Controllability and Observability

Controllability and observabilityrepresentwo major conceptsof moderncontrol
systemtheory. Theseconceptswvere introducedby R. Kalmanin 1960. They can
be roughly defined as follows.

Controllability: In order to be able to do whateverwe want with the given
dynamicsystemunder control input, the systenmustbe controllable.

Observability: In order to seewhatis going on inside the systenunderobser-
vation, the systemmustbe observable

In this lecture we show that the conceptsof controllability and observabilityare
relatedto linear systemsof algebraicequations. It is well known that a solvable
systemof linear algebraicequationshasa solutionif andonly if the rank of the
systemmatrix is full . Observabilityand controllability testswill be connectedo
the rank testsof ceratinmatrices:the controllability and observabilitymatrices.
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5.1 Observability of Discrete Systems
Considera linear, time invariant, discrete-timesystemin the statespaceform
x(k+1) = Agx(k), x(0)=x,=unknown (5.1)
with output measurements
y(k) = Cax(k) (5.2)

wherex(k) € R", y(k) € R’. A,; and C; are constantmatricesof appropriate
dimensions. The natural questionto be askedis: can we learn everythingabout
the dynamicalbehaviorof the statespacevariablesdefinedin (5.1) by using only
informationfrom the outputmeasurements.2). If we know x,, thenthe recursion
(5.1) apparentlygives us complete knowledge about the state variablesat any
discrete-timeinstant. Thus, the only thing that we have to determinefrom the
statemeasurements the initial statevector x(0) = x,.

Sincethe n-dimensionalectorx(0) hasn unknowncomponentsit is expected
thatn measurementaresuficientto determinex,. Takek = 0,1,...,n — 1 in (5.1)
and (5.2), i.e. generatethe following sequence

y(0) = Cy4x(0)
y(l) = CdX(l) = CdAdX(O)
y(2) = Cgx(2) = C4A4x(1) = C4A%x(0) (5.3)

.y(n — 1) = Cyx(n — 1) = C4A~'x(0)
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y(0) ] (np)x1 T Cy; ] (np)xn

y(1) CiAy

v(2) = | CuAj x x(0) (5.4)
y(n—1) A |

We know from linear algebrathat the systemof linear algebraicequationswith n
unknowns,(5.4), hasa uniquesolutionif andonly if the systemmatrix hasrankn.

Cy
CaAy
rank CdAz =n (5.5)

| CyA;!
The initial conditionx, is determinedf the so-calledobservabilitymatrix

B C, = (np)xn

CyAy
O(A4,Cy) = | CyA? (5.6)

| CqAL! ]
hasrank n, thatis

rankO =n (5.7)
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Theorem 5.1 Thelinear discrete-timesystem(5.1) with measuementy5.2) is
observablaf and only if the observabilitymatrix (5.6) hasrank equalto n.

Example 5.1:
Considerthe following systemwith measurements

)= b )
2

:Eg(k + 1) -

The observabilitymatrix for this second-ordesystemis given by

| Cy 12
0= ot =7 10
Sincethe rows of the matrix O arelinearly independentthenrankQ = 2 = n, i.e.

the systemunderconsiderations observable Anotherway to testthe completeness
of the rank of squarematricesis to find their determinants.n this case

detO = -4 #0 & fullrank = n=2



CONTROLLABILITY AND OBSERVABILITY 5

Example 5.2:
Considera caseof an unobservablesystem,which can be obtainedby slightly
modifying Example5.1. The correspondingystemand measurementatricesare
given by

Ad:[_lg :i], Cy=[1 2]

The observability matrix is

12
0_[—5 —10]

so that rankO = 1 < 2, andthe systemis unobservable.
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5.2 Observability of Continuous Systems

