It is the policy of the Graduate Program in Electrical and Computer Engineering of Rutgers, The State University of New Jersey, to make the benefits and services of its educational programs available to students without discrimination on the basis of race, religion, color, national origin, ancestry, age, sex, sexual orientation, handicap, marital status, or veteran status.
# Table of Contents

1 **Introduction**  

2 **Admission Requirements**  
   2.1 M.S. Program  
   2.2 Combined BS/MS Degree(s) in Electrical & Computer Engineering  
   2.3 Ph.D. Program  
   2.4 Non-Degree Students

3 **M.S. Degree Requirements**  
   3.1 Course Requirements  
      3.1.1 Communications Engineering  
      3.1.2 Computer Engineering  
      3.1.3 Digital Signal Processing  
      3.1.4 Software Engineering  
      3.1.5 Solid State Electronics  
      3.1.6 Systems and Controls  
   3.2 Master's Thesis  
   3.3 M.S. Technical Paper  
   3.4 Candidacy Forms/Deadlines  
   3.5 Checklist for M.S. Degree - Thesis Option  
   3.6 Checklist for M.S. Degree - Non-Thesis Option

4 **Ph.D. Degree Requirements**  
   4.1 Ph.D. Qualifying Examination  
   4.2 Ph.D. Proposal Presentation  
      4.2.1 ECE Ph.D. Proposal Presentation Policy  
   4.3 Dissertation Requirements  
   4.4 Checklist for Ph.D. Degree

5 **Scholastic Standing**  
   5.1 Academic Probation  
   5.2 Degree Time Limits  
   5.3 Incomplete Grades  
   5.4 Full-Time Student Status Visa Requirements  
   5.5 Lead Time to Processing Student Forms

6 **New Graduate Student Information**

7 **Ethics**

8 **Appeals Procedures**

9 **Financial Aid**
10 **Transfer of Credits**  

11 **Registration Questions**  
   11.1 Matriculation Continued  
   11.2 Application for Readmission  
   11.3 Assistantship Registrations  
   11.4 Special Problems Courses  
   11.5 Undergraduate Courses  
   11.6 Non-Credit Courses  

12 **Communication With Students**  

13 **Practical Training**  

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Section Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Faculty Research Areas</td>
<td>31</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Graduate Courses</td>
<td>38</td>
</tr>
</tbody>
</table>
1. Introduction

The faculty and students of the graduate program in Electrical and Computer Engineering are divided into six specialization areas:

- Communications Engineering
- Computer Engineering
- Digital Signal Processing
- Software Engineering
- Solid State Electronics
- Systems and Controls

This information guide describes the degree requirements in these areas and clarifies the procedures used for admission into the M.S. and Ph.D. programs.

The School of Graduate Studies catalog should be consulted for additional information regarding the general policies and procedures of the School of Graduate Studies.

2. Admission Requirements

Deadline for all M.S. applicants is December 1 for fall term admission. Deadlines for Ph.D. applicants are December 1 for fall term admission and October 1 for spring term admission. Admission materials are available from the Office of Graduate and Professional Admissions, 56 College Avenue, Rutgers University, New Brunswick, NJ 08901-8541, U.S.A. An online application is available at http://gradstudy.rutgers.edu.

Admission is competitive. Some applicants who meet or surpass the minimum requirements may be denied admission. Admission is recommended by the Electrical and Computer Engineering Graduate Admissions Committee and must be approved by the Dean of the School of Graduate Studies. All applicants must identify on their application material (personal statement, resume) one out of six areas for graduate study in this department: (1) Communications, (2) Computer Engineering, (3) Digital Signal Processing, (4) Software Engineering, (5) Solid State Electronics, and (6) Systems and Controls.

Foreign nationals can only have full-time student status. US Citizens or Permanent Residents may have either full-time or part-time student status. Part-time students are subject to the same admission requirements as that for full-time students.

2.1. M.S. Program

The requirements for admission into the master's degree program are:

1. A bachelor's degree in Electrical and/or Computer Engineering with a minimum grade point average (GPA) of 3.2 on a 4.0-point scale.

2. Three letters of recommendation

3. Starting by the school year 2020/21 the GRE test is optional. In the past it was as follows: The general Graduate Record Examination (GRE). The minimum expected scores are: **Verbal 500 (≈ 153 new test score), Quantitative 730 (≈ 157 new test score), and Analytical Writing 4.5.** The subject GRE in engineering is not required.
In addition, the Test of English as a Foreign Language (TOEFL) is required of all foreign applicants whose native language is not English unless an undergraduate degree or a graduate degree was received in the USA. A minimum score of 250 is expected. Students who obtain a TOEFL score below 250 may be accepted in exceptional cases, but will be required to attend classes in the Program in American Language Studies (PALS). This score corresponds to the new TOEFL Scores: Writing 22, Speaking 23, Reading 21, and Listening 17.

Students with bachelor's degrees in closely related areas such as Physics, Computer Science, Applied Mathematics, non ECE Engineering and Technology will be considered for admission to regular ECE masters and doctoral programs if they have outstanding GPAs, and if needed meet the TOEFL test requirement. Those students will not be required to take any prerequisite undergraduate ECE courses.

2.2 Combined BS/MS Degree(s) in Electrical and Computer Engineering

There are four parts to the BS/MS graduate application process. Compared to applying to graduate school from outside of Rutgers, the application process and transition to the graduate program within Rutgers ECE is greatly simplified: you don’t need to take the GRE or write application essays.

1. Credits and coursework: You must complete the 123 credits required for the BS degree. The M.S. degree requires 30 credits. If you plan things, you can finish the M.S degree within one additional year.
   ○ The School of Graduate Studies allows use of up to a maximum of 12 undergraduate credits at the 300 or 400 level towards completion of the BS/MS program.
   ○ Credits counted towards the undergraduate degree (including for the residency requirement) cannot be counted towards a graduate degree.
   ○ The School of Graduate Studies, as of Fall 2020, considers 120 credits as the number required to earn the bachelor’s degree, which means that credits over 120 are eligible to be transferred to the master’s degree, given approval from the Graduate Director, Dr. Yingying Chen.

2. Basic Application: All applicants should complete the first 3 pages/sections of the Graduate School application, which may be found at:
   https://admissionservices.rutgers.edu/graduate/newApplicant.app

3. Save it as a PDF and email it to the Graduate Program Coordinator: ecegradinfo@gmail.com.

4. Transcript: While we are working remotely, an electronic transcript is acceptable. Send a copy of your electronic transcript along with your application to the Graduate Program Coordinator.

5. Letters of Recommendation:
   ○ If your GPA is > 3.7, you can become eligible for TA/GA/Fellowship support by getting two (2) letters of recommendation.
   ○ If your GPA is between 3.2 and 3.7, you do not need recommendation letters but will not be considered for TA/GA support.
   ○ If your GPA is between 3.0 and 3.2 you will need one (1) strong recommendations from Rutgers faculty to be admitted to the M.S. program.
If your GPA is between 2.8 and 3.0 you will need two (2) strong recommendations from Rutgers faculty to be admitted to the M.S. program.

If your GPA is lower than 2.8 it is unlikely that you will be admitted to the M.S. program.

**Important Dates and Deadlines:**
- **Middle of November of your senior year:** start of the application process.
- **End of November:** initial decisions are made.
- **December-August:** continuous review based on grades earned.

Students must complete the number of credits required for the Electrical and Computer Engineering B.S. degree before starting the M.S. graduate program. The requirements for the M.S. degree are identical to the requirements in effect for regular Electrical and Computer Engineering M.S. students:

(a) 24* credits of course work, 6 credits of Research in ECE, plus the master thesis.
(b) 30* credits of course work plus the master technical paper.

### 2.3. Ph.D. Program

The requirements for admission into the Ph.D. degree program are:

1. A master's degree in Electrical and/or Computer Engineering with a minimum GPA of 3.5 on a 4.0-point scale and an undergraduate GPA of 3.2 or better.
2. Three letters of recommendation.

Foreign applicants whose native language is not English and who have not received either a B.S. or M.S. degree in the USA (or any other English speaking country) must also submit their TOEFL scores.

Students who have completed the M.S. degree requirements at Rutgers and wish to continue for the Ph.D. must meet the 3.5 GPA requirement and submit a change of status form to the graduate director, Dr. Yingying Chen for approval. Foreign students are also required to obtain the approval of the Financial Aid Office regarding their financial status. Final approval is made by the School of Graduate Studies.

### 2.4. Non-Degree Students

Qualified students may apply to the Electrical and Computer Engineering graduate program for nonmatriculated (nondegree) status. Students must have academic credentials that are comparable to those required for regular admission. Transcripts are required. The application materials must be submitted via the School of Graduate Studies admissions website at [http://gradstudy.rutgers.edu](http://gradstudy.rutgers.edu) for the Non-degree Graduate Study program in ECE. Nondegree students must either be US Citizens or Permanent Residents.

The course schedules of nonmatriculated students must be approved by the graduate director, Dr. Yingying Chen. After completing 12 credits of relevant graduate courses with a grade of B or better, a nonmatriculated student may apply for matriculated (degree) status. Only 12 credits of non-degree study are allowed.

The criteria for admission into the regular degree programs for nonmatriculated students are the same as for regular degree students. The graduate program coordinator can provide more information to interested students.
3. M.S. Degree Requirements

Master of Science degree candidates may follow either a thesis or a nonthesis program of study.

The thesis program requires 24 credits of course work with a minimum grade point average of 3.0, 6 credits of research leading to a master's thesis, and the final defense of the thesis.

In the nonthesis program, the candidate must complete 30 credits of course work with a minimum grade point average of 3.0, and write a Technical Paper which must be approved by at least three members of the ECE Graduate Faculty.

3.1. Course Requirements

At least 15 credits for the thesis option and 21 credits for the nonthesis option, must be fulfilled either by the required and elective courses (for students following interested in a concentration) or in general by any ECE graduate courses that are relevant to the student's area of specialization. All M.S. Students are required to take 2 semesters of 16:332:699 Colloquium in Electrical and Computer Engineering. In order to be graded “Satisfactory” you must attend 80% of the lectures (attendance is taken). Online courses taken outside of ECE and short courses (winter break, spring break, two week courses) can not be used to satisfy the course requirements for any degree (M.S. or Ph. D.). Up to four Rutgers University ECE online courses (up to 12 credits) may be used to satisfy the MS and PhD degree course requirements. These ECE online courses will be taught in the near future within the certificate programs: Machine Learning for Electrical and Computer Engineers, and Cybersecurity in Electrical and Computer Engineering. A provision is made for any online ECE (or other approved program) graduate courses taken during the semesters of Spring 2020, Fall 2020, Spring 2021 and Fall 2021 due to the pandemic. Any approved online courses taken during any of these listed semesters may be attributed towards graduate degree requirements.

The elective courses must be approved by the student's advisor or the Graduate Director, Dr. Yingying Chen before registration. A list of recommended electives is provided under each area of specialization.

3.1.1 Communications Engineering

Required courses:

- 332:541 Stochastic Signals and Systems
- 332:542 Information Theory and Coding
- 332:543 Communication Networks I
- 332:544 Communication Networks II
- 332:545 Digital Communication Systems
- 332:546 Wireless Communications Technologies
- 332:548 Error Control Coding
- 332:549 Detection and Estimation Theory
- 332:559 Advanced Topics in Communications Engineering

Recommended elective courses:

- 332:501 System Analysis
- 332:505 Control System Theory
3.1.2 Computer Engineering

I.) Students taking the THESIS option will take:
   * 3 core courses
   * 3 courses from the Computer Engineering group courses
   * 2 additional courses of their choice

II.) Students taking the NON-THESIS option will take:
   * 3 core courses
   * 4 courses from the Computer Engineering group courses
   * 3 additional courses of their choice

Required core courses:

- 332:563 Computer Architecture I
- 332:573 Data Structures and Algorithms, or
- 198:513 Design and Analysis of Data Structures and Algorithms

One math elective

Computer engineering courses:

- 332:560 Computer Graphics
- 322:561 Machine Vision
- 332:562 Visualization and Advanced Computer Graphics
- 332:564 Computer Architecture II
- 332:566 Introduction to Parallel and Distributed Computing
- 332:567 Software Engineering I
- 332:568 Software Engineering Web Applications
- 332:569 Database System Engineering
- 332:570 Robust Computer Vision
- 332:571 Virtual Reality Technology
- 332:574 Computer Aided Digital VLSI Design
- 332:576 Testing of ULSI Circuits
- 332:577 Analog and Low-Power Digital VLSI Design
- 332:579 Advanced Topics In Computer Engineering
- 332:542 Information Theory and Coding
- 332:544 Communication Networks II
198:515  Programming Languages and Compilers
198:519  Operating Systems

Mathematical electives (one course required):

332:501  System Analysis
198:510  Numerical Analysis
198:521  Linear Programming
198:522  Network and Combinatorial Optimization Algorithms
198:524  Nonlinear Programming Algorithms
198:528  Parallel Numerical Computing
642:550  Linear Algebra and Applications
642:573  Topics in Number Theory I
642:587  Selected Topics in Discrete Mathematics
642:621  Financial Mathematics I
642:622  Financial Mathematics II

3.1.3 Digital Signal Processing

Required courses:

332:521  Digital Signals and Filters
332:525  Optimum Signal Processing
332:527  Digital Speech Processing
332:529  Image Coding and Processing
332:533  Computation Methods for Signal Recovery
332:535  Multi-Dimensional Signal Processing Algorithms
332:541  Stochastic Signals and Systems
332:561  Machine Vision
332:570  Robust Computer Vision

Recommended elective courses:

