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We care about our contexts 
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Glasses 

Necklace 

Watch 

Phone 

Wristband 

Meeting Vigo: your first  
energy meter 

Fitbit: Get Fit, Sleep 
Better, All in the one 

Fall detection for the elderly 
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But,   

Can we learn contexts in an unobtrusive manner? 
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 No need to wear a device 

 No need to report status 

 No extensive calibration 

 It naturally takes place as we live our life 
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SCPL 

 

Radio-frequency (RF) based 

device-free localization: 

location, trajectory, speed 
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Device Free Passive Localization  
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Empty room 
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DfP Localization 
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Geometry to the Rescue? 
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No! Because of Multi-path effect 
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Empty room 
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Fingerprinting 
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Cell-based Fingerprinting 
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Linear Discriminant Analysis 

 RSS measurements with person’s presence in each cell 

is treated as a class/state k 

 Each class k is Multivariate Gaussian with common 

covariance 

 Linear discriminant function: 
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Evaluation Platform 

 Hardware: PIP tag 

 Microprocessor: C8051F321 

 Radio chip: CC1100 

 Power: Lithium coin cell battery 

 Protocol: Unidirectional heartbeat (Uni-HB) 

 Packet size: 10 bytes 

 Beacon interval: 100 msec 
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Localization in a cluttered room 
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Size: 5 × 8 m 

  

Cell Number: 32 

 

97% cell estimation 

accuracy (16 

devices) 

 

90% Cell estimation 

accuracy (8 

devices) 



Yanyong Zhang yyzhang@winlab.rutgers.edu 

Less training is OK 

15 

Only 8 samples are 

good enough 
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Having fewer devices is OK 

16 

5 transmitters +  

3 receivers =  

90% cell 

estimation 

accuracy 
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Can we use the same training after 

3 months? 
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Next, let us localize multiple people 

 Challenge: we do NOT want to train all N people 

with all the combinations at different cells 
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Fingerprinting 1 person 
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… 

9 trials in total for 1 person 
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Fingerprinting 2 people 
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… 

… 

36 trials in total for 2 people! 
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Fingerprinting N people 
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1 person 2 people 3 people 

9 cells 9 36 84 

36 cells 36 630 7140 

100 cells 100 4950 161700 

161700 × 1 min = 112 days 

The calibration effort is prohibitive! 
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Instead,  

 Can we use 1 person’s training data to localize N 

people? 

 

 Yes. SCPL has two phases: (i) counting and (2) 

tracking 

24 
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RSS change with people 
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Link 3 

Link 1 

Link 2 

Link 1 change:  0 dB 

Link 2 change:  0 dB 

Link 3 change:  0 dB Link 3 

Link 1 

Link 2 

Link 1 change:  4 dB 

Link 2 change:  5 dB 

Link 3 change:  0 dB 

Link 3 

Link 1 

Link 2 

Link 1 change:  0 dB 

Link 2 change:  6 dB 

Link 3 change:  5 dB Link 3 

Link 1 

Link 2 

Link 1 change:  4 dB 

Link 2 change:  7 dB 

Link 3 change:  5 dB 

Additive effect on the radio links!    
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So, 

 Can we directly infer n from the observed total 

RSSI change?  

 Is it linear? 

26 
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Nonlinear fading effect! 
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Calibration 

data 

5 dB 

6 dB 

Calibration 

data 

5 dB 

4 dB 

5 dB 

7 dB 

4 dB 

4 dB + 0 dB = 4 dB                √ 

5 dB + 6 dB = 11 dB  ≠ 7 dB  X 

0 dB + 5 dB = 5 dB                √ 

Measurement Shared links observe nonlinear fading effect  

from multiple people. 
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Location-Link Correlation 

 To mitigate the error caused by this over-

subtraction problem, we propose to multiply a 

location-link correlation coefficient before 

successive subtracting: 
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Counting Algorithm 

32 

– 

Calibration 

data 

Measurement 

in 2st round 

4 dB 

= 

32 

4.6 dB 

1 dB 

6 × 0.6  dB 

4 × 0.8 dB 
1 dB 

1 dB 

1 dB 

Measurement 

In 3rd round 

There are two people in this room. 
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Sequential Counting (SC) Algorithm 
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∆ = Sum of RSS change of links 
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Parallel Localization (PL) 

 Cell-based localization 

 Trajectory-assisted localization 

 Improve accuracy by using human mobility constraints 
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Mobility makes localization easier  

35 

In a building, your next step is constrained  

by walking speed, cubicles, walls, etc. 
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Trajectory-based Localization 
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Trajectory ring filter 

Indoor mobility constraints can help  

improve localization accuracy. 

