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Abstract. As we continue to evolve into large-scale parallel systems, many of
them employing hundreds of computing engines to take on mission-critical roles,
it is crucial to design those systems anticipating and accommodating the occur-
rence of failures. Failures become a commonplace feature of such large-scale sys-
tems, and one cannot continue to treat them as an exception. Despite the current
and increasing importance of failures in these systems, our understanding of the
performance impact of these critical issues on parallel computing environments
is extremely limited. In this paper we develop a general failure modeling frame-
work based on recent results from large-scale clusters and then we exploit this
framework to conduct a detailed performance analysis of the impact of failures on
system performance for a wide range of scheduling policies. Our results demon-
strate that such failures can have a significant impact on the mean job response
time and mean job slowdown under existing scheduling policies that ignore fail-
ures. We therefore investigate different scheduling mechanisms and policies to
address these performance issues. Our results show that periodic checkpointing
of jobs seems to do little to ease this problem. On the other hand, we demonstrate
that information about the spatial and temporal correlation of failure occurrences
can be very useful in designing a scheduling (job allocation) strategy to enhance
system performance, with the former providing the greatest benefits.

1 Introduction

Our growing reliance on computing and information processing services mandates not
only deploying systems that can meet the performance demands imposed on such sys-
tems, but also those that are available when needed. Several technological factors are
accentuating the problem of system failures, which are highly undesirable since these
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systems could be servicing the needs of hundreds of users. At the same time, solutions
for this problem need to keep the high costs of system maintenance personnel in mind,
which is growing to be a much more important factor in Total Cost of Ownership (TCO).
A deep understanding of the occurrence of failures in real environments can be useful
in several ways towards enhancing overall system availability. It can provide realistic
data when evaluating proposed solutions, together with developing strategies for proac-
tive prediction and remedies of faults ahead of their occurrence. Application demand
for high performance is continuing to fuel research and development of large scale par-
allel systems. The need for processing larger datasets in existing applications, and the
stringent demands of emerging applications necessitate parallelism in computational
and storage devices for their deployment. The cost-effectiveness in using off-the-shelf
hardware to put together clusters has contributed to a large extent in the widespread
availability of parallelism, and its successful usage. At the same time, several impor-
tant and challenging applications are driving the development of large scale parallel
machines, such as IBM’s BlueGene/L which is anticipated to have 65536 nodes.

As we continue to develop such large scale parallel systems, there are several im-
portant technological factors to keep in mind:

– Denser integration of semiconductor circuits, though preferable for performance,
makes them more susceptible to strikes by alpha particles and cosmic rays [41]. At
the same time, there is an increasing tendency to lower operating voltages in order
to reduce power consumption. Such reduction in voltage levels can increase the
likelihood of bit-flips when circuits are bombarded by cosmic rays and other parti-
cles, leading to transient errors. While memory structures are typically the target for
protection against errors using informational redundancy, more recent studies [31]
have pointed out that the error rates in combinational circuits are likely to surpass
those of memory cells in the next decade.

– At the macro granularity, we have dense blade-systems being packed in a rack as
a cluster. With a high load imposed on these dense systems – both on the CPUs
and on the disks – heat dissipation becomes a very important concern, potentially
leading to thermal instability that can cause system/node breakdowns [25,9].

– We find system software and applications becoming more complex. Such com-
plexity makes them more prone to bugs and other software failures [35,23,38]
(e.g. memory leaks, state corruption, etc.). These bugs/failures can cause system
crashes, and it has even been suggested that one should perform pro-active shut-
down/rejuvenation [39,38] to avoid catastrophic consequences.

All these factors point to the increasing occurrence of system failures in the future.
Failures become more commonplace when we consider parallel systems with thousands
of nodes. Rather than treat them as an exception, system design needs to recognize fault
occurrence, and manage the resources across the parallel system effectively so as to
hide their impact from the end users. One would ideally like to achieve the performance
of a system without any failures. Even if this is difficult to attain, there should be at
most a “graceful degradation” in performance under the presence of failures. Towards
this goal, the present paper specifically targets the management of CPU resources on a
large scale parallel system using a general failure modeling framework that accurately
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represents the node failure characteristics reported in recent studies of extensive error
logs collected from cluster systems over long periods.

