Ch. 4 Homework Overview (1/4)

• P4.1: Describe a scenario showing why frame sequence numbers for the stop-and-wait protocol
 – Fig. 4.5 and Part 1 of Ch. 4 lecture notes consider why numbered ACK messages are needed
 – Sequence numbers needed for information frames as well for duplicate detection (Section 4.5.1.3)
Ch. 4 Homework Overview (2/4)

- P4.2: Go-back-N ARQ protocol with n-bit sequence number
 - W_{RX} ≡ Receive window size (at RX)
 - W_{TX} ≡ Transmit window size (at TX)
 - What are W_{TX} and W_{RX} as functions of n?
 - Go-back-N requires in-sequence frame delivery
 - Need to avoid frame number ambiguity

Ch. 4 Homework Overview (3/4)

- P4.3: Repeat P4.2 for selective-reject ARQ
 - Still need to avoid frame number ambiguity
 - Formulate inequality between W_{TX}, W_{RX} and n
 - What if we want the RX to buffer any frame sent by the TX?
 - How does setting $W_{RX} > W_{TX}$ impact performance (e.g., η)?
Ch. 4 Homework Overview (4/4)

- P4.9: Selective-repeat (i.e., selective-reject) ARQ
 - Channel bit rate $R = 1$ Mbps
 - Frame length $L = 1000$ bits
 - Probability of unsuccessful frame transmission $p = 0.01$
 - Frame errors are independent
 - $\tau, T_F >> T_P, T_{ACK} \approx 0$

 a) Find average number of transmissions per frame (N_{TX})
 b) What is the protocol efficiency η given window size $W = 4$?

What is η for $a = \tau / T_F = \{1, 2, 3, 4, 5, 6\}$?

See Section 4.7.2

Stop-and-Wait ARQ Efficiency (1/4)

- T_{OUT} ≡ Duration of timeout interval
- T_S ≡ Duration for a successful transmission interval
- T_E ≡ Overhead associated with transmission error

$$T_{OUT} \geq 2 \cdot \tau + T_P + T_{ACK}$$

Figure 4.3
Stop-and-Wait ARQ Efficiency (2/4)

\[T_S = T_F + 2 \cdot \tau + T_P + T_{ACK} \]

\[T_E = T_F + T_{OUT} \geq T_F + 2 \cdot \tau + T_P + T_{ACK} \]

Stop-and-Wait ARQ Efficiency (3/4)

- \(P_E \equiv \text{Probability of unsuccessful transmission} \)
- \(N_{TX} \equiv \text{Number of frame transmissions required for successful receipt at the RX} \)

\[
N_{TX} = \sum_{k=1}^{\infty} k \cdot P_E^{k-1} \cdot (1 - P_E) = \frac{1}{1 - P_E} \quad \text{Eq. 4.2}
\]

\[
T_{\text{TOTAL}} = T_E \cdot (N_{TX} - 1) + T_S
\]

\[
\Rightarrow T_{\text{TOTAL}} = \frac{(T_F + T_{OUT}) \cdot P_E + 2 \cdot \tau + T_P + T_{ACK}}{1 - P_E}
\]

\[
\eta = \frac{(1 - P_E) \cdot T_F}{(T_F + T_{OUT}) \cdot P_E + (T_F + 2 \cdot \tau + T_P + T_{ACK}) \cdot (1 - P_E)} \quad \text{Eq. 4.3}
\]

Telecommunication Networks
(332:423), Fall 2003
Stop-and-Wait ARQ Efficiency (4/4)

• Suppose $T_P, T_{ACK} \ll \tau, T_F$ and $P_E \approx 0$:

\[
\eta = \frac{(1 - P_E) \cdot T_F}{(T_F + T_{OUT}) \cdot P_E + (T_F + 2 \cdot \tau + T_p + T_{ACK}) \cdot (1 - P_E)} \quad \text{Eq. 4.3}
\]

\[
\Rightarrow \eta \approx \frac{T_F}{T_F + 2 \cdot \tau} = \frac{1}{1 + 2 \cdot \tau/T_F}
\]

- τ is due to propagation distance (d) and speed (v)
- T_F is a function of frame length (L_F) and transmission rate (R)
- Large d (e.g., satellite communications) or R (e.g., Gigabit Ethernet) yields low η for stop-and-wait

\[
\tau = d/v, \quad T_f = L_F/R \quad \Rightarrow \eta/T_F = \frac{d \cdot R}{L \cdot v}
\]

Sliding Window Efficiency (1/3)

• Assume $T_{ACK}, T_P \ll \tau, T_F$.
• Two cases to consider:
 1. $W \times T_F \geq T_F + 2 \times \tau$
 2. $W \times T_F < T_F + 2 \times \tau$
• For initial analysis, assume error free transmission:

\[
\eta = \begin{cases}
1 & \text{if } W \cdot T_F \geq T_F + 2 \cdot \tau \\
W \cdot T_F & \text{if } W \cdot T_F < T_F + 2 \cdot \tau \\
\end{cases}
\]

\[
\Leftrightarrow \eta = \begin{cases}
1 & \text{if } W \geq 1 + 2 \cdot \tau/T_F \\
W & \text{if } W < 1 + 2 \cdot \tau/T_F \\
\end{cases} \quad \text{Eq. 4.6}
\]
Sliding Window Efficiency (2/3)

- Under noisy channel conditions, must consider the number of transmissions (N_{TX}):

\[
\Rightarrow \eta = \begin{cases}
\frac{1}{N_{TX}} & \text{if } W \geq T_F + 2 \cdot \tau / T_F \\
\frac{W}{N_{TX}} & \text{if } W < T_F + 2 \cdot \tau / T_F
\end{cases}
\]

- For selective-reject, N_{TX} is modeled as a geometric RV with parameter $1 - P_E$ (i.e., Eq. 4.2):

\[
\Rightarrow \eta_{S-R} = \begin{cases}
\frac{1 - P_E}{W \cdot (1 - P_E)} & \text{if } W \geq 1 + 2 \cdot \tau / T_F \\
\frac{1 + 2 \cdot \tau / T_F}{1 + 2 \cdot \tau / T_F} & \text{if } W < 1 + 2 \cdot \tau / T_F
\end{cases}
\text{ Eq. 4.8}
\]

Sliding Window Efficiency (3/3)

- For the case of go-back-N:

\[
N_{TX} = \sum_{k=0}^{\infty} (1 + k \cdot N) \cdot P_E^k \cdot (1 - P_E) = 1 + \frac{N \cdot P_E}{1 - P_E}
\]

- For $W \times T_F \geq T_F + 2 \times \tau$:
 - Time to get ACK or NACK is approximately $2 \times \tau$
 - $N \times T_F \approx T_F + 2 \times \tau \rightarrow N \approx 1 + 2 \times \tau / T_F$

\[
\Rightarrow N_{TX} \approx 1 + \frac{(1 + 2 \cdot \tau / T_F) \cdot P_E}{1 - P_E}
\]

- For $W \times T_F < T_F + 2 \times \tau$, $N = W$ \Rightarrow $N_{TX} = 1 + \frac{W \cdot P_E}{1 - P_E}$