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ABSTRACT 
The virtual laboratories enhance learning experiences by 
providing the student with a supplement to the physical lab.  The 
laboratories allow students to perform exercises as in an actual lab 
and to gather data for preparing lab reports. To increase student�s 
engagement and interest, they are allowed to make errors and take 
wrong directions, and then backtrack to correctly perform the 
exercise. The architecture of the system is modular and can be 
easily extended to implement different laboratories and it supports 
augmentation by animation effects and realistic rendering of 
virtual objects. Most of the system components, including all the 
virtual labs, are implemented as Java Beans. The software 
framework is lightweight and can be downloaded as an applet in a 
browser. Extensible Markup Language (XML) is used for 
application and data description; students can save their lab 
reports in XML and review them later. To demonstrate the 
potential of the architecture, we have developed several virtual 
laboratories for cell division, centrifugation, spectrophotometry, 
and virtual microscopy. We report experience in developing and 
deploying such virtual laboratories as well as their actual usage in 
the Department of Cell Biology and Neuroscience at Rutgers 
University. 

Categories and Subject Descriptors 
D.2.m [Software Engineering]: Miscellaneous � rapid 
prototyping, reusable software. K.3.1 [Computers and 
Education]: Computer Uses in Education � computer-assisted 
instruction, distance learning. 

General Terms 
Design, Performance, Experimentation, Human Factors. 

Keywords 
Software design, distributed learning, virtual laboratories. 

1. INTRODUCTION 
Innovations in multimedia and computer-related technology offer 

exciting opportunities to improve the quality of teaching and 
learning science for students. Colleges and universities across the 
world are faced with a generation of students flocking to learn 
more about the life sciences. Consequently, instructors are 
confronted with more students and larger classes, particularly at 
introductory levels. Here at Rutgers, the General Biology course 
services a large group of students (in excess of 2000) with varied 
backgrounds and abilities. The faculty challenge is to motivate 
and excite these students so that each performs to his/her fullest 
potential. We believe that this seemingly difficult objective can be 
best achieved by incorporating computer-related, web-based, and 
multimedia technology into the classroom and laboratory 
environment. 

The fundamental guideline under-guiding the development and 
organization of virtual laboratories is that students learn science 
best by experimenting and gaining hands-on experience�raising 
questions, solving problems and finding answers to questions 
through designing and carrying out experiments. Our long-range 
objective is to develop virtual learning experiences for students by 
allowing them to access, visualize, and manipulate 
instrumentation and multimedia data utilizing the newly available 
high-speed networks. We see the development of virtual 
laboratory exercises as key to raising student interest and 
improving learning. When done effectively, this increases student 
access to knowledge and enhances performance as well as the 
quality of educational outcome. 

