
Homework Problems – Week 1

440:127 – Spring 2015 – S. J. Orfanidis

1. End-of-chapter Problem 2.14. Use ’format short e’ to print your results.

2. Problem 2.15. Use ’format short e’ to print your results.

3. Problem 2.18. Use ’format short e’ to print your results. Revert to ’format’ afterwords.

4. The NJ Driver’s Manual contains information from which the following table can be obtained of stopping
distances and stopping times of cars according to their traveling speeds:

speed reaction braking total stopping reaction deceleration total stopping
(mph) distance (ft) distance (ft) distance (ft) time (sec) (ft/sec^2) time (sec)
-------------------------------------------------------------------------------------------
10 11 6 17 0.75 17.89 1.57
20 22 25 47 0.75 17.25 2.45
30 33 55 88 0.75 17.60 3.25
40 44 105 149 0.75 16.39 4.33
50 55 188 243 0.75 14.29 5.88
60 66 300 366 0.75 12.90 7.57
70 77 455 532 0.75 11.59 9.61

a. Suppose that the first column of speeds is given as well as the column of reaction times (5th column),
and the column of total stopping times (7th column). From this information only, calculate the values
shown in columns 2, 3, 4, and 6 of the above table for the reaction distances, braking distances,
total stopping distances, and decelerations. Please use vectorized calculations only (no for-loops).
Stopping means v = 0 and deceleration is negative acceleration.

b. After reviewing the lecture notes (for week-2) and Section 7.2 of the text on the built-in function
fprintf, please use fprintf to generate your output in a table that looks exactly as the one shown
above. The numerical part of the table may be printed using fprintf in a loop, or by a single
MATLAB command using the vectorized form of fprintf (but it’s a good idea to figure out how to
do both.)

c. Make a plot of the total stopping distance versus the speed. Use appropriate MATLAB commands to
annotate your graph as the one shown below.

d. Based on the data in the above graph, use MATLAB to estimate the stopping distances for the follow-
ing intermediate speed values v0 = [47, 52, 65] mph. On the graph, the data points are connected
by straight lines.

[
Hints: 1 mile = 5280 ft, v = v0 + at, s = v0t + 1

2
at2 = (v0 + at)2−v2

0

2a
= v2 − v2

0

2a

]
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5. Problem 2.11. Please use a vectorized calculation (no loops) to compute the amount of CO2 (start with
the vector of mpg’s). Moreover, include appropriate MATLAB commands to print the results of your
program in the format shown in the table below (you may use a for-loop here). [Hint: see the octaves
example discussed in class, also note that the largest string in the second column has 21 characters, so
use format %21s for that column.]

year model mpg CO2
--------------------------------------------------------
2008 smart for two 37 mpg 6291.89 lbs
2008 civic coupe 29 mpg 8027.59 lbs
2008 civic hybrid 43 mpg 5413.95 lbs
2008 chevrolet cobalt 30 mpg 7760.00 lbs
2008 toyota prius (hybrid) 46 mpg 5060.87 lbs
2008 toyota yaris 32 mpg 7275.00 lbs
--------------------------------------------------------

6. Matched Loads. An electric load (e.g., appliance, computer, etc.) connected to an electric power source
(e.g., wall outlet, battery, etc.) appears to the power source as a resistance (impedance, more generally).
Using Ohm’s and Kirchhoff’s laws, it can be shown that the power delivered to and consumed by a load
is given by:

P = V2
0R

(R0 +R)2
(1)

where R is the load resistance, and V0, R0 are the voltage of the generator and its internal resistance.
The maximum power transfer theorem states that maximum power is delivered to the load when the
load resistance matches that of the generator, that is, when R = R0.

a. For the following values V0 = 100 volts, R0 = 50 ohm, calculate the maximum power P that can be
delivered to a matched load (the power will be in units of Watts if the voltage and resistances are in
units of volts and ohms, respectively).

b. Using the linspace function, generate a vector of 601 resistance values in the interval 0 ≤ R ≤ 300
ohms, and using a vectorized version of Eq. (1), calculate the corresponding 601 values of P in units
of Watts. Make a plot of P versus R, and indicate on the graph the point of maximum power transfer.

c. Add appropriate MATLAB commands to reproduce all the graph annotations shown below, i.e., title,
axis labels, axis limits, tickmarks, grid, and legends. [Hint: see the octaves example].
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Note: The proof of the maximum power transfer theorem is straightforward. If you know calculus, you
may compute the derivative dP/dR and set it equal to zero to obtain R = R0. Alternatively, it’s a matter
of algebra to show the following identity in R:

P = V2
0R

(R0 +R)2
= V2

0

4R0
·
[

1− (R−R0)2

(R+R0)2

]

which shows that for all values of R,

P ≤ V2
0

4R0

with equality reached at R = R0.



Homework Problems – Week 2

440:127 – Spring 2015 – S. J. Orfanidis

1. Problem 3.3 of the text.

2. Problem 3.4 of the text.

3. Problem 3.5 of the text.

4. Problem 3.16 of the text. In addition, make a plot of the range versus the angle θ in degrees, and place
on the graph your found maximum range and the angle at which it occurs. [Hint: use the function max]

5. The harmonic series is defined as the sum:

hn = 1+ 1

2
+ 1

3
+ · · · + 1

n
, n ≥ 1 (1)

The series diverges, but slowly, like ln(n). A good approximation to hn is given by the formula:

fn = γ+ ln
(
n+ 1

2

)
(2)

where γ = 0.57721 56649 . . . is the so-called Euler-Mascheroni constant. An improved approximation
to hn is given by:

gn = γ+ ln
(
n+ 1

2
+ 1

24n

)
(3)

See the Wikipedia articles for more information on these and similar approximations:

http://en.wikipedia.org/wiki/Harmonic_series_(mathematics)
http://en.wikipedia.org/wiki/Euler-Mascheroni_constant

a. Use the function cumsum to calculate hn for n = 1 : 50. For the same ns, calculate also the values
of fn and gn using a completely vectorized calculation (no loops). Then, use the function fprintf in
its vectorized form to generate a table of values formatted exactly as the one shown below:

n h(n) g(n) f(n)
-----------------------------------
1 1.000000 1.010080 0.982681
2 1.500000 1.501805 1.493506
3 1.833333 1.833939 1.829979
4 2.083333 2.083605 2.081293

...... etc. ......................

48 4.458797 4.458797 4.458779
49 4.479205 4.479206 4.479188
50 4.499205 4.499206 4.499189

You must print all 50 values and use only three fprintf commands, two for the headers, and one for
the 50×4 matrix of numerical values.

b. Plot hn and fn together on the same graph. Then, plot hn and gn. Because both approximations
are very good, the curves will fall virtually on top of each other. To discern their differences better,
plot the absolute-value differences |hn− fn| and |hn−gn| on the same graph (you may want to use
a semilogy type of plot in order to better see both curves.) Annotate your graphs with axis labels,
title, and legends.
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c. Harmonic Stacks. A somewhat counter-intuitive application of the harmonic series is the problem
of stacking identical tiles (or books or dominoes or coins) at the edge of a table with each tile being
placed slightly beyond the edge of the tile below it, as shown below. The question is how far can the
tiles extend beyond the edge of the table without toppling over.

hn = 1+ 1

2
+ 1

3
+ · · · + 1

n

The problem has been discussed since the 19th century in many Mechanics books, and many variants
of it, some very recent, exist. See the zip-file harmonic-stacks.zip on sakai (under Resources for
Week-2) for a collection of papers on the subject. It turns out that for identical tiles of length a and
uniform density, the overhang distance for n tiles is given in terms of the harmonic series hn by:

dn = a
2
hn = a

2

(
1+ 1

2
+ 1

3
+ · · · + 1

n

)
(4)

The above figure shows the case a = 2 in which case dn = hn. Eq. (4) is obtained by requiring that
the center of mass of the collection of n tiles be vertically aligned with the edge of the table, and
similarly, any subgroup of m tiles counting from the top must have a center of mass aligned at the
edge of the (m+ 1)–tile, for m = 1,2, . . . , n− 1.

Using the approximation of Eq. (2), determine how many tiles it would take for the overhang distance
to be greater than the length of one tile, i.e., the top tile is completely beyond the edge of the table,
in other words, find the smallest n such that dn ≥ a. Hint: Use Eq. (3) to write (4) as

dn ≈ a
2

[
γ+ ln

(
n+ 1

2

)]
(5)

and solve this equation for n in terms of dn. Repeat by finding the smallest n such that dn ≥ 2a,
and then dn ≥ 4a, and dn ≥ 8a. A vectorized calculation that covers all these cases is best, i.e., start
by defining the vector d = [a,2a,4a,8a], or d/a = [1,2,4,8].

6. In a joint civil engineering project, two towns A and B decide to build a bridge across a river separating
them. The vertical distances of the towns to the river are a,b, the river width is w, and the distance
separating the towns along the river is d, as shown below. The total distance (red line) between the two
towns through the bridge is the sum of the segments: L = (AC)+(CD)+(DB). The bridge location is
defined by the distance x from the point O, that is, x = (OC). The total distance may be thought of as
a function of x and is given by:

L(x)=
√
x2 + a2 +

√
(d− x)2+b2 +w

The towns agree to build the bridge at a distance x such that the total travel distance L(x) is minimized.
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Thus, we wish to find the x that minimizes L(x).

a. Consider the particular values a = 2, b = 3, d = 10, w = 1 kilometers. Using the function linspace,
define a vector of 101 equally-spaced values of x in the interval, 0 ≤ x ≤ d, and using a vectorized
calculation, compute the corresponding 101 values of the total travel distance L(x).
Use MATLAB’s built-in function min to determine the minimum value L0 of the distance L(x), and
the distance x0 at which it occurs, that is, L0 = L(x0). [Hint: see class notes.]

b. Plot L(x) versus x and add to the graph the optimum point (x0, L0).

c. For arbitrary values of a,b, d,w, it can be shown geometrically (see pictorial hint), or analytically by
solving dL(x)/dx = 0, that the optimum distance x0 and minimized travel distance L0 are:†

x0 = ad
a+ b

L0 = w+
√
(a+ b)2+d2

and that x0 is obtained when the hypotenuses (AC) and (DB) are parallel to each other. Verify that
the x0, L0 calculated from these formulas agree with those obtained numerically in part (a).

d. Determine the minimum point (x0, L0) using also the function fminbnd, discussed in class.

†P. Nahin, When Least is Best, Princeton University Press, 2004.
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Homework Problems – Week 3

440:127 – Spring 2015 – S. J. Orfanidis

1. End-of-Chapter Problem 4.5. The required data file, ace_data.dat, is included. It can be loaded by the
following command, which loads it into a 61×5 matrix named, ace_data:

load ace_data.dat

Do part (e) also in the following way: first sort only column 2 of the ACE data matrix in descending
order, then, re-arrange the data matrix according to the sorting index of column 2 (see p. 24 of the
week-2 lecture notes).

2. End-of-Chapter Problem 4.8. Use step increments of 300 for both T,P and use meshgrid to calculate v
with a single command. Then, use fprintf commands to print your results exactly as shown below, with
T listed vertically and P horizontally:

100 400 700 1000 kPa
--------------------------------------

100 K | 0.29 0.07 0.04 0.03
400 K | 1.15 0.29 0.16 0.11
700 K | 2.01 0.50 0.29 0.20

1000 K | 2.87 0.72 0.41 0.29

In your solution, you must use only three fprintf commands to print the above, two for the first two
lines, and a vectorized one for the bottom four lines (no loops).

3. Consider the following function over the interval 0 ≤ x ≤ 1 :

f(x)= x sin(3πx)

a. Define an anonymous MATLAB function that implements f(x) and accepts vector inputs and gen-
erates vector outputs (see an example on p. 25 of the week-2 lecture notes). Using the function
linspace, generate an array of 1001 equally-spaced x-values in the interval 0 ≤ x ≤ 1 (you may also
use the double-colon operator instead of linspace), and make a plot of f(x) versus x.

b. For the same vector of xs of part (a), use the functions max and min to determine the locations of
the local maxima and local minima of this function over the interval [0,1] and place them on the
graph of part (a). Generate a plot exactly as the one shown at the end of this handout. [Hint: see
pp. 32–36 of week-2 lecture notes.]

c. Determine more accurate local maxima and minima using the function fminbnd and compare them
with those found in part (b). Find out how to control the accuracy of the results returned by the
function fminbnd.

4. Regiomontanus’ problem (ca. 1470) is considered to be the oldest maximization problem after antiquity.
It can be posed as follows: You are viewing a painting hanging high on a museum wall. At what distance
x from the wall would your viewing angle θ be maximized?

Let h,a, b, be your height, and the heights of the bottom and top sides of the painting, respectively, as
shown below. Assuming a > h and b > h, it can be shown by some trigonometry that θ is related to
the distance x as follows, with optimum distance x0 and corresponding maximum angle θ0:

θ = arctan
[

(b− a)x
x2 + (a− h)(b− h)

]

x0 =
√
(a− h)(b− h)

θ0 = arctan
[
b− a
2x0

]

1



a. For the numerical valuesa = 9, b = 12 feet, use your own heighth (in feet) to calculate your optimum
viewing distance x0 (in feet) and viewing angle θ0 (in degrees). Calculate x0, θ0 for a person that is
half your height (so the next time you take your little sister to the museum please be aware that her
optimum viewing distance is not the same as yours.)

b. Set h = 6, a = 9, b = 12 feet. Calculate x0, θ0. Using the function linspace define a vector of
100 values of x in the interval 0 ≤ x ≤ 2x0. Using a vectorized calculation (no loops), calculate the
corresponding vector of angles θ and plot them versus x. On the same graph, add the single data
point (x0, θ0), and confirm that it lies at the maximum of the θ-curve.

c. Determine estimates of x0, θ0 numerically using MATLAB’s built-in function max and compare them
with the exact values. Without recalculation, explain what happens if the array x is taken to be 101
equally-spaced values in the range [0,2x0], instead of the above 100 values.

d. Determine x0, θ0 using also the function fminbnd. [Hint: the maximum of θ(x) is equivalent to the
minimum of its negative, −θ(x).]

Note: If you would like to prove the above formulas, you may use the following trig identity and in-
equality:

tan(θ1 − θ2)= tanθ1 − tanθ2

1+ tanθ1 tanθ2
and

x
x0
+ x0

x
≥ 2

with the inequality being valid for all positive x, x0, and with equality reached at x = x0 (this inequality
is a consequence of the so-called arithmetic-geometric mean inequality.)

5. It is desired to built a rectangular fence around a 1000 square-foot area. The fence costs one dollar per
foot. Let a,b be the sides (in feet) of the rectangular fence so that its area and perimeter are A = ab
and F = 2a+ 2b. Clearly the cost of the entire fence is equal to F dollars.

It is desired to determine a,b so that the total cost F is minimized while the area is kept equal to
A = 1000. It is straightforward to see that the solution to this problem is when the area is square, so
that a0 = b0 =

√
A and F0 = 4a0. However, here we wish to determine the solution numerically.

Define a vector of side-lengths, a = 20 : 0.1 : 40. Then, calculate the corresponding vector of costs F.
Using the function min, determine the minimum value of the array F, say F1, and the value of a where
it occurs, say a1, as well as the corresponding other side, say b1. Compare these values with the exact
values a0, b0, F0.

Moreover, plot F versus a and place on the graph the numerically determined minimum point (a1, F1),
as well as the exact minimum (a0, F0), and annotate your graph as shown at the end of this handout.
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6. Two formulas for calculating π are:†

π = 9801

2
√

2

⎡
⎣ ∞∑
k=0

(4k)! (1103+ 26390k)
(k!)4 (396)4k

⎤
⎦
−1

π = 2
√

3
∞∑
k=0

(−1)k

(2k+ 1)3k

The first one is due to Ramanujan‡ and converges extraordinarily fast. The second is due to Madhava
(ca. 1400).∗ Truncate both series to a maximum number of 10 terms. Define the vector n = 0 : 9 and
using the built-in functions cumsum and factorial create a 10×3 matrix of the approximation values,
as shown in the table below, where the nth entries are computed by using the terms 0 : n only. Your
computations must be completely vectorized. For convenience, you may define and work with the
following two functions f(n) and g(n) (whose limiting values are π as n→∞):

f(n) = 9801

2
√

2

⎡
⎣ n∑
k=0

(4k)! (1103+ 26390k)
(k!)4 (396)4k

⎤
⎦
−1

g(n) = 2
√

3
n∑
k=0

(−1)k

(2k+ 1)3k

Moreover, use appropriate MATLAB commands, e.g., the function fprintf, to print your results as in the
table below, where the very last row prints π itself.

n f(n) g(n)
-----------------------------------------------
0 3.1415927300133055 3.4641016151377544
1 3.1415926535897940 3.0792014356780038
2 3.1415926535897931 3.1561814715699539
3 3.1415926535897931 3.1378528915956805
4 3.1415926535897931 3.1426047456630846
5 3.1415926535897931 3.1413087854628832
6 3.1415926535897931 3.1416743126988376
7 3.1415926535897931 3.1415687159417840
8 3.1415926535897931 3.1415997738115058
9 3.1415926535897931 3.1415905109380797

-----------------------------------------------
Inf 3.1415926535897931

7. A ball thrown vertically upwards with initial velocity v in a uniform gravitational field with acceleration
of gravity g reaches a height h given by:

h = v2

2g

In a variation of Example 4.3 of the textbook, consider the values of g given in Table 4.2 for various
planetary objects in our solar system. Define a row vector of these values, g = [3.7,8.87, . . . ,0.58]. It
is desired to calculate the heights reached on each planet when the ball is thrown with the three initial
velocities v = [5,10,15] m/sec.

Use meshgrid to calculate all such heights simultaneously (in units of meters) and use fprintf to print
your results in a table exactly as shown below. [Hint: Define the planet names as a cell array of strings.

†http://en.wikipedia.org/wiki/Pi
‡http://en.wikipedia.org/wiki/Ramanujan
∗http://en.wikipedia.org/wiki/Madhava of Sangamagrama

3



Look at Example 4 on p. 60 of the week-1 lecture notes on how to print both text and numerical columns
using cell array definitions, and how to left-justify the strings.]

v = 5 10 15
--------------------------------------------
Mercury g = 3.70 | 3.38 13.51 30.41
Venus g = 8.87 | 1.41 5.64 12.68
Earth g = 9.80 | 1.28 5.10 11.48
Moon g = 1.60 | 7.81 31.25 70.31
Mars g = 3.70 | 3.38 13.51 30.41
Jupiter g = 23.12 | 0.54 2.16 4.87
Saturn g = 8.96 | 1.40 5.58 12.56
Uranus g = 8.69 | 1.44 5.75 12.95
Neptune g = 11.00 | 1.14 4.55 10.23
Pluto g = 0.58 | 21.55 86.21 193.97
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Homework Problems – Week 4

440:127 – Spring 2015 – S. J. Orfanidis

1. End-of-Chapter Problem 5.12.

2. End-of-Chapter Problem 5.17. Plot parts (a,b,c,d) in separate figure windows, not as subplots.

3. End-of-Chapter Problem 5.20.

4. End-of-Chapter Problem 5.31.

5. This is a continuation of Problem 5.17. When you get a loan or mortgage payable in a fixed number of
years, the payment amount (per payment period) can be calculated from the formula:

x = ry0(1+ r)N
(1+ r)N−1

(1)

where y0 is the loan amount and, assuming monthly payments, r = R/12, whereR is the annual interest
rate (e.g., for a 6% annual rate, R = 0.06 and r = R/12 = 0.005), and N is the total number of payment
periods (e.g., N = 12× 5 = 60 months for a 5-year loan). Let yn denote the loan balance at the end of
the n-th payment period. At the next period, n + 1, your payment of x dollars is subtracted from the
present balance of yn, but before this is done, the bank charges you interest in = ryn, therefore, only
the amount bn = x− ryn is used to reduce your balance, so that the next balance is:

yn+1 = yn − bn = yn − (x− ryn)= (1+ r)yn − x

This recursion can be solved analytically, and after using Eq. (1), we obtain the solution:

yn = (1+ r)N−(1+ r)n
(1+ r)N−1

y0 , n = 0,1,2, . . . ,N (2)

The solution correctly gives yn = y0 at n = 0, and yn = 0 at n = N. Consider the numerical values
y0 = 10000, R = 0.06, N = 60.

a. Compute the payment amount x and the values of the balance yn for n = 0,1, . . . ,N, as well as the
interest in paid at the n-th period, and the amount bn used to reduce the balance, and using fprintf
make a table exactly like the one shown below (you must print all 61 entries).

n yn bn in
---------------------------------

0 10000.00 143.33 50.00
1 9856.67 144.04 49.28
2 9712.63 144.76 48.56
3 9567.86 145.49 47.84
4 9422.37 146.22 47.11

------------ etc. -------------

56 763.74 189.51 3.82
57 574.23 190.46 2.87
58 383.78 191.41 1.92
59 192.37 192.37 0.96
60 0.00 - -

Note that initially the interest payment is high but it gets smaller with time, while the amount that
goes to repay the loan increases. Banks usually give you a payment schedule just like this table.

1



b. Using the function sum compute the total amount that went to re-pay the loan (i.e., the sum of the
bns), and the total amount of interest paid.

Make a plot of yn versus n and observe how it is driven to zero at n = N.

c. The payment amount x given in Eq. (1) can be thought of as function of two independent variables
N,R. Using meshgrid and surf, make a surface plot like the one shown below by assuming that N
and R range over 10 ≤ N ≤ 60 months, and 2 ≤ R ≤ 8 annual percentage rates.
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6. A pitcher throws a ball to a batter located at a distance d, with the ball being launched from height h1

with velocity v0 and angle θ0, and arriving t seconds later at the batter’s position at height h2. The
ball’s x−y trajectory (neglecting air resistance and curved balls) is described by,

x = v0 t cosθ0

y = h1 + v0 t sinθ0 − 1

2
gt2

(3)

whereg is the acceleration of gravity. In this problem, we wish to plot the ball’s trajectory, and moreover,
calculate and plot the travel time and pitch angle as functions of the pitcher’s velocity v0.

Substituting t = x/(v0 cosθ0) and using the trigonometric identity, 1 + tan2 θ0 = 1/ cos2 θ0, we may
re-write the y-equation in the following form, which shows that the trajectory is parabolic:

y = h1 + x tanθ0 − gx
2

2v2
0
(1+ tan2 θ0) (4)

Given the pitcher’s velocity v0 and setting x = d and y = h2, we obtain two conditions from which one
can calculate the required launch angle θ0 and travel time t in terms of v0:

h2 = h1 + d tanθ0 − gd
2

2v2
0
(1+ tan2 θ0) , t = d

v0 cosθ0
(5)

The first equation is quadratic in the variable tanθ0 and can be solved using the quadratic formula. It
has two solutions which are both valid, but the one that has the smaller θ0 leads to a faster travel time.
In order for the solutions to exist as real numbers (i.e. the ball can reach the batter), it is necessary that
v0 be larger than a certain minimum value, which can be determined by setting the discriminant of the
quadratic equation (5) to zero. This gives the minimum velocity:

v0,min =
√
−gh+ g

√
h2 + d2 , h = h1 − h2 (6)

a. Let h1 = 5, h2 = 2, d = 60 feet and g = 32 ft/sec2. First, calculate the minimum velocity (6) in
miles per hour†. Then, for the pitcher velocity of v0 = 50 miles/hr, calculate the two possible launch
angles θ0 in degrees and the corresponding travel times t in seconds from Eqs. (5).

