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- Chapter 1

Problem 1.1:
The experiment is described by the following transition probability diagram:
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a. Given that the fair die has been selected (x = 0), the corresponding conditional probabilities of
gettingy = 0, 1, 2 sixes are:
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Similarly, the conditional probabxhtxes of getting y sixes given that the biased die was selected
(x = 1) are:

pr=0]x=1)=0, p(=1]x=1)=0, py=2|x=1)=1

b. The probability p (y) of getting y sixes regardless of which die was selected can be computed
using Bayes’ rule:

PO)= X p0hx)= ¥ p0 |xp@) =py lx=0pE=0)+p(y |x=1)pkx=1)

£2=0,1 2=0,1

where the a priori probabilities of x are p (x =0) = 2/3 and p (x =1) = 1/3. Thus,
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¢. The mean number of sixes regardless of die is computed by:

_ .50 20 38 _ e
Ely] = Eyp(y)—0108+1108+2108 0.89

y=0,1,2

d. Apply Bayes’ rule p(x |y) = p(y |x)p (x)/p (y). Given that we observed either 0 or 1 six, it is
certain that we must have started with the fair die; given that we observed 2 sixes there is a small
chance that we started with the fair die; indeed,
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Problem 1.2:

By construction u = F(x) is in the interval 0 <u < 1. Its probability density is obtained by identifying
elemental probabilities under the transformation from x to u; that is, p,(u)du = p (x)dx or, p,(u)
= p (x)dx [du. But du = F’(x)dx = p (x)dx. Therefore, p,(u) = 1. In conclusion, a uniform u generates
x according to p (x).




Problem 1.3:

. oo oo .
It follows from the definite integrals [xe*dxr = 1 and [x%e<dx = 2 that E[x] = 4 and E [x?] = 242
) 0
z

Thus, 0® = E[x?]-E[x]? = 4. The cumulative distribution is u = fev/tdy [ = 1-e*/#, Inverting,
0 .

we obtain x = -uIn(1 - u) which can be used to generate x from a uniform u.

Problem 1.4:

r
The cumulative distribution is u = f xe =127 gy Jo? =1 -e?, Inverting, we obtain r
o

=oV-2n(l-u).

Problem 1.6:
Multiplying out the matrix factors, we obtain

Iy -H R,,R,, Iy -HT [Ru-HRy Ry-HR,1[ Iy 0
[o e R][s af ~ [ ™ -

(R - RyRRe Ry - RaRyRy] [ Iy 0
1R -

(Ra-RayRyRy 01 [Ra-RyRiR,. 0
_R,,-R,,.R;WR,,J‘[ 0 R,.]

The correlation canceling results follow from this identity by recognizing that the above matrix product
is the covariance matrix of the transformed vector

-

thus,
e[ e e[ 2
or,
R.. R, _[In -H)[Ra Ry [ly -HT Ry -RyRAR, 0
o] [l [ - [ )
which implies that




Ry =0, R, =Rg-R RLR,

Problem 1.7
The matrix identity of Problem 1.6 can also be written as

T

R Ry Iy HY[R. 0[Iy H
[Rwa]z[O IMH 0 R‘”HO Iy

Iy H
Taking determinants of both sides and realizing that [ 0 Iy

] has unit determinant, we find

R: Ry, R, O
dEt[Ryz Rw] = det{ 0 Rw] = (detRce)(detRiu)

Next, we derive an expression for the conditional density p (x | y) using Bayes’ rule:

p(xy)

pxly) = 0

The joint density may be factored as follows:

1 1 Ra Ra)[x
p(x,y) = R Rw]]llz exp{-a-[xr,yT][Rw Rw} {yn =
Iy -H{T[RL -0
1 eXP[-%["Tsyrl[o IM] [ 0 R}

N+ M)/
() 2[det{ Ry R,
Iv -Hiry
= (27r)(”*M)/2(detR“)1/2(detRw)l/2 [0 IM} {y]} =

_ 1 1 [x-Hyl"[Re 0 7[x-Hy
= o B (GetR ) (detRy )2 cxp{'E y | { 0 Rw” y H i

e@ [ %yT R;},y} exp { %(x -Hy'RA(x - H, y% exp { é—(x -HyR.(x-H y)]

T CoMPdeRg)? (20 P(detR, )

PO T R R,

Therefore,

exp { —;—(x - HyY"R% (x - Hy)‘
pxy) _

PEIN =W @) P (detR




And we recognize this as a gaussian density in x with mean Hy and covariance R,,. Since the condi-
tional mean is the mean with respect to this conditional density, it follows that

Elx|y] = Hy

Problem 1.8:
Using X = Ry R;ly we find

A v Ao =R iy = (4,R,, + A,R, )Ry =
1% + AgXy (Ar21 + AszalpRgY = (A1Rzy + A, 2 )Ry =
= A]_Rz,yR;y + AszRg}y = Alil + Agig

