SCPL: Indoor Device-Free Multi-Subject Counting and
Localization Using Radio Signal Strength

ABSTRACT General Terms

Radio frequency based device-free passive (DfP) localiza- Algorithm, Experimentation, Measurement
tion techniques have shown great potentials in localizng i

dividual human subjects, without requiring them to carry an Keywords

radio devices. In this study, we extend the DfP technique to
count and localize multiple subjects in indoor environnsent
To address the impact of multipath on indoor radio signals,
we adopt a fingerprinting based approach to infer subject lo-
cations from observed signal strengths through profilimgth 1. INTRODUCTION
environment. When multiple subjects are present, our objec-

tive is to use the profiling data collected hysinglesubject  \ironments will be sensitive and responsive to the presence
to count and localizenultiple subjects without any extra ef- ¢ people, thereby enhancing everyday life. Potential ap-
fort. We propose a successive cancelation based algorithm t plications include eldercare, rescue operations, sgoenit
iteratively determine the number of subjects. We model in- forcement, building occupancy statistics, etc. The keynto e
door human trajectories as a state transition procesiexpl  gple these ubiquitous applications is the ability to lczali
indoor human mobility constraints and integrate all infarm yarious subjects and objects in the environment of interest
tion into a conditional random field (CRF) to simultaneously pevice-free passive (DfP) localization J11] has been pro-
localize multiple subjects. As a result, we call the projgose posed as a way of detecting and tracking subjects without

Device-free, Counting, Passive Localization, TrackingiM
tiple Subjects, Fingerprint, Conditional Random Field

Ambient Intelligence (Aml) envisions that future smart en-

algorithmSCPL~ sequential counting, parallel localizing.  the need to carry any tags or devices. It has the additional
“We test SCPL with two different indoor settings, one with  5qyantage of being unobtrusive while offering good privacy
size 150m? and the other 40@:2. In each setting, we have protection.

four different subjects, walking around in the deployed ar- * geyeral RF-based DfP localization techniques have been

eas, sometimes with overlapping trajectories. Through ex- proposed[[I1 12, 13] 6] Bl 7 [1.110], and these approaches
tensive experimental results, we show that SCPL can countgpserve how people disturb the pattern of radio waves in an
the present subjects with 86% accuracy when their trajecto-jnqoor space and derive their positions accordingly. To do
ries are not completely overlapping. Finally, our locaiaa S0, they collect training data to profile the deployed arad, a
algorithms are also highly accurate, with an average local- {oym mathematical models to relate observed signal sthengt
ization error distance of within 1.5 m. values to locations. DfP algorithms can be broadly catego-
rized into two groupsltocation-basegandlink-based Location-
Categories and Subject Descriptors based DfP schemes collect a radio map with the subject gresen
in various predetermined locations, and then map the test
location to one of these trained locations based upon ob-
served radio signals, which is also known as fingerprinting,
as studied in[[11,10]. Link-based DfP schemes, however,
try to empirically capture the relationship between the ra-
dio signal strength (RSS) of a link and whether the subject
Permission to make digital or hard copies of all or part of thiknfor is on the Line-of-Sight (LoS) of the radio link, and conse-
personal or classroom use is granted without fee providatdbpies are . . , . . i
not made or distributed for profit or commercial advantage aatdbpies quently determine the subject’s location using geomefic a
bear this notice and the full citation on the first page. Toycoiherwise, to proaches[[1216,11]. In this study, we adopt the location-
republish, to post on servers or to redistribute to listguies prior specific based approach because it is more robust to complex mul-

permission and/or a fee. . . o
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00. tipath environments and thus have better localization-accu

C.3[Special-Purpose and Application-Based SysterhsReal-
time and embedded systems



racies. More importantly, this approach is more suitabte fo find that it is beneficial to consider indoor human movement

tracking multiple subjects. constraints according to the floor map when localizing mov-
Many previous studies focus on localizing/tracking a sin- ing subjects and demonstrate 24% improvement on average
gle subject, and tracking multiple subjects has receivdd li  compared with no floor map information provided.

attention so far. When we use a location-based DfP scheme The rest of the paper is organized as follows. In Se¢fion 2,
to handle multiple subjects, the main challenge lies in the we discuss the applications that benefit from passive local-
exponential increase in the training overhead if we need to ization, our solution framework, as well as related workr Ou
profile the system with different combinations of these sub- solution consists of two phases, counting the number of sub-
jects. In this study, we propose and evaluate an efficient DfP jects (in Sectiofi]3) and localizing the subjects (in Sedipn
scheme for tracking multiple subjects using the traininggda Then we describe our experimental setup in Sedflon 5 and
collected by a single subject to avoid expensive trainirgrov  our detailed results in Sectibh 6. Finally, we provide the-co
head. cluding remarks and future direction in Sectidn 7.

Our algorithm consists of two phases. In the first phase,
we counthow many subjects are present using successive2. BACKGROUND
cancelation in an iterative fashion. In each iteration, we d
tect whether the room is empty. If it is not empty, we identify
the location for one subject, and then subtract her impact on
the RSS values from the collective impact measured in the
experiment. Care must be taken when subtracting a subject'sy 1 Applications that Can Benefit from Pas-
impact as the change in the RSS values caused by multiple sive Localization
subjects at the same time is smaller than the sum of RSS
changes from each individual subject. In order to compen-
sate for this, we need to multiply a coefficient to a subject’s
impact and then perform subtraction. The coefficient is spe-
cific to the subject’s location as well as the link under con-
sideration.