For the two found angles θ0 make a plot of the trajectories in Eq. (4) versus x in the range 0 ≤ x ≤ d,
placing both trajectories on the same graph.

b. Next choose a vector of equally-spaced velocity values in the interval, 40 ≤ v0 ≤ 100 mph, and
calculate the corresponding vectors of angles θ0 in degrees (using the fast solution), and travel
times t in seconds.

Plot θ0 versus v0, then, plot t versus v0. In both cases, use units of mph for v0 in the plots.

Determine the speed vz in mph at which the pitch angle goes from positive to negative, and place
that point on the angle graph. Calculate also the corresponding travel time for this speed and place
it on the time graph.

c. For a fast pitcher (e.g., v0 > 95 mph), because the distance d = 60 feet is fairly short, the effect
of gravity will be minimal. For the same velocity vector v0 of part (b), calculate and plot the travel
times in the case when gravity is completely ignored, but on the same graph place the travel times
of part (b) for comparison.

†1 mile = 5280 feet
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Hints: θ0 = arctan
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0 ±
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0gh− g2d2

gd

⎞
⎟⎠ , vz =

√
gd2

2h

0 10 20 30 40 50 60
0

10

20

30

40

50

60

x  (ft)

y 
 (

ft
)

v
0
 = 40 mph

 

 
 fast
 slow

40 50 60 70 80 90 100
−5

0

5

10

15

v
0
  (mph)

θ 0  (
de

gr
ee

s)

launch angle

 

 
 pitch angle
 zero−crossing point

4



40 50 60 70 80 90 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

v
0
  (mph)

t 
 (

se
c)

travel time

7. This is a continuation of the hoops movie example and explains the math and physics contained in the
file hoops.m. Anyone who has shot a basketball knows that the shooting speed and shooting angle must
be interelated in order to reach the hoop. Moreover, most people try to shoot at the lowest possible
speed, because it makes it easier to aim.

At time t during the flight, the x, y coordinates of the moving basketball are given by the typical pro-
jectile equations, shown below in Eq. (7), where v,θ are the initial lauch speed and angle and g is the
acceleration of gravity, g = 9.81 m/s2.

x = v cosθt

y = x tanθ− 1

2

gx2

v2 cos2 θ

(7)

The condition to reach the hoop is that y = h when x = d, which gives the speed-angle relationship:

d = h tanθ− 1

2

gd2

v2 cos2 θ
⇒ v =

√
gd/2

cos2 θ
(
tanθ− h/d) (8)

The corresponding time of flight to reach the hoop is given by,

t = d
v cosθ

=
√

2d
g
(
tanθ− h/d) (9)

It is clear from Eq. (8) that for v to be real-valued, the angle θ must satisfy the restriction tanθ ≥ h/d,
or, θ ≥ θmin = arctan(h/d). The geometrical meaning of θmin is shown in the above figure. Clearly, if
the baskeball is shot below the line connecting the launch point and the hoop, the ball will fly below the
hoop, no matter the initial speed. Note also that v = ∞ at θ = θmin and at θ = 90o. Therefore, there is
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a minimum value of v somewhere in the range, θmin < θ < 90o. From calculus, the minimum of v can
be determined by differentiating Eq. (8) with respect to θ and setting the derivative to zero. This leads
to the optimum values for θ and v,

θopt = arctan

⎡
⎣h
d
+
√

1+ h
2

d2

⎤
⎦ , vopt =

√
gd tanθopt (10)

a. Set h = 1 and d = 10 meters. Define anonymous functions v(θ) and t(θ) for Eq. (8) and (9). Plot
v(θ) over the range θmin < θ < 90o. To avoid infinities, do the plot over the more restricted range
1.01θmin ≤ θ ≤ 89.9o. [You need to exercise some care in converting the angles between radians
and degrees]. Place on the graph the optimum point θopt, vopt. Note how broad the minimum is,
which explains the fact that there is typically quite a leeway in choosing a low shooting speed and
corresponding angle.

b. Plot t(θ) versus θ over the same range as in part (a), and add the point that corresponds to θopt.

c. Determine the optimum point θopt, vopt in two other ways, (i) using the min function, and (ii) using
the fminbnd function, and compare them with the exact values given in Eq. (10).
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Homework Problems – Week 5

440:127 – Spring 2015 – S. J. Orfanidis

1. This problem is a combination of Problems 6.7 and 6.14 of the text. A rocket is launched vertically. At
time t = 0, the rocket’s engine shuts down. At that time, the rocket has reached an altitude of h0 = 500
meters and is rising at a velocity of v0 = 125 m/sec. Gravity then takes over. The height of the rocket
as a function of time is:

h(t)= h0 + v0t − 1

2
gt2 , t ≥ 0

where g = 9.81 m/s2 is the acceleration of gravity. The time t = 0 marks the time the engine shuts
off. After this time, the rocket continues to rise and reaches a maximum height of hmax meters at time
t = tmax. Then, it begins to drop and reaches the ground at time t = tg.

a. Create a function called height that accepts time as an input and returns the height of the rocket.
The quantities h0, v0 should be additional inputs and the function should have syntax:

h = height(t,h0,v0);

where t is a vector of times and h stands for the corresponding vector of heights h(t). Your function
can be either an M-file, or defined anonymously. Use your function in your solutions to parts (b–e).

b. Make a preliminary plot of the height versus time for times from 0 to 28 seconds. Use an increment
of 0.5 seconds in your time vector.

c. Find the maximum height reached hmax and the time tmax when the rocket starts to fall back to the
ground in two ways (i) using the max function, and (ii) using the fminbnd function and your function
height.

d. Using the function fzero, find the time tg when the rocket hits the ground (i.e., when the function
value is zero).

e. Evaluate and plot the rocket height h(t) at 301 equally-spaced points in the time interval 0 ≤ t ≤ tg,
and add to the graph the maximum point (tmax, hmax), as well as the point when the rocket hits the
ground at t = tg.

Some things to consider:

The quantities hmax, tmax, tg can be determined analytically from physics, but in this problem we wish
to calculate them numerically using fminbnd and fzero. For your reference, the exact formulas are:

tmax = v0

g
, hmax = h0 + v2

0

2g
, tg = tmax +

√
t2max +

2h0

g

In applying fminbnd, you need to specify a search interval. You may choose that to be [0,2v0/g] since
it includes the maximum. Similarly, in applying fzero, you need to specify a nearby search point, which
you can also choose it to be 2v0/g.
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2. Archimedes’ Algorithm for π. In a very short, remarkable, work entitled Measurement of a Circle,
Archimedes proved 23 centuries ago three fundamental geometrical facts: (i) that the area of a cir-
cle is given by πR2, a formula every school child knows, (ii) that the circumference of a circle (2πR)
involves the same constant π that appears in the area formula, and (iii) he gave a systematic algorithm
for calculating π to any desired degree of accuracy. This algorithm remained the preferred method
for calculating π for the next 2000 years. In this homework, we will derive Archimedes’ algorithm and
implement it in MATLAB. Some variations of the algorithm, such as Liu Hui’s, and other even more
efficient modern algorithms, such as Ramanujan’s, will be studied in other homework sets. Currently,
π has been calculated to trillions of digits. Note that the letter π was introduced in this context by
William Jones in the 1700s and was popularized by Euler. You may find the following references useful:

W. Dunham, Journey Through Genius, Wiley, New York, 1990.

http://math.nyu.edu/~crorres/Archimedes/contents.html

http://en.wikipedia.org/wiki/Pi

Archimedes’ method was to bracket the value of π between a lower and an upper bound that can be
made to converge to π. The method is illustrated below. The circumference of a circle is approximated
from below by the circumference of an inscribedN-sided polygon, and from above by the circumference
of the corresponding circumscribed polygon. The figure shows the case of a hexagon (N = 6). Starting
with the hexagon, Archimedes then kept dividing the subtending angle by half, considering polygons
of ever increasing number of sides, given by N = 6 · 2n, n = 0,1,2 . . . . For an N-gon, the subtending
angle of each of the N inscribed triangles is 2θ = 2π/N, or θ = π/N.

(ac) = 2R sinθ

(AC) = 2R tanθ
θ = π

N

By multiplying the base sides (ac) and (AC) shown above by N, we obtain the total circumferences of
the inscribed and circumscribed polygons. These bracket the circle circumference, i.e.,

N · (ac)< 2πR < N · (AC) ⇒ 2NR sinθ < 2πR < 2NR tanθ

Canceling out a factor of 2R and replacing θ = π/N, we obtain the basic algorithm:

N sin
(
π
N

)
< π < N tan

(
π
N

)
, N ≥ 3 (1)

By the way, Liu Hui’s algorithm (265 CE), provides a tighter upper bound and is given by:

N sin
(
π
N

)
< π < N sin

(
π
N

)[
2− cos

(
π
N

)]
, N ≥ 3

Setting N = N02n in Eq. (1), where N0 is the starting N0-gon (e.g., N0 = 6), we obtain Archimedes’
algorithm:

N02n sin
(

π
N02n

)
< π < N02n tan

(
π

N02n

)
, n = 0,1,2, . . . (2)

You may justifiably ask what good are these formulas if both the upper and lower bounds involve
π, which is what we wish to calculate. However, these bounds can be calculated geometrically, as
Archimedes did, or via a recursive procedure that we will study in a later homework. Here, we will have
MATLAB evaluate these expressions directly for various values of N.
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a. Let a(N), b(N) denote the left and right bounds in Eq. (1) viewed as functions ofN. Write a MATLAB
function called bounds with syntax:

[a,b] = bounds(N);

that computes the functions a(N), b(N) at any vector of Ns. Next, define the following row vector
N whose values are of historical significance:

N = [6, 6·24, 360, 6·29, 6·211, 6·216] = [6, 96, 360, 3072, 12288, 393216
]

(3)

Evaluate a(N), b(N) at these values ofN and use fprintf to generate the following table of values
using appropriate MATLAB commands:

N a(N) b(N)
----------------------------------------------------------------

6 3.00000000000 3.46410161514 Hexagon
96 3.14103195089 3.14271459965 Archimedes (230 BCE)
360 3.14155277941 3.14167240467 Ptolemy (150)
3072 3.14159210600 3.14159374877 Liu Hui (265)
12288 3.14159261937 3.14159272204 Zu Chongzi (480)
393216 3.14159265356 3.14159265366 Viete (1590)

In particular, note that the last two cases compute π to 7- and 10-digit accuracy. For comparison,
you may print the true value of π with 10-digit accuracy using:

vpa(pi,11)
ans =

3.1415926536

b. Next, define the vectorN = [3,4,5, . . . ,100] and, on the same graph, plot the functions a(N), b(N)
versus N, and add the horizontal line at π and indicate the point corresponding to Archimedes’
computation at N = 96. In particular, figure out how to use MATLAB commands to generate your
graph in the following form:
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c. Write another MATLAB function, bounds2, with syntax:

[a,b] = bounds2(n,N0);

that implements the left and right bounds of Eq. (2), where now the independent variable n is the
exponent in the polygon’s dimension N = N02n. Use the value N0 = 6. The functions must accept
a vector of ns and generate the corresponding vectors of function values a(n), b(n).
For the values n = [0,1,2, . . . ,16], plot a(n), b(n) versus n, and generate a graph like the above,
indicating Archimedes’ point at n = 4.

d. Write a MATLAB function, polygon, with syntax:
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polygon(N);

that generates a plot of a circle and an inscribed and a circumscribed N-sided regular polygon. The
function’s input must be a scalar N, and its output must be a graph like those at the end of the
handout, including the title and color schemes. To get started, the following code segment is given
that you might build upon:

th = 0: 2*pi/N : 2*pi;
x = cos(th); y = sin(th);
figure; plot(x,y,’r-’);

axis equal; axis square;
title([’{\itN} = ’,num2str(N)]); % we’ll discuss num2str() later

Using this function, generate the polygon graphs for the cases N = 6, 12, 96.
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3. As part of a triathlon event, an athlete has the task of running from a fixed pointA on the beach to some
point P on the shoreline, and then swimming from P to a fixed point B, as shown below. Her ground
and swimming speeds are va, vb, respectively. To win this part of the race, she must determine the
point P, or equivalently, the optimum bearing angle θ that she should maintain on the ground, in order
to minimize the total travel time from A to B.† The total travel time can be expressed as a function of
the bearing angle θ by Eq. (4) below.

T(θ)= La(θ)
va

+ Lb(θ)
vb

(4)

where La, Lb are the lengths of the segments (AP), (PB).

a. Assuming that the parameters a,b, d, va, vb are given, write a function T(θ) using a one-line anony-
mous definition that implements Eq. (4), where θ must be entered in degrees.

b. Clearly, the optimum angle θ will be somewhere in the interval 0 ≤ θ ≤ θmax, where θmax is defined
through d = a tanθmax. Consider the numerical values (in metric units):

a = 300 , b = 400 , d = 500 , va = 3 , vb = 2

Calculate θmax in degrees. Then, using the function fminbnd, determine the optimum bearing angle
θ0 in degrees that minimizes T(θ), and the minimized value T0 = T(θ0) in minutes.

c. Create a vector of 300 angles θ in the range 0 ≤ θ ≤ θmax. Plot T(θ) versus θ, with T(θ) expressed
in minutes, and add to the graph the optimum point θ0, T0.

d. If you’ve had a course in Optics, you may recognize this as a problem of refraction at an interface
between two media. Snell’s law of refraction relates the optimum angles θ,φ by

sinθ
sinφ

= va
vb

Verify with MATLAB that this relationship is indeed satisfied for the computed optimum angles.

Historical note: In the refraction context, the above method of minimizing the time of travel across
the media, leading to Snell’s law, is a special case of “Fermat’s Principle of Least Time”. It was
introduced by Fermat in 1660, and is used for ray tracing of light through inhomogeneous media. It
applies to all types of waves, light, sound, seismic, etc.

†R. P. Feynman, et al., Feynman Lectures on Physics, vol. I, Pearson-Addison-Wesley, San Fransisco, 1963 and 2006.
A. Gilat, MATLAB, An Introduction with Applications, Wiley, New York, 2011.
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4. The catenary is the shape of a chain hanging under its own weight.† It can be found all around us:
hanging chains and ropes, power lines, telephone lines, necklaces and bracelets, simple suspension
bridges (not ones supporting a roadway), tents, mooring ropes and anchor chains of ships, catenary
risers in offshore drilling platforms, minimal surfaces of revolution such as soap films. The catenary
curve is a scaled hyperbolic cosine:

y = y0 + a cosh
(
x− x0

a

)
− a

where a, x0, y0 are parameters that are fixed by the end-point conditions. It was realized 350 years
ago by Robert Hooke that an inverted catenary should be the optimal shape for the construction of
arches, in the sense that the net force (gravity plus tension) exerted at each part of the arch should
be directed tangentially along the arch (you will learn more about that in your Statics courses). The
equation describing such an optimal arch is:

y = h− a cosh
(
x
a

)
+ a , −d

2
≤ x ≤ d

2
(5)

where d,h are the base and height, respectively, and we assumed that the arch is placed symmetrically
about the origin. A famous example is the St. Louis Gateway Arch, which is not quite an inverted
catenary, but approximates one closely.‡ Given the values of d,h, the arch shape parameter a is fixed
by requiring that y = 0 at the end-points, x = ±d/2. This gives the nonlinear equation for a:

a · cosh
(
d
2a

)
− a = h (6)

a. Using the built-in MATLAB function fzero, find the parameter a for the values d = 20, h = 10 feet.
You may use the crude approximation a0 = d2/(4h) as the initial estimate of a (this is derived by
replacing cosh(x) by its Taylor series approximation, cosh(x)= 1+ x2/4+ · · · )

b. Plot the arch function in Eq. (5) over the interval −d/2 ≤ x ≤ d/2.

c. The outer perimeter of the Gateway Arch has dimensions d = h = 630 feet. Repeat parts (a,b) for
this case.

d. The mathematical equations that describe the Gateway Arch are given as follows for the centroid
curve of the arch, that is, the curve that passes through the center of mass of each triangular cross
section of the arch, where all distances are in feet (for details, see Osserman’s article):

y = h−A cosh(Bx)+A
A = 68.7672 , B = 0.0100333

d = 598.4478 , h = A cosh(Bd/2)−A = 625.0772

(7)

For these values of d,h, design an inverted catenary and determine its shape parameter a from
Eq. (6). In addition, determine the parameters C,D of a parabola that matches the base and height
d,h of the arch (i.e. express C,D in terms of d,h):

y = C+Dx2 (8)

†http://en.wikipedia.org/wiki/Catenary
‡See R. Osserman’s interesting article (on Sakai) discussing the history and mathematics of the Gateway Arch.
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Then, evaluate Eqs. (7) and (8), as well as Eq. (5), at −d/2 ≤ x ≤ d/2, and plot all three curves on the
same graph. Observe how closely the catenary approximates the true arch.
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Note: For small values of the ratio h/d, i.e., less than 0.2, the catenary and matched parabola are
virtually indistinguishable. In fact, Galileo thought that the mathematical form of a hanging chain
was a parabola. For a suspension bridge that supports a roadway, such as the Verrazano or the
Golden Gate Bridge, it can be shown that the shape of the supporting cables is actually parabolic
(note that the Golden Gate has h/d = 0.18.)

If you are connected to the internet, you can load an image of the Gateway Arch from Wikipedia into
MATLAB as discussed in the week-4 lecture notes.
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Homework Problems – Week 6

440:127 – Spring 2015 – S. J. Orfanidis

1. The attached file, set6a.dat, has the following contents:

X A B Y Z
-----------------------------------------------
-10.005 bb A 300.00005 200.00
15.025 dddd CCC -6.12300 40000.00
6.705 a DDDD -130.10009 10.00
8.002 ccc EEEEE 70.50000 3000.00

a. Open this file using fopen, skip over the two header lines using fgetl, and use a single fscanf com-
mand to read the three numerical columns into a 4×3 matrix. From that matrix, extract and display
the individual columns X,Y,Z. Rewind but do not close the file.

b. Then, use a single textscan command to read from the file the two text columns A,B, each being a
4×1 cell array of strings. Display A,B on the screen, for example, B should display as:

’A’
’CCC’
’DDDD’
’EEEEE’

c. Using the sort function, sort columnY in ascending order and then sort the other columnsX,A,B,Z
according to Y’s sorting index. Using fopen, open a new data file for writing called, set6b.dat, and
using fprintf, write into it the sorted columns X,A,B,Y,Z, including the original header lines. The
sorted file should have contents like these:

X A B Y Z
-----------------------------------------------

6.705 a DDDD -130.10009 10.00
15.025 dddd CCC -6.12300 40000.00
8.002 ccc EEEEE 70.50000 3000.00

-10.005 bb A 300.00005 200.00

Use the following type command to display the contents of the new file on the screen:

type set6b.dat

1



2. The included data file, set6c.dat, contains water level data for Lake Powell for the years 2000–2007.
Please see Problem 8.8 of the text for the context of this problem. The data file is essentially the same
as Table 8.9 of the text and its contents are:

Lake Powel Water-Level Data (source: Problem 8.8 of the textbook)
----------------------------------------------------------------------------------

2000 2001 2002 2003 2004 2005 2006 2007
----------------------------------------------------------------------------------
January 3680.12 3668.05 3654.25 3617.61 3594.38 3563.41 3596.26 3601.41
February 3678.48 3665.02 3651.01 3613.00 3589.11 3560.35 3591.94 3598.63
March 3677.23 3663.35 3648.63 3608.95 3584.49 3557.42 3589.22 3597.85
April 3676.44 3662.56 3646.79 3605.92 3583.02 3557.52 3589.94 3599.75
May 3676.76 3665.27 3644.88 3606.11 3584.70 3571.60 3598.27 3604.68
June 3682.19 3672.19 3642.98 3615.39 3587.01 3598.06 3609.36 3610.94
July 3682.86 3671.37 3637.53 3613.64 3583.07 3607.73 3608.79 3609.47
August 3681.12 3667.81 3630.83 3607.32 3575.85 3604.96 3604.93 3605.56
September 3678.70 3665.45 3627.10 3604.11 3571.07 3602.20 3602.08 3602.27
October 3676.96 3663.47 3625.59 3602.92 3570.70 3602.31 3606.12 3601.27
November 3674.93 3661.25 3623.98 3601.24 3569.69 3602.65 3607.46 3599.71
December 3671.59 3658.07 3621.65 3598.82 3565.73 3600.14 3604.96 3596.79

a. Open the data file with the function fopen, and after skipping over the four header lines, use a single
fscanf command to read the numerical columns into a 12×8 matrix.
Using the function mean, compute and print the yearly average levels (the means of the columns),
and the monthly averages (the means of the rows), as well as the overall mean (for all 12×8 months).

b. Open a new data file for writing called, set06d.dat, and using appropriate fprintf commands, write
the water level data into this file, and append a last column that contains the monthly averages, and
a bottom row that contains the yearly averages, as well as the overall average at the bottom-right
corner. The file contents should look exactly as follows:

Lake Powel Water-Level Data (source: Problem 8.8 of the textbook)
------------------------------------------------------------------------------------------------

2000 2001 2002 2003 2004 2005 2006 2007 | monthly-ave
------------------------------------------------------------------------------------------------
January 3680.12 3668.05 3654.25 3617.61 3594.38 3563.41 3596.26 3601.41 | 3621.94
February 3678.48 3665.02 3651.01 3613.00 3589.11 3560.35 3591.94 3598.63 | 3618.44
March 3677.23 3663.35 3648.63 3608.95 3584.49 3557.42 3589.22 3597.85 | 3615.89
April 3676.44 3662.56 3646.79 3605.92 3583.02 3557.52 3589.94 3599.75 | 3615.24
May 3676.76 3665.27 3644.88 3606.11 3584.70 3571.60 3598.27 3604.68 | 3619.03
June 3682.19 3672.19 3642.98 3615.39 3587.01 3598.06 3609.36 3610.94 | 3627.27
July 3682.86 3671.37 3637.53 3613.64 3583.07 3607.73 3608.79 3609.47 | 3626.81
August 3681.12 3667.81 3630.83 3607.32 3575.85 3604.96 3604.93 3605.56 | 3622.30
September 3678.70 3665.45 3627.10 3604.11 3571.07 3602.20 3602.08 3602.27 | 3619.12
October 3676.96 3663.47 3625.59 3602.92 3570.70 3602.31 3606.12 3601.27 | 3618.67
November 3674.93 3661.25 3623.98 3601.24 3569.69 3602.65 3607.46 3599.71 | 3617.61
December 3671.59 3658.07 3621.65 3598.82 3565.73 3600.14 3604.96 3596.79 | 3614.72
--------------------------------------------------------------------------------------------
yearly_ave 3678.11 3665.32 3637.93 3607.92 3579.90 3585.70 3600.78 3602.36 | 3619.75
--------------------------------------------------------------------------------------------

Use the following command to display the contents of the new file on the screen:

type set6d.dat

Your fprintf commands should not contain any actual numerical values, but rather they should
act on the arrays obtained in part (a). See p. 28 the the week-6 lecture notes for an example on how
to use a for-loop to print text and numerical columns, as well as the header lines.

c. Concatenate all columns of the numerical matrix of part (a) into a column vector of length 12×8 = 96
that represents consecutive months in consecutive years. Plot it versus time over 2000 ≤ t < 2008.
[Hint: Go in monthly steps of 1/12 of a year, note that the last month in the data is 2008− 1/12.]
Add to the graph the overall mean level. Using the functions max and min, determine the maximum
and minimum water levels and the time they occur and add them to the graph as open circles. More-
over, determine (using MATLAB commands) the month and year when these maxima and minima
occur. Finally, prepare a graph like the one at the end.
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d. To better see the average levels, make a separate plot of the concatenated monthly levels and add
to it the yearly averages (each extending over a period of 12 months). You may use the plotting
function stairs for this part. Generate a graph like the one below.

