D+1) if it exceeds these limits.

The textbook functions tap2 () and cdelay2 (), and their corresponding MATLAB versions given in
the Appendix of [1], implement this approach. Again, however, we prefer to use the following function,
gwrap(), also included in the common file dspTab. c, that calculates the required wrapped value of the
circular index:

3 DELAYS AND FIR FILTERING 32

// aqwrap.c - circular index wrapping
// Usage: g_new = qwrap(D,q);

[/ =
int gqwrap(int D, int q)
{
if (q > D)
q-=D+1;
if (g < 0)
q+=D + 1;
return q;
}
[/ =

In terms of this function, the above d-fold delay example is implemented as follows:

qd = qwrap(D,qg+d); // (g+d) mod (D+1)
y = wlqd]; // delayed output

wlal = x; // delay-Tline input

q = qwrap(D,--q); // backshift pointer index

We note that in general, the ith state is:
Si=*x(p+i)=x(wW+qg+i)=w[g+1]
where g + i must be wrapped as necessary. Thus, the precise way to extract the ith state is:

qgi = qwrap(D,q +1), si=wlqil, i=12,...,D

Lab Procedure

A complete C program that implements the above d-fold delay example on the TMS320C6713 processor
is given below:

// delayl.c - multiple delay example using circular buffer pointers (pwrap version)

/] =
#include "dsplab.h" // init parameters and function prototypes
short xL, xR, yL, yR; // input and output samples from/to codec
#define D 8000 // max delay in samples (TD = D/fs = 8000/8000 = 1 sec)
short fs = 8; // sampling rate in kHz
float w[D+1], *p, X, Y; // circular delay-Tine buffer, circular pointer, input, output
int d = 4000; // must be d <= D
/=
void main() // main program executed first
{
int n;
for (n=0; n<=D; n++) w[n] = 0; // initialize circular buffer to zero
p=w; // initialize pointer
initialize(Q); // initialize DSK board and codec, define interrupts
sampling_rate(fs); // possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz
audio_source(MICQ); // use LINE or MIC for Tine or microphone 1input
while(1); // keep waiting for interrupt, then jump to isr(Q)

3 DELAYS AND FIR FILTERING 33

J e
interrupt void isrQ) // sample processing algorithm - interrupt service routine
{

read_inputs(&xL, &xR); // read left and right input samples from codec

x = (float) xL; // work with left input only

y = *pwrap(D,w,p+d); // delayed output - pwrap defined in dsplab.c

*p = X; // delay-line input

p = pwrap(D,w,--p); // backshift pointer

yL = yR = (short) y;
write_outputs(yL,yR); // write left and right output samples to codec

return;

Note the following features. The sampling rate is set to 8 kHz, therefore, the maximum delay D = 8000
corresponds to a delay of 1 sec, and the partial delay d = 4000, to 1/2 sec. The circular buffer array w
has dimension D + 1 = 8001 and its scope is global within this file. It is initialized to zero within main()
and the pointer p is initialized to point to the beginning of w, thatis, p = w.

The left/right input samples, which are of the short int type, are cast to float, while the float output
is cast to short int before it is sent out to the codec.

a. Create and build a project for this program. Then, run it. Give the system an impulse by lightly tapping
the table with the mike, and listen to the impulse response. Then, speak into the mike.

Bring the mike near the speaker and then give the system an impulse. You should hear repeated
echoes. If you bring the mike too close to the speakers the output goes unstable. Draw a block diagram
realization that would explain the effect you are hearing. Experimentally determine the distance at
which the echoes remain marginally stable, that is, neither die out nor diverge. (Technically speaking,
the poles of your closed-loop system lie on the unit circle.)

b. Change the sampling rate to 16 kHz, recompile and reload keeping the value of d the same, that is,
d = 4000. Listen to the impulse response. What is the duration of the delay in seconds now?

c. Reset the sampling rate back to 8 kHz, and this time change d to its maximum value d = D = 8000.
Recompile, reload, and listen to the impulse response. Experiment with lower and lower values of
d and listen to your delayed voice until you can no longer distinguish a separate echo. How many
milliseconds of delay does this correspond to?

d. Set d = 0, recompile and reload. This should correspond to no delay at all. But what do you hear?
Can you explain why? Can you fix it by changing the program? Will your modified program still work
with d # 0? Is there any good reason for structuring the program the way it was originally?

e. In this part you will profile the computational cost of the sample processing algorithm. Open the
source file deTayl.c in a CCS window. Locate the read_inputs line in the isr(), then right-click on
that line and choose Toggle Software Breakpoint; a red dot will appear in the margin. Do the same for
the write_outputs line.

From the top menu of the CCS window, choose Profile -> Clock -> View; a little yellow clock will appear
on the right bottom status line of CCS. When you compile, load, and run your program, it will stop
at the first breakpoint, with a yellow arrow pointing to it. Double-click on the profile clock to clear
the number of cycles, then type F5 to continue running the program and it will stop at the second
breakpoint. Read and record the number of cycles shown next to the profile clock.

3 DELAYS AND FIR FILTERING 34

f. Write a new program, called delay?2. c, that makes use of the function qwrap instead of pwrap. Repeat
parts (a) and (e).
g. Next, write a new program, called delay3. c, that uses linear buffers. Its isr () will be as follows:
interrupt void isr(Q)
! int 1;
read_inputs(&xL, &xR);

x = (float) xL;

w[0] = x; // delay-Tine input
y = wld]; // delay output
for (i=D; i>=0; i--) // update Tinear buffer

wli]l = w[i-1];

yL = yR = (short) y;

write_outputs(yL,yR);

return;

}

Build the project. You will find that it may not run (because the data shifts require too many cycles that
over-run the sampling rate). Change the program parameters D, d to the following values D = 2000
and d = 1000. Rebuild and run the program. Repeat part (e) and record the number of cycles.
Change the parameters D, d of the program delayl.c to the same values, and repeat part (e) for that.
Comment on the required number of samples using the linear vs. the circular buffer implementation.

3.3. FIR Comb Filters Using Circular Buffers

More interesting audio effects can be derived by combining several multiple delays. An example is the
FIR comb filter defined by Eq. (8.2.8) of the text [1]:

2 3
Yn =Xn +AdXp-p + A" Xp-2p + A" Xn-3D

Its transfer function is given by Eq. (8.2.9):

H(z)=1+az P +a?z72?P + g32z73P

Its impulse response has a very sparse structure:
h=1[1,0,0,...,0,4a,0,0,...,0,a%0,0,...,0, a°]
D*lvzeros Dflvzeros D—lvzeros

The comb-like structure of its frequency response and its zero-pattern on the z-plane are depicted in
Fig. 8.2.5 of [1]. Instead of implementing it as a general FIR filter, a more efficient approach is to program
the block diagram directly by using a single delay line of order 3D and tapping it out at taps 0, D, 2D,
and 3D. The block diagram realization and corresponding sample processing algorithm are:

for each input x do:
So =X
s1=*(p+D)
S» = *x(p+2D)
s3=3*(p+3D)
Yy = 8o +as; + ass, + a’s;
*p = So
-=p

3 DELAYS AND FIR FILTERING 35

The translation of the sample processing algorithm into C is straightforward and can be incorporated
into the following isr() function to be included in your main program:

interrupt void isrQ

{
float s0, sl1, s2, s3, vy; // states & output
read_inputs(&xL, &xR); // read inputs from codec
s0 = (float) xL; // work with left input only
sl = *pwrap(3*D,w,p+D); // extract states relative to p
s2 = *pwrap(3*D,w,p+2*D); // note, buffer length is 3D+1
s3 = *pwrap(3*D,w,p+3*D);
y = s0 + a*sl + a*a*s2 + a*a*a*s3; // output sample
*p = s0; // delay-Tine input
p = pwrap(3*D,w,--p); // backshift pointer
yL = yR = (short) y;
write_outputs(yL,yR); // write outputs to codec
return;

}

Lab Procedure

Set the sampling rate to 8 kHz and the audio source to microphone. Choose the delay to be D = 4000,
corresponding to Tp = 0.5 sec, so that the total duration of the filter is 3Tp = 1.5 sec, and set a = 0.5.

a. Write a C program called comb.c that incorporates the above interrupt service routine. You will
need to globally declare/define the parameters D, a, p, as well as the circular buffer w to be a 3D+1
dimensional float array. Make sure you initialize the buffer to zero inside main(), as was done in the
previous example, and also initialize p = w.

Build and run this project. Listen to the impulse response of the filter by tapping the table with the
mike. Speak into the mike. Bring the mike close to the speakers and get a closed-loop feedback.

b. Keeping the delay D the same, choose a = 0.2 and run the program again. What effect do you hear?
Repeat for a = 0.1. Repeat with a = 1.

c. Set the audio input to LINE and play your favorite wave file or MP3 into the input. Experiment with
reducing the value of D in order to match your song’s tempo to the repeated echoes. Some wave files
are in the directory c:\dsplab\wav (e.g., try dsummer, take5.)

d. The FIR comb can also be implemented recursively using the geometric series formula to rewrite its
transfer function in the recursive form as shown in Eq. (8.2.9) of the text:
—4D

_ _ _ 1-a*z
H(z)=1+azP+a%zP 4+ g3z730 = — =~ =
1-az D

This requires a (4D+1)-dimensional delay-line buffer w. The canonical realization and the corre-
sponding sample processing algorithm are shown below:

X Sov > ¥ ~Y for each input x do:
D §1 = *(p +D)
< Sy = % (p + 4D)
-8 So=X+dads;
a 1 y =80 —a*s,
z gt *p = So
Il “p

3 DELAYS AND FIR FILTERING 36

Write a new program, comb?2. c, that implements this algorithm. Remember to define the buffer to be
a (4D+1)-dimensional float array. Using the values D = 1600 (corresponding to a 0.2 sec delay) and
a = 0.5, recompile and run both the comb.c and comb2.c programs and listen to their outputs.

In general, such recursive implementations of FIR filters are more prone to the accumulation of round-
off errors than the non-recursive versions. You may want to run these programs with a = 1 to observe
this sensitivity.

3.4. FIR Filters with Linear and Circular Buffers

The sample-by-sample processing implementation of FIR filters is discussed in Sect. 4.2 of the text [1].
For an order-M filter, the input/output convolutional equation can be written as the dot product of the

filter-coefficient vector h = [hy, M1, ..., hy 1T with the state vector s (1) = [Xn,Xn-1,..., Xn—m11:
x(n) x(n)
M x(n-1) . x(n—1)
Yn= 2 h(m)x(n-m)=lho,h,....,hu]| . =h's(n), sm=| .
m=0 : :
x(n—-M) x(n—-M)

A block diagram realization for the case M = 3 is depicted below.

[ho
* SO A y
71
hy
N

hy

Sy "

5 @&

We note that the ith component of the state vector is s;(n)=x(n—1i),i=0,1,...,M, and therefore,
the states are the tap outputs of a multiple delay-line with M delays. Thus, the definition of the delay
line and its time updating remains the same as in the previous sections. To realize the FIR filter, we must
use the tapped outputs s; from the delay line to calculate the dot product, and then update the delay line
to the next time instant.