In the second phase, we localize the subjects after their
number is known. We partition the deployed area into cells
and represent a subject’s location using its cell number. We
formulate the localization problem as a conditional random
field (CRF) by modeling indoor human trajectories as a state

transition process and considering mobility constrainths Indoor Traffic Flow Statistics: Understanding patterns of
as walls. We then identify the cells occupied by these sub- human indoor movement can be valuable in identifying

jects smultaneo_usly. Since our counting process is sequen hot spots and corridors that help energy management
tial and our localization process is parallel, we call ogioal and commercial site selection.

Before presenting our SCPL algorithm, we first discuss
potential applications, the formulation of the problem and
related work.

Passive localization can find application in many impor-
tant domains. Below we give a few examples:

Elderly/Health Care: People may fall down in their houses
for various reasons, such as tripping, momentary dizzi-
ness or overexertion. Without prompt emergency care,
this could lead to life-threatening scenarios. Using tra-
jectory based localization information, DfP can per-
form fall detection quickly because the monitored sub-
ject will suddenly disappear from the system.

rithm SCPL

We have tested SCPL in two indoor settings. The first Home Security: DfP based home security is a major im-
setting is an office environment consisting of cubicles and provement over camera-based intrusion detection be-
narrow aisles, which is partitioned into 37 cells. We used cause it can not only detect the intrusion, but also track
the 13 transmitters and 9 receivers that were deployed for the intruders, which makes it easier to capture or avoid

some earlier projects. The second setting is an open floor the intruders.

indoor environment, which is partitioned into 56 cells and

deployed with 12 transmitters and 8 receivers. In the train- 2.2 Problem Formulation

ing phase, we measured the RSS values using a single sub- 1, q5ye the passive multi-subject localization problem,

Jec_t. In the tgstlng phase, we had four subjects with d|ﬁ9re we adopt a cell-based fingerprinting approach, similar ¢o th

heights, weights and gender, and implemented four differen one discussed i [10].

real life office scenarios. These scenarios all had peribds o Before we address the multi-subject problem, let us first

time when multiple subjects walked side by side and thus |, at how we localize a single subject. We first partition

had overlapping trajectories. We can count the number of yo gepioved area it cells. In the training phase, we first

subjects accurately, with a 88% counting percentage whenmeasure the ambient RSS values foinks when the room

Fhe subjects were not walking side by side, and a 80% count-g empty. Then a single subject appears in each cell, walks

ing percentage when they were. _ _ randomly within that cell and take¥ RSS measurements
Our localization results have good accuracies, with a means.om all I radio links. By subtracting the ambient RSS vec-

error distance of 1.3 m considering all the scenarios. We tor from the collected data, we have a profiling dataBet



D,aK x N x L matrix, quantifies how much a single sub- cation relative to the radio link locations, which is reésir
ject impacts the radio RSS values from each cell. Having as tocalibration by link Following this intuition, radio to-
this profiling dataseD, we model the subject’s presence in mographic imaging (RTI)]6] has been proposed to use this
cell 7 as a stateS; and thusD = {Ds,,Ds,,...,Ds, }. In technique to reconstruct the tomographic image for loealiz
the testing phase, we first measure the ambient RSS valueéng subjects based on their locations relative to the ralis|
when the room is empty. Then a subject appears in a randomLine-of-Sight (LoS). RSS attenuation and variance are used
location, and measure the RSS values forlalinks while as data primitives ir[6,18]. Auxiliary particle filteringdk-
making random moves in that particular cell. Then we sub- nique is leveraged to improve the tracking performance [1].
tract the ambient RSS vector from this measured data, andCalibration by link may suffer from the generalization er-
form an RSS vectox), which shows how much this subject ror when applied in cluttered indoor environments with rich
impacts the radio links from this unknown cell. Basedon  multipath. A typical example is that when a subject ran-
and O, we can run classification algorithms to classify the domly block the LoS of three different radio links, the RSS
cell number of the unknown cell, thus localizing the suhject change of those radio links may be negative, or positive, or

Next we discuss how we extend the same framework to even be zero, which depend on the composition of the build-
formulate the multi-subject localization problem. In them- ing structure and all the inside objects. In addition, a dens
ing phase, our objective is to stilse a single subject’s train-  nodes deployment is required to provide enough radio LoS
ing datato keep the training overhead low. Taking the train- links to cover all the physical space.
ing data for different number of subjects will lead to pro-
hibitive overheads, which we will avoid. In the testing pbas
multiple subjects appear in random cells, sometimes in the
same cell, and we measure the RSS values for all the ra-
dio links. We calculate) in the same way as in the single-
subject case.

To calculate the locations for these subjects, we need to go
through two phases. In the first phase, we identify the num-
ber of subjects that are present simultaneous|yywhich we
call thecountingphase. In the second phase, we identify in
which cells are thes€ subjects, which we call thecalizing
phase. Please note that subjects are not stationary, lyut the
move around within the deployed area.