To understand how to use the stairs command, try and compare the following code examples:

x=0:7; y=8*x-x.^2; [x;y]
figure; stairs(x, y); xaxis(0, 9, 0:9); grid on
figure; stairs([x,8], [y,nan]); xaxis(0, 9, 0:9); grid on
figure; stairs([x,8], [y,0]); xaxis(0, 9, 0:9); grid on

e. Finally, using meshgrid and surf, do a surface plot of the data matrix extracted in part (a), like the
one shown below.
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3. The file NFL.dat contains the stats for some well-known quarterbacks from the 1990s. They are listed
alphabetically in the form:

C T I Y Rating Player
-----------------------------------------------------------------
59.3073 4.40223 3.57542 7.33810 ? Ken Anderson
57.0970 6.38867 4.89174 7.67469 ? Len Dawson
58.4635 3.97135 3.25521 7.15299 ? Tony Eason

................ etc. .............................

59.6949 5.25424 4.47458 7.44373 ? Danny White
54.5700 5.59198 4.87852 7.75916 ? Johnny Unitas

where the columns labeled C,T, I,Y contain the following data:

C = percent completions, T = percent touchdowns
I = percent interceptions, Y = average yards gained per pass attempt

The NFL rates the passing ability of quarterbacks by combining these columns with certain weights.
Although the NFL does not disclose the details of how they do this, it is possible to reverse-engineer their
published ratings and arrive at the following ratings formula (we will derive this in a later homework):

R = 50+ 20C+ 80T − 100 I + 100Y
24

(1)

The objective of this problem is to read the NFL data file, compute the ratings for each player, place
them in the column with the question-marks, sort the file from the highest-rated player to the lowest,
and save the sorted data in another file.

a. Place the data file in the current working folder, or somewhere in MATLAB’s path. Open the file with
the editor and observe that there are nine header lines above the data, then close the editor.

Open the file with fopen, skip over the first nine header lines using fgetl, then using a single fscanf
command read the numerical columns into a 20×4 matrix, then rewind the file, skip over the header
lines again (but save them this time into cell arrays), and using a single textscan command read the
last two columns of first and last names into two cell arrays [Hint: see the week-6 lecture notes on
how to do all these operations.]

b. Using Eq. (1), calculate the column vector R of ratings for the players. Then, sort the ratings vector
R in decreasing order, saving both the sorted ratings vector and its sorting order. From that sorting
order, do a similar sorting of the C,T, I,Y columns as well as the cell arrays of the first and last
names.

c. Open a new data file, say, NFLs.dat, and save into it the sorted data, including the sorted ratings
column which will replace the question marks, and include also the nine header lines. Close the file
and use the following command to print its contents on the screen:

type NFLs.dat

The sorted file should look something like this (not all header lines are shown):

C T I Y Rating Player
-----------------------------------------------------------------
63.8827 5.32151 2.63612 7.65065 93.951 Joe Montana
59.5616 6.02740 3.42466 7.63096 89.336 Dan Marino

................ etc. ..............................

56.0564 4.86084 3.95923 7.13054 78.214 Bert Jones
54.5700 5.59198 4.87852 7.75916 78.201 Johnny Unitas
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4. The file aaron.dat contains Hank Aaron’s home run output for the 20-year period 1954–1973. Except
for the header lines, the file consists of numerical columns.

a. Skipping over the header lines with fgetl, read the numerical columns into a matrixA, using a single
fscanf command.

b. Let t and H denote the second and third columns of A representing the number of years in the
majors and the home runs in that year. Calculate the cumsum of H, which represents the total
number of home runs up to a given year, and denote that by C.

c. In another homework, we will learn how to fit a straight line to this data. The following straight line
y = 37x− 37 provides an adequate fit to the data from year 2 to year 19. Make a plot of C versus
t using dot-markers only (do not connect them by straight line segments), and add to the graph the
above fitted straight line. Produce a graph like that shown below.

d. Using fprintf commands, save the computed cumulative data C together with the original data in
a new file, say, aaron2.dat, that looks exactly like aaron.dat, but has the column labeled “total
career” filled with the column C. Display the file on the screen as follows:

Hank Aaron’s Home Run Output
----------------------------------------
calendar years in home total
year majors runs career
----------------------------------------
1954 1 13 13
1955 2 27 40
1956 3 26 66
1957 4 44 110
1958 5 30 140
1959 6 39 179
1960 7 40 219
1961 8 34 253
1962 9 45 298
1963 10 44 342
1964 11 24 366
1965 12 32 398
1966 13 44 442
1967 14 39 481
1968 15 29 510
1969 16 44 554
1970 17 38 592
1971 18 47 639
1972 19 34 673
1973 20 40 713
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5. The file NYCtemp.dat contains the following temperature data for New York for the years 1971-75:

source: The Weather Almanac, 5th ed., J. A. Ruffner and F. E. Bair, eds.,
Gale Research Co., Book Tower, Detroit, MI, 1987

year jan feb mar apr may jun jul aug sep oct nov dec
------------------------------------------------------------------------------
1971 27.0 35.1 40.1 50.8 61.4 74.2 77.8 75.9 71.6 62.7 45.1 40.8
1972 35.1 31.4 39.8 50.1 63.3 67.9 77.2 75.6 69.5 53.5 44.4 38.5
1973 35.5 32.5 46.4 53.4 59.5 73.4 77.4 77.6 69.5 60.2 48.3 39.0
1974 35.3 31.7 42.1 55.2 61.0 69.0 77.2 76.4 66.7 54.1 48.2 39.4
1975 37.3 35.8 40.2 47.9 65.8 70.5 75.8 74.4 64.2 59.2 52.3 35.9

a. Our first task is to read the data file, rearrange it so that the months run vertically and the years
horizontally, and save it in a new file, say, NYCtemp2.dat. The new file should preserve the header
lines and look as follows:

source: The Weather Almanac, 5th ed., J. A. Ruffner and F. E. Bair, eds.,
Gale Research Co., Book Tower, Detroit, MI, 1987

1971 1972 1973 1974 1975
---------------------------------------------
January 27.0 35.1 35.5 35.3 37.3
February 35.1 31.4 32.5 31.7 35.8
March 40.1 39.8 46.4 42.1 40.2
April 50.8 50.1 53.4 55.2 47.9
May 61.4 63.3 59.5 61.0 65.8
June 74.2 67.9 73.4 69.0 70.5
July 77.8 77.2 77.4 77.2 75.8
August 75.9 75.6 77.6 76.4 74.4
September 71.6 69.5 69.5 66.7 64.2
October 62.7 53.5 60.2 54.1 59.2
November 45.1 44.4 48.3 48.2 52.3
December 40.8 38.5 39.0 39.4 35.9

b. The second task is to find all the months and corresponding year that had temperatures in the nice
range of 65 ≤ T ≤ 75 oF, and present them in a table, such as the following:

the nicest months & years were:
-------------------------------
June 1971 T = 74.2 F
September 1971 T = 71.6 F
June 1972 T = 67.9 F
September 1972 T = 69.5 F
June 1973 T = 73.4 F
September 1973 T = 69.5 F
June 1974 T = 69.0 F
September 1974 T = 66.7 F
May 1975 T = 65.8 F
June 1975 T = 70.5 F
August 1975 T = 74.4 F

c. The third task is to plot the above temperature data versus time and indicate the overall average
temperature on the graph, as shown below.
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Homework Problems – Week 7

440:127 – Spring 2015 – S. J. Orfanidis

1. End-of-Chapter Problem 8.3.

2. End-of-Chapter Problem 8.7. Data file temp.dat is attached.

3. End-of-Chapter Problem 8.10. Data file lake_powell.dat is attached. See an example graph below.
In addition to Parts (a–d), please do the following: (e) plot the water level versus time over the 8-year
period, using tickmarks at 2000 : 2 : 2008, and draw a horizontal line at the overall mean water level.
(f) Using min, find the month and year when the reservoir was at its lowest and place that point on the
previous graph, (g) Using fprintf generate a table that looks exactly like Table 8.9 of the text.
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4. End-of-Chapter Problem 8.16.

After you construct this function, use it to determine the total contribution amounts for the following
salaries: $ 25,000, $ 50,000, $ 80,000, and $ 120,000, and use fprintf to make a table of the results.

Moreover, use your function to generate a plot like the one shown below.
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5. Production Costs.†‡ A manufacturing company produces a product that has three components A,B,C.
The table below shows the cost per unit of the three components as a function of the number n of units
produced. The first two columns M,S represent the manufacturing and shipping costs per unit.

n M n S n A n B n C
1–50 $40.00 1–10 $20.00 1–5 $30.00 1–10 $26.00 1–30 $20.00

51–100 $35.00 11–30 $18.00 6–25 $27.00 11–50 $23.00 31–100 $18.00
101+ $30.00 31–50 $15.00 26–100 $23.00 51–80 $20.00 101+ $15.00

51+ $12.00 101+ $18.00 81+ $18.00

a. Write a function T(n) that computes the total production cost per unit as a function of the number
of units n (i.e., the total cost of the columns M,S,A,B,C.) Then, for n = 1 : 120, make a plot of
T(n) versus n, and verify that the more units produced, the cheaper the total cost.

b. Moreover, find the average production cost, say Tav per unit, and the number of units nav beyond
which the total cost drops below the average, and place the point nav, Tav on the above graph.
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6. Consider a periodic sawtooth waveform defined over one period 0 ≤ t ≤ 1 by:

f(t)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2t , if 0 ≤ t < 0.5
0 , if t = 0.5
2t − 2 , if 0.5 < t < 1

0 , for all other t

a. Write a one-line fully vectorized anonymous MATLAB function f(t) that evaluates the above function
at any vector of times t. Plot this function over the interval 0 ≤ t ≤ 1.

b. Using this function write MATLAB code to reproduce the following plot of f(t), periodically repli-
cated over the interval −2 ≤ t ≤ 3, as shown below.

† D. Morrell, Freshman Engineering Problem Solving with MATLAB, http://cnx.org/content/col10325/1.18, PDF on sakai.
‡ http://cnx.org/content/m13433/1.6
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7. We wish to carry out a Monte Carlo calculation of the area of a triangle of base and height equal to one,
inscribed inside a rectangle of sides equal to one, as shown below.
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Following the discussion of a similar example in week-4 lecture notes, generate N = 104 random (x, y)
pairs that are uniformly distributed inside the rectangle.

Using appropriate relational operators and the function find, determine those (x, y) pairs the lie inside
the triangle, and make a scatter plot of them using red dots.

Hold the graph, and determine those pairs that lie outside the triangle and make a scatter plot of them
using blue dots, as shown above. Also, add the straight-line edges of the triangle to the graph.

Finally, determine the area of the triangle from the proportion of the red dots.
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8. A skydiver jumps off a plane at a height of h0 meters, with an initial vertical velocity v0 (we will consider
horizontal motion in another homework set.) The vertical drag force, discussed in Example 2.3 (p. 35)
of the textbook, depends quadratically on the downward vertical velocity v :

Fdrag = 1

2
ρCAv2

where ρ is the air density (assumed here to be independent of height), A is the effective area of the
skydiver perpendicular to the motion, and C is a drag coefficient. Assuming a dense body and ignoring
the buoyancy force,† the net downward vertical force on the skydiver is the difference between the
force of gravity Fgrav = mg, and the drag force, where m is the skydiver’s mass plus equipment and g
is the acceleration of gravity (also assumed to be independent of height). Thus, Newton’s second law of
motion (F =ma) states that:

m
dv
dt
= Fnet = Fgrav − Fdrag =mg− 1

2
ρCAv2 (1)

As the downward velocity v keeps increasing, the drag-force term in Eq. (1) keeps building up until it
compensates the gravity force, resulting in zero acceleration, or, constant velocity vc, referred to as
critical or terminal velocity. From then on, the skydiver falls at that constant velocity. The balancing
condition between gravity and drag force gives the value of the critical velocity:

mg− 1

2
ρCAv2

c = 0 ⇒ vc =
√

2mg
ρCA

(2)

Let us define also the related quantities tc and hc,

tc = vc
g
=
√

2m
ρCAg

, hc = vctc = v2
c
g
= 2m
ρCA

(3)

The skydiver can control the value of vc by changing the effective area A. For example, if the skydiver
turns vertical, then A decreases and vc increases. Similarly, just before reaching ground, the skydiver
opens a parachute, thus substantially increasing A and decreasing vc. Using the definitions (2) and (3),
Eq. (1) can be written in the simplified form:

dv
dt
= vc
tc

(
1− v

2

v2
c

)
(4)

The solution of the differential equation (4) with initial condition v(t0)= v0 is given by:

v(t)= vc
v0

vc
+ tanh

(
t − t0
tc

)

1+ v0

vc
tanh

(
t − t0
tc

) , t ≥ t0 (5)

where tc is a measure of the time constant to reach the critical velocity value.‡ Note that v(t0)= v0 as
it should, and v(∞)= vc. The solution (5) can be derived by standard calculus methods, or, by using

†From Archimedes’ principle, the buoyancy force can be taken into accout by replacing g by its effective value geff = g(1−ρ/ρobj),
where ρobj is the object’s density. In this problem, we assume that ρ� ρobj.
‡Typically, v(t) reaches about 99% of vc within a couple of tc’s while falling a distance of a couple of hc’s.

4



MATLAB’s symbolic math toolbox. You are not expected yet to know how to solve such differential
equations, so in this homework, we’ll just take the solution (5) as given. In a later homework, we will
also solve it numerically using while-loops. The corresponding vertical drop distance y (measured from
the airplane), can be obtained by integrating the above solution for v :

dy
dt
= v ⇒ y(t)= hc ln

[
cosh

(
t − t0
tc

)
+ v0

vc
sinh

(
t − t0
tc

)]
, for t ≥ t0

Note that at t = t0, we have y(t0)= 0. The corresponding height measured from the ground (see above
figure) is h(t)= h0 − y(t), or,

h(t)= h0 − hc ln
[

cosh
(
t − t0
tc

)
+ v0

vc
sinh

(
t − t0
tc

)]
, t ≥ t0 (6)

Often, we wish to know how long it takes to drop to a height h ≤ h0. This can be obtained by solving
Eq. (6) for t in terms of h :

t = t0 + h0 − h
vc

+ tc ln

⎡
⎣vc +

√
v2
c + (v2

0 − v2
c)e−2(h0−h)/hc

vc + v0

⎤
⎦ , h0 ≥ h ≥ 0 (7)

or, in terms of the drop distance y = h0 − h,

t = t0 + y
vc
+ tc ln

⎡
⎣vc +

√
v2
c + (v2

0 − v2
c)e−2y/hc

vc + v0

⎤
⎦ , 0 ≤ y ≤ h0 (8)

As y increases by a few hc lengths, or as h decreases towards zero, the term e−2y/hc becomes small and
can be ignored, implying from Eq. (8) that the skydiver is then falling with constant terminal velocity vc:

t ≈ t0 + y
vc
+ tc ln

[
2vc

vc + v0

]
, y� hc

Setting y = h0 gives the time it takes to reach the ground:

tg = t0 + h0

vc
+ tc ln

⎡
⎣vc +

√
v2
c + (v2

0 − v2
c)e−2h0/hc

vc + v0

⎤
⎦

Equations (5), (6), and (7) form the basis of this homework. Assume the following numerical values:

ρ = 1.2 kg/m3, air density
g = 9.8 m/sec2, acceleration of gravity
m = 70 kg, skydiver’s weight (mass)
C = 1 skydiver’s drag coefficient

a. Write a MATLAB function V(t, t0, v0, vc) that implements Eq. (5). It should be vectorized in the vari-
able t, with t0, v0, vc being parameters. Similarly, write functionsH(t, h0, t0, v0, vc) andT(h, t0, h0, v0, vc)
that implement Eqs. (6) and (7). The three functions must be defined as anonymous functions:

V = @(t,t0,v0,vc) ...
H = @(t,h0,t0,v0,vc) ...
T = @(h,t0,h0,v0,vc) ...

b. Assume that the skydiver jumps from a height of h0 = 2500 m, with zero initial velocity v0 = 0,
at t0 = 0, and is oriented so that her effective surface area is A0 = 0.7 m2. Calculate the terminal

5



velocity vc0, and then calculate the time t1 it takes to drop to a height of h1 = 1500 m above the
ground and the speed v1 at that time. Use the above functions for your calculations.

When the skydiver reaches the height h1, she suddenly changes orientation (e.g. turns sideways) so
that her effective area is now A1 = 0.3 m2. Calculate the new terminal velocity vc1. Use the values
of v1, t1 as the initial conditions for the rest of the fall for t ≥ t1. Calculate the time t2 at which
the skydiver reaches a height of h2 = 200 m above ground, and calculate the speed v2 at that time
instant.

At that time t2, the skydiver suddenly opens her parachute, which has surface area of A2 = 50 m2.
Calculate the new terminal velocity vc2.† Use the values of v2, t2 as the initial values for the rest of
the fall for t ≥ t2. Calculate the time, say tg, it takes to hit the ground (i.e., the height is h = 0.)

c. Using the calculated values from part (b), and using appropriate relational operators and your func-
tion V(t, t0, v0, vc), define a single-line anonymous function v(t) that describes the velocity of the
fall through the various stages till the ground is hit, that is, define the function:

v(t)=

⎧⎪⎪⎨
⎪⎪⎩
V(t, t0, v0, vc0) , if t0 ≤ t ≤ t1
V(t, t1, v1, vc1) , if t1 ≤ t ≤ t2
V(t, t2, v2, vc2) , if t2 ≤ t ≤ tg

Similarly, define an overall height function:

h(t)=

⎧⎪⎪⎨
⎪⎪⎩
H(t, h0, t0, v0, vc0) , if t0 ≤ t ≤ t1
H(t, h1, t1, v1, vc1) , if t1 ≤ t ≤ t2
H(t, h2, t2, v2, vc2) , if t2 ≤ t ≤ tg

Define the vector of time instants spanning the interval 0 ≤ t ≤ tg :

t = linspace(0,tg,1001);

Evaluate v(t) andh(t) at these times t, and plot them. Plot height in units of kilometers. See example
plots below. On the height plot, place the points t1, t2, tg at which the skydiver’s configuration
changes. Note that the height plots are almost, but not quite, straight-line plots with changing
slopes because the terminal velocities change, see Eq. (7).

d. In parts (b,c), the heights h1, h2 were given and you had to calculate the corresponding times t1, t2
at which changes in configuration took place.

In a slightly different version, assume now that these times are given to be t1 = 30 and t2 = 50 sec.
Calculate the corresponding heights h1, h2 and the time tg to reach the ground. Repeat the plots of
part (c).

†The terminal velocity vc2 is roughly equal to the velocity of jumping off a height of about one meter.
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9. Standard Atmosphere.† The standard atmosphere is a model of the average properties of the atmo-
sphere that can be used to calculate representative temperature, air-pressure, and density distributions
as functions of height up to about 90 km. The model assumes a certain piece-wise linear distribution of
temperatures across the various layers of the atmosphere, such as the troposphere, stratosphere, and
mesosphere and is shown in the figure below.
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ground

The standardized values of the heights hi, temperatures Ti, and slopes ai (referred to a lapse rates) of
the various layers are given in the table below.

