Abstract

• Patients with Type-1 diabetes suffer from lack of insulin due to autoimmune destruction of the pancreatic beta cells.
• To solve this issue, patients use an insulin pump to keep proper blood glucose levels.
• Complications arise when blood glucose levels are too high, too low, or unstable.

Background

• Artificial Pancreas: This is a device that automatically supplies insulin based on blood glucose levels. It consists of 3 components: a glucose sensor, and infusion pump, and a controller.
• AP Controller: Takes in signals from glucose sensor and outputs the necessary insulin. The controller consists of a feed forward network for preemptive external changes and feedback network from insulin output.
• Blood-Glucose System: Refers to the anatomical system that deals with insulin and blood glucose levels. This system is broken down into the block diagram shown on the right.

Research Challenges

• Achieving proper differential equation solutions for each stage of the controller.
• Creating the feedforward controller.
• Implementing controller into Simulink consisting of block diagrams as well as Matlab functions.
• Tuning the PID controller to achieve desired output.

Methodology

• First step is to find and solve differential equations needed for the controller.

\[\dot{G}_s(t) = -k_s G_s(t) + k_g G(t), \]

Diff Eq. for sensor information

• Next is to map out order of system. This is seen through the block diagram.
• Final step is to map it to Simulink in order to simulate the response.

Results/Future Work

• After running the simulation we see that the Blood Glucose stayed fairly close to our set value of 80 mg/dl.
• The important thing to note is that the blood glucose did not drop below 60 mg/dl, which could cause severe hypoglycemia.

Acknowledgement

We would like to thank Prof. Gojic for being advisor. We would also like to thank Ahmad Haidar for his article titled ‘The Artificial Pancreas’.

References