Location-Based DfP:This approach is also known as “fin-
gerprinting,” a popular approach for RF-based localizatio

It was first studied in[[11] in the context of passive localiza
tion. The authors first collect a radio map with the subject
present in a few predetermined locations, and then map the
test location to one of these trained locations based upen ob
served radio signals. This method tames multipath effeaet be
ter than the link-based approaches in cluttered envirotenen
because it measures the RSS ground truth for different po-
sitions without generalized assumption and thus proviee ro
bust accuracies to different indoor settings. In additibn,
does not require a nodes deployment as dense as in calibra-
tion by link because when the subject is in the position has
no intersection with any radio LoS links, the RSS ground
2.3 Related Work truth still can provide a distinguishable record from other

Several DfP localization schemes have been proposed and:,’OSitiqr;f' 'ndﬂm’ thlek authhor; proplosr-;] a cell-ba;ed (:"”br
studied in the literature. We, however, point out that SCPL tion with random walk method profile the system in order to

is the first one that counts device-free subjects using radio MProve the accuracy and meanwhile reduce the calibration
signal strength, to our best knowledge overhead. However, the downside of fingerprinting is also

In 2006, Woyach et al[]9] first experimentally demon- evid_ent: t_he galibration prqcedure is tedious, especfally
strated the feasibility of localizing device-free subjeby ~ Multi-subjectin a large environment.

observing a difference in RSS changes by a subject moving
between (resulting signal shadowing effect) and in thawici 3. COUNTING THE NUMBER OF SUBJECTS

ity (causing small-scale fading) of a pair of transmittedan |, this section, we first provide empirical data to help the

receiver. From then on, several DfP approaches have beengagers understand the impact of having multiple subjects
proposed in the literature, which can be broadly categdrize ¢ the same time, and then describe our sequential counting
into two groups as follows. algorithm.

Link-based DfP: These techniques look for those radio links . .
close to the target subjects and further determine thea-loc 3.1 .UnderStand'ng the Impact of Multiple Sub-
tions based on the RSS dynamics. Zhang efal. [12] set up jects on RSS Values

a sensor grid array on the ceiling to track subjects on the Let us first understand the relationship between a single
ground. An “influential” link is one whose RSS variance subject’s impact on the room RSS level and multiple sub-
exceeds a empirical threshold. The authors determine a subjects’ impact. In particular, we would like to find whether
ject’s location based upon the observation that these imflue the relationship is linear.

tial links tend to cluster around the subject. This techaiqgu  As shown in previous studies suchas|[11,12) 6.1, 10], the
form a consistent link-based model to relate the subjeat's| RSS level of a radio link changes when a subject is near its
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Figure 1: In terms of overall energy change indicatorvy, (a) “RSS Mean”, for zero, one, and two subjects. (b) “Absolu¢
RSS Mean” for the same measurement shows better discriminain between zero and more than zero subjects. (¢c) Two
subjects separated by more than 4 meters are clearly distingshable from one subject.

Line-of-Sight (LoS). Based on this observation, we make a difference, and plot their histograms in Figuiés 1(a)-és) r
simple hypothesismore subjects will not only affect alarger  spectively. In Figur¢ I(a), when the room is empty, we ob-
number of spatially distributed radio links, but they wilba servey valuese [—10, 10) which means the overall energy
lead to a higher level of RSS change on these lirkkthis level is rather stable. However, with 40% to 50% of chances,
is true, we can infer the number of subjects that are presentwe still observey € [—10,10) when subjects are present.
from the magnitude of the RSS change that we observe inThis is because individual RSS mean differences can cancel
the deployed area. We use the sum of the individual link RSS out each other, and thus their sum is not a good indicator of
change to capture thetal energy changi the environment  the total energy change caused by having multiple subjects.

as Absolute RSS mean difference is a better metric, as shown
L in Figure[I(B). They value when there are two subjects is
= z o', statistically greater than the value when there is only one
-1 subject. As a result, in the rest of this paper, unless efiglic

noted, we use absolute RSS mean difference as the metric to
capture the RSS change in the environment. Finally, we note
that thev value alone is inadequate to distinguish between
one or two subjects.

By looking at the two-subject data more carefully, we can
further separate them into two groups based on the distance
between the subjects. If the distance is more than 4 meters
(we choose this threshold from the data sets), we call the two
subjectdaraway, and call the subjectsearbyif the distance

whereQ' is the RSS change on lirk

Next we look at how to capture the RSS change of link
straightforward metric is to subtract the mean ambient RSS
value for link! (when the room is empty) from the measured
mean RSS value for link, the result of which is referred
to asRSS mean differenc®SS mean difference is a popu-
lar metric that has been used in several studies, e.g., as see
in [11,[6,[1,/10]. However, upon deliberation, we find that

RSS mean difference is not suitable for our purpose, mainly is less. We then plot the histograms of these groups in Fig-

because the value is not always positive. Due to the multi- : .
path effect, the presence of a subject does not always weaker} re[1{g). When subjects are close ta each other, more links

. . . ; will be affected by both subjects, and fewer links are affdct
a link, but sometimes, it may actually strengthen a link! As a by onlv one of the subiects. Consequently Ahelue in this
result, the RSS mean difference can be negative. In this case yony ) : d Y,

summing up each link's RSS mean difference does not lead C3Se will be smaller than thevalue when the two subjects

to the correct total energy change in the environment becaus are farther apart. Furthermore, we point out that thelue

their values may cancel out each other. To address this, issueWhen we haveC’ subjects at the same time is smaller than

we thus propose to usdbsolute RSS mean differenghich the sum .Of the |nd|v!dqaiy yalue frgm each supject. As a
result, it is hard to distinguish having two subjects clase t

has a more compact data space than RSS mean when a cel . X

is occupied each other from having only one subject.