332:501  System Analysis
332:505  Control System Theory
332:506  Applied Controls
332:565  Neurocomputer Systems Design
640:501  Theory of Functions of a Real Variable
640:503  Theory of Functions of a Complex Variable
642:550  Linear Algebra and Applications
642:573  Topics in Number Theory I
642:574  Topics in Number Theory II
642:621  Financial Mathematics I
642:622  Financial Mathematics II

3.1.4 Software Engineering

I.)  Students taking the THESIS option (6 credits of research) will take:
    * 3 core courses
* 3 courses from the Software Engineering group of elective courses
* 2 additional courses of their choice

II.) Students taking the NON-THESIS option will take:
* 3 core courses
* 5 courses from the Software Engineering group of elective courses
* 2 additional courses of their choice

Required Core Courses for Software Engineering:

332:563 Computer Architecture
332:567 Software Engineering
332:568 Software Engineering of Web Applications
332:573 Data Structures and Algorithms

If any of the following undergraduate courses are missing in the student's undergraduate transcripts, they must be made up:

332:252 Programming Methodology I
332:351 Programming Methodology II

ECE Software Engineering Elective Courses:

332:507 Security Engineering
332:543 Communication Networks I
332:544 Communication Networks II
332:560 Computer Graphics
322:561 Machine Vision
332:562 Visualization and Advanced Computer Graphics
332:566 Introduction to Parallel and Distributed Computing
332:569 Database System Engineering
332:571 Virtual Reality
332:572 Parallel and Distributed Computing
332:579 Advanced Topics in Computer Engineering (Cyber Physical Systems, Mobile Apps Engineering and User Experience, Cloud Computing, Big Data)
332:601 Special Problems

Elective Courses from Other Graduate Programs: (up to 9 credits):

137:560 Introduction to Systems Engineering for Engineering Management (Fall semester)
137:602 Enterprise Software Architecture (Spring semester)
198:536 Machine Learning
198:541 Database Systems
198:544 Computer Security
198:546 Computer System Security
198:547 Security and Dependability of Distributed Systems
3.1.5 Solid State Electronics

**Required courses:**

332:580 Electric Waves and Radiation  
332:581 Introduction to Solid State Electronics  
332:583 Semiconductor Devices I  
332:584 Semiconductor Devices II  
332:587 Transistor Circuit Design

**Recommended elective courses:**

332:588 Integrated Transistor Circuit Design  
332:589 RF Integrated Circuit Design  
332:591 Opto-Electronics I  
332:592 Opto-Electronics II  
332:594 Solar Cells  
150:522 Electron Microscopy  
642:516 Applied Partial Differential Equations  
642:527 Methods of Applied Mathematics I  
642:528 Methods of Applied Mathematics II  
642:575 Numerical Solutions of Partial Differential Equations  
635:501 Theory of Solid State Materials  
750:501 Quantum Mechanics I  
750:601 Solid State Physics I  
750:602 Solid State Physics II

3.1.6 Systems and Controls

**Required courses:**

332:501 System Analysis  
332:505 Control System Theory  
332:506 Applied Controls

**Recommended elective courses:**

332:508 Digital Control Systems  
332:510 Optimal Control Systems  
332:512 Nonlinear and Adaptive Control  
332:514 Stochastic Control Systems  
332:519 Advanced Topics in Systems Engineering  
332:521 Digital Signals and Filters  
332:526 Robotic Systems Engineering  
332:541 Stochastic Signals and Systems  
332:545 Digital Communication Systems  
332:563 Computer Architecture I  
640:501 Theory of Functions of a Real Variable  
640:503 Theory of Functions of a Complex Variable  
640:515 Ordinary Differential Equations
3.2. Master's Thesis

Students writing a master's thesis must choose a thesis advisor who will supervise their research project. In consultation with the graduate director, a thesis committee will be appointed consisting of at least three members, including the thesis advisor who will chair the committee. The thesis defense must be announced and is open to the public. Teleconferencing is permitted with the presentation being held at Rutgers University. No more than two committee members may participate via teleconferencing.

All members of the thesis committee must be members or associate members of the graduate faculty of the Electrical and Computer Engineering graduate program. One additional non-program member is permitted if appropriate, but must be approved by the graduate director. Substitutions in the committee membership may be made only by the graduate director and will occur only if a member is unable to serve or if a student's thesis topic changes requiring modification of the committee.

A final draft of the thesis (with all figures and references included) must be given to all committee members and the graduate director at least three weeks before the thesis defense date. The thesis must be approved by the thesis advisor and accepted by the other members of the student's committee. A final version of the thesis in unbound format must be submitted to the graduate director along with the degree candidacy form after successfully defending the thesis.

If a student fails his/her final thesis defense examination, the student will be allowed one more attempt to rewrite and defend the thesis. Alternatively, at the recommendation of his/her committee, the student may switch to the non-thesis option, take additional courses to raise his/her course credits to 30, and write the M.S. Technical Paper. Failure to pass the repeated thesis examinations will result in a recommendation for dismissal from the Electrical and Computer Engineering Graduate Program.

3.3. M.S. Technical Paper

The MS Technical Paper constitutes a substitution for the Master Comprehensive Exam. The topic of the Master Technical Paper must be chosen in consultation with an ECE graduate faculty member who serves as the student’s advisor for the technical paper. The paper must ultimately be approved by three ECE graduate faculty members, of which the student advisor serves as the lead reader for the paper. The student and advisor select the additional two members of the ECE graduate faculty who will serve as readers of the technical paper. The students may use as the M. S. technical paper any term paper done in any graduate class, assuming the paper is endorsed by three ECE graduate faculty.

In order to streamline the process and improve the quality of M.S. Technical Papers, it is recommended that the papers be written through course term papers, course projects, or research from Special Problems courses. The course instructor will serve as the mentor (i.e., Faculty Evaluator). The student needs to find two additional faculties as readers to go over the technical paper once completed.
The student must incorporate feedback from the readers, revise the technical paper and ultimately achieve the approval of all three readers before the MS candidacy form submission deadline. A student is given two chances to successfully pass the evaluation of his/her technical paper.

### 3.4. Candidacy Forms/Deadlines

The Master of Science candidacy form should be completed several weeks before the student's anticipated graduation. The completed form must be first submitted to the Graduate Director for verification of credits and grades, and then brought to the School of Graduate Studies. Upon completion of either Master Thesis or M. S. Technical Paper and collection of all required signatures the form must be submitted to the School of Graduate Studies (Barbara Sirman’s Office, 848-932-8122). Please see dates included in the table below.

The Diploma Application is available online at Registrar: [http://registrar.rutgers.edu](http://registrar.rutgers.edu) and it must be filed according to the schedule provided in the table below.

<table>
<thead>
<tr>
<th>Graduation</th>
<th>Diploma Application and Candidacy Form Submission Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 2021</td>
<td>October 1, 2021</td>
</tr>
<tr>
<td>January 2022</td>
<td>January 2, 2022</td>
</tr>
<tr>
<td>May 2022</td>
<td>April 1, 2022</td>
</tr>
</tbody>
</table>

### 3.5. Checklist for M.S. Degree - Thesis Option

**THESIS FORMAT GUIDE:** You may obtain a style guide for thesis available online at the School of Graduate Studies: [grad.rutgers.edu](http://grad.rutgers.edu), or pick up print copies from the School of Graduate Studies (25 Bishop Place) or from the graduate program coordinator. It contains information regarding style, format, paper, margins, footnotes, etc. It should be followed explicitly. Any questions regarding tables, graphs, photos, etc., can be directed to Barbara Sirman at (848) 932-8122 or email at sirman@grad.rutgers.edu.

**CANDIDACY FORM AND THESIS:**

1. The candidacy form should be picked up (downloaded) either at the School of Graduate Studies (website) or from the Electrical and Computer Engineering Graduate Program Coordinator in the Electrical Engineering Building.

2. Complete the form and have the Graduate Director sign the front of the form. The ECE Graduate Program Coordinator will verify credits and grades.

3. Have the members of your thesis committee sign the form on the back (Section A and Section C), as well as the title page. The Graduate Director must also sign the back of the candidacy form at this time (Section E).

4. Submit one copy of the final version of the thesis with signed (photocopy) title page, unbound, single-sided on photocopy paper to the Graduate Director along with the candidacy form signed by the thesis committee. Please note that the committee must sign also the Comprehensive Exam section (Section C).

5. Submit thesis electronically (https://edt.libraries.rutgers.edu/login.php) to the School of Graduate
Studies. **One** original title page must have the original signatures (in black ink); also submit your candidacy form. **Three (3)** additional signed, (photocopies are acceptable) title pages, and **three (3)** additional abstracts are also required.

6. **THE DEADLINE FOR FINAL SUBMISSION OF ALL MATERIALS TO THE SCHOOL OF GRADUATE STUDIES IS:** October 1, 2021 for an October-dated degree; January 2, 2022 for a January-dated degree; April 1, 2022 for a May-dated degree.

**DIPLOMA APPLICATION FORM:**
1. Diploma Application form is available online at: Registrar: [http://registrar.rutgers.edu](http://registrar.rutgers.edu).

2. Contact the Graduate Registrar’s Office, Administrative Services Building - Room 200F, Busch Campus (848-445-3557) regarding diploma application questions.

3. The deadline for submission of this form is given in Section 3.4.

**PLEASE BE SURE THAT YOU ARE CONSISTENT IN THE USE OF YOUR NAME ON THE DIPLOMA APPLICATION, AND TITLE PAGE OF YOUR DISSERTATION. YOUR NAME SHOULD BE THE SAME ON THE TITLE PAGE AND THE DIPLOMA APPLICATION.**

**3.6. Checklist for M.S. Degree - Non-Thesis Option**

**CANDIDACY FORM:**
1. The candidacy form should be picked up (or downloaded) from your program or at the School of Graduate Studies (website), 25 Bishop Place, College Avenue Campus.

2. Complete the form and **have the Graduate Director sign the front of the form.** The ECE Graduate Program Coordinator will verify credits and grades.

3. A total of **three** committee signatures are required for **Sections B and C.** The Graduate Director must also sign **Section E** on the back of the candidacy form after the results of the final examination are known.

*When requesting signatures, this template should be used:*

Dear Professor [NAME]

I am writing to ask you to be a reader on my MS Technical Paper, which is titled [TITLE OF PAPER].

The paper is about [SHORT DESCRIPTION OF THE TOPIC]. I wrote this paper originally as a project report for [COURSE NAME AND NUMBER] taught by Professor [NAME], who [HAS/HAS NOT] agreed to sign the technical paper form. Would you be willing to act as a reviewer for the paper?

The deadline for the technical paper in order for me to graduate is [DATE]. This should give [NUMBER] days for you to read and send revisions in case I need to make them.

I hope you will be able to help me with this requirement for my MS degree.

Thank you,

[YOUR NAME]
FAQ:
Q: Who should I ask first to sign my technical report?
A: If you have written a technical report for a class and gotten a B or above in the class, you should ask the professor for that class if they think you can use it for your technical paper. If they agree, you should ask them if any revisions are necessary before they will sign.

Q: To whom should I send this email?
A: If the professor for your class has agreed to sign, then you can ask them to recommend other professors who might have the expertise to read this paper. You may also know of other professors who work in their general area and would have the expertise to review the paper. DO NOT email every professor in the department.

Q: When should I send this email?
A: Professors need some time to read and review the technical paper. You should give them at least 2 weeks to review the paper and get comments back to you. You may wish to budget 1 extra week so that you can make revisions, so 3 weeks in total.

Q: What if my course project was a group project?
A: You may be able to adapt some of your group project (for example, the parts that you did) into a standalone project report for yourself. You can contact the professor for the class to see what would be appropriate.

4. THE DEADLINE FOR FINAL SUBMISSION OF ALL MATERIALS TO THE SCHOOL OF GRADUATE STUDIES IS: October 1, 2021 for an October-dated degree; January 2, 2022 for a January-dated degree; April 1, 2022 for a May-dated degree.

DIPLOMA APPLICATION FORM:
1. Diploma Application form is available online at Registrar: http://registrar.rutgers.edu.

2. Contact the Graduate Registrar’s Office, Administrative Services Building - Room 200F, Busch Campus (848-445-3557) regarding diploma application questions.

3. The deadline date for submission of this form is given in Section 3.4.

4. Any questions may be directed to either the graduate secretary or Barbara Sirman, at 848-932-8122.

Certificate Program: Cybersecurity in Electrical and Computer Engineering

Admission requirements:
Matriculated students:
Graduate students (MS or PhD) from ECE Department or related departments, such as Computer Science, Mechanical Engineering, Biomedical Engineering, do not need to apply separately. Interested students should contact the ECE Graduate Director and Graduate Admin and submit a copy of their transcript and a letter of recommendation. The certificate will be administered by ECE. Documents indicating the completion of the certificate are handled by the Senior Administrator for Degree Certification at SGS.
Non-matriculated students:
Applicants should complete the usual application process in the Graduate School application. Applicants need to upload the necessary documents, including transcripts and one letter of recommendation. Applicants should have completed a bachelor’s degree in ECE, CS, or a closely related field.

Curriculum:
The following courses relevant to the Cybersecurity in Electrical and Computer Engineering Certificate are the regular (SGS approved) courses, in the Electrical and Computer Engineering Graduate Program:

332:501 System Analysis
332:507 Security Engineering
332:543 Communication Networks I
332:544 Communication Networks II
332:548 Error Control Coding
332:561 Machine Vision

Several additional Electrical and Computer Engineering courses are also relevant to cybersecurity. The complete list of such courses can be found in the SGS catalogue and the ECE Graduate Student Handbook.

Among Advanced Topics Classes: (332:519 Advanced Topics in Systems Engineering, 332:559 in Communications, and 332:579 in Computer Engineering), the ECE Department has taught in the past four years, the following courses relevant to this certificate program:

332:519 Information and Network Security
332:579 Hardware and System Security
332:579 Malware Analysis and Reverse Engineering
332:579 Computing Principles of Mobile Embedded Systems
332:579 Foundations of Cyber-Physical Systems

Required credits:
The certificate will be awarded to all non-degree and degree ECE M.S. or Ph.D. graduate students who complete four courses (12 credits) in the area certificate program encompassing with a GPA of at least 3.0.

