18

Radiation from Apertures

18.1 Field Equivalence Principle

The radiation fields from aperture antennas, such as slots, open-ended waveguides,
horns, reflector and lens antennas, are determined from the knowledge of the fields
over the aperture of the antenna.

The aperture fields become the sources of the radiated fields at large distances. This
is a variation of the Huygens-Fresnel principle, which states that the points on each
wavefront become the sources of secondary spherical waves propagating outwards and
whose superposition generates the next wavefront.

Let E,, H, be the tangential fields over an aperture A, as shown in Fig. 18.1.1. These
fields are assumed to be known and are produced by the sources to the left of the screen.
The problem is to determine the radiated fields E(r), H(r) at some far observation point.

The radiated fields can be computed with the help of the field equivalence principle
[1288-1295,1685], which states that the aperture fields may be replaced by equivalent
electric and magnetic surface currents, whose radiated fields can then be calculated using
the techniques of Sec. 15.10. The equivalent surface currents are:

Js=nXxXH, (electric surface current)

(18.1.1)

Jms = —A X Eg4 (magnetic surface current)

where 1 is a unit vector normal to the surface and on the side of the radiated fields.

Thus, it becomes necessary to consider Maxwell’s equations in the presence of mag-
netic currents and derive the radiation fields from such currents.

The screen in Fig. 18.1.1 is an arbitrary infinite surface over which the tangential
fields are assumed to be zero. This assumption is not necessarily consistent with the
radiated field solutions, that is, Egs. (18.4.9). A consistent calculation of the fields to
the right of the aperture plane requires knowledge of the fields over the entire aperture
plane (screen plus aperture.)

However, for large apertures (with typical dimension much greater than a wave-
length), the approximation of using the fields E,, H; only over the aperture to calculate
the radiation patterns is fairly adequate, especially in predicting the main-lobe behavior
of the patterns.
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observation point

E(r), H(r)

Fig. 18.1.1 Radiated fields from an aperture.

The screen can also be a perfectly conducting surface, such as a ground plane, on
which the aperture opening has been cut. In reflector antennas, the aperture itself is
not an opening, but rather a reflecting surface. Fig. 18.1.2 depicts some examples of
screens and apertures: (a) an open-ended waveguide over an infinite ground plane, (b)
an open-ended waveguide radiating into free space, and (c) a reflector antenna.
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Fig. 18.1.2 Examples of aperture planes.

There are two alternative forms of the field equivalence principle, which may be used
when only one of the aperture fields E,; or H; is available. They are:

Js = 0
. (perfect electric conductor) (18.1.2)
Jms = —2(A X Eg)
Js =2(0 X Hg)
(perfect magnetic conductor) (18.1.3)
Jms =0

They are appropriate when the screen is a perfect electric conductor (PEC) on which
E; = 0, or when it is a perfect magnetic conductor (PMC) on which H; = 0. On the
aperture, both E; and H, are non-zero.
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Using image theory, the perfect electric (magnetic) conducting screen can be elimi-
nated and replaced by an image magnetic (electric) surface current, doubling its value
over the aperture. The image field causes the total tangential electric (magnetic) field to
vanish over the screen.

If the tangential fields E;, H; were known over the entire aperture plane (screen plus
aperture), the three versions of the equivalence principle would generate the same radi-
ated fields. But because we consider E,, H; only over the aperture, the three versions
give slightly different results.

In the case of a perfectly conducting screen, the calculated radiation fields (18.4.10)
using the equivalent currents (18.1.2) are consistent with the boundary conditions on
the screen.

We provide a justification of the field equivalence principle (18.1.1) in Sec. 18.10
using vector diffraction theory and the Stratton-Chu and Kottler formulas. The modified
forms (18.1.2) and (18.1.3) are justified in Sec. 19.2 where we derive them in two ways:
one, using the plane-wave-spectrum representation, and two, using the Franz formulas
in conjunction with the extinction theorem discussed in Sec. 18.11, and discuss also
their relationship to Rayleigh-Sommerfeld diffraction theory of Sec. 19.1.

18.2 Magnetic Currents and Duality

Next, we consider the solution of Maxwell’s equations driven by the ordinary electric
charge and current densities p, J, and in addition, by the magnetic charge and current
densities pm, Jm-

Although p,, J are fictitious, the solution of this problem will allow us to identify
the equivalent magnetic currents to be used in aperture problems, and thus, establish
the field equivalence principle. The generalized form of Maxwell’s equations is:

V XH=J+ jweE
1
E= Ep
(18.2.1)
VXE=—~Jn—jwuH
1
V-H= Epm

There is now complete symmetry, or duality, between the electric and the magnetic
quantities. In fact, it can be verified easily that the following duality transformation
leaves the set of four equations invariant:

E— H J— Jm A — Ap
H— —-E P — Pm P — Pm
€ — U Jm_’_J Am_’_A
u— € Pm — =P  Pm — —@

(duality) (18.2.2)

where @, A and @, A are the corresponding scalar and vector potentials introduced
below. These transformations can be recognized as a special case (for & = 11/2) of the
following duality rotations, which also leave Maxwell’s equations invariant:
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[ E nJ np’}:[ oS & sintx}[ E nJ np] (18.2.3)
nH I, pn —-sinx cos«x nH Jm Pm o

Under the duality transformations (18.2.2), the first two of Egs. (18.2.1) transform
into the last two, and conversely, the last two transform into the first two.

A useful consequence of duality is that if one has obtained expressions for the elec-
tric field E, then by applying a duality transformation one can generate expressions for
the magnetic field H. We will see examples of this property shortly.

The solution of Eq. (18.2.1) is obtained in terms of the usual scalar and vector po-
tentials @, A, as well as two new potentials @,, A, of the magnetic type:

1
E=-Vp - jwA- ngAm
1 (18.2.4)
H= —V(pm—ijm-kEVxA

The expression for H can be derived from that of E by a duality transformation of
the form (18.2.2). The scalar and vector potentials satisfy the Lorenz conditions and
Helmholtz wave equations:

V. A+ jweup =0 V:-Ap+jwen @m =0

V2@ + k2@ = —g and  Vi@m+ K@y, = -m (18.2.5)
VPA+ KA = —uJ V2Am + kK*Am = —€ Jm
e-JkIF-F|
The solutions of the Helmholtz equations are given in terms of G(r — ¥ )= m :
1 J J r 1 / 4
P = | Zpt1Gr-rav, enn - jvﬁpmmc(r— v)dv
(18.2.6)

A(r) = IVHJ(H)G(r— ¥)dv', Ap(r = jvejm(r')G(r— ¥)dv’

where V is the volume over which the charge and current densities are nonzero. The
observation point ris taken to be outside this volume. Using the Lorenz conditions, the
scalar potentials may be eliminated in favor of the vector potentials, resulting in the
alternative expressions for Eq. (18.2.4):

= - ! [V(V-A)+k2A]71VxAm
Jjwue €
1 1 (18.2.7)
= - [V(V-Ap)+K*Ap] + —V XA
Jwue H
These may also be written in the form of Eq. (15.3.9):
1 1
= ——[VX (VXA -puJl-- VXA,
Jjwpue €
1 1 (18.2.8)
= - [VX (VXA —€Jm]l+—V XA
Jwpue u
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Replacing A, A, in terms of Eq. (18.2.6), we may express the solutions (18.2.7) di-
rectly in terms of the current densities:

= L J [K2JG + (J-V)IV'G - jweJm x V' G|dV’
Jwe Jv
1 (18.2.9)
= J [K2Jm G+ (Jm - V)V'G + jou Jx V' GldV’
Jwu Jv
Alternatively, if we also use the charge densities, we obtain from (18.2.4):
E= j [—juJG + EV'G — I X V'GldV’
v
(18.2.10)

H= J [—jweTmG + %’” VG4 IxV'GldV’
Vv

18.3 Radiation Fields from Magnetic Currents

The radiation fields of the solutions (18.2.7) can be obtained by making the far-field
approximation, which consists of the replacements:

o JKIF-F| oIk

Gr-v)= e®" and V =~ —jk (18.3.1)

T amr—vr|  amr
where k = kt. Then, the vector potentials of Eq. (18.2.6) take the simplified form:

r e—jkr
yp— F(0,¢), Am(r)=emFm(9,¢>) (18.3.2)

ek
A(n=u

where the radiation vectors are the Fourier transforms of the current densities:

F(0,$) = jvﬂmefk'“dv'

(radiation vectors) (18.3.3)

Fn (0, ) = jVJ,n(r’)efk'“dv'

Setting J = J,, = 0 in Eq. (18.2.8) because we are evaluating the fields far from the
current sources, and using the approximation V = —jk = —jkt, and the relationship
k/e = wn, we find the radiated E and H fields:

—jkr
E= —jo[tx (AXH)-nEx An] = —jk X [NFxE - Fn]
_ o (18.3.4)
H= JT‘*’[nfx (Am X 1) +i x A] = JF S Ex [NF+ F x ]

These generalize Eq. (15.10.2) to magnetic currents. As in Eq. (15.10.3), we have:

H=—fXE (18.3.5)

1
n

804 18. Radiation from Apertures

Noting that ¥ X (FX )= éFg + <i>F¢ andt X F = (i)Fg — 9F¢, and similarly for F,,
we find for the polar components of Eq. (18.3.4):

—jkr N
E= —jk —[0(NFo + Fug) + (NF i ~ Fmo) |
. (18.3.6)
K e (Ey — Fuo) - (1Fo + Fmg) ]
H= N anr NEFy — Fmo NnFo + Fme

The Poynting vector is given by the generalization of Eq. (16.1.1):

2

1 N k
T—ERE(EXH*)—I'W

[INFo + Fme!? + InFp — Frol?] =P,  (18.3.7)
and the radiation intensity:
2

_ dl _ 42 _ k 2 2
U,¢)= a0 =" Py = 321T2n[|nl~"9 + Fmel® + INFp — Fmol?] (18.3.8)

18.4 Radiation Fields from Apertures

For an aperture antenna with effective surface currents given by Eq. (18.1.1), the volume
integrations in Eq. (18.2.9) reduce to surface integrations over the aperture A:

E:_Lj [Us - V)IV'G+KJs G — jwe Jms X V' G]dS’
JWE JA
1 (18.4.1)
H= 7{ [(Jms'v’)V,G+k21m3G+jqusxv,G]dS’
JWH JA

and, explicitly in terms of the aperture fields shown in Fig. 18.1.1:

= J&J [(Ax Hy) V' (V'G)+k?(h x Ha) G + jwe (h x Eq)xV'G|dS’
A
1

H= —J [—(AX Eq) V' (V'G)—k2 (A X Eq)G + joop (A X Hy) XV’ G]dS’
Jjop Ja

(18.4.2)

These are known as Kottler’s formulas [1293-1298,1287,1299-1302,1324]. We derive

them in Sec. 18.12. The equation for H can also be obtained from that of E by the

application of a duality transformation, that is, E; — Hy, H; — —E; and € — U, u — €.

In the far-field limit, the radiation fields are still given by Eq. (18.3.6), but now the

radiation vectors are given by the two-dimensional Fourier transform-like integrals over
the aperture:

F(0,¢) = J Js(F)elkr ds’ = J Ax Hy(F)e*r ds

4 4 (18.4.3)

Fn(0,¢) = J Tms (F)e/®7 ds’ = 7J Ax Eq(F)e*" ds’
A A
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Fig. 18.4.1 Radiation fields from an aperture.

Fig. 18.4.1 shows the polar angle conventions, where we took the origin to be some-
where in the middle of the aperture A.

