
ViBE: Virtual Biology Experiments
Rajaram Subramanian and Ivan Marsic

Department of Electrical and Computer Engineering and the CAIP Center
Rutgers � The State University of New Jersey

Piscataway, NJ 08854-8058 USA
+1 732 445 6399

{skaushik, marsic}@caip.rutgers.edu

ABSTRACT
The virtual laboratories enhance learning experiences by
providing the student with a supplement to the physical lab. The
laboratories allow students to perform exercises as in an actual lab
and to gather data for preparing lab reports. To increase student�s
engagement and interest, they are allowed to make errors and take
wrong directions, and then backtrack to correctly perform the
exercise. The architecture of the system is modular and can be
easily extended to implement different laboratories and it supports
augmentation by animation effects and realistic rendering of
virtual objects. Most of the system components, including all the
virtual labs, are implemented as Java Beans. The software
framework is lightweight and can be downloaded as an applet in a
browser. Extensible Markup Language (XML) is used for
application and data description; students can save their lab
reports in XML and review them later. To demonstrate the
potential of the architecture, we have developed several virtual
laboratories for cell division, centrifugation, spectrophotometry,
and virtual microscopy. We report experience in developing and
deploying such virtual laboratories as well as their actual usage in
the Department of Cell Biology and Neuroscience at Rutgers
University.

Categories and Subject Descriptors
D.2.m [Software Engineering]: Miscellaneous � rapid
prototyping, reusable software. K.3.1 [Computers and
Education]: Computer Uses in Education � computer-assisted
instruction, distance learning.

General Terms
Design, Performance, Experimentation, Human Factors.

Keywords
Software design, distributed learning, virtual laboratories.

1. INTRODUCTION
Innovations in multimedia and computer-related technology offer

exciting opportunities to improve the quality of teaching and
learning science for students. Colleges and universities across the
world are faced with a generation of students flocking to learn
more about the life sciences. Consequently, instructors are
confronted with more students and larger classes, particularly at
introductory levels. Here at Rutgers, the General Biology course
services a large group of students (in excess of 2000) with varied
backgrounds and abilities. The faculty challenge is to motivate
and excite these students so that each performs to his/her fullest
potential. We believe that this seemingly difficult objective can be
best achieved by incorporating computer-related, web-based, and
multimedia technology into the classroom and laboratory
environment.

The fundamental guideline under-guiding the development and
organization of virtual laboratories is that students learn science
best by experimenting and gaining hands-on experience�raising
questions, solving problems and finding answers to questions
through designing and carrying out experiments. Our long-range
objective is to develop virtual learning experiences for students by
allowing them to access, visualize, and manipulate
instrumentation and multimedia data utilizing the newly available
high-speed networks. We see the development of virtual
laboratory exercises as key to raising student interest and
improving learning. When done effectively, this increases student
access to knowledge and enhances performance as well as the
quality of educational outcome.

A virtual laboratory is a virtual reality environment that simulates
the real world for the purpose of discovery learning. A flight
simulator is an example of a virtual laboratory. It provides a pilot
with useful virtual experience based upon flying a specific type of
aircraft. Virtual labs can be used in a similar fashion to augment
real laboratory experience in science and technology. However,
programming virtual laboratories is a very tedious and costly task.
A central challenge is to develop tools allowing for rapid and easy
creation of virtual laboratories. This paper presents a software
architecture for rapid development of virtual laboratories.
The paper is organized as follows. Section 2 reviews background
and related work. Next, Section 3 presents the software
architecture of the framework. Section 4 gives examples of several
virtual biology laboratories implemented using the framework.
Section 5 presents some observations and results obtained from
students who actually used the virtual labs. Finally, Section 6
concludes the paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WWW10 Conference, May 1-5, 2001, Hong Kong.
Copyright 2001 ACM 1-58113-000-0/00/0000�$5.00.

