Postdoctoral Researcher Opening for EE, Physics, Optics, MSE PhDs

A postdoctoral fellow/research associate position is available in Prof. Jiang's group in Electrical and Computer Engineering Department of Rutgers University. The postdoctoral fellow/research associate will be involved in an exciting project in the area of silicon photonics. Any researcher with a doctoral degree in EE, physics/optics, materials science, or related areas is welcome to apply. More info about Jiang’s group can be found at http://www.ece.rutgers.edu/~wjiangnj/

Qualifications:
1. Majors: EE, Physics, Optics, MSE or equivalent.
2. Experience in micro/nano-device fabrication (in cleanroom) and characterization is required.
3. Research experience in the following areas is preferred (but not required): silicon photonics, photonic crystal devices, modulators, waveguides, optical sensors, lasers, nano-devices, etc.

How to Apply:
Interested applicants are welcome to send their resumes via email to Prof. Wei Jiang, wjiangnj@rci.rutgers.edu. A one-paragraph short summary of matching qualifications listed above is desired. Please list all of your publications and one or two references in your resume.

About Rutgers:
Rutgers is the flagship public institution of the state of New Jersey. Its main campus spreads over New Brunswick and Piscataway. Rutgers Micro-Electronics Research Laboratory (http://www.merl.rutgers.edu/) in the ECE department was founded with the support of Bell Labs and furnished with a wide range of facilities to conduct related research. Jiang group also has access to nearby cleanrooms in Brookhaven National Laboratory and at Princeton University. Piscataway is within one-hour drive from New York City.

About Jiang Group:
Our group employs unique approaches to study novel photonic devices. In many cases, we start from fundamental physics analysis, explore innovative engineering design and fabrication methods, and target at improving the structures and functions of certain photonic devices beyond the conventional approaches/architectures. Our past works leveraged knowledge and innovation of fundamental solid state physics, semiconductor carrier transport process, VLSI fabrication, group theory, signal processing, topology, differential geometry, …, and led to unique device designs and demonstrations, and deeper understanding of some fundamental problems in solid state physics.