Problem 1.9: ,
Using x =5 +n,,y = n,, and n; = Fn,, we find Ry = R,,,, and

Ry =R+ my = R+ Frajn, = Ron, + FRy,p, = FR,
Thus, H = RaRy, = F and the estimate of x becomes % = Hy = Fy. The estimation error is
e=x-X=(s+Fny)-Fny=s

Thus, the noise component n, is cancelled completely. If n, = Fny + v, then we still have R,, = FR,,,.
and H = F. The estimation error is now

e=x-X=s5+Fny+v-Fng=5+v
Problem 1.10:

First, we determine H. Noting that y = 1y + &5 = %:‘"1 + &5 and using the given definition for the gain

factor G, we find
1 1
RW = FE[)I%] + EzE[SQI = [;‘; + G’}E[ﬂf]

Similarly,

Ry = E?] + eE[s?) = (;{: + eﬁﬁtn%}

Therefore,
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1+ £F%G
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The output of the canceler is:
- 1 H
e=x-x=x-Hy =(s -}-;:1).}&'(}5-,‘:1 +es)=(1-eH)s + (1_.;_..),11

Thus, we identify the coefficients a and b as follows:

=1- Fe(1 + eFG)

=1-eH
e _ 1+ £F2G
H 1+ eFG 1-¢F
k—3 1- — 1-""—-———' = o ——————————— T -EF’G
b F 1+ 2F2G 1+ 2F3G ¢
Problem 1.11:

Since ¢, = 1, it follows that ¢’c¢ = M. Thus, from Example (1.4.3), we find for the optimal estimate:

fe—l_ay-Ll_ov,
1+cTc M+ln=ln

and the corresponding mean square estimation error:

o __ 1 __1
Elehn = 77 7c = 341

M
The ordinary average Xq, = %1- Y. y» will have an estimation error:

1 M M
€=x-ig=x-= N @+v) =2 D
Mﬂ»=1 n=1
and
Ele®] = L E(Sn )= -2 3 Eliml = - 5 fan = L
Mz B " M2 g,m:l mm M2 n.m:l mn M

which greater than the optimal error

M+1’




Problem 1.12:

a.

n-1

E[xg)E[aa] s = D EBgIE[ga]'s + E[xe,)E [eaea] en o,

fz=1

;(»
i
itge

a

X, = in—l + Gnta
but note that €, = Yu - Pa/n-1- »
b. Since X,.; is a linear combination of {e;, &, -+ - ,&.} and each of these is orthogonal to &, by
construction, it follows that X,_; will be orthogonal to €,.
c. Lete,=1|e,e, -, &) Its covariance matrix is diagonal; i.e.,
R, = E[e.el] = diag{E [}, E[¢}], -+, E[]}
The estimate X, can be expressed as follows:

in [xcn]E[‘n‘T ]‘lzu = Ra‘R;ic,‘n

Using Eq. (1.4.4), we find for the corresponding estimation error

Reneu = R, - E[xe|E [e,e0]'E [£xT] = Ry, - 2’3 E [x&]E [6&]E [&X]

f=1

where we used the fact that E [e,e7] is diagonal.

d. Separating out the first n -1 terms in the above sum, we find
Renea = Ren-xca-a -E [XE,,}E [5»'!»]"5 [snxT] < Rcuen.;

Problem 1.13:
a. Same as Eq. (1.4.9) but with ¢ replaced by c,.

b. Defining v, = [vy, v, **°, va ¥, we may write compactly
Yn = CuX + Vq, Yn1 = Cpa X + Vpa

It follows that
ElyayTa] = E[(Cax + va)(chax + VE4)] = cachy

where we used the fact that E [x?] = 1. Similarly,

y,,_lyT 1] = El(caax + Vu-l)(cu-lx + vn-l)] CaaChs + Inu

where I, is the (1 -1)x(n -1) unit matrix, and we used the fact that £ [Va-1¥2i] = Ina. Then,




E b’nY{-i}' = cucn-l(-[n~1 + %-1%4) =cp(1 + cu-lcn—l) Cn.z

where we used the matrix identity ¢(Z + e¢¥)* = (1 + Fe)¢’. Thus,

9 an1 = E D’nyg-ﬂE[Yu-ly{-ﬂ'IYu-l =cu(l + cg;-lca-l).lcz.ly:z-l

but note that £,; = (1 + ¢X1¢p1) ¢E1¥n1. Therefore,
in/n—l = Cufn-l

c. Starting with €, = c,e,.; + v, and using the fact that e, is uncorrelated with v,, we find

2 T
Ca 1+ cae,
Eled] = iE[ei4] + EPi]l = ——F—— +1= —%
1+ ¢h1Cay 1+ chatna
Similarly,
Cn

Elxe,] = cuE [reny] = caEleda] =

1+clic,y

d. Finally, using the results of Problem 1.12 we find
-fu = -iln-l + Gp(n ‘.);n/n-l)
where the Kalman gain is computed by

Cn

G!l = E BE,,J.E {Ens,‘].l = -m

In this problem the dynamics of x was trivial; namely, x was a constant in time. The more general
case of non trivial dynamics is discussed in Section 4.9.