For the purposeof studyingits observability,we consideran input-freesystem

x(t) = Ax(t), x(ty) = X, = unknown (5.8)
with the correspondingneasurements

y(t) = Cx(t) (5.9)
of dimensionsx(t) € R", y(t) € ®*, A € ", and C € RP*". Following the
sameargumentsasin the previoussection,we canconcludethat the knowledgeof

X, IS sufficient to determinex(t) at any time instant,sincefrom (5.8) we have
x(t) = eA=)x (1) (5.10)
Theproblemthatwe arefacedwith is to find x(ty) from theavailablemeasurements
(5.9). We have solvedthis problemfor discrete-timesystemsby generatingthe
sequenceof measurementat discrete-timeinstantsk = 0,1,2,...,n — 1. Note
that a time shift in the discrete-timecorrespondso a derivativein the continuous-

time. An analogougechniquen the continuous-timedomainis obtainedby taking
derivativesof the continuous-timemeasurementgs.9)

y(to) = Cx(to)
Y(t()) = Cf((to) = CAX(tU)
S}(to) = C}.i(t(]) = CAQX(t(]) (5.11)

n—1

—

vy (1) = Cx" V(1) = CA"x(ty)
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Equations(5.11) comprisea systemof np linear algebraicequations.They canbe
put in matrix form as

Y(t(]) 7 (np)x1 T (np)xn

y(to) CA

y(to) = | CA? x x(ty) = Ox(ty) = Y(ty)  (5.12)
_y(n_l)(t(])_ _CAn—l

whereQ is the observabilitymatrix al_readydefinedin (5.6) andwherethe definition
of Y(¢o) is obvious. Thus, the initial conditionx(¢y) canbe determineduniquely
from (5.12)if andonly if the observabilitymatrix hasfull rank,i.e. rankO = n.

Theorem 5.2 Thelinear continuous-timesystem(5.8) with measuementy5.9)
is observablaf and only if the observabilitymatrix hasfull rank.

It is importantto notice that adding higher-orderderivativesin (5.12) cannot
increasdhe rank of the observabilitymatrix sinceby the Cayley—Hamiltortheorem
for £ > n we have

n—1
AP =" A (5.13)
1=0

so that the additional equationswould be linearly dependenton the previously
definedn equations(5.12).
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5.3 Controllability of Discrete Systems

Considera linear discrete-timeinvariant control systemdefinedby
x(k+1) = Agx(k) + Bgu(k), x(0)=x, (5.14)

The systemcontrollability is roughly definedas an ability to do whateverwe want
with our system,or in moretechnicalterms,the ability to transferour systemfrom
anyinitial statex(0) = x, to any desiredfinal statex(k;) = x, in afinite time, i.e.
for k1 < oo (it makesno sensdo achievethatgoalat k; = o0). Thus,the question
to be answereds: canwe find a control sequencai(0), u(1),...,u(n — 1), such
that x(k) = x;?

Let us startwith a simplified problem,namelylet us assumehatthe input u(k)
Is a scalar,i.e. the input matrix B, is a vectordenotedby b,;. Thus,we have

x(k+1) = Agx(k) +bgu(k), x(0)=x, (5.15)

Takingk = 0,1, 2,...,n in (5.15), we obtainthe following setof equations
X(l) = AdX(O) + bdu(O)

x(2) = Agx(1) + bgu(1) = A%x(0) + A sbgu(0) + bau(1) (5.16)

X(n) = Ax(0) + Az_lbdu(O) + -+ bgu(n — 1)
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x(n) — Ajx(0) = [byi Agbyi -+ 1 AL 'by] (5 | (5.17)
u(l

matrix and denoteit by C. If the controllability matrix C is nonsingular,equation
(5.17) producesthe uniquesolutionfor the input sequencegiven by

u(n — 1)
u(n — 2)
= ' (x(n) — A”x(0)) (5.18)

