Embarrassingly Parallel Computations

A computation that can be divided into a number of completely independent parts, each of which can be executed by a separate processor.

Figure 3.1 Disconnected computational graph (embarrassingly parallel problem).
Figure 3.2 Practical embarrassingly parallel computational graph with dynamic process creation and the master-slave approach.
Embarrassingly Parallel Examples

Geometrical Transformations of Images

Two-dimensional image stored as a pixmap, in which each pixel (picture element) is represented a binary number in a two-dimensional array. Grayscale images require typically 8 bits to represent 256 different monochrome intensities. Color requires more specification.

Examples of low level embarrassingly parallel image operations:

(a) Shifting
The coordinates of a two-dimensional object shifted by Δx in the x-dimension and Δy in the y-dimension are given by

$$x' = x + \Delta x$$
$$y' = y + \Delta y$$

where x and y are the original and x' and y' are the new coordinates.

(b) Scaling
The coordinates of an object scaled by a factor S_x in the x-direction and S_y in the y-direction are given by

$$x' = xS_x$$
$$y' = yS_y$$

The object is enlarged in size when S_x and S_y are greater than 1 and reduced in size when S_x and S_y are between 0 and 1. Note that the magnification or reduction do not need to be the same in both x- and y-directions.

(c) Rotation
The coordinates of an object rotated through an angle θ about the origin of the coordinate system are given by

$$x' = x \cos \theta + y \sin \theta$$
$$y' = -x \sin \theta + y \cos \theta$$
Main parallel programming concern is division of bitmap/pixmap into groups of pixels for each processor because there are usually many more pixels than processes/processors.

Two general methods of grouping: by square/rectangular regions and by columns/rows.

With a 640×480 image and 48 processes:

Figure 3.3 Partitioning into regions for individual processes.
Pseudocode to Perform Image Shift

Master

for (i = 0, row = 0; i < 48; i++, row = row + 10) /* for each process*/
 send(row, P_i); /* send row no.*/

for (i = 0; i < 480; i++) /* initialize temp */
 for (j = 0; j < 640; j++)
 temp_map[i][j] = 0;

for (i = 0; i < (640 * 480); i++) { /* for each pixel */
 recv(oldrow,oldcol,newrow,newcol, P_ANY); /* accept new coords */
 if !((newrow < 0)||(newrow >= 480)||(newcol < 0)||(newcol >= 640))
 temp_map[newrow][newcol]=map[oldrow][oldcol];
}

for (i = 0; i < 480; i++) /* update bitmap */
 for (j = 0; j < 640; j++)
 map[i][j] = temp_map[i][j];

Slave

recv(row, P_master); /* receive row no. */

for (oldrow = row; oldrow < (row + 10); oldrow++)
 for (oldcol = 0; oldcol < 640; oldcol++) { /* transform coords */
 newrow = oldrow + delta_x; /* shift in x direction */
 newcol = oldcol + delta_y; /* shift in y direction */
 send(oldrow,oldcol,newrow,newcol, P_master); /* coords to master */
 }
Analysis

Suppose each pixel requires one computational step and there are \(n \times n \) pixels.

Sequential

\[t_s = n^2 \]

and a sequential time complexity of \(\Omega(n^2) \).

Parallel

Communication

\[t_{\text{comm}} = t_{\text{startup}} + mt_{\text{data}} \]

\[t_{\text{comm}} = p(t_{\text{startup}} + 2t_{\text{data}}) + 4n^2(t_{\text{startup}} + t_{\text{data}}) = \Omega(p + n^2) \]

Computation

\[t_{\text{comp}} = 2\left(\frac{n^2}{p}\right) = \Omega(n^2/p) \]

Overall Execution Time

\[t_p = t_{\text{comp}} + t_{\text{comm}} \]

For constant \(p \), this is \(\Omega(n^2) \).

However, the constant hidden in the communication part far exceeds those constants in the computation in most practical situations.
Mandelbrot Set

Set of points in a complex plane that are quasi-stable (will increase and decrease, but not exceed some limit) when computed by iterating the function

\[z_{k+1} = z_k^2 + c \]

where \(z_{k+1} \) is the \((k + 1)\)th iteration of the complex number \(z = a + bi \) and \(c \) is a complex number giving the position of the point in the complex plane. The initial value for \(z \) is zero.

The iterations are continued until magnitude of \(z \) is greater than 2 or the number of iterations reaches some arbitrary limit.

Magnitude of \(z \) is the length of the vector given by

\[z_{\text{length}} = \sqrt{a^2 + b^2} \]

Computing the complex function, \(z_{k+1} = z_k^2 + c \), is simplified by recognizing that

\[z^2 = a^2 + 2abi + br^2 = a^2 - b^2 + 2abi \]

or a real part that is \(a^2 - b^2 \) and an imaginary part that is \(2ab \).

