
A Closed-loop Fuzzy Traffic Controller
for Fair Bandwidth Sharing

Dario Pompili∗ and Francesco Delli Priscoli†
∗Department of Electrical and Computer Engineering

Rutgers, The State University of New Jersey, Piscataway, NJ 08854
†Department of System Engineering

University of Rome “La Sapienza,” 00184 Rome, Italy
e-mail: ∗pompili@ece.rutgers.edu, †dellipriscoli@dis.uniroma1.it

Abstract— This paper introduces an innovative closed-loop traf-
fic controller to efficiently and fairly share a single common
resource, e.g., the available bit rate in a wireless link, among a set
of traffic flows characterized by different Quality of Service (QoS)
requirements. The proposed traffic controller relies on a control-
based approach that exploits a closed-loop feedback architecture
including Proportional-Integral-Derivative (PID) controllers that
are dynamically tuned using fuzzy logic. The traffic controller is
able to react to different scenarios and traffic load conditions,
while targeting the twofold objective of maximizing the resource
utilization and respecting the flow QoS requirements. Simulation
results demonstrate that the proposed closed-loop traffic controller
outperforms a well-known open-loop traffic controller (based on
Dual Leaky Buckets (DLBs) and Earliest Deadline First (EDF)
scheduling algorithm).

Index Terms— Control Theory, PID Controller, IP Traffic, Fuzzy
Logic, Quality of Service.

I. INTRODUCTION

ONE of the main challenges of the out coming telecommu-
nication networks is the provision of Quality of Service

(QoS) guarantees to IP flows, which, most of times, are still
served according to a best-effort paradigm that does not assure
any QoS guarantee. The respect of pre-defined QoS guarantees,
already a challenging goal in wired networks, is even more
challenging in wireless networks where this goal has to be
achieved in conjunction with a high utilization of the valuable
available bandwidth. As a result, in wireless networks, traffic
control strategies play a key role to assure QoS guarantees and,
at the same time, to efficiently exploit the available bandwidth.

This paper proposes an innovative closed-loop traffic con-
troller that assures a high utilization of the wireless available
bandwidth while allowing the respect of the traffic QoS guar-
antees. The proposed controller has been developed and tested
for a transparent satellite platform, i.e., no routing functionali-
ties are performed on the satellite. Nevertheless, the proposed
solution can be profitably used in new generation IP-based
satellite platforms [1] and, more in general, in bandwidth-
limited wireless networks where fairness among admitted traffic
flows and the respect of their QoS requirements are paramount.
Figure 1 shows the satellite reference scenario considered in
this paper, where various traffic flows coming from the IP
backbone network reach an Hub Station (HS), which is in
charge of forwarding them towards the satellite through the

Fig. 1. Satellite reference scenario

wireless channel. The goal is to efficiently and fairly share a
single common resource, i.e., the uplink bandwidth, which is
pre-assigned to the considered HS, among the various incoming
IP flows, while meeting their QoS requirements.

The proposed approach relies on the presence of a control-
based closed-loop traffic controller, which continuously com-
putes a parameter providing an updated measurement of the
overall efficiency experienced at the HS, as well as of the
efficiencies experienced by each IP flow, i.e., the satisfaction
of the flow need for bandwidth. Then, appropriate closed-loop
control actions steer the single IP flow efficiencies to track the
overall efficiency experienced at the HS. This approach assures
both flow fairness1 and high bandwidth utilization, as will be
shown in the paper. The application of a well-established control
strategy using Proportional-Integral-Derivative (PID) controllers
in conjunction with an innovative fuzzy tuning approach, rather
than adopting complex and sometimes cumbersome optimiza-
tion techniques such as adaptive learning, neural networks,
and nonlinear control, is shown through extensive simulation
experiments to lead to very satisfying results for the network
management problem investigated in this paper. It is worth
noting that, unlike simpler controllers, PID controllers give
accurate and stable control by adjusting process outputs based

1Flow fairness measures how equally different traffic flows, which are
characterized by the same QoS requirements, share a common network resource.



2

on the history and rate of change of the error signal, i.e., the
difference between system and flow efficiencies. Moreover, in
contrast to more complex algorithms such as optimal control
theory, PID controllers can be adjusted on-line, without ad-
vanced mathematics. To the best of our knowledge, this is the
first paper to apply a classical closed-loop control technique
enhanced by fuzzy logic to efficiently and fairly share the
available bandwidth in a wireless channel.