Data likelihood map Refined likelihood map 

= 
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Parallel Localization (SL) Algorithm 

 Single subject localization 

 

 

 Multiple subjects localization 
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ViterbiScore = 
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Testing Environment 
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Total size: 10 × 15 m 37 cells of cubicles and aisle segments 

13 transmitters and 9 receivers Test paths with partial overlap 
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Counting Results 
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We achieve above 85% counting accuracy  

when no trajectories are overlapped.  
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Localization Results 
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Trajectory ring filter achieve 1-meter localization 

accuracy and improve 30% from the baseline. 
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Lessons learned 

 Calibration data collected from one subject can 

be used to count and localize multiple subjects. 

 Though indoor spaces have complex radio 

propagation characteristics, the increased 

mobility constraints can be leveraged to improve 

tracking accuracy. 
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Crowd++ 

 

Unsupervised Speaker 

Counting on Smartphones: 

speaker count 

42 

C. Xu, S. Li, G. Liu, Y. Zhang, E. Miluzzo, Y. Chen, J. Li, B. Firner. Crowd++: Unsupervised Speaker Count with Smartphones. In ACM 

UbiComp, 2013 
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Scene 1: Dinner time, where to go? 
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Scene 2: Is your kid social? 

44 
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Scene 3: Which class is engaging? 

45 
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Speaker count 

 Dinner time, where to go?  

 Find the place where has most people talking! 

 Is your kid social? 

 Find how many (different) people they talked with! 

 Which class is more attractive? 

 Check how many students ask you questions! 

 Microphone + microcomputer 
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Conversation contexts 

48 

Stressful 

Bob Family life Alice 

Speech 

recognition 

Emotion 

detection 

2 

3 

Speaker 

identification 

Speaker 

count 
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Overview 

50 
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Speech detection 

 Pitch-based filter 

 Determined by the vibratory frequency of the vocal folds 

 Human voice statistics: spans from 50 Hz to 450 Hz 

51 

 f (Hz) 
50 450 

Human 

voice 
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Speaker features 

 MFCC 

 Speaker identification/verification 

 Alice or Bob, or else? 

 Emotion/stress sensing 

 Happy, or sad, stressful, or fear, or anger? 

 Speaker counting 

 No prior information needed 
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Supervised 

Unsupervised 



Yanyong Zhang yyzhang@winlab.rutgers.edu 

Speaker features 

 MFCC + cosine similarity distance metric 
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θ 
MFCC 1 

MFCC 2 

We use the angle θ to capture the  

distance between speech segments.   
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Speaker features 

 MFCC + cosine similarity distance metric 
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θs Bob’s MFCC in 

speech segment 1 

Bob’s MFCC in 

speech segment 2 

Alice’s MFCC in 

speech segment 3 

θd 

θd > θs  
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Speaker features 

 MFCC + cosine similarity distance metric 
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 histogram of θs  histogram of θd 

1 second  

speech segment 

2-second  

speech segment  

3-second  

speech segment 

10-second  

Speech segment 

. 

. 

. 

10-second utterance is not common in conversation! 
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Speaker features 

 MFCC + cosine similarity distance metric 
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3-second speech segment 

30 15 

Thresholds trade-off the sensitivity to admitting new 

speaker, as well as filtering overlap/silence. 
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Speaker features 

 Pitch + gender statistics 
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(Hz) 
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Same speaker or not? 
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Same 

speaker 

Different 

speakers 

Not sure 

IF MFCC cosine similarity score < 15 

      AND 

Pitch indicates they are same gender 

ELSEIF MFCC cosine similarity score > 30 

   OR 

Pitch indicates they are different genders 

ELSE 
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Evaluation through crowdsourcing 

 120 users from university and industry contribute 

109 audio clips of 1034 minutes in total. 
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Private indoor Public indoor Outdoor 
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Crowdsourcing results 
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Sample  

number  

Error count 

distance 

Private indoor 40 1.07 

Public indoor 44 1.35 

Outdoor 25 1.83 
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Lessons learned 

 Accuracies: private indoor > public indoor > 

outdoor 

 We need low-cost noise cancellation technique to 

improve the accuracy  
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Ongoing work – Elder care with 

SCPL + Crowd++ + many more 
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68 

Questions & Answers 