: ) In summary, we have two main observations from these
Our experimental results confirm that the absolute RSS : . . .
. . . . . experiments. First, the absolute RSS mean difference is a
mean difference is a more suitable metric. In this set of ex-

periments, we collect the RSS values when there are 0, 1 andSUItabIe metric to capture the impact caused by the appear-

) . . _ance of a subject. Second, the total energy chapgeflects
2 subjects who make random movements (with pauses) in . . )
| the level of impact subjects have in the room, but we cannot
the deployed area. We compute the correspondinglue

by using both RSS mean difference and absolute RSS meanrely on the value ofy alone to infer how many subjects are



present. Algorithm 1: Location-Link Correlation Algorithm

. . . . i t : D- The training dat llected frorh link
3.2 Counting Subjects Using Successive Can- " ° D~ The training data collected fror finks among/<

celation output: B - The location-link coefficient matrix

We use successive cancelation to count the number of subt foré=1—Ldo
2 h <+ zero matrix of K x K

jects. When multiple subjects coexist, it often so happens ;3 fori—1— K do

that one subject has a stronger influence on the radio sig-4 forj=1— Kdo
; ; 5 I + training data indices associated with stéte
nal than the rest. Thus, our counting glgorlthm goes through . 7 « training data indices associated with stslfe
several rounds. In each round, we estimate the strongest sub, /l Compute the link correlation
ject’s cell number in this round assuming there is only a sin- 8 hij « E[DyD ]
gle subject;, and then subtract her RSS contribution to the fori — 1 — K do
RSS change from the current RSS vecfoto obtain the re- K
maining RSS vector that will be used in the next round. 10 normfactor < \/]2:31 hij
If this problem were ”nea_r, we CQU|d simpl'y. subtract the 1 /I Compute the location-link coefficient for celand link!
mean vectoy; associated with cellin the profiling dataD 12 B %

from the observed RSS vector. However, as shown in the L
previous subsection, the total impact from multiple sutgec

is not linear to the number of subjects — the impact observed
whenC subjects appear at the same time is smaller than thefithm (shown in Algorithni2), which can identify the subject
sum of each subject’s impact if they appear one at at time. countC' from the observation RSS vector using the pro-
To be more precise is an underestimation of the linear filing RSS matrixD collected by a single subject. We first
combination of the mean values of the associated cells thatcomputey”’s andy"'s from the ambient RSS vector and the
we collected irfD. To address this issue, instead of subtract- Profiling RSS matrixD respectively. Then, we construct a
ing 11; directly fromO, we multiply a coefficient that is less ~ 95% confidence interval for the distribution ¢t's andy'’s

than 1 toy; and subtract this normalized term fragh This and refer to the associated lower and upper bound.s%as
coefficient, however, is not uniform across all the cell and ¢{» ¢f C%].- From the observation RSS vectadr, we flfSt.
link combinations; instead, it is specific to each cell anéli ~ compute itsy value and then perform a presence detection:

pair because different cells have different impacts onla lin i 7 € (C%;CIOJ), we claim the room is empty. Otherwise,
We will then calculate the location-link coefficient matrix ~ We will claim there is at least one subject present and start

B = (B;.) wheref; ; is the coefficient for cell and link!. to iteratively count the number of subjects using successiv
Our algorithm to calculate the coefficient matifiis de- cancelation to finally determine the value@f
tailed in Algorithm[l. The basic idea is that, for each link  In each successive cancelation iteration, we do the follow-
[, we compute the correlation between a cell p@irj) with ing:
respect to linkl. The two cells that both_ar(_e close to a link e Presence DetectionWe first perform a presence detec-
are highly correlated with respect to this link. We Lfé? tion by checking ify > ¢}, to find out whether there is
to denote this Correlati&l Note that all the RSS values in any more Subject in the room. Please note that this con-
profiling data are non-negative, and thus we haye> 0. dition is stronger than > ¢, and we will take care
For each celt, we pivot that cell and compute tiig; as of the last iteration separately. If the presence detec-
Wl tion returns a ‘yes’, we increment the detected subject
Bi = K“’ ) countC, and go to the next step. Otherwise, we end
12 the algorithm.
ng hl]

e Cell Identification.If there is a subject in this iteration,

Basically, when two subjects occupy cellsind j respec- we estimate the occupied celby
tively, and only one of them affects linkthey have low cor-
relation and the value dfﬁj is close ta). On the other hand,
when they both affect link, the value Oﬁéj will reflect their whereS is the set of remaining unoccupied cells.
positive correlation.