The remainder of the paper is organized as follows. Section
II presents the traffic controller architecture and details its main
components. Section III focuses on the closed-loop control
algorithm, while Section IV shows the performance results.
Finally, Section V drives the main conclusions.

II. CLOSED-LOOP TRAFFIC CONTROLLER ARCHITECTURE

The goal of the proposed traffic controller is to efficiently and
fairly share the available uplink bandwidth so as to serve all the
accepted IP flows while respecting their QoS requirements. As
far as the QoS requirements are concerned, the most widely
used approach in the literature is to identify a set of QoS
classes [2] and map the IP flows to these classes according
to their specific QoS requirements. Specifically, each IP flow
is associated with a QoS class by setting a proper field in
the header of all its packets. Note that IP flows with slightly
different QoS requirements can be mapped into the same class.
A QoS class is characterized by a set of QoS guarantees [3][4]
(hereafter, also refereed to as QoS contract), namely:

1) A minimum bit rate, Rmin, called Compliant Bit Rate,
which must be granted to the flows belonging to the QoS
class in question, whatever the traffic condition might be;

2) A maximum and a minimum transfer delays, indicated as
Dmax and Dmin, respectively, which packets belonging
to the flows in question must experience.

Traffic exceeding the Compliant Bit Rate is referred to as
Non Compliant. According to the policy strategy, the system
may serve this traffic as best effort, without having to comply
with its QoS requirements. Note that the constraint on the
maximum tolerated transfer delay comes from the requirement
of guaranteeing IP packet delivery within given delays, while
the constraint on the minimum transfer delay comes from the
requirement of limiting the delay jitter J (whose maximal value
is indicated hereafter as Jmax=Dmax-Dmin).

The internal structure of the Hub Station (HS) traffic con-
troller is shown in Fig. 2. The IP packets coming from the
Internet, i.e., the offered traffic, are sorted into a set of FIFO
(First in First out) queues. A one-to-one association between
queues and QoS classes exists, i.e., each IP packet is enqueued
into the FIFO queue associated with the class the packet
belongs to. The core of the traffic controller is the closed-
loop controller, namely “Main Controller”, which takes the
decisions concerning the packets to be retrieved from the FIFO
queues for being forwarded towards the air interface, i.e.,
towards the satellite. The closed-loop controller takes as inputs
the following parameters, which are monitored every Tcontrol

seconds (referred to as control period):
1) Queue Lengths of the FIFO queues;
2) Loss Bit Rates, i.e., the bit rates of the traffic that is

discarded by the FIFO queues (either because packets
expired or because the queues are full);

Fig. 2. Internal architecture of the HS controller, including the “Main
Controller”, “Scheduler”, and “FIFO Queues”

3) Transmitted Bit Rates, i.e., the bit rates of the traffic that
is retrieved from the FIFO queues and transmitted through
the physical interface.

Periodically, every control period, the main controller, basing
on these three parameters and taking the Compliant Bit Rate
into account, computes the Assigned Bit Rates, i.e., the bit
rates that can be granted to the various flows in the next
control period, as shown in Fig. 2. The Assigned Bit Rates
are expressed as fractions of the Total HS Bit Rate, i.e., the
bit rate that is currently assigned to the considered HS. The
Assigned Bit Rates are communicated by the “Main Controller”
to the “Scheduler”, which is in charge of retrieving the packets
from the FIFO queues and forwarding them towards the satellite.
By doing this, the scheduler tries to comply with the bit rate
assignments decided by the main controller.

Note that the main controller assumes a continuous-flow
model of the inbound traffic, i.e., it bases its computations
on continuous measures of bit rates and queue bit lengths.
This means that it overlooks the discrete nature of IP packets.
Conversely, the scheduler takes the non-continuous nature of IP
packets into account. This causes a small difference between
the bit rates actually assigned to the IP flows by the scheduler
and the bit rates decided by the main controller. In this respect,
the scheduler implements a proper bit credit system that aims
at keeping the error between these two bit rates close to zero.
Note that packets that have waited in the FIFO queues more
than their maximum tolerated transfer delay Dmax, i.e., that are
expired, are discarded to save precious bandwidth and prevent
traffic congestion. The amount of discarded traffic over a control
period is the so-called Loss Bit Rate.