The aperture surface A and the screen in Fig. 18.1.1 can be arbitrarily curved. How-
ever, a common case is to assume that they are both flat. Then, Egs. (18.4.3) become
ordinary 2-d Fourier transform integrals. Taking the aperture plane to be the xy-plane
as in Fig. 18.1.1, the aperture normal becomes i = 2, and thus, it can be taken out of
the integrands. Setting dS’ = dx’dy’, we rewrite Eq. (18.4.3) in the form:

FO,8) = [ Ji)er dvdy = ox [ Ha()e” dndy
4 4 (18.4.4)
Fn(0,¢) = J Tms (F)el®T dx'dy’ = —2 XJ Eo(F)e*" dx' dy’
A A

where e/k7 = /KX +jkY" and ky = kcos ¢psin0, ky, = ksin¢ sin 0. It proves conve-
nient then to introduce the two-dimensional Fourier transforms of the aperture fields:

f<9,¢>=j Eq(F)e/* " dx'dy’ :J Eq(X,y") X4k gy’ dy’
A A

(18.4.5)
9(0,¢)= J Hy(F)e*" dx'dy’ = J Hy (X', y") e/ w0 dy' dy’
A A
Then, the radiation vectors become:
F(0,¢p) =2xg(0,p)
(18.4.6)

Fp(0,¢) = -2 x f(6,p)

Because E;, H; are tangential to the aperture plane, they can be resolved into their
cartesian components, for example, E; = X Egx + ¥ Egy. Then, the quantities f; g can be
resolved in the same way, for example, f= X fx + V. Thus, we have:
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F=2Xg=2X (Xgx+Y3y)=V9x —Xgy

Fn=-2xf=-2x Xfx+Vf)=%Xfy —V/x
The polar components of the radiation vectors are determined as follows:

(18.4.7)

Fy =0-F=0- (Ygx —Xgy) = gxsin¢ cos 0 — gy cos ¢ cos

where we read off the dot products (0-%) and (0 - y) from Eq. (15.8.3). The remaining
polar components are found similarly, and we summarize them below:

Fo

—cos 0 (gy cos p — gxsin¢)
Fy = gxcose + gysing

(18.4.8)
Fme = cos 0 (fy cos ¢ — fxsing)
Fmg¢ = —(fxcos ¢ + ) sing)
It follows from Eq. (18.3.6) that the radiated E-field will be:
e—jkr
Ep =jkm[(fxcos¢> + fysing) +ncos 0 (gy cos P — gxsine) |
: (18.4.9)
e kr ) )
E¢ = jk drr [cos O (fy cosp — fysinp) —n(gxcosp + gysine) |

The radiation fields resulting from the alternative forms of the field equivalence
principle, Egs. (18.1.2) and (18.1.3), are obtained from Eq. (18.4.9) by removing the g- or
the f-terms and doubling the remaining term. We have for the PEC case:

. eIkr .
Eg = 2jk i [fxcos + fysing]
. (18.4.10)
eIk .
Eg = 2jk drer [cos O (fy cosp — fysine)]
and for the PMC case:
efjkr
Eg = 2jk Ay [ncos O(gy cos P — gxsing) |
. (18.4.11)
. eikr .
Ep =2jk - [-n(gxcos +gysing)]
In all three cases, the radiated magnetic fields are obtained from:
1 1
Hp = —EE¢, Hy = EEQ (18.4.12)

We note that Eq. (18.4.9) is the average of Egs. (18.4.10) and (18.4.11). Also, Eq.(18.4.11)
is the dual of Eq. (18.4.10). Indeed, using Eq. (18.4.12), we obtain the following H-
components for Eq. (18.4.11), which can be derived from Eq. (18.4.10) by the duality
transformation E; — H, or f — g, that is,
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eIk .
Hg = 2jk Ay [gxcos P + gy sin ]
, (18.4.13)
eIk )
Hg = 2jk drr [cos 0(gy cos P — gxsinep) |

At 0 = 90°, the components Ey, Hy become tangential to the aperture screen. We
note that because of the cos 0 factors, E¢ (resp. Hg) will vanish in the PEC (resp. PMC)
case, in accordance with the boundary conditions.

18.5 Huygens Source

The aperture fields E,, H; are referred to as Huygens source if at all points on the
aperture they are related by the uniform plane-wave relationship:

1.
H, = E nxE, (Huygens source) (18.5.1)

where 1 is the characteristic impedance of vacuum.

For example, this is the case if a uniform plane wave is incident normally on the
aperture plane from the left, as shown in Fig. 18.5.1. The aperture fields are assumed to
be equal to the incident fields, E; = Ej,. and H; = Hj,., and the incident fields satisfy
Hijpe =2 X Einc/n-

observation point

E(r), Hr

rEine r (r), H(r)
A 0

. > 7

wavefronts screen
Fig. 18.5.1 Uniform plane wave incident on an aperture.

The Huygens source condition is not always satisfied. For example, if the uniform
plane wave is incident obliquely on the aperture, then n must be replaced by the trans-
verse impedance nr, which depends on the angle of incidence and the polarization of
the incident wave as discussed in Sec. 7.2.

Similarly, if the aperture is the open end of a waveguide, then n must be replaced by
the waveguide’s transverse impedance, such as g or Ny, depending on the assumed
waveguide mode. On the other hand, if the waveguide ends are flared out into a horn
with a large aperture, then Eq. (18.5.1) is approximately valid.
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The Huygens source condition implies the same relationship for the Fourier trans-
forms of the aperture fields, that is, (with i = 2)

1 1 1
= —n X = = —— , = — (1852)
g=axf gx nfy gy nfx

Inserting these into Eq. (18.4.9) we may express the radiated electric field in terms
of fonly. We find:

ek 1 + cos O
2TTr 2
ek 1 4+ cos @
2TTr 2

[fxcos b + fysingp]
(18.5.3)

[fycosp — fysing]

The factor (1+ cos 0) /2 is known as an obliquity factor. The PEC case of Eq. (18.4.10)
remains unchanged for a Huygens source, but the PMC case becomes:

e J

—jkr
2TTr

Eg = jk cos 0[fycos ¢ + f, sinp]
(18.5.4)

. eikr .
Eg = jk - [fycosp — fysing]

We may summarize all three cases by the single formula:

. e—jkr
Eg = jk oy €O [fxcosd + fysin¢p]
N (fields from Huygens source) (18.5.5)
e )N )
E¢ = jk Pr— [fycosp — frsing]

where the obliquity factors are defined in the three cases:

cg | 1| 1+cos@ 1 cos 0 L
[C¢ ] =5 [ 1+ cos 0 ] , [cose ] s [ 1 ] (obliquity factors) (18.5.6)

We note that the first is the average of the last two. The obliquity factors are equal to
unity in the forward direction 8 = 0° and vary little for near-forward angles. Therefore,
the radiation patterns predicted by the three methods are very similar in their mainlobe
behavior.

In the case of a modified Huygens source that replaces n by nr, Egs. (18.5.5) retain
their form. The aperture fields and their Fourier transforms are now assumed to be
related by:

1 1
H, = —2ZXE, > |g=—2ZXf (18.5.7)
nr nr

Inserting these into Eq. (18.4.9), we obtain the modified obliquity factors:

C9=%[1+KCOSQ], C¢=%[K+COSQ], K=i (18.5.8)

nr
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18.6 Directivity and Effective Area of Apertures

For any aperture, given the radiation fields Eg, E¢ of Egs. (18.4.9)-(18.4.11), the corre-
sponding radiation intensity is:
dp

L7 _ 2 _ ZL 2 27 — Zi 2
U@, d)= 5 =r"Pr=r 2n[|159\ +|Epl*] =7 2 |E(0, )| (18.6.1)

Because the aperture radiates only into the right half-space 0 < 6 < 1/2, the total
radiated power and the effective isotropic radiation intensity will be:

Prad
41

/2 27
Prag = I U,p)dQ, Ur = (18.6.2)
0 0
The directive gain is computed by D (0, ¢)= U (0, ¢)/Uj, and the normalized gain
by g(0,¢)= U(0,p)/Una. For a typical aperture, the maximum intensity Upmax iS
towards the forward direction 0 = 0°. In the case of a Huygens source, we have:

U,¢p)= k [Celfxcosgb-rfysm(blz+C¢\fycosd> fxsin|?] (18.6.3)

Assuming that the maximum is towards € = 0°, then cg = c¢¢ = 1, and we find for
the maximum intensity:

Umax = [Ifxcos @ + fysing|* + |fy cos p — fxsinp|*]5_

82n

[l + 1fy T o=o = 112,

87'r2 81'r2

where |f12. = [Ifx|> + Ify1?]g_o- Setting k = 271/A, we have:

Umex = If12,ax (18.6.4)

2)\2

It follows that the normalized gain will be:

colfxcos d + fysin|? + c3lfy cos P — fxsinp|?
| lfhax

In the case of Eq. (18.4.9) with cg = c¢ = (1 + cos 6) /2, this simplifies further into:

g0,¢)=

(18.6.5)

g(0,¢)=cj

2 2 ¢ :
LRI (1 cos0)" (0. &) (18.6.6)

|F | fax 2 |F Ifax

The square root of the gain is the (normalized) field strength:

SO fiow- () I e

The power computed by Eq. (18.6.2) is the total power that is radiated outwards from
a half-sphere of large radius r. An alternative way to compute P;,q is to invoke energy
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conservation and compute the total power that flows into the right half-space through
the aperture. Assuming a Huygens source, we have:

1
Prad = J P,dS ==
A

2J -Re[E, x H] dS’ —I |E;(¥)|%dS’ (18.6.8)
A

Because 8 = 0 corresponds to ky = ky, = 0, it follows from the Fourier transform
definition (18.4.5) that:

|l = UA Eq(F)e/*" as’

Eq(
A

ky=ky=0

Therefore, the maximum intensity is given by:

Unax = ZAZ |f|max = 2)\2 ‘J Ea("' (18.6.9)
Dividing (18.6.9) by (18.6.8), we find the directivity:
E, (¥
4 U a 4TTA
Donax = 477 llj;“a" - A—T; A - 7;;“ (directivity)  (18.6.10)
rad [ 1Bt 2as

It follows that the maximum effective area of the aperture is:

I,

Aegpf = ———— <A (effective area) (18.6.11)
NGRS
A

and the aperture efficiency:

Aetr U Ea(r)
eg="=-a 1 (aperture efficiency) (18.6.12)

A AJ |Eq(F)|2dS’
A

The inequalities in Egs. (18.6.11) and (18.6.12) can be thought of as special cases of
the Cauchy-Schwarz inequality. It follows that equality is reached whenever E, (¥) is
uniform over the aperture, that is, independent of ¥.

Thus, uniform apertures achieve the highest directivity and have effective areas equal
to their geometrical areas.

Because the integrand in the numerator of e,; depends both on the magnitude and the
phase of E, it proves convenient to separate out these effects by defining the aperture
taper efficiency or loss, e,u, and the phase error efficiency or loss, epel, as follows:

e

2
[ Eatrras
j= A (18.6.13)

o AJ E.(F)12ds [ 1Eatr1as
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so that e; becomes the product:

€q = €atl €pel (18.6.14)

We note that Eq. (18.6.10) was derived under the assumption that the aperture fields
were Huygens sources, that is, they were related by, nH; = Z X E;. This assumption
is not necessarily always true, but may be justified for electrically large apertures, i.e.,
with dimensions that are much larger than the wavelength A.