Once we determine the location-link coefficient matBix
we describe our successive cancelation based counting algo

q = argmax P(0|S;),
€S

e Contribution SubtractionNext, we cancel the impact
of this subject from celf by subtracting:y; - 8, from

O' for each linkl.
l . . .. . .
!\lotlce that \;ve use correlatidr; instead of correlatlgn coeff!ment In the last round, we relax the lower bounchdfby taking
pi; because;; will always bel and thus guarantee its dominance

among the all the cells on all the links when the del detected the. average of}; andcp,, Whic_h means we CO_nSider the pos-
first, which is not true. sibility that when the last subject is detected in our aloni,




the corresponding is lower than the:} but still higher than
Y. This further compensates for the over-subtraction in our affected by multiple people. In this case, it is hard to quan-
earlier iterations.

Algorithm 2: Successive Cancelation-Based Device-free
Passive Counting Algorithm

input : D- The training data collected froth links amongK cells

S- The stateg S1, ..., Sk } associated with th& cells

O- The testing data collected fromlinks when subjects are in
unknown locations

B - The estimated location-link coefficient matrix generated
from Algorithm[]

9, ¢%;- The lower and upper bounds of the 95% confidence
interval when there is no subjects in the deployed area

¢k, ci;- The lower and upper bounds of the 95% confidence
interval when there is one subject in the deployed area
output: C- The estimated number of subjects present in the deployed

area

especially when multiple subjects are present and a link is

tify the exact impact of a subject. Even after considerirgg th
cell link coefficient matrixB, we may still overestimate (or,
underestimate) a subject’'s impact on a link. These errors,
while insignificant enough not to hurt the counting process,
will lead to inferior localization results. On the other kian
parallel tracking keeps all the raw RSS values and can pro-
vide better results.

4.1 Understanding the Challenge of Localiz-
ing Multiple Subjects

Before presenting our localization algorithm, we first take
a closer look at how multiple subjects collectively affdu t
RSS values and thus complicate the localization problem
through empirical data. The complexity of this problem nhain

te <_OL stems from the multi-path effedtl[4], a typical error source
274+ El o' in RF-based indoor localization. In this problem, multitpa
3 // Presence detection can cause nonlinear interference in a radio space when-multi
4 if v € (¢, cfy) then ple subjects are present. More precisely, when multiple sub
5 L retum ¢ jects coexist in different locations, the resulting RSSueal
° e'ier';?uﬁl Clet.he” will not be simply the summation of the individual RSS val-

' . ues from a single subject independently in those locations.
8 // Count the present subjects . .
9 else The gap between these two is larger when these subjects are
10 while true do close to each other. To validate this conjecture, we rangoml

if v > c%] then

/I Estimate the most likely occupied cell

q <+ argmax;c s P(O|S;)

/I Remove the training data associated with the
estimated cell in each round

D < D\Dy

S+ S\¢q

/I Update the testing data by removing the partial impact
caused by the detected subject in each round
fori=1— Ldo

L Ol «+ O - Bqitql

select a few positions with certain distances apart. We first
have one subject, A, collect the RSS measurements by stand-
ing stationary in these locations. Then, we involve another
subject, B with similar height and weight as A, and have
them stand in two different positions, sagnd;. We useO;
andO; to denote the measured RSS vector when A is stand-
ing in positionsi and; independently, and;; the measured
RSS vector when A and B are standing in positibasd; si-
multaneously. In a linear space, vecioy; would be simply

20 C—CH+1 . i
21 /I Update the overall affect energy indicator the summanon Opi and OJ Howeve_r* as ment'on?d be-
Lo fore, this problem is nonlinear, especially when subjerts a
2 | 7 0 close to each other. To quantify the degree of nonlinearity,
»s else iy (C?J;clL b then we define thdRSS Error Residuals
24 C+C+1 L_l _ ol _ ot
25 | return C; A0 =0;; -0, - 0j,
26 else _ for link I. A larger AO' value indicates a higher non-linear
2 | L rewmn -1, degree. To articulate the nonlinearity nature, we remave i
- Lifits O};,0!,0" values are all less than 1 because these
links are actually not affected by the subjects in any case. W
plot the histograms of the remainiidgf values in Figur&l2.
4. LOCALIZING MULTIPLE MOVING SUB- From Figurd 2, we have three main observations. Firstly,

JECTS WHEN THE SUBJECT COUNT IS
KNOWN

when the two subjects stand side by side (i.e., the distance
between them is @n), there are only about 30% and 50%
chances that we seAO!| < 2 for RSS mean and absolute

In this section, we discuss how we localize multiple mov- RSS mean respectively, which validates our problem is in-
ing subjects when the subject count is known. In SCPL, deed nonlinear. As the distance becomes higher than 2
we track multiple subjects in parallel, unlike in the count- the probability of havingAO!| < 2 rises to more than 70%
ing phase where we count the number of subjects sequenfor both RSS mean difference and absolute RSS mean differ-

tially. Radio interference is very complex and unpreditgab  ence. Secondly, the error residual can be negative under RSS
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Figure 2: The RSS residual error forms a double-sided distiution when us- Figure 3: Absolute RSS mean has a

ing RSS mean, while it is approximately single-sided disttuted using abso- Smaller overall RSS error residual
lute RSS mean. distribution.

mean difference, but is positive under absolute RSS meanance, as in[10], and denote

dlfferencg in .most cases, suggest@g is c_onS|st_entIy an 5.(0) = P(0]S)),
underestimation 0, + O;. This property is desirable be-
cause it ensures monotoneity. where

Finally, we define théotal RSS Error Residuals: P(O|S) ~ N (i, 3).