Thus, for any x(n) = xy, the expression(5.18) determinesthe input sequence
that transfersthe initial statex, to the desiredstatex; in n steps. It follows
that the controllability condition,in this case,s equivalentto nonsingularityof the
controllability matrix C.
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In a generalcase whentheinput u(k) is a vectorof dimensionr, the repetition
of the sameprocedureasin (5.15)—(5.17)leadsto

u(n —1)
u(n — 2)
x(n) — A"x(0) = [BdsAdBds sAg—le] 5 (5.19)
u(1)
| u0) |
The controllability matrix, in this case,definedby
C(Ag,By) = [BdsAdBds sAg—le] (5.20)
is of dimensionn x r - n. The systemof n linear algebraicequationsin r - n
unknownsfor n r-dimensionalvectorcomponentf u(0),u(1),...,u(n — 1), is
- 7 (nr)x1
u(n —1)
u(n —2)
¢ (nr) 5 = x(n) — A7x(0) = x5 — Ax(0) (5.21)
u(1)
u(0)

will have a solution for_any x¢ if andonly if the matrix C hasfull rank, i.e.
rankC = n.
Theorem 5.3 Thelinear discrete-timesysten(5.14)is contmllable if andonly if

rankC = n (5.22)
whele the controllability matrix C is definedby (5.20).
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5.4 Controllability of Continuous Systems

Studying the conceptof controllability in the continuous-timedomain is more
challengingthanin the discrete-timedomain. At the beginningof this sectionwe
will first applythe samestrategyasin Section5.3in orderto indicatedifficultiesthat
we arefacedwith in the continuous-timedomain. Then,we will showhow to find
a controlinput thatwill transferour systemfrom any initial stateto any final state.

A linear continuous-timesystemwith a scalarinput is representedby
X = Ax+bu, x(t)) =%, (5.23)

Following the discussionand derivationsfrom Section5.3, we have,for a scalar
input, the following set of equations

d
. d? 2 '
% = 5% = A’X + Abu + bi (5.24)

n

d
x") = X =A% A" 'bu+ A" ?bi+ - + bu*Y
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'u(n—l)(t) 7
u(n—Q)(t)
x"W(t) — A"x(t) =C ; (5.25)
u(t)
| u(t)
Note that (5.25) is valid for any ¢ € [tg,t;] with ¢; free but finite. Thus, the
nonsingularityof the controllability matrix C implies the existenceof the scalar
input function u(t) andits n — 1 derivatives,for anyt < ty < oo.

For avectorinput systemdualto (5.23),the abovediscussiomproduceghe same

relation as (5.25) with the controllability matrix C given by (5.20) and with the
input vector u(t) € RN", thatis

-u(n_l)(t) qrnxl

ul"=2(t) |
crxmn : = x(t) — A"x(t) = y(t) (5.26)
u(t)

| u(t)
It is well known from linear algebrathat in orderto have a solution of (5.26), it
is sufficient that

rankC = rank [C E ’y(t)] (5.27)

Also, a solutionof (5.26) existsfor any v(¢)—any desiredstateat t—if andonly if
rankC = n (5.28)
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From Section3.2 we know that the solution of the statespaceequationis
t

x(t) = A=)k (ty) + / AT Bu(r)dr
At the final time t; we have
4]
x(t1) = Xf = eA(tl_tO)X(to) + /eA(tl_T)Bu(T)dT
Lo

or

e Alixp — emAox () = /G_ATBU(T)dT
to
Using the Cayley—Hamiltontheorem,that is

n—1
e AT = Z o (T) A’ (5.29)
1=0

whereq;(7), < =0,1,...,n — 1, arescalartime functions,we have

n—1 ty

e_Atle — e Alox(ty) = Z AiB/ai(T)u(T)dT

Z:(] tO
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On the left-hand side of this equationall quantitiesare known, i.e. we have a
constantvector. On the right-handside the controllability matrix is multiplied by
a vector whosecomponentsare functionsof the requiredcontrol input. Thus,we
have a functional equationin the form

fi(u(r) 1M
const"*! = C(A,B)""™" fQ(u:(T)) , T € (to,t1) (5.30)

| fo1(u(7))
A solution of this equationexistsif andonly if rank C(A,B) = n, which is the
condition already establishedn (5.28). In general,it is very hard to solve this
equation.Oneof the many possiblesolutionsof (5.30)will be givenin Section5.8
in terms of the controllability Grammian.