The correct expression for the directivity is given by Eq. (19.7.10) of Sec. 19.7 and
compared with (18.6.10). Directivities that are much larger (even infinite) than those of
the uniform case are theoretically possible, but almost impossible to realize in practice.
The issues associated with such superdirective apertures are discussed in Sec. 20.22.

18.7 Uniform Apertures
In uniform apertures, the fields E,, H,; are assumed to be constant over the aperture

area. Fig. 18.7.1 shows the examples of a rectangular and a circular aperture. For con-
venience, we will assume a Huygens source.

VA VA
Sc‘ee“ Sciee“
E, v E, v
i a |/

0 >z 13) >z

b
A

L AT

o

Fig. 18.7.1 Uniform rectangular and circular apertures.

The field E; can have an arbitrary direction, with constant x- and y-components,
Eg = XEox + ¥V Egy. Because E, is constant, its Fourier transform f(6, ¢) becomes:

f0,p)= JA Eo(F)el*" ds' = E, L ek 4S" = Af(0,¢) Eq (18.7.1)

where we introduced the normalized scalar quantity:

fo,¢p)= %I elkr 4g (uniform-aperture pattern) (18.7.2)
A

The quantity f (8, ¢) depends on the assumed geometry of the aperture and it, alone,
determines the radiation pattern. Noting that the quantity |E4| cancels out from the
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ratio in the gain (18.6.7) and that f (0, ¢)= (1/A) [, dS’ = 1, we find for the normalized
gain and field strengths:

IEO. D) _ [0, 4) = (M) IF(6,)] (18.7.3)

|E | max 2

18.8 Rectangular Apertures

For a rectangular aperture of sides a, b, the area integral (18.7.2) is separable in the x-
and y-directions:
o 1 (b2
eIk gy’ . ,J e/ dy’
b J-pp

1 al2 b/2 al2

f0,d)=—

ek 1Tk gy’ dy' = L J
ab J-ai2 J-ps2 a

—al2

where we placed the origin of the ¥ integration in the middle of the aperture. The above
integrals result in the sinc-function patterns:

_ sin(kxa/2) sin(kyb/2)  sin(mvy) sin(mvy)
10, $)= kxa/?2 kyb/2 vy V) (18.8.1)

where we defined the quantities vy, vy :

1 1 . _a
Vy = gkxa= Ekasmecosd)— 3 sin 0 cos ¢
(18.8.2)
% —Lk b—ikbs'nes'nd)—és'nes‘nqb
Yoo T T 2m Mmysme =y smust

The pattern simplifies along the two principal planes, the xz- and yz-planes, corre-
sponding to ¢ = 0° and ¢ = 90°. We have:

oy _ sin(mvy)  sin((ra/A)sin @)
f10,0% = mvy  (ma/A)sin@

oy _ sin(mmvy)  sin((wb/A)sin0)
110,90 = mvy  (1th/A)sin0

(18.8.3)

Fig. 18.8.1 shows the three-dimensional pattern of Eq. (18.7.3) as a function of the
independent variables vy, vy, for aperture dimensions a = 8A and b = 4A. The x,y
separability of the pattern is evident. The essential MATLAB code for generating this
figure was (note MATLAB’s definition of sinc(x) = sin(7rx) / (17X)):

a=28; b=4;
[theta,phi] = meshgrid(0:1:90, 0:9:360);
theta = theta*pi/180; phi = phi*pi/180;

VX
vy

= a*sin(theta).*cos(phi);
= b*sin(theta).*sin(phi);

E = abs((1 + cos(theta))/2 .* sinc(vx) .* sinc(vy));

surfl(vx,vy,E);
shading interp; colormap(gray(16));
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Fig. 18.8.1 Radiation pattern of rectangular aperture (a = 8A, b = 4A).

As the polar angles vary over 0 < € < 90° and 0 < ¢ < 360°, the quantities vy and
vy vary over the limits —a/A < vy < a/A and —b/A < vy, < b/A. In fact, the physically
realizable values of vy, vy, are those that lie in the ellipse in the vyv)-plane:

2 2
&"y

1 .. .
+ b— Az (visible region) (18.8.4)

The realizable values of vy, Vv, are referred to as the visible region. The graph in
Fig. 18.8.1 restricts the values of vy, v, within that region.

The radiation pattern consists of a narrow mainlobe directed towards the forward
direction 0 = 0° and several sidelobes.

We note the three characteristic properties of the sinc-function patterns: (a) the 3-
dB width in v-space is Avy = 0.886 (the 3-dB wavenumber is vy = 0.443); (b) the first
sidelobe is down by about 13.26 dB from the mainlobe and occurs at vy = 1.4303; and
(c) the first null occurs at vy = 1. See Sec. 22.7 for the proof of these results.

The 3-dB width in angle space can be obtained by linearizing the relationship vy =
(a/A)sin 0 about 0 = 0°, that is, Avy = (a/A)A0cos0|,_, = aAO/A. Thus, AQ =
AAvy/a. This ignores also the effect of the obliquity factor. It follows that the 3-dB
widths in the two principal planes are (in radians and in degrees):

A0y = 0.886 A =50.76° é, A0, =0.886 A =50.76° A (18.8.5)
a a b b

The 3-dB angles are 0y = A0x/2 = 25.4°A/a and 60, = A0,/2 = 25.4°A/b.
Fig. 18.8.2 shows the two principal radiation patterns of Eq. (18.7.3) as functions of
0, for the case a = 8A, b = 4A. The obliquity factor was included, but it makes essen-
tially no difference near the mainlobe and first sidelobe region, ultimately suppressing
the response at 8 = 90° by a factor of 0.5.

The 3-dB widths are shown on the graphs. The first sidelobes occur at the angles
0, = asin(1.4303A/a)= 10.30° and 6} = asin(1.4303A/b) = 20.95°.
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Radiation Pattern for ¢ = 0°

Radiation Pattern for ¢ = 90°
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Fig. 18.8.2 Radiation patterns along the two principal planes (a = 8A, b = 4A).

For aperture antennas, the gain is approximately equal to the directivity because the
losses tend to be very small. The gain of the uniform rectangular aperture is, therefore,
G = D = 47 (ab) /A% Multiplying G by Egs. (18.8.5), we obtain the gain-beamwidth
product p = G A0y AQ, = 411(0.886)%= 9.8646 rad® = 32383 deg’. Thus, we have an
example of the general formula (16.3.14) (with the angles in radians and in degrees):

9.8646 32383

¢= AOLAB, ~ ABYABY (18.8.0

18.9 Circular Apertures

For a circular aperture of radius a, the pattern integral (18.7.2) can be done conveniently
using cylindrical coordinates. The cylindrical symmetry implies that f (0, ¢) will be
independent of ¢.

Therefore, for the purpose of computing the integral (18.7.2), we may set ¢p = 0. We
have then k - ¥ = kxX" = kp’ sin 0 cos ¢’. Writing dS’ = p'dp’d¢’, we have:

1 a 21 o ,
FoO= Jo Jo elke'smOcos o1 g g (18.9.1)

The ¢’- and p’-integrations can be done using the following integral representations
for the Bessel functions J(x) and J; (x) [1790]:

Jo)= o J e Gy’ and J]o (xr)rdr = JI(X) (18.9.2)

Then Eq. (18.9.1) gives:

F(0)=2 J1(kasin0) _5 J1(21Tu)

kasin 0 21U

. u= L kasno-%sino (1893
21T A

This is the well-known Airy pattern [638] for a circular aperture. The function f(6)
is normalized to unity at 6 = 0°, because J; (X) behaves like J; (x) ~ x/2 for small x.
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Fig. 18.9.1 shows the three-dimensional field pattern (18.7.3) as a function of the in-
dependent variables vx = (a/A)sin 6 cos ¢ and vy, = (a/A)sin 0 sin ¢, for an aperture
radius of a = 3A. The obliquity factor was not included as it makes little difference
near the main lobe. The MATLAB code for this graph was implemented with the built-in
function besselj:

field strength
o
o

wo

Fig. 18.9.1 Radiation pattern of circular aperture (a = 3A).

a = 3;
[theta,phi] = meshgrid(0:1:90, 0:9:360);
theta = theta*pi/180; phi = phi*pi/180;

vx = a*sin(theta).*cos(phi);
vy = a*sin(theta).*sin(phi);
u a*sin(theta);

E = ones(size(u));
i find(u);
E(i) = abs(2*besselj(1,2*pi*u(i))./*pi*u(i)));

surfl(vx,vy,E);
shading interp; colormap(gray(16));

The visible region is the circle on the vyvy-plane:

2 ) _a°

vyt vy, = A2 (18.9.4)
The mainlobe/sidelobe characteristics of f (6) are as follows. The 3-dB wavenumber
is u = 0.2572 and the 3-dB width in u-space is Au = 2x0.2572 = 0.5144. The first null
occurs at u = 0.6098 so that the first-null width is Au = 2x0.6098 = 1.22. The first
sidelobe occurs at u = 0.8174 and its height is |f (u)| = 0.1323 or 17.56 dB below the
mainlobe. The beamwidths in angle space can be obtained from Au = a(A0) /A, which

gives for the 3-dB and first-null widths in radians and degrees:

A A A A
AO3qp = 0.5144 — =29.47° —, AOpun = 1.22 — =70° — (18.9.5)
a a a a
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Radiation Pattern of Circular Aperture
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Fig. 18.9.2 Radiation pattern of circular aperture (a = 3A).

The 3-dB angle is O35 = AO3qp/2 = 0.2572A/a = 14.74° A/a and the first-null
angle O, = 0.6098A/a. Fig. 18.9.2 shows the radiation pattern of Eq. (18.7.3) as a
function of 0, for the case a = 3A. The obliquity factor was included.

The graph shows the 3-dB width and the first sidelobe, which occurs at the angle 6, =
asin(0.817A/a)= 15.8°. The first null occurs at On,; = asin(0.6098A/a)= 11.73°,
whereas the approximation 6, = 0.6098A/a gives 11.65°.

The gain-beamwidth product is p = G(AO3qp)?= [41(1Ta®)/A?](0.514A/a)?*=
4772(0.5144)%= 10.4463 rad® = 34293 deg®. Thus, in radians and degrees:

10.4463 34293

G = = 18.9.6
(AB3qp)2  (AO54p)? ( )

The first-null angle 6, = 0.6098A/a is the so-called Rayleigh diffraction limit for
the nominal angular resolution of optical instruments, such as microscopes and tele-
scopes. It is usually stated in terms of the diameter D = 2a of the optical aperture:

AO = 1.22% = 700% (Rayleigh limit) (18.9.7)

18.10 Vector Diffraction Theory

In this section, we provide a justification of the field equivalence principle (18.1.1) and
Kottler’s formulas (18.4.2) from the point of view of vector diffraction theory. We also
discuss the Stratton-Chu and Franz formulas. A historical overview of this subject is
given in [1302,1324].

In Sec. 18.2, we worked with the vector potentials and derived the fields due to
electric and magnetic currents radiating in an unbounded region. Here, we consider the
problem of finding the fields in a volume V bounded by a closed surface S and an infinite
spherical surface S, as shown in Fig. 18.10.1.

The solution of this problem requires that we know the current sources within V'
and the electric and magnetic fields tangential to the surface S. The fields E;, H; and
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E(r), H(r)
/// P \‘

Fig. 18.10.1 Fields outside a closed surface S.

current sources inside the volume V; enclosed by S have an effect on the outside only
through the tangential fields on the surface.

We start with Maxwell’s equations (18.2.1), which include both electric and magnetic
currents. This will help us identify the effective surface currents and derive the field
equivalence principle.