2. BACKGROUND AND RELATED WORK
The need for multimedia technology in biology teaching is being
recognized worldwide. There are several interactive virtual labs
currently available on the web. California State University�s
Center for Distributed Learning [2] now has eight biology labs in
the beta test phase on topics ranging from evolution to molecular
biology. The labs are commercially marketed through the Addison
Wesley Longman publishing house. A series of interactive Java
tutorials are offered at [4] that explore various aspects of virtual
Scanning Electron Microscopy (vSEM). The student can discover
how specimens appear when magnified in the virtual SEM. Each
time a new specimen is loaded into the browser, the focus,
brightness, and contrast controls are randomly reset to simulate
the situation in a real microscope. The University of Melbourne
has established a Science Media Teaching Unit [15] to promote
effective and efficient use of computer-based multimedia in
teaching biology. Physics 2000 [8] comprises interactive Java
applets through which students can explore elementary physical
phenomena. Edmark [6] markets interactive virtual labs that are
designed to make it easy for teachers to integrate the programs
into their curriculum. Unlike our labs, it appears that these are not
platform independent Java applets. Hence a student would have
to download a version specific to the platform she is using.
Researchers at the TeleLearning Network of Centres of
Excellence [5] are developing virtual labs that enable students to
carry out a range of experiments by computer, thus enhancing
their classroom learning. Here, students use a mouse to select
objects in the lab, move them around, and adjust parameters such
as the intensity of an electrical current or the frequency of a laser.
As the instruments in the actual lab can be rather fragile and
expensive, the virtual labs are a reasonable alternative solution for
enabling the students to �play� with the instruments. Just like
their real equivalents, the virtual instruments respond to students�
manipulations by providing correct data if the experiments have
been carried out properly. These labs are implemented as Java
applets but there is no account of a generic underlying software
architecture that simplifies the lab development. The researchers
are also pursuing the development of remote labs, where robots
receive commands from students and reproduce the virtual
experiments in a fully equipped real lab. Perhaps the most
advanced biology lab exercises are offered through the Howard
Hughes Medical Institute. They developed Bio-Interactive [9]�a
collection of learning modules that let students interactively
explore topics in cardiology, neurophysiology and immune
system. These virtual exercises augment neuroscience laboratories
and have been received with enthusiasm by faculty and students.
In these exercises, user-action is restricted mostly to �clicking� on
the various instruments. For a better realistic feel, the users
should be able to perform the exact operations as they would on
the real instrument.
We notice in most of the aforementioned work the widespread use
of slider widgets. In the actual instrument, this need not be the
case. For instance, we might need to �rotate� a dial to set a
particular reading rather than �slide� a marker across a slider. We
attempt to overcome these shortcomings and provide the user with
a more realistic experience through the virtual lab. Also, although
the above reviewed exercises are �interactive,� they are very
linear. Our goal is to develop exercises that give student choices
and options such that two students may not have the �exact� same
lab experience, but finish having learned the same concepts.

3. FRAMEWORK ARCHITECTURE
The architecture is based on the Java Beans framework [14] and
extends our prior work on using Java Beans in collaborative
applications [12]. The class of beans that follow this architecture
is called Manifold [11].
The main characteristic of the Manifold beans is the multi-tier
architecture [11]. The common three-tier architecture comprises
the vertical tiers of presentation, application or domain logic, and
storage. The Manifold�s presentation tier is virtually free of the
application logic and deals with visualizing the domain data and
accepting the user inputs. The domain tier deals with the
semantics of tasks and rules as well as abstract data
representation.
The domain tier contains all the model objects and the
presentation tier contains all the view/controller objects of the
MVC design pattern1 [1]. The main benefit of this decomposition
is the resulting separation of concerns. The design internally
consists of three beans, although the outside world sees a single
bean.

3.1 Domain Bean
The conceptual model of a typical document editor is shown in
Figure 1. The key concept is a Glyph, which represents all objects
that have a geometry and may be drawn. The name �glyph� is
borrowed from typography to denote simple, lightweight objects
with an instance-specific appearance [7]. A Glyph is essentially a
container for a list of <property, value> pairs, with properties
such as dimensions, color, texture, etc., but also various
constraints on glyph manipulation. A Glyph may be an aggregate
containing multiple leaf or aggregate glyphs thus embodying the
Composite pattern [7]. A corresponding (simplified) class
Document Folder

Act ion History

Behavior

Document.

*

+contains

*

Properties

11

+describe

User Action

+acts-on

*

+contains

*

Glyph.*

+observes/acts-on

*

*
+contains

*

11

+describe

+acts-on

Figure 1. A simple conceptual model of a generalized editor.

1 The Model-View-Controller (MVC) pattern may be used in

implementing multi-tier architectures, but should not be
confused with such architectures. MVC applies at the level of
individual objects, whereas multi-tier applies at the level of
large architectural modules.

diagram is shown in Figure 2.
All Glyphs in a document form the scene graph, itself a Glyph,
which has a tree data structure. The scene graph is populated with
different vertices (Glyphs) in specific applications that extend the
Manifold framework. Glyphs are divided into two groups. Leaf
Glyphs (terminal nodes) represent individual graphic elements,
such as images, geometric figures, text or formulas in spreadsheet
cells. PolyGlyphs are containers for collections of Glyphs. They
correspond to branch nodes and can have children. Example
PolyGlyphs are group figures, paragraphs, maps or calendars.
PolyGlyphs have all the functionality of Glyphs. They also have
the additional property that they can contain Glyphs or other
PolyGlyphs. For example, in the virtual spectrophotometer lab
(described in Section 4 below), an example of PolyGlyph is a
control dial, which contains an ellipse figure (knob) and a line
figure (reference mark on the dial). Another example, a map
PolyGlyph positions an icon Glyph according to its (x, y)
properties, whereas a card pack PolyGlyph positions all its Glyphs
stacked one on another, disregarding the Glyph�s coordinate
properties.
Glyphs are sources of the following types of events that are fired
in response to the operations on the scene graph tree structure:
AppearanceEvent for Glyph add/remove operations,
PropertyChangeEvent for changing the Glyph properties, and
TransformEvent for applying the affine transforms on the Glyphs.
The interested parties register as event listeners for some or all
types of the events via the Java Beans delegation event model.
DomainControl is the system controller for the domain bean that
invokes the system operations. This is the only portal into the
domain bean. The only way to cause a state change in the bean is
to invoke the processCommand() method. Even the local
presentation (view) objects interact with the domain objects
through this portal only.
The CommandEvent class implements the Command pattern [7]
and has the responsibility of keeping track of the argument values
to invoke operations on Glyph and Document objects so the
operations can be undone/redone. We name this class
CommandEvent instead of Command to emphasize the Java event
distribution mechanism. Commands create/delete Glyphs or