III. MAIN CONTROLLER ALGORITHM

As stated in the previous section, the control action performed
by the main controller takes place at the beginning of every
control period, i.e., every Tcontrol seconds. Conceptually, the
control action consists of two stages:

1) Compliant Bit Rate Assignment,
2) Non Compliant Bit Rate Assignment.

In the first stage (detailed in Section III-A) the main controller
assigns a fraction of the Total HS Bit Rate (TotalHSR) to
the IP flows according to their Compliant Bit Rates, which
are defined by their QoS Contract. Then, in the second stage



3

Fig. 3. Closed-loop HS controller and its components: “Averager”, “Denormalizer”, “PID Controller”, “Integrator”, “Non-linear Resharer”, “Normalizer”,
and “Fuzzy Tuner”

(detailed in Section III-B), the main controller assigns the
remaining fraction of TotalHSR, according to the algorithm
described in the following. The sum of the two above-mentioned
bit rates, which are assigned to the ith flow, will be hereafter
referred to as AssignedRatei (AsRi). This value will be used
throughout the following control period, until a new AsRi is
computed. In the following, the different variables of interest
will be referred to the ith IP flow and to the control period and,
for the sake of clarity, will be indicated with self-explaining
shortened symbols.

A. First Stage: Compliant Bit Rate Assignment

In the first stage of the control action the controller checks
the OfferedRatei of the ith flow (i.e., the average bit rate
offered by the IP flow in the last control period) and compares
it with its Compliant Bit Rate, granting to the ith flow a
CompliantAssignedRatei (ComplAsRi) equal to the lower
of the two values (so as to comply with the QoS contract, while
avoiding waste of bandwidth). The rationale behind this choice
is to assign output bit rate on the base of the input (offered) bit
rate, and exploit the gain from statistically multiplexing different
uncorrelated flows. Then, the main controller computes the
SpareHSRate (SpareHSR), which is equal to TotalHSR
minus the sum of all ComplAsRi, i.e.,

SpareHSR = TotalHSR−
∑

i

ComplAsRi. (1)

Note that this value is always positive since the sum of the
Compliant Bit Rates is always less than the TotalHSRate, as
guaranteed by a proper Connection Admission Control (CAC)
mechanism. While the development of efficient CAC strategies

is out if the scope of this paper, the reader is referred to [5] for
further details on this topic.

In the second stage, SpareHSR has to be partitioned into the
NonCompliantAssignedRatei (NComplAsRi) according to
the algorithm detailed in the following section. Clearly, for a
generic IP flow i, the total AssignedRatei (AsRi) is equal to

AsRi = ComplAsRi + NComplAsRi. (2)

B. Second Stage: Non Compliant Bit Rate Assignment

This second stage is the core of the control action and the
main novelty of this paper. The approach used by the main
controller to assign the SpareHSRate to the IP flows is
based on comparing the status of each flow against the overall
HS status, with the objective of increasing or decreasing the
bandwidth assignment to each flow to assure fairness among
all flows and comply with their QoS requirements. Figure 3
shows the overall control scheme of this second stage, under the
assumption that the considered HS is simultaneously handling
N IP flows. For the sake of clarity, the description of the control
algorithm is split into the following four steps.

1) Computation of Priority and Efficiency of a Single Flow:
The first step of the algorithm is the definition of a flow metric,
indicated as Priority (Pri), which takes the current “need for
bandwidth” of the ith flow into account, as

Pri =
QLeni

Tcontrol
+ TransmRi + LossRi. (3)

Note that if both sides of (3) were multiplied by Tcontrol, the
left side of the equation (Pri · Tcontrol) would be equal to the
sum of the current number of bits in the queue associated with
the ith flow, QueueLengthi (QLeni), and the number of bits



4

that have been transmitted (TransmRi ·Tcontrol) and discarded
(LossRi · Tcontrol) in the last control period. In other words,
Pri · Tcontrol represents the total number of bits that would be
stored in an ideal queue if all the arrived bits were enqueued
(under the assumption that no transmissions nor discards occur
in the entire length of the control period).

