
Controllability and Observability

Controllability and observabilityrepresenttwo major conceptsof moderncontrol
systemtheory. Theseconceptswere introducedby R. Kalman in 1960. They can
be roughly definedas follows.

Controllability: In order to be able to do whateverwe want with the given
dynamicsystemundercontrol input, the systemmustbe controllable.

Observability: In order to seewhat is going on insidethe systemunderobser-
vation, the systemmustbe observable.

In this lecturewe show that the conceptsof controllability and observabilityare
relatedto linear systemsof algebraicequations.It is well known that a solvable
systemof linear algebraicequationshasa solution if and only if the rank of the
systemmatrix is full . Observabilityandcontrollability testswill be connectedto
the rank testsof ceratinmatrices:the controllability andobservabilitymatrices.
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5.1 Observability of Discrete Systems
Considera linear, time invariant,discrete-timesystemin the statespaceform

� � (5.1)

with output measurements
� (5.2)

where
� �

. � and � are constantmatricesof appropriate
dimensions. The naturalquestionto be askedis: can we learn everythingabout
the dynamicalbehaviorof the statespacevariablesdefinedin (5.1) by usingonly
informationfrom theoutputmeasurements(5.2). If we know � , thentherecursion
(5.1) apparentlygives us completeknowledgeabout the state variablesat any
discrete-timeinstant. Thus, the only thing that we have to determinefrom the
statemeasurementsis the initial statevector � .

Sincethe -dimensionalvector has unknowncomponents,it is expected
that measurementsaresufficient to determine � . Take in (5.1)
and (5.2), i.e. generatethe following sequence�

� � �
� � � � ��

... � � ������
(5.3)
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(5.4)

We know from linear algebrathat the systemof linear algebraicequationswith
unknowns,(5.4), hasa uniquesolutionif andonly if the systemmatrix hasrank .�

� �
� ��
...� 
�����

(5.5)

The initial condition � is determinedif the so-calledobservabilitymatrix

� �
�

� �
� � �
...� 
�����

	�
������ 


(5.6)

has rank , that is

(5.7)
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Theorem 5.1 The linear discrete-timesystem(5.1) with measurements(5.2) is
observableif andonly if the observabilitymatrix (5.6) hasrank equalto .

Example 5.1:
Considerthe following systemwith measurements

!
"

!
"

!
"

The observabilitymatrix for this second-ordersystemis given by

#
# #

Sincethe rows of the matrix arelinearly independent,then , i.e.
thesystemunderconsiderationis observable.Anotherway to testthecompleteness
of the rank of squarematricesis to find their determinants.In this case
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Example 5.2:
Considera caseof an unobservablesystem,which can be obtainedby slightly
modifying Example5.1. The correspondingsystemandmeasurementmatricesare
given by

$ $
The observabilitymatrix is

so that , and the systemis unobservable.
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5.2 Observability of Continuous Systems
For the purposeof studyingits observability,we consideran input-freesystem% & (5.8)

with the correspondingmeasurements

(5.9)

of dimensions ' ( , ' )�' , and (*)�' . Following the
sameargumentsasin the previoussection,we canconcludethat the knowledgeof& is sufficient to determine at any time instant,sincefrom (5.8) we have+-,/.102.43�5 % (5.10)

Theproblemthatwearefacedwith is to find % from theavailablemeasurements
(5.9). We have solved this problem for discrete-timesystemsby generatingthe
sequenceof measurementsat discrete-timeinstants . Note
that a time shift in the discrete-timecorrespondsto a derivativein the continuous-
time. An analogoustechniquein the continuous-timedomainis obtainedby taking
derivativesof the continuous-timemeasurements(5.9)% %

% % %
% % 6 %

... , ' 08795 % , ' 0�7:5 % ' 0�7 %
(5.11)
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Equations(5.11) comprisea systemof linear algebraicequations.They canbe
put in matrix form as

;
;
;

...<�=�>�?�@ ;

<�=
A�@�B�?
C

... =�>�?

<�=�A�@�B =

; ; ; (5.12)

where is theobservabilitymatrix alreadydefinedin (5.6)andwherethedefinition
of ; is obvious. Thus, the initial condition ; canbe determineduniquely
from (5.12) if andonly if the observabilitymatrix hasfull rank, i.e. .

Theorem 5.2 The linear continuous-timesystem(5.8) with measurements(5.9)
is observableif and only if the observabilitymatrix hasfull rank.