correspond to Glyph methods. In addition, we have commands to
open or save a document and document-view-related commands.
Behaviors are objects that observe the Glyphs as event listeners
and act on Glyphs by invoking the processCommand() method
on the DomainControl. Behaviors maintain a list of named target
Glyphs that are acted upon. Example behaviors are collision
detection in three-dimensional worlds, spreadsheet cells with
formulas, or coordinated manipulation of several Glyphs, which is
not the same as a group movement where all objects are
manipulated in the same manner. Unlike the Java 3D behaviors
[13], which are oriented towards avoiding the unnecessary
rendering of invisible parts of the world, our behaviors are
focused on end-user programmability. The user �wires� the
behavior to the event sources and the targets as will be seen in
Section 3.3 below.

3.2 Presentation Bean
The Model-View-Controller (MVC) design pattern divides an
interactive application into three components [1]. The model
contains the core functionality and data, views display information
to the user, and controllers handle user input.
A Glyph may have a corresponding GlyphView, which is a view
part of the MVC pattern associated with the model Glyph. The
reverse may not be true, depending on whether or not the
containing Document notifies its AppearanceListeners
(DocumentView) about the creation of a new Glyph. The
GlyphView subscribes to the model and listens to the important
state changes. Thus, the derivatives of this class may implement
some or all of the listener interfaces (AppearanceListener,
PropertyChangeListener, and/or TransformListener) as needed.
The key user activity in graphical user interfaces is direct
manipulation of screen objects. The classes that support direct
manipulation are Tool and Manipulator [16], Figure 3. Tool
encapsulates information about the current direct manipulation
mode, e.g., rotation, resizing, etc. Tools are essentially state
objects for DocumentViews (see the State pattern in [7]).
Manipulator encapsulates a Tool�s manipulation behavior and is
responsible for providing visual feedback during a manipulation
sequence (e.g., redrawing a rubber-band using the XOR
technique). The Tool�Manipulator breakup separates the state
information from manipulation behavior. Manipulation involves a
sequence of grasp-wield-effect operations, each of which results

PolyGlyph
CommandEvent

target : Glyph

execute()
unexecute()
isReversible()

CommandHistory
presentCmdIndex : int

undo()
redo()
log()

0..*+commands 0..*

DomainControl

processCommand()

1 +history1

DocumentFolder
activeDocument : Document

addDocument()
removeDocument()
getActiveDocument()
setActiveDocument()

Document
selection : Vector

getSceneGraph()
getSelection() 0..*0..*

Glyph

addChild()
removeChild()
getChild()
getParent()
createIterator()
setProperty()
transform ()
grasp()
release()

<<Composite>>

0..*+children 0..*

Behavior

addTarget()
removeTarget()

Figure 2. Domain class diagram of a generalized editor.

Decorat ions,
toolbars, menubar

DocumentView
currentTool : Tool

getRootChildren()
getViewpoint()
setViewpoint()
setCurrentTool()

Tool

createManipulator()

<<State>>

PresentationControl

processViewCommand()

Manipulator

grasp()
manipulate()
effect()

Editor

PolyGlyphView

GlyphView

getModel()
getShape()
getTransform()

Figure 3. Presentation class diagram of a generalized editor.

in a message to the manipulated object, which is encapsulated in a
CommandEvent.
Manipulator is the Controller part of the Model-View-Controller
design pattern in that it converts the user interaction into the
CommandEvents for the model. PresentationControl gathers all
user actions originating in the presentation bean as
CommandEvents and delivers them to its CommandListener(s),
normally a DomainControl object. PresentationControl is the
system controller that processes the presentation-related
CommandEvents, such as changing the viewpoint, that originate
at a remote process.
Manipulator separation helps keeping the application lightweight
(especially presentation layer), since the Manipulators are created
only for direct manipulation.

3.3 XML for Programming and Information
Exchange
In order to provide for end-user customization of the application,
we need to specify a data and application description language.
The language is used to describe the data being operated upon,
i.e., the initial scene graph of the application, as well as the
relationships between the application objects. The language
should be rich, yet easy to use and fast to parse. Since the scene
graph is a hierarchical structure, the language should
accommodate hierarchical data. The World Wide Web is at
present the predominant means of exchanging information and
delivering documents between networked domains. XML
(eXtensible Markup Language) is now being promoted as a new
Web markup language for information representation and
exchange [18]. It satisfies all of the above listed requirements and
also has been used for application description [10]. Thus, our
choice for data and application description language is XML.
An end user or an XML programmer creates Manifold XML files
based on the set of available Glyphs and their attributes. The
correspondence between the elements and Glyphs is not one-to-
one. Not all XML elements are Glyphs. For example, Glyph
properties may be represented as sub-elements of the Glyph
element. Here is an example Glyph EllipseFigure from a
two-dimensional graphics editor, called Flatscape, that is based on
the Manifold framework:
<GLYPH type="flatscape.domain.EllipseFigure">