Theorem 5.4 Thelinear continuous-timesystemis controllable if andonly if the
controllability matrix C hasfull rank, i.e. rankC = n.
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Example 5.3: Given the linear continuous-timesystem

0 1 =2 0 -1
x=|3 -4 5 |x+1|2 —-3|u
—6 7 8 4 -5

The controllability matrix for this third-ordersystemis given by

¢ =|B:AB:A’B|

[o -1 : -6 7 w
=12 -3 : 12 —-10 : A°’B
[4 —5 1 46 =55

Sincethefirst threecolumnsarelinearly independentve canconcludethatrankC =
3. Hencethereis no needto compute A?B sinceit is well known from linear
algebrathat the row rank of the given matrix is equalto its columnrank. Thus,
rankC = 3 = n implies that the systemunderconsiderationis controllable.
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5.5 Additional Controllability/Observability Topics

Invariance Under Nonsingular Transformations

We will show that both systemcontrollability and observability are invariant
under similarity transformation.

Considerthe vectorinput form of (5.23) andthe similarity transformation
x = Px (5.31)
such that
x = A% + Bu
whereA = PAP~! andB = PB. Thenthe following theoremholds.

Theorem 5.5 The pair (A, B) is contollable if and only if the pair (A, B> is
controllable.
This theoremcan be proved as follows

C(A,]é) = [P)EAP)E EA"—llf%]
- [PB :PAP 'PB:..: PA”—lP—lPB]
:P[BEABE sA"—lB] — PC(A,B)
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Since P is a nonsingularmatrix (it cannotchangethe rank of the product PC),
we get

rankC (A, ]é) = rankC(A,B)

A similar theoremis valid for observability. The similarity transformation5.32)
appliedto (5.8) and (5.9) produces

X = A%
y = Cx
where )
C=cp!

Then, we havethe following theorem
Theorem 5.6 The pair (A, C) is observableif and only if the pair (A, C) is

observable.
The proof of this theoremis as follows

¢ 1 [ cP?t ] [ c ]

o CA CP~'PAP™! CA
O(A,C): CA? | = | cp'PAZP! | = | cA? |p!

[CA™"'|  |cP'PA™'PTL| |cAm!]
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0(A,€) =0(a,CP!
The nonsingularityof P implies
rank O (A, C) = rankO(A, C)

which provesthe statedobservabilityinvariance.

FrequencyDomain Controllability and Observability Test

Controllability andobservabilityhavebeenintroducedin the statespacedomain
as pure time domainconcepts.lt is interestingto point out thatin the frequency
domainthereexistsavery powerfulandsimpletheorenthatgivesasinglecondition
for both the controllability and the observabilityof a system.It is given below.

Let H(s) bethe transferfunction of a single-inputsingle-outputsystem

H(s)=c(sI—A)"'b

Notethat H (s) is definedby aratio of two polynomialscontainingthecorresponding
systempoles and zeros. The following controllability—observabilitytheoremis
given without a proof.