Problem 1.14:

T
. . " Cn-1¥n-1
Using the above expression for G, andx,; = —_— IT” , we find
1+ ¢cpyCna

iﬂ-l + Gu(¥n ‘.);n/u-l) = in-l + Go(yn "Cnfn-l) =(1 'C’!Gn)fn-l + Gpy =

T 2
. Ca 1+ cpcy-cp . Cn
=(1- v = oy + =
( 1+ cle, Trde it 1+cle, " 1+cle, "4 1+ {c,,y
_ (Ut etCalar t ¥ CoaYar *Ca¥a _  CaYa

1+ cZe, 1+cle, 1+l




Problem 1.15:

The Cholesky factors of R are
12 3 100][1001[123
R=126 14|=1210/|l020 014|=8BRBT
314 42 341j{001]|001

Problem 1.16:
The first three iterations of the backward Gram-Schmidt procedure lead to:

M = Ym
M1 = Ym - E acamalE [mamnel™ e
M2 = M2 - E Dromaa JE [ iaa I ines - E DramlE [nvmnd™ e

Expressing the ys in terms of the ns, we find

YM2 =Mzt amgy + by
IMa = a Oy

Ym = N

with obvious definitions for the coefficients a, b, c. In matrix form:

Ym2 1a b2
YMa| =101 clingy| or, y=Un

The UL factorization follows from
Ry = E[yy'] = E[Um"U"] = UE [mf U = UR,,U"

where R,,, = E [n"] is diagonal by construction.

Problem 1.17:
The correspondences are:

H=EXEWNT — Hy=Epy)E Yy
X — 9y,
Yy 7 Yaa

€ — & =y, '.91&/"-1
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and in diagram form

> oA
- é‘“:)‘:-);'-'

Y — H
Z\-c = . n /i. H
Yu‘ Waey  Ta Zh_’
Problem 1.18:
Equation (1.6.11) may be written as
-yu-l ‘
Yn2
.9"/;.1 = ‘[an,auz, ’am] : = '[anuanz, v ,am]yn-l
Yo
Comparing with Eq. (1.5.19), we identify the vector of as with
’[aul 3 8n2s "7, am} = E[Ynyz-llE[yn-ly{-ll-l

Problem 1.19:

Write &, = Yn -Yn/n1 = Vn - HpYna, Where H, = E [yyh1]E [Ya1¥241]?. The correlation cancellation
conditions are equivalent to the Gram-Schmidt orthogonality conditions; that is, by construction
E [€4¥n-1] = 0. It follows that E [€,) p/ns] = 0 and

E [eizl] = E[E,,(Y,, ');n/n-l)] = E[Enyrt] = E[(Yu - Huyn-l).)’u] or,
E [Ei} =E [Yi} -H.E [Yn-lyn] =E D’?&] -E [yuy:,l;‘-llE IYn-ly:r!:-l ]dE [yn-lyn]

Problem 1.20:
First, note that E [y,y7] can be expressed as

Yn Eyil  Elayaal
E[}'n)’ﬂ =E| [Ynd} Dn» Yf-d] = { Eb;nyu-.l] E[Yn—ly{-l]
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Let oy = [@ny, @z, ", @ T Then, the rc;sults of Problems 1.18 and 1.19 can be written in the com-
pact form: .

E [5%] =E [yi} -E D’nyg;llg {yn-ly{-ll‘lE [Yn-17a]
a, =-E [ym)’f-d' 'E [yn-l}’n] i

or, rearranging terms

E[ynyn-ll + E[ynoly{-l}an =0
E2] + Elyayiala, = E[€2]

We can combine these into the matrix equation:

EWi]  Ebwaal 1[1] [Ele]
E [ya¥n1] E[)'n-l)’f—ﬂ” } = { 0 }

- E[e2) m

Problem 1.21:
Let J = alE [y.yr]a, + A(1 - alu,) be the extended performance index. Setting its gradient to zero,

3—‘::- = 2E[Y,yn]as - du, = 0

we obtain

Elyayal = S ua

1N PO

The Lagrange multiplier A is fixed by imposing the constraint alu, = 1. Multiplying both sides of the
above equation by a2, we get

ag

>

A
alE [y.ysla, = =3

But
arE [Yo¥alan = E[(a1¥a)(ynan)] = E[2]

Thus, the determining equation for a, becomes E [y,yZ ]a, = E [¢3]u,.