Taking the curls of both sides of Ampeére’s and Faraday’s laws and using the vector
identity Vx (V X E) = V (V- E) — V2E, we obtain the following inhomogeneous Helmholtz
equations (which are duals of each other):

V2E+ K°E = jou J+ éVerV X Jm

1 (18.10.1)
V2H+ K’H = jwe J, + Eme -V xJ
We recall that the Green’s function for the Helmholtz equation is:
e JKIF-V|
V26 +kG=-8Dwr-v), Gr-v)= —— (18.10.2)
41T\ — V|

where V' is the gradient with respect to ¥. Applying Green’s second identity given by
Eq. (C.27) of Appendix C, we obtain:
E ! ’
0 oG ] ds’, — =n-V

2 _ 2 ’ - _ = el
JV[GV E-EV'°G|dV £~+sw [G o Ean, o

where G and E stand for G (r—¥) and E(¥) and the integration is over ¥. The quantity
0/on’ is the directional derivative along fi. The negative sign in the right-hand side
arises from using a unit vector n that is pointing into the volume V.

The integral over the infinite surface is taken to be zero. This may be justified more
rigorously [1295] by assuming that E and H behave like radiation fields with asymptotic
form E — const.e /X" /r and H — & x E/n.t Thus, dropping the S, term, and adding
and subtracting k%G E in the left-hand side, we obtain:

OFE 06
on’ on’

TThe precise conditions are: r|E| — const. and ¥|E— nHx#| — 0asr — .

J [G(V?E+K*E)-E(V'?G + k*G)]dV’ = —§ [G ]dS’ (18.10.3)
\% S
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Using Eq. (18.10.2), the second term on the left may be integrated to give E(r):
—J E(Y) (V?G+Kk2G)dV' = J E(¥)s® (r-¥)dv' =E(
1% 1%

where we assumed that r lies in V. This integral is zero if rlies in V; because then ¥
can never be equal to r. For arbitrary r, we may write:

J E(F) 60 (r— ) dV' = uy (0 E(n = | E» 1T reV (18.10.4)
1% - “ o, if réVv o
where uy (r) is the characteristic, or indicator, function of the volume region V:t
» 1, if reVv (18.10.5)
uy (r)= .10.
v 0, if r¢V

We may now solve Eq. (18.10.3) for E(r). In a similar fashion, or, performing a duality
transformation on the expression for E(r), we also obtain the corresponding magnetic
field H(r). Using (18.10.1), we have:

. 1 , , , oG OE ,
E(r) = Jv [—quGJ— EGV p—-GV x]m]dv +£ [Ean’ G an,]dS
, 1 , , , oG 0H ,
H(r) = Jv [waGG]m - ;GV Pm+GV x]} dv +£ [Han’ -G an,]dS
(18.10.6)

Because of the presence of the particular surface term, we will refer to these as
the Kirchhoff diffraction formulas. Eqs. (18.10.6) can be transformed into the so-called
Stratton-Chu formulas [1293-1298,1287,1299-1302,1324]:*

E(r):J [—jwu GJ+ g V'G— Jm X V’G] av’
\%
+§ [-jouGAXxH) + (M -E)V'G+ (Ax E)xV'G]dS’
S
(18.10.7)
H(r):J [—jw(—: GIm+ %’" VG + Jx V'G] av’
\%4

+j€s[jweG(ﬁ>< E)+(h-H) V'G+ (hx H)xV'G]dS’

The proof of the equivalence of (18.10.6) and (18.10.7) is rather involved. Problem
18.4 breaks down the proof into its essential steps.

Term by term comparison of the volume and surface integrals in (18.10.7) yields the
effective surface currents of the field equivalence principle:*

Js=AXH, Jms=-AXE (18.10.8)

TTechnically [1301], one must set uy (¥) = 1/2, if r lies on the boundary of V, that is, on S.
#See [1289,1296,1302,1324] for earlier work by Larmor, Tedone, Ignatowski, and others.
*Initially derived by Larmor and Love [1302,1324], and later developed fully by Schelkunoff [1288,1290].
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Similarly, the effective surface charge densities are:

ps=€n-E, Pms = un - H (18.10.9)

Egs. (18.10.7) may be transformed into the Kottler formulas [1293-1298,1287,1299-
1302,1324], which eliminate the charge densities p, p,, in favor of the currents J, J, :

En=— [ [KIG+ (- V)V'G—jwelnxV'G|aV’
JWwE Jv
+ﬁ [K2GhAxH) +((Ax H-V')V'G + jwe(h x EyxV'G]dS’
S
H(r):_ij [kZJmG + (Um - VIV'G+ joou Jx V’G] av’
jou Jv
— jg[—sz(ﬁxE)—((ﬁxE)-V’)V’G+jwu(ﬁxH)xv’G]ds’
JwH Js

(18.10.10)
The steps of the proof are outlined in Problem 18.5.
A related problem is to consider a volume V bounded by the surface S, as shown in
Fig. 18.10.2. The fields inside V are still given by (18.10.7), with i pointing again into
the volume V. If the surface S recedes to infinity, then (18.10.10) reduce to (18.2.9).

Fig. 18.10.2 Fields inside a closed surface S.

Finally, the Kottler formulas may be transformed into the Franz formulas [1298,1287,1299-
1301], which are essentially equivalent to Eq. (18.2.8) amended by the vector potentials
due to the equivalent surface currents:

E(r) = ;[Vx (VX (A+Ay)) —uJ] —1V>< (A + Ams)
Jjwue €

1 . (18.10.11)
Hr)= ———[VX (VX (Am+Ams)) —€Jm] + =~V X (A+ Ay)
Jjwpe u

where A and A, were defined in Eq. (18.2.6). The new potentials are defined by:

As(p) = iﬁﬂ]s(r,)G(V* r)ds' = jgsu [Ax HF)]|G(r—r)dS’
(18.10.12)
Ams (1) = ﬂe]ms(r')G(rf ¥)dS = - j:se [AX E(¥)]G(r—¥)dS’
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Next, we specialize the above formulas to the case where the volume V contains
no current sources (J = J,; = 0), so that the E, H fields are given only in terms of the
surface integral terms.

This happens if we choose S in Fig. 18.10.1 such that all the current sources are
inside it, or, if in Fig. 18.10.2 we choose S such that all the current sources are outside
it, then, the Kirchhoff, Stratton-Chu, Kottler, and Franz formulas simplify into:

E(r) =§ [EaG -G aE]dS’
sl on’ on’

= jgs[fjqu(ﬁx H)+(f-E)V'G+ (Ax E)xV'G]dS’

= J&% [K2GAx H)+((ix H)-V')V'G + jwe(h x E)xV'G| dS’
s

= ;Vx (V><§ G x H)dS') +V><§ G xE)dS
jwe s s

H(r) :jg [H oG -G aH]dS’
s on’ on’

(18.10.13)

= i[jweG(ﬁxE)+(ﬁ "H)V'G + (Ax H)xV'G] dS’

1

:J_w—u§S[fk2G(ﬁ><E)f((ﬁ><E)-V’)V’G +jou(hx HyxV'G|dS’

= 7#V>< (V><§ G x E)dS’) +V><§ G x H)dS
Jjou s s

(18.10.14)
where the last equations are the Franz formulas with A = A, = 0.

Fig. 18.10.3 illustrates the geometry of the two cases. Egs. (18.10.13) and (18.10.14)
represent the vectorial formulation of the Huygens-Fresnel principle, according to which
the tangential fields on the surface can be considered to be the sources of the fields away
from the surface.

sources

=>

oP
field point

P
field point

sources

Fig. 18.10.3 Current sources are outside the field region.



18.11. Extinction Theorem 821

18.11 Extinction Theorem

In all of the equivalent formulas for E(r), H(¥), we assumed that r lies within the volume
V. The origin of the left-hand sides in these formulas can be traced to Eq. (18.10.4), and
therefore, if ris not in V but is within the complementary volume V1, then the left-hand
sides of all the formulas are zero. This does not mean that the fields inside V; are
zero—it only means that the sum of the terms on the right-hand sides are zero.

To clarify these remarks, we consider an imaginary closed surface S dividing all
space in two volumes V; and V, as shown in Fig. 18.11.1. We assume that there are
current sources in both regions V and V;. The surface S, is the same as S but its unit

vector n; points into V', so thatn; = —n. Applying (18.10.10) to the volume V, we have:
( vi Mowv
\ .?J/,S/

Fig. 18.11.1 Current sources may exist in both V and V.

Ji% [K2GAx H) +((Ax H-V')V'G + jwe(h x EyxV'G|dS’
s
E(r), if reVv

— K2 JG+ (J-V)V'G - jwe ], xV'G|dV' =
Jjwe ,[v [ JG+U-V) JWETm ] {0, if rev,
The vanishing of the right-hand side when ris in V is referred to as an extinction

theorem.” Applying (18.10.10) to V, and denoting by E;, H; the fields in V;, we have:

L% [k2G (A x Hy)+((A; X H)-V')V'G + jwe(fy X E)xV'G]dS’
JWE Js,;
1 0 if reV
+— kK2 JG+ (J-V)V'G—j xV'Glav' =17
Jjwe V1[ I U ) JOEJm ] {El(r), if reVv;
Because n; = —n, and on the surface E; = E and H; = H, we may rewrite:
—,L KGHxH) +((ax H-V')V'G + jweh x EyxV'G|dS’
Jjwe
s
1 0 if reV
+— K2 JG+ (J-V)V'G—j xV'Glav' =1"
Jwe Jvl [ I o ) JweJm ] {El(r), if reVv;

Adding up the two cases and combining the volume integrals into a single one, we obtain:

E(r), if 1%
L [(Jv,)v’G+k2GJJweJmXV’G}dvl{ (r) I re

Jwe Jviv, E (), if reV,

T1n fact, it can be used to prove the Ewald-Oseen extinction theorem that we considered in Sec. 15.6.
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This is equivalent to Eq. (18.2.9) in which the currents are radiating into unbounded
space. We can also see how the sources within V| make themselves felt on the outside
only through the tangential fields at the surface S, thatis, forr € V:

b J [K2JG+ (J- V)V'G - jwe Jm x V'G|dV’
Jwe Jv,
=j7:)e jg [K’G (A x H)+((hx H) -V')V'G + jwe(h x EyxV'G] dS’
N

18.12 Vector Diffraction for Apertures

The Kirchhoff diffraction integral, Stratton-Chu, Kottler, and Franz formulas are equiv-
alent only for a closed surface S.

If the surface is open, as in the case of an aperture, the four expressions in (18.10.13)
and in (18.10.14) are no longer equivalent. In this case, the Kottler and Franz formulas
remain equal to each other and give the correct expressions for the fields, in the sense
that the resulting E(r) and H(r) satisfy Maxwell’s equations [1289,1287,1302,1324].

For an open surface S bounded by a contour C, shown in Fig. 18.12.1, the Kottler
and Franz formulas are related to the Stratton-Chu and the Kirchhoff diffraction integral
formulas by the addition of some line-integral correction terms [1296]:

E(P= LJ [K2G(Ax H)+((h x H)-V')V'G + jwe (i x E)xV'G] dS’
Jjwe Js

= ;Vx (VXJ GMH x H)dS'") +V><J Gl X E)dS'
Jjwe s s

:J [jouGhAxH)+(A-E)V'G+ (AX E)xV'G|dS" - Lig (V'G)H - dl
N Jwe Jc

[ [r2e -6 Eas -} GExa- - | voH-a
sL on’ on’ c Jjwe Jc
(18.12.1)
H(r)= jiwu J [—sz(ﬁx E)-((AXE)-V')V'G + jowu(h x H)xV'G|dS’
s
= —#Vx (VXJ GHh x E)dS") +V><J Ghx H)dS
Jjou s s

=J [jweGAXE)+(A-H) V’G+(ﬁ><H)><V’G]dS'+;§ (V'G)E - dl
S Jwu Jc

:I [Ha—GfGafH]dS'7§ GH><dl+.i§ (V'G)E- dl
sL on’ on’ c Jop Jc

(18.12.2)

The proof of the equivalence of these expressions is outlined in Problems 18.7 and

18.8. The Kottler-Franz formulas (18.12.1) and (18.12.2) are valid for points off the

aperture surface S. The formulas are not consistent for points on the aperture. However,

they have been used very successfully in practice to predict the radiation patterns of
aperture antennas.
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P

Fig. 18.12.1 Aperture surface S bounded by contour C.

