
SCPL: Indoor Device-Free Multi-Subject Counting and
Localization Using Radio Signal Strength

ABSTRACT
Radio frequency based device-free passive (DfP) localiza-
tion techniques have shown great potentials in localizing in-
dividual human subjects, without requiring them to carry any
radio devices. In this study, we extend the DfP technique to
count and localize multiple subjects in indoor environments.
To address the impact of multipath on indoor radio signals,
we adopt a fingerprinting based approach to infer subject lo-
cations from observed signal strengths through profiling the
environment. When multiple subjects are present, our objec-
tive is to use the profiling data collected bya singlesubject
to count and localizemultiplesubjects without any extra ef-
fort. We propose a successive cancelation based algorithm to
iteratively determine the number of subjects. We model in-
door human trajectories as a state transition process, exploit
indoor human mobility constraints and integrate all informa-
tion into a conditional random field (CRF) to simultaneously
localize multiple subjects. As a result, we call the proposed
algorithmSCPL– sequential counting, parallel localizing.

We test SCPL with two different indoor settings, one with
size 150m2 and the other 400m2. In each setting, we have
four different subjects, walking around in the deployed ar-
eas, sometimes with overlapping trajectories. Through ex-
tensive experimental results, we show that SCPL can count
the present subjects with 86% accuracy when their trajecto-
ries are not completely overlapping. Finally, our localization
algorithms are also highly accurate, with an average local-
ization error distance of within 1.5 m.
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1. INTRODUCTION
Ambient Intelligence (AmI) envisions that future smart en-

vironments will be sensitive and responsive to the presence
of people, thereby enhancing everyday life. Potential ap-
plications include eldercare, rescue operations, security en-
forcement, building occupancy statistics, etc. The key to en-
able these ubiquitous applications is the ability to localize
various subjects and objects in the environment of interest.
Device-free passive (DfP) localization [11] has been pro-
posed as a way of detecting and tracking subjects without
the need to carry any tags or devices. It has the additional
advantage of being unobtrusive while offering good privacy
protection.

Several RF-based DfP localization techniques have been
proposed [11, 12, 13, 6, 8, 7, 1, 10], and these approaches
observe how people disturb the pattern of radio waves in an
indoor space and derive their positions accordingly. To do
so, they collect training data to profile the deployed area, and
form mathematical models to relate observed signal strength
values to locations. DfP algorithms can be broadly catego-
rized into two groups:location-based, andlink-based. Location-
based DfP schemes collect a radio map with the subject present
in various predetermined locations, and then map the test
location to one of these trained locations based upon ob-
served radio signals, which is also known as fingerprinting,
as studied in [11, 10]. Link-based DfP schemes, however,
try to empirically capture the relationship between the ra-
dio signal strength (RSS) of a link and whether the subject
is on the Line-of-Sight (LoS) of the radio link, and conse-
quently determine the subject’s location using geometric ap-
proaches [12, 6, 1]. In this study, we adopt the location-
based approach because it is more robust to complex mul-
tipath environments and thus have better localization accu-



racies. More importantly, this approach is more suitable for
tracking multiple subjects.

Many previous studies focus on localizing/tracking a sin-
gle subject, and tracking multiple subjects has received little
attention so far. When we use a location-based DfP scheme
to handle multiple subjects, the main challenge lies in the
exponential increase in the training overhead if we need to
profile the system with different combinations of these sub-
jects. In this study, we propose and evaluate an efficient DfP
scheme for tracking multiple subjects using the training data
collected by a single subject to avoid expensive training over-
head.

Our algorithm consists of two phases. In the first phase,
we count how many subjects are present using successive
cancelation in an iterative fashion. In each iteration, we de-
tect whether the room is empty. If it is not empty, we identify
the location for one subject, and then subtract her impact on
the RSS values from the collective impact measured in the
experiment. Care must be taken when subtracting a subject’s
impact as the change in the RSS values caused by multiple
subjects at the same time is smaller than the sum of RSS
changes from each individual subject. In order to compen-
sate for this, we need to multiply a coefficient to a subject’s
impact and then perform subtraction. The coefficient is spe-
cific to the subject’s location as well as the link under con-
sideration.

In the second phase, we localize the subjects after their
number is known. We partition the deployed area into cells
and represent a subject’s location using its cell number. We
formulate the localization problem as a conditional random
field (CRF) by modeling indoor human trajectories as a state
transition process and considering mobility constraints such
as walls. We then identify the cells occupied by these sub-
jects simultaneously. Since our counting process is sequen-
tial and our localization process is parallel, we call our algo-
rithm SCPL.

We have tested SCPL in two indoor settings. The first
setting is an office environment consisting of cubicles and
narrow aisles, which is partitioned into 37 cells. We used
the 13 transmitters and 9 receivers that were deployed for
some earlier projects. The second setting is an open floor
indoor environment, which is partitioned into 56 cells and
deployed with 12 transmitters and 8 receivers. In the train-
ing phase, we measured the RSS values using a single sub-
ject. In the testing phase, we had four subjects with different
heights, weights and gender, and implemented four different
real life office scenarios. These scenarios all had periods of
time when multiple subjects walked side by side and thus
had overlapping trajectories. We can count the number of
subjects accurately, with a 88% counting percentage when
the subjects were not walking side by side, and a 80% count-
ing percentage when they were.

Our localization results have good accuracies, with a mean
error distance of 1.3 m considering all the scenarios. We

find that it is beneficial to consider indoor human movement
constraints according to the floor map when localizing mov-
ing subjects and demonstrate 24% improvement on average
compared with no floor map information provided.

