Instructor: Prof. Wei Jiang
Time & Place: T.Th 6:40pm-8:00pm; EE 240
Office Hours: T.Th 4-5pm (or by appointment), EE 215
Email: wjiangnj@rci.rutgers.edu
Phone: (732) 445-2164

Course Catalog Description: 14:332:466 Optoelectronic Devices (3)
Pre-Requisite Courses: 14:332:361 Electronic Devices, 14:332:382 Electromagnetic Fields;
(please contact the instructor if you are not sure).

Course Description: Waveguides and optical fibers, optical resonators, principles of laser
action, light emitting diodes, semiconductor lasers, other lasers, optical amplifiers, optical
modulators and switches, photodetectors, wavelength-division-multiplexing (brief), solar cell
(brief), and other optical devices. A mini-lab session is designed to offer hands-on experience.

Homework: Homework and exams will be based on class notes, which will be available in pdf
version on the class web site. Note: this course is collocated with 16:332:591. However,
homework and exam problems will be different for undergraduate and graduate sections of this
course.

Textbook & Materials:
- All teaching materials will be covered in lectures notes and will be posted on the course
 website at http://sakai.rutgers.edu

References:
- S. O. Kasap, Optoelectronics and photonics: principles and practices, Prentice-Hall,
- Pallab Bhattacharya, Semiconductor Optoelectronic Devices, Prentice Hall; 2nd edition

Overall Educational Objective: To introduce the students to basics of optoelectronic devices,
which are appearing everywhere in our daily life, including lasers, LEDs, optical fibers and fiber-
optic communication devices, LCDs, photodetectors (including CCD image sensors), and solar
cells. The emphasis is placed on the basic device structures, operating principles, and real-
world application (Blu-ray discs, Fiber-To-The-Home, LED lighting, etc.). One mini-lab will be
included for undergraduates to gain hands-on experiences.

Week-by-Week Syllabus
Week 1: Introduction and Applications of Optoelectronics
Week 2: Basics of EM waves
Week 3: Waveguides, optical fibers and their applications: Fiber-to-the-home (FTTH)
Week 4: Basics of quantum mechanics; semiconductor physics and materials
Week 5: Fundamentals of optical transitions. Optical Amplifiers
Week 6: Optical Resonators & Lasers: Threshold conditions
Week 7: LED designs and applications: lighting and display. Other display: LCD, etc. (brief)
Week 8: Semiconductor lasers: fundamental device structures and characteristics
Week 9: Various types of lasers;
Week 10: Applications of Lasers: Blu-ray discs & medicine, etc., Mini-lab: laser measurements;
Week 11: Modulators: Internal modulation; external modulators (Mach-Zehnder etc)
Week 12: Electroabsorption modulators; optical switches;
Week 13: Photo-detectors: basic physics, noise; Various types; CCD cameras.
Week 14: Other devices (e.g. Wavelength-division-multiplexing)
Week 15: Solar cell; Review for final exam

Computer Usage: Simulations using MATLAB.
Laboratory Experiences: There is a laboratory session.