A virtual laboratory is a virtual reality environment that simulates 
the real world for the purpose of discovery learning. A flight 
simulator is an example of a virtual laboratory. It provides a pilot 
with useful virtual experience based upon flying a specific type of 
aircraft. Virtual labs can be used in a similar fashion to augment 
real laboratory experience in science and technology. However, 
programming virtual laboratories is a very tedious and costly task. 
A central challenge is to develop tools allowing for rapid and easy 
creation of virtual laboratories. This paper presents a software 
architecture for rapid development of virtual laboratories.  
The paper is organized as follows. Section 2 reviews background 
and related work. Next, Section 3 presents the software 
architecture of the framework. Section 4 gives examples of several 
virtual biology laboratories implemented using the framework. 
Section 5 presents some observations and results obtained from 
students who actually used the virtual labs.  Finally, Section 6 
concludes the paper. 
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2. BACKGROUND AND RELATED WORK 
The need for multimedia technology in biology teaching is being 
recognized worldwide. There are several interactive virtual labs 
currently available on the web. California State University�s 
Center for Distributed Learning [2] now has eight biology labs in 
the beta test phase on topics ranging from evolution to molecular 
biology. The labs are commercially marketed through the Addison 
Wesley Longman publishing house. A series of interactive Java 
tutorials are offered at [4] that explore various aspects of virtual 
Scanning Electron Microscopy (vSEM). The student can discover 
how specimens appear when magnified in the virtual SEM. Each 
time a new specimen is loaded into the browser, the focus, 
brightness, and contrast controls are randomly reset to simulate 
the situation in a real microscope. The University of Melbourne 
has established a Science Media Teaching Unit [15] to promote 
effective and efficient use of computer-based multimedia in 
teaching biology. Physics 2000 [8] comprises interactive Java 
applets through which students can explore elementary physical 
phenomena. Edmark [6] markets interactive virtual labs that are 
designed to make it easy for teachers to integrate the programs 
into their curriculum. Unlike our labs, it appears that these are not 
platform independent Java applets.  Hence a student would have 
to download a version specific to the platform she is using. 
Researchers at the TeleLearning Network of Centres of 
Excellence [5] are developing virtual labs that enable students to 
carry out a range of experiments by computer, thus enhancing 
their classroom learning. Here, students use a mouse to select 
objects in the lab, move them around, and adjust parameters such 
as the intensity of an electrical current or the frequency of a laser. 
As the instruments in the actual lab can be rather fragile and 
expensive, the virtual labs are a reasonable alternative solution for 
enabling the students to �play� with the instruments. Just like 
their real equivalents, the virtual instruments respond to students� 
manipulations by providing correct data if the experiments have 
been carried out properly. These labs are implemented as Java 
applets but there is no account of a generic underlying software 
architecture that simplifies the lab development. The researchers 
are also pursuing the development of remote labs, where robots 
receive commands from students and reproduce the virtual 
experiments in a fully equipped real lab. Perhaps the most 
advanced biology lab exercises are offered through the Howard 
Hughes Medical Institute. They developed Bio-Interactive [9]�a 
collection of learning modules that let students interactively 
explore topics in cardiology, neurophysiology and immune 
system. These virtual exercises augment neuroscience laboratories 
and have been received with enthusiasm by faculty and students. 
In these exercises, user-action is restricted mostly to �clicking� on 
the various instruments.  For a better realistic feel, the users 
should be able to perform the exact operations as they would on 
the real instrument. 
We notice in most of the aforementioned work the widespread use 
of slider widgets.  In the actual instrument, this need not be the 
case.  For instance, we might need to �rotate� a dial to set a 
particular reading rather than �slide� a marker across a slider.  We 
attempt to overcome these shortcomings and provide the user with 
a more realistic experience through the virtual lab. Also, although 
the above reviewed exercises are �interactive,� they are very 
linear. Our goal is to develop exercises that give student choices 
and options such that two students may not have the �exact� same 
lab experience, but finish having learned the same concepts. 

3. FRAMEWORK ARCHITECTURE 
The architecture is based on the Java Beans framework [14] and 
extends our prior work on using Java Beans in collaborative 
applications [12]. The class of beans that follow this architecture 
is called Manifold [11]. 
The main characteristic of the Manifold beans is the multi-tier 
architecture [11]. The common three-tier architecture comprises 
the vertical tiers of presentation, application or domain logic, and 
storage. The Manifold�s presentation tier is virtually free of the 
application logic and deals with visualizing the domain data and 
accepting the user inputs. The domain tier deals with the 
semantics of tasks and rules as well as abstract data 
representation. 
The domain tier contains all the model objects and the 
presentation tier contains all the view/controller objects of the 
MVC design pattern1 [1]. The main benefit of this decomposition 
is the resulting separation of concerns. The design internally 
consists of three beans, although the outside world sees a single 
bean. 

3.1 Domain Bean 
The conceptual model of a typical document editor is shown in 
Figure 1. The key concept is a Glyph, which represents all objects 
that have a geometry and may be drawn. The name �glyph� is 
borrowed from typography to denote simple, lightweight objects 
with an instance-specific appearance [7]. A Glyph is essentially a 
container for a list of <property, value> pairs, with properties 
such as dimensions, color, texture, etc., but also various 
constraints on glyph manipulation. A Glyph may be an aggregate 
containing multiple leaf or aggregate glyphs thus embodying the 
Composite pattern [7]. A corresponding (simplified) class 
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Figure 1. A simple conceptual model of a generalized editor. 