Learning outcome:
Students enrolled in this certificate program will learn about techniques, software development, and devices used to secure the cyber system, including how to secure information processed and communicated by the cyber system, and in general how to secure communication links in the cyber-physical system. These techniques will be enhanced from the point of views of communication networks and wireless communications, courses regularly taught in the ECE Graduate Program.
Mode of Delivery (Classroom Instruction/Hybrid/Distance Education):
The primary mode of instruction will be long-distance learning. The online courses will be offered in Canvas. Students may also take regularly offered in-class ECE graduate courses to satisfy the certificate requirement. Students will be given an option to take any four courses from aforementioned list of 10 courses, relevant to cybersecurity in electrical and computer engineering, with at least six courses being offered online. Non-degree students enrolled in this certificate have an option to complete this certificate fully on-line. In-class courses will also be available to non-degree students. Regular M.S. and Ph.D. students may satisfy the certificate requirement by taking all in-class courses. On-line courses will be permitted for regular M.S. and Ph. D. students.

Certificate Program: Machine Learning for Electrical and Computer Engineers

Admission requirements:

Matriculated students:
Graduate students (MS or PhD) from ECE Department or related departments, such as Computer Science, Mechanical Engineering, Biomedical Engineering, do not need to apply separately. Interested students should contact the ECE Graduate Director and Graduate Admin and submit a copy of their transcript and a letter of recommendation. The certificate will be administered by ECE. Documents indicating the completion of the certificate are handled by the Senior Administrator for Degree Certification at SGS.

Non-matriculated students:
Applicants should complete the usual application process in the Graduate School application. Applicants need to upload the necessary documents, including transcripts and one letter of recommendation. Applicants should have completed a bachelor’s degree in ECE, CS, or a closely related field.

Curriculum:
The following courses related to machine learning are the regular (SGS approved) courses in the Electrical and Computer Engineering Graduate Program:

332:509 Convex Optimization
332:510 Optimal Control Systems (covers dynamic programming and calculus of variations)
332:525 Optimum Signal Processing
332:549 Detection and Estimation
332:561 Machine Vision

Several additional Electrical and Computer Engineering courses are also relevant for the machine learning techniques. The complete list of such courses can be found in the SGS catalogue and the ECE Graduate Student Handbook.

Among Advanced Topics Classes: (332:539 in Digital Signal Processing and 332:579 in Computer
Engineering), ECE Department taught in the past three years the following courses relevant to the certificate program:

332:579 Machine Learning for IoT
332:579 Introduction to Deep Learning
332:579 Cloud Computing
332:579 Computing Principles for Mobile Embedded Systems

**Required credits:**
The certificate will be awarded to all non-degree and degree ECE M.S. or Ph.D. graduate students who complete four courses (12 credits) in the area certificate program encompassing with a GPA of at least 3.0.

**Learning outcome:**
Upon completion of the Certificate Program, students will be able to use and understand the machine learning techniques to solve practical engineering problems at their workplaces, and to fully understand machine learning software packages used these days in numerous electrical and computer engineering applications. These techniques will be enhanced from the point of views of optimal control systems and optimum digital signal processing, courses regularly taught in the ECE Graduate Program.

**Mode of Delivery (Classroom Instruction)/Hybrid/Distance Education:**
The primary mode of instruction will be long-distance learning. The online courses will be offered in Canvas. Students may also take regularly offered in-class ECE graduate courses to satisfy the certificate requirement. Students will be given an option to take any four courses from aforementioned list of 10 courses, relevant to machine learning techniques in electrical and computer engineering, with at least six courses being offered online. Non-degree students enrolled in this certificate program have an option to complete this certificate fully on-line. In-class courses will also be available to non-degree students. Regular M.S. and Ph.D. students may satisfy the certificate requirement by taking all in-class courses. On-line courses will be also permitted for regular M.S. and Ph.D. students.

### 4. Ph.D. Degree Requirements

The Ph.D. degree requires a total of at least 72 credits. The credit requirements for the Ph.D. degree must consist of at least 36 credits in graduate course work, 24 credits of research leading to the Ph.D. dissertation, and an additional 12 credits that may come from either course work or research. In addition, all Ph.D. students are required to take 4 semesters of 16:332:699 Colloquium in Electrical and Computer Engineering. In order to be graded "Satisfactory", you must attend 80% of the lectures (attendance is taken).

The student who has been admitted to the Ph.D. program must pass the Ph.D. qualifying examination taken within the first two years of entering the Ph.D. program. The purpose of the Ph.D. qualifying examination is to assess the student’s creative ability, depth of knowledge, and potential for independent research. Students not yet admitted into the Ph.D. program may take the qualifying exam only if they have a GPA of 3.5 or better and 12 graduate credits at Rutgers.

There are no foreign language requirements for the Ph.D.; however, a student must demonstrate
Students who decide to continue beyond the M.S. degree and pursue a Ph.D. must submit a Change of Status form, and must adhere to the GPA requirements of the Ph.D. degree.

**Students may take the qualifying exam only twice.** Failure to pass the exam for the second time will result in a recommendation for dismissal from the Ph.D. program.

Students who passed the Ph.D. Qualifying Exam should complete the Ph.D. Candidacy form, get the signatures of four faculty examiners and the Graduate Director, Dr. Yingying Chen. The form must be submitted to the School of Graduate Studies for the change of status from a prequalifying to a post-qualifying doctoral student.

### 4.1. Ph.D. Qualifying Examination

**Goal:** Make the qualifier exam a constructive component in the development of a student’s research skills and use the course work requirements to distinguish between potential doctoral students and master students.

**Exam Structure:** The Ph. D. Qualifying Exam has two parts: I) GPA requirement on selected courses, and II) Research potential assessment.

**Part I. GPA Course Requirements**

**A. ECE Course Requirement:** Prequalified doctoral students are required to pass four courses selected from a list of relevant doctoral courses (“core courses”) with a GPA of at least **3.75**.

**B. Mathematics/Physics/Statistics Course Requirement:** Prequalified doctoral students are required to pass one course in mathematics/physics/statistics with the grade of a **B+** and above.

Each research group (Communications, Computational Sensing, Computer Engineering, Control Systems, Cybersecurity, Digital Signal Processing, Networks, Software Engineering, and Solid State Electronics) has its own list of “core courses” and mathematics/statistics courses.

**Part II. Research Potential Assessment Oral Qualifier**

Following completion of the course requirements for specified research group, a student will be eligible to take the research potential assessment examination. In this exam, the student will prepare a written report and make a 45-minute oral presentation of his/her own independent research to a Ph.D. Qualifying Committee. The oral presentation will be followed by an open-ended question and answer session that may include questions specific to the research project as well as questions generally relevant to the research area.

The oral exam will be administrated by two faculty members (at least one of them must be an ECE graduate faculty), with the student’s advisor and the Graduate Director serving as the additional two committee members, for the total of four members on the committee. The student needs 2:0 to pass the exam, with the advisor and the Graduate Director endorsing the decision of the two committee members administrating the exam. The Ph. D. Qualifying Oral Exam will be offered once per semester during the two week period (the second part of October and second part of March) and any time during the summer.
It is strongly recommended (although not required) that the student have a faculty advisor before taking the oral qualifier. Students who have no academic advisors must register for Special Problems in the second year of their doctoral studies and conduct preliminary research with a faculty member in their research area of interest. The subject of the oral exam is to be chosen by the student. It is recommended that this choice be made in consultation with a faculty advisor and the ECE graduate director. A suitable basis for the examination may include, but is not restricted to:

- A conference paper submission based on research under the supervision of a faculty advisor.
- An M.S. thesis in preparation or previously completed thesis (either at Rutgers or any other university.)
- A final project report derived from an ECE graduate Special Problems independent study course. (The student who does not have a faculty research advisor must take the Special Problems class in the second year with an ECE graduate faculty in student’s research area of interest).

Unlike the PhD thesis proposal defense, this examination will occur in the early stages of research and the presented paper need not lead to a Ph.D. thesis proposal. For the examination committee, evaluation of the originality and novelty of the research contribution will be secondary to an evaluation of the student’s critical thinking skills. Specifically, the committee will focus on the student’s ability to analyze, interpret and articulate both strengths and weaknesses of the work.

**Nine Areas of the Ph. D. Qualifying Exam**
- Communications
- Computational Sensing
- Computer Engineering
- Control Systems
- Cybersecurity
- Digital Signal Processing
- Networking
- Software Engineering
- Solid State Electronics

**General Rules:**

- The exam must be taken within two years from the time the student starts the Ph.D. Program.
- The student will be allowed two chances to take the Ph.D. Qualifying Exam. The second attempt must be taken within one year.
- The student must apply to the graduate director to take the Ph.D. Qualifying Exam. In this application, the student selects the research group for the exam and identifies how the core course requirements for that group have been met.
- The written report to accompany the oral presentation must be submitted to the graduate director with the application.
- The Ph.D. Qualifying Committee will be composed of four ECE Graduate Program faculty.

---

1 for students interested in computer vision, robotics (cloud-assisted, swarm), devices/circuits for imaging, sensor networks, tele-rehabilitation, integration of sensing with communications and computing, mobile agents, computational photography.
Based on the subject of the submitted written report and the student’s selected research group, the examination committee will be chosen by the graduate director in consultation with the student and his/her advisor.

For scheduling the Ph.D. Oral Qualifying exam please contact the ECE Graduate Director one month before the exam.

**Ph.D. Exam Application and Scheduling Policy (Effective Fall 2016):**

1) Applications with the list of the core courses taken should be submitted by the student electronically to the Graduate Director, Dr. Yingying Chen. The application form can be found in front of office EE 134.

2) Upon approval of the list of the selected core courses, the student will be requested to submit a paper to the Graduate Director to be presented and discussed with the Ph. D. Committee.

3) The Ph. D. Committee will be formed based on the student and the advisor’s recommendation in consultation with the Graduate Director. As of October 24, 2016, the School of Graduate Studies allows that one of the committee members does not need to be a member of the student’s graduate program.

4) Scheduling of the oral exam will be done by the ECE Graduate Program Coordinator, Ms. Christy Lafferty. The exam will be scheduled roughly one month from the time the paper is submitted to the Office of the Graduate Director. At the same time, Dr. Chen will email the exam paper to the Committee members and Ms. Lafferty will email the Ph. D. Qualifying Exam Evaluation Form to the Committee members.

5) The Ph. D. Qualifying Exam Committee should return the Evaluation Form to the ECE Graduate Office upon the completion of the exam with their comments and pass/no recommendation.

6) If the student passes the exam, they will receive a letter from the Graduate Director stating that the Ph. D. Qualifying Exam was successfully completed and they will be provided the Ph. D. Candidacy Form. If a student does not pass the exam, they will receive a letter from the Graduate Director indicating they failed to pass and are permitted only one more chance to take and pass the exam during the listed time frame.

7) The student who passes the exam is required to get four signatures (from each of the Ph. D. Qualifying Exam Committee members) and then an additional signature from the Graduate Director.

8) When all signatures are acquired on the Candidacy Form, the student must submit the Candidacy Form to the School of Graduate Studies and their status will be changed from prequalified to post-qualified doctoral student.

**CORE COURSE REQUIREMENTS**

Students wishing to take an alternative to these options outside the department may petition the Graduate Director, who will consult the appropriate committees.

**COMMUNICATIONS**

**Core Courses:**
332:509 Convex Optimization
332:521 Digital Signals and Filters
332:541 Stochastic Signals and Systems
332:542 Information Theory
332:543 Communications Networks I
332:544 Communications Networks II
332:545 Digital Communications
332:546 Wireless Communication Technologies
332:548 Error Control Coding
332:549 Detection and Estimation Theory

**Mathematics/Statistics Courses:**
642:527 Methods of Applied Mathematics I
642:528 Methods of Applied Mathematics II
642:550 Linear Algebra and Applications
642:551 Applied Algebra
960:592 Theory of Probability
960:593 Theory of Statistics
640:411 Mathematical Analysis I

**COMPUTATIONAL SENSING**

**Faculty Members:** Waheed U. Bajwa, Kristin Dana, Athina Petropulu, Dario Pompili, Peter Mee, Anand D. Sarwate, Wade Trappe, Roy Yates

**Core Courses:**
332:504 Sensor-based Systems
332:509 Convex Optimization
332:521 Digital Signals and Filters
332:525 Optimal Signal Processing
332:526 Robotic System Engineering
332:541 Stochastic Signals and Systems
332:561 Machine Vision
332:591 Optoelectronics
332:539 Advanced Topics in DSP (Statistical Learning; Deep Learning; Biometrics; Deep Learning for Biometrics)
332:579 Advanced Topics in Computer Engineering (Cyber-Physical Systems; High-Performance Distributed Computing; Cloud Computing; Computing Principles for Mobile Embedded Systems; Malware Analysis and Reverse Engineering; Embedded Systems II: Application Development; Intro to Computer Systems; Applied Parallel Computing; Foundations of Cyber-Physical Systems; Into to Quantum Information Science; Hardware and System Security; Embedded Systems III; Biomedical Tech Design and Development; Introduction to Deep Learning)
198:534 Computer Vision
198:536 Machine Learning
198:535 Pattern Recognition: Theory and Applications

**Mathematics/Statistics courses:** Any graduate level course in mathematics or statistics.
COMPUTER ENGINEERING

Faculty Members: Grigore Burdea, Yingying Chen, Kristin Dana, Maryam Mehri Dehnavi, Marco Gruteser, Shantenu Jha, Janne Lindqvist, Ivan Marsic, Jorge Ortiz, Ivan Rodero, Manish Parashar, Dario Pompili, Deborah Silver, Shen Wei, Bo Yuan, Yanyong Zhang, Yuqian Zhang

Core Courses:
Must choose three core courses out of the following five courses (if the student had some of these courses at any other graduate school, the student may take additional courses from the next list)
332:563 Computer Architecture
332:567 Software Engineering
332:573 Data Structure and Algorithms
332:566 Introduction to Parallel & Distributed Computing
332:543 Communication Networks I

Take one course from the list:
332:544 Communication Networks II
332:560 Computer Graphics
332:562 Visualization and Advanced Computer Graphics
332:568 Software Engineering of Web Applications
332:572 Parallel & Distributed Computing
332:579 Advanced Topics in Computer Engineering (Cyber-Physical Systems; High-Performance Distributed Computing; Cloud Computing; Computing Principles for Mobile Embedded Systems; Malware Analysis and Reverse Engineering; Embedded Systems II: Application Development; Intro to Computer Systems; Applied Parallel Computing; Foundations of Cyber-Physical Systems; Intro to Quantum Information Science; Hardware and System Security; Embedded Systems III; Biomedical Tech Design and Development; Introduction to Deep Learning)

Mathematics/Statistics courses: Any graduate level course in mathematics or statistics.