In this lab, we consider five implementations of FIR filters and study their relative efficiency in terms
of machine cycles at different levels of compiler optimization:

y = fir(M, h, w, x); - linear buffer implementation

y = firc(M, h, w, &p, Xx); - circular buffer with pointers

y = firc2(M, h, w, &g, xX); - circular index with updating in Toop

y = firq(M, h, w, &q, x); - circular index with updating outside loop
y = fira(w, h, Lh, Nb, q); - circular buffer in linear assembly

These functions are defined below. The function, f1ir, implements the linear buffer case:

// fir.c - FIR filter in direct form with Tinear buffer
// Usage: y = fir(M, h, w, x);
/)

float fir(int M, float *h, float *w, float x)
{

int i;

3 DELAYS AND FIR FILTERING

float y;
w[0] = x;

for (y=0, i=0; i<=M; i++)
y += h[i]l * w[i];

for (i=M; i>=1; i--)
wlil = w[i-11;

return y;

// y=output sample
// read current input sample x

// process current output sample
// dot-product operation

// update states for next call
// done 1in reverse order

37

The function firc implements the circular buffer version using the pointer-wrapping function pwrap:

// firc.c - FIR filter implemented with circular pointer

// Usage: y = firc(M, h, w, &p, X);
A

float *pwrap(int, float *, float *); // defined 1in dsplab.c

float firc(int M, float *h, float *w, float **p, float x)

{
int i;
float y;

Oy

*p = X;

for (y=0, i=0; i<=M; i++) {

y 4= (*h++) * (-:::z-p);
*p = pwrap(M,w,++*p);
}

*p = pwrap(M,w, --*p);

return y;

The function firc2 is a circular buffer version using the pointer-index-wrapping function gwrap:

// read input sample x

// i-th state s[i] = *pwrap(M,w,*p+i)
// pointer to state s[i+1l] = *pwrap(M,w, *p+i+1)

// update circular delay line

// firc2.c - FIR filter implemented with circular index
// Usage: y = firc2(M, h, w, &q, x);

/] =mmmmmmm e

int gwrap(int, int);

// defined 1in dsplab.c

float firc2(int M, float *h, float *w, int *q, float x)

{
int i;
float y;

wl*q] = x;

for (y=0, i=0; i<=M; i++) {

y += *h++ * wl*q];
*q = qwrap(M,++*q);
}

%

“q

gwrap(M, --*q);

return y;

// read input sample x

// i-th state s[i] = w[*q]
// pointer to state s[i+1] = w[*g+1]

// update circular delay Tine

3 DELAYS AND FIR FILTERING 38

In both firc and firc2, the circular pointer or index are being wrapped during each pass through
the for-loop that computes the output sample y. This is inefficient but necessary because C does not
support circular arrays.

All modern DSP chips, including the C6713, support circular addressing in hardware, which does the
required wrapping automatically without any extra instructions. The following function, firqg, emulates
the hardware version more closely by avoiding the repeated calls to qwrap inside the for-loop—it performs
only one wrapping when it reaches the end of the buffer and wraps the index back to g = 0; furthermore,
it wraps once more after the for-loops in order to backshift the pointer index:

// firq.c - FIR filter implemented with circular index
// Usage: y = fircq(M, h, w, &q, x);

/) oo
float firq(int M, float *h, float *w, int *q, float x)
{
int i, Q;
float y;
Q=M- Cq; // number of states to end of buffer
wl*ql = x; // read input sample x
for (y=0, i=0; i<=Q; i++) // loop from q to end of buffer
y += h[i] * w[(*q)++];
q) = 0; // wrap to beginning of buffer
for (i=Q+1; i<=M; i++) // loop to g-1
y += h[i] * w[(*q)++];
*q)--; if (*q == -1) *q = M; // backshift index
return y;
}
]

The for-loop is split into two parts, the first part starts at position g and loops until the end of the
buffer, then it wraps to the beginning of the buffer; the second part loops till g — 1. The required states
s; of the FIR filter and their association with the filter coefficients h; are depicted below.

hos1 hoso hy hy h h ho
So+1 Sox2 Sm S S S5 T s

porfan] o | faa] || o
o 1 - g1 g g+t g2 --- M
«— g states —] ~ 0-M-q

Finally, we consider the linear assembly function, fira. sa, listed below, that exploits the hardware
implementation of circular buffers on the C6713 processor. It is based on the function convoll.sa of
Ref. [3], adapted here to our convention of counting the states and filter coefficients in forward order and
updating the circular index by backshifting. Linear assembly functions have an extension .sa and may
be included in a project just like C functions. The linear assembly optimizer determines which particular
hardware registers to assign to the various local variables in the function.

fira.sa - Tinear assembly version of FIR filter with circular buffer
extern float fira(float *, float *, int, int, int);

float w[Lw];
#pragma DATA_ALIGN(w, Lb)

3 DELAYS AND FIR FILTERING

; usage: wlq] = x;

; Lh = M+1

; Nb >= 1 + ceil(log2(Lh))
; Lb = 2A(Nb+1)

; Lw = Lb/4 = 2A(Nb-1)

7 M

.global _fira

read input sample

y = fira(w,h,Lh,Nb,q); compute output sample
q--; if (g==-1) q =

Lw-1; update circular index by backshifting

= filter order

= filter Tength

circular buffer bytes-Tength exponent
circular buffer length in bytes
circular buffer in 32-bit words

_fira .cproc w, h, Lh, Nb, ¢ ; function arguments

.reg Y, P, si, hi
ADDAW w, g, w

set Nb, 8,8, Nb
MVC Nb, AMR

SHL Nb, 16, Nb H
ZERO Y H
Tloop: .trip 8, 500 ;
LDW *w++, si ;
LDW *h++, hi ;
MPYSP si,hi,P H
ADDSP P,Y,Y H

[Lh] SUB Lh, 1, Lh ;
[Lh] B Toop ;

.return Y ;

.endproc

Lab Procedure

; local variables

; point to w[q] = x = current input
; set up the circular buffer

shift Nb to BKO field

; set circular mode, BKO, B4
; Toad mode into AMR

output

assume between 8 and 500 taps

; load i-th state, si = x(n-1i)
; load i-th filter coeff, h(i)

multiply single precision, P = hi*si

; Y=Y + P = accumulate output

decrement, Lh = Lh-1
Toop until Lh=0

put sum in A4 - C convention

39

A lowpass FIR filter of order M and cutoff frequency f, can be designed using the Hamming window
approach by the following equations (see Ch.11 of [1]):

w(n)= 0.54 — 0.46 cos <2"7”> . h(m)=w(n)

sin(wo(n —M/2))
m(n—M/2) ’

where wq = 211fo/fs, and w(n) is the Hamming window.

a. Design such a filter with MATLAB using the following values: fs = 8 kHz, fo = 2 kHz, and filter order
M = 100. Then, using the built-in MATLAB function freqz, or the textbook function dtft, calculate
and plot in dB the magnitude response of the filter over the frequency interval 0 < f < 4 kHz. The
designed filter response is shown in Fig. 3.4 in absolute units and in dB.

in a form that is readable by a C program by the following MATLAB command:

C_header(’h.dat’, ’h’,

M, h);

The designed 101-long impulse response coefficient vector h can be exported into a data file, h.dat,

where C_header is a MATLAB function in the directory c: \dsplab\common. A few lines of the resulting

data file are shown below:

3 DELAYS AND FIR FILTERING 40

0
1
-20
<
2 e
) ok
05 40
-60
% 1 2 4 8% 1 2 3 4
f (kHz) £ (kHz)
Fig. 3.4 Magnitude response of lowpass filter.
// h.dat - FIR impulse response coefficients
// exported from MATLAB using C_header.m
[/ oo
#define M 100 // filter order

float h[M+1] = {
-0.000000000000000,
0.000525586170315,
-0.000000000000000,
-0.000596985888698,
0.000000000000000,
0.000725138232653,
--- etc. ---
-0.000596985888698,
-0.000000000000000,
0.000525586170315,
-0.000000000000000
};

The following complete C program, firex.c, implements this example on the C6713 processor. The
program reads the impulse response vector from the data file h.dat, and defines a 101-dimensional
delay-line buffer array w. The FIR filtering operation is based on any of the choices, fir, firc,
firc2, firqg, depending on which lines are uncommented.

// firex.c - FIR filtering example
e

#include "dsplab.h" // DSK initialization declarations and function prototypes

//float fir(int, float *, float *, float);

//float firc(int, float *, float *, float **, float);
//float firc2(int, float *, float *, int *, float);
//float firq(int, float *, float *, int *, float);

short xL, xR, yL, yR; // left and right input and output samples from/to codec
#include "h.dat" // contains M+l = 101 filter coefficients

float w[M+1]; // filter delay Tlines

int on = 1; // turn filter on

//float *p;

//int q;

3 DELAYS AND FIR FILTERING 41

void main()

{
int i;
for (i=0; i<=M; i++) w[i] = 0; // initialize delay-line buffer
//p = w; // initialize circular pointer
//a = 0;
initialize(); // initialize DSK board and codec, define interrupts
sampling_rate(8); // possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz
audio_source(LINE); // LINE or MIC for line or microphone input
while(1); // keep waiting for interrupt, then jump to isr()
}
J
interrupt void isrQ
{
float x, y; // filter 1input & output
read_inputs(&xL, &xR); // read audio samples from codec
if (on) {
x = (float) (xL); // work with left input only
//y = fir(M,h,w,x);
/7y = firc(M,h,w,&p,x);
//y = firc2M, h, w, &q, x);
//y = firqaM, h, w, &q, x);
yL = (short)(y);
}
else // pass through if filter is off
yL = xL;
write_outputs(yL,yL); // write audio samples to codec
return;
}
/e

Create and build a project for this program. You will need to add one of the functions fir, firc,
firc2, firqg to the project. Using the following MATLAB code (same as in the aliasing example of
Lab-1), generate a signal consisting of a 1-kHz segment, followed by a 3-kHz segment, followed by
another 1-kHz segment, where all segments have duration of 1 sec:

fs = 8000; f1 = 1000; f2 = 3000; f3 = 1000;

L = 8000; n = (0:L-1);

A =1/5; % adjust playback voTlume
x1 = A * cos(Q*pi*n*fl/fs);

x2 = A * cos(Q*pi*n*f2/fs);

x3 = A * cos(2*pi*n*f3/fs);

sound([x1,x2,x3], fs);

First, set the parameter on=0 so that the filtering operation is bypassed. Send the above signal into
the line input of the DSK and listen to the output. Then, set on=1 to turn the filter on using the linear
buffer version, fir, recompile and run the program, and send the same signal in. The middle 3-kHz
segment should not be heard, since it lies in the filter’s stopband.

3 DELAYS AND FIR FILTERING 42

c. Create breakpoints at the read_inputs and write_outputs lines of the isr() function, and start the
profile clock. Run the program and record the number of cycles between reading the input samples
and writing the computed outputs.

d. Uncomment the appropriate lines in the above program to implement the circular buffer versions
using the functions firc, firc2, firg. You will need to add these to your project. Recompile and
run your program with the same input.

Then, repeat part (c) and record the number of computation cycles.

e. The compiler optimization thus far was set to “none”. Using the keyboard combination “ALT-P P”, or
the CCS menu commands Project -> Build Options, change the optimization level to -0o0, -o0l, -o02,
-03, and for each level and each of the four filter implementations fir, firc, firc2, firq, repeat
part (c) and record the number of cycles in a table form:

none | -00 | -0l | -02 | -03

fir
firc
firc2
firq
fira

f. Add to the above table the results from the linear assembly version implemented by the following
complete C program, firexa.c, and evaluate your results in terms of efficiency of implementation
and optimization level.

