Goal

- Our goal is to create a low-cost option other than the guide dog for the blind and visually impaired people. We implement a mobile application that detects and classifies objects from cropping image frames using a camera while offering the voice feedback feature to improve the usability of our application for the blind. Additionally, with the real-time location sharing feature, friends and family members of the blind can also track his or her location for a better safety.

Motivations and Objectives

- **Motivations**
 - The costs for most of current blind people assistants are high. For example, a guide dog costs about $60,000 in the process of training, and this process takes 1 - 2 years on average.
 - Most of current blind people assistants have limitations on the capacity. A guide dog is only able to serve for about 8 - 10 years, and it cannot recognize a specific object for blind people.
 - Android smartphones now popularize among people. Most of applications on Android devices are free and easy to use.

- **Objectives**
 - Object detection and classification
 - Obstacle distance measurement
 - Real-Time location sharing
 - Clear and accurate voice feedback

Research Challenges

- For our specific scenario, we need to train new models for object detection because the existing pre-trained models do not include the classifiers for specific traffic signs, road signs, etc.
- In addition, we need to design a system for obstacle avoidance which requires the distance measurements, while we have to find a good threshold for the voice feedback time-interval-wise.
- Accurate and far enough distance measurement requires professional sensors. Multiple sensors are needed for direction detection.
- Merging four different modules into one Android application.

Acknowledgement

We would like to thank our advisor Professor Yingying Chen for providing solid supports in this project and Dr. Godrich for the helpful advice.

Methods

- **Procedures**
 - Our goal is to create a low-cost option other than the guide dog for the blind and visually impaired people. We implement a mobile application that detects and classifies objects from cropping image frames using a camera while offering the voice feedback feature to improve the usability of our application for the blind. Additionally, with the real-time location sharing feature, friends and family members of the blind can also track his or her location for a better safety.

- **Distance Measurement unit**
 - Image of distance measurement unit
 - Image of parts in the box

- **User Interface**
 - Image of homepage
 - Image of sidebar
 - Image of the system detecting objects
 - Image of the system tracking user in real-time

- **Object Detection**
 - Image of YOLO real-time detection system
 - Image of SSD pretty similar as YOLO

- **Distance Measurement**
 - Image of training the model

References

1. Tensorflow Object Detection API: https://github.com/tensorflow/models/tree/master/research/object_detection
3. Google Firebase: https://firebase.google.com