Theorem 5.7 If there are no zeio-pole cancellationsin the transfer function
of a single-inputsingle-outputsystem,then the systemis both controllable and
observable.If the zelo-pole cancellationoccursin H(s), thenthe systemis either
uncontollable or unobservabler both uncontollable and unobservable.
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Example 5.4. Considera linear continuous-timedynamic systemrepresented
by its transferfunction

(s +3) s+3
H(s) = = — >
(s+1)(s+2)(s+3) sP+6s°+11s+6
Theoremb.7 indicatesthat any statespacemodel for this systemis either uncon-
trollable or/andunobservableTo getthe completeanswerwe haveto go to a state
spaceform and examinethe controllability and observabilitymatrices.One of the

possiblemany statespaceforms of H(s) is as follows
I e I N
Bl Tl 0 o]l T )

It is easyto showthat the controllability and observabilitymatricesare given by

1 —6 25 o 1 3
c=1o0 1 -6|, o=|1 3 0
0 0 1 3 —11 —6

Since
detC =1#0 = rankC =3 =n
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and
det O =0 = rankO <3 =n
this systemis controllable,but unobservable.
Notethat,dueto a zero-polecancellatiomat s = —3, the systemtransferfunction
H(s) is reducibleto

1 1
H(s) = H(s) = (s+1)(s+2) T 21 3s+2

sothatthe equivalentsystemof ordern = 2 hasthe correspondingtatespaceform
Tir | |—2 =3| |z 1
I S | R

y=[0 1][%]

Loy

For this reduced-ordesystemwe have

1 =2 0 1
e=lp 7'} o= [ o)
andthereforethe systemis both controllableand observable.

Interestinglyenough,the last two mathematicamodelsof dynamicsystemsof
ordern = 3 andn = 2 represenexactlythe samephysicalsystem.Apparently,the
secondone (n = 2) is preferredsinceit canbe realizedwith only two integrators.



CONTROLLABILITY AND OBSERVABILITY 21

It canbe concludedfrom Example5.4 that Theorem5.7 givesan answerto the
problemof dynamicsystemreducibility. It follows thata single-inputsingle-output
dynamicsystemis irreducibleif andonly if it is both controllableand observabile.
Sucha systemrealizationis calledthe minimalrealization If the systemis either
uncontrollableand/orunobservablat canbe representedby a systemwhoseorder
hasbeenreducedby removing uncontrollableand/orunobservablenodes. It can
be seenfrom Example5.4 that the reducedsystemwith n = 2 is both controllable
and observableand henceit cannotbe further reduced.This is alsoobviousfrom
the transferfunction H,(s).

Theorem5.7 can be generalizedto multi-input multi-output systems,where
it plays very importantrole in the procedureof testing whetheror not a given
systemis in the minimal realizationform. The procedurerequiresthe notion of the
characteristigpolynomialfor properrationalmatriceswhich is beyondthe scopeof
this book. Interestedeaderamay find all detailsand definitionsin Chen(1984).

It is importantto point out thatthe similarity transformatiordoesnot changethe
transferfunction as was shownin Section3.4.
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Controllability and Observability of Special Forms

In somecasesit is easyto draw conclusionsaboutsystemcontrollability and/or
observabilityby examiningdirectly the statespaceequations.In thosecaseshere
IS no needto find the correspondingcontrollability and observabilitymatricesand
check their ranks.

Considerthe phasevariable canonicalform with

X = Ax 4+ Bu
y = Cx
where
[ 0 1 0 0 ] 0]
0 0 1 0 0
A=| ¢ . i i |, B=|:
0 0 0 1 0
|—ap —ar —az - —ap | 1]
C=[1 0 0 ... 0]

This form is both controllableandobservablalueto an elegantchainconnectionof
the statevariables.The variablex () is directly measuredso thatz»(t) is known
from z(t) = #1(t). Also, z3(t) = io(t) = & (¢), andsoon, z,(t) = ="~ (1)

Thus,this form is observable The controllability follows from the fact thatall state
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variablesare affectedby the control input, i.e. xz,, is affecteddirectly by u(t) and
thenz,,_;(t) by z,(u(t)) andsoon. The controlinput is able to indirectly move
all statevariablesinto the desiredpositionsso that the systemis controllable. This
can be formally verified by forming the correspondingcontrollability matrix and
checkingits rank. This is left asan exercisefor studentyseeProblem5.13).

