332:347 - Linear Systems Lab - Lab 1

1. This lab illustrates the definition of the Dirac delta function, 6 (t), as a

limit of ordinary functions. Consider the following four limiting forms:
1 1
O(t) =lim = Pc(t), O(t)=1im = Apc(t)
€e~0 € €—-0 €

—t%/2¢

6(t) =lim e
€—~0 +/2TT€E
1 €

30) =l - '

§(t) = lim sin(t/€)
€—0 Tt

where P¢ (t) and Ay (t) are the unit rectangular and unit triangular pulses
as defined in the text (Egs. (2.9) and (2.13)).

(a) For each form, select two successively smaller values of € and eval-
uate the above functions over 1000 equally-spaced time instants in
the range —1 <t < 1, for example,

t = linspace(-1,1,1001);
Plot the corresponding functions versus time and note how they re-
semble the ideal 6 (t) as € gets smaller.

Notes: Vectorize your calculations. Use MATLAB’s built-in function sinc
to evaluate the fourth case (it handles the case t = 0). Also, you may use
the supplied function upulse, whose input parameters are shown below,
to generate the rectangular and triangular pulses.

A upulse(, tg, t, tr)

b a ty

0 -t

One way to verify the correctness of the above limiting forms is to compute
the Fourier transforms of the ordinary functions on the right-hand sides
and show that each tends to unity as a function of frequency w in the
limit € — 0. This is so because the Fourier transform of § (t) is A (w) = 1.
We will discuss this approach later, but for completeness, we give the
corresponding Fourier transforms below:

lpg(t) T sin(we/2) ’ 1 e—t2/2€ T e—ew2/2
€ we/2 2TT€
1 n(t/e) 1, lw| < 1/€
€ FT —elw| Sin € FT 5h
— — e s — — P w)=10.5, |w|=1/€
T €2 + 2 Tt 2/ () |l /
0, lw] > 1/€

2. Consider the following differential equation describing a first-order sys-

tem, such as an RC circuit:

y(O+ay)=f] (1)

We saw in class that its solution subject to zero initial conditions, y (0) = 0,
is given in terms of the input f (t) by,

t
y(t):J e a D (TydT, 30 ?)
0

We also saw that Eq. (2) can be integrated numerically by the following
difference equation,

‘)’n:al)’nfl +b0fn+b1fn71’ (3)

where f, = f(nT) and y, is the numerical approximation to y (nT), with
coefficients given by,

_1—=paT qT pT

- y = b b = 4
1+qgaT 0 1+qgaT ! 1+qgaT “)

a

where p + g = 1 corresponding to the cases (i) p = 1, g = 0, forward Euler
integration rule, (ii) p = 0, g = 1, backward Euler integration rule, and (iii)
p = g = 1/2, trapezoidal integration rule. A simple way to implement the
iteration (3) is by the loop:

initialize at w = v = 0, then,
foreachn =0,1,2,..., do:

Yn = @W + bofn + b1v (5)
W =Yn
szn

Another integration rule that is widely used in linear systems is: (iv) the
zero-order hold, which for Eq. (1) leads to the difference equation:
1-eaT

Vn=a1¥n-1 +bifn-1, ar=e T, b= Y (6)

It can be iterated as a special case of Eq. (5) with by = 0.

(a) Consider the special case a = 2 and f(t) = e~ 'u(t). By performing
the integral in Eq. (2) show that the exact solution is:

y)=et—e2, t=0 (7)

(b) Write and execute a MATLAB script that iterates the difference equa-
tion (3) for n = 0,1, 2,..., with zero initial conditions, and deter-
mines the solution over the interval 0 < t < 5. Use the value T = 0.1
for the sampling time.

On the same graph, plot the exact y (t) versus t, as well as y, versus
t, = nT, for all four integration rules (i-iv) and assess which rule
appears to be better.
To unclutter the graphs you might want to plot only two discretiza-
tion rules plus the exact output per graph.
Note that you may define the sampled t points over [0, 5], and the
corresponding input samples f (t), by

t = 0:T:5; f = exp(-t);

~

(c) Repeat with T = 0.05 and T = 0.01 and note the improvement of

the numerical approximation as T decreases.

3. Consider a different linear system that now has derivatives of the input

signal in its right-hand side:
y+2y=f+3f ®)

To solve this system, we convert it first into its (so-called controllable)
state-space form, described by the following system of equations, and
shown in block-diagram form below:

X=-2x+f

Yy=X+3x=x+f 9

where x is the state and the block 1/s represents an integrator. This
could be obtained with the help of the MATLAB function tf2ss (transfer-
function to state-space), which is not really needed here:

b = [1,3]; a = [1,2]; % transfer function, H(s) = (s+3)/(s+2)
[A,B,C,D] = tf2ss(b,a); %%x= Ax + Bf, y = Cx+Df

(@) Verify that the system of equations (9) implies Eq. (8).

(b) Consider the same input as in the previous problem, f (t) = e~ tu (t).
By applying Eq. (2) to the signal x(t), show that the exact solution
for the state and for y (t) are:

x()=eT—e2, t>0

y(t)=2et—e? t>0 (10)

~

(c) Using similar discretization schemes as in the previous problem, in-
tegrate the state equation X = —2x + f numerically over the time
interval t € [0,5]. Use the values T = 0.1, 0.05, 0.01. Hint: This
part is already done.

On the same graph, for each value of T, plot the exact y (t) together
with the results of the four integration rules (i-iv). Make such graphs
for each of the three values of T. Comment on the numerical inte-
gration accuracy.

35

30

25

20

15

10

Typical Outputs

Lorentzian, £¢=0.01

0.3

0.2

0.8

0.6

0.4

0.2

'
0.1¢))
i

Problem 2, T'=0.1, trapezoidal

— numerical
- - - exact

Problem 3, T'=0.1, trapezoidal

— numerical
- - - exact