When nodes5 fail, there are two important consequences on system performance:

– First, the process/task of the application running on this node dies, consequently
loosing all its work since it began. Further, in a parallel application, tasks frequently
communicate and consequently other tasks would also not be able to progress. In
effect, this can cause restarting the entire application (either on the same nodes or
on different nodes).

– Second, the unavailability of the failed node can cause longer queueing delays for
waiting jobs.

In this paper, we focus mainly on the first issue. With transient hardware errors and soft-
ware errors expected to be more prevalent than permanent failures, node reboots/restarts
can fix many of these problems. The duration of unavailability would then be relatively
low, given the long execution times of many of the parallel applications that we are
targeting – those in the scientific domain at national laboratories and supercomputing
centers. Note that the impact of node recovery time can become quite important for
permanent failures, and we postpone such an investigation for future work.

There are several options for managing the nodes in a faulty environment. One could
use an optimistic approach, and simply ignore the problem, assuming there would be
no failures. When a node does fail, then the application (all its tasks) could be restarted
as was just explained. However, as our results will show, such an approach can suffer
significant performance loss compared to a system where there is no failure. At the
other end of the spectrum, we could have a more pessimistic strategy, where application
processes are periodically checkpointed so that when a fault occurs, the amount of work
to be re-done is limited. In our results we will show that while this can be better than
ignoring the problem, the overheads of checkpointing can limit its benefits.

In this paper, we investigate an alternative strategy whose main philosophy is that
if we have a better idea of when and where failures occur, then one could use such
information for better management of the CPUs:

– If we could predict the time for the failure, then we could checkpoint immediately
before this point in time, so that we significantly limit the work lost while reducing
the checkpoint overheads. However, it may be very difficult to predict the exact
time for failures. If, on the other hand, temporal prediction of failures is possible
with a coarser granularity (a window) [29], then checkpointing could be initiated
only within those windows.

– If we could predict the nodes (spatial prediction) that fail, then we could either
avoid scheduling jobs on those nodes as far as possible, or only checkpoint those
nodes. The latter option may not be very fruitful since parallel applications typically
require all tasks to make progress at around the same rate.

One could also use a combination of spatial and temporal prediction to specifically
focus on the time and nodes where pro-active action needs to be taken to limit the work
loss upon failure while limiting the overheads of checkpointing.

5 Since we are mainly concerned with CPU management, we use the terms, node and CPU,
interchangeably in the rest of the paper.
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Investigation of these alternatives requires an understanding of the failure charac-
teristics of real parallel systems executing parallel applications. Unfortunately, the re-
search literature provides a wide variety of often conflicting results for different com-
puting environments (hardware and software) and there seems to be a lack of consistent
conclusions in previous computer failure studies. Moreover, only a few recent studies
have even considered large-scale clusters and they have tended to focus on sequential
commercial applications. The only exception that we are aware of is a recent study [28]
of extensive error logs collected from a large-scale distributed system consisting of
close to 400 machines over a period of close to 500 days, which includes some par-
allel applications. We therefore develop a general modeling framework that makes it
possible to vary the properties of the failure patterns to span the wide range of failure
characteristics found in the research literature. This framework is exploited to under-
stand the impact of different failure characteristics on overall system performance and
to propose scheduling strategies that can alleviate the performance impact of different
failure attributes.

A detailed simulation study using this failure modeling framework and character-
ized parallel job workloads from a supercomputing center reveals that the failures do
account for a significant drop in performance compared to a system without failures.
As can be expected, an exact temporal prediction of node failures almost completely
bridges this gap of performance loss due to failures. Our results also show that a signif-
icant portion of this gap can be bridged even if temporal prediction can be done at only
a granularity of 2–4 hours. While the results from our statistical analysis demonstrate
clear patterns that could be exploited to provide such coarse grain temporal prediction,
the results of our simulation study further show that even greater performance benefits
are possible by using the spatial (node) behavior of failures. Hence, our solution opts to
exploit the statistical spatial properties of failures and does so by developing a schedul-
ing strategy wherein nodes that have recently failed are given lower priority at being
assigned a job compared to others. We demonstrate that this simple strategy suffices to
extract most of the performance gap between a system with failures and one without,
and does significantly better than blindly checkpointing at periodic intervals.