Now, we introduce the metric FlowEfficiencyi

(FlowEff
i ), computed by the component named “Normalizer”

in Fig. 3, which normalizes the bit rate assigned to a flow
taking its Priority, i.e.. its need for bandwidth, into account, as

FlowEff
i =

AsRi

Pri
. (4)

When FlowEff
i ≈ 1 in (4), it means that the bit rate assigned to

the ith IP flow is consistent with its actual need for bandwidth,
expressed by Pri in (3). Conversely, when FlowEff

i À 1 (or
FlowEff

i ¿ 1) the ith flow has more (or less) bandwidth, i.e.,
assigned bit rates, than it needs to satisfy its QoS requirements.

2) Computation of HS Priority and HS Efficiency: In the
second step of the algorithm, the definitions of the metrics
Priorityi and FlowEff

i are extended to the entire HS. The
objective is to obtain average metrics of the overall system
that can be compared against the metrics associated with the
single flows. To do this, we introduce two system metrics,
HSPriority (HSPr) and HSEfficiency (HSEff ), where

HSPr =
N∑

i=1

Pri, (5)

HSEff =
TotalHSR

HSPr
. (6)

Note that (6) is similar to (4), where the single flow character-
istics have been replaced with the characteristics of the overall
system. All the computations relevant to the first and the second
steps are performed by the “Averager” component on the left
side in Fig. 3.

3) Closed-loop Computation of AssignedRatei (AsRi): As
we said, the basic idea behind our closed-loop controller is to
compute the efficiency of each IP flow and compare it against
the HS overall efficiency: the difference between these two
efficiencies is used to achieve fairness among flows by assessing
whether to increase or decrease the bandwidth assigned to each
flow. Referring to the ith flow, the algorithm computes, in a
closed-loop fashion, the AsRi (i.e., the total bit rate that the
ith flow will be assigned in the next control period) using the
following five-step procedure (see Fig. 3):
• HSEff and FlowEff

i are compared to assess if the
ith flow is under-served or over-served. The difference
between these two values is the so-called ∆Efficiencyi

(∆Eff
i = HSEff − FlowEff

i ): positive values of ∆Eff
i

mean that the ith flow is under-served, and that its effi-
ciency must be increased, and viceversa;

• ∆Eff
i is multiplied by Pri to obtain ∆Ratei (∆Ri), which

represents the bit rate assignment variation that will align
the ith flow efficiency with the overall HS efficiency;

• ∆Ri is fed to a “PID Controller”, whose parameters are
dynamically controlled by a “Fuzzy Tuner” (see Fig. 4), as
detailed in section III-B.4. The result is ∆AssignedRatei

(∆AsRi);
• ∆AsRi is summed to NComplAsRi computed in the

Fig. 4. “PID Controller” relevant to the ith IP flow and “Fuzzy Tuner”

previous control period;
• After a precautionary non-linear resharing aiming at avoid-

ing negative values of NComplAsRi, which could de-
crease ComplAsRi and cause the infringement of the QoS
contract relevant to the ith flow, NCompAsRi is summed
to ComplAsRi, thus obtaining AsRi, as in (2).

4) PID Control and Fuzzy Tuning: Fig. 4 shows the PID
controller relevant to the ith flow, whose parameters (KP , KI

i ,
and KD

i ) are controlled by the “Fuzzy Tuner”, which imple-
ments three different sets of rules relevant to the Proportional,
Integral, and Derivative Actions, as detailed in the following.

Proportional Action: The first set of rules tunes the
aggressiveness of PID controllers, which is regulated by the KP

parameter. To handle the immediate error, i.e., ∆Eff
i · Pri =

∆Ri, the error is multiplied by the constant KP . The various
flows strive to obtain a fraction of the shared bandwidth: when
there are many flows with respect to the available bandwidth,
many of them may be under-served; this would cause high
requests of bandwidth from most of the current active flows,
which ultimately may result in the risk of oscillation and insta-
bility. The system manages to reach the stability by reducing
the aggressiveness of PID controllers.