The line-integral correction terms have a minor effect on the mainlobe and near
sidelobes of the radiation pattern. Therefore, they can be ignored and the diffracted
field can be calculated by any of the four alternative formulas, Kottler, Franz, Stratton-
Chu, or Kirchhoff integral—all applied to the open surface S.

18.13 Fresnel Diffraction

In Sec. 18.4, we looked at the radiation fields arising from the Kottler-Franz formulas,
where we applied the Fraunhofer approximation in which only linear phase variations
over the aperture were kept in the propagation phase factor e JkR Here, we consider
the intermediate case of Fresnel approximation in which both linear and quadratic phase
variations are retained.

We discuss the classical problem of diffraction of a spherical wave by a rectangular
aperture, a slit, and a straight-edge using the Kirchhoff integral formula. The case of a
plane wave incident on a conducting edge is discussed in Problem 18.11 using the field-
equivalence principle and Kottler’s formula and more accurately, in Sec. 18.15, using
Sommerfeld’s exact solution of the geometrical theory of diffraction. These examples
are meant to be an introduction to the vast subject of diffraction.

InFig. 18.13.1, we consider a rectangular aperture illuminated from the left by a point
source radiating a spherical wave. We take the origin to be somewhere on the aperture
plane, but eventually we will take it to be the point of intersection of the aperture plane
and the line between the source and observation points P, and P5.

The diffracted field at point P, may be calculated from the Kirchhoff formula applied
to any of the cartesian components of the field:

E= J [El 96 ok ] ds’ (18.13.1)
s on’ on’

where E; is the spherical wave from the source point P, evaluated at the aperture point
P’, and G is the Green’s function from P’ to P:
e—JkR, e ~JKR2

Ei=A = 18.13.2
1 TR, G 4TR, ( )
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Py
observation point

P1"//:/;/

source point

Fig. 18.13.1 Fresnel diffraction through rectangular aperture.

where A, is a constant. If r; and r» are the vectors pointing from the origin to the source
and observation points, then we have for the distance vectors R; and Ry:

Ri=n-7, R1=|r1—r’|=\/rf—2r1-r’+r’-f
(18.13.3)

R2=1’2—1’/, R2=|r2—r’|=\/r§—2r2-r’+r’-r’

Therefore, the gradient operator V' can be written as follows when it acts on a function
of Ry = |r; — ¥| or a function of R> = |, — ¥ |:

, .0 , .0
V' '=-R R, V'=-R, R,
where R; and R, are the unit vectors in the directions of R; and R,. Thus, we have:
6E1 . , a5 8E1 s B ( 1 ) e’ﬂ‘Rl
on’ =n-V'E,=-n-R 8R1 = (n-Ry) Jk+ R, Aq R,
R (18.13.4)

oG . 0G . 1\ e /K
T _hA-VG=-hA-R — = (A-R ik 7)
o ~ BV E= AR = (0 2)<J "R,/ amR,

Dropping the 1/R? terms, we find for the integrand of Eq. (18.13.1):
oG B 0E; JkA,

= A-R>)—(fi-R —Jjk(R1+R2)
on' an 4TrR1R2[(n Ro)—(0-Ry)Je

Ey

Except in the phase factor e /K(R1+R2) ‘we may replace R; = #; and R, = p», that is,

0G L OE; _ jkA

E =
Lon' on’  4mrir

[(A-F)—(h-F)]e KRR (18.13.5)

Thus, we have for the diffracted field at point P»:

_ JkAy

= Gy, | B R)—@ fl)]Jse_jk(R”R” as’ (18.13.6)
1
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The quantity [ (A - £2) — (A - £1) ] is an obliquity factor. Next, we set ¥ = r; + r» and
define the "free-space” field at the point P»:
e—jk(rwrz) efjkr

Ey=A, =A; (18.13.7)
Y1 +1r r

If the origin were the point of intersection between the aperture plane and the line
P, P,, then Ey would represent the field received at point P, in the unobstructed case
when the aperture and screen are absent.

The ratio D = E/E, may be called the diffraction coefficient and depends on the
aperture and the relative geometry of the points Py, P»:

_E _ gk oo P J —jK(Ry+Ra—F1~F2) 3¢/
D—]50 = 4rrF[(n o) —(A- )] K ds (18.13.8)

where we defined the “focal length” between r; and r»:

1 1 1
R T S L (18.13.9)
F ¥ ¥o ry+r

The Fresnel approximation is obtained by expanding R; and R» in powers of ¥" and
keeping only terms up to second order. We rewrite Eq. (18.13.3) in the form:

Rlzrl\/l_zn-f+f-2f, Rzzrz\/l_Zrz-r’+r/-21/

r ry ¥ ry

Next, we apply the Taylor series expansion up to second order:

1 1
\/1+x=1+§x—§x2

This gives the approximations of Ry, R>, and R; + R» — ¥} — ro:

1
Ri=r—-% Y+ —[FV -¥—-( ¥)>
L A UGS

R2=r2—f‘2'lj+i[l/'ij—(f'z'l'/)z]
21>

NN ¢ 1 1y, , {&-F)?2 (-r)?
Ri+Ry—ri—rp=—(1; + P4+ |+ - ¥ - -
! 2 ! 2 (F1 +F2)-r 2 |:<I’1 rz) rer ry &)

To simplify this expression, we now assume that the origin is the point of intersection
of the line of sight P; P, and the aperture plane. Then, the vectors r; and r, are anti-
parallel and so are their unit vectors 1 = —f». The linear terms cancel and the quadratic
ones combine to give:

V¥ — (7)) =

Ri+Ro—r —rs = — o ¥t (F £2) | = = b’ b (18.13.10)

Ly
2F 2F

where we defined b’ = ¥ — £, (¥ - £»), which is the perpendicular vector from the point
P’ to the line-of-sight P, P,, as shown in Fig. 18.13.1.
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It follows that the Fresnel approximation of the diffraction coefficient for an arbitrary
aperture will be given by:

E Jjk o ,
D= = J(ZH?“) Se*f’“b'b)“?”ds (18.13.11)
0

A further simplification is obtained by assuming that the aperture plane is the xy-
plane and that the line P, P; lies on the yz plane at an angle 6 with the z-axis, as shown
in Fig. 18.13.2.

» P>

R,

r
Py

<7d1 dz‘?

Fig. 18.13.2 Fresnel diffraction by rectangular aperture.

Then, we have ¥ = XX+ y'y, i = Z, and f» = Zcos 0 + ysin 0. It follows that
0 - > = cos 0, and the perpendicular distance b’ - b’ becomes:

b b=V -¥-—@GF - -1)?=x?+y?%- () sin0)’=x"? +y"?cos® 0

Then, the diffraction coefficient (18.13.11) becomes:

21F

where we assumed that the aperture limits are (with respect to the new origin):

Jk cos 0 J J —Jk(X’2+yl2COSZ 0)/2Fdx’dy' (18.13.12)
—x

X1 =X X2, 1 =Y =y

The end-points y;,y» are shown in Fig. 18.13.2. The integrals may be expressed
in terms of the Fresnel functions C(x), S(x), and F(x)= C(x)—jS(x) discussed in
Appendix F. There, the complex function F (x) is defined by:

X
Fx)=CKX)—jSKx)= j e M2 gy (Fresnel function) (18.13.13)
0
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We change integration variables to the normalized Fresnel variables:

[k [ k
u= ﬁx , V= ﬁy cos O (181314)

where b’ =y’ cos 0 is the perpendicular distance from P’ to the line P, P,, as shown in
Fig. 18.13.2. The corresponding end-points are:

| k | k | k .
U= pXi, Vi= ﬁyicose— ﬁbi, i=1,2 (18.13.15)

Note that the quantities by = y;cos0 and b, = y,cos 6 are the perpendicular
distances from the edges to the line P1P,. Since dudv = (kcos@/mF)dx'dy’, we
obtain for the diffraction coefficient:

o
D=1 J e I I2 gy J
2 —u

-V,

V2 ;

e ImVI2 gy — %[}’(uz)—f(—ul)] [F (v2) =F (=v1) ]

Noting that ‘F (x) is an odd function and that j/2 = 1/(1 —j)?2, we obtain:

E_Fu)+F @) FO)+F )

D =
Eo 1-j 1-j

(rectangular aperture) (18.13.16)

The normalization factors (1 —j) correspond to the infinite aperture limit u;, u», vy,
Vo — oo, that is, no aperture at all. Indeed, since the asymptotic value of F(x) is
F(0)= (1 —j)/2, we have:

Fu)+F W) FO)+Fve)  Fleo)+F (o) Floo)+F (o)

1
1-J 1-J 1-J 1-J

In the case of a long slit along the x-direction, we only take the limit u;,u, — oo:

E _FO)+F )

D=
Eo 1—j

(diffraction by long slit) (18.13.17)

18.14 Knife-Edge Diffraction

The case of straight-edge or knife-edge diffraction is obtained by taking the limit y, —
o0, or v, — oo, which corresponds to keeping the lower edge of the slit. In this limit
F(v2)— F()= (1 —j)/2. Denoting v; by v, we have:

_ 1 1 *J’) _ |k
D(v)= 1= (j—"(v)+ 57 Ve (18.14.1)
where,
v —— 1 v ——
F(v)= J e ™ 2dy . D(v)= T J e /T2 gy (18.14.2)
0 - —o00
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illuminated
region

Fig. 18.14.1 Illuminated and shadow regions in straight-edge diffraction.

Positive values of v correspond to positive values of the clearance distance b, plac-
ing the point P» in the illuminated region, as shown in Fig. 18.14.1. Negative values of
v correspond to by < 0, placing P, in the geometrical shadow region behind the edge.

The magnitude-square |D|? represents the intensity of the diffracted field relative
to the intensity of the unobstructed field. Since |1 —j|? = 2, we find:

_EP

2 l‘ 1*]’2
ID(v) | = Eol2 ~ 2 FW+— (18.14.3)

or, in terms of the real and imaginary parts of F (v):

IDWV)|? = % [(C(v)+%)2 + (S(v)+%>2} (18.14.4)

The quantity |D (v) |? is plotted versus v in Fig. 18.14.2. At v = 0, corresponding to
the line P, P, grazing the top of the edge, we have F(0)=0,D(0)= 1/2,and |D(0)|> =
1/4 or a 6 dB loss. The first maximum in the illuminated region occurs at v = 1.2172
and has the value |D (v)|? = 1.3704, or a gain of 1.37 dB.