Problem 1.22:
The effective performance index, with the constraint built in, is

J =a"Ra + A(1-u"a) = min

Setting the gfadient with respect to a to zero gives % =2Ra-X =0,o0r, a = AR u/2. The Lagrange

T R T T




multiplier is fixed by requiring the constraint a’u = 1.

Problem 1.23:
Taking determinants of both sides of Eq. (1.7.16) and using the fact that L has unit determinant (being
unit lower triangular), it follows that detR = (detR)E,.

Problem 1.24:
Using (1.7.13) into (1.7.19), we find

. . L o1wrDd 017rL o [TDAL + E3 BT EP
R ‘LD"L=[pT 1} [OT E;,‘Hﬁ" 1}‘{ EyB” E}

e[ e

or,

Problem 1.25:

a. Since g and b are independent and have zero mean, we have E [ab ] = 0. Therefore,

E[2] = E{(a + bn)?] = E[a%] + n®E[b?] = 02 + n%0}

'b. x, is not stationary, because E [x2] depends on the absolute time #; similarly, it cannot be ergodic
because ergodicity requires stationarity.

c. Being the linear combination of two gaussians, x,, is itself gaussian. It has zero mean and variance
o2 = E[x%] = 02 + n20%. Thus, its density is

1 x2
p,) = WZCXP[-%?;}

d. Sincex, = X, + b(n -m), it follows that if x,, is given, then the randomness in x,, will arise only
from b; that is,

P (%n | Xm)dx, = ps(b)db
Using dx, = (n - m)db and replacing b = (x, - Xp)/(n - m), we find

py(®) 2R RS
[dea/db | @0y |n-m| (020, |n-m |

P a [ Xm) =

Problem 1.26:
a. Working in the time domain, we find for 0<k <10




~ 1 k
R(k) = 2)’n+k)7n = Z 1= 11
rr-ﬂ n—-O

For negative ks, we have ﬁ(k) = I'é(-k). In the z-domain, we have

S@) = %I—Y(Z)Y(z“) = _11?(1 +z0 4224 o 420 A+z 422+ -0 +210) =

= -i-li- {11 +10E +z1) +9@2 +z%) + -0 +2@° +29) + @0+ z‘m)]

The coefficients of z* are the R (k)s.
b. For 0<k <10, we find

R(k) = E D™Dt = —-—( -1y }] 1=(- 1)’=_.__111ik

n_O

Problem 1.27:
a. Using the time-domain definition, Eq. (1.10.1), we find

[RO), R(£1), R(£2), R(£3)] = 7 [10,8,4 1]

b. The 4—poiht FFT of the sequence y = [1, 2, 2, 1] is
[6,-1+j,0,-1-j]
Taking the magnitude squared of each entry, we find: [36, 2, 0, 2]. Taking the inverse 4-point

FFT and dividing by 4, we find % [10, 9, 8, 9], which does not agree with the correct answer. This

is of course, the modulo-4 wrapped version of the correct answer; i.e.

[R(0),R(1) + R(-3), R(2) + R(-2), R(3) + R(-1)] = %[10, 9,8,9]

¢. The8-point FFT ofy = [1,2,2,1,0,0, 0, 0] is

+j (2+—-3—-)

V2

6, 1+——1—— j

3 .
‘/2—'](2’*'—\7—2—)’ "1"]: 1"/——'*'}(2'\/—): \F‘ (2’\/—') 1+J’ 1"'\/5‘

The magnitude squared of each entry is
[36, 10 + W2,2,10-W2,0,10-2,2,10 + W2]

Taking the inverse 8-point FFT and dividing by 4 gives




1% 11-k
R(k)="‘“‘2)’nk}’s- 211_
5*0 * 11 n=( 1

For negative ks, we have f((k) =R (+k). In the z-domain, we have

$@) = ‘]%‘Y(Z)Y(2°1) = ‘1‘11‘(1 +zh 4224 o +270Q vz 422+ - +219) =

= -il—l- {11 +10E +2Y) + 9@ + 2T 4+ -o- + 2@ +20) + (0 + z‘1°)}

The coefficients of z* are the R (k)s.
b. For 0<k <10, we find

Rk) = z<1)“+’=<1>"--—-(1>*21 (i

u-'O

Problem 1.27:
a. Using the time-domain definition, Eq. (1.10.1), we find

[R(0), R(+1), R(+2), R(£3)] = %[10, 8, 4, 1]

b. The 4-point FFT of the sequence y = [1, 2, 2, 1} is
[6,-1+),0,-1-j]

Taking the magnitude squared of each entry, we find: [36, 2, 0, 2]. Taking the inverse 4-point
FFT and dividing by 4, we find -i-[lO, 9, 8, 9], which does not agree with the correct answer. This

is of course, the modulo-4 wrapped version of the correct answer; i.e.