                                                                 
1 The Model-View-Controller (MVC) pattern may be used in 

implementing multi-tier architectures, but should not be 
confused with such architectures. MVC applies at the level of 
individual objects, whereas multi-tier applies at the level of 
large architectural modules. 



diagram is shown in Figure 2. 
All Glyphs in a document form the scene graph, itself a Glyph, 
which has a tree data structure. The scene graph is populated with 
different vertices (Glyphs) in specific applications that extend the 
Manifold framework. Glyphs are divided into two groups. Leaf 
Glyphs (terminal nodes) represent individual graphic elements, 
such as images, geometric figures, text or formulas in spreadsheet 
cells. PolyGlyphs are containers for collections of Glyphs. They 
correspond to branch nodes and can have children. Example 
PolyGlyphs are group figures, paragraphs, maps or calendars.  
PolyGlyphs have all the functionality of Glyphs. They also have 
the additional property that they can contain Glyphs or other 
PolyGlyphs.  For example, in the virtual spectrophotometer lab 
(described in Section 4 below), an example of PolyGlyph is a 
control dial, which contains an ellipse figure (knob) and a line 
figure (reference mark on the dial). Another example, a map 
PolyGlyph positions an icon Glyph according to its (x, y) 
properties, whereas a card pack PolyGlyph positions all its Glyphs 
stacked one on another, disregarding the Glyph�s coordinate 
properties. 
Glyphs are sources of the following types of events that are fired 
in response to the operations on the scene graph tree structure: 
AppearanceEvent for Glyph add/remove operations, 
PropertyChangeEvent for changing the Glyph properties, and 
TransformEvent for applying the affine transforms on the Glyphs. 
The interested parties register as event listeners for some or all 
types of the events via the Java Beans delegation event model. 
DomainControl is the system controller for the domain bean that 
invokes the system operations. This is the only portal into the 
domain bean. The only way to cause a state change in the bean is 
to invoke the processCommand() method. Even the local 
presentation (view) objects interact with the domain objects 
through this portal only. 
The CommandEvent class implements the Command pattern [7] 
and has the responsibility of keeping track of the argument values 
to invoke operations on Glyph and Document objects so the 
operations can be undone/redone. We name this class 
CommandEvent instead of Command to emphasize the Java event 
distribution mechanism. Commands create/delete Glyphs or 

correspond to Glyph methods. In addition, we have commands to 
open or save a document and document-view-related commands. 
Behaviors are objects that observe the Glyphs as event listeners 
and act on Glyphs by invoking the processCommand() method 
on the DomainControl. Behaviors maintain a list of named target 
Glyphs that are acted upon. Example behaviors are collision 
detection in three-dimensional worlds, spreadsheet cells with 
formulas, or coordinated manipulation of several Glyphs, which is 
not the same as a group movement where all objects are 
manipulated in the same manner. Unlike the Java 3D behaviors 
[13], which are oriented towards avoiding the unnecessary 
rendering of invisible parts of the world, our behaviors are 
focused on end-user programmability. The user �wires� the 
behavior to the event sources and the targets as will be seen in 
Section 3.3 below. 