The rest of the paper is organized as follows. In Section 2,
we discuss the applications that benefit from passive local-
ization, our solution framework, as well as related work. Our
solution consists of two phases, counting the number of sub-
jects (in Section 3) and localizing the subjects (in Section4).
Then we describe our experimental setup in Section 5 and
our detailed results in Section 6. Finally, we provide the con-
cluding remarks and future direction in Section 7.

2. BACKGROUND
Before presenting our SCPL algorithm, we first discuss

potential applications, the formulation of the problem and
related work.

2.1 Applications that Can Benefit from Pas-
sive Localization

Passive localization can find application in many impor-
tant domains. Below we give a few examples:

Elderly/Health Care: People may fall down in their houses
for various reasons, such as tripping, momentary dizzi-
ness or overexertion. Without prompt emergency care,
this could lead to life-threatening scenarios. Using tra-
jectory based localization information, DfP can per-
form fall detection quickly because the monitored sub-
ject will suddenly disappear from the system.

Indoor Traffic Flow Statistics: Understanding patterns of
human indoor movement can be valuable in identifying
hot spots and corridors that help energy management
and commercial site selection.

Home Security: DfP based home security is a major im-
provement over camera-based intrusion detection be-
cause it can not only detect the intrusion, but also track
the intruders, which makes it easier to capture or avoid
the intruders.

2.2 Problem Formulation
To solve the passive multi-subject localization problem,

we adopt a cell-based fingerprinting approach, similar to the
one discussed in [10].

Before we address the multi-subject problem, let us first
look at how we localize a single subject. We first partition
the deployed area intoK cells. In the training phase, we first
measure the ambient RSS values forL links when the room
is empty. Then a single subject appears in each cell, walks
randomly within that cell and takesN RSS measurements
from all L radio links. By subtracting the ambient RSS vec-
tor from the collected data, we have a profiling datasetD.



D, aK ×N × L matrix, quantifies how much a single sub-
ject impacts the radio RSS values from each cell. Having
this profiling datasetD, we model the subject’s presence in
cell i as a stateSi and thusD = {DS1

,DS2
, ...,DSK

}. In
the testing phase, we first measure the ambient RSS values
when the room is empty. Then a subject appears in a random
location, and measure the RSS values for allL links while
making random moves in that particular cell. Then we sub-
tract the ambient RSS vector from this measured data, and
form an RSS vector,O, which shows how much this subject
impacts the radio links from this unknown cell. Based onD
andO, we can run classification algorithms to classify the
cell number of the unknown cell, thus localizing the subject.

Next we discuss how we extend the same framework to
formulate the multi-subject localization problem. In the train-
ing phase, our objective is to stilluse a single subject’s train-
ing datato keep the training overhead low. Taking the train-
ing data for different number of subjects will lead to pro-
hibitive overheads, which we will avoid. In the testing phase,
multiple subjects appear in random cells, sometimes in the
same cell, and we measure the RSS values for all the ra-
dio links. We calculateO in the same way as in the single-
subject case.

To calculate the locations for these subjects, we need to go
through two phases. In the first phase, we identify the num-
ber of subjects that are present simultaneously,C, which we
call thecountingphase. In the second phase, we identify in
which cells are theseC subjects, which we call thelocalizing
phase. Please note that subjects are not stationary, but they
move around within the deployed area.

2.3 Related Work
Several DfP localization schemes have been proposed and

studied in the literature. We, however, point out that SCPL
is the first one that counts device-free subjects using radio
signal strength, to our best knowledge.

In 2006, Woyach et al. [9] first experimentally demon-
strated the feasibility of localizing device-free subjects by
observing a difference in RSS changes by a subject moving
between (resulting signal shadowing effect) and in the vicin-
ity (causing small-scale fading) of a pair of transmitter and
receiver. From then on, several DfP approaches have been
proposed in the literature, which can be broadly categorized
into two groups as follows.

Link-based DfP: These techniques look for those radio links
close to the target subjects and further determine their loca-
tions based on the RSS dynamics. Zhang et al. [12] set up
a sensor grid array on the ceiling to track subjects on the
ground. An “influential” link is one whose RSS variance
exceeds a empirical threshold. The authors determine a sub-
ject’s location based upon the observation that these influen-
tial links tend to cluster around the subject. This technique
form a consistent link-based model to relate the subject’s lo-

cation relative to the radio link locations, which is referred
as tocalibration by link. Following this intuition, radio to-
mographic imaging (RTI) [6] has been proposed to use this
technique to reconstruct the tomographic image for localiz-
ing subjects based on their locations relative to the radio links
Line-of-Sight (LoS). RSS attenuation and variance are used
as data primitives in [6, 8]. Auxiliary particle filtering tech-
nique is leveraged to improve the tracking performance [1].
Calibration by link may suffer from the generalization er-
ror when applied in cluttered indoor environments with rich
multipath. A typical example is that when a subject ran-
domly block the LoS of three different radio links, the RSS
change of those radio links may be negative, or positive, or
even be zero, which depend on the composition of the build-
ing structure and all the inside objects. In addition, a dense
nodes deployment is required to provide enough radio LoS
links to cover all the physical space.

Location-Based DfP:This approach is also known as “fin-
gerprinting,” a popular approach for RF-based localization.
It was first studied in [11] in the context of passive localiza-
tion. The authors first collect a radio map with the subject
present in a few predetermined locations, and then map the
test location to one of these trained locations based upon ob-
served radio signals. This method tames multipath effect bet-
ter than the link-based approaches in cluttered environments
because it measures the RSS ground truth for different po-
sitions without generalized assumption and thus provide ro-
bust accuracies to different indoor settings. In addition,it
does not require a nodes deployment as dense as in calibra-
tion by link because when the subject is in the position has
no intersection with any radio LoS links, the RSS ground
truth still can provide a distinguishable record from other
positions. In [10], the authors propose a cell-based calibra-
tion with random walk method profile the system in order to
improve the accuracy and meanwhile reduce the calibration
overhead. However, the downside of fingerprinting is also
evident: the calibration procedure is tedious, especiallyfor
multi-subject in a large environment.

