Postdoctoral Researcher Opening in Photonics and Nanofabrication

A postdoctoral fellow/research associate position is available in Prof. Jiang's group in the electrical and computer engineering department of Rutgers University. The successful candidate will conduct research on exciting, meaningful scientific and engineering problems in the areas of silicon photonics and photonic crystals. The appointment can start immediately. More information about Jiang’s group can be found at http://www.ece.rutgers.edu/~wjiangnj/

Qualifications:
(1) A doctoral degree in EE, Physics, Optics, MSE or equivalent.
(2) Experience in micro/nano-device fabrication (in cleanroom) and characterization is required. The preferred research areas include: photonic crystal devices, silicon photonics, e-beam lithography, modulators, waveguides, plasmonics, optical sensors, lasers, nano-devices, acousto-optic devices, etc.
(3) Strong motivation and interest in photonics research.

Application:
Interested applicants are welcome to send their resumes via email to Prof. Jiang (wjiangnj@rci.rutgers.edu). A one-paragraph summary of matching qualifications is desired. Please list all of your publications and one or two references in your resume. Applications will be reviewed immediately, and will be accepted until the position is filled.

About Rutgers:
Rutgers is the flagship public institution of the state of New Jersey. Its main campus spreads over New Brunswick and Piscataway. Rutgers Micro-Electronics Research Laboratory (http://www.ece.rutgers.edu/~merl/) in the ECE department was founded with the support of Bell Labs and furnished with a wide range of facilities to conduct related research. Other Rutgers nanotech facilities are listed at http://iamdn.rutgers.edu/?q=node/5. Access to fabrication facilities in nearby universities is also available. Piscataway hosts the operational headquarter of IEEE and is within one-hour drive from New York City.

About Jiang Group:
Our group employs unique approaches to study novel photonic devices. In many cases, we start from fundamental physics analysis, explore innovative engineering design and fabrication methods, and target at improving the structures and functions of certain photonic devices beyond the conventional approaches/architectures. Our past works leveraged knowledge and innovation of fundamental solid state physics, semiconductor carrier transport process, VLSI fabrication, group theory, signal processing, topology, differential geometry, …, and led to unique device designs and demonstrations, and some new physics understanding.