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Lab Schedule – Spring 2011

Week Software Labs Hardware Labs

1/18

1/24 Lab0 – Introduction & Lab Requirements

1/31 Lab1 – Sampling & Quantization – due 2/14 Lab2 – Code Composer Studio – group A

2/07 Lab2 – Code Composer Studio – group B

2/14 Lab3 – Filtering by Convolution – due 2/28 Lab4 – Delays & FIR Filtering – group A

2/21 Lab4 – Delays & FIR Filtering – group B

2/28 Lab5 – DTFT/DFT/FFT – due 3/28

3/07

3/14

3/21 Lab6 – Digital Audio Effects – group A

3/28 Lab7 - IIR Filtering Applications – due 4/18 Lab6 – Digital Audio Effects – group B

4/04 Lab8 – Notch Filters & Equalizers – group A

4/11 Lab8 – Notch Filters & Equalizers – group B

4/18

4/25

Notes

1. Labs meet in room ELE-004.

2. Software labs are due on the dates posted on the above schedule. Late labs will not be accepted.
In formatting your reports, please adhere to the lab guidelines described in Lab-0. Software labs
should be submitted in person to the TAs and should not be left in the Tas’ mailboxes.

3. Hardware lab sessions have a duration of two periods. Attendance in all hardware labs is required
(it is not possible to get an “A” in the lab if one of these sessions is missed.) Due to the limited
number of workstations, missed hardware labs cannot be made up.

4. For the hardware labs, each lab section has been split into two groups, A & B, that meet on alternate
weeks as shown on the above schedule. The groups are as follows, divided according to student
last names (please note that these may change until registration is closed):

Section Group A Group B

Section–1, M 3:20–6:20 PM Alano – Lin Litvin – Velez

Section–2, W 3:20–6:20 PM Angad – Locorriere Macor – Weidmann

Section–3, F 8:40–11:40 AM Al Jabowbi – Marcus Montemarano – Yu

TA Baozhi Chen Maja Skataric
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0 INTRODUCTION 1

Lab 0 – Introduction

The DSP lab has both a software and a hardware component. In the software component, students carry
out a number of computer experiments written in C or MATLAB, illustrating some of the fundamental
concepts and applications of digital signal processing, such as quantization and sampling, block pro-
cessing by convolution, real-time filtering on a sample-by-sample basis, signal enhancement and noise
reduction filters, direct, canonical, and cascade realizations of digital filters, spectral analysis by the DFT
and FFT, the design of FIR and IIR digital filters, and digital audio effect applications, such as dynamic
range control. The choice and number of computer experiments may vary from year to year.

The hardware part of the lab illustrates the programming of real-time processing algorithms on the
Texas Instruments TMS320C6713 floating-point DSP. Programming of the DSP chip is done primarily in
C (and some assembly) using the Code Composer Studio (CCS) integrated development environment. All
of the C filtering functions in the textbook [1] translate with minor changes to the CCS environment.

The hardware experiments include aliasing and quantization effects; the circular buffer implemen-
tation of delays, FIR, and IIR filters; voice scramblers; the canceling of periodic interference with notch
filters; wavetable generators; and several digital audio effects, such as comb filters, flangers, plain, allpass,
and lowpass reverberators, Schroeder’s reverberator, and several multi-tap, multi-delay, and stereo-delay
type effects, as well as the Karplus-Strong string algorithm; various guitar distortion effects, such as fuzz
and overdrive; and, parametric equalizer filters.

The lab assignments contain a short introduction of the required theory. More details, as well as
several concrete C and MATLAB implementations, may be found in the book [1], which may be freely
downloaded from the web page:

http://www.ece.rutgers.edu/~orfanidi/intro2sp/

0.1. Lab Guidelines

Attendance is required in all hardware-lab sessions (see the lab schedule at the beginning of this manual.)
It is not possible to receive a grade of “A” if one of these sessions is missed. Due to the limited number
of workstations, missed hardware labs cannot be made up. In addition, a 1–2 page lab report on each
hardware lab must be submitted at the next hardware lab.

Students work in pairs on each workstation. Each lab section section has been split into two groups,
A & B, that meet on alternate weeks (see lab schedule on the lab web page). Please make sure that you
attend the right group (if in doubt please contact your TA).

The software labs are typically due in two weeks (except for lab-8) and require submission of a lab
report. To be accepted and receive full credit, the reports must be prepared according to the following
guidelines:

1. Include a 1–2 page discussion of the purposes and objectives of the experiment.

2. Include a short description of the programming ideas you used and a thorough evaluation of the
results you obtained. All supporting graphs must be included in this part.

3. The source code of your programs should be attached at the end of your report as an Appendix.
Xeroxed copies of the lab reports or figures are not acceptable.

4. Please, note that late labs will not be accepted. Labs should be handed to the TAs in person and
not be left in the TAs mailboxes. Please check with your TA regarding where and when to submit
your reports.

5. Students must work alone on their software lab projects. Collaboration with other students is not
allowed. It is taken for granted that students accept and adhere to the Rutgers academic integrity
policy described in:

http://academicintegrity.rutgers.edu/
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0.2. Running C Programs

The software labs may be carried out on any available computer. The default computer facilities are in
room ELE-103. Course computer accounts on ece.rutgers.edu will be assigned at the beginning of the
semester or they may be obtained by contacting the system administrator of the ECE department, Mr.
John Scafidi.

C programs may be compiled using the standard Unix C compiler cc or the GNU C compiler gcc. Both
have the same syntax. It is recommended that C programs be structured in a modular fashion, linking the
separate modules together at compilation time. Various versions of GCC, including a Windows version,
and an online introduction may be found in the web sites:

http://gcc.gnu.org/
http://www.delorie.com/djgpp/
http://www.network-theory.co.uk/docs/gccintro/

Some reference books on C are given in [3]. As an example of using gcc, consider the following main
program sines.c, which generates two noisy sinusoids and saves them (in ASCII format) into the data
files y1.dat and y2.dat:

/* sines.c - noisy sinusoids */

#include <stdio.h>
#include <math.h>

#define L 100
#define f1 0.05
#define f2 0.03
#define A1 5
#define A2 A1

double gran(); /* gaussian random number generator */

void main()
{

int n;
long iseed=2001; /* gran requires iseed to be long int */
double y1, y2, mean = 0.0, sigma = 1.0, pi = 4 * atan(1.0);
FILE *fp1, *fp2;

fp1 = fopen("y1.dat", "w"); /* open file y1.dat for write */
fp2 = fopen("y2.dat", "w"); /* open file y2.dat for write */

for (n=0; n<L; n++) { /* iseed is passed by address */
y1 = A1 * cos(2 * pi * f1 * n) + gran(mean, sigma, &iseed);
y2 = A2 * cos(2 * pi * f2 * n) + gran(mean, sigma, &iseed);
fprintf(fp1, "%12.6f\n", y1);
fprintf(fp2, "%12.6f\n", y2);
}

fclose(fp1);
fclose(fp2);

}

The noise is generated by calling the gaussian random number generator routine gauss, which is defined
in the separate module gran.c:

/* gran.c - gaussian random number generator */
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double ran(); /* uniform generator */

double gran(mean, sigma, iseed) /* x = gran(mean,sigma,&iseed) */
double mean, sigma; /* mean, variance = sigma^2 */
long *iseed; /* iseed passed by reference */
{

double u = 0;
int i;

for (i = 0; i < 12; i++) /* add 12 uniform random numbers */
u += ran(iseed);

return sigma * (u - 6) + mean; /* adjust mean and variance */
}

In turn, gran calls a uniform random number generator routine, which is defined in the file ran.c:

/* ran.c - uniform random number generator in [0, 1) */

#define a 16807 /* a = 7^5 */
#define m 2147483647 /* m = 2^31 - 1 */
#define q 127773 /* q = m / a = quotient */
#define r 2836 /* r = m % a = remainder */

double ran(iseed) /* usage: u = ran(&iseed); */
long *iseed; /* iseed passed by address */
{

*iseed = a * (*iseed % q) - r * (*iseed / q); /* update seed */

if (*iseed < 0) /* wrap to positive values */
*iseed += m;

return (double) *iseed / (double) m;
}

The three programs can be compiled and linked into an executable file by the following command-line
call of gcc:

gcc sines.c gran.c ran.c -o sines -lm (unix version of gcc)
gcc sines.c gran.c ran.c -o sines.exe -lm (MS-DOS version of gcc)

The command-line option -lm links the math library and must always be last. The option -o creates the
executable file sines (or, sines.exe for MS-DOS.) If this option is omitted, the executable filename is
a.out (or, a.exe) by default. Another useful option is the warning message option -Wall:

gcc -Wall sines.c gran.c ran.c -o sines -lm

If the command line is too long and tedious to type repeatedly, one can use a so-called response file,
which may contain all or some of the command-line arguments. For example, suppose the file argfile
contains the lines:

-Wall
sines.c
gran.c
ran.c
-o sines
-lm

Then, the following command will have the same effect as before, where the name of the response file
must be preceded by the at-sign character @:
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gcc @argfile

To compile only, without linking and creating an executable, we can use the command-line option -c:

gcc -c sines.c gran.c ran.c

This creates the object-code modules *.o, which can be subsequently linked into an executable as follows:

gcc -o sines sines.o gran.o ran.o -lm

0.3. Using MATLAB

The plotting of data created by C or MATLAB programs can be done using MATLAB’s extensive plotting
facilities. Here, we present some examples showing how to load and plot data from data files, how to
adjust axis ranges and tick marks, how to add labels, titles, legends, and change the default fonts, how
to add several curves on the same graph, and how to create subplots.

Suppose, for example, that you wish to plot the noisy sinusoidal data in the files y1.dat and y2.dat
created by running the C program sines. The following MATLAB code fragment will load and plot the
data files:

load y1.dat; % load data into vector y1
load y2.dat; % load data into vector y2

plot(y1); % plot y1
hold on; % add next plot
plot(y2, ’r--’); % plot y2 in red dashed style

axis([0, 100, -10, 10]); % redefine axes limits
set(gca, ’ytick’, -10:5:10); % redefine yticks
legend(’y1.dat’, ’y2.dat’); % add legends
xlabel(’time samples’); % add labels and title
ylabel(’amplitude’);
title(’Noisy Sinusoids’);

The resulting plot is shown below. Note that the command load y1.dat strips off the extension part of
the filename and assigns the data to a vector named y1.

y1.dat
y2.dat
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pl
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Noisy Sinusoids

The command hold on leaves the first plot on and adds the second plot. The axis command increases
the y-range in order to make space for the legends. The legends, labels, and title are in the default font
and default size (e.g., Helvetica, size 10 for the Windows version.)

A more flexible and formatted way of reading and writing data from/to data files is by means of the
commands fscanf and fprintf, in conjunction with fopen and fclose. They have similar usage as in
C. See Ref. [2] for more details.
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The next example is similar to what is needed in Lab-1. The example code below generates two
signals x(t) and y(t) and plots them versus t. It also generates the time-samples y(tn) at the time
instants tn = nT. All three signals x(t), y(t), y(tn) span the same total time interval [0, tmax], but
they are represented by arrays of different dimension (x(t) and y(t) have length 101, whereas y(tn) has
length 11). All three can be placed on the same graph as follows:

tmax = 1; % max time interval
Nmax = 100; % number of time instants
Dt = tmax/Nmax; % continuous-time increment
T = 0.1; % sampling time interval

t = 0:Dt:tmax; % continuous t
x = sin(4*pi*t) + sin(16*pi*t) + 0.5 * sin(24*pi*t); % signal x(t)
y = 0.5 * sin(4*pi*t); % signal y(t)

tn = 0:T:tmax; % sampled version of t
yn = 0.5 * sin(4*pi*tn); % sampled version of y(t)

plot(t, x, t, y, ’--’, tn, yn, ’o’); % plot x(t), y(t), y(tn)

axis([0, 1, -2, 2]) % redefine axis limits
set(gca, ’xtick’, 0:0.1:1); % redefine x-tick locations
set(gca, ’ytick’, -2:1:2); % redefine y-tick locations
set(gca, ’fontname’, ’times’); % Times font
set(gca, ’fontsize’, 16); % 16-point font size
grid; % default grid

xlabel(’t (sec)’);
ylabel(’amplitude’);
title(’x(t), y(t), y(tn)’);

axes(legend(’original’, ’aliased’, ’sampled’)); % legend over grid

The following figure shows the results of the above commands. Note that the x-axis tick marks have been
redefined to coincide with the sampled time instants tn = nT.
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The ’o’ command plots the sampled signal y(tn) as circles. Without the ’o’, the plot command would
interpolate linearly between the 11 points of y(tn).

The font has been changed to Times-Roman, size 16, in order to make it more visible when the graph
is scaled down for inclusion in this manual. The command axes creates a new set of axes containing the
legends and superimposes them over the original grid (otherwise, the grid would be visible through the
legends box.)

The next program segment shows the use of the command subplot, which is useful for arranging
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several graphs on one page. It also illustrates the stem command, which is useful for plotting sampled
signals.

subplot(2, 2, 1); % upper left subplot

plot(t, x, t, y, ’--’, tn, yn, ’o’); % plot x(t), y(t), y(tn)

xlabel(’t (sec)’);
ylabel(’amplitude’);
title(’x(t), y(t), y(tn)’);

subplot(2, 2, 2); % upper right subplot

plot(t, y); % plot y(t)
hold on; % add next plot
stem(tn, yn); % stem plot of y(tn)

axis([0, 1, -0.75, 0.75]); % redefine axis limits

xlabel(’t (sec)’);
ylabel(’y(t), y(tn)’);
title(’stem plot’);

The resulting graph is shown below. Note that a 2×2 subplot pattern was used instead of a 1×2, in
order to get a more natural aspect ratio.
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Finally, we mention some MATLAB resources. Many of the MATLAB functions needed in the exper-
iments are included in Appendix D of the text [1]. Many MATLAB on-line tutorials can be found at the
following web sites:

http://www.mathworks.com/academia/student_center/tutorials/index.html
http://www.eece.maine.edu/mm/matweb.html

0.4. References

[1] S. J. Orfanidis, Introduction to Signal Processing, online book, 2010, available from:
http://www.ece.rutgers.edu/~orfanidi/intro2sp/

[2] MATLAB Documentation: http://www.mathworks.com/help/techdoc/

[3] B. W. Kernighan and D. M. Ritchie, The C Programming Language, 2nd ed., Prentice Hall, Englewood
Cliffs, NJ, 1988.

S. P. Harbison and G. L. Steele, C: A Reference Manual, Prentice Hall, Englewood Cliffs, NJ, 1984.

A. Kelly and I. Pohl, A Book on C, 2nd ed., Benjamin/Cummings, Redwood City, CA, 1990.
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Lab 1 – Sampling and Quantization

1.1. Sampling and Aliasing

The aim of this lab is to demonstrate the effects of aliasing arising from improper sampling. This lab is
to be done in MATLAB. The lab is based on Sections 1.3–1.4 of the text [1].

A given analog signal x(t) is sampled at a rate fs, the resulting samples x(nT) are then reconstructed
by an ideal reconstructor into the analog signal xa(t). Improper choice of fs will result in different signals
xa(t)�= x(t), even though they agree at their sample values, that is, xa(nT)= x(nT). The procedure is
illustrated in the following figure:

ideal
reconstructor

ideal
sampler

analog input

[- fs/2, fs /2]

analog outputsampled signal

rate fs

x(t) xa(t)x(nT) = xa(nT)

Lab Procedure

a. Consider an analog signal x(t) consisting of three sinusoids of frequencies of 1 kHz, 4 kHz, and 6
kHz:

x(t)= cos(2πt)+ cos(8πt)+ cos(12πt)

where t is in milliseconds. Show that if this signal is sampled at a rate of fs = 5 kHz, it will be aliased
with the following signal, in the sense that their sample values will be the same:

xa(t)= 3 cos(2πt)

On the same graph, plot the two signals x(t) and xa(t) versus t in the range 0 ≤ t ≤ 2 msec. To this
plot, add the time samples x(tn) and verify that x(t) and xa(t) intersect precisely at these samples.
These samples can be evaluated and plotted as follows:

fs = 5; T = 1/fs;
tn = 0:T:2; xn = x(tn);
plot(tn, xn, ’.’);

b. Repeat part (a) with fs = 10 kHz. In this case, determine the signal xa(t) with which x(t) is aliased.

Plot both x(t) and xa(t) on the same graph over the same range 0 ≤ t ≤ 2 msec. Verify again that the
two signals intersect at the sampling instants.
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c. Consider a periodic sawtooth wave x(t) with period T0 = 1 sec shown below:

Mathematically, x(t) is defined as follows over one period, that is, over the time interval 0 ≤ t ≤ 1:

x(t)=
{

2t − 1, if 0 < t < 1
0, if t = 0 or t = 1

(1.1)

where t is in units of seconds. This periodic signal admits a Fourier series expansion containing only
sine terms with harmonics at the frequencies fm =m/T0, m = 1,2,3,4, . . . Hz:

x(t)=
∞∑
m=1

bm sin(2πmt)= b1 sin(2πt)+b2 sin(4πt)+b3 sin(6πt)+· · · (1.2)

Using your prior knowledge of Fourier series, prove that the Fourier coefficients are given as follows:

bm = − 2

πm
, m = 1,2,3,4, . . .

The reason why the signal x(t) was defined to have the value zero at the discontinuity points has to
do with a theorem that states that any finite sum of Fourier series terms will always pass through the
mid-points of discontinuities.

d. The Fourier series of Eq. (1.2) can be thought of as the limit (in the least-squares sense) as M → ∞ of
the following signal consisting only of the first M harmonics:

xM(t)=
M∑
m=1

bm sin(2πmt) (1.3)

On the same graph, plot the sawtooth waveform x(t) over three periods, that is, over 0 ≤ t ≤ 3,
together with the plot of xM(t) for M = 5.

To plot the above sawtooth waveform in MATLAB, you may use the functions upulse and ustep, which
can be downloaded from the lab web page (see the link for the supplementary M-files.) The following
code segment will generate and plot the above sawtooth waveform over one period:

x = inline(’upulse(t-0.5,0,0.5,0) - upulse(t,0,0,0.5)’);
t = linspace(0,1,1001);
plot(t, x(t));

In order to plot three periods, use the following example code that adds three shifted copies of the
basic period defined in Eq. (1.1):

t = linspace(0,3,3001);
plot(t, x(t) + x(t-1) + x(t-2));

Repeat the above plot of the sawtooth waveform and xM(t) for the caseM = 10, and then forM = 20.

The ripples that you see accumulating near the sawtooth discontinuities asM increases are an example
of the so-called Gibbs phenomenon in Fourier series.
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d. The sawtooth waveform x(t) is now sampled at the rate of fs = 5 Hz and the resulting samples are
reconstructed by an ideal reconstructor. Using the methods of Example 1.4.6 of the text [1], show that
the aliased signal xa(t) at the output of the reconstructor will have the form:

xa(t)= a1 sin(2πt)+a2 sin(4πt)

Determine the coefficients a1, a2. On the same graph, plot one period of the sawtooth wave x(t)
together with xa(t). Verify that they agree at the five sampling time instants that lie within this
period.

e. Assume, next, that the sawtooth waveform x(t) is sampled at the rate of fs = 10 Hz. Show now that
the aliased signal xa(t) will have the form:

xa(t)= a1 sin(2πt)+a2 sin(4πt)+a3 sin(6πt)+a4 sin(8πt)

where the coefficients ai are obtained by the condition that the signals x(t) and xa(t) agree at the first
four sampling instants tn = nT = n/10 Hz, for n = 1,2,3,4. These four conditions can be arranged
into a 4×4 matrix equation of the form:

⎡
⎢⎢⎢⎣
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
a1

a2

a3

a4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
∗
∗
∗
∗

⎤
⎥⎥⎥⎦

Determine the numerical values of the starred entries and explain your approach. Then, using MATLAB,
solve this matrix equation for the coefficients ai. Once ai are known, the signal xa(t) is completely
defined.

On the same graph, plot one period of the sawtooth waveform x(t) together with xa(t). Verify that
they agree at the 10 sampling time instants that lie within this period.

Also, make another plot that displays x(t) and xa(t) over three periods.
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Please note the following caveat. In reducing the harmonics of the sawtooth waveform to the Nyquist
interval [−5,5] Hz, you may conclude that the Nyquist frequency f = 5 Hz should also be included
as a fifth term in the aliased signal, that is,

xa(t)= a1 sin(2πt)+a2 sin(4πt)+a3 sin(6πt)+a4 sin(8πt)+a5 sin(10πt)

However, the sampled values of the last term vanish. Indeed, a5 sin(10πtn)= a5 sin(πn)= 0. There-
fore the aliased signals with both four and five terms would agree with the sawtooth wave at the time
samples. We chose to work with the one with the four terms because it has lower frequency content
than the one with five terms.
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1.2. Quantization

The purpose of this lab is to study the quantization process by simulating the operation of A/D and D/A
converters using the routines adc and dac that were discussed in the quantization chapter. A sampled
sinusoidal signal is generated and then quantized using a 2’s complement successive approximation ADC
with rounding. In addition, the theoretical mean and mean square values of the quantization error:

e = 0, e2 = Q2

12
(1.4)

will be tested by generating a statistical sample of quantization errors and computing the corresponding
sample means. This will also give us the opportunity to work with random number generators.

This lab is best done in MATLAB. The needed functions dac.m and adc.m are also part of the supple-
mentary M-files attached to this lab. The required theory is presented in Chapter 2 of the text [1].

Lab Procedure

a. Generate L = 50 samples of a sinusoidal signal x(n)= A cos(2πfn), n = 0,1, . . . , L− 1 of frequency
f = 0.02 [cycles/sample] and amplitude A = 8. Using a 3-bit (B = 3) bipolar two’s complement
successive approximation A/D converter, as implemented by the routine adc, with full-scale range
R = 32, quantize x(n) and denote the quantized signal by xQ(n). This can be done as follows: for each
x(n), first call adc to generate the corresponding two’s complement bit vector b = [b1, b2, . . . , bB]
and feed it into dac to generate the corresponding quantized value xQ(n).

For n = 0,1, . . . , L−1, print in three parallel columns the true analog value x(n), the quantized value
xQ(n), and the corresponding two’s complement bit vector b.

On the same graph, plot the two signals x(n) and xQ(n) versus n. Scale the vertical scales from
[−16,16] and use 8 y-grid lines to indicate the 8 quantization levels.

b. Repeat part (a) using a B = 4 bit A/D converter. In plotting x(n) and xQ(n), use the same vertical
scales as above, namely, from [−16,16], but use 16 y-grid lines to show the 16 quantization levels.

c. What happens if the analog signal to be quantized has amplitude that exceeds the full-scale range of
the quantizer? Most D/A converters will saturate to their largest (positive or negative) levels. To see
this, repeat part (b) by taking the amplitude of the sinusoid to be A = 20.

d. Finally, we would like to test the theoretical values given in Eq. (1.4). It is not a good idea to use
the above sinusoidal signal because it is periodic and our results will not improve statistically as we
increase the size of the statistical sample. Therefore, here we use a signal x(n) generated by MATLAB’s
random number generator rand, which generates random numbers in the range [0,1). By shifting by
1/2 and multiplying by the desired full-scale range R, we can get a number in [−R/2, R/2).
Generate L = 50 random samples x(n) with full-scale range R = 32 using the following for-loop,
starting with any initial value of iseed:

iseed = 2006; % initial seed is arbitrary
rand(’state’, iseed); % initialize generator
x = R * (rand(L,1) - 0.5); % length-L column vector

Using the converter of part (a) with B = 10 bits, compute the L quantized values xQ(n) and quanti-
zation errors e(n)= xQ(n)−x(n), n = 0,1, . . . , L− 1. Then, compute the experimental values of the
mean and mean-square errors:

e = 1

L

L−1∑
n=0

e(n) , e2 = 1

L

L−1∑
n=0

e2(n) (1.5)

and compare them with the theoretical values given by Eq. (1.4)
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e. Repeat part (d) for L = 200 and L = 500. Discuss the improvement, if any, obtained by increasing the
size of the statistical sample.

1.3. References

[1] S. J. Orfanidis, Introduction to Signal Processing, online book, 2010, available from:
http://www.ece.rutgers.edu/~orfanidi/intro2sp/
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Lab 2 – TMS320C6713 DSK and Code Composer Studio

2.1. Introduction

The hardware experiments in the DSP lab are carried out on the Texas Instruments TMS320C6713 DSP
Starter Kit (DSK), based on the TMS320C6713 floating point DSP running at 225 MHz. The basic clock cycle
instruction time is 1/(225 MHz)= 4.44 nanoseconds. During each clock cycle, up to eight instructions
can be carried out in parallel, achieving up to 8×225 = 1800 million instructions per second (MIPS).