3. COUNTING THE NUMBER OF SUBJECTS
In this section, we first provide empirical data to help the

readers understand the impact of having multiple subjects
at the same time, and then describe our sequential counting
algorithm.

3.1 Understanding the Impact of Multiple Sub-
jects on RSS Values

Let us first understand the relationship between a single
subject’s impact on the room RSS level and multiple sub-
jects’ impact. In particular, we would like to find whether
the relationship is linear.

As shown in previous studies such as [11, 12, 6, 1, 10], the
RSS level of a radio link changes when a subject is near its
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Figure 1: In terms of overall energy change indicatorγ, (a) “RSS Mean”, for zero, one, and two subjects. (b) “Absolute
RSS Mean” for the same measurement shows better discrimination between zero and more than zero subjects. (c) Two
subjects separated by more than 4 meters are clearly distinguishable from one subject.

Line-of-Sight (LoS). Based on this observation, we make a
simple hypothesis:more subjects will not only affect a larger
number of spatially distributed radio links, but they will also
lead to a higher level of RSS change on these links.If this
is true, we can infer the number of subjects that are present
from the magnitude of the RSS change that we observe in
the deployed area. We use the sum of the individual link RSS
change to capture thetotal energy changein the environment
as

γ =

L
∑

l=1

Ol,

whereOl is the RSS change on linkl.
Next we look at how to capture the RSS change of linkl. A

straightforward metric is to subtract the mean ambient RSS
value for linkl (when the room is empty) from the measured
mean RSS value for linkl, the result of which is referred
to asRSS mean difference. RSS mean difference is a popu-
lar metric that has been used in several studies, e.g., as seen
in [11, 6, 1, 10]. However, upon deliberation, we find that
RSS mean difference is not suitable for our purpose, mainly
because the value is not always positive. Due to the multi-
path effect, the presence of a subject does not always weaken
a link, but sometimes, it may actually strengthen a link! As a
result, the RSS mean difference can be negative. In this case,
summing up each link’s RSS mean difference does not lead
to the correct total energy change in the environment because
their values may cancel out each other. To address this issue,
we thus propose to useabsolute RSS mean differencewhich
has a more compact data space than RSS mean when a cell
is occupied.

Our experimental results confirm that the absolute RSS
mean difference is a more suitable metric. In this set of ex-
periments, we collect the RSS values when there are 0, 1 and
2 subjects who make random movements (with pauses) in
the deployed area. We compute the correspondingγ value
by using both RSS mean difference and absolute RSS mean

difference, and plot their histograms in Figures 1(a)-(b) re-
spectively. In Figure 1(a), when the room is empty, we ob-
serveγ values∈ [−10, 10) which means the overall energy
level is rather stable. However, with 40% to 50% of chances,
we still observeγ ∈ [−10, 10) when subjects are present.
This is because individual RSS mean differences can cancel
out each other, and thus their sum is not a good indicator of
the total energy change caused by having multiple subjects.

Absolute RSS mean difference is a better metric, as shown
in Figure 1(b). Theγ value when there are two subjects is
statistically greater than theγ value when there is only one
subject. As a result, in the rest of this paper, unless explicitly
noted, we use absolute RSS mean difference as the metric to
capture the RSS change in the environment. Finally, we note
that theγ value alone is inadequate to distinguish between
one or two subjects.

By looking at the two-subject data more carefully, we can
further separate them into two groups based on the distance
between the subjects. If the distance is more than 4 meters
(we choose this threshold from the data sets), we call the two
subjectsfaraway, and call the subjectsnearbyif the distance
is less. We then plot the histograms of these groups in Fig-
ure 1(c). When subjects are close to each other, more links
will be affected by both subjects, and fewer links are affected
by only one of the subjects. Consequently, theγ value in this
case will be smaller than theγ value when the two subjects
are farther apart. Furthermore, we point out that theγ value
when we haveC subjects at the same time is smaller than
the sum of the individualγ value from each subject. As a
result, it is hard to distinguish having two subjects close to
each other from having only one subject.

In summary, we have two main observations from these
experiments. First, the absolute RSS mean difference is a
suitable metric to capture the impact caused by the appear-
ance of a subject. Second, the total energy change,γ, reflects
the level of impact subjects have in the room, but we cannot
rely on the value ofγ alone to infer how many subjects are



present.

3.2 Counting Subjects Using Successive Can-
celation

We use successive cancelation to count the number of sub-
jects. When multiple subjects coexist, it often so happens
that one subject has a stronger influence on the radio sig-
nal than the rest. Thus, our counting algorithm goes through
several rounds. In each round, we estimate the strongest sub-
ject’s cell number in this round assuming there is only a sin-
gle subject,i, and then subtract her RSS contribution to the
RSS change from the current RSS vectorO to obtain the re-
maining RSS vector that will be used in the next round.