I However, the sensor model is imperfect because of the deep
= Z |AOY, fading effect that can cause estimation error through only a
= few linkgd. Therefore, the cell associated with the maximum
probability might be far from the ground truth.
which measures the deviation between the profiling data and Next, we look at the transition model. In each clock tick
the RSS measurement in a multi-subject problem. We plott = 1,2,...,7, the system makes a transition to state
the histogram in Figurlel 3 and observe that the absolute RSSThis process models the movement of a subject — the sub-
mean has a smallervalue, and thus more appropriate for ject moves to a new cell in each tick. We choose a first order

our purposes. CRF, which means the next cell number depends on the cur-
rent cell number, rather than any earlier history because we
4.2 Conditional Random Field Formulation do not want to assume any specific human movement trajec-

tories. In our model, subjects can either walk along a dtitaig
line, take turns or wander back and forth.

The subject’s trajectory can thus be characterized as a para
metric Markov random process with tiransition modebe-
fined as the probability of a transition from stat timet—1

Sto statej at timet in form of

Tracking moving subjects actually introduces new opti-
mization opportunities - we can improve our localization re
sults by considering the fact that human locations from ad-
jacent time intervals should form a continuous trajectory,
which can be further modeled as a state transition proces
under conditional random field (CRF)[3]. CRFs are a type
of discriminative undirected probabilistic graphical netd T = P(qtlgi—1),

We use them to decode the sequential RSS observations intQNhere
continuous mobility trajectories.

The first step towards formulating a conditional random Tij = P(q: = Sjla—1 = Si).
field is to form the sensor model and transition model respec-  The intuition here is that people cannot walk through walls
tively. In our problem, we hav&’ states:S = {S1,S2,...,Sx}. or cross rooms in a single tick. We believe these mobility
In a single-subject problem, state means the subjectis lo-  constraints can be used to fix most of the errors in the sensor
cated in celli. The sensor model essentially infers the cur- model caused by deep fades.
rent state based on the observation RSS vegtaie would In our cell-based approach, we define the following:

like to maximize the likelihood”(q = 5;{0,D) when cell  cell neighborsare a list of adjacent cells which can be en-
i is occupied. In other words, when the subject is located tered from the current cell without violating mobility con-
in cell in the testing phase, we would like to maximize the gtraints.

plrlobablllty tgat tl?e estimated Str? te/(t:)@Imat(ahes the actu- . 2Because of deep fading from multipath, adjacent points can have
ally occupied celi. We assume the observed RSS vectors in gramatically different RSS values, leading to large estimation er-
each state follow a multivariate Gaussian with shared ¢ovar rors.




Order of neighbor is defined as the number of cells a person
must pass through to reach a specific cell from the current
cell without violating mobility constraints. We assume the
subject moves to a new cell every clock tick. For example,
as far as celi is concerned, the 1-order neighbors include
its immediate adjacent cells, and its 2-order neighbors in-
clude the immediate adjacent cells of its 1-order neighbors
(excludingi andi’s first order neighbors).
Cell ring with radiusr is defined as the area consisting of
i's 1-order neighbors, 2-order neighbors, ..., up te-itsder
neighbors.

LetQ, (i) be the cells included i¥is r-ring and letN,. (¢)
be the size of2,. (i). Our transition model thus becomes:

-

4.3 Localization Algorithm

Having constructed the sensor model and transition model,
we can translate the problem of subject tracking to the prob-
lem of finding the most likely sequence of state transitions
in a continuous time stream. Théterbi algorithm|[2] de-
finesV;(¢), the highest probability of a single path of length
t which accounts for the firgtobservations and ends in state
Sj:

Vi(t) = argmax P(q1q2...qt = j, 0101...04|T,0).

q1,92;---,q9t—1
By induction

v for jeQ ()
0 for j¢Q.(i)

Vi(1) = 6;(01),
Vi(t +1) = argmax Vi (t)T;;0;(Op41).

Generalizing to the multi-subject case, we demotg (0O) =
{61(0),62(0), ..., 0k (O)} from the sensor model to repre-
sent the likelihood of each state. We den@te- {¢', ..., ¢“},
whereC is the total number of present subjects. For the cur-
rent state,, we have(g) possible permutations of sub-
ject locations. For each permutatign we denoteQ;
{q", ...,q“} and compute the Viterbi score

c
Iy = Z 5<15(Ot)Tq§71(1§‘
=1

We then pick theg value that is associated with the maximum
Viterbi score as the current state.

We describe our device-free multi-subject localization al
gorithm in Algorithm[3. We believe we can achieve best
localization results when we consider 1-order ring or 2eord
ring, which is also confirmed by our experimental results
presented in Sectidd 6.

5. EXPERIMENTAL SETUP

In this section, we briefly describe the experimental setup,
the data collection process and the metric we use for perfor-
mance evaluation.