The DSK board includes a 16MB SDRAM memory and a 512KB Flash ROM. It has an on-board 16-bit
audio stereo codec (the Texas Instruments AIC23B) that serves both as an A/D and a D/A converter.
There are four 3.5 mm audio jacks for microphone and stereo line input, and speaker and head-phone
outputs. The AIC23 codec can be programmed to sample audio inputs at the following sampling rates:

fs = 8, 16, 24, 32, 44.1, 48, 96 kHz

The ADC part of the codec is implemented as a multi-bit third-order noise-shaping delta-sigma con-
verter (see Ch. 2 & 12 of [1] for the theory of such converters) that allows a variety of oversampling
ratios that can realize the above choices of fs. The corresponding oversampling decimation filters act
as anti-aliasing prefilters that limit the spectrum of the input analog signals effectively to the Nyquist
interval [−fs/2, fs/2]. The DAC part is similarly implemented as a multi-bit second-order noise-shaping
delta-sigma converter whose oversampling interpolation filters act as almost ideal reconstruction filters
with the Nyquist interval as their passband.

The DSK also has four user-programmable DIP switches and four LEDs that can be used to control
and monitor programs running on the DSP.

All features of the DSK are managed by the Code Composer Studio (CCS). The CCS is a complete
integrated development environment (IDE) that includes an optimizing C/C++ compiler, assembler, linker,
debugger, and program loader. The CCS communicates with the DSK via a USB connection to a PC. In
addition to facilitating all programming aspects of the C6713 DSP, the CCS can also read signals stored
on the DSP’s memory, or the SDRAM, and plot them in the time or frequency domains.

The following block diagram depicts the overall operations involved in all of the hardware experiments
in the DSP lab. Processing is interrupt-driven at the sampling rate fs, as explained below.

The AIC23 codec is configured (through CCS) to operate at one of the above sampling rates fs. Each
collected sample is converted to a 16-bit two’s complement integer (a short data type in C). The codec
actually samples the audio input in stereo, that is, it collects two samples for the left and right channels.

At each sampling instant, the codec combines the two 16-bit left/right samples into a single 32-bit
unsigned integer word (an unsigned int, or Uint32 data type in C), and ships it over to a 32-bit receive-
register of the multichannel buffered serial port (McBSP) of the C6713 processor, and then issues an
interrupt to the processor.

Upon receiving the interrupt, the processor executes an interrupt service routine (ISR) that implements
a desired sample processing algorithm programmed with the CCS (e.g., filtering, audio effects, etc.).
During the ISR, the following actions take place: the 32-bit input sample (denoted by x in the diagram) is
read from the McBSP, and sent into the sample processing algorithm that computes the corresponding
32-bit output word (denoted by y), which is then written back into a 32-bit transmit-register of the
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McBSP, from where it is transferred to the codec and reconstructed into analog format, and finally the
ISR returns from interrupt, and the processor begins waiting for the next interrupt, which will come at
the next sampling instant.

Clearly, all processing operations during the execution of the ISR must be completed in the time
interval between samples, that is, T = 1/fs. For example, if fs = 44.1 kHz, then, T = 1/fs = 22.68 μsec.
With an instruction cycle time of Tc = 4.44 nsec, this allows T/Tc = 5108 cycles to be executed during
each sampling instant, or, up to 8×5108 = 40864 instructions, or half of that per channel.

Resources

Most of the hardware experiments in the DSP lab are based on C code from the text [1] adapted to the
CCS development environment. Additional experiments are based on the Chassaing-Reay text [2].

The web page of the lab, http://www.ece.rutgers.edu/~orfanidi/ece348/, contains additional
resources such as tutorials and user guides. Some books on C and links to the GNU GCC C compiler are
given in Ref. [5].

As a prelab, before you attend Lab-2, please go through the powerpoint presentations of Brown’s
workshop tutorial in Ref. [3], Part-1, and Dahnoun’s chapters 1 & 3 listed in Ref. [4]. These will give you
a pretty good idea of the TMS320C6000 architecture and features.

2.2. Template Program

You will begin with a basic talkthrough program, listed below, that simply reads input samples from
the codec and immediately writes them back out. This will serve as a template on which to build more
complicated sample processing algorithms by modifying the interrupt service routine isr().

// template.c - to be used as starting point for interrupt-based programs
// ----------------------------------------------------------------------------------

#include "dsplab.h" // DSK initialization declarations and function prototypes

short xL, xR, yL, yR; // left and right input and output samples from/to codec
float g=1; // gain to demonstrate watch windows and GEL files

// here, add more global variable declarations, #define’s, #include’s, etc.
// ----------------------------------------------------------------------------------

void main() // main program executed first
{

initialize(); // initialize DSK board and codec, define interrupts

sampling_rate(8); // possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz
audio_source(LINE); // LINE or MIC for line or microphone input

while(1); // keep waiting for interrupt, then jump to isr()
}

// ----------------------------------------------------------------------------------

interrupt void isr() // sample processing algorithm - interrupt service routine
{

read_inputs(&xL, &xR); // read left and right input samples from codec

yL = g * xL; // replace these with your sample processing algorithm
yR = g * xR;

write_outputs(yL,yR); // write left and right output samples to codec

return;
}

// ----------------------------------------------------------------------------------
// here, add more functions to be called within isr() or main()
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The template has three sections. In the top section, global variables are declared and defined, such as
the left/right input/output audio samples xL, xR, yL, yR, whose scope is the entire file and are known to
all functions in the file. Additional #define and #include statements, such as #include <math.h>,
and additional global variable declarations may be added in this section.

The second section consists of the function main(), which is executed first, and performs the initial-
ization of the DSK board, sets the sampling rate, selects the audio input, and then goes into an infinite
loop waiting for an interrupt. Upon receiving the interrupt, it jumps to the function isr(). Additional
local variables and other preliminary operations, such as the zeroing of delay-line buffers, may be added
in this section before the wait(1) statement.

The third section consists of the interrupt service routine isr(), which implements the desired
sample processing algorithm. Note that the keyword interrupt has been added to the C language imple-
mentation of the CCS. In the template file, the ISR function reads the left/right input samples, process
them by multiplying them by a gain, sends them to the output, and returns back to main().

The reading and writing of the input and output samples are done with the help of the functions
read_inputs() and write_outputs(), which are declared in the header file dsplab.h and defined in
dsplab.c. These two files must always be included in your programs and reside in the common directory
C:\dsplab\common\.

Besides the above three basic sections, other sections may be added that define additional functions
to be called within isr() or main().

Working with CCS

For each application to be run on the C6713 processor, one must create a “project” in the Code Composer
Studio, which puts together all the information about the required C source files, header files, and C
libraries, including all the compiler and linker build options.

To save you time, the project file, template.pjt, for the above template has already been created,
and may be simply edited for all other projects. To proceed, copy the following three files from the
template directory C:\dsplab\template\

template.c
template.pjt
template.gel

into your temporary working directory, e.g., C:\labuser\tempwork\, and double-click the project file,
template.pjt, which will open in a ordinary text editor. The first few lines of that file are shown below:

[Project Settings]
ProjectDir="C:\dsplab\template\"
ProjectType=Executable
CPUFamily=TMS320C67XX
Tool="Compiler"
Tool="CustomBuilder"
Tool="DspBiosBuilder"
Tool="Linker"
Config="Debug"
Config="Release"

[Source Files]
Source="C:\CCStudio_v3.1\C6000\cgtools\lib\rts6700.lib"
Source="C:\CCStudio_v3.1\C6000\csl\lib\csl6713.lib"
Source="C:\CCStudio_v3.1\C6000\dsk6713\lib\dsk6713bsl.lib"
Source="C:\dsplab\common\dsplab.c"
Source="C:\dsplab\common\vectors.asm"
Source="template.c"

Only the second and bottom lines in the above listing need to be edited. First, edit the project directory
entry to your working directory, e.g.,

ProjectDir="C:\labuser\tempwork\"
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Alternatively, you may delete that line—it will be recreated by CCS when you load the project. Then,
edit the source-file line Source="template.c" to your new project’s name, e.g.,

Source="new_project.c"

Finally, rename the three files with your new names, e.g.,

new_project.c
new_project.pjt
new_project.gel

Next, turn on the DSK kit and after the initialization beep, open the CCS application by double-clicking
on the CCS desktop icon. Immediately after it opens, use the keyboard combination “ALT+C” (or the menu
item Debug -> Connect ) to connect it to the processor. Then, with the menu item Project -> Open or the
key combination “ALT+P O”, open the newly created project file by navigating to the project’s directory,
e.g., C:\labuser\tempwork\. Once the project loads, you may edit the C source file to implement your
algorithm. Additional C source files can be added to your project by the keyboard combination “ALT+P
A” or the menu choices Project -> Add Files to Project.

Set up CCS to automatically load the program after building it, with the menu commands: Option
-> Customize -> Program/Project Load -> Load Program After Build. The following key combinations or
menu items allow you to compile and load your program, run or halt the program:

compile & load: F7, Project -> Build
run program: F5, Debug -> Run
halt program: Shift+F5, Debug -> Halt

It is possible that the first time you try to build your program you will get a warning message:

warning: creating .stack section with default size of 400 (hex) words

In such case, simply rebuild the project, or, in the menu item Project -> Build Options -> Linker , enter a
value such as 0x500 in the stack entry.

When you are done, please remember to save and close your project with the keyboard combinations
“ALT+P S” and “ALT+P C”, and save your programs in your account on ECE.

Lab Procedure

a. Copy the template files into your temporary working directory, edit the project’s directory as described
above, and build the project in CCS. Connect your MP3 player to the line input of the DSK board and
play your favorite song, or, you may play one of the wave files in the directory: c:\dsplab\wav.

b. Review the template project’s build options using the menu commands: Project -> Build Options. In
particular, review the Basic, Advanced, and Preprocessor options for the Compiler, and note that the
optimization level was set to none. In future experiments, this may be changed to -o2 or -o3.

For the Linker options, review the Basic and Advanced settings. In particular, note that the default
output name a.out can be changed to anything else. Note also the library include paths and that the
standard included libraries are:

rts6700.lib (run-time library)
dsk6713bsl.lib (board support library)
csl6713.lib (chip support library)

The run-time library must always be included. The board support library (BSL) contains functions for
managing the DSK board peripherals, such as the codec. The chip support library (CSL) has functions
for managing the DSP chip’s features, such as reading and writing data to the chip’s McBSP. The user
manuals for these may be found on the TI web site listed on the lab’s web page.
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c. The gain parameter g can be controlled in real-time in two ways: using a watch window, or using a
GEL file. Open a watch window using the menu item: View -> Watch Window, then choose View ->
Quick Watch and enter the variable g and add it to the opened watch window using the item Add to
Watch. Run the program and click on the g variable in the watch window and enter a new value, such
as g = 0.5 or g = 2, and you will hear the difference in the volume of the output.

d. Close the watch window and open the GEL file, template.gel, with the menu File -> Load GEL. In the
GEL menu of CCS a new item called “gain” has appeared. Choose it to open the gain slider. Run the
program and move the slider to different positions. Actually, the slider does not represent the gain g
itself, but rather the integer increment steps. The gain g changes by 1/10 at each step. Open the GEL
file to see how it is structured. You may use that as a template for other cases.

e. Modify the template program so that the output pans between the left and right speakers every 2
seconds, i.e., the left speaker plays for 2 sec, and then switches to the right speaker for another 2 sec,
and so on. There are many ways of doing this, for example, you may replace your ISR function by

#define D 16000 // represents 2 sec at fs = 8 kHz
short d=0; // move these before main()

interrupt void isr()
{

read_inputs(&xL, &xR);

yL = (d < D) * xL;
yR = (d >= D) * xR;

if (++d >= 2*D) d=0;

write_outputs(yL,yR);

return;
}

Rebuild your program with these changes and play a song. In your lab write-up explain why and how
this code works.

2.3. Aliasing

This part demonstrates aliasing effects. The smallest sampling rate that can be defined is 8 kHz with
a Nyquist interval of [−4,4] kHz. Thus, if a sinusoidal signal is generated (e.g. with MATLAB) with
frequency outside this interval, e.g., f = 5 kHz, and played into the line-input of the DSK, one might
expect that it would be aliased with fa = f − fs = 5− 8 = −3 kHz. However, this will not work because
the antialiasing oversampling decimation filters of the codec filter out any such out-of-band components
before they are sent to the processor.

An alternative is to decimate the signal by a factor of 2, i.e., dropping every other sample. If the
codec sampling rate is set to 8 kHz and every other sample is dropped, the effective sampling rate will
be 4 kHz, with a Nyquist interval of [−2,2] kHz. A sinusoid whose frequency is outside the decimated
Nyquist interval [−2,2] kHz, but inside the true Nyquist interval [−4,4] kHz, will not be cut off by the
antialiasing filter and will be aliased. For example, if f = 3 kHz, the decimated sinusoid will be aliased
with fa = 3− 4 = −1 kHz.

Lab Procedure

Copy the template programs to your working directory. Set the sampling rate to 8 kHz and select line-
input. Modify the template program to output every other sample, with zero values in-between. This can
be accomplished in different ways, but a simple one is to define a “sampling pulse” periodic signal whose
values alternate between 1 and 0, i.e., the sequence [1,0,1,0,1,0, . . . ] and multiply the input samples
by that sequence. The following simple code segment implements this idea:
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yL = pulse * xL;
yR = pulse * xR;

pulse = (pulse==0);

where pulse must be globally initialized to 1 before main() and isr(). Why does this work? Next,
rebuild the new program with CCS.

Open MATLAB and generate three sinusoids of frequencies f1 = 1 kHz, f2 = 3 kHz, and f3 = 1 kHz,
each of duration of 1 second, and concatenate them to form a 3-second signal. Then play this out of the
PCs sound card using the sound() function. For example, the following MATLAB code will do this:

fs = 8000; f1 = 1000; f2 = 3000; f3 = 1000;
L = 8000; n = (0:L-1);
A = 1/5; % adjust playback volume

x1 = A * cos(2*pi*n*f1/fs);
x2 = A * cos(2*pi*n*f2/fs);
x3 = A * cos(2*pi*n*f3/fs);

sound([x1,x2,x3], fs);

a. Connect the sound card’s audio output to the line-input of the DSK and rebuild/run the CCS down-
sampling program after commenting out the line:

pulse = (pulse==0);

This disables the downsampling operation. Send the above concatenated sinusoids to the DSK input
and you should hear three distinct 1-sec segments, with the middle one having a higher frequency.

b. Next, uncomment the above line so that downsampling takes place and rebuild/run the program.
Send the concatenated sinusoids to the DSK and you should hear all three segments as though they
have the same frequency (because the middle 3 kHz one is aliased with other ones at 1 kHz). You
may also play your favorite song to hear the aliasing distortions, e.g., out of tune vocals.

c. Set the codec sampling rate to 44 kHz and repeat the previous two steps. What do you expect to
hear in this case?

d. To confirm the antialiasing prefiltering action of the codec, replace the first two lines of the above
MATLAB code by the following two:

fs = 16000; f1 = 1000; f2 = 5000; f3 = 1000;
L = 16000; n = (0:L-1);

Now, the middle sinusoid has frequency of 5 kHz and it should be cutoff by the antialiasing prefilter.
Set the sampling rate to 8 kHz, turn off the downsampling operation, rebuild and run your program,
and send this signal through the DSK, and describe what you hear.

2.4. Quantization

The DSK’s codec is a 16-bit ADC/DAC with each sample represented by a two’s complement integer.
Given the 16-bit representation of a sample, [b1b2 · · ·b16], the corresponding 16-bit integer is given by

x = (−b12−1 + b22−2 + b32−3 + · · · + b162−16)216 (2.1)

The MSB bit b1 is the sign bit. The range of representable integers is: −32768 ≤ x ≤ 32767. As
discussed in Ch. 2 of Ref. [1], for high-fidelity audio at least 16 bits are required to match the dynamic
range of human hearing; for speech, 8 bits are sufficient. If the audio or speech samples are quantized
to less than 8 bits, quantization noise will become audible.

The 16-bit samples can be requantized to fewer bits by a right/left bit-shifting operation. For example,
right shifting by 3 bits will knock out the last 3 bits, then left shifting by 3 bits will result in a 16-bit
number whose last three bits are zero, that is, a 13-bit integer. These operations are illustrated below:

[b1, b2, . . . , b13, b14, b15, b16] ⇒ [0,0,0, b1, b2, . . . , b13] ⇒ [b1, b2, . . . , b13,0,0,0]
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Lab Procedure

a. Modify the basic template program so that the output samples are requantized to B bits, where 1 ≤
B ≤ 16. This requires right/left shifting by L = 16−B bits, and can be implemented very simply in C
as follows:

yL = (xL >> L) << L;
yR = (xR >> L) << L;

Start with B = 16, set the sampling rate to 8 kHz, and rebuild/run the program. Send a wave file as
input and listen to the output.

b. Repeat with the following values: B = 8,6,4,2,1, and listen to the gradual increase in the quantization
noise.

2.5. Data Transfers from/to Codec

We mentioned in the introduction that the codec samples the input in stereo, combines the two 16-bit
left/right samples xL, xR into a single 32-bit unsigned integer word, and ships it over to a 32-bit receive-
register of the McBSP of the C6713 processor. This is illustrated below.

The packing and unpacking of the two 16-bit words into a 32-bit word is accomplished with the help
of a union data structure (see Refs. [2,3]) defined as follows:

union { // union structure to facilitate 32-bit data transfers
Uint32 u; // both channels packed as codec.u = 32-bits
short c[2]; // left-channel = codec.c[1], right-channel = codec.c[0]

} codec;

The two members of the data structure share a common 32-bit memory storage. The member codec.u
contains the 32-bit word whose upper 16 bits represent the left sample, and its lower 16 bits, the right
sample. The two-dimensional short array member codec.c holds the 16-bit right-channel sample in its
first component, and the left-channel sample in its second, that is, we have:

xL = codec.c[1];
xR = codec.c[0];

The functions read_inputs() and write_outputs(), which are defined in the common file dsplab.c,
use this structure in making calls to low-level McBSP read/write functions of the chip support library.
They are defined as follows:

// ---------------------------------------------------------------------------------

void read_inputs(short *xL, short *xR) // read left/right channels
{

codec.u = MCBSP_read(DSK6713_AIC23_DATAHANDLE); // read 32-bit word

*xL = codec.c[1]; // unpack the two 16-bit parts
*xR = codec.c[0];

}

// ---------------------------------------------------------------------------------
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// ---------------------------------------------------------------------------------

void write_outputs(short yL, short yR) // write left/right channels
{

codec.c[1] = yL; // pack the two 16-bit parts
codec.c[0] = yR; // into 32-bit word

MCBSP_write(DSK6713_AIC23_DATAHANDLE,codec.u); // output left/right samples
}

// ---------------------------------------------------------------------------------

Lab Procedure

The purpose of this lab is to clarify the nature of the union data structure. Copy the template files into
your working directory, rename them unions.*, and edit the project file by keeping in the source-files
section only the run-time library and the main function below.

// unions.c - test union structure

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

void main(void)
{

unsigned int v;
short xL,xR;

union {
unsigned int u;
short c[2];

} x;

xL = 0x1234;
xR = 0x5678;
v = 0x12345678;

printf("\n%x %x %d %d\n", xL,xR, xL,xR);

x.c[1] = xL;
x.c[0] = xR;
printf("\n%x %x %x %d %d\n", x.u, x.c[1], x.c[0], x.c[1], x.c[0]);

x.u = v;
printf("%x %x %x %d %d\n", x.u, x.c[1], x.c[0], x.c[1], x.c[0]);

x.u = (((int) xL)<<16 | ((int) xR) & 0x0000ffff);
printf("%x %x %x %d %d\n", x.u, x.c[1], x.c[0], x.c[1], x.c[0]);

The program defines first a union structure variable x of the codec type. Given two 16-bit left/right
numbers xL,xR (specified as 4-digit hex numbers), it defines a 32-bit unsigned integer v which is the
concatenation of the two. The first printf statement prints the two numbers xL,xR in hex and decimal
format. Note that the hex printing conversion operator %x treats the numbers as unsigned (some caution
is required when printing negative numbers), whereas the decimal operator %d treats them as signed
integers.

Next, the numbers xL,xR are assigned to the array members of the union x, such that x.c[1] = xL
and x.c[0] = xR, and the second printf statement prints the contents of the union x, verifying that
the 32-bit member x.u contains the concatenation of the two numbers with xL occupying the upper 16
bits, and xR, the lower 16 bits. Explain what the other two printf statements do.
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Build and run the project (you may have to remove the file vectors.asm from the project’s list of
files). The output will appear in the stdout window at the bottom of the CCS. Alternatively, you may
run this outside CCS using GCC. To do so, open a DOS window in your working directory and type the
DOS command djgpp. This establishes the necessary environment variables to run GCC, then, run the
following GCC command to generate the executable file unions.exe:

gcc unions.c -o unions.exe -lm

Repeat the run with the following choice of input samples:

xL = 0x1234;
xR = 0xabcd;
v = 0x1234abcd;

Explain the outputs of the print statements in this case by noting the following properties, which you
should prove in your report: (

0xffff0000
)

unsigned = 232 − 216

(
0xffffabcd

)
unsigned = 232 + (0xabcd)signed(

0xffffabcd
)

signed =
(
0xabcd

)
signed

2.6. Guitar Distortion Effects

In all of the experiments of Lab-2, the input/output maps are memoryless. We will study implementation
of delays in a later lab. A memoryless mapping can be linear but time-varying, as was for example the case
of panning between the speakers or the AM/FM wavetable experiments discussed discussed in another
lab. The mapping can also be nonlinear.

Many guitar distortion effects combine delay effects with such nonlinear maps. In this part of Lab-1,
we will study only some nonlinear maps in which each input sample x is mapped to an output sample
y by a nonlinear function y = f(x). Typical examples are hard clipping (called fuzz) and soft clipping
that tries to emulated the nonlinearities of tube amplifiers. A typical nonlinear function is y = tanh(x).
It has a sigmoidal shape that you can see by the quick MATLAB plot:

fplot(’tanh(x)’, [-4,4]); grid;

As suggested in Ref. [6], by keeping only the first two terms in its Taylor series expansion, that is,
tanh(x)≈ x− x3/3, we may define a more easily realizable nonlinear function with built-in soft clipping:

y = f(x)=

⎧⎪⎪⎨
⎪⎪⎩
+2/3, x ≥ 1

x− x3/3, −1≤ x≤ 1

−2/3, x ≤ −1

(2.2)

This can be plotted easily with

fplot(’(abs(x)<1).*(x-1/3*x.^3) + sign(x).*(abs(x)>=1)*2/3’, [-4,4]); grid;

The threshold value of 2/3 is chosen so that the function f(x) is continuous at x = ±1. To add some
flexibility and to allow a variable threshold, we consider the following modification:

y = f(x)=

⎧⎪⎪⎨
⎪⎪⎩
+αc, x ≥ c
x− βc(x/c)3, −c≤ x≤ c
−αc, x ≤ −c

, β = 1−α (2.3)

where we assume that c > 0 and 0 < α < 1. The choice β = 1 − α is again dictated by the continuity
requirement at x = ±c. Note that setting α = 1 gives the hard-thresholding, fuzz, effect:

y = f(x)=

⎧⎪⎪⎨
⎪⎪⎩
+c, x ≥ c
x, −c ≤ x ≤ c
−c, x ≤ −c

(2.4)
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Lab Procedure

First, run the above two fplot commands in MATLAB to see what these functions look like. The following
program is a modification of the basic template.c program that implements Eq. (2.3):

// soft.c - guitar distortion by soft thresholding
// ----------------------------------------------------------------------------------

#include "dsplab.h" // init parameters and function prototypes
#include <math.h>

// ----------------------------------------------------------------------------------

#define a 0.67 // approximates the value 2/3
#define b (1-a)

short xL, xR, yL, yR; // codec input and output samples

int x, y, on=1, c=2048; // on/off variable and initial threshold c

int f(int); // function declaration

// ----------------------------------------------------------------------------------

void main() // main program executed first
{

initialize(); // initialize DSK board and codec, define interrupts

sampling_rate(16); // possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz
audio_source(LINE); // LINE or MIC for line or microphone input

while(1); // keep waiting for interrupt, then jump to isr()
}

// ----------------------------------------------------------------------------------

interrupt void isr() // sample processing algorithm - interrupt service routine
{

read_inputs(&xL, &xR); // read left and right input samples from codec

if (on) {
yL = (short) f((int) xL); yL = yL << 1; // amplify by factor of 2
yR = (short) f((int) xR); yR = yR << 1;
}

else
{yL = xL; yR = xR;}

write_outputs(yL,yR); // write left and right output samples to codec

return;
}

// ----------------------------------------------------------------------------------

int f(int x)
{

float y, xc = x/c; // this y is local to f()

y = x * (1 - b * xc * xc);

if (x>c) y = a*c; // force the threshold values
if (x<-c) y = -a*c;

return ((int) y);
}

// -----------------------------------------------------------------
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a. Create a project for this program. In addition, create a GEL file that has two sliders, one for the on
variable that turns the effect on or off in real time, and another slider for the threshold parameter c.
Let c vary over the range [0,214] in increments of 512.