3.2 Presentation Bean 
The Model-View-Controller (MVC) design pattern divides an 
interactive application into three components [1]. The model 
contains the core functionality and data, views display information 
to the user, and controllers handle user input. 
A Glyph may have a corresponding GlyphView, which is a view 
part of the MVC pattern associated with the model Glyph. The 
reverse may not be true, depending on whether or not the 
containing Document notifies its AppearanceListeners 
(DocumentView) about the creation of a new Glyph. The 
GlyphView subscribes to the model and listens to the important 
state changes. Thus, the derivatives of this class may implement 
some or all of the listener interfaces (AppearanceListener, 
PropertyChangeListener, and/or TransformListener) as needed. 
The key user activity in graphical user interfaces is direct 
manipulation of screen objects. The classes that support direct 
manipulation are Tool and Manipulator [16], Figure 3. Tool 
encapsulates information about the current direct manipulation 
mode, e.g., rotation, resizing, etc. Tools are essentially state 
objects for DocumentViews (see the State pattern in [7]). 
Manipulator encapsulates a Tool�s manipulation behavior and is 
responsible for providing visual feedback during a manipulation 
sequence (e.g., redrawing a rubber-band using the XOR 
technique). The Tool�Manipulator breakup separates the state 
information from manipulation behavior. Manipulation involves a 
sequence of grasp-wield-effect operations, each of which results 
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Figure 2. Domain class diagram of a generalized editor. 
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in a message to the manipulated object, which is encapsulated in a 
CommandEvent. 
Manipulator is the Controller part of the Model-View-Controller 
design pattern in that it converts the user interaction into the 
CommandEvents for the model. PresentationControl gathers all 
user actions originating in the presentation bean as 
CommandEvents and delivers them to its CommandListener(s), 
normally a DomainControl object. PresentationControl is the 
system controller that processes the presentation-related 
CommandEvents, such as changing the viewpoint, that originate 
at a remote process. 
Manipulator separation helps keeping the application lightweight 
(especially presentation layer), since the Manipulators are created 
only for direct manipulation. 

3.3 XML for Programming and Information 
Exchange 
In order to provide for end-user customization of the application, 
we need to specify a data and application description language. 
The language is used to describe the data being operated upon, 
i.e., the initial scene graph of the application, as well as the 
relationships between the application objects. The language 
should be rich, yet easy to use and fast to parse. Since the scene 
graph is a hierarchical structure, the language should 
accommodate hierarchical data. The World Wide Web is at 
present the predominant means of exchanging information and 
delivering documents between networked domains. XML 
(eXtensible Markup Language) is now being promoted as a new 
Web markup language for information representation and 
exchange [18]. It satisfies all of the above listed requirements and 
also has been used for application description [10]. Thus, our 
choice for data and application description language is XML. 
An end user or an XML programmer creates Manifold XML files 
based on the set of available Glyphs and their attributes. The 
correspondence between the elements and Glyphs is not one-to-
one. Not all XML elements are Glyphs. For example, Glyph 
properties may be represented as sub-elements of the Glyph 
element. Here is an example Glyph EllipseFigure from a 
two-dimensional graphics editor, called Flatscape, that is based on 
the Manifold framework: 
<GLYPH type="flatscape.domain.EllipseFigure">

<PROPERTY name="glyph.height"
type="java.lang.Double" value="42.0" />

<PROPERTY name="glyph.width"
type="java.lang.Double" value="42.0" />

<PROPERTY name="fill.color"
type="java.awt.Color"
value="java.awt.Color[r=150,g=150,b=150]"/>

<TRANSFORMATION
type="flatscape.domain.Transform2D"
value="0.0 0.0 1.0 1.0 0.0" />

</GLYPH> 

The sub-elements could even have their own sub-elements if, e.g., 
the transformation is represented as independent scale, rotation 
and translation parameters, each tagged individually. 
In addition to Glyphs, the user can specify the Behaviors. Each 
behavior may listen to Glyphs for events (AppearanceEvent, 
PropertyChangeEvent, and TransformEvent) and may have 
specified targets onto which it acts (other Behaviors or Glyphs). 
Here is an example: 

<BEHAVIOR id="steering"
type="bicycles.domain.Steering">

<LISTENER
type="manifold.domain.TransformListener"
source="handlebars" />

<TARGET name="wheel" ref="frontWheel" />
</BEHAVIOR> 

The Behavior object labeled �steering� listens to the Glyph 
labeled �handlebars� for TransformEvents and acts on the target 
labeled �frontWheel.� As the user manipulates the handlebars, the 
behavior receives the transform events, computes the rotation 
angle for the front wheel of the bicycle and sends a 
TransformCommand to the wheel. The behavior classes, such as 
bicycles.domain.Steering in the above example, are the pre-
existing Java classes or must be programmed by the end-user in 
Java. 
A key benefit of implementing presentation and domain as distinct 
beans rather than the whole package as a single bean is in being 
able to mix and match different combinations. We can have a set 
of more or less complex beans for each. Different domain beans 
can implement complex behaviors and the presentation beans can 
implement visualizations with varying realism. 