The rest of this paper is organized as follows. The next section provides a brief
summary of work related to this study. Section 3 presents our evaluation methodology,
including our system model, our failure modeling framework, and the performance met-
rics of interest. Simulation results of the impact of failures on system performance are
provided in Section 4, followed by consideration of different failure-aware scheduling
strategies in Section 5.

2 Related Work

Job scheduling plays a critical role in the performance of large scale parallel systems
(e.g. refer to [8,43,44,10,12,16,18,32,33,34] and the references therein). At the same
time, scheduling can be used to improve the fault-tolerance [1,27] of a system in three
broad ways. First, a task can be replicated on multiple nodes so that even if a subset
of these nodes fail, the execution of a task is not impacted. Studies that employ this
technique ( [30,17]) assume a probability for node failure to determine the number of
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nodes on which to replicate the task. Second, the system can checkpoint all the jobs
periodically so that work loss is limited when a failure occurs, and there are several
studies on tuning checkpoint parameters [21,4,22]. Third, the scheduler allocates spare
nodes to a job so that it can quickly recover from potential failures [26]. With this
approach there is a trade-off between using the extra node(s) to improve the response
time versus time for recovery. To our knowledge, there has not been prior work in
analyzing and possibly managing system resources based on node failures.

3 Evaluation Methodology

3.1 System Model

We simulate a 320-node cluster that runs parallel workloads. A parallel job consists of
multiple tasks, and each task needs to run on a different node. After certain nodes are
allocated to a job, they are dedicated to the job until it completes (i.e., no other jobs can
run on the same nodes). Multiple parallel jobs can run side by side on different nodes
at the same time.

After a job arrives, it will start execution if it is the first waiting job and the system
has enough available nodes to accommodate it. Otherwise, it will be kept in the waiting
queue. In this paper, all the waiting jobs are managed in the First-Come-First-Serve
(FCFS) order. We also use backfilling in this exercise, which is a most commonly used
scheduling technique [44] for parallel workloads. Backfilling allows a job that arrived
later to start execution ahead of jobs that arrived earlier as long as its execution will not
delay the start of those jobs. Estimated job execution times are required to implement
backfilling.

Our experiments use a workload that is drawn from a characterization of a real
supercomputing environment at Lawrence Livermore National Labs. Job arrival, exe-
cution time and size information of this environment have been traced and characterized
to fit a mathematical model (Hyper-Erlang distribution of common order). The reader is
referred to [11] for details on this work and the use of the model in different evaluation
exercises [44]. The workload model provides (1) arrival time, (2) execution time, and
(3) size (number of nodes that it needs) for each incoming job.

3.2 Failure Injection

A large number of studies have considered the characteristics of failures and their im-
pact on performance across a wide variety of computer systems. Tang et al. [37,36] and
Buckley et al. [5,6] have investigated error/failure logs collected from various VAX-
cluster systems of different sizes. Lee et al. [19] and Lin et al. [20] analyzed the error
trends for Tandem systems and DCE environments. Xu et al. [40] performed a study
of error logs collected from a heterogeneous distributed system consisting of 503 PC
servers. Heath et al. [13] considered failure data from three different clustered servers,
ranging from 18 workstations to 89 workstations. Castillo et al. [7], Iyer et al. [15] and
Meyer et al. [24] have explored the effects of workload on different types of computer
system failures. Vaidyanathan et al. [38] demonstrated that software-related error con-
ditions will accumulate over time which will eventually lead to crashes/failures. Sahoo
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et al [28] have investigated the error logs from a networked environment of close to 400
heterogeneous servers over a period of close to 500 days.

Many of these studies have identified statistical properties and proposed stochastic
models to represent the failure characteristics of various computer systems. This in-
cludes the fitting of failure data to Weibull, lognormal and other specific distributions,
each with different parameter settings, under the assumption of independent and identi-
cally distributed failures [20,19,13]. Other studies have demonstrated that the sequence
of failures on some computer systems are correlated in various ways and that the failures
tend to occur in bursts [37,36,40,28]. Semi-Markov processes also have been proposed
to model the time-series of failure from certain systems [14,37,36].