It is important to notice that adding higher-orderderivativesin (5.12) cannot
increasetherankof theobservabilitymatrix sinceby theCayley–Hamiltontheorem
for we have

D =�>�?
E4F ; E E

(5.13)

so that the additional equationswould be linearly dependenton the previously
defined equations(5.12).
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5.3 Controllability of Discrete Systems

Considera linear discrete-timeinvariant control systemdefinedby

G G H (5.14)

The systemcontrollability is roughly definedasan ability to do whateverwe want
with our system,or in moretechnicalterms,theability to transferour systemfrom
any initial state H to anydesiredfinal state I J in a finite time, i.e.
for I (it makesno senseto achievethatgoalat I ). Thus,thequestion
to be answeredis: canwe find a control sequence , such
that J ?

Let us startwith a simplifiedproblem,namelylet us assumethat the input
is a scalar,i.e. the input matrix G is a vectordenotedby G . Thus,we have

G G H (5.15)

Taking in (5.15),we obtain the following setof equations

G G
G G KG G G G

... L G L�M IG G G
(5.16)
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NO O ...
O O ... ...

N�P�QO O ... (5.17)

Note that
O ... O O ... ...

N�P�QO O
is a squarematrix. We call it the controllability

matrix anddenoteit by . If the controllability matrix is nonsingular,equation
(5.17) producesthe uniquesolution for the input sequencegiven by

...
P�Q N O

(5.18)

Thus, for any R , the expression(5.18) determinesthe input sequence
that transfersthe initial state S to the desiredstate R in steps. It follows
that the controllability condition,in this case,is equivalentto nonsingularityof the
controllability matrix .
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In a generalcase,whenthe input is a vectorof dimension , the repetition
of the sameprocedureas in (5.15)–(5.17)leadsto

TU U ...
U U ... ...

T�V�WU U ... (5.19)

The controllability matrix, in this case,definedbyU U U ...
U U ... ...

T�V�WU U
(5.20)

is of dimension . The systemof linear algebraicequationsin
unknownsfor -dimensionalvectorcomponentsof , is

T�X2Y�T�Z9[ ...

Y�T�Z\[�X2]
T U ^ TU

(5.21)

will have a solution for any
^

if and only if the matrix has full rank, i.e.
.

Theorem 5.3 Thelinear discrete-timesystem(5.14) is controllable if andonly if

(5.22)

where the controllability matrix is definedby (5.20).
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5.4 Controllability of Continuous Systems

Studying the conceptof controllability in the continuous-timedomain is more
challengingthan in the discrete-timedomain. At the beginningof this sectionwe
will first applythesamestrategyasin Section5.3in orderto indicatedifficultiesthat
we arefacedwith in the continuous-timedomain.Then,we will showhow to find
a control input that will transferour systemfrom any initial stateto any final state.

A linear continuous-timesystemwith a scalarinput is representedby

_ ` (5.23)

Following the discussionand derivationsfrom Section5.3, we have,for a scalar
input, the following set of equations

a
a a

... b ced c
c c c�f�g c�f a b c�f�g�d

(5.24)
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h�ikj i
h�i�l�m:j
h�i�lonpj

... (5.25)

Note that (5.25) is valid for any q r with r free but finite. Thus, the
nonsingularityof the controllability matrix implies the existenceof the scalar
input function and its derivatives,for any r .

For a vectorinput systemdual to (5.23),theabovediscussionproducesthesame
relation as (5.25) with the controllability matrix given by (5.20) and with the
input vector s , that is

iutwvyxzi
h�i�l�m:j
h�i�lonpj

...

s x{i t�m
h�iej i

(5.26)

It is well known from linear algebrathat in order to havea solution of (5.26), it
is sufficient that

... (5.27)

Also, a solutionof (5.26)existsfor any —any desiredstateat —if andonly if

(5.28)
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From Section3.2 we know that the solutionof the statespaceequationis

|-}�~1��~4�:� � ~

~��
|-}�~1�����

At the final time � we have

� � |�}�~����2~ � � �
~ �

~��
|-}�~��������

or
��|�~�� � ��|�~ � �

~��

~ �
��|��

Using the Cayley–Hamiltontheorem,that is

��|�� � � �
��� � � �

(5.29)

where � , arescalartime functions,we have

�o|�~ � � ��|�~�� � � � �
�4� �

�
~ �

~��
�
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�o����� � �����4� � ... ... ... � �8�

� �
���

�
� �
��� �

...� �
� � � ���

On the left-hand side of this equationall quantitiesare known, i.e. we have a
constantvector. On the right-handside the controllability matrix is multiplied by
a vector whosecomponentsare functionsof the requiredcontrol input. Thus,we
havea functional equationin the form

�   � �  ¢¡:�
�£

...