<PROPERTY name="glyph.height"
type="java.lang.Double" value="42.0" />

<PROPERTY name="glyph.width"
type="java.lang.Double" value="42.0" />

<PROPERTY name="fill.color"
type="java.awt.Color"
value="java.awt.Color[r=150,g=150,b=150]"/>

<TRANSFORMATION
type="flatscape.domain.Transform2D"
value="0.0 0.0 1.0 1.0 0.0" />

</GLYPH>

The sub-elements could even have their own sub-elements if, e.g.,
the transformation is represented as independent scale, rotation
and translation parameters, each tagged individually.
In addition to Glyphs, the user can specify the Behaviors. Each
behavior may listen to Glyphs for events (AppearanceEvent,
PropertyChangeEvent, and TransformEvent) and may have
specified targets onto which it acts (other Behaviors or Glyphs).
Here is an example:

<BEHAVIOR id="steering"
type="bicycles.domain.Steering">

<LISTENER
type="manifold.domain.TransformListener"
source="handlebars" />

<TARGET name="wheel" ref="frontWheel" />
</BEHAVIOR>

The Behavior object labeled �steering� listens to the Glyph
labeled �handlebars� for TransformEvents and acts on the target
labeled �frontWheel.� As the user manipulates the handlebars, the
behavior receives the transform events, computes the rotation
angle for the front wheel of the bicycle and sends a
TransformCommand to the wheel. The behavior classes, such as
bicycles.domain.Steering in the above example, are the pre-
existing Java classes or must be programmed by the end-user in
Java.
A key benefit of implementing presentation and domain as distinct
beans rather than the whole package as a single bean is in being
able to mix and match different combinations. We can have a set
of more or less complex beans for each. Different domain beans
can implement complex behaviors and the presentation beans can
implement visualizations with varying realism.

4. VIRTUAL BIOLOGY LABORATORIES
The virtual lab contains a set of objects such as microscopes,
centrifuges, whole organisms, or individual cells each with
specific pre-programmed behaviors. The student interacts with the
objects in order to attain a set of given goals, i.e., study of cell
features, separation of cellular components, measurement of
enzyme activities, quantification of cell division, etc. The use of
creative renderings of objects and their behaviors allows the
student to freely experiment in the virtual world. Module content
of virtual labs, complexity of problem solving, and sophistication
of technical skills are vertically scaled so that each student can
move through the module depending upon level of preparation
(from General Biology student to advanced students in
Fundamentals and Advanced Cell Biology).

The Manifold framework significantly simplifies the development
of virtual biology laboratories. The developer�s main task is in
writing the XML document and programming the Behaviors
associated with the lab. Currently we have implemented five
virtual laboratories and the amount of lab-specific Java code
relative to the Manifold code ranges from 5 % to about 20 % in
very complex labs. In addition, the new code is highly
standardized, relieving the developer from the issues with display,
document parsing, etc., and only requiring the developer to
program the particular Behavior classes.

We also make use of the CommandHistory facility to provide the
student with a Back button by which he/she can backtrack and
perform the previous actions again. Each lab stage is marked and
all the events that occur between two stages are logged. When the
student clicks on the Back button, all the events that occurred
after the last stage are undone, of course, if these events are
reversible.

Students can use a powerful graphics editor available in the
framework to prepare lab reports after the exercises. Any stage of
the lab can be captured and copied in the report document at the
level of structured graphics, rather than screen bitmaps. The
documents are stored in XML and can be reviewed and edited

manually if necessary. T
currently implemented v

4.1 Spectrophoto
The spectrophotometer
concentration of a subst
specified wavelength thr
the transmitted light an
transmittance of light re
this machine, the correc
that the light is absorb
through the solution (th
will pass through and vi
to familiarize students w
students first calibrate th
known concentration. T
calculated according to t
Here is an example of h
control dial (Figure 4) as
line, which represent the
<POLYGLYPH id="zer

type="flatsca
<PROPERTY name=
type="java.la

<PROPERTY name=
type="java.la

<TRANSFORMATION
type="flatscap
value="79.0 49

<GLYPH id="zero
type="flats

 <PROPERTY name=
 type="java.lang.Dou

<PROPERTY nam
type="java.

<PROPERTY nam

Figure 4. Scree
solutions, #### samp
(magnified view s

n snapshot of the spectrophotometry virtual laboratory. !!!! on/off switch, """" rack with test tubes with
le holder for the test tube, $$$$ zero control dial, %%%% light control dial, &&&& meter with needle and pilot light
hown on top), '''' wavelength control dial for setting the color of the illumination light, ((((magnified top

view of the wavelength dial.
he following sections review some of the
irtual laboratories.

metry Laboratory
is a machine used to measure the

ance in a solution by passing light of a
ough it. A photocell at one end receives
d an analog meter displays the percent
ceived by the photocell. In order to use
t wavelength of light must be chosen so
ed by substance when it tries to pass
e more substance there is, the less light
ce versa). The main purpose of the lab is
ith the spectrophotometer and its use. The
e instrument using a reference solution of
he concentration of unknown samples is

he transmittance value of this solution.
ow the lab developer specifies the zero
 a PolyGlyph consisting of a circle and a

 knob and the reference mark:
oDial"
pe.domain.PolyGlyph2D">
"glyph.permittedUserTransform"
ng.String" value="rotate" />
"glyph.dialType"
ng.String" value="zeroControl"/>

e.domain.Transform2D"
5.0 1.0 1.0 0.0 0.0 6.5" />

DialKnob"
cape.domain.EllipseFigure">
"glyph.height"
ble" value="42.0" />
e="glyph.width"
lang.Double" value="42.0" />
e="fill.color"

type="java.awt.Color"
value="java.awt.Color[r=150,g=150,b=150]" />

<TRANSFORMATION
type="flatscape.domain.Transform2D"
value="0.0 0.0 1.0 1.0 0.0 " />