// firexa.c - FIR filtering example using circular buffer with linear assembly

/] = oo

#include "dsplab.h" // DSK initialization declarations and function prototypes

extern float fira(float *, float *, int, int, int);

short xL, xR, yL, yR; // left and right input and output samples from/to codec
#include "h.dat" // contains M+1 = 101 filter coefficients
#define Nb 8 // circular-buffer length (bytes) exponent, Nb = 1 + ceil(log2(M+1)) = 8
#define Lb 512 // circular-buffer length (bytes) = 2A(Nb+1)
#define Lw 128 // circular-buffer length (words) = 2A(Nb-1) = Lb/4
#define Lh 101 // filter length = M+1
float w[Lw]; // circular buffer
#pragma DATA_ALIGN(w, Lb) // align buffer at byte-boundary
int q; // circular-buffer index
int on = 1; // filter is ON or OFF
/e
void main()
{
int i;
for (i=0; i<Lw; i++) w[i] = O; // initialize circular buffer to zero
q=0; // initialize index into buffer
initialize(); // initialize DSK board and codec, define interrupts
sampling_rate(8); // possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz

audio_source(LINE); // LINE or MIC for line or microphone input

3 DELAYS AND FIR FILTERING

while(l);
}

interrupt void isr(Q)

{
float x, y;
read_inputs(&xL, &xR);

if (on) {
x = (float) (xL);

wlal = x;

y = fira(w, h, Lh, Nb,

g--; if (@ ==-1) q =
yL = (short) (y);
}
else
yL = xL;

write_outputs(yL,yL);

return;

}

3.5. Voice Scrambler

A simple voice scrambler works by

43

// keep waiting for interrupt, then jump to isr()

// filter input & output

// work with left input only
// put x into w[q],
a; // fira does not update q

Lw-1; // backshift to update g for next time instant

spectrum inversion. It is not the most secure way of encrypting

speech, but we consider it in this lab as an application of low pass filtering and AM modulation. The

main operations are depicted below.

lowpass 7777};%@!?
filter —» 3
—— | e > f
_ 0 -
b
scrambled X(f+4)] 1 X(f~1o) shifted
lowpass lowpass signal | 3 4~ spectrum
— - [T S | I I TP R 4 ‘f
x(n) filter V(1) »(n) filter | y,(n) - 0 % £
cutoff f; cutoff f 4 ’
inverted 77T 5 Y-
spectrum | | 2(/)
pmmmnes ; et f
T/() 0 f() ‘fS‘/Z

First, the sampled speech signal x(n) is filtered by a lowpass filter h (n) whose cutoff frequency fy is

high enough not to cause distortions

of the speech signal (the figure depicts an ideal filter). The sampling

rate fs is chosen such that 4fy < f;. The filtering operation can be represented by the convolutional

equation:

yo(n)=> h(m)x(n-m) (3.2)

Next, the filter output y (n) modulates a cosinusoidal carrier signal whose frequency coincides with

3 DELAYS AND FIR FILTERING 44

the filter’s cutoff frequency [y, resulting in the signal:

vi(n)=s(n)yyg(n), where s(n)=2cos(won), wqo= Z?fo

The multiplication by the carrier signal causes the spectrum of the signal to be shifted and centered at
+fo, as shown above. Finally, the modulated signal y; (n) is passed through the same filter again which
removes the spectral components with |f| > fj, resulting in a signal y, (n) with inverted spectrum. The
last filtering operation is:

(3.3)

y2(n)= > h(m)yi(n—m) (3.4)

To unscramble the signal, one may apply the scrambling steps (3.2)-(3.4) to the scrambled signal itself.
This works because the inverted spectrum will be inverted again, recovering in the original spectrum.

In this lab, you will study a real-time implementation of the above procedures. The lowpass filter will
be designed with the parameters fs = 16 kHz, fo = 3.3 kHz, and filter order M = 100 using the Hamming

design method:
sin(wq(n — M/2))

h = <n<M .
(n)=w(n) Tn—Mi2) 0<ncx< (3.5)
where wq = 211fo/fs, and w(n) is the Hamming window:
w(n)=0.54—0.46cos<2n7n> L 0<n=<M (3.6)

The following C program, scrambler. c, forms the basis of this lab. It is a variation of that discussed
in the Chassaing-Reay text [2].

// scrambler.c - voice scrambler example

/] = o

#include "dsplab.h" // initialization declarations and function prototypes
#include <math.h>
#define PI 3.14159265358979

short xL, xR, yL, yR; // left and right input and output samples from/to codec
#define M 100 // filter order
#define L 160 // carrier period, note L*f0/fs = 160*%3.3/16 = 33 cycles
float h[M+1], wl[M+1], w2[M+1]; // filter coefficients and delay-line buffers
int n=0; // time index for carrier, repeats with period L
int on=1; // turn scrambler on (off with on=0)
float w0, fO = 3.3; // fO0 = 3.3 kHz
short fs = 16; // fs = 16 kHz
/e
void main()
{
int i;
float wind;
w0 = 2*PI*f0/fs; // carrier frequency in rads/sample
for (i=0; i<=M; i++) { // initialize buffers & design filter
wl[i] = w2[i] = 0;
wind = 0.54 - 0.46 * cos(2*PI*i/M); // Hamming window
if (i==M/2)
h[i] = wO/PI;
else

h[i] = wind * sin(w0*(i-M/2)) / (PI*(i-M/2));
}

3 DELAYS AND FIR FILTERING 45

initialize(); // initialize DSK board and codec, define interrupts
sampling_rate(fs); // possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz
audio_source(LINE); // LINE or MIC for Tline or microphone input
while(1); // keep waiting for interrupt, then jump to isr()
}
/=
interrupt void isr(Q) // sample processing algorithm - interrupt service routine
{
int i;
float y;
read_inputs(&xL, &xR); // read left and right input samples from codec
if (on) {
y = (float) (xL); // work with left input only
wl[0] = y; // First filter

for (y=0, i=0; i<=M; i++)
y += h[il * wi[il;
deTay(M,wl);

y *= 2*cos(w0*n); // multiply y by carrier
if (++n >= L) n = 0;

w2[0] = y; // second filter
for (y=0, i=0; i<=M; i++)

y += h[i] * w2[i];
deTay(M,w2);

yL = (short) (y);
}
else
yL = xL; // pass through if on=0

write_outputs(yL,yL);

return;

}

Two separate buffers, wi, wo, are used for the two lowpass filters. The filter coefficients are computed
on the fly within main() using Egs. (3.5) and (3.6). A linear buffer implementation is used for both filters.
The sinusoidal carrier signal is defined by:

_ 2mfo
fs

Since fs/fo = 16/3.3 samples/cycle, it follows that the smallest number of samples containing an
integral number of cycles will be:

s[n]l=2cos(won), wy

16
3.3
that is, these 160 samples contain 33 cycles and will keep repeating. Therefore, the time index n of s[n]
is periodically cycled over the interval 0 < n < L — 1.

L= 33 = 160 samples

Lab Procedure

a. Explain why the factor 2 is needed in the carrier definition s(n)= 2 cos(won). Explain why f, must

3 DELAYS AND FIR FILTERING 46

be chosen such that 4f, < f; in designing the lowpass filter.

b. Create and build a project for this program. The parameter on=1 turns the scrambler on or off. Create
a GEL file for this parameter and open it when you run the program.

c. Play the following two wave files through program:

JB.wav
JBs.wav

When you play the second, which is a scrambled version of the first, it will get unscrambled.

d. Open MATLAB and generate three sinusoids of frequencies 300 Hz, 3000 Hz, and 300 Hz, sampled at
arate of 16 kHz, each of duration of 1 second, and concatenate them to form a 3-second signal. Then
play this out of the PCs sound card using the sound() function. For example, the following MATLAB
code will do this:

fs = 16000; f1 = 300; f2 = 3000; f3 = 300;

L = 16000; n = (0:L-1);

A =1/5; % adjust playback volume
x1 = A * cos(Q*pi*n*fl/fs);

x2 = A * cos(R*pi*n*f2/fs);

x3 = A * cos(*pi*n*f3/fs);

sound([x1,x2,x3], fs);
Play this signal through the DSK with the scrambler off. Then, play it with the scrambler on. What are
the frequencies in Hz of the scrambled signal that you hear? Explain this in your report.

e. Instead of actually computing the cosine function at each call of isr(), a more efficient approach
would be to pre-compute the L repeating samples of the carrier s[n] and keep re-using them. This
can be accomplished by replacing the two modulation instructions in isr () by:

y *= s[n]; // multiply y by carrier
if (++n >= L) n = 0;

where s[n] must be initialized within main() to the L values, s[n]= 2 cos(won),n =0,1,...,L — 1.

Re-write the above program to take advantage of this suggestion. Test your program.

In Lab-4, we will reconsider the scrambler and implement the required spectrum inversion using the FFT.

3.6. References

[1] S.]J. Orfanidis, Introduction to Signal Processing, online book, 2010, available from:
http://www.ece.rutgers.edu/~orfanidi/intro2sp/

[2] R. Chassaing and D. Reay, Digital Signal Processing and Applications with the TMS320C6713 and
TMS320C6416 DSK, 2nd ed., Wiley, Hoboken, NJ, 2008.

[3] S.A. Tretter, Communication System Design Using DSP Algorithms with Laboratory Experiments for
the TMS320C6713 DSK, Springer, New York, 2008, code available from:
http://www.ece.umd.edu/~tretter

4 FIR FILTERING EXPERIMENTS 47

Lab 4 - FIR Filtering Experiments

4.1. Introduction

Depending on the application and hardware, a digital filtering operation can be organized to operate
either on a block basis or a sample-by-sample basis. In the block processing case, the input signal is
considered to be one big block of signal samples. The block is filtered by convolving it with the filter,
generating the output signal as another big block of samples.

If the input signal is very long or infinite in duration, this method requires modification, for example,
breaking the input into multiple blocks.

An alternative approach is to organize the processing on a sample-by-sample basis, such that when-
ever an input sample arrives, it gets filtered producing the corresponding output sample. This approach
is very useful in real-time applications involving very long input signals. It is also useful in adaptive fil-
tering applications where the filter itself changes after each filtering operation. Moreover, it is efficiently
implementable with present day special purpose DSP chips, such as the Texas Instruments, Analog De-
vices, or Motorola DSP chips.

In the previous hardware lab you studied FIR filtering on sample by sample basis. In this lab, you will
study filtering by convolution methods. The lab may be carried out in MATLAB or C.

4.2. Convolution

The convolution of a filter, h,, n = 0,1,...,M, of order M, and a finite-duration causal signal, x,,
n=0,1,...,L — 1, of length L, was determined in Eq. (4.1.16) of the text [1] to be:
min(n,M)
Vn = > hmXn-m, n=0,1,...,L+M -1 (4.1)

m=max(0,n—L+1)

Write a MATLAB function named myconv (to avoid confusion with the built-in function conv), that
implements Eq. (4.1). It must have usage:

y = myconv(h,x);

where h,x,y are the filter, input, and output vectors. The function must be able to accept the input
vectors h,x whether they are entered as rows or columns. Moreover, the output vector y must match
the type of the input vector x, that is, row or column.

Lab Procedure
a. Consider an integrator-like filter defined by the I/0 equation:
y(n)=0.1[x(n)+x(n—1)+x(n—2)+--- +x(n—14)]

Such a filter accumulates (integrates) the present and past 14 samples of the input signal. The factor
0.1 represents only a convenient scale factor for this experiment. It follows that the impulse response
of this filter will be

h. — 0.1, for0O<n<14
=0, otherwise

To observe the steady-state response of this filter, as well as the input-on and input-off transients,
consider a square wave input signal x, of length L. = 200 and period of K = 50 samples. Such a signal
may be defined by the simple for-loop (given in C):

for (n=0; n<L; n++)
if (n%K < K/2) /* n%K is the MOD operation */
x[n] = 1;
else
x[n] = 0;

4 FIR FILTERING EXPERIMENTS 48

Using your function myconv, compute the output signal y, versus n and plot it on the same graph with
Xn. As the square wave periodically goes on and off, you can observe the on-transient, steady-state,
and off-transient behavior of the filter. Verify the your function produces the same results as the
built-in function conv.

b. Repeat part (a) for the filter:

no— 0.25(0.75)", forO<n=<14
=)o, otherwise

This filter acts more like an RC-type integrator than an accumulator.

c. Repeat part (a) for the filter with transfer function:
1 ~1y5
H(z)= s 1-z7")

This filter acts as 5-fold differentiator. Thus, in its steady-state it differentiates a constant to zero. As

the square wave goes on and off you may observe this differentiating action as well as the transients.
d. To demonstrate the concepts of impulse response, linearity, and time-invariance, consider a filter with

finite impulse response h, = (0.95)", for 0 < n < 24. The input signal

x(n)=06m)+26(n —40)+26(n - 70)+6 (n — 80), n=0,1,...,120

consists of four impulses of the indicated strengths occurring at the indicated time instances. Note
that the first two impulses are separated by more than the duration of the filter, whereas the last two
are separated by less. Using your function myconv, compute the filter output y, for 0 < n < 120 and
plot it on the same graph with x,. Comment on the resulting output with regard to linearity and time
invariance.