CONTROL SYSTEMS

Faculty Members: Haim Baruh, Zoran Gajic, John K-J. Li, Sophocles Orfanidis, John McGarvey, George K. Shoane, Eduardo D. Sontag, Sumati Sehajpa, Jingang Yi, Qingze Zou

Core courses:
332:501 System Analysis
332:505 Control System Theory
332:506 Applied Controls
332:509 Convex Optimization for Engineering Applications
332:510 Optimal Control Systems
332:512 Nonlinear and Adaptive Control
332:519 Advanced Topics in Systems Engineering (Kalman Filtering, Game theory, Energy Systems, Information Security)
332:521 Digital Signals and Filters

Mathematics courses:
642:527 Methods of Applied Mathematics I
642:528 Methods of Applied Mathematics II
642:550 Linear Algebra and Applications
642:573 Numerical Analysis
**CYBERSECURITY**

**Faculty Members:** Yingying Chen, Salim El Rouayheb, Marco Gruteser, Janne Lindqvist, Jorge Ortiz, Athina Petropulu, Anand D. Sarwate, Wade Trappe, Shen Wei, Yanyong Zhang, Yuqian Zhang, Saman Zonouz

**Core courses:**
- 332:507 Security Engineering
- 332:542 Information Theory and Coding
- 332:544 Communication Networks II
- 332:567 Software Engineering
- 332:573 Data Structures & Algorithms
- 332:519 Advanced Topics in Systems Engineering (Network security)
- 332:579 Advanced Topics in Computer Engineering (Cyber-Physical Systems; High-Performance Distributed Computing; Cloud Computing; Computing Principles for Mobile Embedded Systems; Malware Analysis and Reverse Engineering; Embedded Systems II: Application Development; Intro to Computer Systems; Applied Parallel Computing; Foundations of Cyber-Physical Systems; Into to Quantum Information Science; Hardware and System Security; Embedded Systems III; Biomedical Tech Design and Development; Introduction to Deep Learning)
- 198:544 Computer Security
- 198:596 Introduction to Cryptography

**Mathematics/Statistics courses:** Any graduate level course in mathematics or statistics.

**DIGITAL SIGNAL PROCESSING**

**Faculty Members:** Waheed U. Bajwa, Kristin Dana, David J. Foran, Ilker Hacihaliloglu, Stephen J. Hanson, Richard Mammone, Peter Mee, Laleh Najafizadeh, Sophocles Orfanidis, Athina Petropulu, Vishal M. Patel, Anand D. Sarwate

**Core courses:**
- 332:509 Convex Optimization
- 332:521 Digital Signals and Filters
- 332:527 Digital Speech Processing
- 332:539 Advanced Topics in DSP (Deep Learning, Biometrics)
- 332:541 Stochastic Signals and Systems
- 332:542 Information Theory and Coding
- 332:545 Digital Communication Systems
- 332:549 Detection and Estimation Theory
- 332:561 Machine Vision

**Mathematics/Statistics courses:**
- 640:411 Mathematical Analysis I
- 960:554 Applied Stochastic Processes
- 960:565 Applied Time Series Analysis
- 960:567 Applied Multivariate Analysis
- 960:592 Theory of Probability
- 960:593 Theory of Statistics
- Any course in Mathematics at the 500 level or above
NETWORKING

**Faculty Members:** Yingying Chen, Marco Gruteser, Narayan Mandayam, Ivan Marsic, Athina Petropulu, Dario Pompili, Dipankar Raychaudhuri, Anand D. Sarwate, Predrag Spasojevic, Wade Trappe, Roy Yates, Yanyong Zhang, Yuqian Zhang

**Core Courses:**
- 332:509 Convex Optimization
- 332:541 Stochastic Signals and Systems
- 332:543 Communications Networks I
- 332:544 Communications Networks II
- 332:546 Wireless Communication Technologies
- 332:568 Software Engineering Web Applications
- 332:573 Data Structures and Algorithms
- 198:512 Introduction to Data Structures and Algorithms
- 198:513 Design and Analysis of Data Structures and Algorithms
- 332:519 Advanced Topics in Systems Engineering (Information and Network Security)

**Mathematics/Statistics Courses:**
- 642:527 Methods of Applied Mathematics I
- 642:528 Methods of Applied Mathematics II
- 642:550 Linear Algebra and Applications
- 642:551 Applied Algebra
- 960:592 Theory of Probability
- 960:593 Theory of Statistics
- 640:411 Mathematical Analysis I

SOFTWARE ENGINEERING

**Faculty Members:** Marco Gruteser, Shantenu Jha, Janne Lindqvist, Ivan Marsic, Deborah Silver, Yanyong Zhang, Saman Zonouz

**Core courses:**
- 332:563 Computer Architecture
- 332:567 Software Engineering
- 332:568 Software Engineering of Web Applications
- 332:573 Data Structures and Algorithms
- 332:560 Computer Graphics
- 322:561 Machine Vision
- 332:562 Visualization and Advanced Computer Graphics
- 332:566 Introduction to Parallel and Distributed Computing
- 332:569 Database System Engineering
- 332:571 Virtual Reality
- 332:572 Parallel and Distributed Computing
- 332:543 Communications Networks I
- 332:544 Communications Networks II
- 332:579 Advanced Topics in Computer Engineering (Advanced Topics in Computer Engineering (Cyber-Physical Systems; High-Performance Distributed Computing; Cloud Computing; Computing Principles for Mobile Embedded Systems; Malware Analysis and Reverse Engineering; Embedded Systems II: Application Development; Intro to Computer Systems; Applied Parallel Computing; Foundations of Cyber-Physical Systems; Into to Quantum Information Science; Hardware and System Security; Embedded Systems III; Biomedical Tech Design and Development; Introduction to Deep Learning))
Mathematics/Statistics courses: Any graduate level course in mathematics or statistics.

SOLID STATE ELECTRONICS

Faculty Members: Michael Caggiano, Sang-Wook Cheong, Manish Chhowalla, Leonard Feldman, Hana Godrich, Umer Hassan, Mehdi Javanmard, Jaeseok Jeon, Yicheng Lu, Sigrid McAfee, John McGarvey, Laleh Najafizadeh, Seongshik Oh, Sumati Sehajpa, Chung-Tse Michael Wu, Jian Zhao

Core courses:
- The student needs to take four core courses, in a combination of 3+1, within the broad SSE areas (if the student had some of the fundamental courses at any other graduate school, the student may take additional courses from the list of “advanced” courses).

Three courses from the following list of “fundamental” courses:
- 332:580 Electric Wave and Radiation
- 332:581 Introduction to Solid State Electronics
- 332:583 Semiconductor Devices I
- 332:587 Transistor Circuit Design

One course from the following list of “advanced” courses, based on the research topic:
- 332:574 CAD Digital and VLSI Design
- 332:584 Semiconductor Devices II
- 332:589 RF Integrated Circuit Design
- 332:591 Optoelectronics I
- 332:597 Material Aspects of Semiconductor
- 332:599 Advanced Topics in SSE (Biosensing and Bioelectronics; Wearable and Implantable Electronic Systems; Microelectronic Processing; Microgrid Concepts and Distributed Generation Technology; Smart Grid: Fundamental Elements of Design)

Mathematics courses:
- 642:516 Applied Partial Differential Equations
- 642:527 Methods of Applied Mathematics I
- 642:528 Methods of Applied Mathematics II
- 642:550 Linear Algebra and Applications
- 642:573 Numerical Analysis
- 960:565 Applied Time Series Analysis

4.2. Ph.D. Proposal Presentation

The proposal presentation examination is conducted by a committee consisting of the student's thesis advisor and at least three other members or associate members of the electrical engineering graduate faculty. Normally, the thesis advisor, at least two other members of this committee, and an outside member, will later serve as the student's thesis committee.

The examination consists of a one-hour presentation and defense of a thesis research proposal by the student, followed by an oral examination by the committee. The thesis proposal presentation is not public; however, any faculty member of the School of Graduate Studies may attend.

The student should provide each member of his/her committee and the graduate director with a copy of the thesis proposal at least three weeks before the examination. The proposal should include a review of previous work on the subject, a description of the proposed research project, and preliminary
research results, such as experimental, theoretical, or simulation results indicating that the project can be successfully undertaken.

4.2.1 ECE Ph.D. Proposal Presentation Policy

The Doctoral Dissertation Proposal presentation will be announced at least three weeks before the presentation.

It is the advisor responsibility to inform the Graduate Director Office, either via email or a hard copy memo (preferred), that the student is ready to present his/her proposal, and provide the list of at least four (at least three ECE Graduate Program members including the advisor) committee members, time and place of the presentation. The committee may include one or two “outside ECE Graduate Program” members. The outside committee members are appointed by the Graduate ECE Program Director in consultation with the student’s advisor.

It is the student responsibility to provide the Graduate Director office with a copy of the dissertation proposal and an electronic version of the proposal abstract at least three weeks before the presentation.

Teleconferencing is permitted with the proposal presentation being held at Rutgers University. The proposal presentation is closed to public (Rutgers University regulation). No more than two committee members may participate via teleconferencing. The ECE faculty members are allowed to attend the proposal presentation and/or examine the written copy of the proposal.

For a successful proposal presentation only one non-approval is permitted. A student is given two chances to successfully present his/her doctoral dissertation proposal.

4.3. Dissertation Requirements

The dissertation topic is agreed upon by the student and the thesis advisor. The dissertation committee, which consists of the dissertation advisor, at least two other members or associate members of the electrical engineering faculty, and an outside member, is selected by the student and the thesis advisor, in consultation with the graduate director. At least two faculty members must be Rutgers University ECE regular (core) faculty.

Substitutions in the committee membership may be made only by the graduate director and will occur only if a member is unable to serve or if a student's dissertation topic changes requiring modification of the committee. In cases other than these, approval rests with the Dean of the School of Graduate Studies.

The dissertation committee must be kept informed of the student's progress and must agree to follow the student's work and assist in its development. The committee shall also agree to give ample and early warning of any reservations regarding the student's progress and must specify in writing the changes required for dissertation acceptance.

The Ph.D. dissertation should be submitted to the dissertation committee and the graduate director at least four weeks before the final dissertation defense examination. The dissertation should be in final form with all figures and references.

The final dissertation defense must be announced and is open to the public. Teleconferencing is permitted with the dissertation presentation being held at Rutgers University. No more than two committee members may participate via teleconferencing. The dissertation advisor and all but one of the other committee members must approve in order for the student to pass the examination. In the case of two or more dissenting members, an attempt should be made to reconcile the differences. If resolution of the differences is not possible, the dissertation must be judged unsatisfactory. Appeals may be referred to the Dean of the School of Graduate Studies. The committee members must sign the student's Ph.D. candidacy form, the title page of the dissertation if the dissertation is approved. If approval is not unanimous, a letter from the dissenting members indicating the reasons for disapproval must be sent to
the Dean of the School Graduate Studies and copies sent to the graduate director, the other committee members, and to the student.

A final version of the dissertation in unbound format must be submitted to the graduate director along with the degree candidacy form after successfully defending the dissertation. After the final signature from the graduate director has been obtained on the candidacy form, the candidacy form and the dissertation must be submitted by the student to the School of Graduate Studies (See Section 4.4).

4.4 Checklist for Ph.D. Degree

STYLE GUIDE FOR THESIS AND DISSERTATION PREPARATION: A thesis style guide is available online at the School of Graduate Studies: grad.rutgers.edu, or pick up print copies from the graduate secretary or from the School of Graduate Studies (25 Bishop Place-CAC). This booklet presents the requirements governing the physical form of the thesis doctoral dissertation. Any questions should be directed to Barbara Sirman at (848) 932-8122, or email at sirman@grad.rutgers.edu.

CANDIDACY FORM AND DISSERTATION:

1. The candidacy form should be picked up at the School of Graduate Studies prior to your defense. Note: The last page of the form, listing both your course and research credits, should be completed right after your taking the Ph.D. Qualifying Examination.

2. At that time, you will be given other forms for completion: (i.e.) payment fee, microfilming, survey, questionnaires, etc.

3. Take the candidacy form to your defense and have your committee members and the Graduate Program Director sign page 3. The committee members should also sign the title page of your dissertation. An outside member is required for the dissertation committee. If the person is from outside the University, a resume is required by the Graduate Director such that formal permission can be obtained from the School of Graduate Studies.

4. Submit one copy of the final version with photocopy of signed title page, unbound, single-sided on photocopy paper to the graduate director along with the candidacy form signed by the dissertation committee.