Unfortunately, only a few of these previous studies have even considered clustered
server environments and those that have tend to focus on commercial servers like web
servers, file servers and database servers. We are not aware of any studies that inves-
tigate failures within the context of large-scale clusters executing parallel applications,
and no failure logs collected from such parallel computing environments are available to
us. Moreover, given the wide variety of often conflicting results and the lack of consis-
tent conclusions in previous computer failure studies, we expect that parallel computing
environments with different parallel application workloads, system software and system
hardware will similarly exhibit a broad range of failure behaviors. It is therefore impor-
tant to have a general modeling framework that makes it possible to vary the properties
of the failure patterns used to investigate parallel scheduling issues. Hence, we develop
such a failure modeling framework in this section which is then exploited in Sections
4 and 5 to understand the impact of different failure characteristics on overall system
performance and to propose scheduling strategies that can alleviate the performance
impact of different failure attributes.

Our framework consists of models for each of the three primary dimensions of fail-
ure characteristics together with controls over each of these dimensions and their inter-
actions. The first dimension concerns the times at which failures occur. This includes
the marginal distribution for the time between failures as well as any correlation struc-
ture among the individual failures. The second dimension concerns the assignment of
failures among the nodes comprising the system. This allows our framework to span the
range from uniformly distributed node failures assumed in some previous failure studies
to strong correlations between failures and nodes in order to yield the types of concen-
trations of failures on a subset of nodes as demonstrated in several recent failure studies
of large-scale clusters. The third dimension concerns the down time of each failure. An
overall control model is also used to directly capture any correlations or interactions
among these three dimensions. Thus, there is no loss of generality in separating out the
individual dimensions, while providing the ability to explicitly control and vary each
aspect of the individual dimensions.

We now define the specific aspects of each dimension of our general failure model-
ing framework that are used in this study to generate synthetic failure workload traces
each consisting of a number of failures. We use the job workload duration to determine
the total number of failures (F ) by making sure that the failures are spread throughout
the entire span of parallel job executions.
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Time of failures. Let ti denote the time at which failure i occurs, i = 1, . . . , F .
Heath [13] has shown that the marginal distribution for the times between arrivals of
failures in a cluster follow a Weibull distribution with shape parameters less than 1,

the PDF of which can be described as f(T ) = β
η (T

η )β−1e−( T
η )β

where β denotes the
shape parameter and η denotes the scale parameter. (Note that a Weibull distribution
with shape parameter 1 corresponds to an exponential distribution.) In this paper, we
use the family of Weibull distributions to generate the inter-arrival times for failures.
Specifically, the parameters that are used are summarized in Table 3.2. The resulting
failure arrival time distributions with different shape values are shown in Figures 3.2(a)
and (b).

scale shape number of failures failures/day
0.2 78 1.2

0.55 138 2.218000
0.65 198 3.2
0.85 266 4.3

Table 1. The parameters that are used to generate the Weibull distributions
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Fig. 1. The failure arrival time distribution with different shape parameters.

As noted above, the marginal distribution characterizes the statistical properties of
the times between failures without any consideration of the correlation structure in
the inter-failure process. Since it has been shown in [28] that there are strong tem-
poral correlations between failure arrivals, we seek to include in our framework a
general methodology for capturing different forms of temporal correlations within the
inter-failure process while maintaining a perfectly consistent marginal distribution. This
makes it possible for us to properly compare the impact of the inter-failure correlation
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structure on our results under a given marginal distribution. The following methodology
is used to model the temporal correlations between failure arrival times:

– We generate a sequence of failure inter-arrival times which follow a specific Weibull
distribution. Note that direct use of this time-series corresponding to assuming that
the failures are independent and identically distributed.

– We break this sequence into segments, each of which contains W elements. Within
each segment, we order the first W

2 elements in a descending manner, and order the
remaining W

2 elements in an ascending manner. Note that the degree of correlation
among the inter-failure times increases with increasing values of W .
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Fig. 2. The failure arrival time distribution with different correlation parameters. β =
0.85

Once again, using this method, we can model temporal correlation between failures
while maintaining a consistent marginal Weibull distribution. Figure 3.2 shows how the
failure arrival time series vary with different W values. Note that W = 2 corresponds
to the original time series and thus represents the case where there is no correlation. In
this study, we shall vary the degree of correlation according to W ∈ {2, 8, 32, 64}.

