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We care about our contexts 
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Glasses 

Necklace 

Watch 

Phone 

Wristband 

Meeting Vigo: your first  
energy meter  

Fitbit : Get Fit, Sleep 
Better, All in the one  

Fall detection for the elderly  
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But,   

Can we learn contexts in an unobtrusive manner? 
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ÇNo need to wear a device 

ÇNo need to report status 

ÇNo extensive calibration 

Ç It naturally takes place as we live our life 
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SCPL 

 

Radio-frequency (RF) based 

device-free localization: 

location, trajectory, speed 
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Device Free Passive Localization  
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Empty room 
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DfP Localization 
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Geometry to the Rescue? 
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No! Because of Multi-path effect 
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Empty room 
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Fingerprinting 
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Cell-based Fingerprinting 
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Linear Discriminant Analysis 

Ç RSS measurements with personôs presence in each cell 

is treated as a class/state k 

Ç Each class k is Multivariate Gaussian with common 

covariance 

Ç Linear discriminant function: 
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Evaluation Platform 

ÇHardware: PIP tag 

ÇMicroprocessor: C8051F321 

ÇRadio chip: CC1100 

ÇPower: Lithium coin cell battery 

Ç Protocol: Unidirectional heartbeat (Uni-HB) 

ÇPacket size: 10 bytes 

ÇBeacon interval: 100 msec 
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Localization in a cluttered room 
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Size: 5 Ĭ 8 m 

  

Cell Number: 32 

 

97% cell estimation 

accuracy (16 

devices) 

 

90% Cell estimation 

accuracy (8 

devices) 
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Less training is OK 

15  

Only 8 samples are 

good enough 
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Having fewer devices is OK 

16  

5 transmitters +  

3 receivers =  

90% cell 

estimation 

accuracy 



Yanyong Zhang yyzhang@winlab.rutgers.edu 

Can we use the same training after 

3 months? 
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Next, let us localize multiple people 

ÇChallenge: we do NOT want to train all N people 

with all the combinations at different cells 
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Fingerprinting 1 person 
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é 

9 trials in total for 1 person 
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Fingerprinting 2 people 
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é 

é 

36 trials in total for 2 people! 
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Fingerprinting N people 
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1 person 2 people 3 people 

9 cells 9 36 84 

36 cells 36 630 7140 

100 cells 100 4950 161700 

161700 Ĭ 1 min = 112 days 

The calibration effort is prohibitive! 
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Instead,  

ÇCan we use 1 personôs training data to localize N 

people? 

 

Ç Yes. SCPL has two phases: (i) counting and (2) 

tracking 

24  
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RSS change with people 
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Link 3 

Link 1 

Link 2 

Link 1 change:  0 dB 
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Link 2 change:  6 dB 

Link 3 change:  5 dB Link 3 

Link 1 

Link 2 

Link 1 change:  4 dB 

Link 2 change:  7 dB 

Link 3 change:  5 dB 

Additive effect on the radio links!    
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So, 

ÇCan we directly infer n from the observed total 

RSSI change?  

Ç Is it linear? 
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Nonlinear fading effect! 
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Calibration 

data 

5 dB 

6 dB 

Calibration 

data 

5 dB 

4 dB 

5 dB 

7 dB 

4 dB 

4 dB + 0 dB = 4 dB                 

5 dB + 6 dB = 11 dB  Í 7 dB  X 

0 dB + 5 dB = 5 dB                 

Measurement Shared links observe nonlinear fading effect  

from multiple people. 



Yanyong Zhang yyzhang@winlab.rutgers.edu 

Location-Link Correlation 

Ç To mitigate the error caused by this over-

subtraction problem, we propose to multiply a 

location-link correlation coefficient before 

successive subtracting: 
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Counting Algorithm 
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ï 

Calibration 

data 

Measurement 

in 2st round 

4 dB 

= 

32  

4.6 dB 

1 dB 

6 Ĭ 0.6  dB 

4 Ĭ 0.8 dB 
1 dB 

1 dB 

1 dB 

Measurement 

In 3rd round 

There are two people in this room. 
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Sequential Counting (SC) Algorithm 
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æ = Sum of RSS change of links 
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Parallel Localization (PL) 

ÇCell-based localization 

Ç Trajectory-assisted localization 

Ç Improve accuracy by using human mobility constraints 
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Mobility makes localization easier  

35  

In a building, your next step is constrained  

by walking speed, cubicles, walls, etc. 
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Trajectory-based Localization 
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Trajectory ring filter 

Indoor mobility constraints can help  

improve localization accuracy. 

Data likelihood map Refined likelihood map 

= 
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Parallel Localization (SL) Algorithm 

Ç Single subject localization 

 

 

ÇMultiple subjects localization 
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ViterbiScore =  
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Testing Environment 
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Total size: 10 Ĭ 15 m 37 cells of cubicles and aisle segments 

13 transmitters and 9 receivers Test paths with partial overlap 
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Counting Results 

39  

We achieve above 85% counting accuracy  

when no trajectories are overlapped.  