In generating the above input signal, you may find the following C function deTta. c useful:
/* delta.c - delta function */

double delta(n)

int n;
{
if (n == 0)
return 1;
else
return 0O;
3

output output

- - - input

--— - input

0 25 50 75 100 125 150 175 200 ~o 25 50 75 100 125 150 175 200
time samples time samples

4 FIR FILTERING EXPERIMENTS 49

2.5 3.

output —n
. put
2.0 input 25k - - - output

1.5

25 50 75 100 125 150 175 200 "0 10 20 30 40 50 60 70 80 90 100 110 120
time samples time samples

4.3. Filtering of Noisy Signals

A length-N signal x(n) is the sum of a desired signal s(n) and interference v (n):
x(n)=sn)+v(n), 0<n<N-1

where
s(n)=sin(wyn), vn)=sin(win)+sin(wsn), 0<n<N-1
with
w1 = 0.051T, w> =0.20T, w3 = 0.351 [radians/sample]
In order to remove v(n), the signal x(n) is filtered through a bandpass FIR lowpass filter that is
designed to pass the frequency w, and reject the interfering frequencies w1, ws. An example of such a

filter of order M = 100 can be designed with the methods of Chapter 11 of [1] (using a Hamming-window
design) and has impulse response:

<n=<M

()= w(n) [sin(wb(n —~M/2)) —sin(w,(n —M/2)) } o

w(n—-M/2)

where w, = 0.1511, wp = 0.25711, and w(n) is the Hamming window:

2
w(n) = 0.54 — 0.46 cos <%> 0<n<M

It has an effective passband [wg, wp]= [0.1517,0.2577]. To avoid a computational issue at n = M/2,
you may use MATLAB'’s built-in function sinc, which is defined as follows:

sin (1TX)
X

sinc(x) =

Lab Procedure
a. Let N = 200. On the same graph plot x(n) and s(n) versus n over the interval 0 <n < N — 1.

b. Filter x(n) through the filter h (n) using MATLAB’s built-in function filter, and plot the filtered output
y(n), together with s (n) for 0 < n < N — 1. Apart from an overall delay introduced by the filter, y (n)
should resemble s (n) after the M initial transients.

c. To see what happened to the interference, filter the signal v(n) separately through the filter and plot
the output, on the same graph with v(n) itself.

4 FIR FILTERING EXPERIMENTS 50

d. Using the built-in MATLAB function freqz calculate and plot the magnitude response of the filter over
the frequency interval 0 < w < 0.47T:

M .
|H(w) | = | > h(n)eJ®n
n=0

Indicate on that graph the frequencies w1, w», w3.

e. Redesign the filter with M = 200 and repeat parts (a)-(d). Discuss the effect of choosing a longer filter
length.

x(n) and s(n) Magnitude Response |H(o)!|
3 T T T T T
1t
2
0.8f
1
\ f| il i Il 1 e 0.6
I WA
PO R AT I PO T IR o4
b DR GO AU AR LU I P A 41
_17 g 1| T S Y \ | 1] BRI PR (¥
1 0.2F :
L : T J
0 50 100 150 200 0 0.1 0.2 0.3 0.4
n ® in units of ©
s(n) and filtered x(n) v(n) and filtered v(n)
3 T T 3 T T
2 2
1k
0
1t
-2 -2
_3 H H H _3 H H H
0 50 100 150 200 0 50 100 150 200

4 FIR FILTERING EXPERIMENTS 51

4.4. Voice Scrambler in MATLAB

A simple voice scrambler works by spectrum inversion. It is not the most secure way of encrypting
speech, but we consider it in this lab as an application of low pass filtering and AM modulation. The
main operations are depicted below.

lowpass "777‘2{({)
filter —i 3
frmmmmnns L e - f
_ 0
by e
s(n) scrambled X(+h) ~_] } X(/~h) shifted
)) signal | | 4 spectrum
_ ,llowpass| owpass |~ ol ; T e
x(n) filter |y (n) 'y (n) | filter |y)(n) S0 7 o
- 0 0 Js
cutoff f; cutoff f; A
inverted ; Y (f)
spectrum |]
s ‘ e i

First, the sampled speech signal x (n) is filtered by a lowpass filter h (n) whose cutoff frequency fj is
high enough not to cause distortions of the speech signal (the figure depicts an ideal filter). The sampling
rate fs is chosen such that 4fy < fs;. The filtering operation can be represented by the convolutional
equation:

Yo(n)= > h(m)x(n—m) (4.2)
m

Next, the filter output y,(n) modulates a cosinusoidal carrier signal whose frequency coincides with
the filter’s cutoff frequency [y, resulting in the signal:

y1(n)=s(n)yo(n), where s(n)=2cos(won), wo= Z?fo

The multiplication by the carrier signal causes the spectrum of the signal to be shifted and centered at
+fo, as shown above. Finally, the modulated signal y; (n) is passed through the same filter again which
removes the spectral components with |f| > f, resulting in a signal y, (n) with inverted spectrum. The
last filtering operation is:

(4.3)

y2(n)=> h(m)y;(n-m) (4.4)

To unscramble the signal, one may apply the scrambling steps (4.2)-(4.4) to the scrambled signal itself.
This works because the inverted spectrum will be inverted again, recovering in the original spectrum.

Lab Procedure

a. Explain why the factor 2 is needed in the carrier definition s(n)= 2 cos(wqgn). Explain why f, must
be chosen such that 4f, < f; in designing the lowpass filter.

b. A practical FIR lowpass filter with cutoff frequency f, can be designed by a similar Hamming windowing
method as that used for the bandpass filter of the previous section:

sin(wo(n — M/2))

Al =wim = M2y

0O0<n=<M

where wq = 27tfy/fs, and w(n) is the Hamming window:

w(n)=0.54 — 0.46 cos (2"7”) 0<n=<M

4 FIR FILTERING EXPERIMENTS 52

Design such a filter using the following values: fs; = 16 kHz, f, = 3.3 kHz, and filter order M = 100.
Then, using the built-in MATLAB function freqz calculate and plot the magnitude response of the filter
over the frequency interval —fs/2 < f < fs/2:

M
[H(f)| = | 3. h(n)e 2™

n=0

c. Repeat part (b) with M = 200.

d. Write a MATLAB function named scrambler.m that implements the operations of Egs. (4.2)-(4.4). It
must have usage:

y = scramblerCh,w0,x);

where h,w0, x are the filter vector, carrier frequency in rads/sample, and input speech vector, and y
is the scrambled output speech representing the signal y, (n).

Internally, the required filtering operations must be implemented with the built-in function filter, and
the multiplication operation of Eq. (4.3) must be vectorized.

e. Write a MATLAB program that does the following: (a) designs the lowpass filter h (n) with parameters
fs, fo, M, (b) reads a vector x (n) of input samples from a wavefile using the function wavread, (c) sends
it through the function scrambler, (d) plays the output through the sound card using the function
sound, (e) then, unscrambles the scrambled signal and plays it back using sound.

Apply your program to some wave files using the parameter values of part (b). To get an idea of what
sort of output to expect for this part, we have included the following example wave files in this lab:

JB.wav
JBs.wav

The second file is the scrambled version of the first. Play them in your computer to hear what they
sound like. Run your program on the unscrambled wave file to hear its scrambled version. Then, run
it on the scrambled file to hear the original unscrambled version.

4.5. References

[1] S.]J. Orfanidis, Introduction to Signal Processing, online book, 2010, available from:
http://www.ece.rutgers.edu/~orfanidi/intro2sp/

[2] R. Chassaing and D. Reay, Digital Signal Processing and Applications with the TMS320C6713 and
TMS320C6416 DSK, 2nd ed., Wiley, Hoboken, NJ, 2008.

5 DIGITAL AUDIO EFFECTS 53

Lab 5 - Digital Audio Effects

5.1. Plain Reverb

The reverberation of a listening space is typically characterized by three distinct time periods: the direct
sound, the early reflections, and the late reflections, as illustrated below:

early late
reflections reflections
direct -
sound
earlipst ,,,,,,,,,,, »-
reflection !
predelay reverberation time

The early reflections correspond to the first few reflections off the walls of the room. As the waves
continue to bounce off the walls, their density increases and they disperse, arriving at the listener from
all directions. This is the late reflection part.

The reverberation time constant is the time it takes for the room’s impulse response to decay by 60
dB. Typical concert halls have time constants of about 1.8-2 seconds.

In this and several other labs, we discuss how to emulate such reverberation characteristics using
DSP filtering algorithms. A plain reverberator can be used as an elementary building block for more
complicated reverberation algorithms. It is given by Eq. (8.2.12) of the text [1] and shown in Fig. 8.2.6.
Its input/output equation and transfer function are:

1
n)=ay(n-D)+x(n), H(z)= ———
y(n)=ay()+x(n) (z) 1~ azD
The comb-like structure of its frequency response and its pole-pattern on the z-plane are depicted in
Fig. 8.2.7 of Ref. [1] and shown below.

IH(o) unit
1/(1-a) circle
1/(1+a) -0
0 21 4m 61 R 27
D D D

Its sample processing algorithm using a circular delay-line buffer is given by Eq. (8.2.14) of [1]:

for each input sample x do:
sp=x%(p+D)
y=X+dSp
*p=Yy
-—p

It can be immediately translated to C code with the help of the function pwrap() and embedded in
the interrupt service routine isr():

5 DIGITAL AUDIO EFFECTS 54

interrupt void isr(Q)

{
float sD, x, y; // D-th state, input & output
read_inputs(&xL, &xR); // read inputs from codec
x = (float) xL; // process left channel only
sD = *pwrap(D,w,p+D); // extract D-th state relative to p
y = X + a*sD; // compute output sample
*p o=y, // delay-Tline 1input
p = pwrap(D,w,--p); // backshift pointer

yL = yR = (short) y;
write_outputs(yL,yR); // write outputs to codec

return;

Lab Procedure

a.

Modify the template program into a C program. plainl.c, that implements the above ISR. Set the
sampling rate to 8 kHz and the audio input to MIC. With the values of the parameters D = 2500 and
a = 0.5, compile and run your program on the DSK.

Listen to the impulse response of the system by lightly tapping the microphone on the table. Speak
into the mike.

Set the audio input to LINE, recompile and run. Play one of the wave files in the directory c:\dsplab\wav
(e.g., dsummer, noflange from [3]).

Recompile and run the program with the new feedback coefficient a = 0.25. Listen to the impulse
response. Repeat for a = 0.75. Discuss the effect of increasing or decreasing a.

According to Eq. (8.2.16), the effective reverberation time constant is given by

Ine
Teit = —1p, Tp=DT =D/fs
Ina
For each of the above values of a, calculate T¢¢ in seconds, assuming € = 0.001 (which corresponds
to the so-called 60-dB time constant.) Is what you hear consistent with this expression?