The asymptotic behavior of D (v) for v — +oo is obtained from Eq. (F.4). We have
for large positive x:

1-j, J —jnxz/Z)
F(£x) i( > +rrxe

This implies that:

17%42‘]""2/2, for v — 4o
D(v)= . (18.14.5)
i e gor vy o
21TV

We may combine the two expressions into one with the help of the unit-step function
u(v) by writing D (v) in the following form, which defines the asymptotic diffraction
coefficient d (v):

D(V)=u(v)+d(v)e /™2 (18.14.6)
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Diffraction Coefficient Diffraction Coefficient in dB

1.5
1.251
1 3
N z
= ]
2 0.75F o
E
S F
b [=}
0.5 <
0.251

Fig. 18.14.2 Diffraction coefficient in absolute and dB units.

where u(v)=1forv = 0and u(v)=0 forv < 0.

With u (0) = 1, this definition requires d (0)= D (0)—v(0)= 0.5 — 1 = —0.5. But if
we define u (0) = 0.5, as is sometimes done, then, d (0) = 0. The asymptotic behavior of
D (v) can now be expressed in terms of the asymptotic behavior of d(v):

d(v)= s , for v — +o (18.14.7)
21TV

In the illuminated region D (v) tends to unity, whereas in the shadow region it de-
creases to zero with asymptotic dB attenuation or loss:

L =-10log,o|d(v) |* = 10log,o (2112V2), as v — —oo (18.14.8)

The MATLAB function diffr.m, mentioned in Appendix F, calculates the diffraction
coefficient (18.14.1) at any vector of (real) values of v. It has usage:

D = diffr(v); % knife-edge diffraction coefficient D (v)

For values v < 0.7, the diffraction loss can be approximated very well by the follow-
ing function [1309]:

L =-10log,,|D(v)|* = 6.9 + 2010g,, (\/(v +0.1)241 —v— 0.1) (18.14.9)

Example 18.14.1: Diffraction Loss over Obstacles. The propagation path loss over obstacles and
irregular terrain is usually determined using knife-edge diffraction. Fig. 18.14.3 illustrates
the case of two antennas communicating over an obstacle. For small angles 6, the focal
length F is often approximated in several forms:

rro  didy L
r1+r2_d1+d2_11+12

These approximations are valid typically when d;,d, are much greater than A and the
height h of the obstacle, typically, at least ten times greater. The clearance distance can
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T %0

yi” |1 g
/ Li

10(1 X et )
o

h
hy
h
. a A >

Fig. 18.14.3 Communicating antennas over an obstacle.

be expressed in terms of the heights:

I’lldz + hzd]

bI:ylcoséz( d, + do

- h) cos 0

The distance b, can also be expressed approximately in terms of the subtended angles o,
>, and «, shown in Fig. 18.14.3:

bl ﬁllo(l 2120(2 = bl lellztxltxz (18.14.10)

and in terms of «, we have:

_ 0(12 _ 0(11 B 3 g
=T = = b, = «F = v—o(\/? (18.14.11)

The case of multiple obstacles has been studied using appropriate modifications of the
knife-edge diffraction problem and the geometrical theory of diffraction [1398-1413]. O

Example 18.14.2: Fresnel Zones. Consider two antennas separated by a distance d and an ob-
stacle at distance z from the midpoint with clearance b, as shown below. Fresnel zones and
the corresponding Fresnel zone ellipsoids help answer the question of what the minimum
value of the clearance b should be for efficient communication between the antennas.

A Diffraction Coefficient in dB
3
— exact
asymptotic
2r * extrema
o fresnel zone
[ Z _
= 1f
o Zz
l bl I S
1 2 S of
an
)
[ =
o1}
Q
ot
-« d 1 > dz
> -3
0 1 2 3 4 5
— v
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The diffraction coefficient D (v) and its asymptotic form were given in Egs. (18.14.1) and
(18.14.5), that is,

1 1—j> k2 _ did>
D(V)——lﬁ.<jf(v)+—2 , v-,lan—,/)\Fb, F_d1+d2 (18.14.12)

and for positive and large clearance b, or equivalently, for large positive v,

1- PR 1 P
Das(V)=1— ZTT{/] e—ﬂrvz/z =1- \/?.n-v o JTT(V=/2+1/4) (18.14.13)

As can be seen in the above figure on the right, the diffraction coefficients D (v) and
Dgs (v) agree closely even for small values of v. Therefore, the extrema can be obtained
from the asymptotic form. They correspond to the values of v that cause the exponential
in (18.14.13) to take on its extremal values of +1, that is, the V’s that satisfy v?/2+1/4 = n,
with integer n, or:

Vp=+2n-05, n=1,2,... (18.14.14)
The corresponding values of D (v), shown on the figure with black dots, are given by
Das(Vn)=1— ! e’j"":l—;(—l)” (18.14.15)
asnon V21TV, V21TV, o

An alternative set of v’s, also corresponding to alternating almost extremum values, are
those that define the conventional Fresnel zones, that is,

u, =+v2n, n=1,2,... (18.14.16)
These are indicated by open circles on the graph. The corresponding D (v) values are:

Dy (up)=1- —F—=— (-1)" (18.14.17)

For clearances b that correspond to V’s that are too small, i.e., v < 0.5, the diffraction
coefficient D (v) becomes too small, impeding efficient communication. The smallest ac-
ceptable clearance b is taken to correspond to the first maximum of D (v), thatis, v = v;
or more simply v = u; = /2.

The locus of points (b, z) corresponding to a fixed value of v, and hence to a fixed value
of the diffraction coefficient D (v), form an ellipsoid. This can be derived from (18.14.12)
by setting d; =d/2 +zand d» = d/2 — z, that is,

[ 2 » AF , Ad*/4-2°) , d\d; d?/4 - 22
= = Aty A /ETe) F = =222
v /\Fb = b > Y 2d v, because dy + do d

which can be rearranged into the equation of an ellipse:

8 4
(ov) 7= () = -

For v = u; = /2, this defines the first Fresnel zone ellipse, which gives the minimum
acceptable clearance for a given distance z:

(%>b2+(;7)22:1 (18.14.18)
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If the obstacle is at midpoint (z = 0), the minimum clearance becomes:

b= %W (18.14.19)

For example, for a distance of d = 1 km, using a cell phone frequency of f = 1 GHz,
corresponding to wavelength A = 30 cm, we find b = \/Ad/2 = 8.66 meters.

A common interpretation and derivation of Fresnel zones is to consider the path difference
between the rays following the straight path connecting the two antennas and the path
getting scattered from the obstacle, that is, Al = I; + I — d. From the indicated triangles,
and assuming that b < d; and b < d», we find:

2

b b?
11: d%+b2:dl+ﬂv 12: d%+b2:d2+ﬁ

which leads to the following path length Al, expressed in terms of v:

21 1 b2 A,
AI—11+12—d—?<E+£>—§—ZV

The corresponding phase difference between the two paths, e /¥4l will be then:
e IkAL _ o2 (18.14.20)

which has the same form as in the diffraction coefficient D,s (V). The values v = u, =
+/2n will make the path difference a multiple of A/2, that is, Al = nA/2, resulting in the
alternating phase e /KAl = (—1)",

The discrepancy between the choices v, and u,, arises from using D (v) to find the alter-
nating maxima, versus using the plain phase (18.14.20). m]

The Fresnel approximation is not invariant under shifting the origin. Our choice of
origin above is not convenient because it depends on the observation point P,. If we
choose a fixed origin, such as the point O in Fig. 18.14.4, then, we must determine the
corresponding Fresnel coefficient.

We assume that the points Py, P> lie on the yz plane and take P; to lie in the shadow
region. The angles 01, 0> may be chosen to be positive or negative to obtain all possible
locations of Py, P relative to the screen.

The diffraction coefficient is still given by Eq. (18.13.8) but with ry, r» replaced by
the distances Iy, [>. The unit vectors towards P; and P, are:

I, = —2cos 0, —ysin6q, I, =Zcos 0, —ysinO, (18.14.21)
Since ¥ = x’X+y'y and n = Z, we find:

I ¥ =-y'sin0,, I,b-¥=-y'sin0,, f-1, =—-cos0,, A-I=cos0h,

The quadratic approximation for the lengths R, R, gives, then:
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Fig. 18.14.4 Fresnel diffraction by straight edge.

R1+R2—11—12=—(i1+i2)'r/+%|:<l+ )(/r’)

r)? i2

L
y?
2

1 1 2 2 2
=y’(sin91+sin92)+<—+—>x T 01 cos” 0,
1 L) 2 L I
_ L ’2 VAV .
= 2FX 2F’ [y'? + 2F'y' (sin @, + sin 6>) |
Ny (Y R
2F 2F’ 2F’ 0
where we defined the focal lengths F, F’ and the shift y:
1 1 1 1  cos?0; cos?0,
— ==+, == + , = F'(sin@; + sin 0 18.14.22
FL'L F I I Yo (sin @, + sin 07) ( )

Using these approximations in Eq. (18.13.6) and replacing ry, r» by Iy, I>, we find:
jkA e Jkhi+lz)

E= I)—(-1 J e Jk(Ri+Ro=hi=12) g¢’
antli Ly 2)—(h-1)] s
JjkA e khitl) - o m s
= 1#(cos 0, + cos 0,) e/R0/2E Je’Jk" T2E=JKO +y0)*12F" gx’ gy
4rth [

The x’-integral is over the range —co < X’ < oo and can be converted to a Fresnel
integral with the change of variables u = x'\k/ (1TF):

b —JkX2J2F 3.0 _ "_FJOO —jmu?/2 _ LS PP
Lme dx ‘,k 7008 du k(l )

The y’-integral is over the upper-half of the xy-plane, that is, 0 < )’ < co. Defining
the Fresnel variables u = (¥’ + yo)vk/(F’) and v = yo+/k/ (TTF"), we find:

["emronen gy o [T (" gme = [T 0y
0
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where the function D (v) was defined in Eq. (18.14.1). Putting all the factors together,
we may write the diffracted field at the point P, in the form:

e~ Jkl2
- Dedge
V 12

where we set ky(zJ /2F" = 11v?/2 and defined the incident field Ecqge at the edge and the
overall edge-diffraction coefficient Degge by:

E = Eeqge (straight-edge diffraction) (18.14.23)

e Jkh FF’ (cos 0, + cos 0
Eedge =A <#

. Deage =/ 7 5 )eJ"VZ/ZD(—v) (18.14.24)
1 2

The second factor (e 7%2/,/T,) in (18.14.23) may be interpreted as a cylindrical wave
emanating from the edge as a result of the incident field Ecgge. The third factor Degge is
the angular gain of the cylindrical wave. The quantity v may be written as:

— k —
"\ T

Depending on the sign and relative sizes of the angles 0, and 0., it follows that
v > 0 when P> lies in the shadow region, and v < 0 when it lies in the illuminated
region. For large positive v, we may use Eq. (18.14.5) to obtain the asymptotic form of
the edge-diffraction coefficient Deqge:

Decge = FF’ cos 0; + cos 0, QT2 1-j e-ImVI2 _ FF' cos0; +cos0, 1—j
I» 2 21TV I, 2 21TV

Writing \/F/l, = +/1,/(l; + I>) and replacing v from Eq. (18.14.25), the +/F’ factor

cancels and we obtain:

I (1-j)(cos@; + cos0>)
D = 18.14.26
e "\, + 1, 4/mk(sin0; + sin 0) ( )
This expression may be simplified further by defining the overall diffraction angle
0 = 01 + 0,, as shown in Fig. 18.14.4 and using the trigonometric identity:

kf; (sin@; + sin0») (18.14.25)

cos 01 + cos 0> <91+92>
——~ ., = cot
sin 01 + sin 0, 2

Then, Eq. (18.14.26) may be written in the form:

_ (1 -7 Q
Dedgefwll +12 4F cot (18.14.27)

The asymptotic diffraction coefficient is obtained from Eqs. (18.14.26) or (18.14.27)
by taking the limit I; — oo, which gives /I, / (I} +[>) — 1. Thus,

(1 —j)(cos 0y +cosBr)  (1—J) 0
Dedge = - v 18.14.28
edge = 4 Tk (sin 0, + sin0) | vk 0L 2 ( )
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Egs. (18.14.27) and (18.14.28) are equivalent to those given in [1302].