� ���

¡:�   �
� � (5.30)

A solution of this equationexists if and only if , which is the
condition alreadyestablishedin (5.28). In general,it is very hard to solve this
equation.Oneof themanypossiblesolutionsof (5.30)will begiven in Section5.8
in termsof the controllability Grammian.

Theorem 5.4 Thelinear continuous-timesystemis controllable if andonly if the
controllability matrix has full rank, i.e. .
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Example 5.3: Given the linear continuous-timesystem

The controllability matrix for this third-ordersystemis given by

... ... ¤
... ...
... ... ¤
... ...

Sincethefirst threecolumnsarelinearly independentwe canconcludethat
. Hencethere is no needto compute ¤ since it is well known from linear

algebrathat the row rank of the given matrix is equal to its column rank. Thus,
implies that the systemunderconsiderationis controllable.
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5.5 Additional Controllability/Observability Topics

Invariance Under Nonsingular Transformations
We will show that both systemcontrollability and observabilityare invariant

under similarity transformation.
Considerthe vector input form of (5.23) and the similarity transformation

(5.31)

such that

where ¥�¦ and . Then the following theoremholds.

Theorem 5.5 Thepair is controllable if and only if the pair is
controllable.

This theoremcan be provedas follows

... ... ... § ¥�¦
... ¥�¦ ... ... § ¥�¦ ¥�¦
... ... ... § ¥�¦
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Since is a nonsingularmatrix (it cannotchangethe rank of the product ),
we get

A similar theoremis valid for observability.Thesimilarity transformation(5.32)
applied to (5.8) and (5.9) produces

where ¨�©

Then, we have the following theorem

Theorem 5.6 Thepair is observableif and only if the pair is
observable.

The proof of this theoremis as follows

ª
... « ¨�©

¨�©
¨�© ¨�©
¨�© ª ¨�©

...¨�© « ¨�© ¨�©
ª

... « ¨�©
¨�©
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¬�­
The nonsingularityof implies

which provesthe statedobservabilityinvariance.

FrequencyDomain Controllability and Observability Test
Controllability andobservabilityhavebeenintroducedin thestatespacedomain

as pure time domainconcepts.It is interestingto point out that in the frequency
domainthereexistsavery powerfulandsimpletheoremthatgivesasinglecondition
for both the controllability and the observabilityof a system.It is given below.

Let be the transferfunction of a single-inputsingle-outputsystem¬�­
Notethat is definedby aratioof two polynomialscontainingthecorresponding
systempoles and zeros. The following controllability–observabilitytheoremis
given without a proof.

Theorem 5.7 If there are no zero-pole cancellationsin the transfer function
of a single-input single-outputsystem,then the systemis both controllable and
observable.If the zero-polecancellationoccursin , thenthe systemis either
uncontrollable or unobservableor both uncontrollable and unobservable.
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Example 5.4: Considera linear continuous-timedynamic systemrepresented
by its transfer function

® ¯
Theorem5.7 indicatesthat any statespacemodel for this systemis either uncon-
trollable or/andunobservable.To get the completeanswerwe haveto go to a state
spaceform andexaminethe controllability andobservabilitymatrices.Oneof the
possiblemany statespaceforms of is as follows

°
¯
®

°
¯
®

°
¯
®

It is easyto showthat the controllability andobservabilitymatricesaregiven by

Since
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and

this systemis controllable,but unobservable.
Notethat,dueto a zero-polecancellationat , thesystemtransferfunction

is reducible to

± ²
sothat theequivalentsystemof order hasthecorrespondingstatespaceform

³ ±² ±
³ ±² ±
³ ±² ±

For this reduced-ordersystemwe have

and thereforethe systemis both controllableandobservable.
Interestinglyenough,the last two mathematicalmodelsof dynamicsystemsof

order and representexactlythesamephysicalsystem.Apparently,the
secondone( ) is preferredsinceit canbe realizedwith only two integrators.
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It canbe concludedfrom Example5.4 that Theorem5.7 givesan answerto the
problemof dynamicsystemreducibility. It follows thata single-inputsingle-output
dynamicsystemis irreducibleif andonly if it is both controllableandobservable.
Sucha systemrealizationis called the minimal realization. If the systemis either
uncontrollableand/orunobservableit canbe representedby a systemwhoseorder
hasbeenreducedby removinguncontrollableand/orunobservablemodes. It can
be seenfrom Example5.4 that the reducedsystemwith is both controllable
andobservable,andhenceit cannotbe further reduced.This is alsoobviousfrom
the transfer function ´ .

Theorem5.7 can be generalizedto multi-input multi-output systems,where
it plays very important role in the procedureof testing whetheror not a given
systemis in theminimal realizationform. Theprocedurerequiresthenotionof the
characteristicpolynomialfor properrationalmatriceswhich is beyondthe scopeof
this book. Interestedreadersmay find all detailsanddefinitionsin Chen(1984).