Another exampleis the modal canonicalform. Assumingthat all eigenvalues
of the systemmatrix are distinct, we have

X =Ax+Tu
y = Ox
where _ ; _ .
M 0 - 0 1
I A IR e
|0 0 )\n_ | Yn

D =1[6) 62 -+ by

We are apparentlyfacedwith n completelydecoupledfirst-order systems. Obvi-
ously, for controllability all v;, = = 1,...,n, mustbe differentfrom zero, so that
each state variable can be controlled by the input u(¢). Similarly, é; # 0, ¢ =
1,...,n, ensuresobservabilitysince,due to the statedecompositiongachsystem
must be observedindependently.
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The Role of Observability in Analog Computer Simulation

In additionto applicationsin control systemtheoryand practice,the conceptof
observabilityis useful for analogcomputersimulation. Considerthe problem of
solving an nth-order differential equationgiven by

y(n) + zn: an—iy(n_i) = zm: bm—iu(m_i)
1=1 1=0

with known initial conditions for (0),4(0), ...,y (0). This systemcan be
solved by an analogcomputerby using n integrators. The outputs of thesen
integratorsrepresenthe statevariablesx, x», ..., z,,, so that this systemhasthe
state spaceform

x = AX + bu, x(0) = unknown
Yy =CX
However, the initial condition for x(0) is not given. In other words, the initial

conditionsfor the consideredsystemof n integratorsare unknown. They can be
determinedrom y(0), (0), ...,y ~1(0) by following the observabilityderivations
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performedin Section5.2, namely
y(0) = cx(0)
y(0) = cx(0) = cAx(0) + cbu(0)
i(0) = ¢%(0) = cA?x(0) + cAbu(0) + cbu(0)

y" 7 (0) = ex"Y(0) = cA"1x(0) + cA"Zbu(0)
+ cA"bi(0) + - - - + cAbu " (0) 4 cbul"72)(0)
This systemcan be written in matrix form as follows

y(0) ] [ 0]
y(io) _ 0. x(0)+T “(EO) (5.32)
Ly D(0) | u("2)(0) |

where O is the observability matrix and 7 is a known matrix. Since
u(0),7%(0), ...,u"~1(0) are known, it follows that a unique solution for x(0)
existsif and only if the observability matrix, which is squarein this case,is
invertible, i.e. the pair (A, c) is observable.
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Example 5.5: Considera systemrepresentedby the differential equation

Py dy du : 4t
— +4— + 4y = — 0)=2 0)=1 t)=¢€e t>0

Its state spaceform is given by
i 0 1 0
X—AX—|—bU—[_4 _4]X—|—L]u
y=cx=[1 1]x
The initial conditionfor the statespacevariablesis obtainedfrom (5.33) as

[0 =[50 - -0

y(0)
11 %(0) = 2] x(0) = z1(0)] _ [-6
—4 -3 |0 T z2(0)] T | 8
This meansthat if analogcomputersimulationis usedto solve the abovesecond-

order differential equation,the initial conditionsfor integratorsshould be set to
—6 and 8.

cbg(O)] -

leading to
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Stabilizability and Detectability

So far we have d€fined and studied observability and controllability of the
completestatevector. We haveseenthat the systemis controllable(observable)f
all componentsf thestatevectorarecontrollable(observable).Thenaturalquestion
to be askedis: do we really needto control and observeall statevariables? In
someapplications,it is sufficient to take careonly of the unstablecomponentof
the statevector. This leadsto the definition of stabilizability and detectability.

Definition 5.1 A linear system(continuousor discrete) is stabilizableif all
unstablemodesare contmwllable.

Definition 5.2 A linear systen{continuousr discrete)is detectablef all unstable
modesare observable.

The conceptsof stabilizability and detectability play very important roles in
optimal control theory, and henceare studiedin detail in advancedcontrol theory
courses.For the purposeof this course,it is enoughto know their meanings.