According to this formula, T.f remains invariant under the replacements:

D-2D, a-a°

Test if this is true by running your program and hearing the output with D = 5000 and a = 0.5% = 0.25
and comparing it with the case D = 2500 and a = 0.5. Repeat the comparison also with D = 1250
and a = /0.5 = 0.7071.

When the filter parameter a is positive and near unity, the comb peak gains 1/ (1 — a) become large,
and may cause overflows. In such cases, the input must be appropriately scaled down before it is
passed to the filter.

To hear such overflow effects, choose the feedback coefficients to be very near unity, for example,
a = 0.99, with a corresponding gain of (1 —a) ~'= 100. You may also need to multiply the input x by
an additional gain factor such as 2 or 4.

Modify the above ISR so that it processes the input samples in stereo (you will need to define two
separate buffers for the left and right channels.) Experiment with choosing slightly different values
of the left and right delay parameters D, or different values of the feedback parameter a. Keep the
left/right speakers as far separated as possible.

5 DIGITAL AUDIO EFFECTS 55

5.2. Allpass Reverb

Like the plain reverberator, an allpass reverberator can be used as an elementary building block for
building more complicated reverberation algorithms. It is given by Eq. (8.2.25) of the text [1] and shown
in Fig. 8.2.17. Its I/0 equation and transfer function are:

-a+zP
y(m)=ay(n-D)-ax(n)+x(n-D), H(z)=1—1——7F

As discussed in [1], its impulse response is similar to that of the plain reverberator, but its magnitude
response remains unity (hence the name “allpass”), that is,

|H(e/®)| =1, forall w

Its block diagram representation using the so-called canonical realization and the corresponding sam-
ple processing algorithm using a circular delay-line buffer is given by Eq. (8.2.14) of [1]:

N Na 4 y for each input sample x do:

sp=%(p+D)
So =X+ dSp
Yy = —aso + Sp
*p = So

i

The algorithm can be translated immediately to C with the help of pwrap (). In this lab, we are going
to put these steps into a separate C function, allpass (), which is to be called by isr(), and linked to
the overall project. The function is defined as follows:

) AMpass.c - allpass reverb with circular delay line - canonical realization
J A R
float *pwrap(int, float *, float *);
float allpass(int D, float *w, float **p, float a, float x)
t float y, sO, sD;

sD = *pwrap(D,w, *p+D);

sO = x + a * sD;

y = -a * s0 + sD;

**p = s0;

*p = pwrap(D,w,--*p);

return y;

The allpass function is essentially the same as that in the text [1], but slightly modified to use floats
and the function pwrap(). In the above definition, the parameter p was declared as pointer to pointer
to float because in the calling ISR function p must be defined as a pointer to float and must be passed
passed by address because it keeps changing from call to call. The calling ISR function isr() is defined
as follows:

5 DIGITAL AUDIO EFFECTS 56

interrupt void isr(Q)

{
float x, y;
read_inputs(&xL, &xR); // read inputs from codec
x = (float) xL; // process left channel only
y = allpass(D,w,&p,a,x); // to be linked with main()
yL = yR = (short) y;
write_outputs(yL,yR); // write outputs to codec
return;

}

Although the overall frequency response of the allpass reverberator is unity, the intermediate stage
of computing the recursive part so can overflow because this part is just like the plain reverb and its peak
gain is 1/ (1 — a). Such overflow behavior is a potential problem of canonical realizations and we will
investigate it further in a future lab.

The allpass reverberator can also be implemented in its transposed realization form, which is less
prone to overflows. It is depicted below together with its sample processing algorithm:

for each input x do:
Sp =*(p+D)
y =Sp —ax
*xp =S89 =Xx+ay
-—p

The following function al1pass_tr() is the translation into C using pwrap (), where again p is defined
as a pointer to pointer to float:

et
// allpass_tr.c - allpass reverb with circular delay line - transposed realization
/=
float *pwrap(int, float *, float *); // defined in dsplab.c
float allpass_tr(int D, float *w, float **p, float a, float x)
{

float y, sD;

sD = *pwrap(D,w, *p+D);

y = sD - a¥*x;

Ep = X + a¥y;

*p = pwrap(D,w,--*p);

return y;
}
T

Lab Procedure

a. Incorporate the above ISR into a main program, allpassl.c, and create a project. Remember to
prototype the allpass function at the beginning of your program. Add the file that contains the
allpass function to the project. Compile and run with the parameter choices: D = 2500, a = 0.5,
with an 8 kHz sampling rate and LINE input.

5 DIGITAL AUDIO EFFECTS 57

b. Repeat part (a) using the transposed form implemented by the function allpass_tr(), and name
your main program allpass2.c.

¢. Choose a value of a and input gain that causes allpassl.c to overflow, then run allpass2.c with
the same parameter values to see if your are still getting overflows.

5.3. Lowpass Reverb

The lowpass reverberator of this experiment is shown in Figs. 8.2.20 and 8.2.21 of Ref. [1]. The feedback
gain a of the plain reverb is replaced by a lowpass filter G(z), so that one obtains the new transfer
function by the replacement:

1
1-G(z)z™D
The filter G (z) effectively acts as frequency-dependent feedback parameter whose value is smaller
at higher frequencies (because it is a lowpass filter), thus attenuating high frequencies faster, and whose

value is larger at lower frequencies, and hence attenuating those more slowly—which is a more realistic
behavior of reverberating spaces. For this experiment, we will work with the simple choice:

= H(z)=

1
H(z)= ———
(2) 1-azP

bo + b1z}
G(z)= L S
1+a;z7!
Setting a = —a,, the corresponding sample processing algorithm is:
X—» -y ;
‘ iso for each input sample x do:
u " sSp=*(p+D)
S L2 Vo =avy + Sp
| | ‘SD u=bovg+bivq
y=x+u
3 V1 =YVo
| *p =
TG p=y
| i 4
The following is its C translation into the isr () function:
interrupt void isr(Q)
{
float x, y, sD, u;
read_inputs(&xL, &xR); // read inputs from codec
x = (float) xL; // process left channel only
sD = *pwrap(D,w,p+D);
v0 = a*vl + sD; // feedback filter G(z) = (b0 + bl*zA-1)/(1l-a*zA-1)
u = b0*v0 + bl*vl; // feedback filter’s output
vl = vO; // update feedback filter’s delay
y = X+U; // closed-Toop output
*po=y;

p = pwrap(D,w,--p);
yL = yR = (short) y;
write_outputs(yL,yR); // write outputs to codec

return;

5 DIGITAL AUDIO EFFECTS 58

Lab Procedure

a.

Create a project with this ISR. Choose an 8 kHz sampling rate and MIC input. Set the parameter values
D = 2500, a = 0.5, by = 0.2, by = 0.1. Compile and run. Listen to its impulse response. Speak
into the mike. Notice how successive echoes get more and more mellow as they circulate through the
lowpass filter. Note that the DC gain of the loop filter G(z), obtained by setting z = 1, and the AC
gain at Nyquist, obtained by setting z = —1, are:

_ bo + b; bo — b; 1

G(2)] o= =06, G@)|,oy =" * =15 =00667

These are the effective feedback coefficients at low and high frequencies. Therefore, the lower fre-
quencies persist longer than the higher ones.

Recompile and run with LINE input and play a wave file (e.g., noflange) through it.

Try the case D = 20, a = 0, bg = b; = 0.495. You will hear a guitar-like sound. Repeat for D = 100.
What do you hear?

Repeat by setting the sampling rate to 44.1 kHz and D = 100.

This type of feedback filter is the basis of the so-called Karplus-Strong string algorithm for synthe-

sizing plucked-string sounds, and we will study it further in another experiment.

5.4. Schroeder’s Reverb Algorithm

A more realistic reverberation effect can be achieved using Schroeder’s model of reverberation, which

consists of several plain reverb units in parallel, followed by several allpass units in series. An example
is depicted in Fig. 8.2.18 and on the cover of the text [1], and shown below.

x,(n) b

x(n)

The different delays in the six units cause the density of the reverberating echoes to increase, gener-

ating an impulse response that exhibits the typical early and late reflection characteristics.

Its sample processing algorithm is given by Eq. (8.2.31) of [1]. It is stated in terms of the functions

plain() and allpass() that implement the individual units:

5 DIGITAL AUDIO EFFECTS 59

for each input sample x do:

X1 = plain(Dl, Wi, &pl, al,x)

Xy = plain(Dz, Wo, &pz, ay, X)

x3 = plain(Ds3, ws, &ps3, as, Xx)

X4 = plain (D4, Wa, &p4, ds, X)

X5 = b1X1 + b2X2 + b3X3 + b4X4
Xg = allpass(Dg, Ws, &p;, ds, X5)
y = allpass(Dg, wg, &P, dg, Xg)

There are six multiple delays each requiring its own circular buffer and pointer. The allpass()
function was already defined in the allpass reverb lab section. The pTain function is straightforward and
implements the steps used in the plain reverb lab section:

R
// plain.c - plain reverb with circular delay Tine

/] =
float *pwrap(int, float *, float *);

float plain(int D, float *w, float **p, float a, float x)

{
float y, sD;
sD = *pwrap(D,w, *p+D);
y =X + a * sD;
:':*p = y’
*p = pwrap(D,w,--%*p);
return y;
}
/) e

The following (incomplete) C program implements the above sample processing algorithm initsisr()
function and operates at a sampling rate of 44.1 kHz:

7/ schrosder < - Schrosders reverb algorithn using circular buffers
T T
#include "dsplab.h" // init parameters and function prototypes
short xL, xR, yL, yR; // input and output samples from/to codec
short fs = 44; // sampling rate in kHz

#define D1 1759
#define D2 1949
#define D3 2113
#define D4 2293
#define D5 307
#define D6 313

#define a 0.88

float bl=1, b2=0.9, b3=0.8, b4=0.7;
float al=a, a2=a, a3=a, ad4=a, a5=a, ab=a;

float wl[D1+1], *pl;
float w2[D2+1], *p2;
float w3[D3+1], *p3;

5 DIGITAL AUDIO EFFECTS

float w4[D4+1], *p4;
float w5[D5+1], *p5;
float w6[D6+1], *p6;

60

float plain(int, float *, float **, float, float); // must be added to project
float allpass(int, float *, float **, float, float);

void main()

{
int n;
for (n=0; n<=D1;
for (n=0; n<=D2;
for (n=0; n<=D3;
for (n=0; n<=D4;
for (n=0; n<=D5;
for (n=0; n<=DG6;

n++)
n++)
n++)
n++)
n++)
n++)

wl[n]
w2[n]
w3[n]
w4[n] =
w5[n]
w6[n] =

// initialize buffers to zero

[=NeNoNoNe N

pl = wl; p2 = w2; p3 = w3; p4d = wd; p5 = w5; p6 = w6; // initialize pointers

initialize();

sampling_rate(fs);
audio_source(MIC);

// initialize DSK board and codec, define interrupts

// possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz
// LINE or MIC for line or microphone input

while(1); // keep waiting for interrupt, then jump to isr()
}
A e e LR
interrupt void isr(Q)
{
read_inputs(&xL, &xR); // read inputs from codec
) mm o -
// here insert your algorithm implementing Eq.(5.1) given above
/] =
write_outputs(yL,yR); // write outputs to codec
return;
}
/] = e e

Lab Procedure

a. Create a project for this program, compile and run it with audio input set to MIC. Listen to its impulse
response and speak into the mike. To reduce potential overflow effects, you may want to reduce the
input level by half, for example, by the statement:

x = (float) (xL>>1);

b. What are the feedback delays of each unit in msec? Replace all the delays by double their values,
compile, and run again. Compare the output with that of part (a). Repeat when you triple all the
delays. (Note that you can just replace the constant definitions by #define D1 1759%2, etc.)

c. Repeat part (a) by experimenting with different values of the feedback parameter a.