5. Submit to the School of Graduate Studies electronically copy of the dissertation https://etd.libraries.rutgers.edu/login.php. Submit ONE (1) original title page with signatures in black ink). Also submit your candidacy and other forms.

Note: Three (3)) additional signed (photocopies are acceptable) title pages and three (3) additional abstracts are also required.

7. THE DEADLINE FOR FINAL SUBMISSION OF ALL MATERIALS TO THE SCHOOL OF GRADUATE STUDIES IS: October 1, 2021 for an October-dated degree; January 2, 2022 for a January-dated degree; April 1, 2022 for a May-dated degree.

DIPLOMA APPLICATION FORM:

1. Diploma Application form is available online at Registrar: http://registrar.rutgers.edu.

2. Contact the Graduate Registrar’s Office, Administrative Services Building - Room 200F, Busch Campus (848-445-3557) regarding diploma application questions.
3. The deadline for submission of this form is: October 1, 2021 for an October-dated degree; January 2, 2022 for a January-dated degree; April 1, 2022 for a May-dated degree.

PLEASE BE SURE THAT YOU ARE CONSISTENT IN THE USE OF YOUR NAME ON THE DIPLOMA APPLICATION, AND TITLE PAGE OF YOUR DISSERTATION. YOUR NAME SHOULD BE THE SAME ON THE TITLE PAGE AND THE DIPLOMA APPLICATION.

5. Scholastic Standing

The academic progress of masters students, Ph.D. students who have not yet selected a thesis advisor, and of all students on academic probation is monitored by the Electrical and Computer Engineering Graduate Scholastic Standing Committee, which reviews student performance twice a year.

Master's degree students must maintain a GPA of 3.0 or higher and Ph.D. students a GPA of 3.5 or higher. A student who's GPA falls below the corresponding threshold will be placed on academic probation for two semesters. Failure to raise the GPA above the threshold within the next two semesters will result in a recommendation for dismissal from the graduate program.

In addition, students may not use more than one grade of C/C+ towards any degree. Students receiving two grades of C/C+ or below will be sent an academic probation letter and if, subsequently, they receive a third such grade they will be recommended for dismissal from the program.

The academic progress of post-qualifying Ph.D. students who have selected a thesis advisor is monitored, on a regular basis, by their thesis advisor and thesis committee.

All graduate students are encouraged to become familiar with the Rutgers University POLICY ON ACADEMIC INTEGRITY. A copy of the policy statement can be obtained from the graduate program coordinator.

5.1. Academic Probation

The following events will automatically trigger Academic Probation for a student:
1 F in a course
2 C's in graduate courses

The following events may trigger Academic Probation for a student:
An Incomplete that is not made up in the immediately following semester.

The following events will trigger a hearing to determine whether to dismiss a student from the Electrical and Computer Engineering Department:
2 F's in graduate courses
3 C's in graduate courses
Repeated problems in maintaining a full-time student course load of 9 credits.

5.2. Degree Time Limits

**MS Degree**
There is a time limit of 2 years to complete a full-time MS degree in the Electrical and Computer Engineering Department. Students who take longer than that time interval will normally not be admitted to the PhD program.

**PhD Degree**
There is a time limit of 5 years after the MS degree to complete the PhD degree. Students who take longer that that time interval may be discontinued in the PhD program.
Normally, PhD students who have not initiated research activity will be dismissed after 2 years in the PhD program. Research activity means that the student has a doctoral advisor, has pursued an original thesis topic, and has completed some research.

5.3. Incomplete Grades
Incomplete (IN) grades must be completed within one semester. A student who has more than one IN grade will be allowed one semester to reduce the number to one (or none), after which he/she will not be allowed to register for additional courses until the IN's are completed. The School of Graduate Studies will not allow students with IN's to graduate. The graduate director will not give TA/Fellowship support or Practical Training letters to students with Incompletes.

5.4. Full-Time Student Status Visa Requirements
The ECE Department considers 9 academic credits (consisting of undergraduate remedial courses, graduate courses, or graduate research 332:701 and 332:702) to be full-time study. The special TA and GA courses do not count towards the academic credits. The undergraduate course credits are accepted toward the MS and PhD graduate degrees only under special circumstances. The ECE graduate program will not allow students to take fewer than 9 academic credits and retain full-time enrollment status, except in these situations:

I. The student is in the last term of his/her degree, and has completed all degree course requirements, in which case fewer than 9 credits is permitted.

II. The student is studying for the PhD Qualifying Examination, in which case 6 credits is permitted, either during the semester of the examination, during the semester preceding the examination, or both. The preparation time for this examination is significant, and judged to be equivalent to two 3 credit graduate courses.

In all other situations, the students are expected to carry 9 academic credits. If remedial English courses are required, then a student must still carry 9 academic credits. Student's who do not satisfy this policy will be reviewed by the Scholastic Standing Committee of the Electrical and Computer Engineering Department, and also jeopardize their full-time enrollment status.

5.5. Lead-time for Processing of Student Forms
The ECE graduate program is a very large program with research and faculty in many different areas. In order to adequately process the applications and documents of all students in a fair and proper manner, the ECE Graduate Office requests that students provide forms, such as Visa and OPT/CPT forms, at least three weeks in advance of any deadline. The ECE Graduate Office will do its best to accommodate any emergencies that might arise and which necessitate very fast processing of documents. However, students must understand that many deadlines are known significantly in advance of the deadline, e.g. Visa renewal deadlines, and thus it is the responsibility of the student to properly plan their schedules accordingly. Additionally, students should also submit requests for documents related to employment opportunities (e.g. support letters) at least three weeks to properly process. Finally, students should also refer to the Rutgers Center for International Faculty and Student Services for any other deadlines and guidelines.

6. New Graduate Student Information
As a new graduate student, it is highly recommended that you spend your first semester in the program familiarizing yourself with the faculty with the aim of identifying a faculty research advisor. Establishing
a research path is the most critical step in your graduate career. A timely goal would be to establish a broad idea of the research area that interests you and meet with potential thesis advisors.

7. Ethics

If you are a TA, a GA, or a Fellow, then you are an employee at Rutgers University. The salary, tuition, and fringe benefits that you receive are in return for work, and it is expected that the work will be done very well. If you are a TA, it is expected that you will do an outstanding job of teaching and grading, and of communicating with the undergraduate students. If you are either a TA, a GA, or a Fellow, it is expected that you will achieve excellent grades, and will complete the graduate program requirements in a timely fashion. It is also expected that you will promptly initiate your own research program with a faculty advisor, and will soon become productive in conducting research and writing papers.

TAs are reviewed after one semester in the program. They are expected to make satisfactory academic progress, and to have a research advisor by the end of their first semester. TAs and Fellows are reviewed again after the end of the spring term. In order to continue as a TA, you must be rated by the Professor and the students in the course as an excellent teacher, you must be making satisfactory academic progress in the graduate program, and you must have a research advisor who indicates that your research is proceeding well. In order to continue as a Fellow, you must have outstanding academic progress in the graduate program, you must have a research advisor who says that your research is proceeding well, and you must have a record of service to either the Electrical or Computer Engineering Department or to the School of Graduate Studies. It is considered a distinct honor to be a Fellow of the Electrical and Computer Engineering Department.

8. Appeals Procedures

Appeals of a decision to recommend dismissal from the graduate program must be made in writing to the Graduate Scholastic Standing Committee. The committee will consider the appeal and vote to sustain or rescind the original recommendation.

Student grievances concerning grades on the Ph.D. qualifying exam should be addressed to the Graduate Director. If the matter is not resolved satisfactorily, the student may appeal in writing to the Graduate Scholastic Standing Committee for a formal review.

Student grievances concerning course grades should be addressed to the instructor of the course. If the matter is not resolved satisfactorily, the student may appeal to the graduate director, who will attempt to resolve the dispute informally. If this attempt is unsuccessful, the student may appeal in writing to the Graduate Scholastic Standing Committee.

Students may appeal decisions of the Graduate Director, Graduate Scholastic Standing Committee, or graduate faculty, in writing, to the Dean of the School of Graduate Studies if they feel that the process by which the electrical and computer engineering graduate program reached its decision was unfair.

9. Financial Aid

Teaching assistantships (TA's) are available to full time graduate students. TA awards are competitive. Candidates are expected to have excellent undergraduate grades and a thorough command of the English language. TA application forms, available from the graduate program coordinator, must be submitted at least four months prior to the desired starting semester.

Graduate assistantships (GA's) are also available. These positions are supported by research grants of individual faculty members. The faculty members should be contacted directly. A list of the faculty and their research interests is given in Appendix B.

Students holding TA/GA positions may not accept employment outside the department without permission of the graduate director and the Dean of the School of Graduate Studies.
There are also a number of fellowships and employment opportunities. The School of Graduate Studies catalog may be consulted for more information.

Information and forms regarding benefits for TA/GA's, such as health insurance, can be obtained from the Department Administrator.

10. Transfer of Credits

Credits may not be transferred from other institutions until 12 credits of graduate courses with grades of B or better have been completed at Rutgers. Only courses in which grades of B or better were received can be considered for transfer. (B- in not transferable.) Research credits are not transferable. Online courses are not transferable. It is the departmental policy that short courses (winter break, spring break, two week courses) cannot be used to satisfy the course requirements for any degree.

A maximum of 12 credits may be transferred towards the M.S. degree. A maximum of 24 course credits may be transferred towards the Ph.D. degree. These credits are normally transferred from the student’s M.S. degree.

Application forms for transfer of credit are available from the graduate program coordinator. The forms are to be submitted to the graduate director for approval and then to the School of Graduate Studies for final approval. They must be accompanied by official transcripts unless the transcripts are already available in the student’s file. Catalog descriptions and/or syllabi indicating texts used must also be submitted.

11. Registration Questions

11.1. Matriculation Continued

A student who wishes to take a leave of absence under extraordinary circumstances may apply for Matriculation Continued status. The student must complete a Matriculation Continued Application available from the graduate program coordinator and submit it to the graduate director for approval.

Pre-qualifying Ph.D. students who have finished all course requirements may register for matriculation continued until they take their qualifying examination. Post-qualifying Ph.D. students are not permitted to register for Matriculation Continued. They must register for one credit of research each semester until they complete their degree.

Master's degree students who have completed all course requirements must register for Matriculation Continued until they complete the M.S. Technical Paper, unless they are engaged in thesis research on campus, in which case they must register for at least one credit of research.

11.2. Application for Readmission

A student who has missed one or two semesters of registration must complete an Application for Readmission and submit it to the graduate director for approval. Students who have missed more than two semesters without registration must file a new Application for Admission through the Graduate Admissions Office.

11.3. Assistantship Registration

Students with TA/GA's must register their assistantship appointments using the "E" credit prefix. Registration is 6 credits per term for full-time TA/GA's and 3 credits for half-time appointments.
11.4. Special Problems Courses

A student taking a Special Problems course must make arrangements with a faculty member to supervise the project and must submit a completed application form to the graduate program coordinator before registering for the course. The student must fill out the "By Arrangement" column on the registration form. The student receives a regular letter grade for the course.

No more than 6 credits of Special Problems will be credited towards the Master's degree and no more than 9 credits towards the Ph.D. degree.

11.5. Undergraduate Courses

In general, no graduate credit is given for undergraduate courses. To register for undergraduate courses, the student must enter the prefix "E" in the credit prefix column of the registration form, and must submit an application form, available from the graduate program coordinator, to the graduate director for approval.

11.6. Non-Credit Courses

Courses taken on a "not for credit" basis require an "N" prefix on the registration form. The student will complete all course work except the final exam and will receive a grade of "S" or "U". Graduate students in the program are not permitted "Pass/Fail" grades for course work.

12. Communication with Students

All graduate students are provided with mailboxes in the Electrical Engineering Building. It is the student's responsibility to inform the graduate program and the School of Graduate Studies of any changes in address and/or telephone number.

This handbook is subject to amendment at any time. Therefore, students should make sure they have the most recent version.

Any questions not covered in this handbook may be addressed to the graduate program coordinator, Mrs. Christy Lafferty, Electrical Engineering Building, Room 134, Busch Campus, (848) 445-2577, or to the graduate director: Professor Yingying Chen, Electrical Engineering Building, Room 134A, Busch Campus, (848) 445-2578. Consultations with Professor Chen are done twice per week during her regular office hours and via email.

13. Practical Training

Two types of practical training are offered by the Electrical and Computer Engineering Department:

1. Optional Practical Training (OPT). This is available to any student who is in good academic standing, and has no more than 1 Incomplete, provided that the Incomplete only occurred during the immediately preceding semester. This training counts against your 1-year time limit of Practical Training after obtaining your degree from Rutgers. In order to apply for OPT, please supply these items to the Graduate Program Coordinator:
   a) A memo to the Graduate Director requesting OPT.
   b) A complete OPT form (which you obtain from Global Services (International Center)).
2. Curricular Practical Training (CPT). This is available to PhD and Master's students (both Thesis and Non-thesis). The CPT is semester-based. The student must be full-time registered during CPT and have completed 2 semesters of study in the Department. The conditions for CPT are:
   a) You, your advisor, and the company that is employing you must be participating in a joint research project, which will become part of your MS thesis/PhD dissertation. Your advisor's letter must indicate the research topic and state that this research work will be an essential part of your MS thesis/PhD dissertation/technical paper. The company letter must have the job description consistent with your advisor's letter.
   b) You must register research courses based on the following requirement:
      1. For Master's Thesis students, you must register for 1 to 3 credits of 16:332:701 or 16:332:702 (Graduate Research) during the period of their CPT. The work involved during their CPT will become part of their MS thesis or technical paper.
      2. For Master's Non-thesis students, you must register for 1 to 3 credits of 16:332:601 or 16:332:602 (Special Problems) with the permission of a faculty member during the period of their CPT. The work involved during their CPT could become part of their technical paper.
      3. For PhD students, you must register for 1 to 3 credits of 16:332:701 or 16:332:702 (Graduate Research) during the period of their CPT. The work involved during their CPT could become part of their PhD dissertation.
   c) You must write a technical report about your CPT research and submit it to the Graduate Director. The report will be reviewed by your advisor and the Graduate Director.