If this problem were linear, we could simply subtract the
mean vectorµi associated with celli in the profiling dataD
from the observed RSS vectorO. However, as shown in the
previous subsection, the total impact from multiple subjects
is not linear to the number of subjects – the impact observed
whenC subjects appear at the same time is smaller than the
sum of each subject’s impact if they appear one at at time.
To be more precise,O is an underestimation of the linear
combination of the mean values of the associated cells that
we collected inD. To address this issue, instead of subtract-
ing µi directly fromO, we multiply a coefficient that is less
than 1 toµi and subtract this normalized term fromO. This
coefficient, however, is not uniform across all the cell and
link combinations; instead, it is specific to each cell and link
pair because different cells have different impacts on a link.
We will then calculate the location-link coefficient matrix,
B = (βi,l) whereβi,l is the coefficient for celli and linkl.

Our algorithm to calculate the coefficient matrixB is de-
tailed in Algorithm 1. The basic idea is that, for each link
l, we compute the correlation between a cell pair,(i, j) with
respect to linkl. The two cells that both are close to a link
are highly correlated with respect to this link. We usehl

ij

to denote this correlation1. Note that all the RSS values in
profiling data are non-negative, and thus we havehl

ij ≥ 0.
For each celli, we pivot that cell and compute theβil as

βil =
hl
ii

√

K
∑

j=1

hl
ij

2

.

Basically, when two subjects occupy cellsi and j respec-
tively, and only one of them affects linkl, they have low cor-
relation and the value ofhl

ij is close to0. On the other hand,
when they both affect linkl, the value ofhl

ij will reflect their
positive correlation.

Once we determine the location-link coefficient matrixB,
we describe our successive cancelation based counting algo-

1Notice that we use correlationhl
ij instead of correlation coefficient

ρlij becauseρlii will always be1 and thus guarantee its dominance
among the all the cells on all the links when the celli is detected
first, which is not true.

Algorithm 1: Location-Link Correlation Algorithm
input : D- The training data collected fromL links amongK

states/cells
output: B - The location-link coefficient matrix

1 for l = 1→ L do
2 h← zero matrix ofK ×K
3 for i = 1→ K do
4 for j = 1→ K do
5 I ← training data indices associated with stateSi

6 J ← training data indices associated with stateSj

7 // Compute the link correlation
8 hij ← E [DIlDJl]

9 for i = 1→ K do

10 normfactor ←

√

K
∑

j=1

hij
2

11 // Compute the location-link coefficient for celli and linkl

12 βil ←
hii

normfactor

rithm (shown in Algorithm 2), which can identify the subject
countC from the observation RSS vectorO using the pro-
filing RSS matrixD collected by a single subject. We first
computeγ0’s andγ1’s from the ambient RSS vector and the
profiling RSS matrixD respectively. Then, we construct a
95% confidence interval for the distribution ofγ0’s andγ1’s
and refer to the associated lower and upper bounds asc0L,
c0U , c1L, c1U . From the observation RSS vector,O, we first
compute itsγ value and then perform a presence detection:
if γ ∈

(

c0L, c
0
U

)

, we claim the room is empty. Otherwise,
we will claim there is at least one subject present and start
to iteratively count the number of subjects using successive
cancelation to finally determine the value ofC.

In each successive cancelation iteration, we do the follow-
ing:

• Presence Detection.We first perform a presence detec-
tion by checking ifγ ≥ c1U to find out whether there is
any more subject in the room. Please note that this con-
dition is stronger thanγ ≥ c0U , and we will take care
of the last iteration separately. If the presence detec-
tion returns a ‘yes’, we increment the detected subject
countC, and go to the next step. Otherwise, we end
the algorithm.

• Cell Identification.If there is a subject in this iteration,
we estimate the occupied cellq by

q = argmax
i∈S

P (O|Si),

whereS is the set of remaining unoccupied cells.

• Contribution Subtraction.Next, we cancel the impact
of this subject from cellq by subtractingµql · βql from
Ol for each linkl.

In the last round, we relax the lower bound ofγ1 by taking
the average ofc0U andc1L, which means we consider the pos-
sibility that when the last subject is detected in our algorithm,



the correspondingγ is lower than thec1L but still higher than
c0U . This further compensates for the over-subtraction in our
earlier iterations.

Algorithm 2: Successive Cancelation-Based Device-free
Passive Counting Algorithm

input : D- The training data collected fromL links amongK cells
S- The states{S1, ..., SK} associated with theK cells
O- The testing data collected fromL links when subjects are in

unknown locations
B - The estimated location-link coefficient matrix generated

from Algorithm 1
c0L, c0U - The lower and upper bounds of the 95% confidence

interval when there is no subjects in the deployed area
c1L, c1U - The lower and upper bounds of the 95% confidence

interval when there is one subject in the deployed area
output: C- The estimated number of subjects present in the deployed

area

1 C ← 0

2 γ ←
L
∑

l=1

Ol

3 // Presence detection
4 if γ ∈ (c0L, c

0
U ) then

5 return C;

6 else ifγ ≤ c0L then
7 return −1;

8 // Count the present subjects
9 else

10 while truedo
11 if γ ≥ c1U then
12 // Estimate the most likely occupied cell
13 q ← argmaxi∈S P (O|Si)
14 // Remove the training data associated with the

estimated cell in each round
15 D ← D\Dq

16 S ← S\q
17 // Update the testing data by removing the partial impact

caused by the detected subject in each round
18 for l = 1→ L do
19 Ol ← Ol − βqlµql

20 C ← C + 1
21 // Update the overall affect energy indicator

22 γ ←
L
∑

l=1

Ol

23 else ifγ ∈ (
c0
U
+c1

L

2
, c1U ) then

24 C ← C + 1
25 return C;

26 else
27 return −1;

4. LOCALIZING MULTIPLE MOVING SUB-
JECTS WHEN THE SUBJECT COUNT IS
KNOWN

In this section, we discuss how we localize multiple mov-
ing subjects when the subject count is known. In SCPL,
we track multiple subjects in parallel, unlike in the count-
ing phase where we count the number of subjects sequen-
tially. Radio interference is very complex and unpredictable,

especially when multiple subjects are present and a link is
affected by multiple people. In this case, it is hard to quan-
tify the exact impact of a subject. Even after considering the
cell link coefficient matrixB, we may still overestimate (or,
underestimate) a subject’s impact on a link. These errors,
while insignificant enough not to hurt the counting process,
will lead to inferior localization results. On the other hand,
parallel tracking keeps all the raw RSS values and can pro-
vide better results.