Algorithm 3: Trajectory-Based Device-free Multi-
subject Localization Algorithm

input : D- The training data collected froth links amongK cells
O1.+- The testing data collected fromlinks when subjects

are in unknown locations
C- The estimated number of present subjects in the deployed

area
Q1- The initial state(s) of the present subjects

output: Q1.+~ The most like sequence of the trajectories of the present
subjects

fori =2 — tdo
L 01:x(0s) + P(O4|S1.Kx)

I « is the set of all the possible permutations(@‘)
QZ’ — argmax; g Vi t er bi Scor e(Qi,l, Q]‘, 51;K(O¢),T)

5.1 Experimental Setup and Data Collection

The radio devices used in our experiments contain a Chip-
con CC1100 radio transceiver and a 16-bit Silicon Labora-
tories C8051-F321 microprocessor powered by a 20 mm di-
ameter lithium coin cell battery, the CR2032. The receivers
have a USB connector for loss-free data collection but are
otherwise identical to the transmitters. In our experiragnt
the radio operates in the unlicensed bands at 909.1 MHz.
Transmitters use MSK modulation, a 250kbps data rate, and
a programmed output power of 0dBm. Each transmitter pe-
riodically broadcasts a 10-byte packet (8 bytes of sync and
preamble and 2 bytes of payload consisting of transmitter’s
id and sequence number) every 100 millisecond. When the
receiver receives a packet, it measures the RSS values and
wraps the transmitter id, receiver id, RSS, timestamp (en th
receiver side) into a “data packet”. This packet is sentéo th
centralized system over direct USB connection or through
network hubs for data collection and analysis. In our exper-
iments, the RSS data is collected as a mean value over a 1
second window for each link. We choose a 1 second window
because a normal person can at most walk cross one cell dur-

ing a second. For each cell, we collect 30 RSS vectors as the
profiling data.

AW NP

5.2 Performance Metrics

We use the following performance metrics to measure our
counting and localizing algorithms.
Counting Percentages given by:

el
C

where( is the estimated subject count a€is the actual
subject count.

Error Distance is defined similar to the metric in|[5]:

1

)

C
1. d
— min
CﬂGH, q

=1

i am(7)

d(Q,Q) = ,q"),

wherell includes all the possible permutations{af 2, ..., C'},



Tx: Radio Transmitter

Rx: Radio Receiver

— Radio Link

-~ Cell Boundary

(a) Test Field (b) Cell Locations (c) Radio Link Distribution

Figure 4: In (a), we show the office in which we deployed our sysm. In (b), we show that the office deployment region is
partitioned into 37 cubicle-sized cells of interest. In (c)we show the locations of the pre-installed 13 radio transntiers,
9 radio receivers and the corresponding Line-of-Sight linls.

d(q,q) is the Euclidean distance between the ground truth
q and the estimated positiop Q = {¢',¢%,...,¢“} and

Q = {¢", ¢, ..., ¢°} are within the pre-profiled finite states
S=1{51,5,...Sk}.

6. EXPERIMENTAL RESULTS

In this section, we summarize the results we have obtained
from two indoor settings. In each setting, we had multiple
subjects each walking along a trajectory.

6.1 Counting and Tracking in an Office Set-
ting
Our first setting is a typical office environment, consist-

ing of cubicles and aisles with a total area of 158. The Figure 5: We show the experimental trajectories of sub-
environment is quite cluttered as shown in Figure}4(a). The jects A, B, C and D in the office setting. Note the segments
area is broken down to 37 cells such as cubicles and aisl€f the paths where overlap can occur if the subjects are
segments, as shown in Figyre 4(b). We utilized 13 radio present at the same time.
transmitters and 9 radio receivers, whose locations and cor
responding link LoS'’s are shown in Figyre 4(c). Here, we
need to point out that these devices were installed for some e Three Subject ScenaridVhile A and B followed the
earlier projects, not specifically for this one, and therefo movement patterns in the above two subject scenario,
the link density per cell is non-uniform. This, however,+ep C walked on the other aisle from one cubicle to another.
resents a more realistic setting, through which we can show
that SCPL can achieve good results without dedicated sensor
deployment.

We had four subjects (A, B, C and D) in this series of ex-
periments. We went through several example scenarios andg 1 1 Counting Results
illustrate them in FigurEl5:

e Four Subject ScenaridiVhile A, B, and C followed the
movement patterns in the above three subject scenario,
D was sitting on her seat.

The difficulty of subject counting increases when multiple

e One Subject ScenarioA left her boss’s office, and  subjects walk together (in the same cell). Thus, we present
walked along the aisle to her cubicle. our counting results in the following three ways: (a) all the

experimental data (referred to asxed, (b) the experimen-

e Two Subject Scenariowhen B entered the room, A tal data for when multiple subjects walked together and thus
was walking on the aisle towards him. B waited until had overlapping trajectories (referred to agerlap trajec-
they met and walked together for some time, and then tory), and (c) the experimental data for when multiple sub-
separated to go back to their own seats. ject trajectories did not overlap (referred toramn-overlap
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Figure 6: Counting percentage for Figure 7: Counting percentage for Figure 8: Localization error using
different number of subjects in the mixed trajectories using moving win-  different ring order in the office set-
office setting. dow in the office setting. ting.