Build and run the program, load the gel file, and display the two sliders. Then, play your favorite guitar
piece and vary the slider parameters to hear the changes in the effect. (The wave file turn-turn3.wav
in the directory c:\dsplab\wav is a good choice.)

b. Repeat the previous part by turning off the nonlinearity (i.e., setting α = 1), which reduces to a fuzz
effect with hard thresholding.
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Lab 3 – Filtering by Convolution

3.1. Introduction

Depending on the application and hardware, a digital filtering operation can be organized to operate
either on a block basis or a sample-by-sample basis. In the block processing case, the input signal is
considered to be one big block of signal samples. The block is filtered by convolving it with the filter,
generating the output signal as another big block of samples.

If the input signal is very long or infinite in duration, this method requires modification, for example,
breaking the input into multiple blocks.

An alternative approach is to organize the processing on a sample-by-sample basis, such that when-
ever an input sample arrives, it gets filtered producing the corresponding output sample. This approach
is very useful in real-time applications involving very long input signals. It is also useful in adaptive fil-
tering applications where the filter itself changes after each filtering operation. Moreover, it is efficiently
implementable with present day special purpose DSP chips, such as the Texas Instruments, Analog De-
vices, or Motorola DSP chips.

In this lab, you will study filtering by convolution methods. In the next, hardware, lab you will imple-
ment filtering on sample by sample basis.

This lab may be carried out in MATLAB or C. The theoretical background on convolution and FIR
filtering and the necessary routines and their usage are contained in Chapter 4 of the text [1].

3.2. Convolution

The convolution of a filter, hn, n = 0,1, . . . ,M, of order M, and a finite-duration causal signal, xn,
n = 0,1, . . . , L− 1, of length L, was determined in Eq. (4.1.16) of the text [1] to be:

yn =
min(n,M)∑

m=max(0,n−L+1)
hm xn−m , n = 0,1, . . . , L+M − 1 (3.1)

Write a MATLAB function named myconv (to avoid confusion with the built-in function conv), that
implements Eq. (3.1) and is patterned after the C version discussed in Sect. 4.1.9 of [1]. It must have
usage:

y = myconv(h,x);

where h,x,y are the filter, input, and output vectors. The function must be able to accept the input
vectors h,x whether they are entered as rows or columns. Moreover, the output vector y must match
the type of the input vector x, that is, row or column.

Lab Procedure

a. Consider an integrator-like filter defined by the I/O equation:

y(n)= 0.1
[
x(n)+x(n− 1)+x(n− 2)+· · · + x(n− 14)

]
Such a filter accumulates (integrates) the present and past 14 samples of the input signal. The factor
0.1 represents only a convenient scale factor for this experiment. It follows that the impulse response
of this filter will be

hn =
{

0.1, for 0 ≤ n ≤ 14
0, otherwise

To observe the steady-state response of this filter, as well as the input-on and input-off transients,
consider a square wave input signal xn of length L = 200 and period of K = 50 samples. Such a signal
may be defined by the simple for-loop (given in C):
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for (n=0; n<L; n++)
if (n%K < K/2) /* n%K is the MOD operation */

x[n] = 1;
else

x[n] = 0;

Using your function myconv, compute the output signal yn versus n and plot it on the same graph with
xn. As the square wave periodically goes on and off, you can observe the on-transient, steady-state,
and off-transient behavior of the filter. Verify the your function produces the same results as the
built-in function conv.

b. Repeat part (a) for the filter:

hn =
{

0.25(0.75)n, for 0 ≤ n ≤ 14
0, otherwise

This filter acts more like an RC-type integrator than an accumulator.

c. Repeat part (a) for the filter with transfer function:

H(z)= 1

5
(1− z−1)5

This filter acts as 5-fold differentiator. Thus, in its steady-state it differentiates a constant to zero. As
the square wave goes on and off you may observe this differentiating action as well as the transients.

d. To demonstrate the concepts of impulse response, linearity, and time-invariance, consider a filter with
finite impulse response hn = (0.95)n, for 0 ≤ n ≤ 24. The input signal

x(n)= δ(n)+2δ(n− 40)+2δ(n− 70)+δ(n− 80), n = 0,1, . . . ,120

consists of four impulses of the indicated strengths occurring at the indicated time instances. Note
that the first two impulses are separated by more than the duration of the filter, whereas the last two
are separated by less. Using your function myconv, compute the filter output yn for 0 ≤ n ≤ 120 and
plot it on the same graph with xn. Comment on the resulting output with regard to linearity and time
invariance.

In generating the above input signal, you may find the following C function delta.c useful:

/* delta.c - delta function */

double delta(n)
int n;
{

if (n == 0)
return 1;

else
return 0;

}
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3.3. Filtering of Noisy Signals

A signal x(n) is the sum of a desired signal s(n) and interference v(n):

x(n)= s(n)+v(n)

where
s(n)= sin(ω2n) , v(n)= sin(ω1n)+ sin(ω3n)

with
ω1 = 0.05π, ω2 = 0.20π, ω3 = 0.35π [radians/sample]

In order to remove v(n), the signal x(n) is filtered through a bandpass FIR lowpass filter that is
designed to pass the frequency ω2 and reject the interfering frequencies ω1,ω3. An example of such a
filter of orderM = 100 can be designed with the methods of Chapter 11 of [1] (using a Hamming-window
design) and has impulse response:

h(n)= w(n)
[

sin
(
ωb(n−M/2)

)− sin
(
ωa(n−M/2)

)
π(n−M/2)

]
, 0 ≤ n ≤M

where ωa = 0.15π, ωb = 0.25π, and w(n) is the Hamming window:

w(n)= 0.54− 0.46 cos
(

2πn
M

)
, 0 ≤ n ≤M

It has an effective passband [ωa,ωb]= [0.15π,0.25π]. To avoid a computational issue at n = M/2,
you may use MATLAB’s built-in function sinc, which is defined as follows:

sinc(x)= sin(πx)
πx
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Lab Procedure

a. On the same graph plot x(n) and s(n) versus n

b. Filter x(n) through the filter h(n) using MATLAB’s built-in function filter, and plot the filtered
output y(n), together with s(n). Apart from an overall delay introduced by the filter, y(n) should
resemble s(n) after the M initial transients.

c. To see what happened to the interference, filter the signal v(n) separately through the filter and plot
the output, on the same graph with v(n) itself.

d. Using the built-in MATLAB function freqz, or the textbook function dtft, calculate and plot the
magnitude response of the filter over the frequency interval 0 ≤ω ≤ 0.4π:

∣∣H(ω)∣∣ =
∣∣∣∣∣∣
M∑
n=0

h(n)e−jωn
∣∣∣∣∣∣

Indicate on that graph the frequencies ω1,ω2,ω3.

e. Redesign the filter withM = 200 and repeat parts (a)–(d). Discuss the effect of choosing a longer filter
length.
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3.4. Voice Scrambler in MATLAB

A simple voice scrambler works by spectrum inversion. It is not the most secure way of encrypting
speech, but we consider it in this lab as an application of low pass filtering and AM modulation. The
main operations are depicted below.

First, the sampled speech signal x(n) is filtered by a lowpass filter h(n) whose cutoff frequency f0 is
high enough not to cause distortions of the speech signal (the figure depicts an ideal filter). The sampling
rate fs is chosen such that 4f0 < fs. The filtering operation can be represented by the convolutional
equation:

y0(n)=
∑
m
h(m)x(n−m) (3.2)

Next, the filter output y0(n) modulates a cosinusoidal carrier signal whose frequency coincides with
the filter’s cutoff frequency f0, resulting in the signal:

y1(n)= s(n)y0(n), where s(n)= 2 cos(ω0n) , ω0 = 2πf0
fs

(3.3)

The multiplication by the carrier signal causes the spectrum of the signal to be shifted and centered at
±f0, as shown above. Finally, the modulated signal y1(n) is passed through the same filter again which
removes the spectral components with |f| > f0, resulting in a signal y2(n) with inverted spectrum. The
last filtering operation is:

y2(n)=
∑
m
h(m)y1(n−m) (3.4)

To unscramble the signal, one may apply the scrambling steps (3.2)–(3.4) to the scrambled signal itself.
This works because the inverted spectrum will be inverted again, recovering in the original spectrum.

Lab Procedure

a. Explain why the factor 2 is needed in the carrier definition s(n)= 2 cos(ω0n). Explain why f0 must
be chosen such that 4f0 < fs in designing the lowpass filter.

b. A practical FIR lowpass filter with cutoff frequency f0 can be designed by a similar Hamming windowing
method as that used for the bandpass filter of the previous section:

h(n)= w(n) sin
(
ω0(n−M/2)

)
π(n−M/2) , 0 ≤ n ≤M

where ω0 = 2πf0/fs, and w(n) is the Hamming window:

w(n)= 0.54− 0.46 cos
(

2πn
M

)
, 0 ≤ n ≤M
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Design such a filter using the following values: fs = 16 kHz, f0 = 3.3 kHz, and filter order M = 100.
Then, using the built-in MATLAB function freqz, or the textbook function dtft, calculate and plot the
magnitude response of the filter over the frequency interval −fs/2 ≤ f ≤ fs/2:

∣∣H(f)∣∣ =
∣∣∣∣∣∣
M∑
n=0

h(n)e−2πjfn/fs

∣∣∣∣∣∣
c. Repeat part (b) with M = 200.

d. Write a MATLAB function named scrambler.m that implements the operations of Eqs. (3.2)–(3.4). It
must have usage:

y = scrambler(h,w0,x);

where h,w0,x are the filter vector, carrier frequency in rads/sample, and input speech vector, and y
is the scrambled output speech representing the signal y2(n).

Internally, the required filtering operations must be implemented with the built-in function filter,
and the multiplication operation of Eq. (3.3) must be vectorized.

e. Write a MATLAB program that does the following: (a) designs the lowpass filter h(n) with parameters
fs, f0,M, (b) reads a vector x(n) of input samples from a wavefile using the function wavread, (c) sends
it through the function scrambler, (d) plays the output through the sound card using the function
sound, (e) then, unscrambles the scrambled signal and plays it back using sound.

Apply your program to some wave files using the parameter values of part (b). To get an idea of what
sort of output to expect for this part, we have included the following files in this lab:

JB.wav
JBs.wav
scramblex.p

The second file is the scrambled version of the first. Play them in your computer to hear what they
sound like. Next, run the p-coded scramble example file, scramblex, in MATLAB and enter the first
filename and you will hear its scrambled version. Then, run it again, and enter the second filname and
you will hear its scrambled version, which is the original unscrambled one. (Note that a p-coded file
is an encrypted m-file and can be run just like an m-file.)
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Lab 4 – Delays and FIR Filtering

4.1. Introduction

In the last lab you studied filtering by convolution, which is a block processing method. In this lab you will
study sample by sample processing methods for FIR filters and implement them on the TMS320C6713
processor. Once you know how to implement a multiple delay on a sample by sample basis, it becomes
straightforward to implement FIR and IIR filters. Multiple delays are also the key component in various
digital audio effects, such as reverb.

Delays can be implemented using linear or circular buffers, the latter being more efficient, especially
for audio effects. The theory behind this lab is developed in Ch. 4 of the text [1] for FIR filters, and used
in Ch. 8 for audio effects.

4.2. Delays Using Linear and Circular Buffers

A D-fold delay, also referred to as a delay line, has transfer function H(z)= z−D and corresponds to a
time delay in seconds:

TD = DT = D
fs

⇒ D = fsTD (4.1)

where T is the time interval between samples, related to the sampling rate by fs = 1/T. A block diagram
realization of the multiple delay is shown below:

Fig. 4.1 Tapped delay line.

There are D registers whose contents are the “internal” states of the delay line. The dth state sd, i.e.,
the content of the dth register, represents the d-fold delayed version of the input, that is, at time n we
have: sd(n)= x(n− d), for d = 1, . . . ,D; the case d = 0 corresponds to the input s0(n)= x(n).

At each time instant, all D contents are available for processing and can be “tapped” out for further
use (e.g., to implement FIR filters). For example, in the above diagram, the dth tap is being tapped, and
the corresponding transfer function from the input x to the output y = sd is the partial delay z−d.

TheD contents/states sd, d = 1,2, . . . ,D, and the input s0 = xmust be stored in memory in a (D+1)-
dimensional array or buffer. But the manner in which they are stored and retrieved depends on whether
a linear or a circular buffer is used. The two cases are depicted below.

Fig. 4.2 Linear and circular buffers.

In both cases, the buffer can be created in C by the declaration:

float w[D+1];
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Its contents are retrieved as w[i], i = 0,1, . . . ,D. Thinking of w as pointer, the contents can also be
retrieved by ∗(w+ i)= w[i], where ∗ denotes the de-referencing operator in C.

In the linear buffer case, the states are stored in the buffer sequentially, or linearly, that is, the ith
state is:

si = w[i]= ∗(w+ i) , i = 0,1, . . . ,D

At each time instant, after the contents si are used, the delay-line is updated in preparation for the
next time instant by shifting its contents to the right from one register to the next, as suggested by the
block diagram in Fig. 4.1. This follows from the definition si(n)= x(n − i), which implies for the next
time instant si(n+1)= x(n+1−i)= si−1(n). Thus, the current si−1 becomes the next si. Since si = w[i],
this leads to the following updating algorithm for the buffer contents:

for i = D down to i = 1, do:
w[i]= w[i− 1]

where the shifting is done from the right to the left to prevent the over-writing of the correct contents.
It is implemented by the C function delay() of the text [1]:

// delay.c - linear buffer updating
// --------------------------------

void delay(int D, float *w)
{

int i;

for (i=D; i>=1; i--)
w[i] = w[i-1];

}

// --------------------------------

For large values of D, this becomes an inefficient operation because it involves the shifting of large
amounts of data data from one memory location to the next. An alternative approach is to keep the data
unshifted but to shift the beginning address of the buffer to the left by one slot.

This leads to the concept of a circular buffer in which a movable pointer p is introduced that always
points somewhere within the buffer array, and its current position allows one to retrieve the states by
si = ∗(p + i), i = 0,1, . . . ,D. If the pointer p + i exceeds the bounds of the array to the right, it gets
wrapped around to the beginning of the buffer.

To update the delay line to the next time instant, the pointer is left-shifted, i.e., by the substitution
p = p− 1, or, −−p, and is wrapped to the right if it exceeds the array bounds to the left. Fig. 4.3 depicts
the contents and pointer positions at two successive time instants for the linear and circular buffer cases
for D = 3. In both cases, the states are retrieved by si = ∗(p+ i), i = 0,1,2,3, but in the linear case, the
pointer remains frozen at the beginning of the buffer, i.e., p = w, and the buffer contents shift forwards,
whereas in the circular case, p shifts backwards, but the contents remain in place.

Fig. 4.3 Buffer contents at successive time instants for D = 3.

In the text [1], the functions tap() and cdelay() are used for extracting the states si and for the
circular back-shifting of the pointer. Although these two functions could be used in the CCS environment,
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we prefer instead to use a single function called pwrap() that calculates the new pointer after performing
the required wrapping. The function is declared in the common header file dsplab.h and defined in the
file dsplab.c. Its listing is as follows:

// pwrap.c - pointer wrapping relative to circular buffer
// Usage: p_new = pwrap(D,w,p)
// ------------------------------------------------------

float *pwrap(int D, float *w, float *p)
{

if (p > w+D)
p -= D+1;

if (p < w)
p += D+1;

return p;
}

// ------------------------------------------------------

The ith state si and the updating of the delay-line can be obtained by the function calls:

si = ∗pwrap(D,w,p+ i) , i = 1,2, . . . ,D

pnext =pwrap(D,w,−−p)
We will use this function in the implementation of FIR filters and in various audio effects. It will allow

us to easily translate a sample processing algorithm expressed in pseudo-code to the actual C code. As an
example, let us consider the circular buffer implementation of the partial delay z−d. The block diagram
of Fig. 4.1 and the pseudo-code computational algorithm are as follows:

for each input x do:
y = sd = ∗(p+ d)
∗p = x
p−−

We may translate this into C by the following operations using pwrap:

y = *pwrap(D,w,p+d); // delay output
*p = x; // delay-line input
p = pwrap(D,w,--p); // backshift circular buffer pointer

In the last line, we must pre-decrement the pointer, that is, --p, instead of post-decrementing it, p--.
By comparison, the linear buffer implementation, using a (D+1)-dimensional buffer, is as follows:

y = w[d]; // delay output
w[0] = x; // delay-line input
for (i=D; i>=0; i--) // update linear buffer

w[i] = w[i-1];

An alternative approach to circular buffers is working with circular indices instead of circular pointers.
The pointer p always points to some element of the buffer array w, that is, there is a unique integer q
such that p = w + q, with corresponding content ∗p = w[q]. This is depicted in Fig. 4.2. The index q
is always bound by the limits 0 ≤ q ≤ D and wrapped modulo–(D+1) if it exceeds these limits.

The textbook functions tap2() and cdelay2(), and their corresponding MATLAB versions given in
the Appendix of [1], implement this approach. Again, however, we prefer to use the following function,
qwrap(), also included in the common file dsplab.c, that calculates the required wrapped value of the
circular index:
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// qwrap.c - circular index wrapping
// Usage: q_new = qwrap(D,q);
// -------------------------------------

int qwrap(int D, int q)
{

if (q > D)
q -= D + 1;

if (q < 0)
q += D + 1;

return q;
}

// -------------------------------------

In terms of this function, the above d-fold delay example is implemented as follows:

y = w[qwrap(D,q+d)]; // delayed output
w[q] = x; // delay-line input
q = qwrap(D,--q); // backshift pointer index

We note that in general, the ith state is:

si = ∗(p+ i)= ∗(w+ q+ i)= w[q+ i]
where q+ i must be wrapped as necessary. Thus, the precise way to extract the ith state is:

si = w
[
qwrap(D,q+ i)] , i = 1,2, . . . ,D

Lab Procedure

A complete C program that implements the above d-fold delay example on the TMS320C6713 processor
is given below:

// delay1.c - multiple delay example using circular buffer pointers (pwrap version)
// ----------------------------------------------------------------------------------

#include "dsplab.h" // init parameters and function prototypes

short xL, xR, yL, yR; // input and output samples from/to codec

#define D 8000 // max delay in samples (TD = D/fs = 8000/8000 = 1 sec)
short fs = 8; // sampling rate in kHz
float w[D+1], *p, x, y; // circular delay-line buffer, circular pointer, input, output
int d = 4000; // must be d <= D

// ----------------------------------------------------------------------------------

void main() // main program executed first
{

int n;

for (n=0; n<=D; n++) // initialize circular buffer to zero
w[n] = 0;

p = w; // initialize pointer

initialize(); // initialize DSK board and codec, define interrupts

sampling_rate(fs); // possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz
audio_source(MIC); // use LINE or MIC for line or microphone input

while(1); // keep waiting for interrupt, then jump to isr()
}
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// ----------------------------------------------------------------------------------

interrupt void isr() // sample processing algorithm - interrupt service routine
{

read_inputs(&xL, &xR); // read left and right input samples from codec

x = (float) xL; // work with left input only

y = *pwrap(D,w,p+d); // delayed output - pwrap defined in dsplab.c
*p = x; // delay-line input
p = pwrap(D,w,--p); // backshift pointer

yL = yR = (short) y;

write_outputs(yL,yR); // write left and right output samples to codec

return;
}

// ----------------------------------------------------------------------------------

Note the following features. The sampling rate is set to 8 kHz, therefore, the maximum delayD = 8000
corresponds to a delay of 1 sec, and the partial delay d = 4000, to 1/2 sec. The circular buffer array w
has dimensionD+1 = 8001 and its scope is global within this file. It is initialized to zero within main()
and the pointer p is initialized to point to the beginning of w, that is, p = w.

The left/right input samples, which are of the short int type, are cast to float, while the float output
is cast to short int before it is sent out to the codec.

a. Create and build a project for this program. Then, run it. Give the system an impulse by lightly tapping
the table with the mike, and listen to the impulse response. Then, speak into the mike.

Bring the mike near the speaker and then give the system an impulse. You should hear repeated
echoes. If you bring the mike too close to the speakers the output goes unstable. Draw a block diagram
realization that would explain the effect you are hearing. Experimentally determine the distance at
which the echoes remain marginally stable, that is, neither die out nor diverge. (Technically speaking,
the poles of your closed-loop system lie on the unit circle.)

b. Change the sampling rate to 16 kHz, recompile and reload keeping the value of d the same, that is,
d = 4000. Listen to the impulse response. What is the duration of the delay in seconds now?

c. Reset the sampling rate back to 8 kHz, and this time change d to its maximum value d = D = 8000.
Recompile, reload, and listen to the impulse response. Experiment with lower and lower values of
d and listen to your delayed voice until you can no longer distinguish a separate echo. How many
milliseconds of delay does this correspond to?

d. Set d = 0, recompile and reload. This should correspond to no delay at all. But what do you hear?
Can you explain why? Can you fix it by changing the program? Will your modified program still work
with d �= 0? Is there any good reason for structuring the program the way it was originally?

e. In this part you will profile the computational cost of the sample processing algorithm. Open the
source file delay1.c in a CCS window. Locate the read_inputs line in the isr(), then right-click on
that line and choose Toggle Software Breakpoint ; a red dot will appear in the margin. Do the same
for the write_outputs line. From the top menu of the CCS window, choose Profile -> Clock -> View ;
a little yellow clock will appear on the right bottom status line of CCS. When you compile, load, and
run your program, it will stop at the first breakpoint, with a yellow arrow pointing to it. Double-click
on the profile clock to clear the number of cycles, then type F5 to continue running the program and
it will stop at the second breakpoint. Read and record the number of cycles shown next to the profile
clock.
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f. Write a new program, called delay2.c, that makes use of the function qwrap instead of pwrap. Repeat
parts (a) and (e).

g. Next, write a new program, called delay3.c, that uses linear buffers. Its isr() will be as follows:

interrupt void isr()
{

int i;

read_inputs(&xL, &xR);

x = (float) xL;

w[0] = x; // delay-line input
y = w[d]; // delay output
for (i=D; i>=0; i--) // update linear buffer

w[i] = w[i-1];

yL = yR = (short) y;

write_outputs(yL,yR);

return;
}

Build the project. You will find that it may not run (because the data shifts require too many cycles that
over-run the sampling rate). Change the program parameters D,d to the following values D = 2000
and d = 1000. Rebuild and run the program. Repeat part (e) and record the number of cycles.
Change the parameters D,d of the program delay1.c to the same values, and repeat part (e) for that.
Comment on the required number of samples using the linear vs. the circular buffer implementation.