5.5. Stereo Reverb

In some of the previous experiments, we considered processing in stereo, but the left and right channels
were processed completely independently of each other. In this experiment, we allow the cross-coupling

5 DIGITAL AUDIO EFFECTS 61

of the two channels, so that the reverb characteristics of one channel influences those of the other.
An example of such system is given in Problems 8.22 and 8.23 and depicted in Fig. 8.4.1 of the text
[1] and shown below.

93

xg(n) el ()
A
G.(2)

St

) 4

-R

) 4

Gp(2)

xg(n) en Yr(n)

Here, we assume that the feedback filters are plain multiplier gains, so that

Gr(z)= ar, Gr(z)=agr

Each channel has its own delay-line buffer and circular pointer. The sample processing algorithm is
modified now to take in a pair of stereo inputs and produce a pair of stereo outputs:

for each input stereo pair X, Xg do:
sy =*(pL+1L)
Sg = *(pr + R)
YL = CLXL + SL
YR = CRXR + SR
*pr = S0 = brxp +arsy + drsg
*PR = SRo = DRXR + ArSg +dr St
——PL
——PRr

where L and R denote the left and right delays. Cross-coupling between the channels arises because of
the coefficients d; and dg. The following is its C translation into an isr() function:

interrupt void isrQ // sample processing algorithm - interrupt service routine
{
float sL, sR;
read_inputs(&xL, &xR); // read inputs from codec
sL = *pwrap(L,wL,pL+L);
sR = *pwrap(R,wR,pR+R);
yL = cL*xL + sL;
yR = cR*XR + sR;
*pL = bL*xL + alL*sL + dR*sR;
*pR = bR*XR + aR*sR + dL*sL;
pL = pwrap(L,wL,--pL);
pR = pwrap(R,wR,--pR);
write_outputs(yL,yR); // write outputs to codec
return;

5 DIGITAL AUDIO EFFECTS 62

Lab Procedure

a. Create a project whose main program includes the above ISR. Select an 8 kHz sampling rate and line
input. Choose the following parameter values:

L=R=3000, ar=ag=0, br=bgr=0.8, c.=cg=0.5dr=dg=0.5

Compile and run this program. Even though the self-feedback multipliers were set to zero, a; = agr =
0, you will hear repeated echoes bouncing back and forth between the speakers because of the cross-
coupling. Make sure the speakers are as far separated as possible, and play one of the wave files in
c:\dsplab\wav (e.g., take5, dsummer).

b. Next try the case d; # 0, dgr = 0. And then, d; = 0, dr # 0. These choices decouple the influence of
one channel but not that of the other.

c. Next, introduce some self-feedback, such as a; = ag = 0.2. Repeat part (a). Vary all the parameters
at will to see what you get.

5.6. Reverberating Delay

A prototypical delay effect found in most commercial audio effects processors was discussed in Problem
8.17 of the text [1]. Its transfer function is:
H (Z) =Cc+ bi
B 1-azD
Its block diagram realization and corresponding sample processing algorithm using a circular delay-line
buffer are given below:

for each input x do:
b Sp = * (p + D)

S N
X - 0. D, y Y =CcX+Sp

i *p = S0 = bx + asp
L ¥
a

The following is its C translation into an isr() function:

interrupt void isr(Q) // sample processing algorithm - interrupt service routine
{

float sD, x, y; // D-th state, input & output

read_inputs(&xL, &xR); // read inputs from codec

x = (float) xL; // process left channel only

sD = *pwrap(D,w,p+D); // extract states relative to p

y = c*x + sD; // output sample

*p = b*x + a*sD; // delay-1line input

p = pwrap(D,w,--p); // backshift pointer

yL = yR = (short) y;
write_outputs(yL,yR); // write outputs to codec

return;

5 DIGITAL AUDIO EFFECTS 63

Lab Procedure
a. Create a project, compile and run it with 8 kHz sampling rate and MIC input. Choose the parameters:

D =6000, a=0.5 b=1, ¢c=0

Listen to its impulse response and speak into the mike. Here, the direct sound path has been removed,
¢ = 0, in order to let the echoes be more clearly heard.

b. What values of b and ¢ would you use (expressed in terms of a) in order to implement a plain rever-

berator of the form:

1
H(z)= ———
(2) 1-azP

For a = 0.5, calculate the proper values of b, ¢, and then compile and run the program. Compare its
output with that of plainl.c.

c. Compile and run the case: a = 1, b = ¢ = 1, and then the case: a = —1, b = —1, ¢ = 1. What are the
transfer functions in these cases?

5.7. Multi-Delay Effects

Here, we consider the multi-delay effects processor shown in Fig. 8.2.27 of the text [1]. We assume that
the feedback filters are plain multipliers. Using two separate circular buffers for the two delays, the block
diagram realization and sample processing algorithm are in this case:

for each input x do:

X S10 D1 Sy . Hszojﬂ $ s; = x(py +Dy)
1 S = *(p2 + D»)
%7 %<7 Y = box + b1s1 + bas»
a a = =
b() 1 b, 2 by f}zzpz S20 = 81+ A2S»

vy <

Xp1r =8S10=X+d151

'
Its C translation is straightforward:
interrupt void isr(Q) // sample processing algorithm - interrupt service routine
t float x, sl1, s2, vy;
read_inputs(&xL, &xR); // read inputs from codec
x = (float) xL; // process left channel only
sl *pwrap(D1, wl, pl+D1);

s2 *pwrap(D2, w2, p2+D2);

y = b0*x + bl*sl + b2*s2;

*p2 = sl + a2¥s2;

p2 = pwrap(D2, w2, --p2);
*pl = x + al¥*sl;

pl = pwrap(D1l, wl, --pl);

yL = yR = (short) y;

write_outputs(yL,yR); // write outputs to codec
return;

5 DIGITAL AUDIO EFFECTS 64

Lab Procedure

a. Write a main program, multidel.c, that incorporates this ISR, compile and run it with an 8 kHz
sampling rate and MIC input, and the following parameter choices:

D; = 5000, D, = 2000, a; = 0.5, dp = 0.4, bo =1, bl = 0.8, bz = 0.6

Listen to its impulse response and speak into the mike. Then select LINE input and play a wave file
(e.g., dsummer) through it.

b. Set b; = 0 and run again. Then, set b, = 0 and run. Can you explain what you hear?

5.8. Multitap Delay Effects

This experiment is based on the multi-tap delay line effects processor of Fig. 8.2.29 of the text [1].
Both this effect and the multi-delay effect of the previous section are commonly found in commercially
available digital audio effects units.

The implementation uses a common circular delay-line buffer of order D;+D», which is tapped out
at taps Dy and D;+D5. The sample processing algorithm is:

™S
V
by 'y
X > y
Ai for each input sample x do:
sy =*(p+Dy)
S» = *x(p+D;1+ D)
y = box + b1S1 + bos»
b So =X+ dadi181 +dzs
1 *p = 8o
-——p
] ™S
\‘ s V
a4y 2 b,
The following ISR is its C translation:
interrupt void isr(Q) // sample processing algorithm - interrupt service routine
{
float x, s0, sl, s2, y;
read_inputs(&xL, &xR); // read inputs from codec
x = (float) xL; // process left channel only
sl = *pwrap(D1+D2, w, p+D1);
s2 = *pwrap(D1+D2, w, p+D1+D2);
y = b0*x + bl*sl + b2*s2;
sO = x + al*sl + a2%*s2;
*p = s0;
p = pwrap(D1+D2, w, --p);
yL = yR = (short) y;
write_outputs(yL,yR); // write outputs to codec

return;

5 DIGITAL AUDIO EFFECTS 65

Lab Procedure

a. Write a main program, multidel.c, that incorporates this ISR, compile and run it with an 8 kHz
sampling rate and MIC input, and the following parameter choices:

D1 = 3000, D2 = 1500, a; = 0.2, ap = 0.5, bo =1, bl = 0.8, bz = 0.6

Listen to its impulse response and speak into the mike. Then select LINE input and play a wave file
(e.g., dsummer) through it.

b. Repeat for the following values of the feedback parameters: a; = a» = 0.5, which makes the system
marginally stable with a periodic steady output (any random noise would be grow unstable.)

Repeat also for the case a; = a» = 0.75, which corresponds to an unstable filter. Please reset the
processor before the output grows too loud. However, do let it grow loud enough to hear the overflow
effects arising from the growing feedback output s.

As discussed in Ref. [1], the condition of stability for this filter is |a;| + |a»| < 1. Interestingly, most
commercially available digital audio effects units allow the setting of the parameters D, D», ay, a», by,
b1, b, from their front panel, but do not check this stability condition.

5.9. Karplus-Strong String Algorithm

A model of a plucked string is obtained by running the lowpass reverb filter with zero input, but with
initially filling the delay line with random numbers. These random numbers model the initial harshness
of plucking the string. But, as the random numbers recirculate through the lowpass filter, their high
frequencies are gradually removed, resulting in a sound that models the string vibration.

The model can be approximately “tuned” to a frequency f; by picking D such that D = fs/f;. The
Karplus-Strong model [9] assumes a simple averaging FIR filter for the lowpass feedback filter as given
by Eq. (8.2.40) of the text [1]. Here, we take the transfer function to be:

G(z)=bo(1+2z7Y)

with some by < 0.5 to improve the stability of the closed-loop system. See Refs. [4-15] for more discus-
sion on such models and computer music in general. The following program implements the algorithm.
The code is identical to that of the lowpass reverb case.

The sampling rate is set to 44.1 kHz and the generated sound is the note A440, that is, having fre-
quency 440 Hz. The correct amount of delay is then

fs 44100 _

D="2 = ~ 100
fi 440

The delay line must be filled with D+ 1 random numbers. They were generated as follows by MATLAB
and exported to the file rand. dat using the function C_header(), e.g., by the code:
iseed = 1000; randn(’state’, iseed);
r = 10000 * randn(101,1);

C_header(’rand.dat’, 'r’, 'D’, r);

The full program is as follows:

J =
// ks.c - Karplus-Strong string algorithm
LI
#include "dsplab.h" // init parameters and function prototypes

short xL, xR, yL, yR; // input and output samples from/to codec

#define D 100

5 DIGITAL AUDIO EFFECTS

float w[D+1], *p;
#include "rand.dat"

float a = 0;
float b0 = 0.499, bl = 0.499;

float v0, v1;

short fs = 44;

[/ =mmmmm o
void mainQ)
{
int n;
for (n=0; n<=D; n++)
wlnl = r[nl;
p=w;
vl = 0;
initialize();
sampling_rate(fs);
audio_source(LINE);
while(1);
}
/] =mmmmmmm o
interrupt void isr(Q)
{
float y, sD, u;
// read_inputs (&L, &xR);
sD = *pwrap(D,w,p+D);
v0 = a*vl + sD;
u = b0*v0 + bl*vl;
vl = v0;
y = Uuj
*po=y;
p = pwrap(D,w,--p);
yL = yR = (short) y;
write_outputs(yL,yR);
return;
}
/] =mmmmmmmmmmm e

Lab Procedure

66

// circular delay-1line buffer, circular pointer

// D+1 random numbers

// states of feedback filter

// sampling rate is 44.1 kHz

// main program executed first

// initialize circular buffer to zero

// initialize pointer

// initialize feedback filter

// initialize DSK board and codec, define interrupts

// possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz
// LINE or MIC for 1ine or microphone input

//

keep waiting for interrupt, then jump to isr()

// sample processing algorithm - interrupt service routine

// inputs not used

// feedback filter G(z) = (b0 + bl*zA-1)/(1l-a*zA-1)
// feedback filter’s output
// update feedback filter’s delay

// closed-Toop output - with x=0

// write outputs to codec

a. Create a project, compile and run. The program disables the inputs and simply outputs the re-
circulating and gradually decaying random numbers.

b. Repeat for D = 200 by generating a new file rand. dat using the above MATLAB code. The note you

hear should be an octave lower.