If you meet these criteria, you may apply for CPT in the following way:
   a) Attend a workshop on CPT at the International Center at Rutgers.
   b) Bring the job offer letter, the advisor's letter and the form requesting CPT (which you obtain from the International Center) to the Graduate Director.
Appendix A --- Faculty Research Areas

I. Androulakis Biomedical Engineering, (848) 445-6561, ioannis.androulakis@rutgers.edu; BME 212. Systems biology. Functional links between cellular events, such as signaling transcription and translation. Interactions that include bidirectional links between cells, tissues, organs, environmental signals, and physiological responses.

W. Bajwa Digital Signal Processing, (848) 445-8541, waheed.bajwa@rutgers.edu; CoRE 723. Digital signal processing, high-dimensional inference and inverse problems, compressed sensing, wireless communications.

H. Baruh Mechanical and Aerospace Engineering, (848) 445-3680, baruh@rutgers.edu; ENG B242. Structural dynamics, control of structures using piezoelectric component, impact dynamics, control of systems describing constrained coordinates, autonomous vehicle control, structural damage detection.

G. Burdea Computer Engineering, (848) 445-5309, burdea@rutgers.edu; CoRE 721. Virtual reality systems, force feedback interfaces, medical applications of virtual reality. Telemedicine.

M. Caggiano, Professor Emeritus of Electrical and Computer Engineering, (848) 445-0678, cagg@rutgers.edu; EE-111. High performance and microwave IC device packaging. Electronic circuits.

Y. Chen, Cybersecurity, Networking, Computer Engineering, (848) 445-9151, yingying.chen@rutgers.edu; CoRE 506. Mobile healthcare, Internet of Things (IoT), Cyber Security and Privacy, Connected vehicles, Mobile Computing and Sensing.

S-W. Cheong Physics and Astronomy, (848)445-9023, sange@physics.rutgers.edu; W123. Experimental condensed-matter physics and material science.

D. L. Comaniciu, Siemens Corporate Technology, DORIN.COMANICIU@SIEMENS-HEALTHINEERS.COM Medical imaging, scanner automation. Cardiac modeling, image-guided surgery, biomedical, computer vision, and machine learning.


M. M. Dehnavi Computer Engineering, McGill University, MMEHRIDE@GMAIL.COM Numerical analysis, machine learning, high-performance computing, compiler and library design, cloud computing.
F. Javier Diez-Garcias Mechanical & Aerospace Engineering, (848)445-3665, f.javier.diez@rutgers.edu; ENG B236.
Experimental thermal and fluid sciences, fire safety, sprays, microfluidics, flow diagnostics, turbulence, combustion and energy.

S. El Rouayheb Communications, Cybersecurity, (848) 445-9154, salim.elrouayheb@rutgers.edu; CoRE 717.
Information theory, Coding theory, and their applications to data security and privacy.

T.N. Farris Engineering, (848) 445-2212, tfarris@rutgers.edu; RWH 405.
Aerospace structures and materials. Tribology, manufacturing, fatigue and fracture.

L. C. Feldman Institute of Advanced Materials, Devices and Nanotechnology, (848) 445-4524, lc.feldman@rutgers.edu.
The chemical formation and structure of thin film materials and their applications to problems of semiconductor science and engineering and applications associated with energy. Included in the latter are the fundamentals of photon interactions with solids, and radiation effects in semiconductor materials.

D. Foran Bioinformatics, Rutgers Cancer Institute of New Jersey, (732) 235-6925, foran@cinj.rutgers.edu; Room 3559, Rutgers Cancer Institute of New Jersey.
Design/development/implementation of new approaches in statistical pattern recognition, automated image interpretation and computer assisted decision support for resolving problems in computational biology and diagnostic pathology, radiology and oncology. Development of high-throughput, data-mining technologies and computational methods for characterizing cancer. Work in partnership with basic, clinical and translational researchers to address fundamental problems with cancer detection, precision medicine, disease management, and outcomes studies.

R.H. Frenkiel Communications, (732) 446-7992, frenkiel@winlab.rutgers.edu; WLTC C111.
Wireless systems architecture.

Z. Gajic Systems and Control, (848) 445-3415, zgajic@rutgers.edu; EE 134A.
Singular perturbation methods in control system analysis. Linear stochastic estimation and control. Control of power in optical and wireless networks, fuel and solar cells, and energy systems.

H. Godrich (848) 445-0606, godrich@rutgers.edu; EE 122.
Statistical and array signal processing, distributed detection and estimation with application in radar systems, wireless sensor networks, and smart power grids.

M. Gruteser Communications, (848)932-0993; gruteser@winlab.rutgers.edu; WLTC C114.
Pervasive computing architectures and prototyping; location tracking, location-aware systems and applications; information privacy and security for wireless networks and sensor-based systems.

M. Gurbuzbalaban, Affiliate Member, Management Science and Information Systems, (617)324-0645; mgurbuzbalaban@business.rutgers.edu.
Optimization and computational science driven by applications in large-scale information, decision and infrastructure systems, convex optimization, probability and robust control.

I. Hacihaliloglu Biomedical Engineering, (848) 445-6564; Ilker.hac@soe.rutgers.edu; BME-214.
Biomedical engineering with emphasis on ultrasound-based, computer-assisted surgery, orthopedics, therapy and medical image analysis.
S. J. Hanson  *Physiology Newark (Brain Imaging Center)* (973) 353-5440 x 3952,  
[Jose@rubic.rutgers.edu; Jose@phychology.rutgers.edu](mailto:Jose@rubic.rutgers.edu); Smith Hall 324.  
Learning theory and experiment, connectionist models of human characterization and object recognition, brain imaging – predictive decoding/MVPA and graphical models, event perception, language supporting functions.

**U. Hassan** *Bioelectrical Engineering, Bioelectronics*, (848)445-2164, umer.hassan@rutgers.edu; EE 215.  
Micro/nano sensing for biomedical applications, disease diagnostics and Therapeutics for personalized medicine, BioMEMS & microfluidics and immuno-engineering, predictive prognostics, healthcare systems, point-of-care devices for global health applications.

**R. Howard** Associate Member, *Communications*, (848)932-0905, reh@winlab.rutgers.edu; WLTC A101.  
Low energy sensors/networks, wireless PHY enhancements, HCI technology.

**M. Javanmard** *Electronics*, (848) 445-3382, mehdi.javanmard@rutgers.edu; EE 211.  

**J. Jeon** *Solid State Electronics*.  
Nano-electro-mechanical relay devices, energy-efficient electronics, neural relay devices, neuromorphic systems, advanced materials and process technologies for energy-harvesting.

**S. Jha** *Computer Engineering*, (848) 445-8537, shantenu.jha@rutgers.edu; CoRE-705.  
High-performance and distributed computing, scientific computation, large-scale cyberinfrastructure for supporting scientific and engineering computation.

**J. K.-J. Li** *Biomedical Engineering*, (848) 445-6582, johnkjli@soe.rutgers.edu; BME 305.  
Circulatory dynamics; instrumentation; physiological control.

**J. Lindqvist** *Communications/Computer Engineering*, (848) 445-0610, ianne@winlab.rutgers.edu; CoRE 521.  
Human behavior using computer systems, systems security and privacy, security for mobile systems and pervasive computing, automotive computing.

**Y. Lu** *Solid State Electronics*, (848) 445-3466, ylu@rutgers.edu; EE 236.  
Wide band gap semiconductor (ZnO and GaN) materials and devices, tunable RF components, dielectric thin films, MOCVD growth.

**R. Mammone** *Digital Signal Processing*, (848) 445-5554, rmammone@rutgers.edu; CoRE 518.  
Investigation and applications of new signal extraction algorithms, ultrasound and optical image restoration, speech parameter extraction, equalization of communication channels, machine vision, pattern recognition, expert systems and applications of neuro-networks.

**N. Mandayam** *Communications*, (848) 445-1494, narayan@winlab.rutgers.edu; EE 128.  
Communication theory, spread spectrum, wireless system performance, multi-access protocols, multimedia communications over wireless systems, multiuser detection.

**I. Marsic** *Computer Engineering*, (848) 445-6399, marsic@rutgers.edu; CoRE 711.  
Distributed Systems for Collaborative/Information Processing and Learning-(DISCIPLE), methods of object recognition in wavelet scale, image reconstruction, and machine vision.
R. Martin Computer Science, (848) 445-8304, rmartin@rutgers.edu; CoRE 304.  

S. McAfee Solid State Electronics, (848) 445-5247, sigridmcafee@aol.com; EE 213.  
Fundamental properties of deep levels in semiconductors. Influence of deep levels on the growth parameters of molecular beam epitaxy silicon, metal-organic chemical vapor deposited Al(GaAs) and InGaAsP materials and devices. Semiconductor processing in silicon and III-V materials for basic research and device applications. Fiber optics with emphasis on fiber optic coupling of lasers and waveguides. Electromagnetic field applications in materials and antennas.

J. J. McGarvey Associate Member, Electronic Circuits and Systems, (848) 445-9126, johnmcg@soe.rutgers.edu; EE 218.  
Design and simulation of power electronic systems, control system modeling via both the classic and modern state-space techniques, and motor control systems.

P. Meer Computer Engineering, meer@rutgers.edu.  
Application of modern statistical methods to computer vision and pattern recognition; robust techniques for image understanding; probabilistic algorithms for machine vision problems; representation of semantical visual information.

L. Najafizadeh Nano and Microelectronics, (848) 445-0593, laleh.najafizadeh@rutgers.edu; CoRE 520.  
Brain imaging, microelectronics and circuits design, signal processing and biophotonics.

S. Oh Physics and Astronomy, (848) 445-8754, ohsean@physics.rutgers.edu; W121.  
Molecular beam epitaxy of functional oxides and quantum materials, and low dimensional electronic properties.

S. Orfanidis Digital Signal Processing, (848) 445-5017, sophocles.orfanidis@rutgers.edu; EE 230.  

J. Ortiz Computer Engineering, (848) 445-5243, jorge.ortiz@rutgers.edu; CoRE 519.  
IoT and cyber physical systems, machine learning, intelligent infrastructure and smart buildings, mobile health, sensor networks, machine learning at the edge, application of machine learning to cyber-physical systems in the context of sustainable systems and smart health applications, development of novel machine learning techniques motivated by real-world use cases in these application domains.

M. Parashar Computer Engineering and Science, (848) 445-5388, parashar@rutgers.edu; CoRE 628.  

V. M. Patel Electrical and Computer Engineering, Johns Hopkins University, pvishalm@gmail.com  
Computer vision, signal, image and video processing, biometrics, pattern recognition, mobile security and privacy, radar imaging, computational imaging, compressive sampling, image reconstruction.

A. Petropulu Digital Signal Processing and Communications, (848) 445-0414, athinap@rutgers.edu; CoRE 510.  
Statistical signal processing – system identification; MIMO system estimation; blind source
separation; higher-order statistics. Networking – cooperative protocols for wireless networks; high-speed wireline and wireless traffic modeling; cross-layer approaches. Wireless communications – blind channel estimation and equalization; CDMA systems; OFDM systems. Biomedical engineering – tissue characterization for breast cancer detection based on the ultrasound rf echo; resolution improvement of ultrasound images; Raman spectroscopy for tissue characterization.

D. Pompili Computer Engineering, (848) 445-8533, pompili@rutgers.edu; CoRE 615.

D. Raychaudhuri Communications, (848) 932-0941, ray@winlab.rutgers.edu; WINLAB WTC 103.
Network architecture, design and prototyping; Communication protocols/software; Quality-of-service, mobility management, and content delivery in mobile networks; Wireless system design, including spectrum management, radio MAC/link protocols &; network management; Broadband network technologies.

I. Rodero Associate Member. Computer Engineering, (732)993-8837, irodero@rutgers.edu; CoRE 624.
Parallel and distributed computing; extreme-scale computing; energy/power efficiency, cloud and automatic computing, scalable data management and analytics, big data.

A. Sarwate Signal Processing, (848) 445-8516, anand.sarwate@rutgers.edu; CoRE 517.
Information processing in distributed systems, using tools from machine learning, signal processing, information theory, statistics, and optimization. I am interested in designing methods to learn from data, which is private or sensitive.

S. Sehajpal Associate Member, Electronic Circuits and Systems, (848) 445-5907, sumati@soe.rutgers.edu; EE 216.
Modeling and analyzing electronic systems using modern state-space based control system approach, the class E and class G RF power amplifiers.

G. K. Shoane Biomedical Engineering, (848) 445-6583, shoane@soe.rutgers.edu; BME 306.
Binocular vision; vergence; accommodation model; amblyopia.

D. Silver Computer Engineering, (732)445-5117, dsilver@rutgers.edu; CoRE 709.
Computer graphics, scientific visualization, numerical analysis, computational geometry.

V. K. Singh Library and Information Science, (848) 932-7588, vivek.k.singh@rutgers.edu ; CI 334.
Data analytics-driven sensing and shaping of human behavior.

E. Soljanin Communications and Computer Engineering, (848) 445-5256; emina.soljanin@rutgers.edu; CoRE 511.
Mathematics of distributed systems, in particular concerning mechanisms for efficient, reliable, and secure distributed data storage that provide fast access, download, and streaming of big data files. Coding, information and queuing theory. Applications of probability, algebra, graph and number theory, and combinatorics to distributed systems.