[R(), R(1) + R(3),R(2) + R(2,R(3) + R(D] = +[10,9,8,9]
c. The8-point FFTofy = [1,2,2,1,0,0, 0, 0] is

1 1 . 3 . 1 . 3

3 . 2N A -
7‘2'—)"1']’ \/——+1(2‘\/—)a \/3-](2-\/5—)’ 1+]’1+\/i_+](2+ )

1 .
1+ —-j(2+ 75

V2
The magnitude squared of each entry is

[36, 10 + 2,2, 10-W2,0,10- N2, 2 10 + W2]

Taking the inverse 8-point FFT and dividing by 4 gives
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%ﬂ&&%LQL%&

Note, the central entry 0 corresponds to time index k¥ = 4 and is the correct answer if we think of

the data sequence y as being padded with zeros beyond k = 4. The last three entries, correspond-

ing to inverse FFT indices k = 5,6,7, are equivalent modulo-8 to the autocorrelation indices
= -3,-2 -1. In other words, the answer comes out of the inverse FFT in the order

[R(0), R(1), R(2), R(3), 0, R(:3), R(-2), R(-1)]

Problem 1.29: ’
Let Tp = 500 msec and f, = 2 kHz be the duration of the data record and the sampling rate, and let
T = 1/f, be the interval between samples. The number of samples within T is

Ty

N = T = f,Tp = 1000 samples

The resolution afforded by a length-M data window is Af = f,/M, from which we find the minimum
acceptable M ’

fl 2 kHz
I e I — 1
M f Hz 1005ampcs

Thus, the maximum number of segments is K = N /M = 10.

Problem 1.30:
1. B@)= —L . AR model o4 .
1+ 0927

Since the pole of B(z) lies in the high-frequency part of the unit circle, the spectrum S (w)
= | B(w) | ? will look as follows

° T

a
2. B(z) = -1-1—%%’,-2-_7 = ARMA model ‘.

There is a pole at low frequencies and a zero at high frequencies. Thus,

S(w)

1

Sw) = |—E2—
@ = {17005

1+e
1-09e7¥

S(w) =




3. B(z)=1+2"+2%=(1+z%)? = MA model

It has a double zero at high frequencies:

. 14 A// —> $(‘*’)
= |1+e¥ . p
s@=irer] Z

1 1 '
4 B()= = = AR model ‘h
@ 1+081z2 (1-09zH)(1 + 09jz™1) ‘w

It has two poles at medium frequencies:

2
1
S@ = 1T 081 , |
) /L T
1-227 + 272 (1-z1)? '
5.. B == -
@ 1-01z1-07222 (1 +08&1)(1-0920) -0.2 o4

It is ARMA, with an exact zero and a nearby pole at zero frequency, and a high frequency pole.

. . 2
1-2e% + g3

1-0.1e% - 0.72¢ %%

Sw) =

Problem 1.33:
Expanding AS (w) = %&Q—Aaf + ﬂaaw)-Aa, we find
[ 3

2 2
E[AS @)°] = ["’;‘;] E[(as?y) + [%&“i} E[(aa)?

where we used E[AaAc?] = 0. The indicated partial derivatives are easily computed using the expres-
sion

%%
Sw) = 2

1-2acosw + a
This gives,

3S(w) _ 1 _ S

802 1-2acosw + a? o2
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W) _ o22(cosw - a) - SW) 2(cosw - @)

da (1-2acosw + a?)? 1-2acosw + a?

It follows that

2(1 - a%)(cosw - a)?]
(1-2acosw + a2)2J

El@s @y = B 1 4

Problem 1.34:
In terms of the eigenvalues X; of B, we have

tr(B -1-InB) = (% -1-1nX)

The required result follows from the fact that ); >0 and the meqnahty X-1-1InA>0, which is valid for
all X > 0 (with equality attained at A = 1). Noting that f (R) tr(laR + I), it follows

FR)-fR) = tr(R'R + lnR) -tr(l + InR) = tr(B -I -InB) >0

where we set B = R™R. Note B is non negative definite, being the product of two such matrices. Also,
we made use of the fact that for any two matrices tr(InR) - fr(InR) = tr[ln (R™*R)], which follows
easily from the first part of the next problem.