The next iteration values can be produced by computing:

\[z_{\text{real}} = z_{\text{real}}^2 - z_{\text{imag}}^2 + c_{\text{real}} \]
\[z_{\text{imag}} = 2z_{\text{real}}z_{\text{imag}} + c_{\text{imag}} \]
Sequential Code

Structure for real and imaginary parts of z:

```c
structure complex {
    float real;
    float imag;
};
```

Routine for computing value of one point and returning number of iterations

```c
int cal_pixel(complex c) {
    int count, max;
    complex z;
    float temp, lengthsq;
    max = 256;
    z.real = 0;
    z.imag = 0;
    count = 0; /* number of iterations */
    do {
        temp = z.real * z.real - z.imag * z.imag + c.real;
        z.imag = 2 * z.real * z.imag + c.imag;
        z.real = temp;
        lengthsq = z.real * z.real + z.imag * z.imag;
        count++;
    } while ((lengthsq < 4.0) && (count < max));
    return count;
}
```
Scaling Coordinate System

Suppose the display height is $\text{disp}_\text{height}$, the display width is disp_width, and the point in this display area is (x, y).

For computational efficiency, let

$$
\text{scale}_\text{real} = (\text{real}_\text{max} - \text{real}_\text{min})/\text{disp}_\text{width};
\text{scale}_\text{imag} = (\text{imag}_\text{max} - \text{imag}_\text{min})/\text{disp}_\text{height};
$$

Including scaling, the code could be of the form

```c
for (x = 0; x < \text{disp}_\text{width}; x++) /* screen coordinates x and y */
   for (y = 0; y < \text{disp}_\text{height}; y++) {
      \text{c}.real = \text{real}_\text{min} + ((\text{float}) x \times \text{scale}_\text{real});
      \text{c}.imag = \text{imag}_\text{min} + ((\text{float}) y \times \text{scale}_\text{imag});
      \text{color} = \text{cal}_\text{pixel}(\text{c});
      \text{display}(x, y, \text{color});
   }
```

where `display()` is a routine suitably written to display the pixel (x, y) at the computed color.
Figure 3.4 Mandelbrot set.
Parallelizing Mandelbrot Set Computation

Static Task Assignment

Master

for (i = 0, row = 0; i < 48; i++, row = row + 10) /* for each process*/
send(&row, P_i); /* send row no.*/
for (i = 0; i < (480 * 640); i++) /* from processes, any order */
recv(&c, &color, P_ANY); /* receive coordinates/colors */
display(c, color); /* display pixel on screen */
}

Slave (process i)

recv(&row, P_master); /* receive row no. */
for (x = 0; x < disp_width; x++) /* screen coordinates x and y */
for (y = row; y < (row + 10); y++) {
 c.real = min_real + ((float) x * scale_real);
 c.imag = min_imag + ((float) y * scale_imag);
 color = cal_pixel(c);
 send(&c, &color, P_master); /* send coords, color to master */
}
Dynamic Task Assignment
Work Pool/Processor Farms

Figure 3.5 Work pool approach.
Coding for Work Pool Approach

Master

count = 0; /* counter for termination*/
row = 0; /* row being sent */
for (k = 0; k < procno; k++) { /* assuming procno<disp_height */
 send(&row, P_k, data_tag); /* send initial row to process */
 count++; /* count rows sent */
 row++; /* next row */
}

do {
 recv (&slave, &r, color, P_ANY, result_tag);
 count--; /* reduce count as rows received */
 if (row < disp_height) {
 send (&row, P_slave, data_tag); /* send next row */
 row++; /* next row */
 count++;
 } else
 send (&row, P_slave, terminator_tag); /* terminate */
 rows_recv++;
 display (r, color); /* display row */
} while (count > 0);

Slave

recv(y, P_master, ANYTAG, source_tag); /* receive 1st row to compute */
while (source_tag == data_tag) {
 c.imag = imag_min + ((float) y * scale_imag);
 for (x = 0; x < disp_width; x++) { /* compute row colors */
 c.real = real_min + ((float) x * scale_real);
 color[x] = cal_pixel(c);
 }
 send(&i, &y, color, P_master, result_tag); /* row colors to master */
 recv(y, P_master, source_tag); /* receive next row */
};
Rows outstanding in slaves (count)

0 \quad \text{Row sent} \quad \text{Increment} \quad \text{disp_height} \quad \text{Row returned} \quad \text{Decrement}

\text{Terminate}

\textbf{Figure 3.6} Counter termination.
Analysis

Sequential

Complicated by not knowing how many iterations are needed for each pixel. The number of iterations for each pixel is some function of \(n \) but cannot exceed \(\max \).

\[t_s \leq \max \times n \]

or a sequential time complexity of \(O(n) \).