The two choices for the origin lead to two different expressions for the diffracted
fields. However, the expressions agree near the forward direction, 8 ~ 0. It is easily
verified that both Eq. (18.14.1) and (18.14.27) lead to the same approximation for the

diffracted field:
e ~Jklz
E=E h 18.14.29
edge \/ L+ 2F9 ( )

18.15 Geometrical Theory of Diffraction

Geometrical theory of diffraction is an extension of geometrical optics [1398-1413]. It
views diffraction as a local edge effect. In addition to the ordinary rays of geometrical
optics, it postulates the existence of “diffracted rays” from edges. The diffracted rays
can reach into shadow regions, where geometrical optics fails.

Anincident ray at an edge generates an infinity of diffracted rays emanating from the
edge having different angular gains given by a diffraction coefficient Deqge. An example
of such a diffracted ray is given by Eq. (18.14.23).

The edge-diffraction coefficient D.qge depends on (a) the type of the incident wave,
such as plane wave, or spherical, (b) the type and local geometry of the edge, such as a
knife-edge or a wedge, and (c) the directions of the incident and diffracted rays.

The diffracted field and coefficient are usually taken to be in their asymptotic forms,
like those of Eq. (18.15.25). The asymptotic forms are derived from certain exactly
solvable canonical problems, such as a conducting edge, a wedge, and so on.

The first and most influential of all such problems was Sommerfeld’s solution of a
plane wave incident on a conducting half-plane [1287], and we discuss it below.

Fig. 18.15.1 shows a plane wave incident at an angle « on the conducting plane
occupying half of the xz-plane for x > 0. The plane of incidence is taken to be the xy-
plane. Because of the cylindrical symmetry of the problem, we may assume that there
is no z-dependence and that the fields depend only on the cylindrical coordinates p, ¢.

reflection region . incident plane wave

BV\\\

transmission region

s

field point P - diffracted cylindrical wave

Fig. 18.15.1 Plane wave incident on conducting half-plane.
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Two polarizations may be considered: TE, in which the electric field is E = ZE,, and
TM, which has H = Z H,. Using cylindrical coordinates defined in Eq. (E.2) of Appendix
E, and setting 0/0z = 0, Maxwell’s equations reduce in the two cases into:

(TE) V2E,+k?E, =0, H,= 7#1@, Hg = #aEz
Joup og Jou op
1 13H L oH (18.15.1)
™) V?H,+k*H,=0, E,=-—>-""2 Ep=——"—"1
(T z+KHz =0, Ep Jjwep o’ *~ " jwe op
where k? = w? e, and the two-dimensional V? is in cylindrical coordinates:
210 ( 0, 1 @
Ve o as )t o ag (18.15.2)

The boundary conditions require that the tangential electric field be zero on both
sides of the conducting plane, that is, for ¢ = 0 and ¢ = 27. In the TE case, the
tangential electric field is E,, and in the TM case, Ex = E,cos¢ — Egsing = E, =
(1/jwep) (0H,/0¢), for ¢ = 0, 27r. Thus, the boundary conditions are:

(TE) E, =0, for ¢ =0 and ¢ =21

18.15.3
aaz;=0, for ¢ =0 and ¢ =21 ( )

In Fig. 18.15.1, we assume that 0 < & < 90° and distinguish three wedge regions
defined by the half-plane and the directions along the reflected and transmitted rays:

(TM)

0<dp=<m-«
MT-X<p<TT+« (18.15.4)
T+ <¢=<2m

reflection region (AOB):
transmission region (BOC):
shadow region (COA):

The case when 90° < « < 180° is shown in Fig. 18.15.2, in which « has been
redefined to still be in the range 0 < & < 90°. The three wedge regions are now:

reflection region (AOB): 0<¢d=<u«
transmission region (BOC): X <p<2mT—-« (18.15.5)
shadow region (COA): 2T — X < ¢ <21

We construct the Sommerfeld solution in stages. We start by looking for solutions
of the Helmholtz equation V2U + k?U = 0 that have the factored form: U = ED, where
E is also a solution, but a simple one, such as that of the incident plane wave. Using the
differential identities of Appendix C, we have:

V2U + k*U = D(V?E + k*E) + EV?D + 2VE - VD
Thus, the conditions V2U + k*U = 0 and V2E + k%F = 0 require:

EV2D +2VE-VD=0 = V2D+2(VInE)-VD=0 (18.15.6)
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incident S B
plane wave N/

¢ y
X7 reflection region X
A A

“~._ shadow region

transmission region

*c

field point P¢ . diffracted cylindrical wave

Fig. 18.15.2 Plane wave incident on conducting half-plane.
If we assume that E is of the form E = e/f, where f is a real-valued function, then,
equating to zero the real and imaginary parts of V2E + k?E = 0, we find for f:
V2E+K?E=E(K>-Vf-Vf+jV?f)=0 = V?f=0, Vf-Vf=k> (18.15.7)

Next, we assume that D is of the form:
v .
D =Dy J e~ 19w 4y (18.15.8)

where D is a constant, v is a function of p, ¢, and g (u) is a real-valued function to be
determined. Noting that VD = Dge /9 Vv and Vg = g’ (v) Vv, we find:
VD =Dge /9 Vv, V2D =Dge9(V?v—jg (v)Vv-Vv)
Then, it follows from Eq. (18.15.6) that V2D + 2(VInE)-VD = V2D + jVf - VD and:
V2D +jVf -VD = Doe /9 [V3v+j2Vf-Vv—-g'Vv-Vv)]=0
Equating the real and imaginary parts to zero, we obtain the two conditions:

2Vf Vv
V2y = =y 18.15.
v=0, VvV g ) (18.15.9)
Sommerfeld’s solution involves the Fresnel diffraction coefficient of Eq. (18.14.1),
which can be written as follows:

D(v)—i[l;J'Jr[F(v)] ‘LJV e ™R dy (18.15.10)
T1-jL 2 T1-j ) o

Therefore, we are led to choose g (u) = mu?/2 and Dy = 1/(1 — j). To summarize,
we may construct a solution of the Helmholtz equation in the form:

VU + kU =0, ]U:ED:eJ'fD(v)‘ (18.15.11)
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where f and v must be chosen to satisfy the four conditions:

Vif =0, Vf-Vf=k

2Vf . Vv (18.15.12)

2y, — " — g =
V2y =0, I g (v)=mv

It can be verified easily that the functions u = p? cosa¢ and u = p%sinadg are solu-
tions of the two-dimensional Laplace equation V2u = 0, for any value of the parameter
a. Taking f to be of the form f = Ap“ cos ac, we have the condition:

Vf = Aap®'[pcosap — psinap| = Vf-Vf=A2a%p2@l =2

This immediately implies that a = 1 and A? = k?, so that A = +k. Thus, f =
Apcos ¢ = +kp cos ¢. Next, we choose v = Bp? cos a¢. Then:

Vf=A(pcosp — Psing)
Vv = Bap® [pcosap — ¢ sinad]
Vf - Vv = ABap®![cos¢pcosap +sinpsinap] = ABap*~! cos(¢p — ag)
Vv - Vv = B2g%p?@-1
Then, the last of the conditions (18.15.12) requires that:

1 2Vf.Vv
v Vv -Vv

_ 2Ap'"?Acos(¢p —a¢) 1
B TaB? cos a¢ B

which implies that a = 1/2 and B> = 2A/ma = 4A/T. But since A = +k, only the
case A = k is compatible with a real coefficient B. Thus, we have B> = 4k/, or,
B = x2Vk/T.
In a similar fashion, we find that if we take v = Bp?sinadg, then a = 1/2, but now
B? = —4A/m, requiring that A = —k, and B = =2/k/7. In summary, we have the
following solutions of the conditions (18.15.12):
K e s ®
2 \/; p'ccos ”

f=+kpcos¢, V==
(18.15.13)
| k ¢
= -k ==+2, /= pY2sin—
f pcos, % p pl/?sin >
The corresponding solutions (18.15.11) of the Helmholtz equation are:
jkp cos ¢ k1 ¢
U(p,p)=e/fPos® D(v), V=2 o plcos
(18.15.14)
-Jk ¢ kK v @
Ulp,p)=e /X ®D(v), v==2 P osiny




18.15. Geometrical Theory of Diffraction 839

The function D (v) may be replaced by the equivalent form of Eq. (18.14.6) in order
to bring out its asymptotic behavior for large v:

=~

Ul(p, p)= ekpeosd [y (v) +d (v)eJm*/2], v==+2.]=p2cos

I+

ﬁ:

2

NS ve

U(p, p)= e kecosdu(v)+d(v)e T™ 2], v = p'/? sin

—_

Using the trigonometric identities cos ¢ = 2 cos?(¢p/2)—1 = 1 — 2sin®(¢p/2), we

find for the two choices of v:

kpcos - %TTVZ =kp [COS¢ - 2 cos? %] = —kp

—kpcos ¢ — %T!’VZ = —kp [cosd) + 2 sin? %] = —kp

Thus, an alternative form of Eq. (18.15.14) is:

Up,p)=elrcosbu(v)re®d(v),  v= i%/%p
(18.15.15)

2
—jkp cos ¢ —jk k 1. @
U(p,p)=e PSPy (v)+e P d(v), V=2 Fp sin —

Shifting the origin of the angle ¢ still leads to a solution. Indeed, defining ¢’ =
¢ + «, we note the property 0/0¢" = 0/0¢, which implies the invariance of the Laplace
operator under this change. The functions U (p, ¢ = «) are the elementary solutions
from which the Sommerfeld solution is built.

Considering the TE case first, the incident plane wave in Fig. 18.15.1 is E = Z Ej,
where E; = Ege /K" with ¥ = Xpcos¢ + ypsing and k = —k (Xcos « + ysinx). It
follows that:

k-r=—kp(cos¢cosx + sin¢sinx)=—kpcos(¢p — )
, , (18.15.16)
E; = Eoe—Jk-r _ Eoejkpcos(zb—(x}

The image of this electric field with respect to the perfect conducting plane will
be the reflected field E, = —Ege /%" where k, = k(—%cos & + ¥ sin «), resulting in
E, = —Egeikpcos(d+a) The sum E; + E, does vanish for ¢ = 0 and ¢ = 217, but it also
vanishes for ¢p = 1r. Therefore, it is an appropriate solution for a full conducting plane
(the entire xz-plane), not for the half-plane.