4.3. FIR Comb Filters Using Circular Buffers

More interesting audio effects can be derived by combining several multiple delays. An example is the
FIR comb filter defined by Eq. (8.2.8) of the text [1]:

yn = xn + axn−D + a2xn−2D + a3xn−3D

Its transfer function is given by Eq. (8.2.9):

H(z)= 1+ az−D + a2z−2D + a3z−3D

Its impulse response has a very sparse structure:

h = [1,0, 0, . . . , 0︸ ︷︷ ︸
D−1 zeros

, a, 0 ,0, . . . ,0︸ ︷︷ ︸
D−1 zeros

, a2, 0, 0, . . . ,0︸ ︷︷ ︸
D−1 zeros

, a3]

The comb-like structure of its frequency response and its zero-pattern on the z-plane are depicted in
Fig. 8.2.5 of [1]. Instead of implementing it as a general FIR filter, a more efficient approach is to program
the block diagram directly by using a single delay line of order 3D and tapping it out at taps 0, D, 2D,
and 3D. The block diagram realization and corresponding sample processing algorithm are:

x ys0

s1

s2

s3

a

a2

a3

z-D

z-D

z-D

for each input x do:
s0 = x
s1 = ∗(p+D)
s2 = ∗(p+ 2D)
s3 = ∗(p+ 3D)
y = s0 + as1 + a2s2 + a3s3

∗p = s0

−−p
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The translation of the sample processing algorithm into C is straightforward and can be incorporated
into the following isr() function to be included in your main program:

interrupt void isr()
{

float s0, s1, s2, s3, y; // states & output

read_inputs(&xL, &xR); // read inputs from codec

s0 = (float) xL; // work with left input only
s1 = *pwrap(3*D,w,p+D); // extract states relative to p
s2 = *pwrap(3*D,w,p+2*D); // note, buffer length is 3D+1
s3 = *pwrap(3*D,w,p+3*D);
y = s0 + a*s1 + a*a*s2 + a*a*a*s3; // output sample
*p = s0; // delay-line input
p = pwrap(3*D,w,--p); // backshift pointer

yL = yR = (short) y;

write_outputs(yL,yR); // write outputs to codec

return;
}

Lab Procedure

Set the sampling rate to 8 kHz and the audio source to microphone. Choose the delay to be D = 4000,
corresponding to TD = 0.5 sec, so that the total duration of the filter is 3TD = 1.5 sec, and set a = 0.5.

a. Write a C program called comb.c that incorporates the above interrupt service routine. You will
need to globally declare/define the parameters D,a, p, as well as the circular buffer w to be a 3D+1
dimensional float array. Make sure you initialize the buffer to zero inside main(), as was done in the
previous example, and also initialize p = w.

Build and run this project. Listen to the impulse response of the filter by tapping the table with the
mike. Speak into the mike. Bring the mike close to the speakers and get a closed-loop feedback.

b. Keeping the delay D the same, choose a = 0.2 and run the program again. What effect do you hear?
Repeat for a = 0.1. Repeat with a = 1.

c. Set the audio input to LINE and play your favorite wave or MP3 song into the input. Experiment with
reducing the value of D in order to match your song’s tempo to the repeated echoes. Some wave files
are in the directory c:\dsplab\wav (e.g., try dsummer, take5.)

d. The FIR comb can also be implemented recursively using the geometric series formula to rewrite its
transfer function in the recursive form as shown in Eq. (8.2.9) of the text:

H(z)= 1+ az−D + a2z−2D + a3z−3D = 1− a4z−4D

1− az−D

This requires a (4D+1)-dimensional delay-line buffer w. The canonical realization and the corre-
sponding sample processing algorithm are shown below:

x ys0

s1

s4

a

−a4

z-D

z-3D

for each input x do:
s1 = ∗(p+D)
s4 = ∗(p+ 4D)
s0 = x+ as1

y = s0 − a4s4

∗p = s0

−−p
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Write a new program, comb2.c, that implements this algorithm. Remember to define the buffer to be
a (4D+1)-dimensional float array. Using the values D = 1600 (corresponding to a 0.2 sec delay) and
a = 0.5, recompile and run both the comb.c and comb2.c programs and listen to their outputs.

In general, such recursive implementations of FIR filters are more prone to the accumulation of round-
off errors than the non-recursive versions. You may want to run these programs with a = 1 to observe
this sensitivity.

4.4. FIR Filters with Linear and Circular Buffers

The sample-by-sample processing implementation of FIR filters is discussed in Sect. 4.2 of the text [1].
For an order-M filter, the input/output convolutional equation can be written as the dot product of the
filter-coefficient vector h = [h0, h1, . . . , hM]T with the state vector s(n)= [xn , xn−1 , . . . , xn−M]T:

yn =
M∑
m=0

h(m)x(n−m)= [h0, h1, . . . , hM]

⎡
⎢⎢⎢⎢⎣
x(n)
x(n− 1)

...
x(n−M)

⎤
⎥⎥⎥⎥⎦ = hTs(n) , s(n)=

⎡
⎢⎢⎢⎢⎣
x(n)
x(n− 1)

...
x(n−M)

⎤
⎥⎥⎥⎥⎦

We note that the ith component of the state vector is si(n)= x(n− i), i = 0,1, . . . ,M, and therefore,
the states are the tap outputs of a multiple delay-line with M delays. Thus, the definition of the delay
line and its time updating remains the same as in the previous sections. To realize the FIR filter, we must
use the tapped outputs si from the delay line to calculate the dot product, and then update the delay line
to the next time instant. The following C function from the text [1] implements the linear buffer case:

// fir.c - FIR filter in direct form with linear buffer
// Usage: y = fir(M, h, w, x);
// ----------------------------------------------------------------

float fir(int M, float *h, float *w, float x)
{

int i;
float y; // y=output sample

w[0] = x; // read current input sample x

for (y=0, i=0; i<=M; i++) // process current output sample
y += h[i] * w[i]; // dot-product operation

for (i=M; i>=1; i--) // update states for next call
w[i] = w[i-1]; // done in reverse order

return y;
}

// ----------------------------------------------------------------

The circular-buffer implementation can be carried out by the textbook function cfir() that uses a
circular pointer, or, by the function cfir2() that uses a circular index. In this lab. we have replaced
cfir() by the following function firc(), which makes use of the pointer-wrapping function pwrap():

// firc.c - FIR filter implemented with circular pointer
// Usage: y = firc(M, h, w, &p, x);
// ----------------------------------------------------------------------

float *pwrap(int, float *, float *); // defined in dsplab.c

float firc(int M, float *h, float *w, float **p, float x)
{

int i;
float y;
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**p = x; // read input sample x

for (y=0, i=0; i<=M; i++) {
y += (*h++) * (**p); // i-th state s[i] = *pwrap(M,w,*p+i)
*p = pwrap(M,w,++*p); // pointer to state s[i+1] = *pwrap(M,w,*p+i+1)
}

*p = pwrap(M,w,--*p); // update circular delay line

return y;
}

// ----------------------------------------------------------------------

Because the pointer p changes at each call, it is passed by address, and therefore, it is declared as a
pointer to pointer in the function. Similarly, we replaced cfir2() by firc2(), which uses qwrap():

// firc2.c - FIR filter implemented with circular index
// Usage: y = firc2(M, h, w, &q, x);
// ----------------------------------------------------------------------

int qwrap(int, int); // defined in dsplab.c

float firc2(int M, float *h, float *w, int *q, float x)
{

int i;
float y;

w[*q] = x; // read input sample x

for (y=0, i=0; i<=M; i++) {
y += *h++ * w[*q]; // i-th state s[i] = w[*q]
*q = qwrap(M,++*q); // pointer to state s[i+1] = w[*q+1]
}

*q = qwrap(M,--*q); // update circular delay line

return y;
}

// ----------------------------------------------------------------------

Lab Procedure

As discussed in the voice scrambler example of Lab-3, a lowpass FIR filter of orderM and cutoff frequency
f0 can be designed using the Hamming window approach by the following equations:

w(n)= 0.54− 0.46 cos
(

2πn
M

)
, h(n)= w(n) sin

(
ω0(n−M/2)

)
π(n−M/2) , 0 ≤ n ≤M

where ω0 = 2πf0/fs, and w(n) is the Hamming window.

a. Design such a filter with MATLAB using the following values: fs = 8 kHz, f0 = 2 kHz, and filter order
M = 50. Then, using the built-in MATLAB function freqz, or the textbook function dtft, calculate
and plot in dB the magnitude response of the filter over the frequency interval 0 ≤ f ≤ 4 kHz.

b. The designed 51-long impulse response coefficient vector h can be exported into a data file, h.dat, in
a form that is readable by a C program by the following MATLAB command:

C_header(’h.dat’, ’h’, ’M’, h);

where C_header is a MATLAB function in the directory c:\dsplab\common. A few lines of the resulting
data file are shown below:



4 DELAYS AND FIR FILTERING 38

// h.dat - FIR impulse response coefficients
// exported from MATLAB using C_header.m
// -------------------------------------------

#define M 50 // filter order

float h[M+1] = {
0.001018591635788,
-0.000000000000000,
-0.001307170629617,
0.000000000000000,
0.002075061044252,
-0.000000000000000,

--- etc. ---
-0.001307170629617,
-0.000000000000000,
0.001018591635788
};

// -------------------------------------------

The following complete C program called firex.c implements this example on the C6713 processor.
The program reads the impulse response vector from the data file h.dat, and defines a linear 51-
dimensional buffer array. The FIR filtering operation is based on the function fir().

// firex.c - FIR filtering example
// ------------------------------------------------------------------------------------

#include "dsplab.h" // DSK initialization declarations and function prototypes

float fir(int, float *, float *, float);
// float firc(int, float *, float *, float **, float);
// float firc2(int, float *, float *, int *, float);

short xL, xR, yL, yR; // left and right input and output samples from/to codec

#include "h.dat" // defines M=50, and contains M+1 = 51 filter coefficients

float w[M+1]; // delay line buffer
int on = 1; // turn filter on or off
// float *p;
// int q;

// ------------------------------------------------------------------------------------

void main()
{

int i;

for (i=0; i<=M; i++) w[i] = 0;
// p=w;
// q=0;

initialize(); // initialize DSK board and codec, define interrupts

sampling_rate(8); // possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz
audio_source(LINE); // LINE or MIC for line or microphone input

while(1); // keep waiting for interrupt, then jump to isr()
}

// -------------------------------------------------------------------------------------

interrupt void isr()
{

float x, y; // filter input & output
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read_inputs(&xL, &xR);

if (on) {
x = (float)(xL); // work with left input only

y = fir(M,h,w,x);
// y = firc(M,h,w,&p,x);
// y = firc2(M, h, w, &q, x);

yL = (short)(y);
}

else
yL = xL;

write_outputs(yL,yL);

return;
}

// ------------------------------------------------------------------------------------

Create and build a project for this program. You will need to add the file fir.c to the project. Using
the following MATLAB code (same as in the aliasing example of Lab-2), generate a signal consisting of a
1-kHz segment, followed by a 3-kHz segment, followed by another 1-kHz segment, where all segments
have duration of 1 sec:

fs = 8000; f1 = 1000; f2 = 3000; f3 = 1000;
L = 8000; n = (0:L-1);
A = 1/5; % adjust playback volume

x1 = A * cos(2*pi*n*f1/fs);
x2 = A * cos(2*pi*n*f2/fs);
x3 = A * cos(2*pi*n*f3/fs);

sound([x1,x2,x3], fs);

First, set the parameter on=0 so that the filtering operation is bypassed. Send the above signal into
the line input of the DSK and listen to the output. Then, set on=1 to turn the filter on, recompile and
run the program, and send the same signal in. The middle 3-kHz segment should not be heard, since
it lies in the filter’s stopband.

c. Create breakpoints at the read_inputs and write_outputs lines of the isr() function, and start the
profile clock. Run the program and record the number of cycles between reading the input samples
and writing the computed outputs.

d. Uncomment the appropriate lines in the above program to implement the circular buffer version using
the function firc(). You will need to add it to your project. Recompile and run your program with
the same input.

Then, repeat part (c) and record the number of computation cycles.

e. Repeat part (d) using the circular-index function firc2().

In comparing the computational costs of the various implementations, you will notice that for this
example, the linear buffer version is far more efficient, in contrast to what you observed in the case of
multiple delays. The reason is that the function pwrap() gets called for each tap of the FIR filter, whereas
in the case of multiple delays, it was essentially called once.

The circular buffer implementation of FIR filters can indeed be made far more efficient than the
linear buffer case if one used an assembly language version that takes advantage of the built-in circular
addressing capability of the C6713 processor.
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4.5. Voice Scrambler in C

In this lab, you will study the real-time implementation of the voice scrambler that you designed in Lab-3.
We recall that the lowpass filter was designed with the parameters fs = 16 kHz, f0 = 3.3 kHz, and filter
order M = 100 using the Hamming design method:

h(n)= w(n) sin
(
ω0(n−M/2)

)
π(n−M/2) , 0 ≤ n ≤M (4.2)

where ω0 = 2πf0/fs, and w(n) is the Hamming window:

w(n)= 0.54− 0.46 cos
(

2πn
M

)
, 0 ≤ n ≤M (4.3)

The following C program, scrambler.c, forms the basis of this lab. It is a variation of that discussed
in the Chassaing-Reay text [2].

// scrambler.c - voice scrambler example
// ----------------------------------------------------------------------------------------

#include "dsplab.h" // initialization declarations and function prototypes
#include <math.h>
#define PI 3.14159265 // 3.14159265358979

short xL, xR, yL, yR; // left and right input and output samples from/to codec

#define M 100 // filter order
#define L 160 // carrier period, note L*f0/fs = 160*3.3/16 = 33 cycles

float h[M+1], w1[M+1], w2[M+1]; // filter coefficients and delay-line buffers
int n=0; // time index for carrier, repeats with period L
int on=1; // turn scrambler on (off with on=0)

float w0, f0 = 3.3; // f0 = 3.3 kHz
short fs = 16; // fs = 16 kHz

// ----------------------------------------------------------------------------------------

void main()
{

int i;
float wind;

w0 = 2*PI*f0/fs; // carrier frequency in rads/sample

for (i=0; i<=M; i++) { // initialize buffers & design filter
w1[i] = w2[i] = 0;
wind = 0.54 - 0.46 * cos(2*PI*i/M); // Hamming window
if (i==M/2)

h[i] = w0/PI;
else

h[i] = wind * sin(w0*(i-M/2)) / (PI*(i-M/2));
}

initialize(); // initialize DSK board and codec, define interrupts

sampling_rate(fs); // possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz
audio_source(LINE); // LINE or MIC for line or microphone input

while(1); // keep waiting for interrupt, then jump to isr()
}

// ----------------------------------------------------------------------------------------

interrupt void isr() // sample processing algorithm - interrupt service routine
{
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int i;
float y;

read_inputs(&xL, &xR); // read left and right input samples from codec

if (on) {
y = (float)(xL); // work with left input only

w1[0] = y; // first filter
for (y=0, i=0; i<=M; i++)

y += h[i] * w1[i];
delay(M,w1);

y *= 2*cos(w0*n); // multiply y by carrier
if (++n >= L) n = 0;

w2[0] = y; // second filter
for (y=0, i=0; i<=M; i++)

y += h[i] * w2[i];
delay(M,w2);

yL = (short)(y);
}

else
yL = xL; // pass through if on=0

write_outputs(yL,yL);

return;
}

// ----------------------------------------------------------------------------------------

Two separate buffers,w1,w2, are used for the two lowpass filters. The filter coefficients are computed
on the fly within main() using Eqs. (4.2) and (4.3). A linear buffer implementation is used for both filters.
The sinusoidal carrier signal is defined by:

s[n]= 2 cos(ω0n) , ω0 = 2πf0
fs

Since fs/f0 = 16/3.3 samples/cycle, it follows that the smallest number of samples containing an
integral number of cycles will be:

L = 16

3.3
· 33 = 160 samples

that is, these 160 samples contain 33 cycles and will keep repeating. Therefore, the time index n of s[n]
is periodically cycled over the interval 0 ≤ n ≤ L− 1.

Lab Procedure

a. Create and build a project for this program. The parameter on=1 turns the scrambler on or off. Create
a GEL file for this parameter and open it when you run the program.

b. Play the following two wave files through program:

JB.wav
JBs.wav

When you play the second, which is a scrambled version of the first, it will get unscrambled.
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c. Open MATLAB and generate three sinusoids of frequencies 300 Hz, 3000 Hz, and 300 Hz, sampled at
a rate of 16 kHz, each of duration of 1 second, and concatenate them to form a 3-second signal. Then
play this out of the PCs sound card using the sound() function. For example, the following MATLAB
code will do this:

fs = 16000; f1 = 300; f2 = 3000; f3 = 300;
L = 16000; n = (0:L-1);
A = 1/5; % adjust playback volume

x1 = A * cos(2*pi*n*f1/fs);
x2 = A * cos(2*pi*n*f2/fs);
x3 = A * cos(2*pi*n*f3/fs);

sound([x1,x2,x3], fs);

Play this signal through the DSK with the scrambler off. Then, play it with the scrambler on. What are
the frequencies in Hz of the scrambled signal that you hear? Explain this in your report.

d. Instead of actually computing the cosine function at each call of isr(), a more efficient approach
would be to pre-compute the L repeating samples of the carrier s[n] and keep re-using them. This
can be accomplished by replacing the two modulation instructions in isr() by:

y *= s[n]; // multiply y by carrier
if (++n >= L) n = 0;

where s[n] must be initialized within main() to the L values, s[n]= 2 cos(ω0n), n = 0,1, . . . , L− 1.

Re-write the above program to take advantage of this suggestion. Test your program.

4.6. References

[1] S. J. Orfanidis, Introduction to Signal Processing, online book, 2010, available from:
http://www.ece.rutgers.edu/~orfanidi/intro2sp/

[2] R. Chassaing and D. Reay, Digital Signal Processing and Applications with the TMS320C6713 and
TMS320C6416 DSK, 2nd ed., Wiley, Hoboken, NJ, 2008.
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Lab 5 – DTFT/DFT/FFT

5.1. DTFT Examples

In this part, we consider the analytical computation of the DTFT of some periodic signals, the computation
of their DFT, and their representation as sums of sinusoids.

Lab Procedure

a. Consider the periodic square-wave of period 10,

s(n)= [1,1,1,1,1,−1,−1,−1,−1,−1︸ ︷︷ ︸
one period

, · · · ]

where the dots represent the repetition of the basic period. Prove analytically that the DTFT of one
basic period is given by

S(ejω)=
9∑
n=0

s(n)e−jωn = (1− e−5jω)2

1− e−jω

b. By evaluating this at the 10 DFT frequencies ωk = 2πk/10, k = 0,1, . . . ,9, determine the 10-point
DFT of one basic period, i.e., the values S(k)= S(ejωk). [Hint: ejπ = −1]

c. By inserting the result of part (b) into the inverse DFT formula,

x(n)= 1

N

N−1∑
k=0

X(k)ejωkn

prove analytically that the above square wave admits the following expansion in terms of sinusoids:

s(n)= 0.4

sin
(
ω1

2

) sin
(
ω1n+ ω1

2

)
+ 0.4

sin
(
ω3

2

) sin
(
ω3n+ ω3

2

)
+ 0.2 cos(ω5n)

and verify that this expression agrees with the given square-wave for n = 0,1, . . . ,9.

d. Repeat parts (a–c) for the following square-wave:

s(n)= [0,1,1,1,1,0,−1,−1,−1,−1︸ ︷︷ ︸
one period

, · · · ]

and show that in this case,

S(ejω)=
9∑
n=0

s(n)e−jωn = (e−jω − e−5jω)(1− e−5jω)
1− e−jω

and

s(n)= 0.4

tan
(
ω1

2

) sin(ω1n)+ 0.4

tan
(
ω3

2

) sin(ω3n)

e. For both square waves of parts (a) and (d), make a plot of their DTFT magnitude, |S(ejω)|, versus
digital frequency in the interval 0 ≤ ω ≤ 2π. Superimpose on the same graph the corresponding
10-point DFT values plotted with circle markers.

These particular periodic square wave signals will be used again in hardware Lab-8.
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5.2. Filtering of Periodic Signals

If a causal sinusoidal signal of frequencyω is sent to the input of a (strictly stable) filter, the output will
tend in the long run, after the transients die out, to a steady-state sinusoidal signal of the same frequency
ω, but modified in amplitude by the frequency response of the filter:

x(n)= ejωnu(n) ⇒ y(n)= H(ejω)ejωnu(n)+ytrans(n)−→ H(ejω)ejωnu(n)= steady-state

where u(n) is the unit-step function. This is the most important property of linear systems. The sinusoid
ejωn is not necessarily a periodic signal in the discrete-time variable n unless the frequency has the
form ω = 2πk/N, for integer values of k,N, and in this case, it is periodic with period N, that is,
ejω(n+N) = ejωn. A more general periodic discrete-time signal s(n) with period N is specified by its
sample values of one period,

s(n)= [s0, s1, s2 . . . , sN−1︸ ︷︷ ︸
one period

, s0, s1, s2 . . . , sN−1︸ ︷︷ ︸
one period

, · · · ]

and it can be represented by the inverse DFT formula as a sum of sinusoids at the DFT frequencies
ωk = 2πk/N, k = 0,1, . . . ,N − 1,

s(n)= 1

N

N−1∑
k=0

S(k)ejωkn (5.1)

where S(k) is the N-point DFT of one period of the periodic signal:

S(k)=
N−1∑
n=0

s(n)e−jωkn

If a periodic signal such as s(n) is sent to the input of a stable filter, then after the filter transients
die out, the steady-state output signal will also be periodic with the same period N, and given in its
sinusoidal form by the inverse DFT:

sout(n)= 1

N

N−1∑
k=0

H(ejωk)S(k)ejωkn (5.2)

This follows by applying the sinusoidal response of the filter to the individual terms of Eq. (5.1). Thus,
the following computational steps allow one to determine the samples of the output period:

compute FFT of input period: S = fft(s,N)
evaluate filter at DFT frequencies: H = [H(ejω0),H(ejω1), . . . ,H(ejωN−1)

]
point-by-point multiplication: Sout = H .∗ S
compute IFFT: sout = ifft(Sout,N)

(5.3)

Lab Procedure

a. Write a MATLAB function that implements the steps in Eq. (5.3), with syntax:

s_out = periodic_output(b,a,s);

where b,a are the numerator and denominator coefficient vectors of the filter, and s,s_out represent
one period of the input and output signals. All the operations inside this function must be vectorized.
To help you debug your program, the following answer is given:

s = [3,6,3], H(z)= 2+ z−1

1+ 0.5z−3
⇒ sout = [6,10,8]
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b. Apply your function to the period-8 square wave:

s(n)= [1,1,1,1,−1,−1,−1,−1︸ ︷︷ ︸
one period

, · · · ] (5.4)

which is sent into the filter

H(z)= 1+ z−1 + z−2

1+ 0.5z−4

and compute the corresponding length-8 output period sout.

c. Repeat the calculation of sout by performing the operations of Eq. (5.3) by hand using 8-point FFTs and
showing all calculations explicitly.

d. Generate an input signal x(n) from Eq. (5.4) consisting of 5 periods only and filter it through H(z)
using the function filter, i.e.,

y = filter(b,a,x);

On two separate graphs, make stem plots of the signals x(n) and y(n). Observe how the output signal
converges to the computed output period as the transients die out.

e. For a filter H(z)= B(z)/A(z), write a MATLAB function that estimates the effective time constant of
the filter, say, neff, i.e., the number of time samples that elapse until the filter transients effectively
die out and the output settles into its steady-state. The filter H(z) is arbitrary, but must be assumed
to be stable with all its poles strictly inside the unit circle. The function must have syntax:

n_eff = time_constant(b,a);

The function must also handle the case of an FIR filter, i.e., a=[1].

Apply your function to the example of part (b) and verify that the chosen 5 periods were sufficiently
long to let the transients die out.

5.3. Circular Convolution

The modulo-N circular convolution of two sequences h, x is defined as the modulo-N wrapping of ordi-
nary linear convolution. See Sect. 9.9.1 of the text [1] for more information on this definition.

Lab Procedure

a. Recent versions of MATLAB have a function called, datawrap(), that can perform such mod-N wrap-
ping. Using datawrap() and the function conv() only, write a MATLAB function, say, circonv(),
that implements circular convolution. It must have syntax:

y = circonv(h,x,N);

where the two vectors h,x may have arbitrary lengths, not necessarily equal to N.

b. Let h = [1,2,−1,1] and x = [1,1,2,1,2,2,1,1]. Using your function, calculate the mod-4 circular
convolution of the two sequences. Repeat for the mod-8 case.

c. Repeat part (a) by performing all calculations by hand, i.e., ordinary convolution, followed by wrapping
modulo-N.

d. Circular convolution is equivalent to the DFT/FFT operations, expressed in MATLAB notation:
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y = ifft(fft(h,N).*fft(x,N),N);

where all FFTs have length N.

Carry out part (a) by performing the required 4-point or 8-point FFTs by hand.

[One word of caution, for the case N = 4, you must pre-wrap the length-8 signal x modulo-4 before
doing the circular convolution, otherwise MATLAB will truncate x to the length-4 signal [1,1,2,1] in
performing its 4-point FFT.]

5.4. Spectral Analysis by DFT/FFT

The purpose of this lab is to use the DFT and FFT to compute spectra and study the tradeoffs between
frequency resolution and frequency leakage.