5 DIGITAL AUDIO EFFECTS 67

5.10. Flangers and Vibrato

As discussed in Ref. [1], a flanging effect is implemented as an FIR comb filter with a time-variable delay.

IH(w)l
x(n) T y(n) 1+a
variable
delay d lay) ‘ ‘ =(D
s(n) 0 % 377'(: - 2T

If the delay d varies sinusoidally between 0 < d (n) < D, with some low frequency f;, then

_ 2mfa
Cfs

dn)= g[l —cos(wgn)], wgy [rads/sample]

and the flanger output is obtained by
y(n)=x(n)+ax(n-d(n))
If the delay d were fixed, the transfer function would be:
H(z)=1+ az

The peaks of the frequency response of the resulting time-varying comb filter, occurring at multiples
of fs/d, and its notches at odd multiples of fs/2d, will sweep up and down the frequency axis resulting
in the characteristic whooshing type sound called flanging. The parameter a controls the depth of the
notches. In units of [radians/sample], the notches occur at odd multiples of 17/d.

In the early days, the flanging effect was created by playing the music piece simultaneously through
two tape players and alternately slowing down each tape by manually pressing the flange of the tape reel.

Because the variable delay d can take non-integer values within its range 0 < d < D, the implementa-
tion requires the calculation of the output x(n —d) of a delay line at such non-integer values. This can be
accomplished easily by truncating to the nearest integer, or as discussed in [1], by rounding, or by linear
interpolation. To sharpen the comb peaks one may use a plain-reverb filter with variable delay, that is,

1

y(n)=xn)+ay(n-d), H(Z)=1_—m

Its sample processing algorithm using a circular buffer of maximum order D is:

for each input x do:
d = floor [(1 — cos(wgn))D/2]
Sq=*(p+d)
y=X+dadsg
*p=Yy
-—p

Its translation to C is straightforward and can be incorporated into the ISR function:

interrupt void isr(Q) // sample processing algorithm - interrupt service routine
{ float sd;

read_inputs(&xL, &xR); // read inputs from codec

x = (float) xL; // work with left input only

d = (1 - cos(wd*n))*D/2; // automatically cast to int, wd = 2*PI*fd/fs

5 DIGITAL AUDIO EFFECTS 68

if (++n>=L) n=0; // L = 16000 to allow fd = 0.5 Hz
sd = *pwrap(D,w,p+d); // extract d-th state relative to p
y = X + a*sd; // output

*po=y; // delay-Tline input

p = pwrap(D,w,--p); // backshift pointer

yL = yR = (short) y;
write_outputs(yL,yR); // write outputs to codec

return;

Lab Procedure

a. Create a project for this ISR. You will need to include <math . h> and define PI. Choose D to correspond
to a 2 msec maximum delay and let f; = 1 Hz and a = 0.7. Run the program and play a wave file
through it (e.g., noflange, dsummer, take5). Repeat when f; = 0.5 Hz.

b. Experiment with other values of D, f, and a.

c. Rewrite part (a) so that an FIR comb filter is used as shown at the beginning of this section. Play the
same material through the IIR and FIR versions and discuss differences in their output sounds.

d. A vibrato effect can be obtained by using the filter H (z) = z~9 with a variable delay. You can easily
modify your FIR comb filter of part (c) so that the output is taken directly from the output of the delay.
For this effect the typical delay variations are about 5 msec and their frequency about 5 Hz. Create a
vibrato project with D = 16 (correspondoing to 2 msec at an 8 kHz rate) and f; = 5 Hz, and play a
wave file through it. Repeat by doubling D and/or f;.

5.11. References

[1] S.]J. Orfanidis, Introduction to Signal Processing, online book, 2010, available from:
http://www.ece.rutgers.edu/~orfanidi/intro2sp/

[2] R. Chassaing and D. Reay, Digital Signal Processing and Applications with the TMS320C6713 and
TMS320C6416 DSK, 2nd ed., Wiley, Hoboken, NJ, 2008.

[3] M.]. Caputi, “Developing Real-Time Digital Audio Effects for Electric Guitar in an Introductory Digital
Signal Processing Class,” IEEE Trans. Education, 41, no.4, (1998), available online from:
http://www.ewh.ieee.org/soc/es/Nov1998/01/BEGIN.HTM

[4] F.R. Moore, Elements of Computer Music, Prentice Hall, Englewood Cliffs, NJ, 1990.

[5] C.Roads and J. Strawn, eds., Foundations of Computer Music, MIT Press, Cambridge, MA, 1988.
[6] C.Roads, ed., The Music Machine, MIT Press, Cambridge, MA, 1989.

[7] C.Dodge and T. A. Jerse, Computer Music, Schirmer/Macmillan, New York, 1985.

[8] J. M. Chowning, “The Synthesis of Complex Audio Spectra by Means of Frequency Modulation,” J.
Audio Eng. Soc., 21, 526 (1973). Reprinted in Ref. [5].

[9] R.Karplus and A. Strong, “Digital Synthesis of Plucked String and Drum Timbres,” Computer Music
J., 7,43 (1983). Reprinted in Ref. [6].

[10] D. A. Jaffe and J. O. Smith, “Extensions of the Karplus-Strong Plucked-String Algorithm,” Computer
Music J., 7, 56 (1983). Reprinted in Ref. [6].

5 DIGITAL AUDIO EFFECTS 69

[11] C.R. Sullivan, “Extending the Karplus-Strong Algorithm to Synthesize Electric Guitar Timbres with
Distortion and Feedback,” Computer Music J., 14, 26 (1990).

[12] J. O. Smith, “Physical Modeling Using Digital Waveguides,” Computer Music J., 16, 74 (1992).

[13] J. A. Moorer, “Signal Processing Aspects of Computer Music: A Survey,” Proc. IEEE, 65, 1108 (1977).
Reprinted in Ref. [5].

[13] M. Kahrs and K. Brandenburg, eds., Applications of Digital Signal Processing to Audio and Acoustics,
Kluwer, Boston, 1998.

[15] Udo Zoélzer, ed., DAEX - Digital Audio Effects, Wiley, Chichester, England, 2003. See also the DAFX
Conference web page: http://www.dafx.de/.

6 IIR FILTERING EXPERIMENTS 70

Lab 6 - IIR Filtering Experiments

The first part of this lab illustrates, via a simple IIR filter example, the principles of signal enhancement
and noise reduction. The second part illustrates the interplay between steady-state and transient re-
sponse and the trade-off between time-constant and sharpness of filter specifications. Both parts will
give you the opportunity to program the sample processing algorithms of IIR filters.

6.1. Signal Enhancement and Noise Reduction

Consider a noisy sinusoidal signal of frequency f, = 500 Hz sampled at a rate of f; = 10 kHz:

x(n)= cos(won)+v(n) (6.1)

where wq = 27tf/fs is the digital frequency and v (n) the noise.

It is desired to design a filter H () to extract the desired signal s (n) = cos(wohn) from the available
noisy signal x(n). Such a filter must have two properties: First, it must remove the noise component
v(n) as much as possible, and second, it must let the desired signal s (n) pass through unchanged, except
possibly for a time delay.

The second of these requirements is met by designing a bandpass filter whose passband coincides
with the passband of the desired signal. The noise component is typically a white noise signal whose
power is spread equally over the entire frequency axis. After filtering, the overall noise power will be
reduced because only the power that resides within the passband of the filter will survive the filtering
process.

In our example, the passband of the desired signal is just the frequency wg. Therefore, we must
design a bandpass filter centered at wg with unity gain at that frequency, namely, |H (wg)| = 1. The
simplest possible choice for such a filter is a resonator 2-pole filter with poles at Re*/®0, where R must
be chosen to be 0 < R < 1 for stability. The transfer function will be of the form

G G
H(z)= - - = 2
() (1 — ReJwoz-1)(1 — ReJwoz-1) l+a1z7t +az2 (6.2)
where a; = —2R cos(wg) and a» = R2. The gain G is fixed so as to ensure |H (wq) | = 1. This gives the
following expression for G:
G=(1-R)(1-2Rcos(2wq)+R?)"? (6.3)
In the time domain, the filter is described by the difference equation:
y(n)=-aiy(n-1)-axy(n-2)+Gx(n) (6.4)
The impulse response of the filter can be shown to be:
G n o
h(n)= ———R"sin(wgh + wy), n=0,1,2,... (6.5)
sin(wgq)
Finally, the magnitude response squared can be shown to be:
G2
|H(w)|* = (6.6)

" [1-=2Rcos(w — wo)+R2][1 — 2R cos(w + wg) +R?]

A block diagram implementing the difference equation (6.4) and the transfer function (6.2) is shown
below:

6 IIR FILTERING EXPERIMENTS 71

x(n) —— (] = y(n)
G

y(n-1)

y(n-2)

The best way to program the difference equation (6.4) is via its sample processing algorithm. To
derive it, define the delayed output signals
wi(n)=y(n-1), wa(n)=y(n-2)
Then, Eq. (6.4) reads

y(n)=—arwi(n)—awz(n) +Gx(n) (6.7a)
Once y(n) is computed, the values of w; (n) and w» (n) may be updated to the next time instant by
we(n+1) =wy(n)
(6.7b)
wi(n+1) =y(n)

These are easily derived from their definition, thatis, wo (n+1)=y(n+1-2)=y(n—-1)= w;(n) and
wi(n+1)=y(mn+1-1)=y(n). Equations (6.7), lead to the following simple computational algorithm:

For each input sample x do:
Yy =—-aywy; —daxw + GXx
Wo =wy
wyp =Yy

Lab Procedure

First, prove Egs. (6.3) through (6.6). Then, for each of the three values R = 0.95, R = 0.97, R = 0.99, do
the following:

a. Plot the magnitude response squared |H (f) |? over the frequency range 0 < f < 5 kHz. Suggestion:
For plotting purposes, you may compute |H (f)|? at 500 equally-spaced frequencies in that range.
Note: w = 21tf /5.

b. Compute the impulse response h(n) of the filter by sending a unit impulse at the input of the
difference equation (6.4) and iterating forward in time (with zero initial conditions). Compare the
computed values with the values obtained from the formula (6.5). Plot the quantity h (n) /G versus
n in the range 0 < n < 300. Use the vertical range of [—4, 4] for your plot.

c. Using the gaussian random number generator gran with mean = 0.0 and sigma = 1.0, generate
300 samples of the white noise signal v(n) and the corresponding noisy sinusoid x(n) of Eq. (6.1).
Refer to the program sines. c of Lab-0 for an example of how to do that. Plot x(n) versus n, using
vertical range [—4,4].

If you work with MATLAB, you may use the built-in function randn to generate the noise. For
example, to generate a row of 300 zero-mean unit-variance samples, do:

I = 2006; % change this to any integer
randn(’state’,I); % initialize the generator
v = randn(1,300); % v is a row vector of Tength 300

6 IIR FILTERING EXPERIMENTS 72

d. Using the sample processing algorithm (6.8), filter x(n) through the filter H (z) and compute and
plot the resulting output signal y(n) versus n in the range 0 < n < 300. On the same graph,
place the desired noise-free signal s(n). Again, use vertical range of [—4,4]. Discuss the trade-off
between the sharpness of the bandpass filter (i.e., the goodness of its passband) and the speed of
response (i.e., how quickly you reach steady-state) in the filtered signal.

e. Filter the noise signal v (n) separately through this bandpass filter and compute the corresponding
filtered output noise, say y, (n). On two separate graphs, plot v(n) and y, (n) versus n. Explain
why the filtered noise looks more like a sinusoid than noise.