Location of failures. Let ni denote the location of failure i, i = 1, . . . , F . Several pre-
vious failure analysis studies have shown that the spatial distribution of failures among
the nodes is not uniform [37,13,28]. In fact, it has been shown in [28] that there are
strong spatial correlations between failures and nodes where a small fraction of the
nodes incur most of the failures. Possible reasons include: (1) some components (both
hardware and software) are more vulnerable than others [37]; and (2) a component that
just failed is more likely to fail again in the near future [13]. In order to capture this
non-uniform behavior, we adopt the Zipf distribution to model failure locations in this
study. We use α to denote the skewness parameter in the Zipf distribution. Specifically,
we vary the skewness parameter of the distribution using the values 0.01, 0.5 and 0.99,
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where 0.01 corresponds to an environment where failures are close to being uniformly
distributed among the nodes and 0.99 corresponds to a highly skewed distribution in
which the majority of failures are concentrated on a relatively small number of nodes.

Down time of failures. Let ri denote the down time of failure i, i = 1, . . . , F . Failure
down times can vary significantly due to the different ways of repairing the failures. If
a simple reboot can re-start the system, then the down time can be relatively small (at
most around minutes). However, if components need to be replaced, it could take hours
or even days to recover. In this study, we use a constant value to model the down time.
We vary this constant using down times of 2 minutes, 1 hour, and 4 hours.

3.3 Performance Metrics

In our simulations, we obtain the following statistics for each job: start time, work loss
(the total loss of work due to failures), and completion time. These statistics are then
used to calculate the following performance metrics:

– Utilization: The percentage of time that the system actually spends doing useful
work.

– Response Time: The time difference between when a job completes and when it
arrives to the system, averaged over all jobs.

– Slowdown: The ratio of the response time of a job to the time it requires on a
dedicated system, averaged over all jobs. This metric provides an indication of the
average slowdown that jobs experience when they execute in the presence of other
jobs compared to their running in isolation.

– Work Loss Ratio: The ratio of the work loss as a result of failures to the execution
time of a job, averaged over all jobs.

4 Impact of Failures on System Performance

We now move on to present results from detailed simulations of the system model
running the parallel job workloads described in the Section 3.1 that are subjected to
failures (Section 3.2).

4.1 Impact of Failure Arrival Statistics

As described early in this paper, the tasks of a parallel application often communicate
with each other in order to make forward progress. Consequently, if any one task has to
be restarted because of a failure, our model requires restarting all the tasks. Figures 3
illustrate the impact of the failure arrival characteristics on system performance. The
graphs show the average job slowdown and average work loss ratio as a function of
average job execution time. From Figure 3, we have the following observations:

– The impact of shape parameter (β). If we fix the scale parameter (η) of the Weibull
distribution, varying the value of β (β < 1) will lead to different number of failures,
further different inter-failure times. It thus has the most significant impact on the
system performance among all the failure parameters:
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correlation. β=0.85; W =2, 64;
α=0.5; r=2 minutes.

(c) Impact of failure spatial
distribution. β=0.85; W =2;
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Fig. 3. The impact of failures arrival characteristics.

• Failures can have a significant impact on the system performance (refer to Fig-
ures 3(a) (i) and (ii)). Even an average of 1.2 failures per day can increase the
average job slowdown by up to 40%. An average of 4.3 failures per day will
increase the job slowdown by up to 300%.
If we look at the average work loss for different β values shown in Figure 3(a)(i),
we observe an almost linear increase with β. Even a 0.2% work loss ratio suf-
fices to cause a considerable performance degradation since these are relatively
long running jobs.

• Failures have a higher impact on medium to high workloads. Let us look at the
average work loss for β = 0.85. Under high workloads, the work loss is 40%
higher than that under low workloads. This higher work loss ratio, together
with the already high system utilization, lead to a degraded performance.