4. VIRTUAL BIOLOGY LABORATORIES 
The virtual lab contains a set of objects such as microscopes, 
centrifuges, whole organisms, or individual cells each with 
specific pre-programmed behaviors. The student interacts with the 
objects in order to attain a set of given goals, i.e., study of cell 
features, separation of cellular components, measurement of 
enzyme activities, quantification of cell division, etc. The use of 
creative renderings of objects and their behaviors allows the 
student to freely experiment in the virtual world. Module content 
of virtual labs, complexity of problem solving, and sophistication 
of technical skills are vertically scaled so that each student can 
move through the module depending upon level of preparation 
(from General Biology student to advanced students in 
Fundamentals and Advanced Cell Biology). 

The Manifold framework significantly simplifies the development 
of virtual biology laboratories. The developer�s main task is in 
writing the XML document and programming the Behaviors 
associated with the lab. Currently we have implemented five 
virtual laboratories and the amount of lab-specific Java code 
relative to the Manifold code ranges from 5 % to about 20 % in 
very complex labs. In addition, the new code is highly 
standardized, relieving the developer from the issues with display, 
document parsing, etc., and only requiring the developer to 
program the particular Behavior classes. 

We also make use of the CommandHistory facility to provide the 
student with a Back button by which he/she can backtrack and 
perform the previous actions again.  Each lab stage is marked and 
all the events that occur between two stages are logged. When the 
student clicks on the Back button, all the events that occurred 
after the last stage are undone, of course, if these events are 
reversible. 

Students can use a powerful graphics editor available in the 
framework to prepare lab reports after the exercises. Any stage of 
the lab can be captured and copied in the report document at the 
level of structured graphics, rather than screen bitmaps. The 
documents are stored in XML and can be reviewed and edited 
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The remaining objects are specified in a similar manner. The 
developer must also specify the behaviors, as in this example: 
<BEHAVIOR id="measuring"

type="biology.spectro.domain.SpectroMeasure">
<TARGET name="pilotLamp" ref="pilotLamp" />
<TARGET name="needle" ref="needle" />

</BEHAVIOR>

<BEHAVIOR id="turning"
type="biology.spectro.domain.DialWatcher">

<LISTENER
type="manifold.domain.TransformListener"
source="lightDial" />

<LISTENER
type="manifold.domain.TransformListener"
source="zeroDial" />

<TARGET name="spectroMeasure" ref="measuring" />
</BEHAVIOR>

<BEHAVIOR id="opening"
type="biology.spectro.domain.LidWatcher">

<LISTENER
type="manifold.domain.PropertyValueChangeListener"

source="sampleHolder" />
<TARGET name="spectroMeasure" ref="measuring" />

</BEHAVIOR> 



The Behavior �measuring� performs the calculations based on the 
solution�s density and the light wavelength and sends a 
TransfromCommand to the instrument (AbsorbanceMeter) needle 
to display the wavelength. It also turns on or off the pilot lamp 
when the spectrophotometer is turned on or off. The Behavior 
�turning� causes the Behavior �measuring� to redo the 
measurement when a dial is rotated. Similarly, the Behavior 
�opening� causes the Behavior �measuring� to redo the 
measurement when the sample holder�s lid is opened or closed. 

4.2 Cell Mitosis and Meiosis 
In the actual lab, students are given plastic beads and a 
cylindrically shaped magnet called a �centromere.�  When these 
parts are assembled, they form the model for a chromosome.  The 
students are asked to build four of these, one red pair, and one 
yellow pair and explore different phases of cell mitosis and 
meiosis.  In each of these phases, the chromosomes behave in a 
certain way in the cell while the cell first divides into two and 
then into four cells. The students are asked to manipulate the 
chromosomes to show their behavior during each of these stages. 
Screen captures in Figure 5 show selected phases of the meiosis 
virtual lab. Any time the cell components are arranged in a 

particular configuration, the behaviors are set in motion and 
perform animation of the corresponding cell process. 