Zero Padding and Windowing

Given a length-L signal xn, 0 ≤ n ≤ L−1, itsN-point DFT (assumingN ≥ L) can be computed by padding
xn with zeros until it has length N, that is,

[x0, x1, . . . , xL−1]︸ ︷︷ ︸
L

−→ [x0, x1, . . . , xL−1,0,0, . . . ,0]︸ ︷︷ ︸
N

(5.5)

This extended signal can then be passed into an N-point DFT or FFT routine. If the signal xn is to be
prewindowed by a non-rectangular window, this operation must be done before it is extended to length
N. For example, the length-L Hamming window is

wn = 0.54− 0.46 cos
(

2πn
L− 1

)
, n = 0,1, . . . , L− 1 (5.6)

The Hamming windowed signal will be obtained by replacing xn by xnwn for 0 ≤ n ≤ L− 1; afterwards,
it may be padded to length N for the purpose of computing its DFT:

[x0, x1, . . . , xL−1]−→ [x0w0, x1w1, . . . , xL−1wL−1]

−→ [x0w0, x1w1, . . . , xL−1wL−1,0,0, . . . ,0] (5.7)

Lab Procedure

The following signal consists of three sinusoids of frequencies f1 = 4 kHz, f2 = 5 kHz, and f3 = 6 kHz:

x(t)= cos(2πf1t)+ cos(2πf2t)+ cos(2πf3t)

where t is in milliseconds. A 5 msec portion of this signal is sampled at a rate of 20 kHz, and the resulting
L = 100 samples xn, n = 0,1, . . . , L− 1 are saved for further processing.

a. Plot xn versus n in the range 0 ≤ n ≤ L− 1.

b. Using the routine fft, compute the 256-point DFT of the length-L signal xn. Plot the magnitude of the
DFT over one complete Nyquist interval with respect to the normalized frequency f/fs, that is, over
the range 0 ≤ f/fs ≤ 1. Use vertical scales from [0,50].

c. Using the routine ifft, compute the 256-point inverse FFT of the result in part (b) and verify that you
recover the original time signal (including the zeros that were padded at its tail).

d. Window the L samples xn using a length-LHamming window as in Eqs. 5.6 and (5.7). Plot the windowed
signal xnwn versus n using the same vertical scales as in part (a).
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e. Repeat part (b) for the Hamming windowed signal xnwn. Discuss the tradeoff between reducing the
sidelobe levels (smaller sidelobes) and worsening of frequency resolution (peaks are less sharp).

f. Repeat parts (b) and (e) when L is reduced to L = 50, L = 25, and L = 10. For both the windowed
and unwindowed cases, discuss the worsening of the frequency resolution as the data record becomes
shorter and shorter.
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g. Consider the following analog signal consisting of three sinusoids:

x(t)= cos(2πf1t)+10−3 cos(2πf2t)+ cos(2πf3t)

where f1 = 1.5, f2 = 2.5, and f3 = 3.5 kHz. The middle term represents a weak sinusoid whose
presence we wish to detect by sampling x(t) and computing its DTFT spectrum. The sampling rate is
10 kHz.

It is desired to assess and compare the use of the rectangular, Hamming, and Kaiser windows for
this spectral analysis problem. Because the middle sinusoid is 60 dB below the other two, in order to
detect its presence, we must use a window that has sidelobes that are suppressed by at least 60 dB.
To get some extra margin, we take the relative sidelobe level to be 10 dB deeper than required, that is,
R = 60+ 10 = 70 dB and choose its width to be Δf = 0.2 kHz (i.e., one-fifth the minimum frequency
separation.)

Calculate the length L of a Kaiser window with the above values of R and width Δf .
Let x(tn), n = 0,1, . . . , L− 1 be the collected L samples of the above signal. Window this signal with
the following three windows of length L: (a) rectangular, (b) Hamming, and (c) Kaiser.

For each case, calculate the corresponding DTFT of the length-L sampled signal at 2000 equally-spaced
frequencies in the Nyquist interval 0 ≤ f ≤ 5 kHz. Normalize each DTFT to unity magnitude at its
maximum. Plot each normalized DTFT in dB scales over the range 0 ≤ f ≤ 5 kHz.

Observe how the Kaiser window allows the weak sinusoid to rise above the sidelobes, whereas in the
rectangular and Hamming window cases the weak sinusoid is buried under the sidelobes.

The Kaiser window can be evaluated with the MATLAB functions kparm2 and kwind of the text [1]. See
also the discussion in Sections 10.2.2 of [1] for its application to spectrum estimation problems.
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5.5. References

[1] S. J. Orfanidis, Introduction to Signal Processing, online book, 2010, available from:
http://www.ece.rutgers.edu/~orfanidi/intro2sp/
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Lab 6 – Digital Audio Effects

6.1. Plain Reverb

The reverberation of a listening space is typically characterized by three distinct time periods: the direct
sound, the early reflections, and the late reflections, as illustrated below:

early
reflections

earliest
reflection

direct
sound

direct

early

late

late
reflections

t

predelay reverberation time

The early reflections correspond to the first few reflections off the walls of the room. As the waves
continue to bounce off the walls, their density increases and they disperse, arriving at the listener from
all directions. This is the late reflection part.

The reverberation time constant is the time it takes for the room’s impulse response to decay by 60
dB. Typical concert halls have time constants of about 1.8–2 seconds.

In this and several other labs, we discuss how to emulate such reverberation characteristics using
DSP filtering algorithms. A plain reverberator can be used as an elementary building block for more
complicated reverberation algorithms. It is given by Eq. (8.2.12) of the text [1] and shown in Fig. 8.2.6.
Its input/output equation and transfer function are:

y(n)= ay(n−D)+x(n), H(z)= 1

1− az−D
The comb-like structure of its frequency response and its pole-pattern on the z-plane are depicted in

Fig. 8.2.7 of Ref. [1] and shown below.
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Its sample processing algorithm using a circular delay-line buffer is given by Eq. (8.2.14) of [1]:

x y

z-D

a

sD

for each input sample x do:
sD = ∗(p+D)
y = x+ asD
∗p = y
−−p

It can be immediately translated to C code with the help of the function pwrap() and embedded in
the interrupt service routine isr():
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interrupt void isr()
{

float sD, x, y; // D-th state, input & output

read_inputs(&xL, &xR); // read inputs from codec

x = (float) xL; // process left channel only

sD = *pwrap(D,w,p+D); // extract D-th state relative to p
y = x + a*sD; // compute output sample
*p = y; // delay-line input
p = pwrap(D,w,--p); // backshift pointer

yL = yR = (short) y;

write_outputs(yL,yR); // write outputs to codec

return;
}

Lab Procedure

a. Modify the template program into a C program. plain1.c, that implements the above ISR. Set the
sampling rate to 8 kHz and the audio input to MIC. With the values of the parameters D = 2500 and
a = 0.5, compile and run your program on the DSK.

Listen to the impulse response of the system by lightly tapping the microphone on the table. Speak
into the mike.

Set the audio input to LINE, recompile and run. Play one of the wave files in the directory c:\dsplab\wav
(e.g., dsummer, noflange from [3]).

b. Recompile and run the program with the new feedback coefficient a = 0.25. Listen to the impulse
response. Repeat for a = 0.75. Discuss the effect of increasing or decreasing a.

c. According to Eq. (8.2.16), the effective reverberation time constant is given by

τeff = ln ε
lna

TD, TD = DT = D/fs

For each of the above values of a, calculate τeff in seconds, assuming ε = 0.001 (which corresponds
to the so-called 60-dB time constant.) Is what you hear consistent with this expression?

d. According to this formula, τeff remains invariant under the replacements:

D→ 2D, a→ a2

Test if this is true by running your program and hearing the output withD = 5000 and a = 0.52 = 0.25
and comparing it with the case D = 2500 and a = 0.5. Repeat the comparison also with D = 1250
and a = √0.5 = 0.7071.

e. When the filter parameter a is positive and near unity, the comb peak gains 1/(1− a) become large,
and may cause overflows. In such cases, the input must be appropriately scaled down before it is
passed to the filter.

To hear such overflow effects, choose the feedback coefficients to be very near unity, for example,
a = 0.99, with a corresponding gain of (1−a)−1= 100. You may also need to multiply the input x by
an additional gain factor such as 2 or 4.

f. Modify the above ISR so that it processes the input samples in stereo (you will need to define two
separate buffers for the left and right channels.) Experiment with choosing slightly different values
of the left and right delay parameters D, or different values of the feedback parameter a. Keep the
left/right speakers as far separated as possible.
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6.2. Allpass Reverb

Like the plain reverberator, an allpass reverberator can be used as an elementary building block for
building more complicated reverberation algorithms. It is given by Eq. (8.2.25) of the text [1] and shown
in Fig. 8.2.17. Its I/O equation and transfer function are:

y(n)= ay(n−D)−ax(n)+x(n−D), H(z)= −a+ z−D
1− az−D

As discussed in [1], its impulse response is similar to that of the plain reverberator, but its magnitude
response remains unity (hence the name “allpass”), that is,∣∣H(ejω)∣∣ = 1 , for all ω

Its block diagram representation using the so-called canonical realization and the corresponding sam-
ple processing algorithm using a circular delay-line buffer is given by Eq. (8.2.14) of [1]:

x
s0

sD

z-D

y

a

-a for each input sample x do:
sD = ∗(p+D)
s0 = x+ asD
y = −as0 + sD
∗p = s0

−−p

The algorithm can be translated immediately to C with the help of pwrap(). In this lab, we are going
to put these steps into a separate C function, allpass(), which is to be called by isr(), and linked to
the overall project. The function is defined as follows:

// ---------------------------------------------------------------------------
// allpass.c - allpass reverb with circular delay line - canonical realization
// ---------------------------------------------------------------------------

float *pwrap(int, float *, float *);

float allpass(int D, float *w, float **p, float a, float x)
{

float y, s0, sD;

sD = *pwrap(D,w,*p+D);

s0 = x + a * sD;

y = -a * s0 + sD;

**p = s0;

*p = pwrap(D,w,--*p);

return y;
}
// ---------------------------------------------------------------------------

The allpass function is essentially the same as that in the text [1], but slightly modified to use floats
and the function pwrap(). In the above definition, the parameter p was declared as pointer to pointer
to float because in the calling ISR function p must be defined as a pointer to float and must be passed
passed by address because it keeps changing from call to call. The calling ISR function isr() is defined
as follows:
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interrupt void isr()
{

float x, y;

read_inputs(&xL, &xR); // read inputs from codec

x = (float) xL; // process left channel only

y = allpass(D,w,&p,a,x); // to be linked with main()

yL = yR = (short) y;

write_outputs(yL,yR); // write outputs to codec

return;
}

Although the overall frequency response of the allpass reverberator is unity, the intermediate stage
of computing the recursive part s0 can overflow because this part is just like the plain reverb and its peak
gain is 1/(1 − a). Such overflow behavior is a potential problem of canonical realizations and we will
investigate it further in a future lab.

The allpass reverberator can also be implemented in its transposed realization form, which is less
prone to overflows. It is depicted below together with its sample processing algorithm:

x y

sD

s0

−a

a

z-D

for each input x do:
sD = ∗(p+D)
y = sD − ax
∗p = s0 = x+ ay
−−p

The following function allpass_tr() is the translation into C using pwrap(), where againp is defined
as a pointer to pointer to float:

// -------------------------------------------------------------------------------
// allpass_tr.c - allpass reverb with circular delay line - transposed realization
// -------------------------------------------------------------------------------

float *pwrap(int, float *, float *); // defined in dsplab.c

float allpass_tr(int D, float *w, float **p, float a, float x)
{

float y, sD;

sD = *pwrap(D,w,*p+D);

y = sD - a*x;

**p = x + a*y;

*p = pwrap(D,w,--*p);

return y;
}
// -------------------------------------------------------------------------------

Lab Procedure

a. Incorporate the above ISR into a main program, allpass1.c, and create a project. Remember to
prototype the allpass function at the beginning of your program. Add the file that contains the
allpass function to the project. Compile and run with the parameter choices: D = 2500, a = 0.5,
with an 8 kHz sampling rate and LINE input.
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b. Repeat part (a) using the transposed form implemented by the function allpass_tr(), and name
your main program allpass2.c.

c. Choose a value of a and input gain that causes allpass1.c to overflow, then run allpass2.c with
the same parameter values to see if your are still getting overflows.

6.3. Lowpass Reverb

The lowpass reverberator of this experiment is shown in Figs. 8.2.20 and 8.2.21 of Ref. [1]. The feedback
gain a of the plain reverb is replaced by a lowpass filter G(z), so that one obtains the new transfer
function by the replacement:

H(z)= 1

1− az−D ⇒ H(z)= 1

1−G(z)z−D
The filter G(z) effectively acts as frequency-dependent feedback parameter whose value is smaller

at higher frequencies (because it is a lowpass filter), thus attenuating high frequencies faster, and whose
value is larger at lower frequencies, and hence attenuating those more slowly—which is a more realistic
behavior of reverberating spaces. For this experiment, we will work with the simple choice:

G(z)= b0 + b1z−1

1+ a1z−1

Setting a = −a1, the corresponding sample processing algorithm is:

for each input sample x do:
sD = ∗(p+D)
v0 = av1 + sD
u = b0v0 + b1v1

y = x+ u
v1 = v0

∗p = y
−−p

The following is its C translation into the isr() function:

interrupt void isr()
{

float x, y, sD, u;

read_inputs(&xL, &xR); // read inputs from codec

x = (float) xL; // process left channel only

sD = *pwrap(D,w,p+D);

v0 = a*v1 + sD; // feedback filter G(z) = (b0 + b1*z^-1)/(1-a*z^-1)
u = b0*v0 + b1*v1; // feedback filter’s output
v1 = v0; // update feedback filter’s delay

y = x+u; // closed-loop output

*p = y;

p = pwrap(D,w,--p);

yL = yR = (short) y;

write_outputs(yL,yR); // write outputs to codec

return;
}
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Lab Procedure

a. Create a project with this ISR. Choose an 8 kHz sampling rate and MIC input. Set the parameter values
D = 2500, a = 0.5, b0 = 0.2, b1 = 0.1. Compile and run. Listen to its impulse response. Speak
into the mike. Notice how successive echoes get more and more mellow as they circulate through the
lowpass filter. Note that the DC gain of the loop filter G(z), obtained by setting z = 1, and the AC
gain at Nyquist, obtained by setting z = −1, are:

G(z)
∣∣
z=1 =

b0 + b1

1− a = 0.6 , G(z)
∣∣
z=−1 =

b0 − b1

1+ a = 1

15
= 0.0667

These are the effective feedback coefficients at low and high frequencies. Therefore, the lower fre-
quencies persist longer than the higher ones.

Recompile and run with LINE input and play a wave file (e.g., noflange) through it.

b. Try the case D = 20, a = 0, b0 = b1 = 0.495. You will hear a guitar-like sound. Repeat for D = 100.
What do you hear?

Repeat by setting the sampling rate to 44.1 kHz and D = 100.

This type of feedback filter is the basis of the so-called Karplus-Strong string algorithm for synthe-
sizing plucked-string sounds, and we will study it further in another experiment.

6.4. Schroeder’s Reverb Algorithm

A more realistic reverberation effect can be achieved using Schroeder’s model of reverberation, which
consists of several plain reverb units in parallel, followed by several allpass units in series. An example
is depicted in Fig. 8.2.18 and on the cover of the text [1], and shown below.

x(n)

x2(n)

x3(n)

x4(n)

x1(n)

x5(n) x6(n)

z-D1

z-D3

z-D4

a1

a2

a3

a4

b1

b2

b3

b4

z-D2

a5

-a5

z-D
5

y(n)-a6

a6
z-D6

The different delays in the six units cause the density of the reverberating echoes to increase, gener-
ating an impulse response that exhibits the typical early and late reflection characteristics.

Its sample processing algorithm is given by Eq. (8.2.31) of [1]. It is stated in terms of the functions
plain() and allpass() that implement the individual units:
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for each input sample x do:
x1 = plain(D1, w1, &p1, a1, x)
x2 = plain(D2, w2, &p2, a2, x)
x3 = plain(D3, w3, &p3, a3, x)
x4 = plain(D4, w4, &p4, a4, x)
x5 = b1x1 + b2x2 + b3x3 + b4x4

x6 = allpass(D5, w5, &p5, a5, x5)
y = allpass(D6, w6, &p6, a6, x6)

(6.1)

There are six multiple delays each requiring its own circular buffer and pointer. The allpass()
function was already defined in the allpass reverb lab section. The plain function is straightforward and
implements the steps used in the plain reverb lab section:

// ------------------------------------------------------
// plain.c - plain reverb with circular delay line
// ------------------------------------------------------

float *pwrap(int, float *, float *);

float plain(int D, float *w, float **p, float a, float x)
{

float y, sD;

sD = *pwrap(D,w,*p+D);

y = x + a * sD;

**p = y;

*p = pwrap(D,w,--*p);

return y;
}
// ------------------------------------------------------

The following (incomplete) C program implements the above sample processing algorithm in its isr()
function and operates at a sampling rate of 44.1 kHz:

// --------------------------------------------------------------------
// schroeder.c - Schroeder’s reverb algorithm using circular buffers
// --------------------------------------------------------------------

#include "dsplab.h" // init parameters and function prototypes

short xL, xR, yL, yR; // input and output samples from/to codec

short fs = 44; // sampling rate in kHz

#define D1 1759
#define D2 1949
#define D3 2113
#define D4 2293
#define D5 307
#define D6 313

#define a 0.88

float b1=1, b2=0.9, b3=0.8, b4=0.7;
float a1=a, a2=a, a3=a, a4=a, a5=a, a6=a;

float w1[D1+1], *p1;
float w2[D2+1], *p2;
float w3[D3+1], *p3;
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float w4[D4+1], *p4;
float w5[D5+1], *p5;
float w6[D6+1], *p6;

float plain(int, float *, float **, float, float); // must be added to project
float allpass(int, float *, float **, float, float);

// ----------------------------------------------------------------------------------

void main()
{

int n;
for (n=0; n<=D1; n++) w1[n] = 0; // initialize buffers to zero
for (n=0; n<=D2; n++) w2[n] = 0;
for (n=0; n<=D3; n++) w3[n] = 0;
for (n=0; n<=D4; n++) w4[n] = 0;
for (n=0; n<=D5; n++) w5[n] = 0;
for (n=0; n<=D6; n++) w6[n] = 0;

p1 = w1; p2 = w2; p3 = w3; p4 = w4; p5 = w5; p6 = w6; // initialize pointers

initialize(); // initialize DSK board and codec, define interrupts

sampling_rate(fs); // possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz
audio_source(MIC); // LINE or MIC for line or microphone input

while(1); // keep waiting for interrupt, then jump to isr()
}

// ----------------------------------------------------------------------------------

interrupt void isr()
{

read_inputs(&xL, &xR); // read inputs from codec

// ------------------------------------------------------------
// here insert your algorithm implementing Eq.(6.1) given above
// ------------------------------------------------------------

write_outputs(yL,yR); // write outputs to codec

return;
}

// ----------------------------------------------------------------------------------

Lab Procedure

a. Create a project for this program, compile and run it with audio input set to MIC. Listen to its impulse
response and speak into the mike. To reduce potential overflow effects, you may want to reduce the
input level by half, for example, by the statement:

x = (float) (xL>>1);

b. What are the feedback delays of each unit in msec? Replace all the delays by double their values,
compile, and run again. Compare the output with that of part (a). Repeat when you triple all the
delays. (Note that you can just replace the constant definitions by #define D1 1759*2, etc.)

c. Repeat part (a) by experimenting with different values of the feedback parameter a.

6.5. Stereo Reverb

In some of the previous experiments, we considered processing in stereo, but the left and right channels
were processed completely independently of each other. In this experiment, we allow the cross-coupling
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of the two channels, so that the reverb characteristics of one channel influences those of the other.
An example of such system is given in Problems 8.22 and 8.23 and depicted in Fig. 8.4.1 of the text

[1] and shown below.

Here, we assume that the feedback filters are plain multiplier gains, so that

GL(z)= aL, GR(z)= aR
Each channel has its own delay-line buffer and circular pointer. The sample processing algorithm is

modified now to take in a pair of stereo inputs and produce a pair of stereo outputs:

for each input stereo pair xL, xR do:
sL = ∗(pL + L)
sR = ∗(pR +R)
yL = cLxL + sL
yR = cRxR + sR
∗pL = sL0 = bLxL + aLsL + dRsR
∗pR = sR0 = bRxR + aRsR + dLsL
−−pL
−−pR

where L and R denote the left and right delays. Cross-coupling between the channels arises because of
the coefficients dL and dR. The following is its C translation into an isr() function:

interrupt void isr() // sample processing algorithm - interrupt service routine
{

float sL, sR;

read_inputs(&xL, &xR); // read inputs from codec

sL = *pwrap(L,wL,pL+L);
sR = *pwrap(R,wR,pR+R);
yL = cL*xL + sL;
yR = cR*xR + sR;
*pL = bL*xL + aL*sL + dR*sR;
*pR = bR*xR + aR*sR + dL*sL;
pL = pwrap(L,wL,--pL);
pR = pwrap(R,wR,--pR);

write_outputs(yL,yR); // write outputs to codec

return;
}
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Lab Procedure

a. Create a project whose main program includes the above ISR. Select an 8 kHz sampling rate and line
input. Choose the following parameter values:

L = R = 3000, aL = aR = 0, bL = bR = 0.8, cL = cR = 0.5, dL = dR = 0.5

Compile and run this program. Even though the self-feedback multipliers were set to zero, aL = aR =
0, you will hear repeated echoes bouncing back and forth between the speakers because of the cross-
coupling. Make sure the speakers are as far separated as possible, and play one of the wave files in
c:\dsplab\wav (e.g., take5, dsummer).

b. Next try the case dL �= 0, dR = 0. And then, dL = 0, dR �= 0. These choices decouple the influence of
one channel but not that of the other.

c. Next, introduce some self-feedback, such as aL = aR = 0.2. Repeat part (a). Vary all the parameters
at will to see what you get.

6.6. Reverberating Delay

A prototypical delay effect found in most commercial audio effects processors was discussed in Problem
8.17 of the text [1]. Its transfer function is:

H(z)= c+ b z−D

1− az−D
Its block diagram realization and corresponding sample processing algorithm using a circular delay-line
buffer are given below:

x y
b

c

a

z-D
s0 sD

for each input x do:
sD = ∗(p+D)
y = cx+ sD
∗p = s0 = bx+ asD
−−p

The following is its C translation into an isr() function:

interrupt void isr() // sample processing algorithm - interrupt service routine
{

float sD, x, y; // D-th state, input & output

read_inputs(&xL, &xR); // read inputs from codec

x = (float) xL; // process left channel only

sD = *pwrap(D,w,p+D); // extract states relative to p
y = c*x + sD; // output sample
*p = b*x + a*sD; // delay-line input
p = pwrap(D,w,--p); // backshift pointer

yL = yR = (short) y;

write_outputs(yL,yR); // write outputs to codec

return;
}
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Lab Procedure

a. Create a project, compile and run it with 8 kHz sampling rate and MIC input. Choose the parameters:

D = 6000, a = 0.5, b = 1, c = 0

Listen to its impulse response and speak into the mike. Here, the direct sound path has been removed,
c = 0, in order to let the echoes be more clearly heard.

b. What values of b and c would you use (expressed in terms of a) in order to implement a plain rever-
berator of the form:

H(z)= 1

1− az−D
For a = 0.5, calculate the proper values of b, c, and then compile and run the program. Compare its
output with that of plain1.c.

c. Compile and run the case: a = 1, b = c = 1, and then the case: a = −1, b = −1, c = 1. What are the
transfer functions in these cases?

6.7. Multi-Delay Effects

Here, we consider the multi-delay effects processor shown in Fig. 8.2.27 of the text [1]. We assume that
the feedback filters are plain multipliers. Using two separate circular buffers for the two delays, the block
diagram realization and sample processing algorithm are in this case:

for each input x do:
s1 = ∗(p1 +D1)
s2 = ∗(p2 +D2)
y = b0x+ b1s1 + b2s2

∗p2 = s20 = s1 + a2s2

−−p2

∗p1 = s10 = x+ a1s1

−−p1

Its C translation is straightforward:

interrupt void isr() // sample processing algorithm - interrupt service routine
{

float x, s1, s2, y;

read_inputs(&xL, &xR); // read inputs from codec

x = (float) xL; // process left channel only

s1 = *pwrap(D1, w1, p1+D1);
s2 = *pwrap(D2, w2, p2+D2);

y = b0*x + b1*s1 + b2*s2;

*p2 = s1 + a2*s2;
p2 = pwrap(D2, w2, --p2);

*p1 = x + a1*s1;
p1 = pwrap(D1, w1, --p1);

yL = yR = (short) y;

write_outputs(yL,yR); // write outputs to codec

return;
}
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Lab Procedure

a. Write a main program, multidel.c, that incorporates this ISR, compile and run it with an 8 kHz
sampling rate and MIC input, and the following parameter choices:

D1 = 5000, D2 = 2000, a1 = 0.5, a2 = 0.4, b0 = 1, b1 = 0.8, b2 = 0.6

Listen to its impulse response and speak into the mike. Then select LINE input and play a wave file
(e.g., dsummer) through it.

b. Set b1 = 0 and run again. Then, set b2 = 0 and run. Can you explain what you hear?