Problem 13§:
The first relationship follows from

In(detR) = m(H,\.-] = $lnX = tr(nR)

where ); are the eigenvalues of R. The third follows by differentiating both sides of RR! =/ to get
RAR™) + @R)R =0 = d(R%)=-R @R

The second identity follows by making use of the eigendecomposition of R; namely, R = EAE™, where
E and A are the orthogonal matrix of eigenvectors and the diagonal matrix of eigenvalues. Taking
differentials, we have

dR = dEAE™ + EAAE™ -EAE'dEE?
Multiplying by R*! = EATE™, we find

RYdR = E (A'dA)E™ + (EAM)WE1AEYEAY) -dEE?

Taking traces and using the fact that the trace is invariant under similarity transformations, it follows
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that

(R 4R) = zr(x*daj + t(E*dE) - tr(dE E*) = tr(A*dA) = dtr(lnd) = dtr(lnR)

where the last equality follows from InR = E (InA)E™.
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Chapter 2

Problem 2.1: v
In all cases, we find the transfer function H (z) and use the relationship

Sw() = H@H @")Sa(2) = H@)H (1)

where we set S(z) = 02 = 1.
1. The transfer function is H (z) = 1-z. Thus,

Se@) =(1-z)(1-2) =2-(z +z7)
Picking out the coefficients of z*, we find
Ry(0) =2, Ry(21)=-1, R,(xk) =0, for k>2
The last result is of course related to the fact that the filter has memory of 1 sampling instant and
therefore it can only introduce sequential correlations of lag at most 1.
2. Here, H(z) = 1-227 + 22 Since the filter is of order 2, we expect to have nontrivial correla-
tions only up to lag 2; indeed,
Sw() = (1-2% +2%)(1-22 +2%) = 6-4(z + z1) + @2 +z%
Inverting this z-transform, we find the nonzero autocorrelation lags:

Ry(0) =6, Ry(t1l) =4, Ry(£2) =1

3. Because the filter H(z) = 1/(1- 0.5z%) is recursive, we must use the contour inversion formula:

Ca b &
Ry (k) = ‘{.Sw(z)zk 2mjz i (z-05)(1-0.5) 27

Since Ry (k) = Ry (-k), we only need to compute the above integral for k >0. In this case, the
integrand has only one pole enclosed by the unit circle; namely, z = 0.5. Therefore, we find

Ry (k) = % for k>0

4. In this case we have:
1 1
1-025%  (1-0.52)(1 + 0521

H() =

The power spectral density is given by

T O N e Sl
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1 ~ 1
(1-0252)(1-025%)  (1-052Y)(1 + 0.5271)(1 - 0.252%)

Sw(‘?) =

For lags k > 0, the integrand of the contour inversion formula for R (k) has two poles inside the
unit circle; namely, z = *0.5. Evaluating the residues at these poles we find:

_ __C_i_z__ _ zk+1 _éz_ -
Rylle) = !&S”("")Zk iz L (z-05)C + 05)(1-0.2527) 2

Res + Res = 1575 [0 + (05)7]

Problem 2.2:
This property is clearly seen for cross-periodograms:

Sp@) = YOWE?) = HOX QW) = H@)S )

where we used the filtering equation Y (z) = H (z)X (z). For the statistical quantities, the proof is best
carried out in the time domain working with autocorrelations and using stationarity:

Ryw(k) =E b’uwn-lc] = E[( thxn-m)wm&] = thE Ltu-mwmk] =

= Y hmRap(n-mn +k) = Y hmRoy(k - m)

Taking z-transforms of both sides, gives the desired result. Part (b) follows from part (a) and the sym-
metry property Suy(z) = Sp(z). Indeed,

Sw(@) = Sp™) = Hz")Sn(z") = Sw(@)H &*)

Problem 23:
Write e, in vector form, as follows:

Va ]
M ,,Vn-l ’
e = Y GnVnem = [@0,81, **,au]| - | = aTy(n)
m=0
Vn-M

Its mean square becomes:

Ele3] = E[@"y(n))(y(n)"a)] = a"E[y(n)y(n)"]a = a"Ryya

where Ry, = E [y(n)y(n)T]. Its matrix elements are expressed in terms of the autocorrelation lags, as
follows:



(Rig)ii = EVaiYnsl = Ry(n-i-n+j) = Ry(j4) = Ry(i-j)

The second expression for E [e2] is obtained by noting that it is expressible as the zero-lag autocorrela-
tion of e,:

E[el] = Ru(0) = [Su(@) 22 = [ |4 @) | "Sul) 22

where we used Eq. (1.95) and S, (w) = | A (w) | 2S,,(w), which follows from the fact that e, is the out-
put of the linear filter 4 (z) when the input is y,.