Layers Heights (km) Temperatures (K) Slopes (K/km)

troposphere h1 = 0 T1 = 288.15 a1 = −6.5
tropopause h2 = 11 T2 = 216.65 a2 = 0.0
stratosphere h3 = 20 T3 = 216.65 a3 = 1.0
stratosphere h4 = 32 T4 = 228.65 a4 = 2.8
stratopause h5 = 47 T5 = 270.67 a5 = 0.0
mesosphere h6 = 51 T6 = 270.65 a6 = −2.8
mesosphere h7 = 71 T7 = 214.65 a7 = −2.0
mesopause h8 = 84.852 T8 = 186.946 a8 = 0.0
mesopause h9 = 90 T9 = 186.946

The heights h are actually, so-called geopotential heights that are related as follows to the actual geo-
metrical heights z in terms of the Earth’s radius, Re = 6356.766 km, where h, z are in units of km:

h = Re z
Re + z (9)

For example, the height h8 = 84.852 km corresponds to a geometrical height of z8 = 86 km. Because of
the assumption of linearity, the given slopes are redundant and can be calculated from the relationships:

ai = Ti+1 −Ti
hi+1 − hi , i = 1,2, . . . ,8

or, in a vectorized way using the diff function in MATLAB:

†http://www.pdas.com/atmosdef.html, see also, http://www.pdas.com/atmos.html
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hi = [h1, h2, h3, h4, h5, h6, h7, h8, h9];
Ti = [T1, T2, T3, T4, T5, T6, T7, T8, T9];
ai = diff(Ti)./diff(hi);

Within the i-th layer with slope ai, the temperature varies linearly as a function of height h:

hi ≤ h ≤ hi+1 ⇒ T(h)= Ti + ai(h− hi) , (i-th layer) (10)

Using the ideal gas law and Archimedes’ principle of hydrostatic equilibrium, one obtains the following
equations, which can be used to determine the pressure P(h) and density ρ(h) as functions of the
geopotential height h :

P = ρRsT , dP
dh

= −g0ρ (11)

where Rs = 0.287053 kJ/K/kg is the specific gas constant for air,† and g0 = 9.80665 m/s2 is the
acceleration of gravity at the Earth’s surface. Combining the two equations, we obtain,

ρ = P
RsT

⇒ dP
dh

= −g0

Rs
P
T

⇒ d
dh

ln
(
P(h)

) = − B
T(h)

where we defined the constant B,

B = g0

Rs
= 34.1632

K

km
(12)

Thus, within the i-th layer with slope ai, we have

hi ≤ h ≤ hi+1 ⇒ d
dh

ln
(
P(h)

) = − B
Ti + ai(h− hi) (13)

In integrating Eq. (13), we must distinguish the two cases ai 	= 0 and ai = 0. Denoting the pressure at
h = hi by Pi, we obtain,

hi ≤ h ≤ hi+1 ⇒ P(h)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
Pi ·

(
Ti

Ti + ai(h− hi)
)B/ai

, if ai 	= 0

Pi · exp
(
−B(h− hi)

Ti

)
, if ai = 0

(14)

In fact, the ai = 0 case is the limit of the ai 	= 0 case as ai → 0. This follows from the limiting form of
the exponential function:

lim
α→0

(
1

1+αx
) 1
α = exp(−x)

One might be tempted to define a MATLAB function that combines the two cases as

F = @(x,a) (1 + a*x).^(-1/a) * (a~=0) + exp(-x) * (a==0);

that is,

f(x,α)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1

1+αx
) 1
α
, if α 	= 0

exp(−x) , if α = 0

However, the MATLAB function would produce a NaN when α = 0 arising from the first term which
would be∞·0. The problem can be fixed by replacing 1/α by its pseudo-inverse pinv(α),‡ and define
the function as follows,

†Rs = R/M, where R = 8.31432 J/K/mol is the ideal gas constant, and M = 28.9644 kg/kmol, the molecular weight of air.
‡the pseudoinverse of a scalar α is defined to be 1/α if α 	= 0, and 0, if α = 0.
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F = @(x,a) (1 + a*x).^(-pinv(a)) * (a~=0) + exp(-x) * (a==0);

With the help of the function F(x,α), we can express Eq. (14) in the compact form:

hi ≤ h ≤ hi+1 ⇒ P(h)= Pi · F
(
B(h− hi)

Ti
,
ai
B

)
(15)

From Eq. (14), we can now obtain the pressure Pi+1 at h = hi+1, for i = 1,2, . . . ,8:

Pi+1 = Pi · F
(
B(hi+1 − hi)

Ti
,
ai
B

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
Pi ·

(
Ti

Ti + ai(hi+1 − hi)
)B/ai

, if ai 	= 0

Pi · exp
(
−B(hi+1 − hi)

Ti

)
, if ai = 0

(16)

where the initial pressure at sea-level is taken to be P1 = 1 atm = 101325 Pa. The corresponding
densities at hi are computed by

ρi = Pi
RsTi

, i = 1,2, . . . ,9 (17)

In particular, at sea level, ρ1 = P1/RsT1 = 1.225 kg/m3. Similarly, for h within the i-th layer, we find:

hi ≤ h ≤ hi+1 ⇒ ρ(h)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ρi ·

(
Ti

Ti + ai(h− hi)
)1+B/ai

, if ai 	= 0

ρi · exp
(
−B(h− hi)

Ti

)
, if ai = 0

(18)

a. Using Eqs. (16) and (17), calculate the quantities Pi, ρi, i = 1,2, . . . ,9. By inverting Eq. (9), calculate
also the corresponding geometrical heights zi in km, and using fprintf make a table exactly as shown
below:

Atmospheric hi zi Ti ai Pi rhoi
Layer (km) (km) (K) (K/km) (Pa) (kg/m^3)

---------------------------------------------------------------------------
troposphere 0.000 0.000 288.150 -6.5 101325.0000 1.225
tropopause 11.000 11.019 216.650 0.0 22632.0587 0.36392

stratosphere 20.000 20.063 216.650 1.0 5474.8862 0.088035
stratosphere 32.000 32.162 228.650 2.8 868.0180 0.013225
stratopause 47.000 47.350 270.650 0.0 110.9062 0.0014275
mesosphere 51.000 51.412 270.650 -2.8 66.9388 0.0008616
mesosphere 71.000 71.802 214.650 -2.0 3.9564 6.4211e-005
mesopause 84.852 86.000 186.946 0.0 0.3734 6.9579e-006
mesopause 90.000 91.293 186.946 0.0 0.1457 2.7159e-006

b. Using the above values of Pi, ρi, Ti, ai, and appropriate relational operators, write three single-line
anonymous functions to calculate the temperature T(h), pressure P(h), and density ρ(h) at any
vector of heights in the range 0 ≤ h ≤ 90 km. For example, T(h) is a piece-wise function with
eight pieces, whose i-th piece is defined by Eq. (10). We may express it symbolically with the help of
MATLAB’s relational operators:

T(h)=
8∑
i=1

[
Ti + ai(h− hi)

] · (h ≥ hi & h ≤ hi+1)

We may similarly construct P(h) and ρ(h) whose i-th pieces are defined in Eqs. (14) and (18),
respectively. You may also define ρ(h)= P(h)/(T(h)·Rs), in terms of P(h) and T(h).

c. Define a vector h = 0 : 0.1 : 90 and evaluate and plot the functions T(h), P(h), and ρ(h). Make
a plot of T(h) like the one shown at the beginning. Make a semilogy plot for P(h) and ρ(h) as
shown below.

10



0 10 20 30 40 50 60 70 80 90
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

h  (km)

P
  (

P
a)

pressure vs. height

 

 
 pressure
 thresholds

0 10 20 30 40 50 60 70 80 90
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

h  (km)

ρ 
 (

kg
/m

3 )

air density vs. height

 

 
 density
 thresholds

11



Homework Problems – Week 8

440:127 – Spring 2015 – S. J. Orfanidis

1. End-of-Chapter Problem 9.10.

2. End-of-Chapter Problem 9.11. To clarify, the problem is asking you to determine the cost of the last
four years out of the 22 years of planning.

3. End-of-Chapter Problem 9.13. You must use a while-loop to implement your function.

4. Consider the MATLAB relational operations:

m = find(a)
k = (a ~= 0)

where a is a row vector. The objective of this problem is to reverse-engineer these operations. Write a
MATLAB function,

[m,k] = my_find(a);

that implements the above relational operations using for-loops and if-statements only and does not
use the function find. The outputsm,kmust be the same as those above, and kmust be of type logical.
Test it on the case:

a = [2 0 4 0 0 5 0 7];

Verify that a(k) and a(m) return the same output. Write two other versions of this function that use:
(i) conventional while-loops, and (ii) forever while-loops, and test them on the same input.

5. Write your own version of the max function that uses for-loops to determine the maximum of an array,
as well as the index at which that maximum occurs. It must have usage:

with usage:

[ymax,imax] = my_max(y)

Test it on the following vector y = [1,−2,3,8,−7,2]. How would you use your function to determine
the minimum of the array y, and the index at which it occurs?

6. Consider the finite sum:

S =
N∑
k=0

(3k+ 2)2= (3·0+ 2)2+(3·1+ 2)2+(3·2+ 2)2+· · · + (3·N + 2)2 (1)

a. Use a for-loop to evaluate the above sum for N = 100.

b. Use a conventional while-loop to evaluate the above sum for N = 100.

c. Use a forever while-loop to evaluate the above sum for N = 100.

d. Write a function, S = f(N), as an M-file, that calculates the above sum for any integer value N ≥ 0
using a for-loop. It can be verified that the above sum is given analytically by the following expression:

S = g(N)= (N + 1)(3N2 + 7.5N + 4) (2)

Write an anonymous function that implements Eq. (2). Then verify that your f(N) and g(N) produce
the same answers for N = 100.

e. Using a forever while-loop, determine the largest N such that f(N)≤ Smax, where Smax = 107.
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f. Determine the required N of part (e) by solving the equation f(N)= Smax using the function fzero.
(You need to round down the resulting solution from fzero).

g. Multiply out the factors in Eq. (2) to express g(N) as a cubic polynomial in N. Look up the built-
in function roots and use it to determine the required value of N of part (e) by solving the cubic
equation g(N)= Smax. [Hint: Pick the real-valued root among the three roots and round it down.]

7. Thermostat Model.† A typical home furnace supplies an amount of heat that increases the air temper-
ature of a room by R0 = 20 oF per hour. The time rate of change of the room temperature is governed
by Newton’s law of cooling:

dT(t)
dt

= −k[T(t)−Text(t)
]+R(t) (3)

where T(t) is the room temperature at time t, Text(t) is the external temperature, k is a measure of
the loss of heat through the walls, and R(t) is the rate of temperature increase per hour supplied by
the furnace (like the R0 above.) A typical home thermostat can be programmed to several temperature
settings during the day. Here, we will assume two settings, a higher temperature setting TH for the first
12 hours of a day, and a lower setting TL for the second 12 hours. Thus, the control temperature of the
thermostat is defined by the time function:

Tc(t)=
{
TH , if mod(t,24)< 12

TL , if mod(t,24)≥ 12
(4)

where the modulo operation, mod(t,24), reduces the time t modulo 24, i.e., it finds the remainder of
the division of t by 24, so that it is always in the range 0 ≤ mod(t,24)< 24. For example, for a 48-hour
period, we will have:

t =
0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44 45 46 47

mod(t,24) =
0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23
0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23

If the room temperature falls below the prescribed control temperature (TH orTL), the thermostat turns
the furnace on until the control temperature is reached and then it turns the furnace off. This can be
modeled into Eq. (3) by choosing the control signal R(t) as follows:

R(t)=
{
R0 , if T(t)< Tc(t)
0 , if T(t)≥ Tc(t) (5)

Because R(t) depends on T(t) in a nonlinear manner, Eq. (3) can only be solved numerically, and this is
the main objective of this problem. To this end, time is discretized in small equal-step increments, tn =
nΔt, n = 1,2,3, . . . , where Δt is a small step size. The time-derivative in Eq. (3) can be approximated
as a ratio of differences, resulting in the following difference equation:

T(tn+1)−T(tn)
Δt

= −k[T(tn)−Text(tn)
]+R(tn)

†For a more realistic version see the paper by P. S. Sansgiry and C. C. Edwards, “A Home Heating Model for Calculus Students,”
Coll. Math. J., 27, 395 (1996), placed on sakai.
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Using the simplified notation T(n) to denote T(tn), and similarly for R(tn) and Tc(tn), this difference
equation can be rearranged into:

T(n+ 1)= T(n)−kΔt [T(n)−Text(n)
]+ΔtR(n) , n ≥ 1 (6)

where

R(n)=
{
R0 , if T(n)< Tc(n)
0 , if T(n)≥ Tc(n) with Tc(n)=

{
TH , if mod(tn,24)< 12

TL , if mod(tn,24)≥ 12
(7)

The initial value in Eq. (6) will be assumed given, i.e., T(1)= T0. For the external temperature, we will
assume a simple sinusoidal model with 24-hr periodicity:

Text(n)= A− B cos
(

2πtn
24

)
(8)

Consider the following realistic numerical values:

A = 40 oF , B = 10 oF

k = 0.35 hr−1 , R0 = 20 oF /hr

TH = 70 oF , TL = 60 oF , T0 = 35 oF

Define the time vector tn to span a 48-hr period and sampled every 3 seconds:

Tmax = 48; Dt = 3/3600; % units of hours
tn = Dt:Dt:Tmax;

a. Use a for-loop to calculate the control signal Tc(n) and plot it versus tn. Within the same for-loop,
calculate also the actual room temperature T(n), and on separate graph plot it versus tn together
with the external temperature Text(n).
Observe the initial transients starting from T0, and the ability of the thermostat system to follow
the prescribed high/low settings, switching between the two at every 12-hr period.

b. Repeat the calculation and plotting of T(n) using the value k = 0.25, corresponding to a well-
insulated house, and then using k = 0.50 for a poorly insulated one.

c. For the case k = 0.35, assume that there is a power failure at time tf = 18 and that from then on
the furnace stops operating. Calculate and plot the room temperature and observe how it eventually
follows the external temperature variations (with some lag.)
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8. Skydiver.† Continuing with last week’s Problem 8, we consider now the issue of horizontal motion that
we ignored then. At the instant of jumping, the horizontal velocity of the skydiver is equal to that of
the airplane. We will see below that the air drag in the horizontal direction quickly slows down the
horizontal motion to zero and the skydiver effectively continues to fall vertically as we assumed in last
week’s problem. We recall that the force due to the air resistance acting against a moving object is taken
to be proportional to the square of the object’s velocity, typically at speeds less than 200 mph:

F = 1

2
ρCAv2

where C,ρ,A are the drag coefficient, air density, and object’s cross-sectional area. The direction of the
force is opposite that of the velocity. To simplify the subsequent notation, let us define the following
“drag constant” D, where m is the skydiver’s mass:

D = ρCA
2m

Newton’s equations of motion that take into account both horizontal and vertical motions are as follows,
where x, y denote the horizontal and vertical distances (y is measured downwards from the airplane),
and vx, vy are the corresponding velocities, and ax, ay, the accelerations:

v =
√
v2
x + v2

y (velocity magnitude)

vx = dx
dt
, ax = dvx

dt
= −Dvxv (horizontal drag)

vy = dy
dt
, ay = dvy

dt
= −Dvyv+ g (vertical drag opposing gravity)

(9)

where g is the acceleration of gravity acting vertically downwards. These differential equations may be
solved numerically using, for example, MATLAB’s built-in differential equation solver ode45. However,
in this problem, we are going to replace them with a discrete-time version that can accurately determine
the solution in an iterative manner using a while-loop. The homework solutions will demonstrate the
ode45 solution, which turns out to be virtually indistinguishable from the one presented here.

We assume that time is discretized in small steps tn = (n − 1)T, n = 1,2,3, . . . , where T is a very
small step increment. Let us denote by x(n) the value of the horizontal distance x(tn) at time t = tn,
and similarly for the quantities y(n), vx(n), vy(n).‡ Then, Eq. (9) can be replaced by the following

†G. Wagner and R. Wood,“Skydiver Survives Death Plunge (and the physics that helped)”, Phys. Teacher, 34, 543 (1996), on sakai.
‡ n can be thought of as a MATLAB index and x(n) as a MATLAB array.
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discretized version, where the operations must be done in the indicated order:∗

v(n)=
√
v2
x(n)+v2

y(n)

ax(n)= −Dvx(n)v(n)

ay(n)= −Dvy(n)v(n)+g

x(n+ 1)= x(n)+Tvx(n)

vx(n+ 1)= vx(n)+Tax(n)

y(n+ 1)= y(n)+Tvy(n)

vy(n+ 1)= vy(n)+Tay(n)

(10)

This works as follows: At time n, we assume that we know the quantities x(n), y(n), vx(n), vy(n).
From Eq. (10), we first calculate the accelerations ax(n), ay(n), and then use them to calculate the next
values x(n + 1), y(n + 1), vx(n + 1), vy(n + 1), and the process is repeated. To get the recursions
started we may take the initial values to be at n = 1

x(1)= 0 , vx(1)= v0 , y(1)= 0 , vy(1)= 0 (11)

where v0 is the initial horizontal velocity. The initial vertical velocity is assumed to be zero. If h0 is
the initial height of the jump, then the recursions (10) are to be iterated until the skydiver reaches the
ground, i.e., until y(n)≈ h0. The last index n determines the total time to reach ground.

To make the problem more realistic, we will assume that when the skydiver pulls the rip cord, the
parachute does not open instantaneously (as in last week’s problem), but rather it takes a few seconds
to fully open. We can model the opening of the parachute by the following gradual increase of its surface
area over time lasting from t1 to t2:†

A(t)= 1

2
(A2 −A1)· tanh

(
10
t − tmid

t2 − t1
)
+ 1

2
(A2 +A1) (12)

where tmid = (t1+ t2)/2. Effectively, for t ≤ t1 the surface area isA1, and for t ≥ t2, it isA2, and during
t1 < t2 < t2, it gradually transitions from A1 to A2, see the last graph below. By contrast, a sudden
change in the area can be modeled relative to the mid time-point tmid as follows:

A(t)=
⎧⎨
⎩
A1 , if t ≤ tmid

A2 , if t > tmid

(13)

The time-varying areaA(t) defines effectively a time-varying drag constantD(t) whose sampled values
D(tn) at time t = tn must be used in the difference equations (10):

D(t)= ρCA(t)
2m

(14)

In the sequel, we assume the following values of the parameters:

∗We are assuming that the drag coefficientC is the same in the vertical and horizontal directions (an oversimplifying assumption).
†Note, tanh(±5)= ±0.9999.
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ρ = 1.2 kg/m3 air density
g = 9.81 m/sec2 acceleration of gravity
m = 77 kg skydiver’s mass plus equipment
C = 1 drag coefficient, typically C = 0.2–1.4, depending on orientation
A1 = 0.7 m2 area with parachute closed
A2 = 50 m2 area with parachute opened
t1 = 50 sec time when rip cord is pulled
t2 = 70 sec time when parachute is fully opened
v0 = 50 m/sec initial horizontal velocity, 112 mph
h0 = 2.5 km initial height
T = 0.005 sec time-step increment

a. For the given values above, define a single-line anonymous function that implements the area A(t)
as a function of time t using the definition (12). Define also a function for the drag constant D(t).
Plot A(t) over the interval 0 ≤ t ≤ 120 sec. Indicate on the graph the points at t = t1 and t = t2.

b. Initialize the arrays x(n), y(n), vx(n), vy(n) as in Eq. (11), and for the above value ofT, run a forever
while-loop that calculates the arrays ax(n), ay(n), vx(n), vy(n), x(n), y(n), and insert a condition
that breaks out of the loop when y(n) becomes just greater than h0, i.e., when the skydiver has
reached the ground. Use the time-varying drag constant D(tn) at each time instant. Your loop
should have following structure:

n=1; % initialize time index

while 1 % forever while-loop

if y(n) > h0, break; end % break when ground is reached

tn = (n-1)*T; % n-th time instant in seconds

t(n) = tn; % build time vector - needed for plots

Dn = D(tn); % drag constant at time tn

v = sqrt(vx(n)^2 + vy(n)^2); % no need to save v in an array

ax(n) = -Dn * vx(n) * v; % horizontal acceleration

... etc ... ...

n = n+1; % update time index

end

After exiting the loop, delete the last values of the arrays x, y, vx, vy, but not those of t, ax, ay. Explain
why this is necessary. What are the lengths of the resulting arrays?

c. From the last value of t, determine the total duration tg in seconds of the skydiver’s fall until she
reaches the ground.

Define the corresponding array of heights measured from ground, that is, h(n)= h0 − y(n), and
calculate the value of the height hg at time t = tg. This height should be extremely small but it’s
not quite zero because the loop was exited prematurely—one more iteration would have made hg
slightly negative. In other words, for the last n, we have h(n)� 0, but h(n+ 1)< 0, or equivalently,
y(n)� h0, but y(n+ 1)> h0.

Calculate also the total horizontal distance xg at ground level. Moreover calculate the array indices
n1 and n2 corresponding to the times t1 and t2 — for example, use the formula t1 = (n1 − 1)T and
solve it for n1, rounding the answer to the nearest integer.

6



d. Calculate the vertical terminal velocities when the parachute is closed and when it is opened, that
is, corresponding to the two surface areas A1,A2. Use the formula from last week’s Problem 8:

vc =
√
g
D
=
√

2mg
ρCA

and compare them with the values of the vertical velocities at times t = 30 and t = 80 sec (see the
graph below for the justification of these choices.)

e. Make the following plots, and on all the graphs place the points corresponding to the time instants
t1 and t2, indicating the pulling of the rip cord and when the parachute is completely opened:

– vertical and horizontal accelerations ay(t), ax(t) versus t, for 0 ≤ t ≤ tg.

– vertical and horizontal velocities vy(t), vx(t) versus t, for 0 ≤ t ≤ tg.

– height h(t) and horizontal distance x(t) versus t, for 0 ≤ t ≤ tg.

– height h versus horizontal distance x, for 0 ≤ x ≤ xg, (it quickly becomes a vertical fall.)

e. Repeat parts (a-e), by using the area function of Eq. (13) instead of Eq. (12).
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9. Epidemiological Modeling of Social Networks. A recent paper,† predicting the demise of Facebook in
a couple of years, has generated a lot of attention. It applies a modified version of the SIR model of
infectious diseases to social networks. The model is verified first on the already demised Myspace social
network, and then it is applied on the current status of Facebook. In this problem, we reproduce the
results of this paper by using the optimum estimated model parameters and iterating a discrete-time
version of the model’s differential equations using a for-loop.

The epidemiological model for a social network is described by the following system of coupled differ-
ential equations for the quantities S(t), I(t),R(t), where b, c are constant parameters:

dS
dt
= −b IS

dI
dt
= b IS− c IR

dR
dt

= c IR

S(t) = no. of people “susceptible” to joining the network

I(t) = no. of “infected” people that have joined the network

R(t) = no. of “recovered” people that have left the network

(15)

Assuming equally-spaced time instants, tn = (n−1)T, whereT is a small time-step, we may approximate
Eqs. (15) by the following system of discrete-time coupled difference equations, where S(n) denotes
the value S(tn):

S(n+ 1) = S(n)−TbI(n)S(n)
I(n+ 1) = I(n)+TbI(n)S(n)−Tc I(n)R(n)
R(n+ 1) = R(n)+Tc I(n)R(n)

(16)

These are obtained by approximating the derivatives in Eq. (15) as follows:

dS(tn)
dt

≈ S(n+ 1)−S(n)
T

We note that the sum S(t)+I(t)+R(t), or S(n)+I(n)+R(n) in the discrete case, remains independent
of time. Let N denote this sum. Its value will depend on the assumed initial conditions for S, I,R.

a. Let us test the model of Eq. (16) on the Myspace case first. The data file myspace.dat contains Google
weekly query data for the keyword “myspace”. Such query data serve as proxies for the number I(t)
of people that have joined the network at time t. The data span the period from Jan. 2004 to Feb.
2014. The second column of the data file contains 525 weekly query data points normalized so that
the highest number is 100. The first column is the time in units of years, which can be parametrized
as follows, assuming 52 weeks per year:

tyear = 2004+ t
52
, t = 0,1,2, . . . ,524 , (t = time in weeks) (17)

The optimum values of the parameters b, c and the initial values S0, I0, R0 were estimated in the
above paper by using a least-squares fitting method. The obtained values were:

N = 92.94

R0 = N · 7.19 · 10−3

I0 = N · 9.49 · 10−4

S0 = N − I0 −R0

and
β = 5.98 · 10−2 , b = β

N

ν = 2.68 · 10−2 , c = ν
N

†J. Cannarella and J. A. Spechler, “Epidemiological modeling of online social network dynamics”,
arXiv: 1401.4208, http://arxiv.org/abs/1401.4208v1, placed on sakai
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The values of the parameters b, c assume that time was in units of weeks. However, in plotting the
results, the time scale will be in years as in Eq. (17). Starting with the initial values,⎡

⎢⎣ S(1)I(1)
R(1)

⎤
⎥⎦ =

⎡
⎢⎣ S0

I0
R0

⎤
⎥⎦

iterate Eq. (16) for n = 1 : 521, spanning in months the 10-year period from Jan. 2004 to Jan.
2014. Since the time scale is months, we may choose the time step to be one month, i.e., T = 1.
However, we will use the value T = 1.02 which works much better in matching the solutions of the
two versions of Eqs. (15) and (16).†

Plot the iterative solution for I(n) versus time in years, and add the observed data on the graph.
The model describes the rise and fall of Myspace very well.

b. This an optional part. Based on the summary of Matlab differential equation solvers given in the
Appendix, the following Matlab function can be used to define the differential equation system (15),

f = @(t,z) [-b*z(2)*z(1); b*z(2)*z(1) - c*z(2)*z(3); c*z(2)*z(3)];

Using this function and defining the time-span to be the same as in part (a), that is,

tspan = 0:521;

integrate Eq. (15) and plot I(t) vs. t (in years), and add the solutions of part (a) on the same graph,
as shown below.
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c. Next, load the Facebook data from the file facebook.dat, which span the period from Jan. 2006 to
Feb. 2014. Again, the first column is the time in years, and the second are the observed values of
the variable I. The optimum model parameters determined in the above paper are in this case:

N = 94.5
R0 = N · 2.35 · 10−6

I0 = N · 6.43 · 10−5

S0 = N − I0 −R0

and
β = 3.36 · 10−2 , b = β

N

ν = 4.98 · 10−2 , c = ν
N

Repeat parts (a,b). However, now we wish to extrapolate the model into the future and predict the
status of Facebook to Jan. 2018. Therefore, we will iterate Eq. (16) over the 14-year span from Jan.
2004 to Jan. 2018, corresponding to the time index n = 1 : 729 months. The time vector in years is
still defined by Eq. (17) with t going up to t = 728. Again, use T = 0.02 for the time-step.