</GLYPH>

<GLYPH id="zeroDialReferenceMark"
type="flatscape.domain.LineFigure" >

<PROPERTY name="glyph.length"
type="java.lang.Double" value="13.5" />

<TRANSFORMATION
type="flatscape.domain.Transform2D"
value="0.0 -13.0 1.0 1.0 -1.57 0.0 0.0"/>

</GLYPH>
</POLYGLYPH>

The remaining objects are specified in a similar manner. The
developer must also specify the behaviors, as in this example:
<BEHAVIOR id="measuring"

type="biology.spectro.domain.SpectroMeasure">
<TARGET name="pilotLamp" ref="pilotLamp" />
<TARGET name="needle" ref="needle" />

</BEHAVIOR>

<BEHAVIOR id="turning"
type="biology.spectro.domain.DialWatcher">

<LISTENER
type="manifold.domain.TransformListener"
source="lightDial" />

<LISTENER
type="manifold.domain.TransformListener"
source="zeroDial" />

<TARGET name="spectroMeasure" ref="measuring" />
</BEHAVIOR>

<BEHAVIOR id="opening"
type="biology.spectro.domain.LidWatcher">

<LISTENER
type="manifold.domain.PropertyValueChangeListener"

source="sampleHolder" />
<TARGET name="spectroMeasure" ref="measuring" />

</BEHAVIOR>

The Behavior �measuring� performs the calculations based on the
solution�s density and the light wavelength and sends a
TransfromCommand to the instrument (AbsorbanceMeter) needle
to display the wavelength. It also turns on or off the pilot lamp
when the spectrophotometer is turned on or off. The Behavior
�turning� causes the Behavior �measuring� to redo the
measurement when a dial is rotated. Similarly, the Behavior
�opening� causes the Behavior �measuring� to redo the
measurement when the sample holder�s lid is opened or closed.

4.2 Cell Mitosis and Meiosis
In the actual lab, students are given plastic beads and a
cylindrically shaped magnet called a �centromere.� When these
parts are assembled, they form the model for a chromosome. The
students are asked to build four of these, one red pair, and one
yellow pair and explore different phases of cell mitosis and
meiosis. In each of these phases, the chromosomes behave in a
certain way in the cell while the cell first divides into two and
then into four cells. The students are asked to manipulate the
chromosomes to show their behavior during each of these stages.
Screen captures in Figure 5 show selected phases of the meiosis
virtual lab. Any time the cell components are arranged in a

particular configuration, the behaviors are set in motion and
perform animation of the corresponding cell process.

4.3 Differential Centrifugation Lab
Differential centrifugation is a mode of centrifugation in which
the sample is separated into two fractions: (1) a pellet consisting
of sedimented material and (2) a supernatant. The experiment is
similar to the one originally described in 1955 by Christian de
Duve for the discovery of the organelle lysosome (awarded a
Nobel prize in 1974). It is based on the differences in
sedimentation rate of particles of different size and density. The
tissue homogenate is centrifugally divided into a number of
fractions by stepwise increasing the applied centrifugal field. The
centrifugal field is chosen so that a particular type of organelle
will be sedimented as a pellet, and the supernatant will be
centrifuged at a higher centrifugal field for further fractionation.
Our virtual lab simulates the operation through the following
major stages (Figure 6):

1. Sample Preparation Stage: the students prepare the rat liver
for centrifugation by chopping and homogenizing.

2. Preference Setting Stage: the students are allowed to choose
the settings for the centrifugation process; depending on the

(a) (b) (c)

(d) (e)
Figure 5. Selected screen snapshots for the cell meiosis virtual laboratory. The students start with the parts of a cell (a) and after

assembling the cell explore different phases of meiosis.

(a) (b) (c)

(d) (e)
Figure 6. Selected screen snapshots for the differential centrifugation virtual laboratory. The goal of the lab is to find the

percentages of the organelles in the rat liver tissue.

speed, time and temperature settings, the process of
centrifugation is performed.

Results and Analysis Stage: the results of the centrifugation
process are presented to the students in the form of graphs that
represent the percentage of each of the organelles.

4.4 Virtual Microscope
This laboratory was developed in collaboration with the
University of Medicine and Dentistry of New Jersey. The lab
allows the student to load an image and view it at different
magnifications (Figure 7). The left panel shows an original image
of blood cells, in this case afflicted by leukemia. Automatic
techniques for image segmentation are called up by pen-based
gesturing and by speaking voice commands. Image analysis
methods�developed in the Robust Image Understanding
Laboratory at the CAIP Center [3]�can extract common
components on the basis of color and texture (the top small
panel), and by edge shape (the lower small panel). We are
currently working on connecting the lab with the physical
microscope for real-time image acquisition. The controls will be
provided to manipulate the microscope remotely.