4.3 Differential Centrifugation Lab 
Differential centrifugation is a mode of centrifugation in which 
the sample is separated into two fractions: (1) a pellet consisting 
of sedimented material and (2) a supernatant. The experiment is 
similar to the one originally described in 1955 by Christian de 
Duve for the discovery of the organelle lysosome (awarded a 
Nobel prize in 1974). It is based on the differences in 
sedimentation rate of particles of different size and density. The 
tissue homogenate is centrifugally divided into a number of 
fractions by stepwise increasing the applied centrifugal field. The 
centrifugal field is chosen so that a particular type of organelle 
will be sedimented as a pellet, and the supernatant will be 
centrifuged at a higher centrifugal field for further fractionation. 
Our virtual lab simulates the operation through the following 
major stages (Figure 6): 

1. Sample Preparation Stage: the students prepare the rat liver 
for centrifugation by chopping and homogenizing. 

2. Preference Setting Stage: the students are allowed to choose 
the settings for the centrifugation process; depending on the 

(a)                 (b)               (c)  

(d)     (e)  
Figure 5. Selected screen snapshots for the cell meiosis virtual laboratory. The students start with the parts of a cell (a) and after 

assembling the cell explore different phases of meiosis. 



(a)     (b)     (c)  

(d)     (e)   
Figure 6. Selected screen snapshots for the differential centrifugation virtual laboratory. The goal of the lab is to find the 

percentages of the organelles in the rat liver tissue. 

speed, time and temperature settings, the process of 
centrifugation is performed. 

Results and Analysis Stage: the results of the centrifugation 
process are presented to the students in the form of graphs that 
represent the percentage of each of the organelles. 

4.4 Virtual Microscope 
This laboratory was developed in collaboration with the 
University of Medicine and Dentistry of New Jersey. The lab 
allows the student to load an image and view it at different 
magnifications (Figure 7). The left panel shows an original image 
of blood cells, in this case afflicted by leukemia.  Automatic 
techniques for image segmentation are called up by pen-based 
gesturing and by speaking voice commands.  Image analysis 
methods�developed in the Robust Image Understanding 
Laboratory at the CAIP Center [3]�can extract common 
components on the basis of color and texture  (the top small 
panel), and by edge shape (the lower small panel). We are 
currently working on connecting the lab with the physical 
microscope for real-time image acquisition. The controls will be 
provided to manipulate the microscope remotely. 

5. EVALUATION AND OBSERVATIONS 
5.1 Field Study 
The core biology course in the Department of Cell Biology and 
Neuroscience at Rutgers University has been a testbed for the cell 
mitosis lab over the last semester and will continue to be so, 
additionally using the new labs (cell meiosis, differential 
centrifugation, spectrophotometer, and a virtual microscope), 
which have recently become available. 

The short-term goal of virtual labs is to serve as a preparation and 
supplement for actual labs. The students are thereby familiarized 
with procedures before they actually go into the lab and perform 
experiments. This �rehearsal� by simulation of a complex 
experiment is a cost-effective preparation for the use of limited 
and expensive lab facilities. The laboratories are continuously 
available on our web site so the students can access the labs from 
anywhere. Our labs also enable self-paced learning for each 
student. We do not keep track of how many students access the 
laboratories or the amount of time they use it. As these labs are 
available on the web anytime, students might open the labs and 

 

Figure 7. Screen snapshot of the virtual microscope lab. The 
original image taken from a microscope is shown on the left. 

The user selects a region of interest by a pen-based gesture and 
the system automatically segments the image and extracts 

various other features [3]. 



simultaneously refer to their textbooks in order to understand the 
concepts better.  Hence the time for which they use the lab does 
not really provide any valuable information. 