Plot the observed data, together with the calculated model prediction I(n) from Eq. (16), but adjust
the time scale to display only the years from Jan. 2006 to Jan. 2018.

†this is equivalent to choosing T = 1 but changing slightly the values of b, c in (16)
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Note that the model matches the observed data very well until the present time of Feb. 2014, and
predicts a rapid downfall in the number of Facebook users beyond that.†

Using appropriate relational operations, determine the time (month and year) at which the value of
I(n) will have fallen to 20 percent, and place it on the graph.
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Appendix

Quick Introduction to MATLAB’s Differential Equation Solvers

MATLAB has several ordinary differential equation (ODE) solvers, such as ode45 or ode23, descriptions
of which can be found by the command ’doc ode23’. All higher-order ODEs can be reformulated as a
system of first-order ODEs of the form:

ż = f(t, z) (18)

where z is a column vector of time functions z(t) and ż denotes the time-derivative dz/dt. For example, the
system of Eqs. (9) is already first-order in the variables {x, vx, y, vy}. It can be put into the form of Eq. (18)
by defining the vector z by

z =

⎡
⎢⎢⎢⎣
x
vx
y
vy

⎤
⎥⎥⎥⎦ ⇒ ż =

⎡
⎢⎢⎢⎣
ẋ
v̇x
ẏ
v̇y

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

vx
−Dvxv
vy

g−Dvyv

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

vx

−Dvx
√
v2
x + v2

y

vy

g−Dvy
√
v2
x + v2

y

⎤
⎥⎥⎥⎥⎥⎦ (19)

Because z(1), z(2), z(3), z(4) are identified as x, vx, y, vy, we can rewrite (19) in a form that defines the
vector-valued function f(t, z), allowing also for the time-variation of D:

⎡
⎢⎢⎢⎢⎢⎣

ż(1)
ż(2)
ż(3)
ż(4)

⎤
⎥⎥⎥⎥⎥⎦ = ż = f(t, z)=

⎡
⎢⎢⎢⎢⎢⎣

z(2)

−D(t)z(2)√z(2)2+z(4)2

z(4)

g−D(t)z(4)√z(2)2+z(4)2

⎤
⎥⎥⎥⎥⎥⎦ (20)

Assuming that the parameter g and the functionD(t) have been previously defined, then one can define
the f(t, z) function in MATLAB as an anonymous function:

f = @(t,z) [z(2); -D(t)*z(2)*sqrt(z(2)^2 + z(4)^2); z(4); g-D(t)*z(2)*sqrt(z(2)^2 + z(4)^2)];

†this may not happen since Facebook seems to be diversifying in different directions.
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Then, the solution of the differential equation (18) is obtained by the command:

[t,z] = ode45(f, tspan, z0);

where tspan specifies the integration time-span of the solution, for example, tspan = [0, tg] in the skydiver
case. The vector z0 specifies the initial values, for example, in the case of Eq. (11):

z0 =

⎡
⎢⎢⎢⎣

0
v0

0
0

⎤
⎥⎥⎥⎦ (21)

The output column vector of times t is generated by the solution, and z is a matrix, such that its ith
column, z(:, i) is the solution for the ith variable z(i), e.g., for the skydiver example, the column vectors
z(:,1), z(:,2), z(:,3), z(:,4) represent the solution vectors for x(t), vx(t), y(t), vy(t) at the time vector t.

Often the differential equation to be solved has several additional parameters that need to be set by the
user, such as the quantities {A1,A2, t1, t2, ρ,C,m,g} of the skydiver example. There are basically three
ways to handle such parameters. Let the parameters be denoted by p1, p2, . . . .

1. If the function f(t, z) can be defined as a one-line anonymous function, then the parameters p1, p2, . . . ,
must be defined prior to defining the function f(t, z), as we did in the above example:

% define the values of p1, p2, ..., here
% define f as anonymous function, parameters p1,p2,... may appear here

f = @(t,z) ... % define function handle and pass it to ode45
[t,z] = ode45(f, tspan, z0); % solution

2. Most likely the function and its parameter dependence cannot be defined as a single-line anonymous
function. In this case one may define the function f(t, z, p1, p2, . . . ) in an M-file, say f.m, with a syntax

zdot = f(t,z,p1,p2,...)

Then, the parameters can be passed into ode45 as follows:

% here f is the file name, and @f, the function handle

[t,z] = ode45(@f, tspan, z0, [], p1,p2,...);

where the [] argument is an empty options input and is placed there in order to allow the passing of
the additional parameters p1, p2, . . .

3. This is the simplest method. Suppose again that f(t, z, p1, p2, . . . ) is defined in an M-file. Then,

% define the values of p1, p2, ..., here
% define a new anonymous function g in terms of f and pass it into ode45

g = @(t,z) f(t,z,p1,p2,...); % g is a function handle
[t,z] = ode45(g, tspan, z0); % solution

The solutions to the skydiver problem illustrate all three methods. In that problem, the differential
equation function M-file is called fdot.m and is listed below. It implements Eq. (20) and the time-variation
of the area and drag constant of Eqs. (12) and (14), and has additional parameters A1,A2, t1, t2, ρ,C,m,g:

% ---------------------------------------------------------------------------

function zdot = fdot(t,z, A1,A2,t1,t2,rho,C,m,g)

12



tmid = (t1+t2)/2;

A = (A2-A1)/2 * tanh((t-tmid)/(t2-t1)*10) + (A2+A1)/2; % area at time t

%A = A1*(t<=tmid) + A2*(t>tmid); % enable for part (e)

D = rho*C*A/2/m; % drag coefficient

v = sqrt(z(2)^2 + z(4)^2); % velocity magnitude

zdot = [z(2); -D*z(2)*v; z(4); g - D*z(4)*v]; % differential equation

% ---------------------------------------------------------------------------

In the main program, ode45 is called as follows to solve the differential equation:

% define the parameters A1,A2,t1,t2,rho,C,m,g, and tg and v0, here

tspan = [0,tg]; % time span
z0 = [0; v0; 0; 0]; % initial conditions

% using version-2:

[t,z] = ode45(@fdot, tspan, z0, [], A1,A2,t1,t2,rho,C,m,g);

% or, version-3:

gdot = @(t,z) fdot(t,z, A1,A2,t1,t2,rho,C,m,g); % new handle

[t,z] = ode45(gdot, tspan, z0);

% extract x,vx,y,vy solutions from z and plot them vs. t:

x = z(:,1); vx = z(:,2); y = z(:,3); vy = z(:,4);

figure; plot(t,x); % etc.
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Homework Problems – Week 9

440:127 – Spring 2015 – S. J. Orfanidis

1. End-of-Chapter Problem 9.14. Please solve this problem using a for-loop with a break condition. In
addition, please solve also the case when the error is required to be 10−12.

2. The Fibonacci sequence is generated by the following recursion, initialized at two arbitrary values f1 and
f2 at n = 1 and n = 2, respectively:

fn = fn−1 + fn−2 , n ≥ 3

The exact formula for the sequence is given by:

fn = A ·
(

1+√5

2

)n−1

+ B ·
(

1−√5

2

)n−1

, n ≥ 1

where A,B are given as follows in terms of the initial values f1, f2:

A = (
√

5− 1)f1 + 2f2
2
√

5
, B = (

√
5+ 1)f1 − 2f2

2
√

5

The sequence fn is exponentially increasing.

a. For the initial values f1 = 2 and f2 = 4, use a forever while-loop to determine the smallest index n,
say n0, such that the sequence fn will exceed the value F = 106, that is, n0 is the smallest index such
that fn ≥ F, for n ≥ n0, or, equivalently fn < F, for n < n0.

Capture the results of the while-loop into an array fn for 1 ≤ n ≤ n0. Then, use a single vectorized
expression to calculate the sequence from the above formula, say gn, and make a table comparing
the results obtained with the while-loop, as the one shown at the end.

b. Repeat part (a) using a conventional while-loop, but now use the values f1 = 5, f2 = 2, and F = 107.

c. For the array fn obtained in part (b), calculate the ratio of two successive Fibonacci numbers fn/fn−1,
for 2 ≤ n ≤ n0, which is rapidly converging to the Golden ratio,

φ = 1+√5

2
= Golden Ratio

Plot the golden ratio error,

∣∣∣∣∣ fn
fn−1

−φ
∣∣∣∣∣, versus n using a semilogy plot. See example graph at end.

3. A famous problem in probability is the birthday problem: What is the minimum number of people
such that the probability is more than 50% that at least two people will have the same birthday? The
surprising answer is only 23 people, for which the probability is 50.7%. Clearly, if there are more than
365 people (ignoring leap years), the probability is 100%.

Consider a group of N people, with N ≤ 365. The probability that no one in the group has the same
birthday is:

Pnone = (365− 1)
365

· (365− 2)
365

· · · (365−N + 1)
365

=
N−1∏
k=1

365− k
365

=
N−1∏
k=1

(
1− k

365

)

This follows by noting that the probability that the second person has a different birthday from the first
is 364/365 (we are ignoring leap years), the probability that the third person has a different birthday
from the first two is 363/365, and so on. Thus, the probability that at least two persons will have the
same birthday will be 1− Pnone, or,

P(N)= 1−
N−1∏
k=1

(
1− k

365

)
, 1 ≤ N ≤ 365 (1)
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a. Write a one-line anonymous function prob that for a given N calculates P(N). It must have syntax:

P = prob(N);

Then, write another version of the function prob (as an M-file) that uses a for-loop to construct P(N).

b. Using the above function prob and a while-loop determine the smallest N for which P(N)≥ 0.50.
Find also the smallest N such that P(N)≥ 0.90, and the N such that P(N)≥ 0.99.

c. Using the function prob and a for-loop, calculate all the probabilities P(n) for 1 ≤ n ≤ 100, and
plot them versus n. Indicate the three special points of part (b) on the graph.

d. A simple analytical approximation to Eq. (1) is given by:

F(N)= 1− exp
(
−N(N − 1)

730

)
, 1 ≤ N ≤ 365 (2)

Repeat the plot of part (c) and to it add the values obtained from the approximation of Eq. (2).

4. Savings Account. Suppose you deposit a certain amount of x0 dollars a month forMmonths in a savings
account that offers an annual rate of R percent, so that the monthly rate is r = R/1200. Assume that
the initial deposit in opening the account was y0 dollars. After the period of M months, you begin
withdrawing a certain amount of x dollars per month while earning the same interest. How long will
your account last before it is depleted to zero? Can it last forever?

Let y(n) be the balance of the account at the end of the nth month. It satisfies the difference equation:

y(n)=
⎧⎨
⎩
y(n− 1)+ry(n− 1)+x0 , if 1 < n ≤M
y(n− 1)+ry(n− 1)−x , if n > M

(3)

and initialized at y(1)= y0. Define the quantity xmin = r y(M). It can be shown that if the withdrawal
amount is x > xmin, then the account will be depleted; otherwise, it will last forever. In the former case,
one can calculate analytically the numberN of additional months that it will take to deplete the account
by solving the equation:

(1+ r)N= x
x− xmin

(4)

For the rest of this problem assume the following values:

R = 3 % annual
y0 = $ 1000
x0 = $ 500 , x = $ 2000
M = 12× (40 years)= 480 months

a. Using a for-loop, run the difference equation (3) for 1 < n ≤M to determine y(M) and then calculate
xmin. Verify that x > xmin so that the account will be depleted.

b. Using a while-loop, iterate Eq. (3) for n > M for as long as y(n) remains nonnegative, that is, as long
as y(n)≥ 0. Determine the numberN of iterations until this condition is violated—that’s when your
account will be depleted.

Express N in years. Solve Eq. (4) for N and verify that it agrees with the one calculated using the
while-loop.

Plot y(n) versus n for the entire life of the account, 1 ≤ n ≤ N+M, but using units of years as your
x-axis, and thousand-dollars as your y-axis.

c. Suppose you wish your account to last 35 years beyond the initialM, i.e.,N = 12×35 = 420 months.
Using Eq. (4), determine the amount x that you should be withdrawing every month for the last N
months. Then, using a for-loop, calculate and plot y(n) versus n for the entire life of the account,
that is, for 1 ≤ n ≤ N +M.

2



Typical Tables and Graphs for Problems 1–4

n f(n) g(n)
-------------------------
1 2 2
2 4 4
3 6 6
4 10 10
5 16 16
6 26 26
7 42 42
8 68 68
9 110 110

10 178 178
11 288 288
12 466 466
13 754 754
14 1220 1220
15 1974 1974
16 3194 3194
17 5168 5168
18 8362 8362
19 13530 13530
20 21892 21892
21 35422 35422
22 57314 57314
23 92736 92736
24 150050 150050
25 242786 242786
26 392836 392836
27 635622 635622
28 1028458 1028458
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5. Air Drag on a Rising and Falling Ball. A ball is thrown vertically upwards at time t = 0 with some initial
velocity v0 from an initial height y0. As the ball rises, gravity and air drag act downwards slowing down
the ball. The ball reaches a maximum height, say, ymax at time tmax. Then, it begins to fall down but
now the air drag is acting upwards slowing down the ball until it reaches a terminal velocity, say, vc,
and eventually the ball hits the ground at some time, say, tg. The figure below depicts the directions
of the forces on the rising and falling ball. Assuming that the air drag is quadratic in the velocity, the
acceleration of the rising and falling ball is given by Eq. (5) below.

a = dv
dt
= −g−D · v · |v| = −g−D · v2 · sign(v)=

⎧⎨
⎩
−g−Dv2 , v ≥ 0, rising

−g+Dv2 , v ≤ 0, falling
(5)

where we note, |v| = v · sign(v), and g is the acceleration of gravity and D is an air drag constant
related to the mass m, air density ρa, the ball’s cross-sectional area A, and drag coefficient C, by

D = ρa CA
2m

Eq. (5) ignores the buoyancy force, but that can be easily taken into account by simply replacing g by a
new effective g as follows, where ρ is the density of the ball:

geff = g
(

1− ρa
ρ

)

In this problem, we will assume a very dense ball ρ� ρa, so that the buoyancy force is negligible. On
the other hand, for a hot-air balloon, we have ρ < ρa, and geff will reverse sign causing a lift.

The objective of this problem is to replace Eq. (5) by a difference equation that can be solved numerically
in MATLAB using a while-loop, and to determine the height y(t) as a function of time, as well as the
maximum height and time ymax, tmax, and the ground time tg. Moreover, since this problem can be
solved analytically, we will compare the numerical and analytical solutions. Let us define the following
parameters in terms of g,D, where vc is the terminal velocity:

vc =
√
g
D
, tc = vc

g
= 1√

gD
, hc = vctc = v2

c
g
= 1

D
(6)

Then, the time tmax to reach the maximum height is given in terms of the initial velocity v0 by:

v0 = vc · tan
(
tmax

tc

)
⇒ tmax = tc · atan

(
v0

vc

)
(7)

The solution of Eq. (5) is given as follows, where the time interval 0 ≤ t ≤ tmax represents the rising
period, and t ≥ tmax, the falling period:

v(t)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
vc · tan

(
tmax − t
tc

)
, 0 ≤ t ≤ tmax

vc · tanh
(
tmax − t
tc

)
, t ≥ tmax

(8)
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Integrating the equation dy/dt = v, we determine the height y(t) as measured from the ground up:

y(t)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ymax + hc · ln

[
cos

(
tmax − t
tc

)]
, 0 ≤ t ≤ tmax

ymax − hc · ln
[

cosh
(
tmax − t
tc

)]
, t ≥ tmax

(9)

where ymax is given as follows in terms of the initial height y0:

ymax = y0 − hc · ln
[

cos
(
tmax

tc

)]
(10)

Requiring that y = 0 at t = tg, results in the following expression for tg:

ymax − hc · ln
[

cosh
( tmax − tg

tc

)]
= 0 ⇒ tg = tmax + tc · acosh

[
exp

(
ymax

hc

)]
(11)

Now to the numerical solutions. We discretize the time by tn = (n− 1)T, for n = 1,2,3, . . . , where T
is a very small time step. Then, the differential equations,

dv
dt
= a = −g−D · v · |v| , dy

dt
= v

can be replaced by the difference equations:

v(n+ 1)−v(n)
T

= a(n)= −g−D · v(n)·∣∣v(n)∣∣ , y(n+ 1)−y(n)
T

= v(n) (12)

wherea(n), v(n), y(n) denote the numerical approximations toa(tn), v(tn), y(tn), respectively. Rewrit-
ing Eq. (12), we obtain our final numerical computation algorithm that calculates a(n), v(n), y(n):

initialize:

v(1)= v0 , y(1)= y0

for n = 1,2,3, . . . , do:

a(n)= −g−D · v(n)·∣∣v(n)∣∣
v(n+ 1)= v(n)+a(n)·T
y(n+ 1)= y(n)+v(n)·T

(13)

We may also consider the following slightly different versions that often work better (see References at
end), however, the results obtained with Eq. (13) are perfectly adequate for this problem:

initialize:

v(1)= v0 , y(1)= y0

for n = 1,2,3, . . . , do:

a(n)= −g−D · v(n)·∣∣v(n)∣∣
v(n+ 1)= v(n)+a(n)·T
y(n+ 1)= y(n)+v(n+ 1)·T

initialize:

v(1)= v0 , y(1)= y0

for n = 1,2,3, . . . , do:

a(n)= −g−D · v(n)·∣∣v(n)∣∣
v(n+ 1)= v(n)+a(n)·T

y(n+ 1)= y(n)+v(n)·T + 1

2
a(n)·T2

In the rest of the problem, consider the following numerical values (we rounded g for convenience):

g = 10 m/sec2 , D = 0.1 m−1 , v0 = 30 m/sec , y0 = 1 m , T = 0.01 sec
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a. Using a forever while-loop, iterate Eq. (13) until ground is reached, that is, insert a condition to exit
the loop when y(n) becomes negative. Determine the last iteration index, say, ng, just before ground
is reached, and calculate the corresponding time in seconds using tg = (ng − 1)T.

Moreover, insert some code in the loop to determine the maximum height reached, ymax, and the
time index, nmax, and actual time tmax = (nmax − 1)T, when that maximum is reached.

b. Construct the vector of times t(n)= (n − 1)T, for n = 1 : ng, and plot v(n) and y(n) versus t.
Indicate the points y0, ymax, and y = 0 on the graphs.

Moreover, add to the graphs the corresponding plots of v(t) and y(t) obtained from the exact
analytical expressions given above.

c. Repeat parts (a,b) with the larger T = 0.02 sec, which will make more visible the slight discrepancy
between the iterative and analytical solutions.
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6. Supersonic Free Fall. In October 2012, Felix Baumgartner jumped off a balloon from the stratospheric
altitude of 39 km (above sea-level), reaching after 50 sec a supersonic speed of 377 m/sec, at an altitude
of 28 km. The speed of sound at that altitude is 300 m/sec, therefore, he achieved a record speed of
Mach 1.25. After falling for 260 seconds and reaching an altitude of 2.5 km, he opened the parachute,
and eventually reached the ground after a total falling time of 9 minutes and 18 sec. Note that the
ground at the landing site in Roswell, New Mexico was at an elevation of 1043 meters above sea level.
The following data were recorded during the fall, see Ref. [1] at the end.

t v h vsound

(sec) (m/s) (km) (m/s)

0 0 38.969 315.38 jump altitude above sea level
34 309.72 33.446 305.48 begin supersonic speeds
50 377.11 27.833 300.28 maximum supersonic speed
64 289.72 22.960 297.02 end supersonic speeds

180 79.17 7.619 309.71 speed slows substantially
260 53.19 2.567 330.30 parachute opens
558 – 1.043 336.27 ground is reached

The purpose of this problem is to reproduce these results with MATLAB. We recall from the previous
Problem that the air-drag force and downward vertical force are given by:

Fdrag = 1

2
ρCAv2

m
dv
dt
=mg− Fdrag =mg− 1

2
ρCAv2

which may be re-written in the form:

dv
dt
= g ·

(
1− v

2

v2
c

)
, vc =

√
2mg
CAρ

= terminal velocity (14)

At high altitudes h, both the acceleration of gravity g and the air density ρ, and hence vc, depend on
the height h, and can be represented by the following functions:

g(h) = g0R2
e

(Re + h)2
, g0 = 9.80665 m/s2 , Re = 6356.766 km

ρ(h) = 1.2241 · exp

[
−
(

h
11.661

)
−
(

h
18.192

)2

+
(

h
29.235

)3
]
, 0 ≤ h ≤ 40 km

vc(h) =
√

2mg(h)
CAρ(h)

= height-dependent terminal velocity

(15)

where h is in units of km in all expressions, andRe is the radius of the earth. The function ρ(h) provides
a simple and accurate least-squares fit to the standard atmosphere data over the interval 0 ≤ h ≤ 40
km, and will be derived in a future homework set. Thus, Eq. (14) must be replaced by:

dv
dt
= g(h)·

(
1− v2

v2
c(h)

)
= acceleration

dh
dt

= −v = speed

(16)
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where h is measured upwards from the ground and is related to the drop-distance y from the initial
height by h = h0−y, as shown in the above figure. The negative sign in the second equation is because
v represents the downward velocity and dh/dt, the upward velocity.