5. EVALUATION AND OBSERVATIONS
5.1 Field Study
The core biology course in the Department of Cell Biology and
Neuroscience at Rutgers University has been a testbed for the cell
mitosis lab over the last semester and will continue to be so,
additionally using the new labs (cell meiosis, differential
centrifugation, spectrophotometer, and a virtual microscope),
which have recently become available.

The short-term goal of virtual labs is to serve as a preparation and
supplement for actual labs. The students are thereby familiarized
with procedures before they actually go into the lab and perform
experiments. This �rehearsal� by simulation of a complex
experiment is a cost-effective preparation for the use of limited
and expensive lab facilities. The laboratories are continuously
available on our web site so the students can access the labs from
anywhere. Our labs also enable self-paced learning for each
student. We do not keep track of how many students access the
laboratories or the amount of time they use it. As these labs are
available on the web anytime, students might open the labs and

Figure 7. Screen snapshot of the virtual microscope lab. The
original image taken from a microscope is shown on the left.

The user selects a region of interest by a pen-based gesture and
the system automatically segments the image and extracts

various other features [3].

simultaneously refer to their textbooks in order to understand the
concepts better. Hence the time for which they use the lab does
not really provide any valuable information.

5.2 Results
We present a summary of preliminary results from the ongoing
evaluation of the Virtual Biology Labs by the Rutgers Department
of Education at Rutgers University. Following are some trends
that we are observing in student reactions to the virtual labs and
how those reactions influence the lab design.
In general, students had a positive attitude towards the lab on
mitosis. Of the 18 students who were surveyed, 15 commented on
the usefulness of the simulations in explaining the different stages
of mitosis via the dynamic representations and simulations that
were embedded in this lab. Specifically, students liked the fact
that they could replay and watch the process as many times as
they needed. Also, the exercises and feedback provided were
considered a positive feature. In reflecting on the usefulness of the
spectrophotometer simulation, the students enjoyed the individual
and repetitive practice they could engage in. They envisioned that
this experience would help them with their lab practical exams as
well as fine-tune their skills in operating the spectrophotometer in
the actual lab. Overall, the students found the virtual labs to be an
interface where they could learn and practice in spite of making
errors. They also acknowledged that the simulations were realistic

and helped in demonstrating certain processes that were not easily
represented in the actual lab.
Although the feedback was generally positive, there were some
features that students had trouble with. Several students expressed
the concern that the instructions accompanying certain simulation
tasks were unclear. In order to test the usefulness of the Back
button, we have implemented it only for some labs. In cases
where the Back button was not implemented, students found that
in the event they made an error they were required to start the
process all over again, which was frustrating. They felt that if the
exercise were designed to allow one-step backtracking, it would
be more accessible. This validates our assumption that the Back
button is a feature that could help enhance the learning experience
for the student.

5.3 Usability
Whenever we design the user interface for a virtual lab, we make
certain assumptions about the user. What could be very obvious to
the designer need not be intuitive at all to the end-user. Hence we
performed a usability study for the virtual labs. Table 1 captures
the results of a study performed for the virtual spectrophotometer
lab. We have also given the possible explanations for students
feeling the way they did when they used the lab. Many of the
findings serve as development hints as to how to improve the
design. The findings about the assumptions 11�14 in particular

Assumption

1. Students will know which dia
wave dial.
2. Students will know where th
located.

3. Students will know which is
transparent solution.

4. Students will know that they
the wavelength before calibrat
5. Students will know how to o
top view.
6. Students will know how to m
view disappear.

7. Students will use the top vie

8. Students will know that they
switched on the spectrophotom
9. Students will know that if the
off, they cannot use the
spectrophotometer.

10. Students will differentiate b
transmittance and absorbance

11. Students will recognize the
reading on the right scale.
12. Students will remember the
sample holder not being close
13. Students will notice the Ba
getting automatically activated
14. Students will click on the B
when they are instructed to.
Table 1. Interface study results for the virtual spectrophotometry lab.
Valid Invalid Comments

l is the 80% 20% As there are 3 dials, there is a possibility of confusion; again, crying out for
tool tips.

e switch is 67% 33% Probably because the switch was located in a different place from the actual
instrument where it is combined with the zero control dial.

the 100
% 0 Probably because all the other test-tubes had rather distinct colors.

 have to set
ion.

100
% 0 This is a little surprising because some students did not know where the

wave dial was! Perhaps their answer is not true?

btain the 73% 13% Two students claimed that they do not remember; perhaps they did not use
it at all?

ake the top 60% 33% Again one did not try it; here is it safe to assume that more students actually
did not try to make it disappear because it did not cause hindrance?

w at all 93% 7% Students did try to set the wavelength.

 have
eter.