Sommerfeld’s solution, which satisfies the correct boundary conditions, is obtained
by forming the linear combinations of the solutions of the type of Eq. (18.15.14):

E, = Eo[e/kPcos9i D (v;) —e/kPcosbr D (v,) ] ‘ (TE) (18.15.17)

k .
bi=¢-«, vi=21/;p”zc08%

k .
br=¢ + «, VVZZ,IEPUZCOS%

where

(18.15.18)
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For the TM case, we form the sum instead of the difference:

H, = Ho[e/kPos®i D (v;) +e/kPcosér D(v,) ] | (TM) (18.15.19)

The boundary conditions (18.15.3) are satisfied by both the TE and TM solutions.
As we see below, the choice of the positive sign in the definitions of v; and v, was
required in order to produce the proper diffracted field in the shadow region. Using the
alternative forms (18.15.15), we separate the terms of the solution as follows:

E, = Eqe/*Pcos iy (v;) —Ege/* P s r y (v,) + Ege *P [d (vi) —d (v) ] (18.15.20)

The first two terms correspond to the incident and reflected fields. The third term is
the diffracted field. The algebraic signs of v; and v, are as follows within the reflection,
transmission, and shadow regions of Eq. (18.15.4):

reflection region: 0<¢p<mT—«, vi>0, v,>0
transmission region: M- <) <T+ K, vi>0, v, <0 (18.15.21)
shadow region: T+ < ¢ <2m, vi<0, v,<0

The unit-step functions will be accordingly present or absent resulting in the follow-
ing fields in these three regions:

reflection region: E,=E,+E,+Eg
transmission region: E, = E; + E4 (18.15.22)
shadow region: E, =E;

where we defined the incident, reflected, and diffracted fields:
E; = EoejkﬂCOS¢z
E, = —Ege/kpcosdr (18.15.23)
Eq = Ege *[d(vi)—d (v,)]

The diffracted field is present in all three regions, and in particular it is the only one
in the shadow region. For large v; and v, (positive or negative), we may replace d (v) by
its asymptotic form d (v)= — (1 —j)/ (27rv) of Eq. (18.14.7), resulting in the asymptotic
diffracted field:

Eq

a1 —J (1 1
—Eqe Jkp7<f,f)
0 2T \V; VvV,

= —Eoefjkp

1—j 1 1
2m2+/k/mrpl/? (cos(qbi/Z) B cos((j)r/z))

which can be written in the form:

e’jkp
Eg=Eg W Dedge (18.15.24)
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with an edge-diffraction coefficient:

1-j 1 1
Dedge = - — T (18.15.25)
4vmk cos ﬁ cos ﬂ
2 2
Using a trigonometric identity, we may write Degge as follows:
sin — sin «
1—-j 1 1 1—-J o D)
Degge = ———2 - - -2J 2 2 (181526
4/tk cosd)ia COS¢+0< Tk cos ¢ + cos
2 2

Egs. (18.15.22) and (18.15.24) capture the essence of the geometrical theory of diffrac-
tion: In addition to the ordinary incident and reflected geometric optics rays, one also
has diffracted rays in all directions corresponding to a cylindrical wave emanating from
the edge with a directional gain of Degge-

For the case of Fig. 18.15.2, the incident and reflected plane waves have propagation
vectors k = k(zcosx — ysinx) and k, = k(Zcos &« + ysin ). These correspond to
the incident and reflected fields:

E; = Eoe—jk-r _ Eoe—jkpcos(d>+a) , Er= _Eoe—jky-r _ _Eoe*JkPCOS@*O‘)

In this case, the Sommerfeld TE and TM solutions take the form:

E; = Eo[e /09D (v) e K0P D (vy) ]
) . (18.15.27)
Hz _ HO [e—Jkpcosqbi D(Vi)+€_JkPCOS¢YD(Vr)]

bi=¢+«, Vi=21/npl/25m¢l
¢r=¢ - «, Vr:*Z,/_’Tpl/Zsmd)r

The choice of signs in v; and v, are such that they are both negative within the
shadow region defined by Eq. (18.15.5). The same solution can also be obtained from
Fig. 18.15.1 and Eq. (18.15.17) by replacing « by ™ — «.

where, now:

(18.15.28)

18.16 Problems

18.1 Show that Eq. (18.4.9) can be written in the compact vectorial form:

e—Jkr R R jk e—Jkr

E:—Jk4 rr><[z><f—nr><(z><g)], H= 0 41Trr><[r><(z><f)+nz><g]
Similarly, show that Egs. (18.4.10) and (18.4.11) can be written as:
ek 2jk e~k © o s
E——21k4nrr><[z><f], H=— N am r><[r><(z><f)]
—jkr —jk
E = 2jkn rfx[fx(ixg)], H:—ij4 rf><[2><g]

842 18. Radiation from Apertures

18.2 Prove the first pair of equations for E, H of the previous problem by working exclusively
with the Kottler formulas (18.4.2) and taking their far-field limits.

18.3 Explain in detail how the inequality (18.6.12) for the aperture efficiency e, may be thought
of as an example of the Schwarz inequality. Then, using standard properties of Schwarz
inequalities, prove that the maximum of e, is unity and is achieved for uniform apertures.
As a reminder, the Schwarz inequality for single-variable complex-valued functions is:

b 2 b ) b )
U f*(x)g(x)dx SJ If(X)\ZdX-J lg (x)|* dx

18.4 To prove the equivalence of the Kirchhoff diffraction and Stratton-Chu formulas, (18.10.6)
and (18.10.7), use the identities (C.29) and (C.32) of Appendix C, to obtain:

J [jquJ+ éGV'er GV’ x]m]dv’ =J [jqujf P96 +Inx V’G] av’
1% 1%
Y N ,
—Ei; [n7G+n><JmG]dS
sl €
Then, using the identity (C.33), show that Eq. (18.10.6) can be rewritten in the form:
E(r = —J [jquJ— gv’c T V’G] av’
v
+§ [ﬁEG+ﬁx1mG]dS’
S €
—jg [AGV' -E- (AX E)XxV'G-Gax (V' XE) —(h-E)V'G|dS
s
Finally, use p/e =V’ - Eand V' X E+ J,, = —jwuH to obtain (18.10.7).

18.5 Prove the equivalence of the Stratton-Chu and Kottler formulas, (18.10.7) and (18.10.10), by
first proving and then using the following dual relationships:

J [jwpV'G - (J- V' )V'GldV ﬁ[((ﬁxH)-V’)v'G —jwe@ - E)V'G]
14

[ [j0pm¥'G — (Jm - V) V'GldV 7{ [((hx B)-V')V'G + jou(h- HV'G]

v s

To prove these, work component-wise, use Maxwell’s equations (18.2.1), and apply the di-
vergence theorem on the volume V of Fig. 18.10.1.

18.6 Prove the equivalence of the Kottler and Franz formulas, (18.10.10) and (18.10.11), by using
the identity V x (V X A)= V(V - A) —V?2A, and by replacing the quantity k?G (¥ — ¥) by
—8B) (r—v)—V'2G. Argue that the term 6§ ® (r— ¥ ) makes a difference only for the volume
integrals, but not for the surface integrals.

18.7 Prove the equivalence of the modified Stratton-Chu and Kirchhoff diffraction integral for-
mulas of Eq. (18.12.1) and (18.12.2) by using the identity (C.42) of Appendix C and replacing
V' -E=0and V' X E= —jwuH in the source-less region under consideration.

18.8 Prove the equivalence of the Kottler and modified Stratton-Chu formulas of Eq. (18.12.1) and
(18.12.2) by subtracting the two expressions, replacing jweE = V' x H, and using the Stokes
identity (C.38) of Appendix C.
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18.9

18.10

18.11

Consider a reflector antenna fed by a horn, as shown
on the right. A closed surface S = S, + S, is such
that the portion S, caps the reflector and the portion
Sq is an aperture in front of the reflector. The feed
lies outside the closed surface, so that the volume V
enclosed by S is free of current sources.

Applying the Kottler version of the extinction theorem of Sec. 18.10 on the volume V, show
that for points r outside V, the field radiated by the induced surface currents on the reflector
S, is equal to the field radiated by the aperture fields on S, that is,

Evaa(P) = LJ [K2G Jo + (J; - V')V'G] dS’
JWE Js,

1 . o o . N , ’
= JEJ [K*GAxH)+((Ax H)-V')V'G + jwe (i x E)xV'G] dS
Sa
where the induced surface currents on the reflector are Jg = fi, X Hand J,,; = —h, X E, and
on the perfectly conducting reflector surface, we must have J,,s = 0.

This result establishes the equivalence of the so-called aperture-field and current-distribution
methods for reflector antennas [1686]. See also Sec. 21.9.

Consider an x-polarized uniform plane wave incident obliquely on the straight-edge aperture
of Fig. 18.14.4, with a wave vector direction Kk, = Zcos0, + ysin 0. First show that the
tangential fields at an aperture point ¥ = X’ X+ )’ ¥ on the aperture above the straight-edge
are given by:

Eg = X Ege /% sin01 H, :}”/% cos 0,k sin01

0
Then, using Kottler’s formula (18.12.1), and applying the usual Fresnel approximations in
the integrand, as was done for the point source in Fig. 18.14.4, show that the diffracted
wave below the edge is given by Egs. (18.14.23)-(18.14.25), except that the field at the edge
is Ecage = Eo, and the focal lengths are in this case F = I, and F' = I,/ cos? 6,
Finally, show that the asymptotic diffracted field (when I, — ), is given near the forward
direction 0 ~ 0 by:
e k2 1 —j

Wzme

Assume that the edge in the previous problem is a perfectly conducting screen. Using the
field-equivalence principle with effective current densities on the aperture above the edge

s =0and J,s = —20 X E4, and applying the usual Fresnel approximations, show that the
diffracted field calculated by Eq. (18.4.1) is still given by Egs. (18.14.23)-(18.14.25), except
that the factor cos 0 + cos 05 is replaced now by 2 cos 0>, and that the asymptotic field and
edge-diffraction coefficient are:

E= Eedge

eIkl (1 —j)2cos@»

E=Ey——D s D =
0 \/Tz edse edge 4+/1rk (sin 01 + sin 0,)

Show that this expression agrees with the exact Sommerfeld solution (18.15.26) at normal
incidence and near the forward diffracted direction.

19

Diffraction - Plane-Wave Spectrum

This chapter continues the previous one on radiation from apertures. The emphasis
is on Rayleigh-Sommerfeld diffraction theory, plane-wave spectrum representation for
scalar and vector fields, radiated and reactive power of apertures, integral equations
for apertures in conducting screens, revisiting the Sommerfeld half-plane problem us-
ing Wiener-Hopf factorization techniques, the Bethe-Bouwkamp model of diffraction by
small holes, and the Babinet principle.

19.1 Rayleigh-Sommerfeld Diffraction Theory

In this section, we recast Kirchhoff’s diffraction formula in a form that uses a Dirich-
let Green’s function (i.e., one that vanishes on the boundary surface) and obtain the
Rayleigh-Sommerfeld diffraction formula. In the next section, we show that this re-
formulation is equivalent to the plane-wave spectrum approach to diffraction, and use
it to justify the modified forms (18.1.2) and (18.1.3) of the field equivalence principle.
In Chap. 20, we use it to obtain the usual Fresnel and Fraunhofer approximations and
discuss a few applications from Fourier optics.

We will work with the scalar case, but the same method can be used for the vector
case. With reference to Fig. 19.1.1, we consider a scalar field E(r) that satisfies the
source-free Helmholtz equation, (V2 + k?)E (¥) = 0, over the right half-space z > 0.

We consider a closed surface consisting of the surface S of a sphere of very large
radius centered at the observation point ¥ and bounded on the left by its intersection S
with the xy plane, as shown in the Fig. 19.1.1. Clearly, in the limit of infinite radius, the
volume V bounded by S + S« is the right half-space z > 0, and S becomes the entire xy
plane. Applying Eq. (18.10.3) to volume V, we have:

on' E on’

J [G(V?E + k*E)—E (V'’G + k*G) ] dV’ = —j(
\%4

[ OE oG
S+Se

]dS' (19.1.1)

The surface integral over S can be ignored by noting that n is the negative of the
radial unit vector and therefore, we have after adding and subtracting the term jKEG:

E 3G .. OE .\ (3G . ,
‘L[GW‘EW]“ _Jm[G<ar+JkE) E(ar *J"Gﬂ‘“