P. Spasojevic Communications, (848) 445-1372, spasojevic@winlab.rutgers.edu ; CoRE 504.
Wireless and wired digital communications, adaptive and statistical signal processing, sequence and channel estimation, multi-user detection; equalization and synchronization, iterative detection, and receiver implementation.
M. Striki Associate Member, Software Engineering, (848) 445-9145, maria.striki@rutgers.edu; EE 115. Analysis/design/optimization of data algorithms, statistical analysis, mathematical modeling, big data, data analytics, social networks, information systems, cybernetics, wireless-mobile-ad-hoc-cellular networks, (secure) routing, mobile computing, network-computer security.

W. Trappe Communications, (848) 445-0611, trappe@winlab.rutgers.edu; CoRE 523. Multimedia and multicast information security, signal, image and video processing, wireless networking, cryptography and network security.

M. Turilli Associate Member, Software Engineering, (848) 445-8540, matteo.turilli@gmail.com; CoRE 707. Parallel and Distributed Computing, Software Design for Distributed Infrastructures, Computer Science, Computer Ethics.

S. Wei Computer Engineering, Cybersecurity, (848) 445-5250, sheng.wei@rutgers.edu; CoRE 508. Hardware security and trust, hardware-enabled system security, heterogeneous system architecture and security, mobile and multimedia systems.

R. Wright Computer Science, (848) 445-5931, rebecca.wright@rutgers.edu; CoRE 404. Computer and communications security, particularly in the areas of privacy, cryptographic protocols, and fault-tolerant distributed computing. Designing protocols, systems, and services that perform their specified computational or communication functions even if some of the participants or underlying components behave maliciously.

M. Wu Communications, Computational Sensing, Solid State Electronics, (848) 445-5393, ctm.wu@rutgers.edu; EE 232. Applied electromagnetics, antennas, passive/active microwave and millimeter-wave components, RF systems and metamaterials.

R. Yates Communications, (848) 445-8515, ryates@winlab.rutgers.edu; CoRE 515. Power control, interference suppression and handoff for wireless networks, multiaccess protocols, discrete time queueing networks.

J. Yi Mechanical and Aerospace Engineering, (848) 445-3282, jgyi@rutgers.edu; ENG D157. Autonomous robotic systems, dynamic systems and control; mechatronics, automation science and engineering.

B. Yuan Computer Engineering, Signal Processing, Communications, (848) 445-9152, bo.yuan@soe.rutgers.edu; CoRE 715. Algorithm and hardware co-design and implementation for machine learning and signal processing systems, error-resilient low-cost computing techniques for embedded and IoT systems and machine learning for domain-specific applications.


Yuqian Zhang Computer Engineering, (848) 445-9139, yqzhang@rutgers.edu; CoRE 719. Machine Learning, Data Science Computer Vision, Signal Processing, Optimization.
J. Zhao *Solid State Electronics* (848) 445-5240, jzhaoeece@gmail.com; jzhao2011@163.com; CoRE 512. Silicon Carbide (SiC) Semiconductor Devices, SiC JFETs, BJT s, MOSFETS, GTOs, High Efficiency Smart Power Integrated Circuits, SiC Sensors, UV and EUV Detectors, SiC Single Photon Detectors, High Temperature Packaging, SiC Power Limiters/Protector/Circuit Breakers, SiC Inverters/Converters.

S. Zonouz *Computer Engineering*, (848) 445-8508, saman.zonouz@rutgers.edu; CoRE 524. Design and implementation for systems and networks security and privacy. Cyber-physical critical infrastructures, embedded systems, operating system security, intrusion detection and forensics analysis, and software reverse engineering.

Q. Zou *Mechanical and Aerospace Engineering*, (848)445-3268, qizzou@rutgers.edu; ENG D101. Precision positioning, inversion-based control theory, scanning probe microscopy; nanofabrication.
Appendix B --- Graduate Courses

16:332:501 (F) SYSTEM ANALYSIS (3)
Fundamentals of linear system concepts via solution of linear differential and difference equations. State space approach for multi-input multi-output (MIMO) linear systems. Introduction to concepts of linear system stability, controllability, observability, and minimal realization.

16:332:502 (F) TECHNOLOGY ENTREPRENEURSHIP (3)
Structure and framework of entrepreneurial endeavors. Phases of a startup, business organization, intellectual property, financing, financial modeling, and business plan writing.

16:332:503 (F) PROGRAMMING METHODOLOGY FOR NUMERICAL COMPUTING AND COMPUTATIONAL FINANCE (3)
Fundamentals of object-oriented programming ad C++ with an emphasis in numerical computing and computational finance. Design Oriented. Topics include: C++ basics, objected oriented concepts, data structures, algorithm analysis and applications.

16:332:504 (F) SENSOR-BASED SYSTEMS AND APPLICATIONS (3)
Corequisite: 16:332:543
The course will develop skills in designing, programming, and testing self-configurable communication protocols and distributed algorithms for wireless sensor networks enabling environmental, health, and seismic monitoring, surveillance, reconnaissance, and targeting.

16:332:505 (S) CONTROL SYSTEM THEORY (3)
Prerequisite: 16:332:501.

16:332:506 (F) APPLIED CONTROLS (3)
Review of state space techniques; transfer function matrices; concepts of controllability, observability and identifiability. Identification algorithms for multivariable systems; minimal realization of a system and its construction from experimental data. State space theory of digital systems. Design of a three mode controller via spectral factorization.

16:332:507 (S) SECURITY ENGINEERING (3)
Essential principles, techniques, tools, and methods for systems security engineering. Students work in small collaborative design teams to propose, build, and document a project focused on securing systems. Students document their work through a series of written and oral proposals, progress reports, and final reports. Basics of security engineering, usability and psychology, human factors in securing systems, mobile systems security, intersection of security and privacy, security protocols, access control, password security, biometrics, and topical approaches such as gesture--based authentication.

16:332:508 (S) DIGITAL CONTROL SYSTEMS (3)
Prerequisite: 16:332:505.
Review of linear discrete-time systems. Sampling of continuous-time liner systems and sampled-data
linear systems. Quantization effects and implementation issues. Computer controlled continuous-time linear systems. Analysis and design of digital controllers via the state space techniques. Linear-quadratic optimal control and Kalman filtering for deterministic and stochastic discrete-time systems.

16:332:509 (S) CONVEX OPTIMIZATION FOR ENGINEERING APPLICATIONS (3)
The course develops the necessary theory, algorithms and tools to formulate and solve convex optimization problems that seek to minimize cost function subject to constraints. The emphasis of the course is on applications in engineering applications such as control systems, computer vision, machine learning, pattern recognition, financial engineering, communication and networks.

16:332:510 (S) OPTIMAL CONTROL SYSTEMS (3)
Prerequisites: 16:332:505 and 16:332:506.
Formulation of both deterministic and stochastic optimal control problems. Various performance indices; calculus of variations; derivation of Euler-Lagrange and Hamilton-Jacobi equations and their connection to two-point boundary value problems, linear regulator and the Riccati equations. Pontryagin's maximum principle, its application to minimum time, minimum fuel and "bang-bang" control. Numerical techniques for Hamiltonian minimization. Bellman dynamic programming; maximum principle.

16:332:512 (S) NONLINEAR AND ADAPTIVE CONTROL THEORY (3)
Prerequisite: 16:332:505.
Nonlinear servo systems; general nonlinearities; describing function and other linearization methods; phase plane analysis and Poincare's theorem. Liapunov's method of stability; Popov criterion; circle criterion for stability. Adaptive and learning systems; identification algorithms and observer theory; input adaptive, model reference adaptive and self-optimizing systems. Estimation and adaptive algorithms via stochastic approximation. Multivariable systems under uncertain environment.

16:332:514 (S) STOCHASTIC CONTROL SYSTEMS (3)
Prerequisite: 16:332:505.

16:332:516 CLOUD COMPUTING AND BIG DATA (3)
The course will introduce fundamental concepts, technologies, and innovative applications of Cloud systems like: Map-Reduce models, Resilient Distributed Datasets (RDDs) operations and Transformations in Spark, Parallel Computing, Graph Problems, peer to peer systems, distributed systems, and more. Moreover, students will obtain hands on experience with contemporary platforms and software used to implement Cloud computing concepts, such as: Spark, Hadoop, HDFS, big data databases like SQL or noSQL, virtualization systems, Kubernetes, Amazon Elastic Cloud Computing (EC2), Kafka.

16:332:519 ADVANCED TOPICS IN SYSTEMS ENGINEERING (3)
Prerequisite: Permission of instructor.
Advanced study of various aspects of automatic control system. Possible topics include identification, filtering, optimal and adaptive control, learning systems, digital and sampled data implementations, singular perturbation theory, large scale systems, game theory, geometric control theory, control of large flexible structures, etc. Topics will vary from year to year.
16:332:521 (F) DIGITAL SIGNALS AND FILTERS (3)
Sampling and quantization of analog signals; Z-transforms; digital filter structures and hardware realizations; digital filter design methods; DFT and FFT and methods and their application to fast convolution and spectrum estimation; introduction to discrete time random signals.

16:332:525 (F) OPTIMUM SIGNAL PROCESSING (3)
Prerequisites: 16:332:521 or Permission of instructor.
Block processing and adaptive signal processing techniques for optimum filtering, linear prediction, signal modeling, and high resolution spectral analysis. Lattice filters for linear prediction and Wiener filtering. Levinson and Schur algorithms and their split versions. Fast Cholesky factorizations. Periodogram and parametric spectrum estimation and superresolution array processing. LMS, RLS, and lattice adaptive filters and their applications. Adaptation algorithms for multilayer neural nets.

16:332:526 (S) ROBOTIC SYSTEMS ENGINEERING (3)

16:332:527 (S) DIGITAL SPEECH PROCESSING (3)
Prerequisite: 16:332:521.
Acoustics of speech generation; perceptual criteria for digital representation of audio signals; signal processing methods for speech analysis; waveform coders; vocoders; linear prediction; differential coders (DPCM, delta modulation); speech synthesis; automatic speech recognition; voice-interactive information systems.

16:332:529 (S) IMAGE CODING AND PROCESSING (3)
Visual information, image restoration, coding for compression and error control, motion compensation, advanced television.

16:332:533 (S) COMPUTATIONAL METHODS FOR SIGNAL RECOVERY (3)
Prerequisites: 16:332:521 and 16:332:541.
Computational methods for estimating signals in noise, for forecasting trends in noisy data, for clustering data for the recognition and detection of patterns in data. Kalman filtering, neural networks, support vector machines, and hidden Markov models. Applications in financial engineering and bioinformatics as well as in more traditional signal processing areas such as speech, image, and array processing, face recognition.

16:332:535 (F) MULTlRESOLUTION SIGNAL PROCESSING ALGORITHMS (3)
Wavelets and subband coding with applications to audio, image, and video processing. Compression and communications issues including low-bit-rate video systems. Design of digital filters for systems with 2 or more channels. Matlab and matrix algorithms for analysis, design, and implementation.

16:332:539 ADVANCED TOPICS IN DIGITAL SIGNAL PROCESSING (3)
Prerequisite: Permission of instructor.
The course deals with selected topics in digital signal processing. Emphasis is given to current research areas. Advanced treatment will be given to such topics as digital filter design, digital filtering of random signals, discrete spectral analysis methods, and digital signal processor architectures. Subject matter may change year to year.
16:332:541 (F) STOCHASTIC SIGNALS AND SYSTEMS (3)
Axioms of probability; conditional probability and independence; random variables and functions thereof; mathematical expectation; characteristic functions; conditional expectation; Gaussian random vectors; mean square estimation; convergence of a sequence of random variables; laws of large numbers and Central Limit Theorem; stochastic processes, stationarity, autocorrelation and power spectral density; linear systems with stochastic inputs; linear estimation; independent increment, Markov, Wiener, and Poisson processes.

16:332:542 (S) INFORMATION THEORY AND CODING (3)
Prerequisite: 16:332:541.
Noiseless channels and channel capacity; entropy, mutual information, Kullback-Leibler distance and other measures of information; typical sequences, asymptotic equipartition theorem; prefix codes, block codes, data compression, optimal codes, Huffman, Shannon-Fano-Elias, Arithmetic coding; memoryless channel capacity, coding theorem and converse; Hamming, BCH, cyclic codes; Gaussian channels and capacity; coding for channels with input constraint; introduction to source coding with a fidelity criterion.

16:332:543 (F) COMMUNICATION NETWORKS I (3)
Prerequisite: 14:332:226 or equivalent or 16:332:541 or equivalent.

16:332:544 (S) COMMUNICATION NETWORKS II (3)
Prerequisite: 16:332:543.
Network and protocol architectures. Layered connection management, including network design, path dimensioning, dynamic routing, flow control, and random access algorithms. Protocols for error control, signaling, addressing, fault management, and security control.

16:332:545 (S) DIGITAL COMMUNICATION SYSTEMS (3)
Prerequisite: 16:332:541.
Signal space and Orthonormal expansions, effect of additive noise in electrical communications vector channels, waveform channels, matched filters, bandwidth and dimensionality. Digital modulation techniques. Optimum receiver structures, probability of error, bit and block signaling, Intersymbol interference and its effects, equalization and optimization of baseband binary and M-ary signaling schemes; introduction to coding techniques.

16:332:546 (S) WIRELESS COMMUNICATIONS TECHNOLOGIES (3)
Prerequisite: 16:332:545
Propagation models and modulation techniques for wireless systems, receivers for optimum detection on wireless channels, effects of multiple access and intersymbol interference, channel estimation, TDMA and CDMA cellular systems, radio resource management, mobility models.