Problem 2.4:
Because B (z) = 1/A4 (z) is the signal model of y,, we must have:

o

Sp(@) =02 |BW)|? = —te
W@ = |BO)1% =

Using the results of Problem 2.3, applied to the filter 4 *(z), we find

2 =Ele?] = [ | 4" W) 125,,(w)£’2-;i’- =aTR,a’ or

T % d A o
A Juor ot

Applying Problem 2.3 to ¢, itself, we get 07 = aTR, a. We finally find

fiz}ile)_zﬂz=i‘_'_?_w£_'_
2 1|4 | 2r T TaR,a

Part (b) is obtained by interchanging the roles of 4 *(z) and 4 (2).

Problem 2.5:
Using stationarity, we obtain

Rw(k)* = (E(yu-o-kyn.] *= E[yny's+k.] = Rw('k)

In the notation of Problem 2.3, we may write e, = aTy(n). Its mean square value is

Ele*eq] = a'E[y(n)* y(n)"]a = a'Ra

The matrix elements of R, are expressed in terms of the autocorrelation lags:

(Rw)ij = E[Yn-c")'n-j] = E[Yn-j}'nd‘] = Rw(n 'j'n +i) = Rw(‘ '])
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Problem 2.6:
Inserting y, = A;e”®¢”™" into the definition of Problem 2.5, we find:
Rw(k) = Eb’u¢k}”n‘] EH 634! M("**)Alxue‘m "M"} = ‘A i2 Sunke

Next, let y, be the sum

y =A1e3'(<~xu+¢a) +Agei(«an+da)
n

Then, we obtain the four terms

Elnayal® = |41]% + |45 ]%7 +
+ A Ay* alreR) - danp {e’%e'ﬁ"] +AgA,* g (n+k)-jarp [e®e e

Because ¢; and ¢, are independent, we have
Ele®e™] = E[¢™E[e™]=00=0

where we used the fact that for uniformly distributed ¢, the expectation value E [¢7#] is zero. Indeed,
2 2 :
, ) . d
E[e™) = [etp(@)ds = [#5E =0
0 0
It follows that the cross terms in the above autocorrelation are zero. Thus,

Ry(k) = EDnerya®] = |4y |27 + |45 %"

Problem 2.7: i
We just showed that for mutually in mpendent and uniformly distributed phase angles, E [e * e
ifd; #&.Butif gy = ¢, thenE[e e E[1} = 1. To summarize, we have

E[ej"’e"""] = 0g

Using this result and E [v,* e"‘"] = 0 which follows from the independence of v, and ¢, we get

L jun{n + k) B
Rw(k) = E[Yru—kyu‘] = E[vu*-kvutl + zAieM E[V,‘*B } +

t':l

+ ZA seMMEly, e + 2 AAy* g rR)danp i Fh o
[£ f,y=1

= G260 + 5 Adym ey,

=1

0




= o25(k) + g | 4; | 27"

[£31

Using E[ | e, | %] = a'Rya = E ag"'Rw(I m)apy, andA(w,) = Z ame™ ™, we find

Im=0 . m=0

Elle.]? = g a* {0'25(I-in)+ 3 | 4; | % M“*">} 4, =

Im=0 (38

2 iaml’-" ZIA !’{Ea e’""}[game"""‘"‘} = oZata + §3 |A4; 1?4 () |?

m—O m=0 tml

This last result forms the basis of Pisarenko’s method of harmonic retrieval, as discussed in Section 6.2.
Part (d) follows the same steps with the replacement of §(/ -m) byQ (/ -m) and recognizing that

M
> a*Q(l-m)a, = alQa

=0

Problem 2.9:
Consider a more general problem of the form

Ya=-R3yaq + (1 '.Rz)xu
with transfer function

1-R? _ 1-R?
1+R%%  (1-jRzM)(1 + jRzY)

H@) =

The power spectral density is
Sw) = AHEHEY) = —— LR

(1 + R%2%)(1 + R%2?)

where o2 = 1. Settingz = e

(1-Rr??
1 + 2R%cos(2w) + R*

Sw(w) =

The autocorrelation function is obtained from

1-R?)2k+1 dz
k) = [ Sy(z)z* = ( P
Ry (k) f w2}z 2,,;2 !c @ -jR)z + jR)(1 + R%?) 2nj
1-R? _, rk
TRRTRAR T e e

where we assumed k > 0. Since o7 = R,,(0), we find for the noise reduction ratio




Re(® _ 1-R?
1 1+R?

Since the filter has unity gain at the frequencies w = +w/2, H(w) = 1, it follows that any linear combi-
nation of

sin(-x-;-—) and cos( %n__)

will go through the filter completely unchanged (in the steady state). For values of R close to unity, the
steady state is reached more slowly, but the noise reduction ratio is smaller. This is the basic tradeoff
between speed of response and effective noise reduction.