4.1 Understanding the Challenge of Localiz-
ing Multiple Subjects

Before presenting our localization algorithm, we first take
a closer look at how multiple subjects collectively affect the
RSS values and thus complicate the localization problem
through empirical data. The complexity of this problem mainly
stems from the multi-path effect [4], a typical error source
in RF-based indoor localization. In this problem, multi-path
can cause nonlinear interference in a radio space when multi-
ple subjects are present. More precisely, when multiple sub-
jects coexist in different locations, the resulting RSS value
will not be simply the summation of the individual RSS val-
ues from a single subject independently in those locations.
The gap between these two is larger when these subjects are
close to each other. To validate this conjecture, we randomly
select a few positions with certain distances apart. We first
have one subject, A, collect the RSS measurements by stand-
ing stationary in these locations. Then, we involve another
subject, B with similar height and weight as A, and have
them stand in two different positions, sayi andj. We useOi

andOj to denote the measured RSS vector when A is stand-
ing in positionsi andj independently, andOij the measured
RSS vector when A and B are standing in positionsi andj si-
multaneously. In a linear space, vectorOij would be simply
the summation ofOi andOj . However, as mentioned be-
fore, this problem is nonlinear, especially when subjects are
close to each other. To quantify the degree of nonlinearity,
we define theRSS Error Residualas

∆Ol = Ol
ij −Ol

i −Ol
j ,

for link l. A larger∆Ol value indicates a higher non-linear
degree. To articulate the nonlinearity nature, we remove link
l if its Ol

ij , O
l
i, O

l
j values are all less than 1 because these

links are actually not affected by the subjects in any case. We
plot the histograms of the remainingOl values in Figure 2.

From Figure 2, we have three main observations. Firstly,
when the two subjects stand side by side (i.e., the distance
between them is 0m), there are only about 30% and 50%
chances that we see|∆Ol| < 2 for RSS mean and absolute
RSS mean respectively, which validates our problem is in-
deed nonlinear. As the distance becomes higher than 2m,
the probability of having|∆Ol| < 2 rises to more than 70%
for both RSS mean difference and absolute RSS mean differ-
ence. Secondly, the error residual can be negative under RSS
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Figure 2: The RSS residual error forms a double-sided distribution when us-
ing RSS mean, while it is approximately single-sided distributed using abso-
lute RSS mean.
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mean difference, but is positive under absolute RSS mean
difference in most cases, suggestingOij is consistently an
underestimation ofOi + Oj . This property is desirable be-
cause it ensures monotoneity.

Finally, we define thetotal RSS Error Residualas:

ε =

L
∑

l=1

|∆Ol|,

which measures the deviation between the profiling data and
the RSS measurement in a multi-subject problem. We plot
the histogram in Figure 3 and observe that the absolute RSS
mean has a smallerε value, and thus more appropriate for
our purposes.

4.2 Conditional Random Field Formulation
Tracking moving subjects actually introduces new opti-

mization opportunities - we can improve our localization re-
sults by considering the fact that human locations from ad-
jacent time intervals should form a continuous trajectory,
which can be further modeled as a state transition process
under conditional random field (CRF) [3]. CRFs are a type
of discriminative undirected probabilistic graphical model.
We use them to decode the sequential RSS observations into
continuous mobility trajectories.

The first step towards formulating a conditional random
field is to form the sensor model and transition model respec-
tively. In our problem, we haveK states:S = {S1, S2, ..., SK}.
In a single-subject problem, stateSi means the subject is lo-
cated in celli. The sensor model essentially infers the cur-
rent state based on the observation RSS vectorO. We would
like to maximize the likelihoodP (q = Si|O,D) when cell
i is occupied. In other words, when the subject is located
in cell i in the testing phase, we would like to maximize the
probability that the estimated state/cellq matches the actu-
ally occupied celli. We assume the observed RSS vectors in
each state follow a multivariate Gaussian with shared covari-

ance, as in [10], and denote

δi (O) = P (O|Si) ,

where

P (O|Si) ∼ N (µi,Σ) .

However, the sensor model is imperfect because of the deep
fading effect that can cause estimation error through only a
few links2. Therefore, the cell associated with the maximum
probability might be far from the ground truth.

Next, we look at the transition model. In each clock tick
t = 1, 2, ..., T , the system makes a transition to stateqt.
This process models the movement of a subject – the sub-
ject moves to a new cell in each tick. We choose a first order
CRF, which means the next cell number depends on the cur-
rent cell number, rather than any earlier history because we
do not want to assume any specific human movement trajec-
tories. In our model, subjects can either walk along a straight
line, take turns or wander back and forth.

The subject’s trajectory can thus be characterized as a para-
metric Markov random process with thetransition modelde-
fined as the probability of a transition from statei at timet−1
to statej at timet in form of

T = P (qt|qt−1),

where

Tij = P (qt = Sj |qt−1 = Si).

The intuition here is that people cannot walk through walls
or cross rooms in a single tick. We believe these mobility
constraints can be used to fix most of the errors in the sensor
model caused by deep fades.