6.8. Multitap Delay Effects

This experiment is based on the multi-tap delay line effects processor of Fig. 8.2.29 of the text [1].
Both this effect and the multi-delay effect of the previous section are commonly found in commercially
available digital audio effects units.

The implementation uses a common circular delay-line buffer of order D1+D2, which is tapped out
at taps D1 and D1+D2. The sample processing algorithm is:

x y

b0

b1
a1

a2 b2

z-D1

z-D2

s0

s1

s2

for each input sample x do:
s1 = ∗(p+D1)
s2 = ∗(p+D1 +D2)
y = b0x+ b1s1 + b2s2

s0 = x+ a1s1 + a2s2

∗p = s0

−−p

The following ISR is its C translation:

interrupt void isr() // sample processing algorithm - interrupt service routine
{

float x, s0, s1, s2, y;

read_inputs(&xL, &xR); // read inputs from codec

x = (float) xL; // process left channel only

s1 = *pwrap(D1+D2, w, p+D1);
s2 = *pwrap(D1+D2, w, p+D1+D2);
y = b0*x + b1*s1 + b2*s2;
s0 = x + a1*s1 + a2*s2;
*p = s0;
p = pwrap(D1+D2, w, --p);

yL = yR = (short) y;

write_outputs(yL,yR); // write outputs to codec

return;
}
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Lab Procedure

a. Write a main program, multidel.c, that incorporates this ISR, compile and run it with an 8 kHz
sampling rate and MIC input, and the following parameter choices:

D1 = 3000, D2 = 1500, a1 = 0.2, a2 = 0.5, b0 = 1, b1 = 0.8, b2 = 0.6

Listen to its impulse response and speak into the mike. Then select LINE input and play a wave file
(e.g., dsummer) through it.

b. Repeat for the following values of the feedback parameters: a1 = a2 = 0.5, which makes the system
marginally stable with a periodic steady output (any random noise would be grow unstable.)

Repeat also for the case a1 = a2 = 0.75, which corresponds to an unstable filter. Please reset the
processor before the output grows too loud. However, do let it grow loud enough to hear the overflow
effects arising from the growing feedback output s0.

As discussed in Ref. [1], the condition of stability for this filter is |a1| + |a2| < 1. Interestingly, most
commercially available digital audio effects units allow the setting of the parametersD1,D2, a1, a2, b0,
b1, b2 from their front panel, but do not check this stability condition.

6.9. Karplus-Strong String Algorithm

A model of a plucked string is obtained by running the lowpass reverb filter with zero input, but with
initially filling the delay line with random numbers. These random numbers model the initial harshness
of plucking the string. But, as the random numbers recirculate through the lowpass filter, their high
frequencies are gradually removed, resulting in a sound that models the string vibration.

The model can be approximately “tuned” to a frequency f1 by picking D such that D = fs/f1. (There
are ways to “fine-tune”, but we do not consider them in this simple experiment.) The Karplus-Strong
model [9] assumes a simple averaging FIR filter for the lowpass feedback filter as given by Eq. (8.2.40) of
the text [1]. Here, we take the transfer function to be:

G(z)= b0(1+ z−1)

with some b0 � 0.5 to improve the stability of the closed-loop system. See Refs. [4–15] for more discus-
sion on such models and computer music in general. The following program implements the algorithm.
The code is identical to that of the lowpass reverb case.

The sampling rate is set to 44.1 kHz and the generated sound is the note A440, that is, having fre-
quency 440 Hz. The correct amount of delay is then

D = fs
f1
= 44100

440
≈ 100

The delay line must be filled withD+1 random numbers. They were generated as follows by MATLAB
and exported to the file rand.dat using the function C_header(), e.g., by the code:

iseed = 1000; randn(’state’, iseed);
r = 10000 * randn(101,1);
C_header(’rand.dat’, ’r’, ’D’, r);

The full program is as follows:

// ----------------------------------------------------------------------------------
// ks.c - Karplus-Strong string algorithm
// ----------------------------------------------------------------------------------

#include "dsplab.h" // init parameters and function prototypes

short xL, xR, yL, yR; // input and output samples from/to codec
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#define D 100

float w[D+1], *p; // circular delay-line buffer, circular pointer

#include "rand.dat" // D+1 random numbers

float a = 0;
float b0 = 0.499, b1 = 0.499;

float v0, v1; // states of feedback filter

short fs = 44; // sampling rate is 44.1 kHz

// ----------------------------------------------------------------------------------

void main() // main program executed first
{

int n;
for (n=0; n<=D; n++) // initialize circular buffer to zero

w[n] = r[n];
p = w; // initialize pointer
v1 = 0; // initialize feedback filter

initialize(); // initialize DSK board and codec, define interrupts

sampling_rate(fs); // possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz
audio_source(LINE); // LINE or MIC for line or microphone input

while(1); // keep waiting for interrupt, then jump to isr()
}

// ----------------------------------------------------------------------------------

interrupt void isr() // sample processing algorithm - interrupt service routine
{

float y, sD, u;

// read_inputs(&xL, &xR); // inputs not used

sD = *pwrap(D,w,p+D);

v0 = a*v1 + sD; // feedback filter G(z) = (b0 + b1*z^-1)/(1-a*z^-1)
u = b0*v0 + b1*v1; // feedback filter’s output
v1 = v0; // update feedback filter’s delay

y = u; // closed-loop output - with x=0

*p = y;

p = pwrap(D,w,--p);

yL = yR = (short) y;

write_outputs(yL,yR); // write outputs to codec

return;
}
// ----------------------------------------------------------------------------------

Lab Procedure

a. Create a project, compile and run. The program disables the inputs and simply outputs the re-
circulating and gradually decaying random numbers.

b. Repeat for D = 200 by generating a new file rand.dat using the above MATLAB code. The note you
hear should be an octave lower.
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6.10. Wavetable Generators

Wavetable generators are discussed in detail in Sect. 8.1.3 of the text [1]. A wavetable is defined by a
circular buffer w whose dimension D is chosen such that the smallest frequency to be generated is:

fmin = fs
D

⇒ D = fs
fmin

For example, if fs = 8 kHz and the smallest desired frequency is fmin = 10 Hz, then one must choose
D = 8000/10 = 800. The D-dimensional buffer holds one period at the frequency fmin of the desired
waveform to be generated. The shape of the stored waveform is arbitrary, and can be a sinusoid, a square
wave, sawtooth, etc. For example, if it is sinusoidal, then the buffer contents will be:

w[n]= sin

(
2πfmin

fs
n
)
= sin

(
2πn
D

)
, n = 0,1, . . . ,D− 1

Similarly, a square wave whose first half is +1 and its second half, −1, will be defined as:

w[n]=
{+1 , if 0 ≤ n < D/2
−1 , if D/2 ≤ n < D

To generate higher frequencies (with the Nyquist frequency fs/2 being the highest), the wavetable is
cycled in steps of c samples, where c is related to the desired frequency by:

f = c fmin = c fsD ⇒ c = D f
fs
≡ DF , F = f

fs

where F = f/fs is the frequency in units of [cycles/sample]. The generated signal of frequency f and
amplitude A is obtained by the loop:

repeat forever:
y = Aw[q]
q = (q+ c)mod(D)

The shift c need not be an integer. In such case, the quantity q+ c must be truncated to the integer
just below it. The text [1] discusses alternative methods, for example, rounding to the nearest integer,
or, linearly interpolating. For the purposes of this lab, the truncation method will suffice.

The following function, wavgen(), based on Ref. [1], implements this algorithm. The mod-operation
is carried out with the help of the function qwrap():

// -------------------------------------------------
// wavgen.c - wavetable generator
// Usage: y = wavgen(D,w,A,F,&q);
// ------------------------------------------------

int qwrap(int, int);

float wavgen(int D, float *w, float A, float F, int *q)
{

float y, c=D*F;

y = A * w[*q];

*q = qwrap(D-1, (int) (*q+c));

return y;
}

// -------------------------------------------------
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We note that the circular index q is declared as a pointer to int, and therefore, must be passed by
address in the calling program. Before using the function, the buffer w must be loaded with one period
of length D of the desired waveform. This function differs from the one in Ref. [1] in that it loads the
buffer in forward order and cycles the index q forward.

Here, we present some examples of wavetable generators using the function wavgen(). Two waveta-
bles can be used in combination to illustrate AM and FM modulation.

Sinusoidal Wavetable

The following program generates a 1 kHz sinusoid from a wavetable of length D = 4000. At a sampling
rate of 8 kHz, the smallest frequency that can be generated is fmin = fs/D = 8000/4000 = 2 Hz.

// sinex.c - sine wavetable example
// ------------------------------------------------------------------------------------

#include "dsplab.h" // DSK initialization declarations and function prototypes
#include <math.h>
#define PI 3.14159265

short xL, xR, yL, yR; // left and right input and output samples from/to codec

#define D 4000 // fmin = fs/D = 8000/4000 = 2 Hz
float w[D]; // wavetable buffer

short fs=8; // fs = 8 kHz
float A=10000, f=1; // f = 1 kHz
int q;

float wavgen(int, float *, float, float, int *);

// ------------------------------------------------------------------------------------

void main()
{

int i;

q=0; // initialize circular index

for (i=0; i<D; i++) w[i] = sin(2*PI*i/D); // load wavetable in forward order

initialize();
sampling_rate(fs);
audio_source(LINE);

while(1);
}

// -------------------------------------------------------------------------------------

interrupt void isr()
{

float y; // filter input & output

//read_inputs(&xL, &xR); // codec inputs are not used

y = wavgen(D, w, A, f/fs, &q);

yL = yR = (short) y;

write_outputs(yL,yL);

return;
}

// ------------------------------------------------------------------------------------
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The wavetable is loaded with the sinusoid in main(). At each sampling instant, the program does
nothing with the codec inputs, rather, it generates a sample of the sinusoid by a call to wavgen and sends
it to the codec.

Lab Procedure

a. Create a project for this program and run it. The amplitude was chosen to be A = 10000 in order to
make the wavetable output audible. Reset the frequency to 200 Hz, recompile and run.

b. Create a GEL file with a slider for the value of the frequency over the interval 0 ≤ f ≤ 1 kHz in steps
of 100 Hz. Open the slider and run the program while changing the frequency with the slider.

c. Set the frequency to 30 Hz and run the program. Keep decreasing the frequency by 5 Hz at a time and
determine the lowest frequency that you can hear (but, to be fair don’t increase the speaker volume;
that would compensate the attenuation introduced by your ears.)

d. Replace the sinusoidal table with the square wavetable, which has period 4000 and is equal to +1 for
the first half of the period and −1 for the second half (see the FM example on how to do that). Run
the program with frequency f = 1 kHz and f = 200 Hz.

AM Modulation

Here, we use two wavetables to illustrate AM modulation. The picture below shows how one wavetable
is used to generate a modulating amplitude signal, which is fed into the amplitude input of a second
wavetable.

A(n)

y(n)

F

Aenv wenv
wFenv

The AM-modulated signal is of the form:

x(t)= A(t)sin(2πft), where A(t)= Aenv sin(2πfenvt)

The following program, amex.c, shows how to implement this with the function wavgen(). The
envelope frequency is chosen to be 2 Hz and the signal frequency 200 Hz. A common sinusoidal wavetable
sinusoidal buffer is used to generate both the signal and its sinusoidal envelope.

// amex.c - AM example
// ------------------------------------------------------------------------------------

#include "dsplab.h" // DSK initialization declarations and function prototypes
#include <math.h>
#define PI 3.14159265

short xL, xR, yL, yR; // left and right input and output samples from/to codec

#define D 8000 // fmin = fs/D = 8000/8000 = 1 Hz
float w[D]; // wavetable buffer

short fs=8;
float A, f=0.2;
float Ae=10000, fe=0.002;
int q, qe;

float wavgen(int, float *, float, float, int *);

// ------------------------------------------------------------------------------------

void main()
{
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int i;

q=qe=0;

for (i=0; i<D; i++) w[i] = sin(2*PI*i/D); // fill sinusoidal wavetable

initialize();
sampling_rate(fs);
audio_source(LINE);

while(1);
}

// -------------------------------------------------------------------------------------

interrupt void isr()
{

float y;

// read_inputs(&xL, &xR); // inputs not used

A = wavgen(D, w, Ae, fe/fs, &qe);
y = wavgen(D, w, A, f/fs, &q);

yL = yR = (short) y;

write_outputs(yL,yL);

return;
}

// ------------------------------------------------------------------------------------

Although the buffer is the same for the two wavetables, two different circular indices, q,qe are used
for the generation of the envelope amplitude signal and the carrier signal.

Lab Procedure

a. Run and listen to this program with the initial signal frequency of f = 200 Hz and envelope frequency
of fenv = 2 Hz. Repeat for f = 2000 Hz. Repeat the previous two cases with fenv = 20 Hz.

b. Repeat and explain what you hear for the cases:

f = 200 Hz, fenv = 100 Hz
f = 200 Hz, fenv = 190 Hz
f = 200 Hz, fenv = 200 Hz

FM Modulation

The third program, fmex.c, illustrates FM modulation in which the frequency of a sinusoid is time-
varying. The generated signal is of the form:

x(t)= sin
[
2πf(t)t

]
The frequency f(t) is itself varying sinusoidally with frequency fm:

f(t)= f0 +Am sin(2πfmt)

Its variation is over the interval f0−Am ≤ f(t)≤ f0+Am. In this experiment, we choose the modulation
depth Am = 0.3f0, so that 0.7f0 ≤ f(t)≤ 1.3f0. The center frequency is chosen as f0 = 500 Hz and the
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modulation frequency as fm = 1 Hz. Again two wavetables are used as shown below, with the first one
generating f(t), which then drives the frequency input of the second generator.

// fmex.c - FM example
// ------------------------------------------------------------------------------------

#include "dsplab.h" // DSK initialization declarations and function prototypes
#include <math.h>
#define PI 3.14159265

short xL, xR, yL, yR; // left and right input and output samples from/to codec

#define D 8000 // fmin = fs/D = 8000/8000 = 1 Hz
float w[D]; // wavetable buffer

short fs=8;
float A=5000, f=0.5;
float Am=0.3, fm=0.001;
int q, qm;

float wavgen(int, float *, float, float, int *);

// ------------------------------------------------------------------------------------

void main()
{

int i;

q = qm = 0;

for (i=0; i<D; i++) w[i] = sin(2*PI*i/D); // load sinusoidal wavetable
//for (i=0; i<D; i++) w[i] = (i<D/2)? 1 : -1; // square wavetable

initialize();
sampling_rate(fs);
audio_source(LINE);

while(1);
}

// -------------------------------------------------------------------------------------

interrupt void isr()
{

float y, F;

// read_inputs(&xL, &xR); // inputs not used

F = (1 + wavgen(D, w, Am, fm/fs, &qm)) * f/fs; // modulated frequency

y = wavgen(D, w, A, F, &q); // FM signal

yL = yR = (short) y;

write_outputs(yL,yL);

return;
}

// ------------------------------------------------------------------------------------
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Lab Procedure

a. Compile, run, and hear the program with the following three choices of the modulation depth: Am =
0.3f0, Am = 0.8f0, Am = f0, Am = 0.1f0. Repeat these cases when the center frequency is changed to
f0 = 1000 Hz.

b. Replace the sinusoidal wavetable with a square one and repeat the case f0 = 500 Hz, Am = 0.3f0. You
will hear a square wave whose frequency switches between a high and a low value in each second.

c. Keep the square wavetable that generates the alternating frequency, but generate the signal by a sinu-
soidal wavetable. To do this, generate a second sinusoidal wavetable and define a circular buffer for
it in main(). Then generate your FM-modulated sinusoid using this table. The generated signal will
be of the form:

x(t)= sin
[
2πf(t)t

]
, f(t)= 1 Hz square wave

6.11. Ring Modulators and Tremolo

Interesting audio effects can be obtained by feeding the audio input to the amplitude of a wavetable
generator and combining the resulting output with the input, as shown below:

For example, for a sinusoidal generator of frequency F0 = f0/fs, we have:

y(n)= αx(n)+βx(n)cos(2πF0n)= x(n)
[
α+ β cos(2πF0n)

]
(6.2)

The ring modulator effect is obtained by setting α = 0 and β = 1, so that

y(n)= x(n)cos(2πF0n) (6.3)

whereas, the tremolo effect corresponds to α = 1 and β �= 0

y(n)= x(n)+βx(n)cos(2πF0n)= x(n)
[
1+ β cos(2πF0n)

]
(6.4)

The following ISR function implements either effect:

// -------------------------------------------------------------------------------------

interrupt void isr()
{

float x, y;

read_inputs(&xL, &xR);

x = (float) xL;

y = alpha * x + beta * wavgen(D, w, x, f/fs, &q);

yL = yR = (short) y;

write_outputs(yL,yL);

return;
}

// ------------------------------------------------------------------------------------
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Lab Procedure

a. Modify the amex.c project to implement the ring modulator/tremolo effect. Set the carrier frequency
to f0 = 400 Hz and α = β = 1. Compile, run, and play a wavefile with voice in it (e.g., dsummer.)

b. Experiment with higher and lower values of f0.

c. Repeat part (a) when α = 0 and β = 1 to hear the ring-modulator effect.

6.12. Flangers and Vibrato

As discussed in Ref. [1], a flanging effect is implemented as an FIR comb filter with a time-variable delay.

s(n)

x(n) y(n)

z-d
variable
delay d a

π
d

3π
d

2π0 . . .

1+a

1-a

|H(ω)|

ω

If the delay d varies sinusoidally between 0 ≤ d(n)≤ D, with some low frequency fd, then

d(n)= D
2

[
1− cos(ωdn)

]
, ωd = 2πfd

fs
[rads/sample]

and the flanger output is obtained by

y(n)= x(n)+ax(n− d(n))
If the delay d were fixed, the transfer function would be:

H(z)= 1+ az−d

The peaks of the frequency response of the resulting time-varying comb filter, occurring at multiples
of fs/d, and its notches at odd multiples of fs/2d, will sweep up and down the frequency axis resulting
in the characteristic whooshing type sound called flanging. The parameter a controls the depth of the
notches. In units of [radians/sample], the notches occur at odd multiples of π/d.

In the early days, the flanging effect was created by playing the music piece simultaneously through
two tape players and alternately slowing down each tape by manually pressing the flange of the tape reel.

Because the variable delay d can take non-integer values within its range 0 ≤ d ≤ D, the implementa-
tion requires the calculation of the output x(n−d) of a delay line at such non-integer values. This can be
accomplished easily by truncating to the nearest integer, or as discussed in [1], by rounding, or by linear
interpolation. To sharpen the comb peaks one may use a plain-reverb filter with variable delay, that is,

y(n)= x(n)+ay(n− d) , H(z)= 1

1− az−d
Its sample processing algorithm using a circular buffer of maximum order D is:

for each input x do:
d = floor

[(
1− cos(ωdn)

)
D/2

]
sd = ∗(p+ d)
y = x+ asd
∗p = y
−−p

Its translation to C is straightforward and can be incorporated into the ISR function:
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interrupt void isr() // sample processing algorithm - interrupt service routine
{

float sd;

read_inputs(&xL, &xR); // read inputs from codec

x = (float) xL; // work with left input only

d = (1 - cos(wd*n))*D/2; // automatically cast to int, wd = 2*PI*fd/fs
if (++n>=L) n=0; // L = 16000 to allow fd = 0.5 Hz

sd = *pwrap(D,w,p+d); // extract d-th state relative to p
y = x + a*sd; // output
*p = y; // delay-line input
p = pwrap(D,w,--p); // backshift pointer

yL = yR = (short) y;

write_outputs(yL,yR); // write outputs to codec

return;
}

Lab Procedure

a. Create a project for this ISR. You will need to include <math.h> and define PI. ChooseD to correspond
to a 2 msec maximum delay and let fd = 1 Hz and a = 0.7. Run the program and play a wave file
through it (e.g., noflange, dsummer, take5). Repeat when fd = 0.5 Hz.

b. Experiment with other values of D, fd, and a.

c. Rewrite part (a) so that an FIR comb filter is used as shown at the beginning of this section. Play the
same material through the IIR and FIR versions and discuss differences in their output sounds.

d. A vibrato effect can be obtained by using the filter H(z)= z−d with a variable delay. You can easily
modify your FIR comb filter of part (c) so that the output is taken directly from the output of the delay.
For this effect the typical delay variations are about 5 msec and their frequency about 5 Hz. Create a
vibrato project with D = 16 (correspondoing to 2 msec at an 8 kHz rate) and fd = 5 Hz, and play a
wave file through it. Repeat by doubling D and/or fd.

6.13. References

[1] S. J. Orfanidis, Introduction to Signal Processing, online book, 2010, available from:
http://www.ece.rutgers.edu/~orfanidi/intro2sp/

[2] R. Chassaing and D. Reay, Digital Signal Processing and Applications with the TMS320C6713 and
TMS320C6416 DSK, 2nd ed., Wiley, Hoboken, NJ, 2008.

[3] M. J. Caputi, “Developing Real-Time Digital Audio Effects for Electric Guitar in an Introductory Digital
Signal Processing Class,” IEEE Trans. Education, 41, no.4, (1998), available online from:
http://www.ewh.ieee.org/soc/es/Nov1998/01/BEGIN.HTM

[4] F. R. Moore, Elements of Computer Music, Prentice Hall, Englewood Cliffs, NJ, 1990.

[5] C. Roads and J. Strawn, eds., Foundations of Computer Music, MIT Press, Cambridge, MA, 1988.

[6] C. Roads, ed., The Music Machine, MIT Press, Cambridge, MA, 1989.

[7] C. Dodge and T. A. Jerse, Computer Music, Schirmer/Macmillan, New York, 1985.

[8] J. M. Chowning, “The Synthesis of Complex Audio Spectra by Means of Frequency Modulation,” J.
Audio Eng. Soc., 21, 526 (1973). Reprinted in Ref. [5].



6 DIGITAL AUDIO EFFECTS 71

[9] R. Karplus and A. Strong, “Digital Synthesis of Plucked String and Drum Timbres,” Computer Music
J., 7, 43 (1983). Reprinted in Ref. [6].

[10] D. A. Jaffe and J. O. Smith, “Extensions of the Karplus-Strong Plucked-String Algorithm,” Computer
Music J., 7, 56 (1983). Reprinted in Ref. [6].

[11] C. R. Sullivan, “Extending the Karplus-Strong Algorithm to Synthesize Electric Guitar Timbres with
Distortion and Feedback,” Computer Music J., 14, 26 (1990).

[12] J. O. Smith, “Physical Modeling Using Digital Waveguides,” Computer Music J., 16, 74 (1992).

[13] J. A. Moorer, “Signal Processing Aspects of Computer Music: A Survey,” Proc. IEEE, 65, 1108 (1977).
Reprinted in Ref. [5].

[13] M. Kahrs and K. Brandenburg, eds., Applications of Digital Signal Processing to Audio and Acoustics,
Kluwer, Boston, 1998.

[15] Udo Zölzer, ed., DAFX – Digital Audio Effects, Wiley, Chichester, England, 2003. See also the DAFX
Conference web page: http://www.dafx.de/.



7 IIR FILTERING APPLICATIONS 72

Lab 7 – IIR Filtering Applications

The first part of this lab illustrates, via a simple IIR filter example, the principles of signal enhancement
and noise reduction. The second part illustrates the interplay between steady-state and transient re-
sponse and the trade-off between time constant and sharpness of filter specifications. The third part
looks at some examples of dynamics processors for audio signals, such as compressors, limiters, ex-
panders, and noise gates.

7.1. Signal Enhancement and Noise Reduction

Consider a noisy sinusoidal signal of frequency f0 = 500 Hz sampled at a rate of fs = 10 kHz:

x(n)= cos(ω0n)+v(n) (7.1)

where ω0 = 2πf0/fs is the digital frequency and v(n) the noise.
It is desired to design a filter H(ω) to extract the desired signal s(n)= cos(ω0n) from the available

noisy signal x(n). Such a filter must have two properties: First, it must remove the noise component
v(n) as much as possible, and second, it must let the desired signal s(n) pass through unchanged, except
possibly for a time delay.