Next, we discretize the time in small time steps tn = (n − 1)T, n = 1,2, . . . , and replace the time-
derivatives by differences to obtain the computational algorithm:

v(n+ 1)−v(n)
T

= a(n)= g(h(n)) ·
(

1− v2(n)
v2
c
(
h(n)

)
)

h(n+ 1)−h(n)
T

= −v(n)

which can be rearranged as follows, where we also divided the velocity term of h(n) by 1000 because
h(n) is in km instead of meters:

initialize at:

h(1)= h0 , v(1)= v0 = 0

for n = 1,2,3, . . . , do:

a(n)= g(h(n)) ·
(

1− v2(n)
v2
c
(
h(n)

)
)

v(n+ 1)= v(n)+a(n)·T
h(n+ 1)= h(n)−v(n)·T/1000

(17)

In the rest of this problem assume the following parameter values:

m = 118 kg 260 lbs, Baumgartner’s total weight including equipment, Ref. [1]
C1 = 1.0 drag coefficient during free-fall
A1 = 0.7 m2 cross-sectional area during free-fall
C2 = 3.17 drag coefficient after parachute opens
A2 = 25.1 m2 parachute area, 270 ft2, Ref. [1]
v0 = 0 initial jump velocity
h0 = 38.969 km initial jump altitude, Ref. [1]
hs = 1.043 km landing site elevation above sea level, Ref. [1]
t260 = 260 sec time parachute opens, Ref. [1]
T = 0.01 sec time step

For the parameters not found in Ref. [1], we chose reasonable values to see if the above model can
adequately describe the fall. The value of C2 seems excessive but we estimated it in the following way.
The parachute was opened at a distance of (2567 − 1043)= 1524 meters above ground, and it took
(558 − 260)= 298 sec to land. Therefore, an approximate estimate of the terminal velocity with the
parachute open is vc = 1524/298 = 5.1 m/sec. Since the area of the parachute is known, one can solve
the equation vc =

√
2mg/ρCA for C, which gives C = 3.17 using the values of ρ,g at the altitude of

hs = 1.043 km.

a. Write a MATLAB function that calculates the speed of sound in air at any vector of heights h, as well
as the corresponding absolute temperatures:

[vs,T] = vsound(h)

where h should be in km. Use the following formula for it:

vs(h)=
√
γRs T(h)
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where γ = 1.4 is the adiabatic expansion constant of air, Rs = 287.053 is the specific gas constant
of air in J/K/kg, and T(h) is the absolute temperature (K) as a function of height as defined in
the Standard Atmosphere Problem of Week-7. Plot the sound speed vs(h) and temperatures T(h)
versus h in the range 0 ≤ h ≤ 40 km.

Define single-line anonymous MATLAB functions implementing g(h) and ρ(h) from Eq. (15). Define
a MATLAB function vc(h,CA) to be used with the two values of the coefficients C1A1 and C2A2:

vc(h,CA)=
√

2mg(h)
CAρ(h)

(18)

where CA is thought of as a single variable. Plot g(h), ρ(h), and vc(h,C1A1), vc(h,C2A2), for
0 ≤ h ≤ 40 km.

b. Run the following forever while-loop that implements Eq. (17), with the added feature that it uses
vc(h,C1A1) while the parachute is closed and then switches to vc(h,C2A2) when the parachute
opens at time t = 260 sec. The loop constructs the vectors t, v, h.

h(1) = h0;
v(1) = v0;
n = 1;

while 1

if h(n)<hs, break; end % break if ground altitude is reached

t(n) = (n-1)*T;

H = h(n); % altitude at time t(n)

CA = C1*A1*(t(n)<=t260) + C2*A2*(t(n)>t260); % parachute closed
% parachute opens after t=t260

a(n) = g(H)*(1 - v(n)^2/vc(H,CA)^2);

v(n+1) = v(n) + a(n)*T; % v(n) in m/s, a(n) in m/s^2, T in sec

h(n+1) = h(n) - v(n)*T/1000; % h in units of km

n = n+1;

end

c. From the exit condition of the loop, determine the total time to reach ground, tg, in seconds. For
the purpose of comparing the calculated values to the observed ones given above, calculate also the
following data points.

Using the function max, determine the maximum velocity reached, vmax, and the time instant tmax

and height hmax at which it is reached.

Determine also the time, velocity, and height, say, tb, vb, hb, when the fall becomes supersonic. And
also the time, velocity, and height, say, te, ve, he, when the supersonic speeds end and they become
subsonic.

Determine the velocity and height corresponding to the time t = 180 sec, as well as those corre-
sponding to t = 260 sec when the parachute opens.

Using at most seven fprintf commands print the given data, and the above calculated data points,
exactly as shown below.
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observed calculated
t v h t v h

notes (sec) (m/s) (km) (sec) (m/s) (km)
-------------------------- ----------------------- --------------------------
initial height 0 0.00 38.969 0.00 0.00 38.969
begin supersonic 34 309.72 33.446 34.07 305.57 33.531
maximum supersonic speed 50 377.11 27.833 50.23 369.39 27.925
end supersonic 64 289.72 22.960 67.65 296.35 21.950
speed slows substantially 180 79.17 7.619 180.00 77.94 6.901
parachute opens 260 53.19 2.567 260.00 57.75 1.589
ground 558 - 1.043 364.65 5.11 1.043

d. Plot the calculated speed v(t) and height h(t) versus time t over the interval 0 ≤ t ≤ tg, and indicate
on the graphs the observed and calculated data points from part (c), as shown below.

We note that the above model describes the overall motion fairly accurately. Our calculated altitude
corresponding to t = 260 sec is shorter than the observed one, and this causes the total landing time
to be shorter. A possible explanation is that after reaching subsonic speeds around t = 64 sec, Baum-
gartner went into a period of spinning and changing orientation before stabilizing again. Our simplified
model did not take that into account and this could have increased the drag coefficient C1 and surface
area A1 for a period of time, resulting in the observed higher altitude at t = 260. Nevertheless, the
model confirms the main features of free fall in an atmosphere with density that diminishes with alti-
tude, namely, that as the fall proceeds, the speed first increases to a maximum, and then decreases to
a terminal velocity, but not quite achieving it, see Refs. [5–7].
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7. Air Drag on a Baseball.† The concept of the drag coefficient was discussed in Example 2.3 of the text.
The force due to the air resistance acting against a moving object is taken to be proportional to the
square of the object’s velocity, typically at speeds less than 200 mph:

F = 1

2
CρAv2

where C,ρ,A are the drag coefficient, air density, and object’s cross sectional area. The direction of
the force is opposite of the velocity. In this problem, we will study the impact of air drag on the motion
of a baseball. We will obtain the ball’s trajectory using a discretized version of Newton’s equations of
motion and solve them using for-loops in MATLAB. For a ball of radius R, cross-sectional areaA = πR2,
and mass m, let us define the normalized drag coefficient:

D = CρA
2m

= CρπR2

2m

Then, Newton’s equations of motion take the following form for the x, y (horizontal and vertical) com-
ponents of positions, velocities, and accelerations:

dx
dt
= vx, dvx

dt
= ax = −Dvxv , v =

√
v2
x + v2

y

dy
dt
= vy, dvy

dt
= ay = −Dvyv− g

(19)

†http://wps.aw.com/wps/media/objects/877/898586/topics/topic01.pdf
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where g is the acceleration of gravity acting vertically downwards. These differential equations may be
solved numerically using, for example, MATLAB’s built-in differential equation solver ode45. However,
in this problem, we are going to replace them with a discrete-time version that can very accurately
determine the solution. We assume that time is discretized in small steps tn = nT, n = 0,1,2, . . . ,
where T is a very small step increment. Let us denote by x(n) the value of the horizontal distance
x(tn) at time t = tn, and similarly for the quantities y(n), vx(n), vy(n). Then, Eq. (19) can be replaced
by the following discretized version:†

v(n)=
√
v2
x(n)+v2

y(n)

ax(n)= −Dvx(n)v(n)
ay(n)= −Dvy(n)v(n)−g

(20)

x(n+ 1)= x(n)+Tvx(n)+1

2
T2 ax(n)

vx(n+ 1)= vx(n)+Tax(n)

y(n+ 1)= y(n)+Tvy(n)+1

2
T2 ay(n)

vy(n+ 1)= vy(n)+Tay(n)

(21)

At time n, we assume that we know the quantities x(n), y(n), vx(n), vy(n). From Eq. (20), we calculate
the accelerations ax(n), ay(n), and use them in Eq. (21) to calculate the next values x(n + 1), y(n +
1), vx(n + 1), vy(n + 1), and the process is repeated. To get the recursions started we may take the
initial values to be:

x(0)= 0 , y(0)= h , vx(0)= v0 cosθ0 , vy(0)= v0 sinθ0 (22)

where h is the height of the initial launch, and v0, θ0, the initial velocity and angle of departure of the
ball. The objective of this problem is to use a for-loop to carry out the iteration (21) and compare the
resulting trajectory with the one obtained when the drag force is ignored. The latter is given by (see
week-4 homework):

x = v0 cosθ0 t , y = h+ v0 sinθ0 t − 1

2
g t2 (23)

The maximum travel time, i.e., the time it takes to hit ground, is:

Tmax = v0 sinθ0

g
+
√√√√2h
g
+ v

2
0 sin2 θ0

g2
(24)

Choose an initial ball speed of v0 = 90 mph and launch angle θ0 = 30o, convert them to m/sec and
radians, and use the following values for the other parameters (given in metric units):

h = 1, C = 0.5, R = 0.0366, ρ = 1.2, m = 0.145, g = 9.81

a. Choose a sampling time interval of T = 1/100 sec, calculate Tmax in seconds, and define the maxi-
mum number of samples to use in the iterative algorithm by N = floor

(
Tmax/T

)
. Define the time

vector t = 0 : T : Tmax and compute the corresponding x, y vectors in the no-drag case from Eq. (24).

b. Use a for-loop to iterate Eqs. (20) and (21) forn = 0 : N and calculate the arrays x(n), y(n), vx(n), vy(n)
(note that n in these expressions is the time index and you will need to shift it by 1 to make it into a
MATLAB index.) Because the air drag force slows down the motion, the ball will hit the ground faster
than in the no-drag case. Put some conditional code in your for-loop that breaks out of the loop
when the ball hits ground. Therefore, the effective length of the resulting arrays x(n), y(n) will be
shorter thanN. Determine the value of n, say nmax, and the corresponding travel time tmax = nmaxT
when the ball hits ground.

†this is obtained by assuming that the accelerations remain approximately constant within each small time interval [tn, tn+1].
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c. On the same graph, plot the trajectories (y vs. x) that you computed in parts (a,b). Determine
and place on the curves the points (xmax, ymax) that correspond to the maximum heights of both
trajectories. For the no-drag case, these points are determined by the formulas:

xmax = v2
0 cosθ0 sinθ0

g
, ymax = h+ v

2
0 sin2 θ0

2g

For both cases, determine the time t0 it takes to reach the maximum height.

d. For the air-drag case, plot on the same graph the velocity vectors vx, vy versus time over the interval
0 ≤ t ≤ tmax, e.g., you may choose t = linspace(0, tmax, nmax). Place on the graph the point
(t0, vy = 0) that corresponds to the ball reaching its maximum height.

Note: The solution of Eq. (19) using the ode45 solver is almost indistinguishable from the above solution,
as long as T is small enough. The homework solutions will illustrate how to use ode45 function – see
the file ode45ex.m. The bottom two graphs demonstrate the ode45 method for the two choices of
T = 1/10 and T = 1/100.

0 30 60 90 120 150
0

5

10

15

20

25
baseball trajectories

x  (m)

y 
 (

m
)

 

 
 with drag
 no drag

0 1 2 3 4
−40

−20

0

20

40

60

80
baseball velocities

t  (sec)

m
ph

 

 

 v
x

 v
y

0 30 60 90 120 150
0

5

10

15

20

25
baseball trajectories,  T = 1/10

x  (m)

y 
 (

m
)

 

 
 with drag
 no drag
 ode45

0 30 60 90 120 150
0

5

10

15

20

25
baseball trajectories,  T = 1/100

x  (m)

y 
 (

m
)

 

 
 with drag
 no drag
 ode45

14



Homework Problems – Week 10

440:127 – Spring 2015 – S. J. Orfanidis

1. End-of-Chapter Problems 10.18 and 10.21.

2. Jacobi Method. Consider the following linear system:

5x1 + 2x2 + x3 + x4 = 10

2x1 + 6x2 + 2x3 + x4 = 12

x1 + 2x2 + 7x3 + 2x4 = −8

x1 + x2 + 2x3 + 8x4 = 29

a. Solve this system by casting it in a matrix form and using the backslash operator.

b. Solve the system using the Jacobi iterative method as outlined in the week-10 lecture notes. Use an
error tolerance of 10−12 and a zero initial vector. Determine the iterative solution and the number of
iterations k it takes to converge. Calculate the (norm of the) difference between the iterative solution
and that obtained in part (a). Plot the four components of the iterated vector x(k) versus iteration
number k, as shown below.

c. Repeat parts (a,b) for the following system:

3x1 − 2x2 + 7x3 = 20

x1 + 6x2 − x3 = 10

10x1 − 2x2 + 7x3 = 27

For part (b), use the initial vector x0 =
⎡
⎢⎣−1

0
4

⎤
⎥⎦.

Hint: The system may require some rearrangement.

d. Write a MATLAB function called jacobi that implements the Jacobi iterative method for solving a
linear system Ax = b. It should have syntax:

[x,k,X,B,c,rho] = jacobi(A,b,tol,x0);

% A = NxN coefficient matrix in Ax=b
% b = Nx1 right-hand-side in Ax=b
% tol = error tolerance
% x0 = Nx1 initial vector, default x0 = zeros(N,1)

% x = Nx1 converged vector
% k = number of iterations to converge
% X = Nxk matrix whose columns are the successive iterated vectors
% B = Jacobi iteration matrix
% c = transformed vector b
% rho = spectral radius of Jacobi iteration matrix

The function should check if the method is applicable and produce a message and exit if it is not.
Also if the fourth argument, x0, is omitted, the initial vector should be set to zero by default.

Verify your function on the above examples.
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3. A stochastic matrix is a square matrix of non-negative entries such that each column adds up to 1. Such
matrices appear in Markov chain models and have a wide range of applications in engineering, science,
biology, economics, and internet search engines, such as Google’s pagerank matrix (which has size in
the billions.) Given such a matrix P whose entries are strictly positive, then there is a theorem that
guarantees the existence of a steady-state equilibrium vector x such that x = Px. Moreover, this vector
can be computed recursively starting from an arbitrary initial vector x0 by the recursion:

xk+1 = Pxk , k = 0,1,2, . . . (1)

and xk converges to x as k→∞, regardless of the initial vector x0. The solution of Eq. (1) can be given
explicitly as the matrix operation:

xk = Pkx0 , k = 0,1,2, . . . (2)
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Consider the following example:

P =
⎡
⎢⎣ 0.5 0.2 0.3

0.3 0.7 0.3
0.2 0.1 0.4

⎤
⎥⎦ , x0 =

⎡
⎢⎣ 0.1

0.3
0.6

⎤
⎥⎦ (3)

a. Denote the equilibrium vector by

x =
⎡
⎢⎣ x1

x2

x3

⎤
⎥⎦

To make it unique, we will assume that its entries add up to 1, that is, x1+ x2+ x3 = 1. Set up three
equations in the three unknowns {x1, x2, x3}, cast them in matrix form, and solve them. Verify the
equation x = Px for the resulting solution.

b. Write a for-loop to iterate Eq. (1), say for k = 0 : 100, and insert some conditional-if code to break out
of the loop as soon as xk+1 is to within 10−10 from xk, as measured by the Euclidean vector norm,
that is, as soon as, norm(xk+1 − xk)< 10−10. Print out the resulting maximum number of iterations
k and the vector xk and compare it with the equilibrium vector x found in part (a).

c. For the given P, it can be shown that the kth power Pk is given explicitly as the product of matrices:

Pk = 1

48

⎡
⎢⎣ 5 −3 3

8 0 −6
3 3 3

⎤
⎥⎦
⎡
⎢⎣ 1 0 0

0 (0.2)k 0
0 0 (0.4)k

⎤
⎥⎦
⎡
⎢⎣ 3 3 3
−7 1 9

4 −4 4

⎤
⎥⎦ , k = 0,1,2, . . . (4)

Write a single-line anonymous function f(k) that calculates the matrix in the right-hand side of
Eq. (4), and verify, for example, that f(0)= P0, f(1)= P, and f(10)= P10 and f(20)= P20.

d. Using Eq. (4) construct the limiting matrix

Pinf = lim
k→∞

Pk

and discuss its relationship to the equilibrium vector x.

4. Mortgage Problem in Matrix Form. You wish to take a K-year loan in the amount of ya dollars at a fixed
annual percentage rate of R percent to buy a house. The loan payments will be monthly, so that there
will be N = 12K payment periods, each at the monthly interest rate of R/12 percent, or, in absolute
units, r = R/1200.

Let y(k) be a Matlab array that denotes the loan balance (i.e., how much you owe the bank) at the
beginning of the kth month, and let x denote the fixed amount that you have agreed to pay each month.
During the kth month, the bank charges you interest (i.e., it increases the amount you owe) by the
amount, r · y(k), and then it subtracts your payment of x dollars for that month. Therefore, the loan
balance at the beginning of the next month will be:

y(k+ 1)= y(k)+r · y(k)−x = (1+ r)y(k)−x , or,

y(k+ 1)= ay(k)−x , k = 1,2, . . . ,N (5)

where we defined the quantity, a = 1 + r. The recursion (5) is initialized at the initial loan amount,
y(1)= ya. The amount x is determined by the requirement that the balance be reduced to zero at the
end of theNth month, or at the beginning of the (N+1)th month, that is, y(N+1)= 0. Summarizing,
we have the conditions:

y(1)= ya
y(k+ 1)= ay(k)−x , k = 1,2, . . . ,N

y(N + 1)= 0

(6)
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This recursion can be solved in analytical form, resulting into the following expressions for the monthly
payment x, and loan balance y(k), in terms of the parameters, ya, a,N:

x = ryaaN

aN − 1
, y(k)= ya a

N − ak−1

aN − 1
, k = 1,2, . . . ,N + 1 (7)

It is easily verified that y(1)= ya and y(N + 1)= 0. These are the standard formulas by which the
bank calculates your mortgage balance and payment x. However, we wish to solve this problem using
a matrix formulation. Eqs. (6) can be regarded as a system of (N + 2) linear equations in the (N + 2)
unknowns, [y(1), y(2), . . . , y(N + 1), x]. For example, if N = 5, we have the N + 2 = 7 equations,
which, after moving all the terms to the left-hand side, can be rearranged in matrix form:

y(1)= ya
y(2)−ay(1)+x = 0

y(3)−ay(2)+x = 0

y(4)−ay(3)+x = 0

y(5)−ay(4)+x = 0

y(6)−ay(5)+x = 0

y(6)= 0

⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
−a 1 0 0 0 0 1

0 −a 1 0 0 0 1
0 0 −a 1 0 0 1
0 0 0 −a 1 0 1
0 0 0 0 −a 1 1
0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(1)
y(2)
y(3)
y(4)
y(5)
y(6)
x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ya
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

or, compactly, Az = b, with solution, z = A\b, where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
−a 1 0 0 0 0 1

0 −a 1 0 0 0 1
0 0 −a 1 0 0 1
0 0 0 −a 1 0 1
0 0 0 0 −a 1 1
0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(1)
y(2)
y(3)
y(4)
y(5)
y(6)
x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ya
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

The matrix A and vector b can be constructed easily by the single Matlab commands,

A = [diag(-a*ones(5,1),-1)+eye(6), [0;ones(5,1)]; zeros(1,5),1,0];
b = [1; zeros(6,1)] * ya;

The “diag+eye” part constructs the upper-left (N + 1)×(N + 1) sub-block of A, to which is appended
the last column consisting of 0 followed by N ones, and then, the entire bottom row is added.

a. Write a one-line anonymous Matlab function of two variables a,N, say,A = f(a,N), that generalizes
the above matrix construction to the general case of arbitrary N. It must be defined as a function
handle:

f = @(a,N) ...

b. Suppose you take a 10-year loan of $100,000 at a fixed annual percentage rate of 6%, so that there
will be N = 10×12 = 120 payment periods, at the monthly interest rate of 6/12 percent, or, r =
6/1200 = 0.005.

Using your function of part (a), construct the loan matrix A and vector b of the above linear system,
and solve it for the monthly payment amount x and the 121-dimensional column vector of balances,
y = [y(1), y(2), . . . , y(120), y(121)

]′
.

Calculate also the vector of interests, r · y, that the bank charges you at each month, as well as the
vector, x− r · y, of the amounts by which your balance is actually being reduced every month (i.e.,
part of x goes into paying the interest and only the rest goes into reducing the balance.)
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c. Using at most eight fprintf commands, generate a table of values that displays the month k, balances
y(k), interest, ry(k), and balance reduction, x − ry(k), exactly as shown below, including all the
headers and tails, but with all the 121 entries printed.

month balance interest reduction
k y(k) r*y(k) x-r*y(k)

-------------------------------------
1 100000.00 500.00 610.21
2 99389.79 496.95 613.26
3 98776.54 493.88 616.32
4 98160.22 490.80 619.40

... ... ... ...

118 3297.58 16.49 1093.72
119 2203.87 11.02 1099.19
120 1104.68 5.52 1104.68
121 0.00 0.00 1110.21
-------------------------------------
payment per period: x = 1110.21
total payments: N*x = 133224.60
total interest: 33224.60

d. Make a plot of y(k) versus k, for k = 1,2, . . . ,N + 1. Add the zero point at the end of your graph,
i.e., y(N + 1)= 0. Moreover, using the find command, determine the earliest month at which you
have paid more than half the initial loan, and position it on the graph as shown below.
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e. Recompute the quantities, x,y, using the analytical formulas (7), and compare them to those obtained
above by the matrix method. To compare vectors, you may use the function norm.

f. By law you are allowed to pay any additional amount at any time during your mortgage loan in order
to pay off the loan faster. For the above example defined in part (b), suppose you decide to pay a
little more than the minimum required amount x, say, 30% more each month, that is, 1,3x. The loan
repayment recursion (6) becomes now:

y(1)= ya
y(k+ 1)= ay(k)−1.3x , k ≥ 1

(10)
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Using a forever while loop, iterate this recursion and determine the month (and hence the year) at
which the balance drops below zero. Make a combined plot that displays the loan balances computed
in this part and in part (d), as shown below.
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Homework Problems – Week 11

440:127 – Spring 2015 – S. J. Orfanidis

1. End-of-Chapter Problem 13.9.

2. End-of-Chapter Problem 13.10.

3. End-of-Chapter Problem 13.11.

4. When a charged capacitor C discharges through a resistor R, the voltage across the capacitor terminals
decays exponentially in time:

V(t)= V0 e−at

where V0 is the initial voltage and a = 1/(RC). Experimental measurements of the voltage at 0.05–
second intervals are given in the file capacitor.dat. Using these measurements, carry out a least-squares
fit to determine the parameters V0, a. Then, make a plot of the fitted curve versus time, displaying also
the measured data, as shown in the graph at the end of this assignment.