5.2 Results 
We present a summary of preliminary results from the ongoing 
evaluation of the Virtual Biology Labs by the Rutgers Department 
of Education at Rutgers University. Following are some trends 
that we are observing in student reactions to the virtual labs and 
how those reactions influence the lab design. 
In general, students had a positive attitude towards the lab on 
mitosis. Of the 18 students who were surveyed, 15 commented on 
the usefulness of the simulations in explaining the different stages 
of mitosis via the dynamic representations and simulations that 
were embedded in this lab. Specifically, students liked the fact 
that they could replay and watch the process as many times as 
they needed. Also, the exercises and feedback provided were 
considered a positive feature. In reflecting on the usefulness of the 
spectrophotometer simulation, the students enjoyed the individual 
and repetitive practice they could engage in.  They envisioned that 
this experience would help them with their lab practical exams as 
well as fine-tune their skills in operating the spectrophotometer in 
the actual lab. Overall, the students found the virtual labs to be an 
interface where they could learn and practice in spite of making 
errors. They also acknowledged that the simulations were realistic 

and helped in demonstrating certain processes that were not easily 
represented in the actual lab. 
Although the feedback was generally positive, there were some 
features that students had trouble with. Several students expressed 
the concern that the instructions accompanying certain simulation 
tasks were unclear. In order to test the usefulness of the Back 
button, we have implemented it only for some labs.  In cases 
where the Back button was not implemented, students found that 
in the event they made an error they were required to start the 
process all over again, which was frustrating. They felt that if the 
exercise were designed to allow one-step backtracking, it would 
be more accessible.  This validates our assumption that the Back 
button is a feature that could help enhance the learning experience 
for the student. 

5.3 Usability 
Whenever we design the user interface for a virtual lab, we make 
certain assumptions about the user. What could be very obvious to 
the designer need not be intuitive at all to the end-user. Hence we 
performed a usability study for the virtual labs. Table 1 captures 
the results of a study performed for the virtual spectrophotometer 
lab.  We have also given the possible explanations for students 
feeling the way they did when they used the lab.  Many of the 
findings serve as development hints as to how to improve the 
design. The findings about the assumptions 11�14 in particular 

Assumption 

1. Students will know which dia
wave dial. 
2. Students will know where th
located. 

3. Students will know which is 
transparent solution. 

4. Students will know that they
the wavelength before calibrat
5. Students will know how to o
top view. 
6. Students will know how to m
view disappear. 

7. Students will use the top vie

8. Students will know that they
switched on the spectrophotom
9. Students will know that if the
off, they cannot use the 
spectrophotometer. 

10. Students will differentiate b
transmittance and absorbance

11. Students will recognize the
reading on the right scale. 
12. Students will remember the
sample holder not being close
13. Students will notice the Ba
getting automatically activated
14. Students will click on the B
when they are instructed to. 
Table 1. Interface study results for the virtual spectrophotometry lab. 
Valid Invalid Comments 

l is the 80% 20% As there are 3 dials, there is a possibility of confusion; again, crying out for 
tool tips. 

e switch is 67% 33% Probably because the switch was located in a different place from the actual 
instrument where it is combined with the zero control dial. 

the 100
% 0 Probably because all the other test-tubes had rather distinct colors. 

 have to set 
ion. 

100
% 0 This is a little surprising because some students did not know where the 

wave dial was! Perhaps their answer is not true? 

btain the 73% 13% Two students claimed that they do not remember; perhaps they did not use 
it at all? 

ake the top 60% 33% Again one did not try it; here is it safe to assume that more students actually 
did not try to make it disappear because it did not cause hindrance? 

w at all 93% 7% Students did try to set the wavelength. 

 have 
eter. 

100
% 0 Students do notice the pilot lamp being turned on. 

y switch 100
% 0 

Most students did try to operate the spectrophotometer without switching it 
on; as they saw that nothing was happening, they read the instructions to 
see that it has to be turned on first. 

etween the 
 scales. 73% 27% 

As this questionnaire was provided after the students finished the 
experiment, students might not remember which scale they used-top or 
bottom. 

 right 86% 14% As one scale is a logarithmic scale, it is the only one with an �infinity� 
reading; so this should be intuitive. 

 effect of 
d. 57% 43% Though they know that the reading is   wrong, they are not sure how 

different it will be (higher or lower reading). 
ck button 
. 60% 27% Two students never used the Back button because they calibrated exactly 

the first time. 
ack button 80% 7% Same as above. 
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Table 4 presents
few informal obs
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This paper presen
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effectiveness, re
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and learning rat
labs will satisfy 
software. 
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I found the dials 