The second of these requirements is met by designing a bandpass filter whose passband coincides
with the passband of the desired signal. The noise component is typically a white noise signal whose
power is spread equally over the entire frequency axis. After filtering, the overall noise power will be
reduced because only the power that resides within the passband of the filter will survive the filtering
process.

In our example, the passband of the desired signal is just the frequency ω0. Therefore, we must
design a bandpass filter centered at ω0 with unity gain at that frequency, namely, |H(ω0)| = 1. The
simplest possible choice for such a filter is a resonator 2-pole filter with poles at Re±jω0 , where R must
be chosen to be 0 < R < 1 for stability. The transfer function will be of the form

H(z)= G
(1−Rejω0z−1)(1−Re−jω0z−1)

= G
1+ a1z−1 + a2z−2

(7.2)

where a1 = −2R cos(ω0) and a2 = R2. The gain G is fixed so as to ensure |H(ω0)| = 1. This gives the
following expression for G:

G = (1−R)(1− 2R cos(2ω0)+R2)1/2 (7.3)

In the time domain, the filter is described by the difference equation:

y(n)= −a1y(n− 1)−a2y(n− 2)+Gx(n) (7.4)

The impulse response of the filter can be shown to be:

h(n)= G
sin(ω0)

Rn sin(ω0n+ω0), n = 0,1,2, . . . (7.5)

Finally, the magnitude response squared can be shown to be:

|H(ω)|2 = G2

[1− 2R cos(ω−ω0)+R2][1− 2R cos(ω+ω0)+R2]
(7.6)

A block diagram implementing the difference equation (7.4) and the transfer function (7.2) is shown
below:
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y(n)

z
-1

z
-1

x(n)
G

-a1

w1(n) = y(n-1)

w2(n) = y(n-2)
-a2

The best way to program the difference equation (7.4) is via its sample processing algorithm. To
derive it, define the delayed output signals

w1(n)= y(n− 1), w2(n)= y(n− 2)

Then, Eq. (7.4) reads

y(n)= −a1w1(n)−a2w2(n)+Gx(n) (7.7a)

Once y(n) is computed, the values of w1(n) and w2(n) may be updated to the next time instant by

w2(n+ 1) = w1(n)

w1(n+ 1) = y(n)
(7.7b)

These are easily derived from their definition, that is,w2(n+1)= y(n+1−2)= y(n−1)= w1(n) and
w1(n+ 1)= y(n+ 1− 1)= y(n). Equations (7.7), lead to the following simple computational algorithm:

For each input sample x do:
y = −a1w1 − a2w2 +Gx
w2 = w1

w1 = y
(7.8)

Lab Procedure

First, prove Eqs. (7.3) through (7.6). Then, for each of the three values R = 0.95, R = 0.97, R = 0.99, do
the following:

a. Plot the magnitude response squared |H(f)|2 over the frequency range 0 ≤ f ≤ 5 kHz. Suggestion:
For plotting purposes, you may compute |H(f)|2 at 500 equally-spaced frequencies in that range.
Note: ω = 2πf/fs.

b. Compute the impulse responseh(n) of the filter by sending a unit impulse at the input of the difference
equation (7.4) and iterating forward in time (with zero initial conditions). Compare the computed
values with the values obtained from the formula (7.5). Plot the quantity h(n)/G versus n in the
range 0 ≤ n ≤ 300. Use the vertical range of [−4,4] for your plot.

c. Using MATLAB’s built-in random-number generator function, randn, generate 300 samples of the white
noise signal v(n) and the corresponding noisy sinusoid x(n) of Eq. (7.1). For example, to generate a
row of 300 zero-mean unit-variance samples, do:

seed = 12345; % may change this to any integer
randn(’state’,seed); % initialize the generator
v = randn(1,300); % v is a row vector of length 300
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Then, using the sample processing algorithm (7.8), filter x(n) through the filter H(z) and compute
and plot the resulting output signal y(n) versus n in the range 0 ≤ n ≤ 300.

On the same graph, place the desired noise-free signal s(n). Again, use vertical range of [−4,4].
Discuss the trade-off between the sharpness of the bandpass filter (i.e., the goodness of its passband)
and the speed of response (i.e., how quickly you reach steady-state) in the filtered signal.

d. Filter the noise signal v(n) separately through this bandpass filter and compute the corresponding
filtered output noise, say yv(n). On two separate graphs, plot v(n) and yv(n) versus n. Explain why
the filtered noise looks more like a sinusoid than noise.

e. It can be shown [1] that for a zero-mean white-noise input v(n) of variance σ2
v going through a stable

causal filter h(n), the output noise signal yv(n) will have variance σ2
yv given by the ratio:

σ2
yv

σ2
v
=

∞∑
n=0

h2(n) (7.9)

The right-hand-side is referred to as the “noise-reduction-ratio” (NRR) because it quantifies the effect
of the filter on the input noise. For the particular impulse response of Eq. (7.5), prove that the NRR is
given by,

∞∑
n=0

h2(n)= 1+R2

(1+R)(1+R2 + 2R cosω0)
(7.10)

[Hint: Write h(n) in the form h(n)= A1pn1 +A2pn2 , where p1, p2 are the filter poles, then, square and
sum the resulting three terms using the infinite geometric series.]

Using the particular sequences v(n), yv(n) that you generated in part (d), and the built-in MATLAB
standard-deviation function, std(), calculate an estimated value for the left-hand-side of Eq. (7.9), and
compare it with the theoretical value of Eq. (7.10).
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7.2. Transient and Steady-State Properties

In Chap. 6 of Ref. [1], the sinusoidal response of a second-order filter with poles at p1, p2 is shown to
have the following exact form, for n ≥ 0:

x(n)= cos(ω0n) ⇒ y(n)= |H(ω0)| cos(ω0n+ θ0)+B1pn1 + B2pn2

where the phase shift θ0 is value of the phase response of the filter at ω0, and B1, B2 depend on the
particulars of the transfer function. In this part, you will study how well the steady-state term represents
the output of a short-duration signal and the effect of the transient terms on the time constant of the
filter.

Consider the following signal of duration of six seconds defined as three concatenated two-second
unity-amplitude sinusoidal signals of frequencies f1 = 4, f2 = 8, and f2 = 12 Hz:

x(t)=

⎧⎪⎪⎨
⎪⎪⎩

cos(2πf1t), 0 ≤ t < 2 sec

cos(2πf2t), 2 ≤ t < 4 sec

cos(2πf3t), 6 ≤ t < 6 sec

This signal is sampled at a rate of fs = 400 samples/sec. The following two filters, operating at the
rate fs, are notch filters that have been designed to have a notch at f2 = 8 Hz, therefore, they will knock
out the middle portion of x(t):

H1(z) = 0.969531− 1.923772z−1 + 0.969531z−2

1− 1.923772z−1 + 0.939063z−2

H2(z) = 0.996088− 1.976468z−1 + 0.996088z−2

1− 1.936468z−1 + 0.992177z−2

The first filter has a 3-dB width of Δf = 4 Hz, and the second, a width of Δf = 0.5 Hz. The magnitude
responses |H(f)| are shown below. We will learn in Chap. 11 how to design such filters. They have been
designed by the MATLAB function parmeq from the text [1], invoked with the parameters:

[a,b] = parmeq(1, 0, 1/sqrt(2), 2*pi*f2/fs, 2*pi*Df/fs);

where a,b are the denominator and numerator filter coefficient row vectors. In this experiment, we
study the interplay between notch width and transient time constant. The first filter has a wide width
and a short time constant, whereas the second filter has a narrow width and a long time constant. The
notch filters designed by parmeq have the following general form, derive in Ch. 11 of [1]:

H(z)=
(

1

1+ β

)
1− 2 cosω0 z−1 + z−2

1− 2

(
cosω0

1+ β

)
z−1 +

(
1− β
1+ β

)
z−2

(7.11)

where the notch frequency and 3-dB notch width are f0 and Δf and

ω0 = 2πf0
fs

, Δω = 2πΔf
fs

, β = tan
(
Δω

2

)
(7.12)

Lab Procedure

a. Draw the canonical realization of each filter and write down its sample processing algorithm using
linear delay-line buffers. Because these are second-order sections, they may be implemented using
the functions sos.c, or, sos.m of [1].

b. Calculate the 40-dB time constants of both of these filters in seconds.

c. Let x(tn) denote the sampled input x(t). Plot x(tn) versus tn over the period of 6 seconds. Using the
function sos, filter this input through H1(z) and plot the output y(tn) versus tn.
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d. Notice how quickly the middle portion of x(tn) is notched out. Notice also that the f1 and f3 portions
no longer have unity-amplitudes. Verify that the (steady-state) amplitudes are given respectively by
the magnitude response numbers |H1(f1)| and |H1(f3)|.
(You can do that either by plotting horizontal lines of such heights |H1(f1)| and |H1(f3)| over the
corresponding signal portions, or, by using MATLAB’s function max to determine the maximum values
of the two portions and then comparing them with the calculated response values.)

Do you observe a phase shift? Is the observed transient response consistent with the calculation of
the time constant of part (b)?

e. Repeat questions (c,d) for the second filter H2(z).

f. On two separate graphs, plot the magnitude responses |H1(f)| and |H2(f)| versus f in the range
0 ≤ f ≤ 20 Hz. The expected graphs are shown below. The values at f1 and f3 have been indicated on
these graphs.

g. For each filter, calculate the corresponding left and right 3-dB frequencies, say, fL and fR, and indicate
them on your graphs of part (f) by connecting them with a horizontal segment at the 3-dB level. Verify
that the difference fR − fL is equal to the given 3-dB widths of 4 Hz and 0.5 Hz, respectively.

(This is a hard question. You can determine these frequencies analytically if you read Sect. 11.3 of the
text, otherwise, you can determine them by trial and error.)

h. Next, consider the following two peaking filters, which are complementary to the above notch filters.
They have a peak at f2 and the same 3-dB widths of 4 and 0.5 Hz, respectively:

H1(z) = 0.030469(1− z−2)
1− 1.923772z−1 + 0.939063z−2

H2(z) = 0.003912(1− z−2)
1− 1.976468z−1 + 0.992177z−2

They can also be designed with the parmeq function:

[a,b] = parmeq(0, 1, 1/sqrt(2), 2*pi*f2/fs, 2*pi*Df/fs);

The general design equations for such filters are as follows, where f0 and Δf are the peak frequency
and 3-dB peak width:

H(z)=
(

β
1+ β

)
1− z−2

1− 2

(
cosω0

1+ β

)
z−1 +

(
1− β
1+ β

)
z−2

(7.13)

where

ω0 = 2πf0
fs

, Δω = 2πΔf
fs

, β = tan
(
Δω

2

)

Repeat questions (a-g) for these filters. The peaking filter is supposed to extract the middle portion of
the input and remove the f1 and f3 portions. Discuss how well each filter accomplishes this goal and
correlate what you see in the time-dependence of the output signals with the magnitude responses of
the peaking filters.

In Lab-8 you will work with similar notch/peaking filters, as well as parametric audio equalizer filters,
and program them on the C6713 processor.



7 IIR FILTERING APPLICATIONS 77

0 1 2 3 4 5 6
−2

−1

0

1

2
 Input Signal

t  (sec)

x(
t)

0 1 2 3 4 5 6
−2

−1

0

1

2
 Notch Filter Output, Δ f = 4

t  (sec)

y(
t)

0 1 2 3 4 5 6
−2

−1

0

1

2
 Notch Filter Output, Δ f = 0.5

t  (sec)

y(
t)

0 1 2 3 4 5 6
−2

−1

0

1

2
 Peaking Filter Output, Δ f = 4

t  (sec)

y(
t)

0 1 2 3 4 5 6
−2

−1

0

1

2
 Peaking Filter Output, Δ f = 0.5

t  (sec)

y(
t)

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

 Notch Filter Responses

f  (Hz)

|
H

(f
)|

3 dB

 Δ f = 4
 Δ f = 0.5

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

 Peaking Filter Responses

f  (Hz)

|
H

(f
)|

3 dB
 Δ f = 4
 Δ f = 0.5



7 IIR FILTERING APPLICATIONS 78

7.3. Compressors, Limiters, Expanders, and Gates

This experiment is based on Sect. 8.2.5 of Ref. [1]. See Refs. [94–151] included therein for further infor-
mation on dynamics processors, digital audio effects, and computer music in general. That section is
reproduced here.

Compressors, limiters, expanders, and gates have a wide variety of uses in audio signal process-
ing. Compressors attenuate strong signals; expanders attenuate weak signals. Because they affect the
dynamic range of signals, they are referred to as dynamics processors.

Compressors are used mainly to decrease the dynamic range of audio signals so that they fit into the
dynamic range of the playback or broadcast system; for example, for putting a recording on audio tape.
But there are several other applications, such as announcers “ducking” background music, “de-essing”
for eliminating excessive microphone sibilance, and other special effects [2].

Expanders are used for increasing the dynamic range of signals, for noise reduction, and for various
special effects, such as reducing the sustain time of instruments [2].

A typical steady-state input/output relationship for a compressor or expander is as follows, in abso-
lute and decibel units:

y = y0

(
x
x0

)ρ
⇒ 20 log10

(
y
y0

)
= ρ20 log10

(
x
x0

)
(7.14)

where x is here a constant input, x0 a desired threshold, and ρ defines the compression or expansion
ratio. A compressor is effective only for x ≥ x0 and has ρ < 1, whereas an expander is effective for
x ≤ x0 and has ρ > 1. Fig. 7.1 shows these relationships in dB, so that a 1 dB change in the input causes
ρ dB change in the output, that is, ρ is the slope of the input/output straight lines.

ρ=1

ρ<1

ρ<<1y0 y0

x0 x0

ρ=1

ρ>1 ρ>>1

compressor

(limiter)

(gate)

expander

xdB xdB

ydB ydB

Fig. 7.1 Input/output relationship of compressor or expander.

Typical practical values are ρ = 1/4–1/2 for compression, and ρ = 2–4 for expansion. Limiters are
extreme forms of compressors that prevent signals from exceeding certain maximum thresholds; they
have very small slope ρ 
 1, for example, ρ = 1/10. Noise gates are extreme cases of expanders that
infinitely attenuate weak signals, and therefore, can be used to remove weak background noise; they have
very large slopes ρ� 1, for example, ρ = 10.

The I/O equation (7.14) is appropriate only for constant signals. Writing y = Gx, we see that the
effective gain of the compressor is a nonlinear function of the input of the form G = G0xρ−1. For time-
varying signals, the gain must be computed from a local average of the signal which is representative of
the signal’s level.

A model of a compressor/expander is shown in Fig. 7.2. The level detector generates a control signal
cn that controls the gain Gn of the multiplier through a nonlinear gain processor. Depending on the type
of compressor, the control signal may be (1) the instantaneous peak value |xn|, (2) the envelope of xn, or
(3) the root-mean-square value of xn. A simple model of the envelope detector is as follows:

cn = λcn−1 + (1− λ)|xn| (7.15)

The difference equation for cn acts as a rectifier followed by a lowpass filter. The time constant of
this filter, neff = ln ε/ lnλ, controls the time to rise or fall to a new input level. The time to rise to a level
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above the threshold (where the compressor is active) is called the attack time constant. This time may
be increased further by introducing a delay D in the detector’s input, that is, |xn−D|. The time to drop
to a level below the threshold (where the compressor is inactive) is called the release time.

level
detector

gain
processor

xn

xn

= control signalcn

yn = Gn xn

= gainGn

Fig. 7.2 Compressor/expander dynamics processor.

Forλ = 0, Eq. (7.15) becomes an instantaneous peak detector. This case is useful when the compressor
is used as a limiter. If in Eq. (7.15) the absolute value |xn| is replaced by its square, |xn|2, the control
signal will track the mean-square value of the input.

The gain processor is a nonlinear function of the control signal imitating the I/O equation (7.14). For
a compressor, we may define the gain function to be:

f(c)=
{
(c/c0)ρ−1, if c ≥ c0

1, if c ≤ c0
(7.16)

where c0 is a desired threshold and ρ < 1. For an expander, we have ρ > 1 and:

f(c)=
{

1, if c ≥ c0

(c/c0)ρ−1, if c ≤ c0
(7.17)

Thus, the gain Gn and the final output signal yn are computed as follows:

Gn = f(cn)
yn = Gnxn

(7.18)

Compressors/expanders are examples of adaptive signal processing systems, in which the filter coef-
ficients (in this case, the gain Gn) are time-dependent and adapt themselves to the nature of the input
signals. The level detector (7.15) serves as the “adaptation” equation and its attack and release time con-
stants are the “learning” time constants of the adaptive system; the parameter λ is called the “forgetting
factor” of the system.

As a simulation example, consider a sinusoid of frequency ω0 = 0.15π rads per sample whose
amplitude changes to the three values A1 = 2, A2 = 4, and A3 = 0.5 every 200 samples, as shown in
Fig. 7.3, that is, xn = An cos(ω0n), with:

An = A1(un − un−200)+A2(un−200 − un−400)+A3(un−400 − un−600)

A compressor is used with parameters λ = 0.9, c0 = 0.5, and ρ = 1/2 (that is, 2:1 compression ratio).
The output yn is shown in Fig. 7.3; the control signal cn and gain Gn in Fig. 7.4.

The first two sinusoids A1 and A2 lie above the threshold and get compressed. The third one is left
unaffected after the release time is elapsed. Although only the stronger signals are attenuated, the overall
reduction of the dynamic range will be perceived as though the weaker signals also got amplified. This
property is the origin of the popular, but somewhat misleading, statement that compressors attenuate
strong signals and amplify weak ones.

Jumping between the steady-state levels A1 and A2 corresponds to a 6 dB change. Because both
levels get compressed, the steady-state output levels will differ by 6ρ = 3 dB. To eliminate some of
the overshoots, an appropriate delay may be introduced in the main signal path, that is, computing the
output by yn = Gnxn−d.
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Fig. 7.3 Compressor input and output signals (ρ = 1/2, λ = 0.9, c0 = 0.5).

Fig. 7.4 Compressor control signal and gain (ρ = 1/2, λ = 0.9, c0 = 0.5).

Another improvement is to smooth further the nonlinear gain gn = f(cn) by a lowpass filter, such as
an L-point smoother, so that the final gain is computed by:

Gn = 1

L
[
gn + gn−1 + · · · + gn−L+1

]
(7.19)

The overall model for a compressor/expander can be summarized as the following sample processing
algorithm, expressed with the help of the routine fir:

for each input sample x do:
c = λc1 + (1− λ)|x|
c1 = c
G = fir

(
M,h,w, f(c)

)
y = Gx

(7.20)

where h is the impulse response of the L-point smoother, M = L− 1 is its order, w is its L-dimensional
delay-line buffer, and c1 represents cn−1.

Figure 7.5 shows the output signal and compressor gain using a seven-point smoother. The initial
transients in Gn are caused by the input-on transients of the smoother.

Figure 7.6 shows the output signal and compressor gain of a limiter, which has a 10:1 compression
ratio, ρ = 1/10, and uses also a seven-point smoother. The threshold was increased here to c0 = 1.5, so
that only A2 lies above it and gets compressed.

Figure 7.7 shows an example of an expander, with parameters λ = 0.9, c0 = 0.5, ρ = 2, and gain func-
tion computed by Eq. (7.17) and smoothed by a seven-point smoother. Only A3 lies below the threshold
and gets attenuated. This causes the overall dynamic range to increase. Although the expander affects
only the weaker signals, the overall increase in the dynamic range is perceived as making the stronger
signals louder and the weaker ones quieter.



7 IIR FILTERING APPLICATIONS 81

Fig. 7.5 Compressor output with smoothed gain (ρ = 1/2, λ = 0.9, c0 = 0.5).

Fig. 7.6 Limiter output with smoothed gain (ρ = 1/10, λ = 0.9, c0 = 1.5).

Fig. 7.7 Expander output and gain (ρ = 2, λ = 0.9, c0 = 0.5).

Finally, Fig. 7.8 shows an example of a noise gate implemented as an expander with a 10:1 expansion
ratio, ρ = 10, having the same threshold as Fig. 7.7. It essentially removes the sinusoid A3, which might
correspond to unwanted noise.

It is possible to modify the algorithm (7.20) to allow different attack and release time constants [3,4].
However, in this lab we will assume they are the same.
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Fig. 7.8 Noise gate output and gain (ρ = 10, λ = 0.9, c0 = 0.5).

Lab Procedure

a. Consider a sinusoid x(t)= A cos(2πft). Show that its mean-square average over one period, and its
absolute average are given by:

x2(t) = 1

2
A2 , |x(t)| = 2

π
A (7.21)

Thus, the peak values [A1,A2,A3]= [2, 4, 0.5] of the three sinusoidal segments will correspond to
the following mean absolute values, which will be compared to the assumed compressor threshold:

[A1, A2, A3]= [2, 4, 0.5] ⇒ 2

π
[A1, A2, A3]= [1.27, 2.55, 0.32] (7.22)

b. Write MATLAB programs to reproduce all the graphs in Figures 7.3–7.8. Include the graphs and your
MATLAB code in your report.

Your programs must implement Eq. (7.20) on a sample by sample basis, and therefore, you may not
use MATLAB’s built-in function filter(), but you may use the function, fir.m, of the text [1], or
write your own version.

Are the plots of the control signal c(n), which measures the average value of |x(n)|, consistent with
the values of Eq. (7.22)?

c. Redo the compressor plots of Figs. 7.3–7.4, when ρ = 1/4, with the other parameters staying the same.

d. Redo the compressor plots of Figs. 7.3–7.4, when the threshold is set to c0 = 1.3, with ρ = 1/2 and
λ = 0.9. Explain why only the middle segment gets compressed.
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Electronic Musician, 7, no. 3, 56 (1991).

[3] G. W. McNally, “Dynamic Range Control of Digital Audio Signals,” J. Audio Eng. Soc., 32, 316 (1984),
available online from http://www.bbc.co.uk/rd/publications/rdreport_1983_17.shtml

[4] Udo Zölzer, ed., DAFX – Digital Audio Effects, Wiley, Chichester, England, 2003. See also the DAFX
Conference web page: http://www.dafx.de/.



8 NOTCH, PEAK, AND EQUALIZER FILTERS 83

Lab 8 – Notch, Peak, and Equalizer Filters

8.1. Periodic Notch Filters

In this experiment, we demonstrate the use of filtering for canceling periodic interference. The input
signal is of the form:

x(n)= s(n)+v(n)
where s(n) is the microphone or line input and v(n) a periodic interference signal generated internally
by the DSP using a wavetable generator.

When the noise is periodic, its energy is concentrated at the harmonics of the fundamental frequency,
f1, 2f1, 3f1, and so on. To cancel the entire noise component, we must use a filter with multiple notches
at these harmonics.