5. The file NYCtemp.dat contains the monthly mean temperatures of New York City over the five-year
period from 1971 to 1975. It is desired to check the validity of the following temperature model that
assumes a 12-month periodicity:

T(t)= A+ B · cos
(

2πt
12

)
+C · sin

(
2πt
12

)

where T is in units of degrees Fahrenheit, and the parameters A,B,C are to be determined using a
least-squares fit with trigonometric basis functions.

Let Ti denote the column vector the 60 monthly observations, concatenated for each year, and let ti
denote the column vector of months, ti = [0 : 60]′, with 0 representing Jan. 1971 and 59, Dec. 1975.

a. Carry out a least-squares fit to determine the parametersA,B,C. Use
{
1 , cos(2πt/12) , sin(2πt/12)

}
as the basis functions.

(a) On the same graph, plot the estimated modelT(t) versus t over 600 points in the interval 0 ≤ t ≤ 59,
and add the actual observations to the graph.

6. The thermal conductivity properties of conductors near absolute zero are important in the design of
superconducting systems. The file copper.dat contains measurements of the thermal conductivity k of
copper in the range 0 ≤ T ≤ 50 (in degrees Kelvin). It is desired to use the following model to represent
the data:

k(T)= 1
c1

T
+ c2T + c3T2 + c4T3

⇒ 1

k(T)
= c1

T
+ c2T + c3T2 + c4T3

a. Using the basis functions {T−1, T, T2, T3}, perform a least-squares fit to determine the coefficients
{c1, c2, c3, c4}. Then, plot the model k(T) versus T over the range 0 ≤ T ≤ 50 and add the data
points to the graph.

b. Perform the fitting using the built-in function nlinfit by defining the fitting function directly from
the given model:

f(c,T)= 1
c1

T
+ c2T + c3T2 + c4T3

, c =

⎡
⎢⎢⎢⎣
c1

c2

c3

c4

⎤
⎥⎥⎥⎦

Use the solution vector c of part (a) as the initial vector for nlinfit. Determine the parameter vector
c and make a similar plot as in part (a).

7. Practice Exercise 13.1 (p. 492).
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8. A projectile launched from zero height with initial velocity v0 and angle θ0 follows the trajectory:

y = x tanθ0 − g
2v2

0 cos2 θ0
x2 (1)

where g = 9.81 m/s2.

a. Using {x, x2} as basis functions carry out a least-squares fit to determine the parameters θ0 (in
degrees) and v0 (in m/sec) given the following eight noisy measurements:

xi 10.2 14.4 19.8 25.6 29.1 35.3 40.9 43.3
yi 5.9 7.9 9.1 10.1 10.4 10.7 9.2 8.3

Using the fitted values, make a plot of y vs. x from Eq. (1) over the interval 0 ≤ x ≤ 60 and add the
data points {xi, yi} to the graph.

b. Repeat part (a) but now use the polyfit function. Explain any slight differences in the results.

[For your reference, the exact values were θ0 = 35o and v0 = 25 m/sec.]

9. The atmosphere gets thinner with height. The following measurements of the air density ρ in kg/m3

versus height h in km are given:

hi 0 3 6 9 12 15 18 21 24 27 30 33
ρi 1.2 0.92 0.66 0.47 0.31 0.19 0.12 0.075 0.046 0.029 0.018 0.011

a. Make a preliminary plot of ρi versus hi to get an idea of how the density depends on height. You
will notice that very likely an exponential model of the following form is appropriate:

ρ = ρ0 e−h/h0 (2)

Using a least-squares fit, determine estimates of the parameters ρ0 and h0. Make a plot of the
estimated model of Eq. (2) over the range 0 ≤ h ≤ 35 and add the data to the graph. Also, make a
plot of log(ρ) versus h and add the data to it.

b. Repeat part (a) using the higher order model:

ρ = exp(c1 h2 + c2 h+ c3) (3)

c. Determine estimates of the air density at heights of 5 and 10 km using the following three methods:
(i) using your model of Eq. (3), (ii) using the function spline, and (iii) using pchip.

10. The viscosity of water is modeled as a function of temperature by Andrade’s equation:

v = exp
(
A+ B

T

)
(4)

where T is the temperature in absolute units, i.e., related to degrees Celsius by T = 273.15 + TC, and
A,B are constants. Eq. (4) can be written in the following form:

ln(v)= A+ B
T

(5)

The following data are given,† whereTC is in degrees Celcius and v in milli-N·s/m2 , and for convenience,
they can be loaded from the file, water_visc.dat:

†Table B.2, Appendix B, in B. R. Munson, et al., Fundamentals of Fluid Mechanics, 7/e, Wiley, New York, 2013.
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TCi vi
0 1.7870
5 1.5190

10 1.3070
20 1.0020
30 0.7975
40 0.6529
50 0.5468
60 0.4665
70 0.4042
80 0.3547
90 0.3147
100 0.2818

a. Using Eq. (5) and the polyfit function, perform a least-squares fit to determine the parameters A,B.
Then, use these parameters in Eq. (4) and plot v versus TC in the interval 0 ≤ TC ≤ 100 oC and add
the data points to the graph.

b. Perform the fitting using the built-in function nlinfit or lsqcurvefit by defining the fitting function
directly from Eq. (4):

f(c,T)= exp
(
c1 + c2

T

)
, c =

[
c1

c2

]

Determine the parameter vector c and make a similar plot as in part (a).

c. Collect the results of the two methods and with at most three fprintf commands, print a table exactly
as shown below:

A B method
-----------------------------
-6.3462 1871.0684 polyfit
-6.8480 2020.9920 nlinfit

d. As a generalization of Andrade’s equation, consider the model,

v = exp

(
A+ B

T
+ C

2

T2

)
(6)

Using the polyfit function, perform a least-squares fit to determine the parameters A,B,C. Then,
use these parameters in Eq. (6) and plot v versus TC in the interval 0 ≤ TC ≤ 100 oC and add the
data points to the graph. Finally, make a table like the one below.

A B C method
-----------------------------------------
-1.1615 -1427.7335 720.6126 polyfit-2

11. Sprinting Models. Simple mathematical models exist for fitting the track data of 100-meter sprinters.
The following two-parameter and three-parameter models, due to Keller and Tibshirani (see references
at end and papers on sakai), fit very well the track data of some very famous sprinters, such as Usain
Bolt (currently considered to be the fastest man in the world), Carl Lewis, and Ben Johnson. Let v(t)
and x(t) denote the speed and distance traveled at time t,

v(t) = α
(

1− e−γ(t−t0)
)

x(t) = α(t − t0)−αγ
(

1− e−γ(t−t0)
) (Keller) (7)
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v(t) = α
(

1− e−γ(t−t0)
)
− βt

x(t) = α(t − t0)−1

2
β(t − t0)2−α

γ

(
1− e−γ(t−t0)

) (Tibshirani) (8)

where t ≥ t0, and α,β,γ are parameters to be fitted, and t0 is the reaction time (which legally must
be greater than 0.1 sec to qualify.) The Keller model corresponds to setting β = 0 in the Tibshirani
one. Physically, the two models arise from the following equations of motion, both of which assume a
frictional force proportional to −γv, and a constant accelerating force in the Keller model, or a linearly
decreasing one in the Tibshirani one (i.e., the sprinter can’t maintain a constant force for the entire run),

dv
dt
= −γv+ F (Keller)

dv
dt
= −γv+ (F − ct) (Tibshirani)

where F, c are the constants, F = αγ− β, c = γβ. In sprinting events, the elapsed time is recorded at
10-meter intervals, for example, for Usain Bolt at Beijing 2008, we have the observed data:

xi (meters) 0 10 20 30 40 50 60 70 80 90 100
ti (sec) 0.165 1.85 2.87 3.78 4.65 5.50 6.32 7.14 7.96 8.79 9.69

One of the α,β,γ parameters can be fixed in terms of the other ones by requiring that the model
match one of the data points exactly, for example, at the ending distance of xe = 100 meters, and
corresponding ending time, e.g., te = 9.69 sec. For the Tibshirani model, we have:

xe = α(te − t0)−1

2
β(te − t0)2−α

γ

(
1− e−γ(te−t0)

)
⇒ α =

xe + 1

2
β(te − t0)2

te − t0 − 1

γ

(
1− e−γ(te−t0)

) (9)

Define the parameter vector in terms of the remaining parameters, β,γ:

c =
[
β
γ

]
(Tibshirani) , c = γ (Keller)

so that c(1)= β, c(2)= γ, or, in the Keller case, c(1)= γ.

a. Define a function, sayA(c), of the parameter vector c defined above that implements Eq. (9). It must
be defined as an anonymous MATLAB function, i.e.,

A = @(c) ...

Then, using this function, define two anonymous MATLAB functions, x(c, t), v(c, t), of the indepen-
dent variables c, t, with t being vectorized, implementing Eqs. (7) or (8), i.e.,

x = @(c,t) ...
v = @(c,t) ...

b. The data file, sprint.dat, contains the 100-meter track data for Bolt (two events), Lewis, and Johnson.
The first column holds the distances xi at the 10-meter intervals, and the other columns contain the
corresponding recorded times ti, the top rows being the reaction times t0. The arrays xi, ti both have
length 11.

For each of the four events, starting out with the Tibshirani model and using the function nlinfit, per-
form a least-squares fit with the fitting function x(c, t) defined in part (a) to determine the parameter
vector c. You may use the following initial vector c0 = [0.01; 1].
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Once the parameter vector c is known, calculate the predicted or fitted values of ti that correspond
to the distances xi. This can be done by using the function fzero to solve the equation x(c, t)= xi
for t. You may use the observed times ti as the initial search points for fzero. For example, to find
the fitted time to reach 50 meters, i.e., with xi(6)= 50, use the code:

tf(6) = fzero(@(t) f(c,t)-xi(6), ti(6));

Collect together the fitted results for all four events and make a formatted table exactly as shown
below using at most seven fprintf commands.

| U. Bolt | U. Bolt | C. Lewis | B. Johnson
-----|----------------|----------------|----------------|--------------

x | t fit | t fit | t fit | t fit
(m) | (s) (s) | (s) (s) | (s) (s) | (s) (s)

-----|----------------|----------------|----------------|--------------
0 | 0.165 0.165 | 0.142 0.142 | 0.193 0.193 | 0.129 0.129

10 | 1.85 1.91 | 1.89 1.91 | 1.94 1.96 | 1.84 1.87
20 | 2.87 2.88 | 2.88 2.89 | 2.96 2.97 | 2.86 2.87
30 | 3.78 3.77 | 3.78 3.78 | 3.91 3.89 | 3.80 3.78
40 | 4.65 4.63 | 4.64 4.63 | 4.78 4.77 | 4.67 4.66
50 | 5.50 5.47 | 5.47 5.46 | 5.64 5.64 | 5.53 5.52
60 | 6.32 6.31 | 6.29 6.29 | 6.50 6.51 | 6.38 6.38
70 | 7.14 7.15 | 7.10 7.11 | 7.36 7.36 | 7.23 7.24
80 | 7.96 7.99 | 7.92 7.93 | 8.22 8.22 | 8.10 8.11
90 | 8.79 8.84 | 8.75 8.76 | 9.07 9.08 | 8.96 8.97

100 | 9.69 9.69 | 9.58 9.58 | 9.93 9.93 | 9.83 9.83

Moreover using at most three fprintf commands, print the values of the fitted parameters for all
four events, as shown below,

a b c sprinter
--------------------------------------
12.4944 0.0810 0.8144 U. Bolt
12.4024 0.0284 0.7851 U. Bolt
11.5727 -0.0153 0.8628 C. Lewis
11.8391 0.0268 0.8711 B. Johnson

For each event, plot the fitted model x(c, t) versus t over the range, t0 ≤ t ≤ 10 sec, and add the
observed times ti, as well as the fitted times tf on the graph (see example graphs at end).

Moreover, plot the velocity function v(c, t) versus t and add the observed average velocities over
the 10-meter intervals, which may be computed using the diff function by

vi = diff(xi)./diff(ti)

c. Repeat part (b) for the Keller model.

Both models fit the data very well. Negative values of β, as in the Lewis case, do not make sense (i.e., it
would mean an increasing accelerating force towards the end of the run). Therefore, it appears that the
Keller model of better suited for the Lewis data.

Sprinting References

1. J. B. Keller, “Theory of Competitive Running,” Phys. Today, 26, no.9, p.43 (1973), see also, “Optimal
Velocity in a Race,” Am. Math. Monthly, 81, 474 (1974).

2. R. Tibshirani, “Who is the Fastest Man in the World?,” Amer. Statistician, 51, 106 (1997).

3. G. Wagner, “The 100-Meter Dash: Theory and Experiment,” Phys. Teacher, 36, 144 (1998).
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4. O. Helene and M. T. Yamashita, “The Force, Power, and Energy of the 100 Meter Sprint,” Am. J. Phys.,
78, 307 (2010).

5. http://myweb.lmu.edu/jmureika/track/, J. R. Mureika. Contains additional data.

12. Growth Models. The logistic function, originally proposed by P. Verhulst in 1838, has been very suc-
cessful in describing the growth of populations of humans, plants and animals, algae, bacteria, and the
spread of diseases, such as SARS and Measles, as well forecasting the growth and decline of technology
products, ideas, and innovations, viewing the economy and marketplace as an “ecosystem”. It attempts
to model the increase of populations under the constraint of limited natural resources.

The logistic function, as well as some variants that often work better, are listed in the table below,
together with the differential equations from which they arise. The typical shape of these growth curves
is illustrated in the picture below (for the logistic case).

Model Function Differential Equation

Logistic y(t)= K
1+ e−r(t−t0)

dy
dt
= r y

[
1− y

K

]

Richards y(t)= K[
1+αe−r(t−t0)] 1

α

dy
dt
= r
α
y
[

1−
(
y
K

)α]

Pearl–Reed y(t)= K
1+Ae−r(t)

dy
dt
= ṙ(t) y

[
1− y

K

]

r(t)= r1t + r2t2 + r3t3 ṙ(t)= dr
dt
= r1 + 2r2t + 3r3t2

Gompertz y(t)= K exp
[
−e−r(t−t0)

] dy
dt
= −r y ln

(
y
K

)

Bass y(t)= pK 1− e−(p+q)t
p+ qe−(p+q)t

dy
dt
= [pK + qy]

[
1− y

K

]

(10)

where the parameters, K, r, t0,α,A, r1, r2, r3, p, q, are constants to be determined by data fitting. The
main feature of the differential equations is that they differ from a pure exponential growth, dy/dt =
r y, by having an effective growth rate that becomes smaller and smaller as the population increases and
it encounters limited resources, e.g., the effective growth rate of the logistic case is reff = r(1− y/K),
which becomes smaller as y increases towards its limiting value of K.

The inflection point at t = t0 corresponds the maximum value of the derivative, i.e., the maximum rate
of growth. In particular, we have for the logistic, Richards, and Gompertz cases,
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Logistic Richards Gompertz

y(t0)= K
2

y(t0)= K
[1+α] 1

α
y(t0)= K

exp(1)

dy(t0)
dt

= rK
4

dy(t0)
dt

= rK
[1+α] 1

α+1

dy(t0)
dt

= rK
exp(1)

(11)

We note that the logistic and Gompertz curves are special cases of the Richards curve for the values
α = 1 and α = 0, respectively. The Bass model, which is widely used in Marketing Engineering, will be
considered in greater detail in the week-12 homework set.

The basic strategy for fitting these growth curves to data is to define the growth function as an anony-
mous MATLAB function of the desired parameters and time, and then apply the nlinfit function. For
example, with proper identification of the parameters c, these MATLAB functions are,

f = @(c,t) c(1)./(1 + exp(-c(2)*(t-c(3)))); % Logistic
f = @(c,t) c(1)./(1 + c(4)*exp(-c(2)*(t-c(3)))).^(1/c(4)); % Richards
f = @(c,t) c(1)./(1 + c(2) * exp(-(c(3)*t + c(4)*t.^2 + c(5)*t.^3))); % Pearl-Reed
f = @(c,t) c(1)*exp(-exp(-c(2)*(t-c(3)))); % Gompertz

Given a set of observed data points (ti, yi), i = 1,2, . . . ,N, the estimated parameters are obtained by

c = nlinfit(ti,yi,f,c0);

where the initial parameter vector can be estimated as follows:

[diff0,i0] = max(diff(yi)./diff(ti)); % maximum derivative
t0 = ti(i0); % inflection point
K0 = max(yi); % limiting level
r0 = 4*diff0/K0; % rate, from Eq.(11)
c0 = [K0; r0; t0]; % parameter vector (Logistic, Gompertz cases)

and in addition, set a = 1, in the Richards case, and, A = exp(r0t0), r2 = r3 = 0, in the Pearl-Reed case.
This fitting strategy will be applied to the following data files attached to this homework set, with data
sources and references therein:

(a) uspop.dat US population and projections to 2060

(b) worldpop.dat UN projections of the world population to 2100

(c) yeast.dat growth of yeast cells

(d) algae.dat growth of algae

(e) measles.dat measles epidemic

(f) sars.dat SARS epidemic

(g) squash.dat growth of squash plant

(h) worldgdp.dat World GDP

(i) usgdp.dat United States GDP

a. Load the US population data from the file uspop.dat, as well as the US Census predictions for 2015-
2060 from the file uspred.dat. Fit the logistic model to the data in uspop.dat, using all data with a
starting date of 1790. Plot both the data, the fitted logistic curve, and the predictions till 2060.

Next, fit the logistic model to the data in uspop.dat, using all data with a starting date of 1850, and
repeat the above plots.

Finally, fit the Gompertz model to the data in uspop.dat, using all data with a starting date of 1790,
and generate a similar plot.
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b. Load the World population data from the file worldpop.dat, and fit a logistic curve. Plot the data
and model curve till the year 2100. The nearly perfect fit of the logistic curve makes it clear that the
UN future projections are based on this model.

c. Fit a logistic model to the yeast data in yeast.dat and plot data and model on the same graph.

d. Load the algae biomass data from the file algae.dat. First, fit a logistic model to the data and plot the
data and model on the same graph. Then, repeat the plot by fitting the data to a Pearl-Reed model.

e. Fit the measles epidemic data, measles.dat, to both a logistic and a Richards model, and in each case
plot the data and model on the same graph.

f. Fit the SARS epidemic data, sars.dat, to all four models (Logistic, Richards, Pearl-Reed, Gompertz),
and in each case plot the data and model on the same graph. See example graphs at end.

g. Fit the squash growth data, squash.dat, to all four models (Logistic, Richards, Pearl-Reed, Gompertz),
and in each case plot the data and model on the same graph. See example graphs at end.

h. Fit the World GDP data, worldgdp.dat, to both a logistic and a Richards curve. Plot the growth curves
to the year 2100 and add the data to the graphs. Note how different the future predictions are from
the two methods—which one is right?

i. Repeat Part (h) for the US GDP data, usgdp.dat.

Growth Model References

1. F. Cavallini, “Fitting a Logistic Curve to Data,” Coll. Math. J., 24, 247 (1993).

2. E. Rozema, “Epidemic Models for SARS and Measles,” Coll. Math. J., 38, 246 (2007).

3. A. Tsoularis and J. Wallace,“Analysis of Logistic Growth Models,” Math. Biosci., 179, 21 (2002).

4. R. Pearl, “The Growth of Populations,” Quart. Rev. Biol., 2, 532 (1927). See also,
R. Pearl and L. J. Reed, “Skew-Growth Curves,” Proc. Natl. Acad. Sci. 11, 16 (1925).

5. F. J. Richards, “A Flexible Growth Function for Empirical Use,” J. Exp. Botany, 10, 290 (2959).

6. P. Pflaumer, “Forecasting the U.S. Population with the Gompertz Growth Curve,” Proc. Joint Statistical
Meetings, Social Statistics Section, San Diego 2012, available online from:
http://home.arcor.de/peteroskar/Homepage/ASA2012.pdf

7. G. P. Boretos, “The future of the global economy,” Technol. Forecasting & Soc. Change, 76, 316
(2009).

13. Life Tables. The CDC maintains and regularly updates vital statistics for the US population. The file,
lifetbl.dat, contains the most recent mortality and life tables as of 2009. The first column represents
the age of an individual in the range, 0 ≤ t ≤ 100 years. The second column, labeled q(t), represents
the probability of dying between years t and t + 1, and is a measure of the mortality of an individual.
The quantity, p(t)= 1−q(t), is the probability of survival between years t and t+1. The Gompertz law
of mortality, proposed in 1825, fits the survival probability (and hence q(t)) to a Gompertz function of
the form:

p(t)= exp
[−A exp

(
r(t − t0)

)]
q(t)= 1− p(t)= 1− exp

[−A exp
(
r(t − t0)

)] (12)

where A, r, t0 are parameters to be fitted. We note that t0 is not an independent parameter since it
combines with A as a common factor Ae−rt0 . Therefore, t0 can be fixed to some convenient value, such
as, t0 = 25 years. Note the difference in the sign of r in Eqs. (10) and (12), the former representing
growth, and the latter, rapid decay. In MATLAB, the function q(t) can be defined as a function of the
parameters A, r, t:

t0 = 25;
Q = @(c,t) 1 - exp(-c(1)*exp(c(2)*(t-t0)));

8



a. Load the data from lifetbl.dat, but exclude the last data point at t = 100 since the probability of
dying at that age is artificially taken to be 100%.

Using nlinfit, fit the functionQ(c, t) to the probability data q(t) and determine the parametersA, r.
Make a plot of the model versus time and add the data to the graph.

b. In plotting the above on a semilogy axis, one notes that the fitting function follows essentially
a straight line with a slope of about 0.0430, that is, in absolute scales, 100.043t. But we note that
approximately, 100.043t = 2t/7, which implies that the probability of death doubles every seven years.