In order to evaluate the system traffic load, and therefore
assessing the aggressiveness needed from PID controllers, we
introduce the Congestion metric, which depends on two vari-
ables, Need and Surplus, as

Congestion =
Need

Need + Surplus
, (7)

where
Need =

∑N
i=1 max[∆AsRi; 0],

Surplus =
∑N

i=1 max[−∆AsRi; 0].
(8)

Note that, in (8), Need and Surplus represent the cumulative
request for bandwidth of all the flows that are under-served and
over-served, respectively.

A problem faced with PID controllers is that they are linear,
and that their performance in non-linear systems, such as the
bandwidth assignment dealt in this paper, is variable. For this
reason, we decided to enhance PID controllers by using fuzzy
logic2. Specifically, we exploit the fuzzy logic to dynamically

2“What is striking is that its most important and visible application today is
in a realm not anticipated when fuzzy logic was conceived, namely, the realm
of fuzzy-logic-based process control” [6].



5

control the PID parameters, i.e., KP , KI
i , and KD

i . The basic
idea of the Fuzzy Logic Control (FLC) was suggested in [7].
FLC provides a non-analytic alternative to the classical analytic
control theory. By utilizing simple triangular fuzzy sets [8]
and the Sugeno deduction [9], we implemented three rules to
decrease KP as Congestion increases, and to decrease KI

i and
KD

i as ∆Eff
i decreases. These last two rules prevent newly

established IP flows from pulling pre-existing flows away from
the equilibrium. As new flows have null assigned bit rate, in
fact, their priority is very high at the moment of inception and
may tend to overcome bandwidth requests form existing flows.
Note that when the error is zero, a proportional controller’s
output is zero. This means that the proportional action cannot
always guarantee that the setpoint, i.e., HSEff , will be reached
if the setpoint is not fixed in time. This is called a Steady State
Error. To fix this, integral and derivative actions are required.
The tuning of the PID integral and derivative parameters, i.e.,
KI

i and KD
i , depends on the status of the ith flow, while the

proportional parameter KD is regulated according to the overall
system status.

Integral Action: The second set of fuzzy rules controls
the KI

i parameter, according to the principles of PID tuning
[10]. To learn from the past, the error, i.e., ∆Ri, is integrated
and multiplied by the constant KI

i . High values of KI
i busts

the integral action, while too high values can cause instability.
Without integral term, a PID controller cannot eliminate the
error if the process requires a non-null input to produce the
desired setpoint. Specifically, the integral action is used to speed
the control up when the system is distant from equilibrium, and
to turn it off when the equilibrium is approached. In particular,
this action is useful in the transients when the FIFO queues
fill up: the approximately linear increase of the queue length
relevant to the ith flow, caused by a constant bit rate3, triggers
the almost-linear increase of Priorityi, according to (3), which
is properly controlled by the “Integrator” component.

Derivative Action: The third set of fuzzy rules controls
the KD

i parameter according to [11]. To anticipate the future,
the first derivative (the slope of the error, i.e., d∆Ri

dt ) over time
is calculated and multiplied by the constant KD

i . In general,
by increasing KD

i , the loop more quickly reach its reference
after a load disturbance. However, too much derivative action
will cause excessive response and overshoot. In our system, the
derivative action is shown to introduce minor benefits to the
overall performance.

IV. PERFORMANCE EVALUATION

The overall control scheme has been simulated using OPNET
[12], a discrete-event network simulator. Since non-linear fuzzy
controllers make infeasible a mathematical analysis of the
system performance, we tested and refined our solution through
extensive simulation experiments. All the results are averaged
over many runs to assure small relative confidence intervals.
In the performance evaluation we considered four QoS classes:
Voice, FTP, Video, and Web-browsing. The statistical param-
eters characterizing IP flows belonging to the four considered

3Note that bit rates from bursty sources (FTP, Web-browsing, Compressed
Video, etc.) can be considered almost constant during a burst, while bit rates
from stable sources (Voice, Uncompressed Video) have a little variance around
their mean value and can be considered, again, almost constant.