As discussed in Section 8.3.2 of the text [1], a simple design can be given when the period of the noise
is an integral multiple of the sampling period, that is, T1 = DT, which implies that the fundamental
frequency f1 = 1/T1 and its harmonics will be:

f1 = fs
D
, fk = kf1 = k fsD, k = 0,1,2, . . . (8.1)

or, in units of radians per sample:

ω1 = 2π
D
, ωk = kω1 = 2πk

D

These are recognized as the D-th root-of-unity frequencies. The corresponding notch filter, designed
by Eqs. (8.3.26) and (8.3.27) of the text [1], has the form:

H(z)= b 1− z−D
1− az−D (8.2)

where the parameters a,b depend on the 3-dB notch width Δf as follows:

β = tan
(
DΔω

4

)
, Δω = 2πΔf

fs
, a = 1− β

1+ β , b = 1

1+ β (8.3)

The numerator of Eq. (8.2) has zeros, notches, at the Dth root-of-unity frequencies (8.1). To avoid
potential overflows, we use the transposed realization of this transfer function. Its block diagram and
sample processing algorithm are shown below:

x y

sD

s0

b

a−1

z-D

for each input x do:
sD = ∗(p+D)
y = bx+ sD
∗p = s0 = ay − bx
−−p

A quick way to understand the transposed realization is to write:

H(z)= Y(z)
X(z)

= b 1− z−D
1− az−D ,

from where we obtain the I/O equation on which the block diagram is based:

Y(z)= bX(z)+z−D(aY(z)−bX(z))
In the experiment, we take the fundamental period to be 800 Hz and the sampling rate 8 kHz. Thus,

the period D is:
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D = fs
f1
= 8000 Hz

800 Hz
= 10

The width of the notches is taken to be Δf = 50 Hz. The design equations (8.3.27) give the parameter
values b = 0.91034, a = 0.82068. The magnitude response of this filter plotted over the right-half of the
Nyquist interval is shown below, together with a magnified view of the notch width at 800 Hz:

Using a square wavetable, the program multinotch.c listed below generates a square wave of period
D = 10 and adds it to the microphone or line input. The resulting signal is then filtered by the above
multi-notch filter, removing the periodic noise. The filtering operation can be bypassed in order to hear
the desired signal plus the noise. The particular square wave of period 10 generated by the program has
the form:

v(n)= [1,1,1,1,1,−1,−1,−1,−1,−1︸ ︷︷ ︸
one period

, . . . ]

It contains only odd harmonics. As discussed in Example 1.4.6 and Section 9.7 of the text [1], all
harmonics that lie outside the Nyquist interval are wrapped inside the interval and get aliased with the
harmonics within the interval. Thus, the above periodic signal contains only the harmonicsω1 = 2π/10,
ω3 = 3ω1 = 6π/10, andω5 = 5ω1 = 10π/10 = π. In fact, we can show using the techniques of Section
9.7 of the text [1] that the signal v(n) can be expressed in the alternative sinusoidal form, obtained from
the 10-point DFT of one period of the square wave:

v(n)= 0.4

sin
(ω1

2

) sin
(
ω1n+ ω1

2

)+ 0.4

sin
(ω3

2

) sin
(
ω3n+ ω3

2

)+ 0.2 cos(ω5n)

Thus, the filter acts to remove these three odd harmonics. It may appear puzzling that the Fourier se-
ries expansion of this square wave does not contain exclusively sine terms, as it would in the continuous-
time case. This discrepancy can be traced to the discontinuity of the square wave. In the continuous-time
case, any finite Fourier series sinusoidal approximation to the square wave will vanish at the discontinuity
points. Therefore, a more appropriate discrete-time square wave might be of the form:

v(n)= [0,1,1,1,1,0,−1,−1,−1,−1︸ ︷︷ ︸
one period

, . . . ]

Again, using the techniques of Section 9.7, we find for its inverse DFT expansion:

v(n)= 0.4

tan
(ω1

2

) sin(ω1n)+ 0.4

tan
(ω3

2

) sin(ω3n)

where now only pure sines (as opposed to sines and cosines) appear. The difference between the above
two square waves represents the effect of the discontinuities and is given by

v(n)= [1,0,0,0,0,−1,0,0,0,0, . . . ]
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Its discrete Fourier series is the difference of the above two and contains only cosine terms:

v(n)= 0.4 cos(ω1n)+0.4 cos(ω3n)+0.2 cos(ω5n)

The following program, multinotch.c, implements this example:

// multinotch.c - periodic notch filter
// ------------------------------------------------------------------------------------

#include "dsplab.h" // DSK initialization declarations and function prototypes
#include <math.h>
#define PI 4*atan(1.0)

short xL, xR, yL, yR; // left and right input and output samples from/to codec
int on = 1; // turn filter on, use with GEL file on.gel

#define D 10
float w[D+1], *p;
float v[D] = {1,1,1,1,1,-1,-1,-1,-1,-1}; // square wavetable of period D
//float v[D] = {0,1,1,1,1,0,-1,-1,-1,-1}; // alternative square wavetable
float A = 1000; // noise strength
int q; // square-wavetable circular index

float fs=8000, f1=800, Df=50; // fundamental harmonic and notch width in Hz
float be, Dw, a, b; // filter parameters

// ------------------------------------------------------------------------------------

void main()
{

int i;

for (i=0; i<=D; i++) w[i] = 0; // initialize filter’s buffer
p = w; // initialize circular pointer
q = 0; // initialize square wavetable index

Dw = 2*PI*Df/fs; // design multinotch filter
be = tan(D*Dw/4);
a = (1-be)/(1+be); b = 1/(1+be); // be=0.098491, b=0.910339, a=0.820679

initialize(); // initialize DSK board and codec, define interrupts
sampling_rate(8); // possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz
audio_source(LINE); // LINE or MIC for line or microphone input

while(1); // keep waiting for interrupt, then jump to isr()
}

// -------------------------------------------------------------------------------------

interrupt void isr()
{

float x,y,sD;

read_inputs(&xL, &xR);

x = (float)(xL); // work with left input only
x = x + A*v[q]; // add square-wave noise
q = qwrap(D-1,++q); // wrap q mod-D, noise period is D

if (on) {
sD = *pwrap(D,w,p+D); // filter’s transposed realization
y = b*x + sD;
*p = a*y - b*x;
p = pwrap(D,w,--p);

yL = (short)(y); // output with filtered noise
}
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else
yL = (short) x; // output noisy input

write_outputs(yL,yL);

return;
}

// ------------------------------------------------------------------------------------

Lab Procedure

a. Compile and run the program with the filter off. Play a wave file or speak into the mike and listen to
the interference. Repeat with the filter on. Repeat with the filter on, but using the second wavetable.
Turn off the interference by setting its amplitude A = 0 and listen to the effect the filter has on the
line or mike input. [You may use the GEL file, on.gel, to turn the filter on and off in real time.]

b. Estimate the 60-dB time constant (in seconds) of the filter in part (a). Redesign the notch filter so that
its 3-dB width is now Δf = 1 Hz. What is the new time constant? Run the new filter and listen to the
filter transients as the steady-state gradually takes over and suppresses the noise. Turn off the square
wave, recompile and run with MIC input. Listen to the impulse response of the filter by lightly tapping
the mike on the table. Can you explain what you are hearing?

c. Generate a square wave with a fundamental harmonic of 1000 Hz, but leave the filter (with 50 Hz width)
unchanged (you will need to use two different D’s for that). Repeat part (a). Now the interference
harmonics do not coincide with the filter’s notches and you will still hear the interference.

d. Design the correct multi-notch filter that should be used in part (c). Run your new program to verify
that it does indeed remove the 1000 Hz interference.

8.2. Single-Notch Filters

A single-notch filter with notch frequency f0 and 3-dB notch width Δf can be designed using Eq. (11.3.5)
of the text [1], and implemented by the MATLAB function parmeq.m of [1]:

H(z)=
(

1

1+ β

)
1− 2 cosω0 z−1 + z−2

1− 2

(
cosω0

1+ β

)
z−1 +

(
1− β
1+ β

)
z−2

(8.4)

where

ω0 = 2πf0
fs

, Δω = 2πΔf
fs

, β = tan
(
Δω

2

)
(8.5)

Such filters may be realized in their canonical form (also known as direct-form-2) using linear delay-
line buffers as shown below:

for each x do:
w0 = x− a1w1 − a2w2

y = b0w0 + b1w1 + b2w2

w2 = w1

w1 = w0

(8.6)

The block diagram implements the second-order transfer function:
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H(z)= b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2

Circular buffers and other realization forms, such as the transposed form, are possible, but the canon-
ical realization will suffice for these experiments.

The following program, notch0.c, implements such a notch filter. The program takes as inputs the
parameters fs, f0, Δf , performs the design within main() before starting filtering, and implements the
filter in its canonical form (8.6) within its isr() function:

// notch0.c - single notch filter
// ------------------------------------------------------------------------------------

#include "dsplab.h" // DSK initialization declarations and function prototypes
#include <math.h>
#define PI 4*atan(1.0)

short xL, xR, yL, yR; // left and right input and output samples from/to codec

float w[3], a[3], b[3]; // filter state vector and coefficients
float be, c0; // filter parameters

int on = 1;

float fs=8000, f0=800, Df=50; // notch frequency and width in Hz

// ------------------------------------------------------------------------------------

void main()
{

c0 = cos(2*PI*f0/fs); // design notch filter
be = tan(PI*Df/fs);
a[0] = 1; a[1] = -2*c0/(1+be); a[2] = (1-be)/(1+be);
b[0] = 1/(1+be); b[1] = -2*c0/(1+be); b[2] = 1/(1+be);
w[1] = w[2] = 0; // initialize filter states

initialize(); // initialize DSK board and codec, define interrupts
sampling_rate(8); // possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz
audio_source(LINE); // LINE or MIC for line or microphone input

while(1); // keep waiting for interrupt, then jump to isr()
}

// -------------------------------------------------------------------------------------

interrupt void isr()
{

float x, y; // filter input & output

read_inputs(&xL, &xR);

if (on) {
x = (float)(xL); // work with left input only

w[0] = x - a[1]*w[1] - a[2]*w[2];
y = b[0]*w[0] + b[1]*w[1] + b[2]*w[2];
w[2] = w[1]; w[1] = w[0];

yL = (short)(y);
}

else
yL = xL;

write_outputs(yL,yL);
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return;
}

// ------------------------------------------------------------------------------------

The canonical realization can be implemented by its own C function, can.c, that can be called within an
ISR. The following version is based on that given in the text [1]:

// ----------------------------------------------------------------
// can.c - IIR filtering in canonical form
// usage: y = can(M, b, a, w, x);
// ----------------------------------------------------------------

float can(int M, float *b, float *a, float *w, float x)
{

int i;
float y = 0;

w[0] = x; // current input sample

for (i=1; i<=M; i++) // input adder
w[0] -= a[i] * w[i];

for (i=0; i<=M; i++) // output adder
y += b[i] * w[i];

for (i=M; i>=1; i--) // reverse updating of w
w[i] = w[i-1];

return y; // current output sample
}
// ----------------------------------------------------------------

Thus, the ISR for notch0.c can be replaced by

// -----------------------------------------------------------

interrupt void isr()
{

float x, y; // filter input & output

read_inputs(&xL, &xR);

x = (float)(xL); // work with left input only

if (on) {
y = can(2, b, a, w, x); // filter using canonical form
yL = (short) y;
}

else
yL = (short) x;

write_outputs(yL,yL);

return;
}

// -----------------------------------------------------------
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Lab Procedure

a. Compile and run the program notch0.c. Using MATLAB, generate a three-second signal consisting of
three one-second portions of 1500, 800, 1500 Hz sinusoids, e.g., using the code,

f1 = 1500; f2 = 800; f3 = 1500; fs = 8000;
L=8000; n = (0:L-1);
A = 1/5;

x1 = A * cos(2*pi*n*f1/fs);
x2 = A * cos(2*pi*n*f2/fs);
x3 = A * cos(2*pi*n*f3/fs);

sound([x1,x2,x3], fs);

and send it to the LINE input of the DSK. Run the program with the filter off and then on to hear the
filtering action. Redesign the filter so that the notch width is Δf = 2 Hz and replay the above signal
with the filter on/off, and listen to the audible filter transients.

b. Redo part (a), but now use the function, can.c, within the ISR.

8.3. Double-Notch Filters

Using a single-notch filter with notch frequency at f1 = 800 Hz in the square-wavetable experiment,
instead of the multi-notch filter, would not be sufficient to cancel completely the square wave interference.
The third and higher harmonics will survive it. Assuming the same width Δf = 50 Hz, the transfer
function of Eq. (8.4) becomes explicitly:

H1(z)= 0.980741− 1.586872z−1 + 0.980741z−2

1− 1.586872z−1 + 0.961481z−2
(8.7)

A similar design with a notch at f3 = 3f1 = 2400 Hz gives:

H3(z)= 0.980741+ 0.606131z−1 + 0.980741z−2

1+ 0.606131z−1 + 0.961481z−2
(8.8)

The cascade of the two is a fourth-order filter of the form H13(z)= H1(z)H3(z) with coefficients ob-
tained by convolving the coefficients of filter-1 and filter-3:

H13(z)= 0.961852(1− z−1 + z−2 − z−3 + z−4)
1− 0.980741z−1 + 0.961111z−2 − 0.942964z−3 + 0.924447z−4

(8.9)

The magnitude responses of the two single-notch filters H1(z), H3(z) and of the double-notch filter
H13(z) are shown below:
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Lab Procedure

a. Modify the program, multinotch.c, so that it uses only the filter H1(z) that has a single notch at
f1 = 800 Hz. Run it with the filter off and then turn the filter on. Do you hear the partial suppression
of the interference?

b. Next, modify the program to use both filters H1(z) and H3(z) in cascade. This can be implemented
by the following ISR function:

// ---------------------------------------------------------------

interrupt void isr()
{

float x, y, y1; // filter inputs & outputs

read_inputs(&xL, &xR);

x = (float)(xL); // work with left input only
x = x + A*v[q]; // add square-wave noise
q = qwrap(D-1,++q); // update square-wavetable index

if (on) {
y1 = can(2, b1, a1, w1, x); // filter noisy input by H1
y = can(2, b3, a3, w3, y1); // filter output of H1 by H3
yL = (short) y;
}

else
yL = (short) x; // output noisy input

write_outputs(yL,yL);

return;
}

// ---------------------------------------------------------------

where b1,a1,w1 are the numerator, denominator, and state vectors of filter H1(z), and similarly,
b3,a3,w3 are those of filter H3(z). These coefficients must be designed within main().

Run your program using the first square-wavetable choice. Listen to the suppression of the harmonics
at f1 and f3. However, the harmonic at f5 = 4000 Hz (i.e., the Nyquist frequency) can still be heard.

c. Next, run your program using the second square-wavetable choice. You will hear no interference at all
because your square wave now has harmonics only at f1 and f3 which are canceled by the double-notch
filter.

d. Modify your program to use the combined 4th-order filter of Eq. (8.9) implemented by a single call to
can (with M = 4). Verify that it behaves similarly to that of part (c). You may use the approximate
numerical values of the filter coefficients shown in Eq. (8.9).

e. Can you explain theoretically why in the numerator ofH13(z) you have the polynomial with alternating
coefficients (1− z−1 + z−2 − z−3 + z−4)?

8.4. Peaking Filters

Peaking or resonator filters are used for enhancing a desired sinusoidal component. They are discussed
in Ch.11 of the text [1] and you have used them in Lab-7. With a peak at f0, 3-dB peak width of Δf , and
unity peak gain, the corresponding transfer function is given by Eq. (11.3.18) of [1]:

H(z)=
(

β
1+ β

)
1− z−2

1− 2

(
cosω0

1+ β

)
z−1 +

(
1− β
1+ β

)
z−2

(8.10)
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where

ω0 = 2πf0
fs

, Δω = 2πΔf
fs

, β = tan
(
Δω

2

)

Lab Procedure

a. Modify the program, notch0.c, to implement the design and operation of such a peaking filter. For
example, the function main() can be replaced by:

// ------------------------------------------------------------------------------------
void main()
{

c0 = cos(2*PI*f0/fs); // design notch filter
be = tan(PI*Df/fs);
a[0] = 1; a[1] = -2*c0/(1+be); a[2] = (1-be)/(1+be);
b[0] = be/(1+be); b[1] = 0; b[2] = -be/(1+be);
w[1] = w[2] = 0; // initialize filter states

initialize(); // initialize DSK board and codec, define interrupts
sampling_rate(8); // possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz
audio_source(LINE); // LINE or MIC for line or microphone input

while(1); // keep waiting for interrupt, then jump to isr()
}
// ------------------------------------------------------------------------------------

Generate the same 1500-800-1500 Hz three-second signal as input. Design your peaking filter to have
a peak at f0 = 1500 Hz, so that it will let through the first and last one-second portions of your input.
For the 3-dB width choose first Δf = 5 Hz. Can you explain what you hear? Can you hear the filter
transients?

b. Repeat part (a) with Δf = 50 Hz.

8.5. Wah-Wah Filters and Phasers

A wah-wah filter is a bandpass filter with variable center frequency, which is usually controlled by a pedal.
The output of the filter is mixed with the input to produce the characteristic whistling or voice-like sound
of this effect.

The center frequency f0 is usually varied within the voice-frequency range of 300–3000 Hz and the
bandwidth of the filter is typically of the order of 200 Hz.

A phaser is a very similar effect, which uses a notch filter, instead of a bandpass filter, and the notch
frequency is varied in a similar fashion.

In this experiment, you will implement a wah-wah filter using the peaking resonator filter of Eq. (8.10)
of the previous section, and a phaser filter using the notch filter of Eq. (8.4). The center peaking or notch
frequency f0 will be chosen to vary sinusoidally with a sweep-frequency fsweep as follows:

f0(n)= fc +Δf · sin(2πFsweepn) , Fsweep = fsweep

fs
(8.11)

so that f0 varies between the limits fc ± Δf . The following program, wahwah.c, implements a wah-wah
filter that uses a wavetable generator to calculate f0 from Eq. (8.11).
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// wahwah.c - wah-wah filter
// ------------------------------------------------------------------------------------

#include "dsplab.h" // DSK initialization declarations and function prototypes
#include <math.h>
#define PI 4*atan(1.0)

short xL, xR, yL, yR; // left and right input and output samples from/to codec

float w[3], a[3], b[3]; // filter state vector and coefficients

int on = 1;

float fs=8000, fc=1000, Df=500, Bw=200;
float be, c0, f0, alpha=0.2, g=1.5;

#define Ds 8000 // smallest sweep frequency is fs/Ds = 1 Hz
float v[Ds], fsweep = 1; // wavetable buffer and sweep frequency of 1 Hz
int q;

float wavgen(int, float *, float, float, int *);

// ------------------------------------------------------------------------------------

void main()
{

int i;

be = tan(PI*Bw/fs); // bandwidth parameter
b[0] = be/(1+be); b[1] = 0; b[2] = -be/(1+be); // filter coefficients
a[0] = 1; a[2] = (1-be)/(1+be);

w[1] = w[2] = 0; // initialize filter states

q=0; // wavetable index
for (i=0; i<Ds; i++) v[i] = sin(2*PI*i/Ds); // initialize wavetable

initialize(); // initialize DSK board and codec, define interrupts
sampling_rate(8); // possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz
audio_source(LINE); // LINE or MIC for line or microphone input

while(1); // keep waiting for interrupt, then jump to isr()
}

// -------------------------------------------------------------------------------------

interrupt void isr()
{

float x, y; // filter input & output

read_inputs(&xL, &xR);

if (on) {
x = (float)(xL); // work with left input only

f0 = fc + wavgen(Ds, v, Df, fsweep/fs, &q); // variable center frequency
c0 = cos(2*PI*f0/fs);

a[1] = -2*c0/(1+be); // filter coefficient

w[0] = x - a[1]*w[1] - a[2]*w[2]; // filtering operation
y = b[0]*w[0] + b[1]*w[1] + b[2]*w[2]; // filter output
w[2] = w[1]; w[1] = w[0]; // update filter states

y = alpha * x + g * y; // mix with input

yL = (short)(y);
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}
else

yL = xL;

write_outputs(yL,yL);

return;
}

// ------------------------------------------------------------------------------------

The 3-dB width (in Hz) of the filter is denoted here by Bw to avoid confusion with the variation width
Δf of f0. Thus, the bandwidth parameter β of Eq. (8.10), and some of the filter coefficients that do not
depend on f0, can be fixed within main(), i.e.,

β = tan

(
πBw
fs

)
, b0 = β

1+ β , b1 = 0 , b2 = − β
1+ β , a0 = 1 , a2 = 1− β

1+ β
The denominator coefficient a1 = −2 cos(ω0)/(1+ β) is computed on the fly within isr() at each

sampling instant and then the filtering operation is implemented in its canonical form. A phaser can be
implemented in a similar fashion, except now the numerator coefficient b1 = −2 cos(ω0) must also be
computed on the fly in addition to a1. The other coefficients can be pre-computed as follows:

β = tan

(
πBw
fs

)
, b0 = b2 = β

1+ β , a0 = 1 , a2 = 1− β
1+ β

Lab Procedure

a. Create a project for this program and run it on a wave file (e.g., caravan, dsummer, trials). Rerun it
with fc = 2000, Δf = 500 Hz. Repeat with fc = 500, Δf = 500 Hz.

b. Modify the program to implement a phaser and run it for the above choices of fc,Δf .

8.6. Parametric Equalizer Filters

Parametric audio equalizer filters are used to boost or cut the frequency content of an input signal around
some center frequency f0 with a bandwidth of Δf , as shown below.

The design of such filters is discussed in Sect. 11.4 of the text [1]. In terms of the desired boost/cut
gain G, bandwidth gain GB, and reference gain G0, the transfer function is given by:

H(z)=

(
G0 +Gβ

1+ β

)
− 2

(
G0 cosω0

1+ β

)
z−1 +

(
G0 −Gβ

1+ β

)
z−2

1− 2

(
cosω0

1+ β

)
z−1 +

(
1− β
1+ β

)
z−2

(8.12)

where the gains are in absolute units (not dB), and,
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ω0 = 2πf0
fs

, Δω = 2πΔf
fs

, β =
√√√√G2

B −G2
0

G2 −G2
B

tan
(
Δω

2

)
(8.13)

Some possible choices for the bandwidth gain (i.e., the level at which Δf is measured) are:

GB =
√
GG0 and G2

B =
1

2
(G2 +G2

0) (8.14)

In practice, several such 2nd-order filters are used in cascade to cover a desired portion of the audio
band. Higher-order designs also exist, but we will not consider them in this lab.

A program implementing a single EQ filter can be structured along the same lines as notch0.c. The
filter may be designed on the fly within main(). For example,

void main()
{

if (Gdb==0) // no boost gain
{ a[0]=b[0]=1; a[1]=a[2]=b[1]=b[2]=0; } // H(z) = 1

else { // design filter
G = pow(10.0, Gdb/20); // boost gain
GB = sqrt(G); // bandwidth gain
//GB = sqrt((1+G*G)/2); // alternative GB gain
be = sqrt((GB*GB-1)/(G*G-GB*GB)) * tan(PI*Df/fs); // bandwidth parameter
c0 = cos(2*PI*f0/fs); // f0 is center frequency
a[0] = 1; a[1] = -2*c0/(1+be); a[2] = (1-be)/(1+be);
b[0] = (1+G*be)/(1+be); b[1] = -2*c0/(1+be); b[2] = (1-G*be)/(1+be);
}

w[1] = w[2] = 0; // initialize filter states

initialize(); // initialize DSK board and codec, define interrupts
sampling_rate(8); // possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz
audio_source(LINE); // LINE or MIC for line or microphone input

while(1); // keep waiting for interrupt, then jump to isr()
}

where the reference gain is assumed to be G0 = 1, and the boost/cut gain is to be specified in dB, so that
the absolute gain is computed by the pow() function, that is,

G = 10GdB/20

One of the two choices (8.14) can be made for the bandwidth gain GB. The isr() function for this
filter is identical to that of notch0.c.

Lab Procedure

a. Complete the above EQ program. Select the parameters fs = 8000, f0 = 800, and Δf = 50 Hz and
LINE input. Choose the initial value of the boost gain to be GdB = −50 dB, that is, a cut. Compile and
run the program. Send as input your usual 3-sec 1500-800-1500 Hz signal from MATLAB.

b. Keep increasing the boost gain GdB to about 15 dB and playing the same signal through until overflow
effects begin to be heard. How high is the maximum gain you can set?

c. Repeat parts (a,b), for the alternative definition of the bandwidth gain GB.

d. The GEL file, eq.gel, allows you to interactively select the parameters f0, GdB, Δf . However, for these
to have an effect, you will need to move the design equations for the filter inside isr()— not an
attractive choice. For example,
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// -----------------------------------------------------------------------------------

interrupt void isr()
{

float x, y; // filter input & output

read_inputs(&xL, &xR);

if (on) {

if (Gdb==0)
{ a[0]=b[0]=1; a[1]=a[2]=b[1]=b[2]=0; }

else {
G = pow(10.0, Gdb/20);
GB = sqrt(G);
//GB = (1+G*G)/2;
be = sqrt((GB*GB-1)/(G*G-GB*GB)) * tan(PI*Df/fs);
c0 = cos(2*PI*f0/fs);
a[0] = 1; a[1] = -2*c0/(1+be); a[2] = (1-be)/(1+be);
b[0] = (1+G*be)/(1+be); b[1] = -2*c0/(1+be); b[2] = (1-G*be)/(1+be);
}

x = (float)(xL); // work with left input only

w[0] = x - a[1]*w[1] - a[2]*w[2];
y = b[0]*w[0] + b[1]*w[1] + b[2]*w[2];
w[2] = w[1]; w[1] = w[0];

yL = (short)(y);

}
else

yL = xL;

write_outputs(yL,yL);

return;
}

// -----------------------------------------------------------------------------------

Run this program on some wave file, open the sliders for f0, GdB, Δf , and experiment with varying
them in real time. One can easily modify the above ISR so that the filter is not being re-designed at
every sampling instant, but rather, say every 10 msec, or so.

Profile this version of ISR and that of part (a) to determine the number of cycles between breakpoints
set at the read-inputs and write-outputs statements.
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