100
% 0 Students do notice the pilot lamp being turned on.

y switch 100
% 0

Most students did try to operate the spectrophotometer without switching it
on; as they saw that nothing was happening, they read the instructions to
see that it has to be turned on first.

etween the
 scales. 73% 27%

As this questionnaire was provided after the students finished the
experiment, students might not remember which scale they used-top or
bottom.

 right 86% 14% As one scale is a logarithmic scale, it is the only one with an �infinity�
reading; so this should be intuitive.

 effect of
d. 57% 43% Though they know that the reading is wrong, they are not sure how

different it will be (higher or lower reading).
ck button
. 60% 27% Two students never used the Back button because they calibrated exactly

the first time.
ack button 80% 7% Same as above.

emphasize the ne
guidance. Table
lab. As the stude
lab, our virtual l
not. A main featu
students perform
that they might n
to give an oppo
provide him/her
quite helpful to
virtual lab that
recognized by th
on-going researc
problems that th
with valuable in
Table 4 presents
few informal obs

6. CONCLU
This paper presen
virtual laborator
laboratories are
effectiveness, re
student interest a
and learning rat
labs will satisfy
software.
The architecture
support scientif

Prop
I found the dials

I found the Back

I found it easy to
meter scales

1 In the phys
2 It is nice th
3 The virtual
4 The virtual
5 The virtual
6 We used b
7 The simula
8 The physic

1 When I did
2 The dialog
3 The two win
4 There shou
5 The instruc
Table 2. User response on ease of use of features of the lab. (1=Strongly agree � 7=Strongly disagree)

erty 1 2 3 4 5 6 7 Comments

easy to rotate 1 2 3 4 4 0 1 Need a tool tip that tells the students where to click on the dial and rotate it.

 button useful 2 1 3 2 1 2 4 Some students never used the Back button; also, students wanted to backtrack
each stage rather than just the single stage back.

 read from the 6 3 2 1 2 0 1 Perhaps if we compared the student�s readings with the actual readings given
e
2
n
a

o
r
w
t
a
e
h
e
s

e

i

d
n
e
a

p
ic

by the spectrophotometer then this would be more meaningful.

i
a
l
l
l
e
t
a

 n
b

l
t

Table 3. Selected user comments on the differences between virtual lab mitosis and the actual lab.
cal lab, concepts like mitosis seem abstract. But in the virtual lab, the idea of something like mitosis is more concrete.
t students are allowed to see what they see in lab, at home.
ab is concise and to the point.
ab corrects you when you go wrong; so you can learn from mistakes.
ab has more graphics that help you understand mitosis better, while the actual lab only uses the microscope.
ads in the real lab; in the virtual lab, the click and drag method with each bead was very annoying.
ion actually helps us understand what we learned in the lab better.
l lab had more examples and we had to construct different mitosis scenarios, including both haploid and diploid cells.
d for an expe
 discusses th
ts perform th
b should pro
re in our labs
these virtual
tice only in
tunity to the
ith a Back b

he student. T
re significan
 students. As
, we also ask
y faced whil
ight as to ho
some of the u
rvations mad

SION
ts software ar
es. The ben
found in

uced need f
d control, ad

s, web ready
 growing nee

resented her
 laboratorie

ot put the ch
ox pops up to
dows concep
d be a forwar
ions sometim
Table 4. Selected user comments on the problems they had with the labs.
romosome bead in the right place, there should be a Help button to tell me what went wrong.
o many times during the simulation. If you can somehow get rid of that, it would be great.

t sometimes creates confusion.
d and Back button to skip around rather than do everything allover again as was provided in the spectro lab.
es were not clear.
rt system based automatic help and
e ease of use of each feature of the
e physical lab as well as the virtual
vide features that the real lab does
 is their �non-linear� nature. When
labs, they are likely to make errors
the subsequent steps. Thus, in order
 user to correct the mistakes, we
utton. As expected, this feature is
able 3 tabulates the features of the
tly different from the real lab as
 the design of virtual labs is part of
ed the students for feedback on the
e using them. This will provide us
w to improve our future designs.
ser comments. Table 5 presents a

e by the interface designer.

chitecture for rapid development of
efits of virtual labs over actual
their increased portability, cost
or teacher intervention, increased
aptability to various learning styles
 software and self-testing. Virtual
d for engaging interactive learning

e can be used in developing tools to
s that allow sharing unique or

expensive instruments. An important missing component is safety
and security for safe operation of an instrument coupled with user
authentication, privacy, and integrity of data communication.
Both of these are part of our continuing work.
Our experimental findings call for the development of an expert
system based automatic help and guidance in running the
laboratories and this is part of our continuing research.
The virtual labs are presently single-user labs. As our framework
can support collaborative work, we are working on designing
collaborative laboratories or collaboratories. Scientific
collaboratories enable researchers to work together across
geographic and organizational boundaries to solve complex,
interdisciplinary problems and to have access to remote resources.
In our virtual labs, students could collaboratively perform
experiments and share and compare their results.
Further information and source code are available at:

http://www.caip.rutgers.edu/disciple/

7. ACKNOWLEDGMENTS
Allan Krebs, Kevin Johns, and Abhijit Bhaware contributed
significantly to the development of the virtual laboratories.
Professor Richard Triemer, chairman of the Department of Cell
Biology and Neuroscience at Rutgers University, initiated the
project and provided great support in all phases. The research
reported here is supported in part by a grant from the New Jersey
Commission on Science and Technology, the DARPA Contract
No. N66001-96-C-8510 and by the Rutgers Center for Advanced
Information Processing (CAIP).