It is importantto point out that thesimilarity transformationdoesnot changethe
transferfunction as was shownin Section3.4.
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Controllability and Observability of Special Forms
In somecases,it is easyto drawconclusionsaboutsystemcontrollability and/or

observabilityby examiningdirectly the statespaceequations.In thosecasesthere
is no needto find the correspondingcontrollability andobservabilitymatricesand
check their ranks.

Considerthe phasevariablecanonicalform with

where

... ... ... . .. ...

µ ¶ · ¸�¹�¶
...

This form is bothcontrollableandobservabledueto anelegantchainconnectionof
the statevariables.The variable ¶ is directly measured,so that · is known
from · ¶ . Also, º · ¶ , and so on, ¸ » ¸�¹�¶9¼¶ .
Thus,this form is observable.Thecontrollability follows from thefact thatall state



CONTROLLABILITY AND OBSERVABILITY 23

variablesareaffectedby the control input, i.e. ½ is affecteddirectly by and
then ½�¾À¿ by ½ and so on. The control input is able to indirectly move
all statevariablesinto the desiredpositionsso that the systemis controllable.This
can be formally verified by forming the correspondingcontrollability matrix and
checkingits rank. This is left asan exercisefor students(seeProblem5.13).

Another exampleis the modal canonicalform. Assumingthat all eigenvalues
of the systemmatrix are distinct, we have

where ¿ Á
... ... . . . ...

½

¿Á
...
½

¿
Á

½
We are apparentlyfacedwith completelydecoupledfirst-ordersystems.Obvi-
ously, for controllability all Â must be different from zero,so that
eachstatevariable can be controlled by the input . Similarly, Â

ensuresobservabilitysince,due to the statedecomposition,eachsystem
must be observedindependently.
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The Role of Observability in Analog Computer Simulation

In additionto applicationsin control systemtheoryandpractice,the conceptof
observabilityis useful for analogcomputersimulation. Considerthe problemof
solving an th-orderdifferential equationgiven by

Ã�ÄkÅ Ä
ÆÈÇÊÉ Ä�Ë Æ Ã�Ä�Ë Æ Å Ì

Æ4Ç2Í Ì Ë Æ
Ã Ì Ë Æ Å

with known initial conditions for
Ã�Ä�Ë É Å

. This systemcan be
solved by an analogcomputerby using integrators. The outputsof these
integratorsrepresentthe statevariables É Î Ä so that this systemhas the
statespaceform

However, the initial condition for is not given. In other words, the initial
conditionsfor the consideredsystemof integratorsare unknown. They can be
determinedfrom

Ã�Ä�Ë É Å
by following theobservabilityderivations
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performedin Section5.2, namely

Ï
... Ð�Ñ*Ò8Ó9Ô Ð�Ñ�Ò�Ó9Ô Ñ�Ò�Ó Ñ�Ò ÏÑ�Ò�Õ Ð�Ñ�Ò�ÕpÔ Ð�Ñ�Ò Ï Ô

This systemcan be written in matrix form as follows

...Ð�Ñ�Ò�Ó:Ô ...Ð�Ñ�Ò Ï Ô (5.32)

where is the observability matrix and is a known matrix. SinceÐ�Ñ�Ò�Ó:Ô
are known, it follows that a unique solution for

exists if and only if the observability matrix, which is squarein this case, is
invertible, i.e. the pair ( ) is observable.
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Example 5.5: Considera systemrepresentedby the differentialequationÖ
Ö ×�Ø\Ù

Its statespaceform is given by

The initial condition for the statespacevariablesis obtainedfrom (5.33) as

leading to

Ú
Ö

This meansthat if analogcomputersimulationis usedto solve the abovesecond-
order differential equation,the initial conditions for integratorsshould be set to

and .
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Stabilizability and Detectability
So far we have defined and studied observability and controllability of the

completestatevector. We haveseenthat the systemis controllable(observable)if
all componentsof thestatevectorarecontrollable(observable).Thenaturalquestion
to be askedis: do we really needto control and observeall statevariables? In
someapplications,it is sufficient to take careonly of the unstablecomponentsof
the statevector. This leadsto the definition of stabilizability anddetectability.

Definition 5.1 A linear system(continuousor discrete) is stabilizable if all
unstablemodesare controllable.

Definition 5.2A linear system(continuousor discrete)is detectableif all unstable
modesare observable.

The conceptsof stabilizability and detectability play very important roles in
optimal control theory,andhencearestudiedin detail in advancedcontrol theory
courses.For the purposeof this course,it is enoughto know their meanings.