16:332:548 (S) ERROR CONTROL CODING (3)
Prerequisite: 16:332:545.
Continuation of 16:332:545. Application of information-theoretic principles to communication system analysis and design. Source and channel coding considerations, rudiments of rate-distortion theory. Probabilistic error control coding impact on system performance. Introduction to various channel models of practical interest, spread spectrum communication fundamentals. Current practices in modern digital communication system design and operation.
16:332:549 (S) DETECTION AND ESTIMATION THEORY (3)
Prerequisite: 16:332:541.
Statistical decision theory, hypothesis testing, detection of known signals and signals with unknown parameters in noise, receiver performance and error probability, applications to radar and communications. Statistical estimation theory, performance measures and bounds, efficient estimators. Estimation of unknown signal parameters, optimum demodulation, applications, linear estimation, Wiener filtering, Kalman filtering.

16:332:553 (S) WIRELESS ACCESS TO INFORMATION NETWORKS (3)
Prerequisites: 14:332:349 and 14:332:450 or equivalent.
Cellular mobile radio; cordless telephones; systems architecture; network control; switching; channel assignment techniques; short range microwave radio propagation; wireless information transmission including multiple access techniques, modulation, source coding, and channel coding.

16:332:556 (S) MICROWAVE COMMUNICATION SYSTEMS (3)
Prerequisite: 16:332:580 or equivalent.
Overview of modern microwave engineering including transmission lines, network analysis, integrated circuits, diodes, amplifier and oscillator design. Microwave subsystems including front-end and transmitter components, antennas, radar terrestrial communications, and satellites.

16:332:559 ADVANCED TOPICS IN COMMUNICATIONS ENGINEERING (3)
Prerequisite: Permission of instructor.
Topics such as source and channel coding, modern modulation techniques, wireless communication networks, networks security, and information processing. Subject matter changes from year to year.

16:332:560 (F) COMPUTER GRAPHICS (3)

16:332:561 (F) MACHINE VISION (3)
Prerequisite: 16:332:501.

16:332:562 (S) VISUALIZATION AND ADVANCED COMPUTER GRAPHICS (3)
Prerequisite: 16:332:560 or permission of instructor.
Advanced visualization techniques, including volume representation, volume rendering, ray tracing, composition, surface representation, advanced data structures. User interface design, parallel and object-oriented graphic techniques, advanced modeling techniques.

16:332:563 (F) COMPUTER ARCHITECTURE I (3)
Fundamentals of computer architecture using quantitative and qualitative principles. Instruction set design with examples and measurements of use, basic processor implementation: hardwired logic and microcode, pipelining; hazards and dynamic scheduling, vector processors, memory hierarchy; caching, main memory and virtual memory, input/output, and introduction to parallel processors; SIMD and MIMD organizations.
16:332:564 (S) COMPUTER ARCHITECTURE II (3)
Prerequisite: 16:332:563.
Advanced hardware and software issues in main-stream computer architecture design and evaluation. Topics include register architecture and design, instruction sequencing and fetching, cross-branch fetching, advanced software pipelining, acyclic scheduling, execution efficiency, predication analysis, speculative execution, memory access ordering, prefetch and preloading, cache efficiency, low power architecture, and issues in multiprocessors.

16:332:565 (F) NEUROCOMPUTER SYSTEM DESIGN (3)
Prerequisites: 16:332:563.
Principles of neural-based computers, data acquisition, hardware architectures for multilayer, tree and competitive learning neural networks, applications in speech recognition, machine vision, target identification and robotics.

16:332:566 (S) INTRODUCTION TO PARALLEL AND DISTRIBUTED COMPUTING (3)
Prerequisite: 16:332:563.
Introduction to the fundamental of parallel and distributed computing including systems, architectures, algorithms, programming models, languages and software tools. Parallelization and distribution models; parallel architectures; cluster and networked meta-computing systems; parallel/distributed programming; parallel/distributed algorithms, data-structures and programming methodologies, applications; and performance analysis. A "hands-on" course with programming assignments and a final project.

16:332:567 (F) SOFTWARE ENGINEERING I (3)
Overview of software development process. Formal techniques for requirement analysis, system specification and system testing. Distributed systems. System security and system reliability. Software models and metrics. Case studies.

16:332:568 (S) SOFTWARE ENGINEERING WEB APPLICATIONS (3)
Prerequisite: 16:332:567.
The course focus is on Web software design with particular emphasis on mobile wireless terminals. The first part of the course introduces tools; Software component (Java Beans), Application frameworks, Design patterns, XML, Communication protocols, Server technologies, and Intelligent agents. The second part of the course presents case studies of several Web applications. In addition, student teams will through course projects develop components for an XML-Based Web, such as browsers, applets, servers, and intelligent agents.

16:332:569 (F) DATABASE SYSTEM ENGINEERING (3)
Relational data model, relational database management system, relational query languages, parallel database systems, database computers, and distributed database systems.

16:332:570 (S) ROBUST COMPUTER VISION (3)
Prerequisite: 16:332:561.
A toolbox of advanced methods for computer vision, using robust estimation, clustering, probabilistic techniques, invariance. Applications include feature extraction, image segmentation, object recognition, and 3-D recovery.

16:332:571 (S) VIRTUAL REALITY TECHNOLOGY (3)
Prerequisite: 16:332:560.
16:332:572 (S) PARALLEL AND DISTRIBUTED COMPUTING (3)
Study of the theory and practice of applied parallel/distributed computing. The course focuses on advanced topics in parallel computing including current and emerging architectures, programming models, application development frameworks, runtime management, load-balancing and scheduling, as well as emerging areas such as autonomic computing, Grid computing, pervasive computing and sensor-based systems. A research-oriented course consisting of reading, reviewing and discussing papers, conducting literature surveys, and a final project.

16:332:573 (S) DATA STRUCTURES AND ALGORITHM (3)
The objective is to take graduate students in all graduate School of Engineering fields with a good undergraduate data structures and programming background and make them expert in programming the common algorithms and data structures, using the C and C++ programming languages. The students will perform laboratory exercises in programming the commonplace algorithms I C and C++. The students will also be exposed to computation models and computational complexity.

16:332:574 (F) COMPUTER-AIDED DIGITAL VLSI DESIGN (3)
Advanced computer-aided VLSI chip design, CMOS and technology, domino logic, pre-charged busses, case studies of chips, floor planning, layout synthesis, routing, compaction circuit extraction, multi-level circuit simulation, circuit modeling, fabrication processes and other computer-aided design tools.

16:332:575 (S) VLSI ARRAY PROCESSORS (3)
Prerequisite: 16:332:574
VLSI technology and algorithms; systolic and wavefront-array architecture; bit-serial pipelined architecture; DSP architecture; transputer; interconnection networks; wafer-cscale integration; neural networks.

16:332:576 (S) TESTING OF ULTRA LARGE SCALE CIRCUITS (3)
Prerequisite: 16:332:563.

16:332:577 (S) ANALOG AND LOW-POWER DIGITAL VLSI DESIGN (3)
Transistor design and chip layout of commonly-used analog circuits such as OPAMPS, A/D and D/A converters, sample-and-hold circuits, filters, modulators, phase-locked loops, and voltage-controlled oscillators. Low-power design techniques for VLSI digital circuits, and system-on-a-chip layout integration issues between analog and digital cores.

16:332:578 (S) DEEP SUBMICRON VLSI DESIGN (3)
Prerequisite: 14:332:574 CAD Digital VLSI Design
Advanced topics in deep submicron and nanotechnology VLSI design and fabrication. Logic and state machine design for high performance and low power. Tree adders and Booth multipliers. Memory design. Timing testing for crosswalk faults. Design economics. Emerging nanotechnology devices.

16:332:579 ADVANCED TOPICS IN COMPUTER ENGINEERING (3)
Prerequisite: Permission of instructor.
In-depth study of topics pertaining to computer engineering such as microprocessor system design; fault-tolerant computing; real-time system design. Subject areas may vary from year to year.
16:332:580 (F) ELECTRIC WAVES AND RADIATION (3)
Prerequisite: A course in elementary electromagnetics.
Static boundary value problems, dielectrics, wave equations, propagation in lossless and lossy media, boundary problems, waveguides and resonators, radiation fields, antenna patterns and parameters, arrays, transmit-receive systems, antenna types.

16:332:581 (F) INTRODUCTION TO SOLID STATE ELECTRONICS (3)
Introduction to quantum mechanics; WKB method; perturbation theory; hydrogen atom; identical particles; chemical bonding; crystal structures; statistical mechanics; free-electron model; quantum theory of electrons in periodic lattices.

16:332:583 (F) SEMICONDUCTOR DEVICES I (3)
Charge transport, diffusion and drift current, injection, lifetime, recombination and generation processes, p-n junction devices, transient behavior, FET's, I-V, and frequency characteristics, MOS devices C-V, C-f and I-V characteristics, operation of bipolar transistors.

16:332:584 (S) SEMICONDUCTOR DEVICES II (3)
Prerequisite: 16:332:583.
Review of microwave devices, O and M-type devices, microwave diodes, Gunn, IMPATT, TRAPATT, etc., scattering parameters and microwave amplifiers, heterostructures and III-V compound based BJT's and FET's.

16:332:585 (S) SUSTAINABLE ENERGY (3)
The course develops the necessary analysis tools to assess different technologies in terms of cost, efficiency and impact and uses them to assess all major non-renewable and renewable energy sources.

16:332:586 BIOSENSING AND BIOELECTRONICS (3)
This course covers state-of-the-art and emerging biosensors, biochips, microfluidics, which will be studied in the context of molecular diagnostics. Topics will include microfluidics and mass transfer limits, electrode-electrolyte interfaces, electrochemical noise processes, biosensor system level characterization, determination of performance parameters such as throughput, detection limit, and cost, integration of sensor with microfluidics, and electronic readout circuitry architectures, Novel nanobiosensors such as nanopores, nanowire FETS, surface plasmon resonance, surface enhanced Raman scattering, fluorescence and single molecule detection will also be covered.

16:332:587 (F) TRANSISTOR CIRCUIT DESIGN (3)
Design of discrete transistor circuits; amplifiers for L.F., H.F., tuned and power applications biasing; computer-aided design; noise; switching applications; operational amplifiers; linear circuits.

16:332:588 (S) INTEGRATED TRANSISTOR CIRCUIT DESIGN (3)
Prerequisite: 16:332:587.
Design of digital integrated circuits based on NMOS, CMOS, bipolar BiCMOS and GaAs FETs; fabrication and modeling; analysis of saturating and non-saturating digital circuits, sequential logic circuits, semiconductor memories, gate arrays, PLA and GaAs LSI circuits.

16:332:589 (S) RF INTEGRATED CIRCUIT DESIGN (3)
Basic concepts in RF design, analysis of noise, transceiver architectures, analysis and design of RF integrated circuits for modern wireless communications systems: low noise amplifiers, mixers, oscillators, phase-locked loops.
16:332:590 SOCIALLY COGNIZANT ROBOTICS (3)
This course covers the foundations of robotics and state-of-the-art developments so students can learn the expected trajectory of robot capabilities that will impact individuals and society. The course integrates technical foundations with cognitive and social sciences and student course projects will consider societal implications of robotics systems.

16:332:591 (F) OPTOELECTRONICS I (3)
Prerequisites: 16:332:580, and 581 or 583.
Waveguides and optical filters, optical resonators, principles of laser action, light emitting diodes, semiconductor lasers, optical amplifiers, optical modulators and switches, photodetectors, wavelength-division-multiplexing and related optical devices.

16:332:592 (S) OPTOELECTRONICS II (3)
Prerequisite: 16:332:591.

16:332:594 (F) SOLAR CELLS (3)
Prerequisite: 16:332:583 or equivalent.
Photovoltaic material and devices, efficiency criteria, Schottky barrier, p-n diode, heterojunction and MOS devices, processing technology, concentrator systems, power system designs and storage.

16:332:597 (S) MATERIAL ASPECTS OF SEMICONDUCTORS (3)
Prerequisite: 16:332:581.
Preparation of elemental and compound semiconductors. Bulk crystal growth techniques. Epitaxial growth techniques. Impurities and defects and their incorporation. Characterization techniques to study the structural, electrical and optical properties.

16:332:599 ADVANCED TOPICS IN SOLID-STATE ELECTRONICS (3)
Prerequisite: Permission of instructor.
Semiconductor materials, surfaces and devices; opto-electronic devices; sensors; photovoltaics; fiber optics; and analog/digital circuit design. Subject areas may vary from year to year.

16:332:601, 602 SPECIAL PROBLEMS (BA, BA)
Prerequisite: Permission of instructor.
Investigation in selected areas of electrical engineering.

16:332:618 SEMINAR IN SYSTEMS ENGINEERING (1)
Presentation involving current research given by advanced students and invited speakers. Term papers required.

16:332:638 SEMINAR IN DIGITAL SIGNAL PROCESSING (1)
Presentation involving current research given by advanced students and invited speakers. Term papers required.
16:332:640 ROBOTICS AND SOCIETY (3)
This course will examine the interplay of robotics technology and society. A sequence of foundational discussions will provide both technical and social science students with core skills for effective cross-disciplinary exploration. The course will examine the interaction between social and technical systems to consider how new and existing technologies affect and are affected by society and policy, as well as giving students an understanding of the ethics, unintended consequences, and social implications of robotics.

16:332:658 SEMINAR IN COMMUNICATIONS ENGINEERING (1)
Presentation involving current research given by advanced students and invited speakers. Term papers required.

16:332:678 SEMINAR IN COMPUTER ENGINEERING (1)
Presentation involving current research given by advanced students and invited speakers. Term papers required.

16:332:698 SEMINAR IN SOLID-STATE ELECTRONICS (1)
Presentation involving current research given by advanced students and invited speakers. Term papers required.

16:332:699 COLLOQUIUM IN ELECTRICAL & COMPUTER ENGINEERING (0)
Research presentations by distinguished lecturers.

16:332:701,702 RESEARCH IN ELECTRICAL ENGINEERING (BA, BA)
Research supervised by faculty in the Department of Electrical and Computer Engineering. Typically 1 to 3 credits per semester.