In our cell-based approach, we define the following:

Cell neighborsare a list of adjacent cells which can be en-
tered from the current cell without violating mobility con-
straints.
2Because of deep fading from multipath, adjacent points can have
dramatically different RSS values, leading to large estimation er-
rors.



Order of neighbor is defined as the number of cells a person
must pass through to reach a specific cell from the current
cell without violating mobility constraints. We assume the
subject moves to a new cell every clock tick. For example,
as far as celli is concerned, the 1-order neighbors include
its immediate adjacent cells, and its 2-order neighbors in-
clude the immediate adjacent cells of its 1-order neighbors
(excludingi andi’s first order neighbors).

Cell ring with radiusr is defined as the area consisting of
i’s 1-order neighbors, 2-order neighbors, ..., up to itsr-order
neighbors.

Let Ωr (i) be the cells included ini’s r-ring and letNr (i)
be the size ofΩr (i). Our transition model thus becomes:

Tij =

{ 1
Nr(i)

for j ∈ Ωr (i)

0 for j /∈ Ωr (i)

4.3 Localization Algorithm
Having constructed the sensor model and transition model,

we can translate the problem of subject tracking to the prob-
lem of finding the most likely sequence of state transitions
in a continuous time stream. TheViterbi algorithm [2] de-
finesVj(t), the highest probability of a single path of length
t which accounts for the firstt observations and ends in state
Sj :

Vj(t) = argmax
q1,q2,...,qt−1

P (q1q2...qt = j, O1O2...Ot|T, δ).

By induction

Vj(1) = δj(O1),

Vj(t+ 1) = argmax
i

Vi(t)Tijδj(Ot+1).

Generalizing to the multi-subject case, we denoteδ1:K(O) =
{δ1(O), δ2(O), ..., δK(O)} from the sensor model to repre-
sent the likelihood of each state. We denoteQ = {q1, ..., qC},
whereC is the total number of present subjects. For the cur-
rent stateQt, we have

(

K
C

)

possible permutations of sub-
ject locations. For each permutationj, we denoteQj =
{q1, ..., qC} and compute the Viterbi score

Fj =

C
∑

i=1

δqi
t
(Ot)Tqi

t−1
qi
t
.

We then pick thej value that is associated with the maximum
Viterbi score as the current state.

We describe our device-free multi-subject localization al-
gorithm in Algorithm 3. We believe we can achieve best
localization results when we consider 1-order ring or 2-order
ring, which is also confirmed by our experimental results
presented in Section 6.

5. EXPERIMENTAL SETUP
In this section, we briefly describe the experimental setup,

the data collection process and the metric we use for perfor-
mance evaluation.

Algorithm 3: Trajectory-Based Device-free Multi-
subject Localization Algorithm

input : D- The training data collected fromL links amongK cells
O1:t- The testing data collected fromL links when subjects

are in unknown locations
C- The estimated number of present subjects in the deployed

area
Q1- The initial state(s) of the present subjects

output: Q1:t- The most like sequence of the trajectories of the present
subjects

1 for i = 2→ t do
2 δ1:K(Oi)← P (Oi|S1:K)

3 Π← is the set of all the possible permutations of
(

K
C

)

4 Qi ← argmaxj∈Π ViterbiScore(Qi−1, Qj , δ1:K(Oi), T )

5.1 Experimental Setup and Data Collection
The radio devices used in our experiments contain a Chip-

con CC1100 radio transceiver and a 16-bit Silicon Labora-
tories C8051-F321 microprocessor powered by a 20 mm di-
ameter lithium coin cell battery, the CR2032. The receivers
have a USB connector for loss-free data collection but are
otherwise identical to the transmitters. In our experiments,
the radio operates in the unlicensed bands at 909.1 MHz.
Transmitters use MSK modulation, a 250kbps data rate, and
a programmed output power of 0dBm. Each transmitter pe-
riodically broadcasts a 10-byte packet (8 bytes of sync and
preamble and 2 bytes of payload consisting of transmitter’s
id and sequence number) every 100 millisecond. When the
receiver receives a packet, it measures the RSS values and
wraps the transmitter id, receiver id, RSS, timestamp (on the
receiver side) into a “data packet”. This packet is sent to the
centralized system over direct USB connection or through
network hubs for data collection and analysis. In our exper-
iments, the RSS data is collected as a mean value over a 1
second window for each link. We choose a 1 second window
because a normal person can at most walk cross one cell dur-
ing a second. For each cell, we collect 30 RSS vectors as the
profiling data.

5.2 Performance Metrics
We use the following performance metrics to measure our

counting and localizing algorithms.

Counting Percentageis given by:

1−
|Ĉ − C|

C
,

whereĈ is the estimated subject count andC is the actual
subject count.

Error Distance is defined similar to the metric in [5]:

d(Q, Q̂) =
1

C
min
π∈Π

C
∑

i=1

d(qi, q̂π(i)),

whereΠ includes all the possible permutations of{1, 2, ..., C},
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Figure 4: In (a), we show the office in which we deployed our system. In (b), we show that the office deployment region is
partitioned into 37 cubicle-sized cells of interest. In (c), we show the locations of the pre-installed 13 radio transmitters,
9 radio receivers and the corresponding Line-of-Sight links.

d(q, q̂) is the Euclidean distance between the ground truth
q and the estimated position̂q. Q = {q1, q2, ..., qC} and
Q̂ = {q̂1, q̂2, ..., q̂C} are within the pre-profiled finite states
S = {S1, S2, ..., SK}.