Magnitude Response Impulse Response

1.0 4
R = 0.99
R =099
2
o
= <
= o5 = o
I <
= =
ol
0.0 . N N M . _4
0.0 05 1.0 1.5 20 25 30 35 40 45 50 [} 50 100 150 200 250 300
f (kHz) n
Noisy Sinusoid Filtered Noisy Sinusoid
4 4
recovered
- - -~ desired
2 2

0 50 100 150 200 250 300 0 50 100 150 200 250 300
time samples time samples

6.2. Transient and Steady-State Properties

In Chap. 6 of [1], the sinusoidal response of a second-order filter with poles at pi, p» is given in the
following exact form, for n = 0:

x(n)=cos(won) = y(n)=|H(wq)l|cos(won + O¢)+B1pt + Bap}

where the phase shift 0 is value of the phase response of the filter at wg, and By, B> depend on the
particulars of the transfer function. In this part, you will study how well the steady-state term represents
the output of a short-duration signal and the effect of the transient terms on the time constant of the
filter.

Consider the following signal of duration of 12 seconds defined as three concatenated four-second
unity-amplitude sinusoidal signals of frequencies f; = 2, f> = 4, and f> = 6 Hz:

cos(2mrfit), 0 <t <4 sec
X(t)= 4 cos(2mfot), 4 <t < 8sec
cos(2mfst), 8 <t <12 sec

This signal is sampled at a rate of fs = 200 samples/sec. The following two filters, operating at the
rate f, are notch filters that have been designed to have a notch at f> = 4 Hz, therefore, they will knock
out the middle portion of x(t):

6 IIR FILTERING EXPERIMENTS 73

0.969531 — 1.923772 z71 + 0.969531 z~2
1-1.923772z71 + 0.939063 z~2

0.996088 — 1.976468 z~! + 0.996088 z~2
1-1.976468 z1 + 0.992177 z—2

H,(z) =

H,(z) =

The first filter has a 3-dB width of Af = 2 Hz, and the second, a width of Af = 0.25 Hz. The magnitude

responses |H (f) | are shown below. We will learn in Chap. 11 how to design such filters. They have been
designed by the MATLAB function parmeq of [1] invoked with the parameters:

[a,b] = parmeq(l, 0, 1/sqrt(2), 2*pi*f2/fs, 2*pi*Df/fs);

where a, b are the denominator and numerator filter coefficient row vectors. In this experiment, we study
the interplay between notch width and transient time constant. The first filter has a wide width and a
short time constant, whereas the second filter has a narrow width and a long time constant.

Lab Procedure

a.

Draw the canonical realization of each filter and write down its sample processing algorithm using
linear delay-line buffers. Because these are second-order sections, they may be implemented using
the functions sos.c, or, sos.m of [1].

Calculate the 40-dB time constants of both of these filters in seconds. Note that for a general (strictly
stable and causal) IIR filter with poles p;, such that |p;| < 1, the effective time-constant is defined
by:

Netf Ine

Tett = 1 sNett = F Mett = & » R = max Ipil
N

where € = 102 for the 40-dB time-constant.

Let x(t,) denote the sampled input x(t). Plot x(t,;) versus t, over the period of 6 seconds. Using
the function sos, filter this input through H; (z) and plot the output y () versus ty.

Notice how quickly the middle portion of x (t;;) is notched out. Notice also that the f; and f3 portions
no longer have unity-amplitudes. Verify that the (steady-state) amplitudes are given respectively by
the magnitude response numbers |H; (f1) | and |Hq (f3) |

(You can do that either by plotting horizontal lines of such heights |H; (f1)| and |H; (f3)| over
the corresponding signal portions, or, by using MATLAB’s function max to determine the maximum
values of the two portions and then comparing them with the calculated response values.)

Do you observe a phase shift? Is the observed transient response consistent with the calculation of
the time constant of part (b)?

Repeat questions (c,d) for the second filter H, (z).

On two separate graphs, plot the magnitude responses |H; (f)| and |H> (f)| versus f in the range
0 < f < 10 Hz. The expected graphs are shown below. The values at f; and f3 have been indicated
on these graphs.

For each filter, calculate the corresponding left and right 3-dB frequencies, say, f; and fz, and
indicate them on your graphs of part (f) by connecting them with a horizontal segment at the 3-dB
level. Verify that the difference fr — f1 is equal to the given 3-dB widths of 2 Hz and 0.25 Hz,
respectively.

(This is a hard question. You can determine these frequencies analytically if you read Sect. 11.3 of
the text [1], otherwise, you can determine them by trial and error.)

6 IIR FILTERING EXPERIMENTS 74

h. Next, consider the following two peaking filters, which are complementary to the above notch filters.
They have a peak at f> and the same 3-dB widths of 2 and 0.25 Hz, respectively:

0.030469(1 — z72)
1—-1.923772z-1 + 0.939063 72
0.003912(1 — z72)
1—1.976468 z~1 + 0.992177 z—2

Hi(z)

Hy(z) =

They can also be designed with the parmeq function:
[a,b] = parmeq(0, 1, 1/sqrt(2), 2*pi*f2/fs, 2*pi*Df/fs);

Repeat questions (a-g) for these filters. The peaking filter is supposed to extract the middle portion
of the input and remove the f; and f3 portions. Discuss how well each filter accomplishes this

goal and correlate what you see in the time-dependence of the output signals with the magnitude
responses of the peaking filters.

Input Signal
2
1t
T 0
_1F
=) L L
0 2 4 6 8 10 12
t (sec)
Notch Filter Output, Af = 2 Notch Filter Output, Af = 0.25
2 2
1f 1 l
%0 } N '
-1 -1t ‘
_92 -2 :
0 2 4 6 8 10 12 0 2 4 6 8 10 12

t (sec) t (sec)

6 IIR FILTERING EXPERIMENTS 75

Peaking Filter Output, Af =2 Peaking Filter Output, Af = 0.25
2 2
1r 1
= =
0 =0
-1f -1
-2 -2
0 2 4 6 8 10 12 0 2 4 6 8 10 12
t (sec) t (sec)
Notch Filter Responses Peaking Filter Responses
1r 0 — Af=2
3ldB :'. --- Af=025
0.8 ~ b ,
< <06 o
= = o
0.4 —Ar=2 1 0.4 b
--- Af=025 L
o2}] ot /o SN
-~ s Te—
.- T e e (R
0 [V X . X
0 1 2 3 7 8 9 10 0 1 2 3 8 9 10

4 5 6
f (Hz)

6.3. Filtering of Periodic Signals

If a causal sinusoidal signal of frequency w is sent to the input of a (strictly stable) filter, the output will
tend in the long run, after the transients die out, to a steady-state sinusoidal signal of the same frequency
w, but modified in amplitude by the frequency response of the filter:

x(n)=e“"un) = ym)=H(E?®)e/"u(n)+Yians (N) — H(e/?)e/“"y(n) = steady-state

where u (n) is the unit-step function. This is the most important property of linear systems. The sinusoid
eJ®n is not necessarily a periodic signal in the discrete-time variable n unless the frequency has the
form w = 2mk/N, for integer values of k, N, and in this case, it is periodic with period N, that is,
eJwn+N) — gjwn A more general periodic discrete-time signal s(n) with period N is specified by its
sample values of one period,

s(n)=[50,51,82- -, SN-1, $0,51,82 .-, SN-1, = * -]

~ ~
one period one period

and it can be represented by the inverse DFT formula as a sum of sinusoids at the DFT frequencies
wg = 21k/N, k=0,1,...,N — 1,
N-1

sm=— > S(k)elwwn (6.9)
N k=0

where S (k) is the N-point DFT of one period of the periodic signal:

N-1

S(k)= > s(me e k=0,1,...,N -1
n=0

6 IIR FILTERING EXPERIMENTS 76

If a periodic signal such as s(n) is sent to the input of a stable filter, then after the filter transients
die out, the steady-state output signal will also be periodic with the same period N, and given in its
sinusoidal form by the inverse DFT:

N-1
Sout (1) = % S H (&) S (k) (6.10)
k=0

This follows by applying the sinusoidal response of the filter to the individual terms of Eq. (6.9). Thus,
the following computational steps allow one to determine the samples of the output period:

compute FFT of input period: S = fft(s,N)

evaluate filter at DFT frequencies: H= [H(e/®),H(e/®),...,H(e/®N-1)] 6.11)
point-by-point multiplication: Sout = H.* S)
compute IFFT: Sout = ifft (Sout, N)

Lab Procedure

a. Write a MATLAB function that implements the steps in Eq. (6.11), with syntax:
s_out = periodic_output(b,a,s);

where b, a are the numerator and denominator coefficient vectors of the filter, and s,s_out rep-
resent one period of the input and output signals. All the operations inside this function must be
vectorized. To help you debug your program, the following answer is given:

2+ 771
s =[3,6,3], H(Z)=m > Sou = [6,10,8]

b. Apply your function to the period-8 square wave:

S(n): [L].,].,l,l,_l,_l,_l,_lj, U] (612)

Y

one period

which is sent into the filter .)
1+z+z

H(z)= ——
1+0.5z4

and compute the corresponding length-8 output period sqy.

c. Repeat the calculation of sy, by performing the operations of Eq. (6.11) by hand using 8-point FFTs
and showing all calculations explicitly.

d. Generate an input signal x(n) from Eq. (6.12) consisting of 5 periods only and filter it through H (z)
using the function filter, i.e.,

y = filter(b,a,x);

On two separate graphs, make stem plots of the signals x(n) and y(n). Observe how the output
signal converges to the computed output period as the transients die out.

e. For afilter H(z)= B(z)/A(z), write a MATLAB function that estimates the effective time constant
of the filter, say, nest, i.e., the number of time samples that elapse until the filter transients effectively
die out and the output settles into its steady-state. The filter H (z) is arbitrary, but must be assumed
to be stable with all its poles strictly inside the unit circle. The function must have syntax:

n_eff = time_constant(b,a);

6 IIR FILTERING EXPERIMENTS 77

The function must also handle the case of an FIR filter, i.e., a=[1].

Apply your function to the example of part (b) and verify that the chosen 5 periods were sufficiently
long to let the transients die out.

input output

6.4. References

H N Wk ot

x(n)
(=]

y(n)
bhible

|
(o2}

10 20 30 40 50

[=)
=
[}
DO
(=}
w |
(=}
'S
[}
[
[}
[}

[1] S.J. Orfanidis, Introduction to Signal Processing, online book, 2010, available from:
http://www.ece.rutgers.edu/~orfanidi/intro2sp/

[2] A.V.Oppenheim, R. W. Schafer, Discrete-Time Signal Processing, 3/e, Prentice Hall, Englewood Cliffs,
NJ, 2009.

REFERENCES 78

References

[1] A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing, 3/e, Prentice Hall, Englewood Cliffs,
NJ, 2009.

[2] S.]. Orfanidis, Introduction to Signal Processing, online book, 2010, available from:
http://www.ece.rutgers.edu/~orfanidi/intro2sp/.

[3] R. Chassaing and D. Reay, Digital Signal Processing and Applications with the TMS320C6713 and
TMS320C6416 DSK, 2nd ed., Wiley, Hoboken, NJ, 2008.

[4] S. A. Tretter, Communication System Design Using DSP Algorithms with Laboratory Experiments for
the TMS320C6713 DSK, Springer, New York, 2008, code available from:
http://www.ece.umd.edu/~tretter

[5] MATLAB Documentation: http://www.mathworks.com/help/techdoc/