I found the Back

I found it easy to
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1 In the phys
2 It is nice th
3 The virtual 
4 The virtual 
5 The virtual 
6 We used b
7 The simula
8 The physic

1 When I did
2 The dialog 
3 The two win
4 There shou
5 The instruc
Table 2. User response on ease of use of features of the lab. (1=Strongly agree � 7=Strongly disagree) 

erty 1 2 3 4 5 6 7 Comments 

easy to rotate 1 2 3 4 4 0 1 Need a tool tip that tells the students where to click on the dial and rotate it. 

 button useful 2 1 3 2 1 2 4 Some students never used the Back button; also, students wanted to backtrack 
each stage rather than just the single stage back. 

 read from the 6 3 2 1 2 0 1 Perhaps if we compared the student�s readings with the actual readings given 
e
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Table 3. Selected user comments on the differences between virtual lab mitosis and the actual lab. 
cal lab, concepts like mitosis seem abstract. But in the virtual lab, the idea of something like mitosis is more concrete. 
t students are allowed to see what they see in lab, at home. 
ab is concise and to the point. 
ab corrects you when you go wrong; so you can learn from mistakes. 
ab has more graphics that help you understand mitosis better, while the actual lab only uses the microscope. 
ads in the real lab; in the virtual lab, the click and drag method with each bead was very annoying. 
ion actually helps us understand what we learned in the lab better. 
l lab had more examples and we had to construct different mitosis scenarios, including both haploid and diploid cells. 
d for an expe
 discusses th
ts perform th
b should pro
re in our labs
these virtual 
tice only in 
tunity to the
ith a Back b

he student. T
re significan
 students.  As
, we also ask
y faced whil
ight as to ho
some of the u
rvations mad

SION 
ts software ar
es. The ben
found in 

uced need f
d control, ad

s, web ready
 growing nee

resented her
 laboratorie

ot put the ch
ox pops up to
dows concep
d be a forwar
ions sometim
Table 4. Selected user comments on the problems they had with the labs. 
romosome bead in the right place, there should be a Help button to tell me what went wrong. 
o many times during the simulation.  If you can somehow get rid of that, it would be great. 

t sometimes creates confusion. 
d and Back button to skip around rather than do everything allover again as was provided in the spectro lab. 
es were not clear. 
rt system based automatic help and 
e ease of use of each feature of the 
e physical lab as well as the virtual 
vide features that the real lab does 
 is their �non-linear� nature.  When 
labs, they are likely to make errors 
the subsequent steps. Thus, in order 
 user to correct the mistakes, we 
utton.  As expected, this feature is 
able 3 tabulates the features of the 
tly different from the real lab as 
 the design of virtual labs is part of 
ed the students for feedback on the 
e using them.  This will provide us 
w to improve our future designs. 
ser comments.  Table 5 presents a 

e by the interface designer. 

chitecture for rapid development of 
efits of virtual labs over actual 
their increased portability, cost 
or teacher intervention, increased 
aptability to various learning styles 
 software and self-testing. Virtual 
d for engaging interactive learning 

e can be used in developing tools to 
s that allow sharing unique or 

expensive instruments. An important missing component is safety 
and security for safe operation of an instrument coupled with user 
authentication, privacy, and integrity of data communication. 
Both of these are part of our continuing work. 
Our experimental findings call for the development of an expert 
system based automatic help and guidance in running the 
laboratories and this is part of our continuing research. 
The virtual labs are presently single-user labs.  As our framework 
can support collaborative work, we are working on designing 
collaborative laboratories or collaboratories.  Scientific 
collaboratories enable researchers to work together across 
geographic and organizational boundaries to solve complex, 
interdisciplinary problems and to have access to remote resources.  
In our virtual labs, students could collaboratively perform 
experiments and share and compare their results. 
Further information and source code are available at: 

http://www.caip.rutgers.edu/disciple/ 
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