– The impact of temporal correlation parameter W (refer to Figures 3(b) (i) and (ii)).
Compared to the impact of β , the impact of W is much less pronounced. We do
observe that a longer-range correlation can slightly increase the average work loss
and further job slowdown. A larger W can cause a more bursty failure arrivals,
which can increase the chances of a job being hit by the failures.
Although temporal correlation degree does not impact the average job slow down
greatly, we feel that it may affect the performance of individual jobs because the
same job may be hit multiple times at a higher temporal correlation degree. We are
currently working on these results.
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– The impact of spatial correlation parameter α (refer to Figures 3(c) (i) and (ii)). The
impact of α is also less obvious compared to that of β. We observe a significantly
higher work loss ratio under low loads for α = 0.99, but this difference diminishes
as the load increases. This observation may appear counter-intuitive. However, we
would like to point out that this is just a simulation artifact. In our simulation, node
0 is always ranked the first, and will experience more failures than others with
α = 0.99. At the same time, when we try to schedule jobs onto the nodes, we
always start from node 0 as well. Under low loads, the node utilization is low and
node 0 will be available most of the time. As a result, many jobs will be affected by
the failures on node 0, leading to a much higher work loss ratio.
Further, we would like to point out that α impacts job slowdown most at medium
loads. Under low loads, despite the work loss ratio difference, slowdown will not
be affected due to the low load. Under high loads, different α values result in the
same work loss ratio, thus leading to the same slowdown. On the other hand, the
medium loads combine both the work loss ratio and reasonable loads, resulting in
a more pronounced difference.

The results presented in this section are in agreement with our studies with a realistic
failure trace [28].

4.2 The Impact of Failure Down Times
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(a) β=0.65; W =2; α=0.01; r=2
minutes, 4 hours.

(b) β=0.65; W =64; α=0.01;
r=2 minutes, 4 hours.

(c) β=0.65; W =2; α=0.99; r=2
minutes, 4 hours.

Fig. 4. The impact of failure down times.
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Earlier studies [] have shown that the failure down times have a great impact on the
system performance for commercial servers such as file server, email server, web server,
etc. However, we find that, for large-scale supercomputing clusters, an individual node’s
down time does not impact the performance significantly. As shown in Figures 4(a)-(c)
(i)-(ii), the performance gap with different failure down times (varying from 2 minutes
to 4 hours) is negligible. This is mainly due to the nature of the parallel workloads.
These jobs cannot start execution if the system does not have enough available nodes.
Therefore, in most of the times, the system will have a few free nodes while jobs are
waiting to execute, even under high loads (due to system fragmentation).

In summary, failures have a great impact since the job that got hit will lose its work,
but how long the failed node will remain down is not as important.

5 Failure-Aware Scheduling Strategies

In this section, we examine different possibilities to alleviate the impact of failures,
ranging from those that are oblivious to failure information (referred to as failure-
oblivious checkpointing in section 5.1), to those that have significant knowledge about
when and where failures occur (in section 5.2). Finally, we present a strategy that is
based on a simple observation about the failure properties, and show that it can do a
very good job of bridging this gap without requiring extensive failure prediction capa-
bilities.

5.1 Failure-Oblivious Checkpointing

A straightforward approach to limit the impact of work loss upon failures is by check-
pointing the application tasks periodically. Such an approach is oblivious to the occur-
rence of failures itself, and thus does not require any prediction about their occurrence.
In this section, we evaluate the effectiveness of this simple approach using different in-
tervals (2, 4, and 24 hours) for checkpointing. The scientific applications being targeted
in this study are long running, and manipulate large datasets. It is not only the memory
state of these applications that needs to be checkpointed but the network state of any
messages that may be in transit as well. Consequently, checkpointing costs can be quite
substantial, and can run into a few minutes especially with several processes swapping
to a few I/O nodes [42]. We use a checkpoint cost of 5 minutes in this exercise, and the
checkpoint intervals have been chosen in order to keep these overheads reasonable.

Figures 5 and 6 show the average slowdown, work loss ratio and checkpoint over-
head of this approach with different failure distributions. From this set of results, we
have the following observations:

– If the failures are i.i.d., oblivious checkpointing can only help the performance
marginally compared to not taking any proactive actions (refer to Figures 5(a)(i-ii)).
The relative performance gain due to checkpointing further decreases as the num-
ber of failures decreases (by comparing Figure 5(a)(ii) which has 1.2 failures per
day to Figure 5(a)(i) which has 3.2 failures per day). With an average of 3.2 failures
per day, a short checkpointing interval of 2/4 hours is better than a longer interval.
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(i) β=0.65; W =2; α=0.01; r=2 minutes, 4 hours.
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(ii) β=0.20; W =2; α=0.01; r=2 minutes, 4 hours.