Parallel program

Phase 1: Communication

Row number is sent to each slave

\[t_{\text{comm1}} = s(t_{\text{startup}} + t_{\text{data}}) \]

Phase 2: Computation

Slaves perform their Mandelbrot computation in parallel; i.e.,

\[t_{\text{comp}} \leq \frac{\max \times n}{s} \]

Phase 3: Communication

Results are passed back to the master using individual sends:

\[t_{\text{comm2}} = \frac{n}{s}(t_{\text{startup}} + t_{\text{data}}) \]

Overall

\[t_p \leq \frac{\max \times n}{s} + \left(\frac{n}{s} + s \right)(t_{\text{startup}} + t_{\text{data}}) \]
Monte Carlo Methods

Basis of Monte Carlo methods is the use of random selections in calculations

Example - To calculate π

A circle is formed within a square. The circle has unit radius so that the square has sides 2×2.

![Figure 3.7](image)

```
Figure 3.7  Computing $\pi$ by a Monte Carlo method.
```

The ratio of the area of the circle to the square is given by

\[
\frac{\text{Area of circle}}{\text{Area of square}} = \frac{\pi(1)^2}{2 \times 2} = \frac{\pi}{4}
\]

Points within the square are chosen randomly and a score is kept of how many points happen to lie within the circle.

The fraction of points within the circle will be $\pi/4$, given a sufficient number of randomly selected samples.
Computing an Integral

One quadrant of the construction in Figure 3.7 can be described by the integral

\[\int_{0}^{1} \sqrt{1 - x^2} \, dx = \frac{\pi}{4} \]

A random pair of numbers, \((x_r, y_r)\) would be generated, each between 0 and 1, and then counted as in circle if \(y_r \leq \sqrt{1 - x_r^2}\); that is, \(y_r^2 + x_r^2 \leq 1\).

Figure 3.8 Function being integrated in computing \(\pi\) by a Monte Carlo method.
Alternative (better) Method

An alternative probabilistic method to find an integral is to use the random values of x to compute $f(x)$ and sum the values of $f(x)$:

$$
\text{Area} = \int_{x_1}^{x_2} f(x) \, dx = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} f(x_r)(x_2 - x_1)
$$

where x_r are randomly generated values of x between x_1 and x_2.

Example

Computing the integral

$$
I = \int_{x_1}^{x_2} (x^2 - 3x) \, dx
$$

Sequential Code. The sequential code might be of the form

```c
sum = 0;
for (i = 0; i < N; i++) {
    \* N random samples */
    xr = rand_v(x1, x2); \* generate next random value */
    sum = sum + xr * xr - 3 * xr; \* compute f(xr) */
}
area = (sum / N) * (x2 - x1);
```

The routine `randv(x1, x2)` returns a pseudorandom number between x_1 and x_2.
Parallel Implementation

Figure 3.9 Parallel Monte Carlo integration.
Pseudocode

Master

for (i = 0; i < N/n; i++) {
 for (j = 0; j < n; j++) /* n=no of random numbers for slave */
 xr[j] = rand(); /* load numbers to be sent */
 recv(P_ANY, req_tag, P_source); /* wait for a slave to make request */
 send(xr, &n, P_source, compute_tag);
}
for (i = 0; i < slave_no; i++) { /* terminate computation */
 recv(P_i, req_tag);
 send(P_i, stop_tag);
}
sum = 0;
reduce_add(&sum, P_group);

Slave

sum = 0;
send(P_master, req_tag);
recv(xr, &n, P_master, source_tag);
while (source_tag == compute_tag) {
 for (i = 0; i < n; i++)
 sum = sum + xr[i] * xr[i] - 3 * xr[i];
 send(P_master, req_tag);
 recv(xr, &n, P_master, source_tag);
}
reduce_add(&sum, P_group);
Parallel Random Number Generation

The most popular way of creating a pseudorandom number sequence, $x_1, x_2, x_3, \ldots, x_{i-1}$, $x_i, x_{i+1}, \ldots, x_{n-1}, x_n$, is by evaluating x_{i+1} from a carefully chosen function of x_i, often of the form

$$x_{i+1} = (a x_i + c) \mod m$$

where a, c, and m are constants chosen to create a sequence that has similar properties to truly random sequences.

Parallel Pseudorandom Number Generators.

It turns out that

$$x_{i+1} = (a x_i + c) \mod m$$
$$x_{i+k} = (A x_i + C) \mod m$$

where $A = a^k \mod m$, $C = c(a^{k-1} + a^{n-2} + \ldots + a^1 + a^0) \mod m$, and k is a selected “jump” constant.

Figure 3.10 Parallel computation of a sequence.