6. EXPERIMENTAL RESULTS
In this section, we summarize the results we have obtained

from two indoor settings. In each setting, we had multiple
subjects each walking along a trajectory.

6.1 Counting and Tracking in an Office Set-
ting

Our first setting is a typical office environment, consist-
ing of cubicles and aisles with a total area of 150m2. The
environment is quite cluttered as shown in Figure 4(a). The
area is broken down to 37 cells such as cubicles and aisle
segments, as shown in Figure 4(b). We utilized 13 radio
transmitters and 9 radio receivers, whose locations and cor-
responding link LoS’s are shown in Figure 4(c). Here, we
need to point out that these devices were installed for some
earlier projects, not specifically for this one, and therefore,
the link density per cell is non-uniform. This, however, rep-
resents a more realistic setting, through which we can show
that SCPL can achieve good results without dedicated sensor
deployment.

We had four subjects (A, B, C and D) in this series of ex-
periments. We went through several example scenarios and
illustrate them in Figure 5:

• One Subject Scenario:A left her boss’s office, and
walked along the aisle to her cubicle.

• Two Subject Scenario:When B entered the room, A
was walking on the aisle towards him. B waited until
they met and walked together for some time, and then
separated to go back to their own seats.

D

C

B

A

Figure 5: We show the experimental trajectories of sub-
jects A, B, C and D in the office setting. Note the segments
of the paths where overlap can occur if the subjects are
present at the same time.

• Three Subject Scenario:While A and B followed the
movement patterns in the above two subject scenario,
C walked on the other aisle from one cubicle to another.

• Four Subject Scenario:While A, B, and C followed the
movement patterns in the above three subject scenario,
D was sitting on her seat.

6.1.1 Counting Results

The difficulty of subject counting increases when multiple
subjects walk together (in the same cell). Thus, we present
our counting results in the following three ways: (a) all the
experimental data (referred to asmixed), (b) the experimen-
tal data for when multiple subjects walked together and thus
had overlapping trajectories (referred to asoverlap trajec-
tory), and (c) the experimental data for when multiple sub-
ject trajectories did not overlap (referred to asnon-overlap
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trajectory). Figure 6 shows the counting percentages in all
three cases.

We observe that when we have multiple subjects, the count-
ing percentage is higher in the non-overlap trajectory case.
The average counting percentage across all cases is 84%, the
average counting percentage for non-overlap cases is 89%,
and the average counting percentage for overlap cases is 80%.

Next, we show how the average counting percentage changes
as movement patterns change in time. Our four-subject ex-
periment last 32 seconds, and Figure 7 shows the overall av-
erage counting percentage (in the mixed case) in the first 1,
2, 4, 8, 16, 24, and 32 seconds. We find that the average
counting percentage is very good (until the first 16 seconds),
and then drops in the second half of the experiments. This
is because two subjects started to merge their trajectoriesa
little while ago. From Figure 7, we note that in an experi-
ment, unless the subjects are always together, we can count
the number of subjects accurately during the times when they
are apart. The errors caused by temporarily clustered sub-
jects can also be easily addressed. We should run the count-
ing algorithm every second. When we notice the number
of subjects suddenly drops, we check their locations before
the sudden drop. If no subject’s location was close to the
exit, then we can conclude that two or more (depending upon
the change in the count) joined each other and started walk-
ing together. Of course, this information should be validated
from the subject location information.

6.1.2 Localization Results

We show the mean of localization error distances in Fig-
ure 8 with different ring order parameters. In our setting, we
choose 10 as the upper bound of the ring order because all
cells are within 10 hops of each other.

Our first observation is that the use of the trajectory infor-
mation can improve the localization performance by 13.6%
– the overall mean localization error distance drops from
1.25m (with 0-order ring) to about1.08m (with 1-order ring).
We note that the error distance for a single subject does not
benefit from using trajectory information because the pro-
filing data is good enough for this case [11, 10]. Multiple

subjects, especially when they are close to each other, will
cause non-linear radio interference, and thus the data col-
lected from the mutually affected links alone cannot give
very accurate localization results. Therefore, the sensormodel
alone is insufficient for high accuracies. Secondly, we ob-
serve that the localization results are less accurate in those
cells with lower radio link densities, such as in cell 34-37,
because subjects may cause negligible changes to the RSS
space at a few points in those cells. Thirdly, trajectory infor-
mation help prevent the error distance increases dramatically
as the increasing number of subjects. Finally, our environ-
ment is an office space consisting of cubicles and aisles, and
the possible paths a subject can take are rather limited. As a
result, we achieve the best localization accuracies with ring
order of 1, 2 or 3. Due to the movement constraints, a higher
ring order has the same result as not considering any neigh-
bors at all (i.e., 0 ring order). We hypothesize that this may
not be true in a more open indoor environment such as (large)
homes, malls and museums.

6.2 Counting and Tracking In Open Floor Space
The second test setting is a more open floor of total 400

m2, as shown in Figure 9(a). We used this setting to model
an open hall with a few posters on exhibition, and SCPL
can be used to detect traffic flow and infer the most popu-
lar poster. The space was partitioned into a uniform grid of
56 cells, as shown in Figure 9(b). We deployed 12 transmit-
ters and 8 receivers in such a way that the link density has
a relatively even distribution across the cells, as shown in
Figure 9(c). We would like to point out that we used fewer
devices in this setting than in the previous one, though this
one had a larger area.