TABLE I
IP TRAFFIC SOURCE STATISTICAL PARAMETERS∗

LP [Byte] Tint[ms] Rav[Kbps] Rmax[Kbps]

Voice 72 20 29 29

FTP U [40, 4960] U [50, 150] 200 400

Web U [40, 2960] U [50, 550] 40 240

Video U [40, 2960] N (8.1, 20) 1350 1460

∗LP : packet length, Tint: packet inter-arrival time, Rav and Rmax:
average and peak rates, N and U : gaussian and uniform distributions

TABLE II
IP FLOW QOS CONTRACT

Dmax[s] Dmin[s] Jmax[s] Rmin[Kbps]

Voice 0.10 0.01 0.09 29

FTP 4.00 0.20 3.80 150

Web 1.50 0.05 1.45 30

Video 0.50 0.02 0.48 1000

classes, as well as their average and peak bit rates, are reported
in Table I, while Table II reports the parameters characterizing
the QoS contract of the considered traffic classes. As far as the
simulation scenario is concerned, we considered the satellite
system depicted in Fig. 1.

The performance achieved by the proposed closed-loop con-
troller is compared with the one of a FIFO controller and
of an open-loop controller. In the FIFO controller only one
queue is considered: all IP packets are enqueued in the same
queue and are served according to a First In First Out (FIFO)
discipline, without taking the flow QoS requirements into ac-
count. This simple, but quite common and effective, controller
allows studying the disadvantages in scenarios where no QoS
classes are considered. Conversely, in the open-loop controller
[13] the incoming IP traffic is sorted, according to its QoS
class, to a set of Dual Leaky Buckets (DLBs) [3] that are
used to identify the compliant traffic, which is then served, on
a first priority basis, according to an Earliest Deadline First
(EDF) algorithm [14]. The non compliant traffic is served, on
a second priority basis, again according to an EDF algorithm.
The name of the controller is due to the fact that all the DLB
parameters are statically set according to closed-form formulas
exploiting the concept of equivalent bandwidth, without any
closed-loop mechanism. While open-loop scheduling algorithms
can perform well in static or dynamic systems in which the
workloads can be accurately modeled [15], in our experiments
they are shown to perform poorly. This is due to the unpre-
dictability of the considered dynamic systems, mainly caused
by the burstyness of traffic sources.

Figure 5 graphs the Link Utilization (i.e., the ratio of the
used and available link bandwidth) achieved by the competing
controllers as a function of the System Congestion, which is
defined as the ratio of the TotalHSRate and the average bit
rates of the overall offered traffic. As can be seen in Fig.
5, the proposed closed-loop controller outperforms the other
controllers (in every possible load condition), and manages to
achieve near ideal performance. This is proven by the fact that
the Link Utilization of the closed-loop algorithm closely follows



6

Fig. 5. Link Utilization

TABLE III
EVOLUTION OF TRAFFIC CLASS EFFICIENCIES VS. SYSTEM EFFICIENCY+

Sim. Time [s] 3 6 9 12 15 18

System Efficiency 0.50 0.25 0.15 0.10 0.07 0.06
Voice Efficiency 0.60 0.32 0.18 0.10 0.08 0.07

FTP Efficiency 0.40 0.20 0.09 0.04 0.05 0.06

Web Efficiency 0.70 0.30 0.12 0.05 0.06 0.07

Video Efficiency 0.30 0.18 0.12 0.09 0.07 0.06

+System Congestion=108%

the System Congestion for every traffic load less than 108%,
and that it is always above the link utilizations of its competing
schemes.

Table III presents the evolution of the average efficiency of
Voice, FTP, Web, and Video traffic classes vs. the reference
system efficiency. Note the difference between the smooth
behavior of Voice/Video connections, and the burstlike evolution
of FTP/Video connections. Although the system is affected by
high congestion (System Congestion equal to 108%), i.e., there
is less available bandwidth than that needed to accommodate
all traffic data, the proposed closed-loop controller manages to
smoothly bring the connection efficiencies back to the reference
value, thus providing fairness and minimizing the loss bit rates.

Finally, Table IV reports the average delays and delay jitters
of successfully received IP packets according to the three
competing controllers when the System Congestion is 93%,
i.e., when the system capacity is almost fully exploited but the

TABLE IV
AVERAGE DELAY AND DELAY JITTER?