To check this, let Q0 be the value of the fitted function at t = 0, that is, Q0 = Q(c,0). Plot the
normalized quantity log2

(
Q(c, t)/Q0

)
versus t and add the data to the graph, i.e., log2

(
q(t)/Q0

)
,

as well as the straight line, y = t/7. See example graph at end.
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Sprinting Models
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Growth Models
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Homework Problems – Week 12

440:127 – Spring 2015 – S. J. Orfanidis

1. Consider the following incomplete set of temperature data for New York City (see the complete set in
the file NYCtemp.dat on sakai),

| 1971 1972 1973 1974 1975
-----|---------------------------------
jan | 27.0 35.5 37.3
feb |
mar | 40.1 46.4 40.2
apr |
may | 61.4 59.5 65.8
jun |
jul | 77.8 77.4 75.8
aug |
sep | 71.6 69.5 64.2
oct |
nov |
dec | 40.8 39.0 35.9

Construct the 6x3 matrix of given temperatures:

T = [27.0 35.5 37.3
40.1 46.4 40.2
61.4 59.5 65.8
77.8 77.4 75.8
71.6 69.5 64.2
40.8 39.0 35.9];

a. Using the function interp2, perform two-dimensional linear interpolation on the matrix T to fill in
the values for the missing months and years. Use three fprintf commands to print the resulting
interpolated table in the form:

| 1971 1972 1973 1974 1975
-----|---------------------------------
jan | 27.0 31.3 35.5 36.4 37.3
feb | 33.5 37.3 41.0 39.9 38.8
mar | 40.1 43.3 46.4 43.3 40.2
apr | 50.8 51.9 53.0 53.0 53.0
may | 61.4 60.5 59.5 62.6 65.8
jun | 69.6 69.0 68.5 69.6 70.8
jul | 77.8 77.6 77.4 76.6 75.8
aug | 74.7 74.1 73.5 71.7 70.0
sep | 71.6 70.5 69.5 66.8 64.2
oct | 61.3 60.3 59.3 57.0 54.8
nov | 51.1 50.1 49.2 47.3 45.3
dec | 40.8 39.9 39.0 37.5 35.9

Plot the temperatures vs. months for one year, and also the temperatures vs. years for one month,
and place also on the graphs the actual temperatures that you can obtain from the file NYCtemp.dat
on sakai, see example graphs at the end.

b. Perform the two-dimensional interpolation in two one-dimensional interpolation stages, first, ap-
plying interp1 to fill the months of the three given years, and then, applying interp1 again to that
result, to fill the missing years. Print the result of the first stage using only three fprintf commands
in the form:
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| 1971 1972 1973 1974 1975
-----|---------------------------------
jan | 27.0 35.5 37.3
feb | 33.5 41.0 38.8
mar | 40.1 46.4 40.2
apr | 50.8 53.0 53.0
may | 61.4 59.5 65.8
jun | 69.6 68.5 70.8
jul | 77.8 77.4 75.8
aug | 74.7 73.5 70.0
sep | 71.6 69.5 64.2
oct | 61.3 59.3 54.8
nov | 51.1 49.2 45.3
dec | 40.8 39.0 35.9

c. Consider now a variation of this problem in which the actual missing temperatures are as shown
below (the data are taken again from NYCtemp.dat), where the November data are given, but not the
December ones,

| 1971 1972 1973 1974 1975
-----|---------------------------------
jan | 27.0 35.5 37.3
feb |
mar | 40.1 46.4 40.2
apr |
may | 61.4 59.5 65.8
jun |
jul | 77.8 77.4 75.8
aug |
sep | 71.6 69.5 64.2
oct |
nov | 45.1 48.3 52.3
dec |

Construct the corresponding matrix T of this data subset, and apply the interp2 method to it and
print the results using three fprintf commands. You will notice that the December data cannot be
computed in the linear interpolation case because they lie outside the given range of months, and
interp2 produces NaN’s for those values,

| 1971 1972 1973 1974 1975
-----|---------------------------------
jan | 27.0 31.3 35.5 36.4 37.3
feb | 33.5 37.3 41.0 39.9 38.8
mar | 40.1 43.3 46.4 43.3 40.2
apr | 50.8 51.9 53.0 53.0 53.0
may | 61.4 60.5 59.5 62.6 65.8
jun | 69.6 69.0 68.5 69.6 70.8
jul | 77.8 77.6 77.4 76.6 75.8
aug | 74.7 74.1 73.5 71.7 70.0
sep | 71.6 70.5 69.5 66.8 64.2
oct | 58.3 58.6 58.9 58.6 58.3
nov | 45.1 46.7 48.3 50.3 52.3
dec | NaN NaN NaN NaN NaN

To handle this problem, we take advantage of the fact that there is annual periodicity in the data,
and it does not really matter that we are numbering the months from 1–12 starting with January.
Thus, we may append the January values as a 13th month below the missing December ones and
perform linear interpolation on that subset,

| 1971 1972 1973 1974 1975

2



-----|---------------------------------
jan | 27.0 35.5 37.3
feb |
mar | 40.1 46.4 40.2
apr |
may | 61.4 59.5 65.8
jun |
jul | 77.8 77.4 75.8
aug |
sep | 71.6 69.5 64.2
oct |
nov | 45.1 48.3 52.3
dec |
jan | 27.0 35.5 37.3

Determine the interpolated values using interp2 and print the resulting table with three fprintf
commands in the form:

| 1971 1972 1973 1974 1975
-----|---------------------------------
jan | 27.0 31.3 35.5 36.4 37.3
feb | 33.5 37.3 41.0 39.9 38.8
mar | 40.1 43.3 46.4 43.3 40.2
apr | 50.8 51.9 53.0 53.0 53.0
may | 61.4 60.5 59.5 62.6 65.8
jun | 69.6 69.0 68.5 69.6 70.8
jul | 77.8 77.6 77.4 76.6 75.8
aug | 74.7 74.1 73.5 71.7 70.0
sep | 71.6 70.5 69.5 66.8 64.2
oct | 58.3 58.6 58.9 58.6 58.3
nov | 45.1 46.7 48.3 50.3 52.3
dec | 36.0 39.0 41.9 43.3 44.8
jan | 27.0 31.3 35.5 36.4 37.3

Moreover, plot the interpolated monthly temperatures for 1973.
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2. Consider the 5× 5 matrix A where the ∗ entries are unknown:

A =

⎡
⎢⎢⎢⎢⎢⎣

10 ∗ 20 ∗ 30
∗ ∗ ∗ ∗ ∗
40 ∗ 50 ∗ 60
∗ ∗ ∗ ∗ ∗
70 ∗ 80 ∗ 90

⎤
⎥⎥⎥⎥⎥⎦

Determine estimates of the ∗ entries by linear interpolation using the following two methods.

a. Using the function interp2.

b. Using two calls to the function interp1.

c. Repeat parts (a, b) if the given numbers are viewed as part of a larger 7× 7 matrix:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 ∗ ∗ 20 ∗ ∗ 30
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
40 ∗ ∗ 50 ∗ ∗ 60
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
70 ∗ ∗ 80 ∗ ∗ 90

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3. Speed of Sound. The speed of sound in air depends on the absolute temperature according the formula:

vs =
√
γRs T = a ·

√
T , a =

√
γRs = 20.0468 (1)

where T is in Kelvins and vs in m/sec, and γ = 1.4 and Rs = 287.053 is the specific gas constant of air
in units of J/K/kg. The following measurements of vs are given at 11 temperatures:

Ti 223 230 236 243 249 256 262 269 275 282 288 (K)
vi 300 303 308 314 315 321 326 325 333 339 338 (m/sec)

a. Using the model vs = a · √T, do a basis-function fit to this data to determine the parameter a
and compare it with its theoretical value of a = 20.0468. Plot the estimated model over the range
220 ≤ T ≤ 290, and add the theoretical model, and the data points to the graph.

b. Repeat part (a) when the assumed model is vs = a · Tb, where both a,b are treated as unknown
parameters to be estimated from the data.
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4. Air Density. We saw in Week-9 Problem-6 that the following formula provided a good approximation to
the density of air as a function of (geometrical) height up to about 40 km from sea level,

ρ(h)= 1.224 · exp

[
−
(

h
11.66

)
−
(

h
18.19

)2

+
(

h
29.23

)3
]
, 0 ≤ h ≤ 40 (2)

where ρ is in units of kg/m3 and h in km. The following air density data, based on the US standard
atmosphere model, can be loaded from the file air.dat on sakai,

h rho | h rho | h rho
----------------|-----------------|---------------
0 1.224999 | 14 0.227856 | 28 0.025076
2 1.006553 | 16 0.166471 | 30 0.018410
4 0.819346 | 18 0.121647 | 32 0.013555
6 0.660111 | 20 0.088910 | 34 0.009887
8 0.525786 | 22 0.064510 | 36 0.007258
10 0.413510 | 24 0.046938 | 38 0.005367
12 0.311938 | 26 0.034257 | 40 0.003996

Consider the following three possible models:

model-1: ρ = A · e−Bh

model-2: ρ = A · e−Bh−Ch2

model-3: ρ = A · e−Bh−Ch2+Dh3

(3)

Using the basis-functions method (do not use polyfit), fit the given data to each model and in each case
determine the model parameters A,B,C,D and make a plot of the model versus height in the range
0 ≤ h ≤ 40 km, and add the data points to the graphs. Put model-3 in the following form, determine
the parameters ρ0, h1, h2, h3, and compare them with those of Eq. (2),

ρ(h)= ρ0 · exp

[
−
(
h
h1

)
−
(
h
h2

)2

+
(
h
h3

)3
]
, 0 ≤ h ≤ 40
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5. CO2 concentration. At the end of the Week-12 lecture notes, the following model is used to fit CO2

concentrations for the 33-year period from Jan 1980 to Dec 2012, where t is in units of months,

y = c0 + c1 t + c2 t2 + c3 t3︸ ︷︷ ︸
trend component

+ c4 cos
(

2πt
12

)
+ c5 cos

(
2πt
12

)
︸ ︷︷ ︸

cyclical component

(4)

The data can be loaded from the file co2.dat on sakai and downloaded from:

ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_gl.txt
http://www.esrl.noaa.gov/gmd/ccgg/trends/

a. Using the basis-function method, determine the coefficients ci using the entire 33-year data set. Plot
the fitted curve, the trend, and the actual data versus year. Note that the above data set defines the
time samples to lie in the middle of each month, so that for the purpose of plotting, the time in units
of a fraction of a year is given by

ty = 1

12

(
t + 1

2

)
+ 1980, t = 0,1,2, . . . ,395

where we note that there are 396 months in 33 years.

b. Next, we look at the predictive ability of this model. Repeat the data fitting of part (a), but now use
only the 20-year period from Jan 1980 to Dec 1999. Then, use the estimated coefficients ci to predict
the subsequent years from Jan 2000 to Dec 2012.

On the same graph, plot the actual data for the years 1997-2012, add to the graph the fitted curve
until 2000, and add the predicted curve for the remaining years of 2000-2012. See example graph
at the end.
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6. Cosmic Microwave Background. This is a continuation of the CMB spectrum example from the week-11
lecture notes. Here, we explore different optimization criteria for estimating the CMB temperature. We
recall that the Planck spectrum is given as follows, where f is in GHz and I in units of mega-Jansky per
steradian, MJy/sr:†

I(T, f)= Af3

exp
(
Bf
T

)
− 1

(5)

with the following values of the parameters:

h = 6.62606957 · 10−34 , J/Hz, Planck’s constant

c = 2.99792458 · 108 , m/s, speed of light, 29.9792458 cm · GHz

k = 1.3806488 · 10−23 , J/K, Boltzmann constant

A = 1047 2h
c2
, B = 109 h

k

†1 GHz = 109 Hz, 1 Jy = 10−26 W

m2 · Hz
.
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a. The data file on sakai, firas.dat, containsN = 43 experimental values of frequencies fi and radiances
Ii, i = 1,2, . . . ,N. Load this data file into Matlab and convert the frequencies fi in units of GHz as
discussed in the week-11 powerpoints.‡

b. Define an anonymous function I(f,T) of two independent variables T, f implementing Eq. (5). The
function must be vectorized in the variable f , but not in T.

c. Given a value of T, let ei(T)= Ii − I(T, fi), i = 1,2, . . . ,N be the observation error residuals. The
basic least-squares error criterion attempts to minimize the sum of the squares of ei(T)with respect
to T, that is, T is chosen so as to minimize the function:

E(T)=
N∑
i=1

∣∣ei(T)∣∣2 =
N∑
i=1

∣∣Ii − I(T, fi)∣∣2 = min , (least-squares criterion) (6)

Define the function E(T) in MATLAB and minimize it using, fminbnd, by searching in the temper-
ature interval, 1 ≤ T ≤ 3 K. Recall from the lecture notes that it can be implemented very easily in
MATLAB with the help of the anonymous function of part (b):

E = @(T) sum((Ii-I(T,fi)).^2);

The built-in function, nlinfit, also uses the same criterion Eq. (6), but it employs a different min-
imization method (the Levenberg-Marquardt algorithm) than fminbnd. Compare the results from
these two methods.

d. Consider the following alternative minimization criteria that are often used in practice:

E(T)=
√√√√ N∑
i=1

∣∣ei(T)∣∣2 = min , (L2 norm)

E(T)=
N∑
i=1

∣∣ei(T)∣∣ = min , (L1 norm)

E(T)= max
{|e1(T)|, |e2(T)|, . . . , |eN(T)|

} = min , (L∞ norm)

(7)

Implement these criteria in a vectorized form in MATLAB and determine the estimated T based on
each one of them.

e. If the ith measurement were exact, one would have the following condition, which can be solved for
the temperature T:

Ii = I(T, fi)= Af3
i

exp
(
Bfi
T

)
− 1

⇒ T = fi
gi
, gi = 1

B
log

(
1+ Af

3
i
Ii

)
(8)

This leads to the following two possible least-squares criteria with the explicit solutions:

E(T)=
N∑
i=1

(
T − fi

gi

)2

= min ⇒ T = 1

N

N∑
i=1

fi
gi

(9)

E(T)=
N∑
i=1

(gi T − fi)2= min ⇒ T =

N∑
i=1

figi

N∑
i=1

g2
i

(10)

Define gi as a column vector in terms of the column vectors fi, Ii. Then, using single vectorized
commands, calculate T from Eqs. (9) and (10).

‡the first column contains the wavenumbers, or inverse wavelengths λ−1 in units of cm−1, which can be converted to GHz using
the formula f = cλ−1, with c = 29.9792458 cm · GHz.
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f. The result of Eq. (8) may be thought of as defining the following two over-determined linear systems
of equations in the single unknown T:

system 1: T = fi
gi
, i = 1,2, . . . ,N

system 2: giT = fi , i = 1,2, . . . ,N
(11)

or, written vectorially,

⎡
⎢⎢⎣

1
...
1

⎤
⎥⎥⎦T =

⎡
⎢⎢⎣
f1/g1

...
fN/gN

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣
g1
...
gN

⎤
⎥⎥⎦T =

⎡
⎢⎢⎣
f1
...
fN

⎤
⎥⎥⎦

We may think of these as special cases of the basis-functions method, with basis T. Show how to
obtain the MATLAB solution of these systems using the backslash operator. Note, that the results
are equivalent to Eqs. (9) and (10).

g. Collect together the seven different estimates of T obtained in parts (c-e), and using at most three
fprintf commands print the results exactly as in the following table (you will need to convert all
items to be printed into cell arrays):

method T
------------------------
least-squares 2.725015
nlinfit 2.725013
L2 norm 2.725003
L1 norm 2.725027
L_inf norm 2.724235
system 1 2.724458
system 2 2.723501

h. The above methods regarded I(T, f) as a function of a single parameter T to be fitted. However, it is
possible to regard it as a function of both the parametersA,T and estimate both from the measured
data. Consider the two-parameter vector b and function F(b, f):

F(b, f)= b(1)f3

exp
(
Bf
b(2)

)
− 1

, b =
[
A
T

]

Pass this function into nlinfit with the initial choice b0 = [0.001; 3] and estimate both parameters
A,T. Using only three fprintf commands, make a table like the one below, comparing the values of
A,T from the original 1-parameter fit and the present 2-parameter fit:

method A T
---------------------------------------
1-parameter fit 0.00147450 2.725013
2-parameter fit 0.00147454 2.724992

i. Using the value ofT from the least-squares method of part (c), calculate and plot the spectral radiance
of Eq. (5) over the frequency interval, 50 ≤ f ≤ 690 GHz, and add the measured data points fi, Ii to
the graph.

Using the function fminbnd , calculate the maximum of the function I(T, f) and the frequency at
which it occurs, and on a separate graph plot again I(T, f) and add the maximum point to the graph.
See example graphs at end.
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7. Bass Diffusion Model. The Bass model is the most influential model in marketing engineering for describ-
ing the diffusion of innovations, that is, the introduction, acceptance, adoption, growth, and eventual
decline of new products, ideas, innovations, techniques, services, and procedures.

It is characterized by three parameters,m,p,q, wherem is the maximum number of potential adopters
or buyers of a product, and q,p represent growth rates of the so-called “imitators” and “innovators”,
where the former are influenced by the number of existing adaptors, while the latter are not and decide
independently of others to adopt a product. The mathematical form of the model and the differential
equation from which it arises are as follows:

N(t)=m 1− e−(p+q)t
1+ q

p
e−(p+q)t

,
dN(t)
dt

= p[m−N(t)]︸ ︷︷ ︸
innovators

+qN(t)
[

1− N(t)
m

]
︸ ︷︷ ︸

imitators

(12)

where t ≥ 0 measures the years since the introduction of the product, and N(t) is the cumulative
number of adaptors up to time t, and dN/dt represents the rate of adoption. Initially, we haveN(0)= 0
at t = 0. The function N(t) is an S-shaped curve resembling the logistic curve (see example graphs at
the end and Problem 12 on the week-11 homework set). In fact, if Eq. (12) is modified to allow a nonzero
initial value N(0), then Eq. (12) becomes the logistic model in the limit p = 0. In practice, we typically
have q� p. More generally, the solution relating N(t) and N(t1) at an earlier time instant is:

N(t)=m
[
q+ pe−(p+q)(t−t1)]N(t1)+mp[1− e−(p+q)(t−t1)]
q
[
1− e−(p+q)(t−t1)]N(t1)+m[p+ qe−(p+q)(t−t1)] (13)

The derivative dN/dt is a bell-shaped curve and has a maximum corresponding to the inflection time
t0 of N(t), as follows:

t0 = 1

q+ p ln

(
q
p

)
, N(t0)=m q− p

2q
,
dN(t0)
dt

=m (q+ p)2

4q
(14)

Eqs. (14) are very important to manufacturers because they determine the time t = t0 of maximum rate
of adoption of a product, to be followed by its subsequent decline at t > t0.

The model parameters m,p,q are determined by fitting the model to the observed sales data. There
exist several fitting methods, but here, we will use the least-squares method implemented by nlinfit.
This method requires that we provide initial estimates of the parameters, say, m0, p0, q0. For m0, we
may choose the maximum observed value of N(t). And if we have estimates, say N0, Ṅ0 of N(t0) and
dN(t0)/dt, then we may solve Eqs. (14) to obtain initial estimates of p,q,

N0 =m0
q0 − p0

2q0
, Ṅ0 =m0

(q0 + p0)2

4q0
⇒ q0 = m0 Ṅ0

(m0 −N0)2
, p0 = Ṅ0 (m0 − 2N0)

(m0 −N0)2
(15)

Given column vectors of, say, K observed data pairs {ti,Ni, i = 1,2, . . . , K}, we can define the model
function of Eq. (12) as an anonymous MATLAB function of the parameters m,p,q and t, then define
initial estimates of the parameters, and obtain the solution as follows, where the three parameters
m,p,q are represented by the three components c(1), c(2), c(3) of the parameter vector c,

f = @(c,t) c(1) *(1 - exp(-(c(2)+c(3))*t))./(1 + c(3)/c(2)*exp(-(c(2)+c(3))*t));

[Nd0,i0] = max(diff(Ni)./diff(ti)); % estimate the maximum of the derivative
N0 = Ni(i0); % estimate the value at inflection
m0 = max(Ni); % estimate the maximum level
q0 = m0*Nd0/(m0-N0)^2; % initial q and p
p0 = Nd0*abs(m0-2*N0)/(m0-N0)^2; % note the absolute value

c0 = [m0, p0, q0]’; % initial parameter vector

c = nlinfit(ti,Ni,f,c0); % fitted parameters
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The data file, bass.dat, contains measured sales data for seven products: air conditioners, color tele-
visions, clothes dryers, ultrasound equipment, mammography facilities in hospitals, foreign language
schools, and accelerated learning programs. The data are from Ref. [2] below and have served as bench-
marks for evaluating different estimation methods of various diffusion models, including the Bass
model. Logistic models and their relatives, such as Richards and Gompertz models, can also be used as
diffusion of innovations models. See Ref. [5] below for a comprehensive review.

a. Load the data file into MATLAB and, for each of the above seven cases, extract the corresponding time
and data vectors ti,Ni. Because some cases have different time lengths, the data file has been padded
with NaNs to fill the blanks, so that it can be loaded as a whole into MATLAB. Before proceeding with
each case, you must remove any potential NaNs using, for example, the code,

Ni = Ni(~isnan(Ni)); % remove possible NaNs in some cases
ti = ti(~isnan(ti));
ti = ti-ti(1)+1; % define relative time, ti = 1,2,3,...

Determine the model parametersm,p,q for each case by following the above estimation procedure
based on nlinfit. Make a plot of the estimated model function f(c, t) vs. t in the interval 0 ≤ t ≤ 15,
and add the data points on the graph, and also indicate the inflection point. The results of this
estimation method are virtually identical to those of Ref. [6] below. Print your results as follows:

product m p q
----------------------------------------------------
air conditioners 17.17 0.007439 0.426984
color televisions 38.31 0.016416 0.655472
clothes dryers 15.42 0.012171 0.360685
ultrasound devices 204.99 0.005830 0.423133
mammography hospitals 125.37 0.002290 0.651793
language schools 42.65 0.004871 0.549531
learning programs 65.94 0.000982 0.879754

b. Instead using the built-in function nlinfit, try a do-it-yourself approach that uses the built-in function
fminsearch to directly minimize the sum of squared errors. A similar approach was used in the
previous problem on the CMB. Given the K data pairs ti,Ni and the model function f(c, t) defined
above, the least-squares method minimizes the following function of the parameter vector c :

J(c)=
K∑
i=1

[
Ni − f(c, ti)

]2 = min (16)

This function and its minimization using fminsearch can be easily implemented in MATLAB, assum-
ing that f(c, t) has already been defined and an initial search vector c0 has been chosen:

J = @(c) sum((Ni - f(c,ti)).^2); % define least-squares function
c = fminsearch(J,c0); % find c that minimizes J(c)

Carry out this minimization procedure for each of the seven cases and compare your results to those
obtained in part (a).

Diffusion Models – PDFs on Sakai

1. F. M. Bass, “A New Product Growth Model for Consumer Durables,” Management Sci., 15(5), 215
(1969). http://www.jstor.org/stable/2628128

2. V. Mahajan, C.H. Mason, and V. Srinivasan, “An Evaluation of Estimation Procedures for New Product
Diffusion Models,” in V. Mahajan, Y. Wind (eds.), Innovation Diffusion Models of New Product Accep-
tance, Ballinger Publishing Company, Cambridge, 1986, pp. 203.
https://gsbapps.stanford.edu/researchpapers/library/RP851.pdf

3. F. M. Bass, Comments on “A New Product Growth for Model Consumer Durables”: The Bass Model,
Management Sci., 50(12), 1833 (2004). http://www.jstor.org/stable/30046154
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4. R. Peres, E. Muller, and V. Mahajan, “Innovation Diffusion and New Product Growth Models: A Critical
Review and Research Directions,” Intern. J. of Research in Marketing, 27 91 (2010).

5. N. Meade and T. Islam, “Modelling and Forecasting the Diffusion of Innovation—A 25-year Review,”
Intern. J. Forecasting, 22, 519 (2006).

6. D. Jukíc, “On Nonlinear Weighted Least Squares Estimation of Bass Diffusion Model,” Appl. Math.
Comput., 219, 7891 (2013).
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