We involved four different subjects in this test and their
trajectories are shown in Figure 10. We repeated the same
four scenarios as in the previous setting. We plot our count-
ing results in Figure 11. We achieve a 100% counting per-
centage when there was only a single subject, which is better
than the previous setting because the link density is more
even in this case. We achieve a counting percentage of 83%,
81%, and 82% for two, three and four subjects respectively,
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Figure 9: In (a), we show the open floor space used for poster exhibition in which we deployed our system. In (b), we
show that the deployment region is partitioned into a uniform grid of 56 cells. In (c), we show the locations of the 12
radio transmitters, 8 radio receivers and the corresponding Line-of-Sight links.
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Figure 10: We show the experimental
trajectories of subjects A, B, C and D
in the open floor space.
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resulting in a 87% counting percentage in total.
We present the localization results in Figure 12. In the lo-

calization part, we observe similar patterns as in the previous
setting: we achieve better localization accuracy using trajec-
tory information. We achieve the best localization accuracy
when we adopt the 2-order ring, which is 1.49m, a 35%
improved compared to the 0-ring case.

7. CONCLUSION
In this paper, we present SCPL, an accurate counting and

localization system for device-free subjects. We demonstrate
the feasibility of using the profiling data collected with only
a single subject present to count and localize multiple sub-
jects in the same environment with no extra hardware or data
collection. Through extensive experimental results, we show
that SCPL works well in two different typical indoor envi-
ronments of 150m2 (office cubicles) and 400m2 (open floor
plan) deployed using an infrastructure of only 20 to 22 de-
vices. In both spaces, we can achieve about an 86% average
counting percentage and 1.3 m average localization error dis-
tance for up to 4 subjects. Finally, we shows that though a

complex environment like the office cubicles is expected to
have worse radio propagation, we can leverage the increased
mobility constraints that go with a complex environment to
maintain or even improve accuracy in these situations.

Finally, we point out that if we rely on a single subject’s
training data, the number of subjects that can be accurately
counted and localized is rather limited. We had success with
up to 4 subjects, but were not very successful with more sub-
jects. In our future work, we will look at how we can accu-
rately localize a larger number of subjects with reasonable
overheads.

8. REFERENCES
[1] X. Chen, A. Edelstein, Y. Li, M. Coates, M. Rabbat,

and A. Men. Sequential monte carlo for simultaneous
passive device-free tracking and sensor localization
using received signal strength measurements. In
Proceedings of the 10th international conference on
Information Processing in Sensor Networks (IPSN),
pages 342 –353, April 2011.

[2] J. Forney, G.D. The viterbi algorithm.Proceedings of
the IEEE, 61(3):268 – 278, march 1973.



[3] J. D. Lafferty, A. McCallum, and F. C. N. Pereira.
Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In
Proceedings of the Eighteenth International
Conference on Machine Learning, ICML ’01, pages
282–289, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc.

[4] T. Rappaport.Wireless Communications: Principles
and Practice. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 2nd edition, 2001.

[5] D. Schuhmacher, B.-T. Vo, and B.-N. Vo. A consistent
metric for performance evaluation of multi-object
filters. IEEE Transactions on Signal Processing,
56(8):3447 –3457, aug. 2008.

[6] J. Wilson and N. Patwari. Radio tomographic imaging
with wireless networks.IEEE Transactions on Mobile
Computing, 9(5):621–632, May 2010.

[7] J. Wilson and N. Patwari. A fade level skew-laplace
signal strength model for device-free localization with
wireless networks.IEEE Transactions on Mobile
Computing, PP(99):1, 2011.

[8] J. Wilson and N. Patwari. See-through walls: Motion
tracking using variance-based radio tomography
networks.IEEE Transactions on Mobile Computing,
10(5):612 –621, may 2011.

[9] K. Woyach, D. Puccinelli, and M. Haenggi. Sensorless
sensing in wireless networks: Implementation and

measurements. In4th International Symposium on
Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks, 2006, pages 1 – 8, 2006.

[10] C. Xu, B. Firner, Y. Zhang, R. Howard, J. Li, and
X. Lin. Improving rf-based device-free passive
localization in cluttered indoor environments through
probabilistic classification methods. InProceedings of
the 11th international conference on Information
Processing in Sensor Networks, IPSN ’12, pages
209–220, New York, NY, USA, 2012. ACM.

[11] M. Youssef, M. Mah, and A. Agrawala. Challenges:
device-free passive localization for wireless
environments. InProceedings of the 13th annual ACM
international conference on Mobile computing and
networking, MobiCom ’07, pages 222–229, New York,
NY, USA, 2007. ACM.

[12] D. Zhang, J. Ma, Q. Chen, and L. M. Ni. An rf-based
system for tracking transceiver-free objects. InFifth
Annual IEEE International Conference on Pervasive
Computing and Communications, 2007. PerCom ’07.,
pages 135 –144, march 2007.

[13] D. Zhang and L. M. Ni. Dynamic clustering for
tracking multiple transceiver-free objects. In
Proceedings of the 2009 IEEE International
Conference on Pervasive Computing and
Communications, pages 1–8, Washington, DC, USA,
2009. IEEE Computer Society.


	Introduction
	Background
	Applications that Can Benefit from Passive Localization
	Problem Formulation
	Related Work

	Counting the Number of Subjects
	Understanding the Impact of Multiple Subjects on RSS Values
	Counting Subjects Using Successive Cancelation

	Localizing Multiple Moving Subjects When the Subject Count is Known
	Understanding the Challenge of Localizing Multiple Subjects
	Conditional Random Field Formulation
	Localization Algorithm

	Experimental Setup
	Experimental Setup and Data Collection
	Performance Metrics

	Experimental Results
	Counting and Tracking in an Office Setting
	Counting Results
	Localization Results

	Counting and Tracking In Open Floor Space

	Conclusion
	References