Delay ÷ Jitter [s] Closed Loop FIFO Open Loop

Voice 0.05÷ 0.04 0.09÷ 0.04 0.07÷ 0.07

FTP 2.10÷ 1.50 3.20÷ 2.30 2.70÷ 1.80

Web 1.10÷ 0.80 1.70÷ 0.70 1.30÷ 1.10

Video 0.30÷ 0.20 0.40÷ 0.30 0.30÷ 0.20
?System Congestion=93%

system is not yet in a congested state. As far as the closed-loop
controller is concerned, the QoS constraints are never infringed
and the IP packet loss is close to zero. The results confirm
that our scheme exploits better the available bandwidth since
it can dynamically adapt its parameters, i.e. its working point,
according to the traffic statistical characteristics.

To summarize, the closed-loop controller presented in this
paper manages to outperform the other considered bandwidth
sharing algorithms because of three factors:

1) The definition of a proper band-sharing mathematical
schematization that highlights the drivers of need for
bandwidth in wireless connections;

2) The utilization of a closed-loop controller that results in
a high degree of adaptivity to the dynamic system and in
some degree of traffic forecasting;

3) The implementation of a smart scheduler that properly
realizes the calculated band-sharing on the IP packets.

V. CONCLUSIONS

We presented an innovative closed-loop traffic controller to
share the available bit rate among a set of traffic flows charac-
terized by different QoS requirements. The proposed controller
relies on a control-based approach that exploits a closed-loop
feedback architecture including PID controllers tuned that are
dynamically tuned using fuzzy logic. We showed that our
control scheme outperforms competing open-loop schemes, and
that it is able to minimize the loss bit rate and maximize the
efficiency of the wireless channel under different scenarios and
traffic load conditions.

REFERENCES

[1] T. Inzerilli and D. Pompili, “Towards a New Generation of IP-based
Satellites,” in Proc. of EU Information Society Technology Mobile and
Wireless Communications Summit (IST Summit), Copenhagen, Denmark,
Nov. 2002.

[2] N. K. Blake, S. Baker, and D. Black, “Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers,” IETF RFC
2474, Tech. Rep., Dec. 1998.

[3] R. Braden, D. Clark, and S. Shenker, “Integrated Services in the Internet
Architecture: an Overview,” IETF RFC 1633, Tech. Rep., Jul. 1994.

[4] “TIPHON: Definition of QoS Classes,” ETSI TS 101 329-2, Tech. Rep.,
Jul. 2000.

[5] F. Delli Priscoli and A. Isidori, “A Control-Engineering Approach to
Traffic Control in Wireless Networks,” in Proc. of Conference on Decision
and Control (DCD), Las Vegas, Dec. 2002.

[6] L. A. Zadeh, “Fuzzy Logic,” IEEE Computer Mag., vol. SMC-3, no. 1,
pp. 83–93, Apr. 1988.

[7] ——, “Outline of a New Approach to the Analysis of Complex Systems
and Decision Processes,” IEEE Trans. Syst., Man., Cyber., vol. SMC-3,
no. 1, pp. 28–44, 1973.

[8] R. Q. Hu and D. W. Petr, “A predictive self-tuning fuzzy-logic feedback
rate controller,” IEEE/ACM Trans. Netw., vol. 8, no. 6, pp. 697–709, 2000.

[9] M. Sugeno, An Introductory Survey of Fuzzy Control. Information
Science, 1985.

[10] K. J. Astrom and T. Hagglund, PID Controllers: Theory, Design and
Tuning. North Caroline: Instrument Society of America, 1995.

[11] V. B. Baji’c, “Simple Rule-based and Fuzzy Controllers,” TR95-07,
Control Laboratory, Technikon Natal, RSA, Tech. Rep., 1995.

[12] OPNET, http://www.opnet.com/.
[13] J. Rexford, F. Bonomi, A. G. Greenberg, and A. Wong, “A Scalable

Architecture for Fair Leaky Bucket Shaping,” in Proc. of IEEE Conference
on Computer Communications (INFOCOM), 1997, pp. 1054–1062.

[14] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son, “Design and Evaluation
of a Feedback Control EDF Scheduling Algorithm,” in Proc. of the IEEE
Real-Time Systems Symposium. IEEE Computer Society, 1999, pp. 56–
67.

[15] Z. J. Haas, “Design Methodologies for Adaptive and Multimedia Net-
works,” IEEE Communications Magazine, vol. 39, no. 11, pp. 106–107,
Nov. 2001.