trajectory). Figure[® shows the counting percentages in all subjects, especially when they are close to each other, will
three cases. cause non-linear radio interference, and thus the data col-
We observe that when we have multiple subjects, the countdected from the mutually affected links alone cannot give
ing percentage is higher in the non-overlap trajectory .case very accurate localization results. Therefore, the semsatel
The average counting percentage across all cases is 84%, thalone is insufficient for high accuracies. Secondly, we ob-
average counting percentage for non-overlap cases is 89%serve that the localization results are less accurate isetho
and the average counting percentage for overlap cases is 80%ells with lower radio link densities, such as in cell 34-37,
Next, we show how the average counting percentage changescause subjects may cause negligible changes to the RSS
as movement patterns change in time. Our four-subject ex-space at a few points in those cells. Thirdly, trajectorpiinf
periment last 32 seconds, and Figlure 7 shows the overall av-mation help prevent the error distance increases drartigtica
erage counting percentage (in the mixed case) in the first 1,as the increasing number of subjects. Finally, our environ-
2, 4, 8, 16, 24, and 32 seconds. We find that the averagement is an office space consisting of cubicles and aisles, and
counting percentage is very good (until the first 16 secqgnds) the possible paths a subject can take are rather limited. As a
and then drops in the second half of the experiments. Thisresult, we achieve the best localization accuracies wit ri
is because two subjects started to merge their trajectaries order of 1, 2 or 3. Due to the movement constraints, a higher
little while ago. From Figur€l7, we note that in an experi- ring order has the same result as not considering any neigh-
ment, unless the subjects are always together, we can counbors at all (i.e., 0 ring order). We hypothesize that this may
the number of subjects accurately during the times when theynot be true in a more open indoor environment such as (large)
are apart. The errors caused by temporarily clustered sub-homes, malls and museums.
jects can also be easily addressed. We should run the count- . )
ing algorithm every second. When we notice the number 6-2 Counting and Tracking In Open Floor Space
of subjects suddenly drops, we check their locations before The second test setting is a more open floor of total 400
the sudden drop. If no subject’s location was close to the m?, as shown in Figurg 9(a). We used this setting to model
exit, then we can conclude that two or more (depending uponan open hall with a few posters on exhibition, and SCPL
the change in the count) joined each other and started walk-can be used to detect traffic flow and infer the most popu-
ing together. Of course, this information should be vakdat lar poster. The space was partitioned into a uniform grid of

from the subject location information. 56 cells, as shown in Figufe 9{b). We deployed 12 transmit-
L ters and 8 receivers in such a way that the link density has
6.1.2  Localization Results a relatively even distribution across the cells, as shown in

We show the mean of localization error distances in Fig- Figure[9(c). We would like to point out that we used fewer
ure[8 with different ring order parameters. In our setting, w devices in this setting than in the previous one, though this
choose 10 as the upper bound of the ring order because albne had a larger area.
cells are within 10 hops of each other. We involved four different subjects in this test and their

Our first observation is that the use of the trajectory infor- trajectories are shown in Figuie]l10. We repeated the same
mation can improve the localization performance by 13.6% four scenarios as in the previous setting. We plot our count-
— the overall mean localization error distance drops from ing results in Figur€ 1. We achieve a 100% counting per-
1.25m (with O-order ring) to about.08m (with 1-order ring). centage when there was only a single subject, which is better
We note that the error distance for a single subject does notthan the previous setting because the link density is more
benefit from using trajectory information because the pro- even in this case. We achieve a counting percentage of 83%,
filing data is good enough for this case[11] 10]. Multiple 81%, and 82% for two, three and four subjects respectively,
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Figure 9: In (a), we show the open floor space used for poster bibition in which we deployed our system. In (b), we
show that the deployment region is partitioned into a uniform grid of 56 cells. In (c), we show the locations of the 12

radio transmitters, 8 radio receivers and the correspondimy Line-of-Sight links.
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Figure 10: We show the experimental
trajectories of subjects A, B, C and D
in the open floor space.

resulting in a 87% counting percentage in total.

We present the localization results in Figlre 12. In the lo-
calization part, we observe similar patterns as in the previ
setting: we achieve better localization accuracy usingdra

One

Two

Number of Subjects

Three

Four

Overall

Figure 11: Counting percentage for
different number of subjects in the
open floor space.

Localization Error Distance (m)
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Figure 12: Localization error using
different ring order in the open floor
space.

complex environment like the office cubicles is expected to

have worse radio propagation, we can leverage the increased

mobility constraints that go with a complex environment to
maintain or even improve accuracy in these situations.
Finally, we point out that if we rely on a single subject’s

tory information. We achieve the best localization accyrac
when we adopt the 2-order ring, which is 1.48 a 35%

improved compared to the 0-ring case.

7. CONCLUSION

the feasibility of using the profiling data collected withlypn

training data, the number of subjects that can be accurately
counted and localized is rather limited. We had success with
up to 4 subjects, but were not very successful with more sub-
jects. In our future work, we will look at how we can accu-

rately localize a larger number of subjects with reasonable

In this paper, we present SCPL, an accurate counting andoverheads.
localization system for device-free subjects. We dematestr

a single subject present to count and localize multiple sub- [1]
jects in the same environment with no extra hardware or data

collection. Through extensive experimental results, wansh

that SCPL works well in two different typical indoor envi-

ronments of 1502 (office cubicles) and 40@.2 (open floor

plan) deployed using an infrastructure of only 20 to 22 de-

vices. In both spaces, we can achieve about an 86% average

counting percentage and 1.3 m average localization erser di
tance for up to 4 subjects. Finally, we shows that though a
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