8. REFERE
[1] F. Buschma

and M. Stal
A System of
York, NY, 1

[2] California S
learning,� A

[3] D. Comanic
decision sup
Vision and A
1999.

[4] M. W. Davi
Abramowitz
applet,� Oly
University,
http://micro
copy/magni

[5] M. Duguay,
training,� A
www.telelea

[6] Edmark.com
[7] E. Gamma,

Design Patt
Oriented So
Reading, M

[8] M. V. Gold
University o
http://www.

[9] Howard Hu
laboratories
http://www.
s.html

1 People do n
Only when t
explanatory.

2 When a stud
which he wil
that he/she h

3 We realize t
boxes that i
error they co
Table 5. Selected informal observations made by the interface designer during the usage of labs.
ot go through the instructions given to them initially. They mostly try to use the applet without reading the instructions.
hey do not understand what is going on, they start reading the instructions. Thus the applet has to be pretty much self-

ent makes an error, we are faced with two options: let the student go on and add an error percentage to the readings
l know towards the end of the experiment (the Back button will be active throughout here); or to explicitly inform the user
as committed an error.

hat instructions are not the most eye-catching aspect of our labs; hence we should try to use something similar to dialog
NCES
nn, R. Meunier, H. Rohnert, P. Sommerlad,
, Pattern-Oriented Software Architecture:
 Patterns, John Wiley & Sons, Inc., New
996.
tate University, �Center for distributed
t: http://www.cdl.edu/
iu, P. Meer, and D. Foran, �Image guided
port system for pathology,� Machine
pplications, 11(4):213-224, December

dson, K. I. Tchourioukanov, and M.
, �Virtual scanning electron microscopy
mpus America Inc. and The Florida State
1998. At:
.magnet.fsu.edu/primer/java/electronmicros
fy1/index.html
 �Virtual labs for real-life scientific
vailable online at:
rn.ca/g_access/news/virtual_labs.html
, Web page at: http://edmark.com/

R. Helm, R. Johnson, and J. Vlissides,
erns: Elements of Reusable Object-
ftware. Addison Wesley Longman, Inc.,
A, 1995.
man, �Physics 2000 interactive applets,�
f Colorado, Boulder, CO. At:
colorado.edu/physics/2000/TOC.html
ghes Medical Institute, �Virtual
,� At:
hhmi.org/grants/lectures/biointeractive/vlab

[10] IBM, Inc., �Bean markup language,� At:
http://www.alphaWorks.ibm.com/tech/bml/

[11] I. Marsic, �An architecture for heterogeneous
groupware applications,� Proceedings of the 23rd
IEEE/ACM International Conference on Software
Engineering (ICSE 2001), Toronto, Canada, May
2001.

[12] I. Marsic and B. Dorohonceanu, �An application
framework for synchronous collaboration using Java
beans,� Proceedings of the Hawai`i International
Conference on System Sciences (HICSS-32), Maui,
Hawai`i, January 1999.

[13] H. Sowizral, K. Rushforth, and M. Deering, The Java
3D API Specification, Addison-Wesley, Reading, MA,
1998.

[14] Sun Microsystems, Inc., �JavaBeans API
specification,� At: http://www.javasoft.com/beans/

[15] The University of Melbourne, �Science media teaching
unit,� At:
http://themachine.science.unimelb.edu.au/smtu/SMTU.
html

[16] J. M.Vlissides and M. A. Linton, �Unidraw: A
Framework for Building Domain-Specific Graphical
Editors,� ACM Trans. Information Systems, 8(3):237-
268, July 1990.

[17] W. Wang, B. Dorohonceanu, and I. Marsic, �Design of
the DISCIPLE synchronous collaboration framework,�
Proceedings of the 3rd IASTED Int�l Conf. on Internet,
Multimedia Systems and Applications, Nassau,
Bahamas, pp.316-324, October 1999.

[18] World Wide Web Consortium, �Extensible Markup
Language,� At: http://www.w3.org/XML/

s more noticeable to the user. But sometimes users do get a little frustrated if a dialog box keeps popping up for every
mmit, as was commented upon in the mitosis lab. This aspect is an interesting area of future study.

http://www.cdl.edu/
http://micro.magnet.fsu.edu/primer/java/electronmicroscopy/magnify1/index.html
http://micro.magnet.fsu.edu/primer/java/electronmicroscopy/magnify1/index.html
http://edmark.com/
http://www.colorado.edu/physics/2000/TOC.html
http://www.hhmi.org/grants/lectures/biointeractive/vlabs.html
http://www.hhmi.org/grants/lectures/biointeractive/vlabs.html
http://www.alphaworks.ibm.com/tech/bml/
http://www.javasoft.com/beans/
http://themachine.science.unimelb.edu.au/smtu/SMTU.html
http://themachine.science.unimelb.edu.au/smtu/SMTU.html
http://www.w3.org/XML/

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	FRAMEWORK ARCHITECTURE
	Domain Bean
	Presentation Bean
	XML for Programming and Information Exchange

	VIRTUAL BIOLOGY LABORATORIES
	Spectrophotometry Laboratory
	Cell Mitosis and Meiosis
	Differential Centrifugation Lab
	Virtual Microscope

	EVALUATION AND OBSERVATIONS
	Field Study
	Results
	Usability

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