Fig. 5. failure-oblivious checkpointing for failures that are iid.

With 1.2 failures per day, we do not observe a noticeable difference between differ-
ent checkpoint intervals. Although a small checkpoint interval can limit the work
loss due to failures, this gain can be offset by the added checkpoint overheads.
For example, if we checkpoint every 2 hours, the average work loss due to fail-
ures is less than 0.2%, but the resulted checkpoint overhead is above 0.4%, which
de-emphasizes the benefits of checkpoints. At the same time, a larger checkpoint
interval cannot effectively limit the work loss due to failures (Figure 5 (ii)).

– For failure traces that have temporal correlation, oblivious checkpointing does not
help either (refer to Figures 6(a)(i)).

– For failure traces that have spatial correlation, e.g., following a Zipf distribution
with α=0.99, the impact of oblivious checkpointing is again not obvious (refer to
Figures 6(a)(ii)). Readers can look at the corresponding work loss ratios (refer to
Figures 6(b)(ii)) and checkpointing overheads (refer to Figures 6(c)(ii)) to obtain
further performance details.

5.2 Checkpointing Using Failure Prediction

Perfect Temporal/Spatial Prediction The previous results suggest that a checkpoint-
ing strategy oblivious to failure occurrence is not very rewarding. On the other hand, if
one can predict when and where a failure occurs, then the specific job that would be af-
fected can alone be checkpointed exactly before the point of failure. The benefits of such
a perfect prediction strategy are quantified in Figure 7. The results show that the avail-
ability of exact failure information before-hand can help us schedule the checkpoint to
almost completely eliminate the performance loss due to failures.
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(i) Temporal correlation. β=0.65; W =64; α=0.01; r=2 minutes, 4 hours.
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(ii) Spatial correlation. β=0.65; W =2; α=0.99; r=2 minutes, 4 hours.

Fig. 6. failure-oblivious checkpointing for failures that have temporal or spatial corre-
lations.

Strategies Using Temporal Correlation While perfect prediction shows tremendous
potential, it is almost impossible to be able to accurately predict when and where fail-
ures would occur. We next relax the predictability of when (temporal) and where (spa-
tial) in the following way.

Even if one cannot predict exact times when failures occur, there could be under-
lying properties that make prediction at a coarser time granularity more feasible. For
instance, studies have pointed out that the likelihood of failures increases with the load
on the nodes [2]. At the same time, there have also been other studies [3] showing that
load on clusters exhibit some amount of periodicity, e.g. higher in the day/evenings,
and lower at nights. A recent study [28] has further showed that failures are correlated
to the time of the day. Such insights suggest that perhaps a time-of-day based coarse-
granularity prediction model may have some merit. Further, examination of our failure
logs earlier in this paper shows certain patterns that could be exploited to provide such
coarse grain temporal prediction. It is to be noted that our point here is not to say that
such a model is feasible. Rather, we are merely trying to examine whether such a model
(if developed) would be useful in alleviating the performance loss due to failures.

In our coarse-granularity temporal prediction model, we partition a day (24 hours)
into n buckets (each bucket represents 24

n hours). We assume that we know exactly
which bucket each failure belongs to, though we cannot predict the exact time within
this bucket nor the specific node where the failure would occur. With this prediction
model, at the beginning of each bucket, we know whether or not a failure will occur
within this bucket. If we know a failure is about to occur, we can turn on checkpoints
just for the duration of this bucket. At this time, how often we should checkpoint and
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(a) failures that are i.i.d:
β=0.85; W =2; α=0.01; r=2
minutes.

(b) failures with temporal
correlation: β=0.85; W =64;
α=0.5; r=2 minutes.

(c) failures with spatial corre-
lation: β=0.85; W =2; α=0.99;
r=2 minutes.

Fig. 7. Exact prediction and exact checkpointing.

which jobs to checkpoint become very important questions. In order to determine which
jobs to checkpoint (victims of the failures), we examine the following three heuristics:

– Checkpoint All. We checkpoint all the jobs that are running within this bucket.
Though this heuristic will not miss checkpointing the victim, it can incur higher
checkpoint overheads by checkpointing more jobs than necessary.

– Checkpoint Long. In order to avoid excessive checkpoint overheads, this heuristic
proposes to only checkpoint those jobs that have run for a certain duration (5 min-
utes in our experiments). The rationale is that even if we miss checkpointing the
victim, it has not run long enough to incur significant work loss.

– Checkpoint Big. This heuristic assumes that big (in terms of the number of nodes
that they use) jobs are more likely to be hit by failures because they occupy more
nodes. As a result, in this heuristic we only checkpoint the k biggest jobs running
within the bucket. Even though we have conducted experiments with different val-
ues of k, we only present results for k = 1 since the results are not very different.
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(a) Checkpoint All (b) Checkpoint Long (c) Checkpoint Big

Fig. 8. Checkpointing based on relaxed prediction model for i.i.d failures (β=0.85;
W=2; α=0.01; r=2 minutes).

Figures 8 (a)-(c) present the performance of these heuristics for different bucket
sizes (1, 4 and 8 hours). With smaller buckets, while the results are closer to perfect
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prediction, note that predictability at those finer granularities can become more difficult.
Figure 8 shows that these heuristics can improve the performance noticeably even with
bucket sizes of 8 hours.
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(a) Average job slowdown (b) Average work loss ratio (c) Average checkpoint overhead

Fig. 9. Comparing three heuristics using four-hour buckets for idd failures (β=0.85;
W=2; α=0.01; r=2 minutes).

Figure 9 compares these heuristics using four-hour buckets. It shows that these
heuristics have comparable performances which improve job slowdown by up to 70%.
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(a) Temporal correlation: β=0.85;
W =64; α=0.01; r=2 minutes.

(b) Spatial correlation: β=0.85; W =2;
α=0.99; r=2 minutes.

Fig. 10. Comparing three heuristics using four-hour buckets for failures that have either
temporal correlation or spatial correlation.

Similar trends are observed in the other failure traces (Figures 10) while the failures
that present temporal correlations benefits more from this approach since such failure
traces have more bursty failure arrivals.

Strategies Using Spatial Correlation: Least Failure First (LFF) Despite the less
stringent requirements from the prediction model examined in the previous section, it is
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quite possible as revealed in our analysis of the failure logs, that temporal prediction of
failures may be very difficult to attain. At the same time, we note an important property
of the failure logs - nodes that have failed in the past are more likely to fail again - and
investigate the possibility of using this observation that can mitigate the performance
loss due to failures.

We propose a scheduling strategy (rather a node assignment strategy for jobs), called
Least Failure First (LFF), to take advantage of this observation. The basic idea of this
strategy is to give lower priority to nodes that have exhibited the most failures until
that point when assigning them to jobs. Specifically, this objective is achieved by the
following two optimizations:

– Initial Assignment. We associate each node in the system with a failure count,
which indicates the number of failures this node has experienced so far. A node
that has a lower failure count is considered “safer” than another node with a higher
failure count. We then sort all the nodes in ascending order of their failure counts.
Amongst all the available nodes, we always allocate jobs to the safest ones (i.e., the
ones with lowest failure counts).

– Migration. It is still possible that at some point a node that is not assigned to any
job is more safe than another assigned to a job. To address this issue, when a job
finishes, we need to migrate jobs running on less safe nodes (that started after this
one) to more safe ones. As in [44], migration can be achieved by checkpointing on
the original nodes and restarting on the destination nodes. We assume the check-
pointing and restarting overheads to be 5 minutes. In order to avoid unnecessary
overheads (thrashing), we migrate a job from node A to node B only when the
difference between these two failure counts is above a certain threshold.

Figure 11 shows the performance results for LFF. As can be seen, for failure traces
that have non-uniform spatial distribution (Figure 11(c)), LFF cuts down nearly 50%
of the work loss incurred with failures by simply avoiding scheduling on failure-prone
nodes as far as possible .

It is to be noted that LFF does not really require any prediction about failures. It
is only exploiting a simple property of failures - a few nodes are likely to fail more
often - which is not only a behavior in our failure logs but is also borne out by similar
observations in other studies [37]. At the same time, it is easy to implement and can be
easily integrated into existing parallel job scheduling strategies.
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