Problem 2.11:
In correlation canceler notation, we have x = [y,], andy = [y,,]. Then,

- R(1
Ry = Ebanal =R(D), Ry =Ebda] =RO), H = RR} = §a)
The estimate x = Hy becomes,
Ja = Hyny = -@1Yn

where we set @, = -R (1)/R (0). The minimized estimation error is computed by

Ele®] = Rz - RyRR, = R(0) - %%)i =R(0) + a;R(1)

Problem 2.12:
The sample autocorrelation is

- 3% 3%
Rk)= Y Vaskya= N 11=4-k, for k=0,1,2,3

n:=0 n=0
The resulting first order predictor and prediction error are

. ‘ ) ,
o=-2d 3 Eo RO ek =422 Lo

The estimate is:

The gapped function is defined by
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1 ~ ol -~
gk) = 3 anRk-m) = R(k)-%R(k»l)
m=0
1t has a gap of length one:
5 35 3
g =RQ)- TRO) =3-74=0
Next compute g (0) and g (2):
- 3h/1y=2.32_1 A .3pyon. 321
g0) =RO)-R()=3-73=7, g@=R@-7RM=2-53=-3

Next define the second order gapped function g*(k):

§'(k) = g(k) - 128(2-k)

where v; = g(2)/g(0) = -1/7. Using the Levinson recursion, we construct the second order predictor
by:

1 1 0 1 1 0 1
a;’| = ayl-mjay| = -3/4 + "7‘ -3/4| = 6/7

The 2nd order prediction error is
. . 1.7
E" =g'(0)-(1-73)g(0) = (1- )% =17

As expected, it is smaller than the error of the 1st order predictor. The estimate is given by

~

6, 1 — J.=
In 7}'»-1 7)’»-2 Ya

<o

1
.= =0714
= =0

Even though the 2nd order predictor is better than the 1st order one in the mean square sense, the
actual “predicted” value of the 5th sample is “worse” than that predicted by the 1st order predictor
(assuming of course that the most “obvious” value should be y, = 1).

Finally, the zeros of the 2nd order predictor are found by solving the quadratic equation
1- -g—z“ + -_}/-z"" =0

It has roots z = 0.227 and z = 0.631.



Problem 2.13:
We have y, = -(-1)" forn = (,1,2,3. The sample autocorrelation is

ﬁ(k) = §Ys+k.}'n =(-1)*@4-k), for k=0,1,23

n=0

Then,

~ . . 3
a; =-—u1 ="3I, Yu = Q1Vna > y‘=~2—‘1=0.75
Similarly, we find for the autocorrelation of y = [1, 2, 3, 4]:

[R(0), R(1), R(2), R(3)] = [30, 20, 11, 4]

anda; = -R(1)/R(0) = -2/3.

Problem 2.14:
The equation at the upper adder is

€t NVna =Yn = €y =Yy - MVnd =Yn T A Vna

Thus, we find

Ye) __ 1 __1
e@z) 1+a;zt AQ)

Similarly, at the lower adder we have 7, = y,; - Yy, Which results in the transfer function
r@) =Y (@) -mY @) = (@, +2)Y (@) = AR@)Y @)

Problem 2.15:
In the z-domain, the equation at the second upper adder ise (z) = e’(z) + Y227 (2), or

e’(@) =e@)-mnz'r@) = 4 @) -nt4ARE)Y () = 4 )Y (@)

where we used the Levinson recursion 4 °(z) = 4 () - w2 4% (2).

Problem 2.16:
Let p; and p, be the two zeros of the prediction-error filter, so that

A'@)=1+a"zt +a,°2% = (1-pyz)(1-paz?)
Because of the Levinson recursion, we have

P +P2=’a1’='71(1-"12), D2 =a2'=-o~f,2



The required integral is

sz 1 dz =f Z _4_2_“
. A1) @) 2z @ -p1)E -p2)(-piz)(1-paz) 27)

Picking out the residues at p; and p,, we find

1+
I = Res + Res = p;p: 2
s=pr  s=ps  (1-pyp2)(1-pi)(1-p3)

Using the identity
(1-p)(A-p3) = (1 + pp2)* - (p1 + pa2)?

and expressing the ps in terms of the s, we find finally:

pe_ 1
@-DI-7)
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Chapter 3

Problem 3.1:
Starting with the right hand side, we have

— M M M
A@AR) = {8 m‘j {2 aa'Z'i = ¥ aa,*z¢ = Ya, 40,0 2*
. kn

$=0 n =0 in=0

where we defined k& =i -n and changed summation variables from the pair i,n to the pair k,n. We
must now determine the proper range of summation over k and 7 - doing the # summation first and the
k summation last. Since both i and n are in the range [0, M, it follows that k will range in -M <k <M.
Since i =n +k, it follows that 0<n + k <M, or, -k <n <M-k. But also, 0<n <M. Therefore, n
ranges in the intersection of these two intervals; namely,

max(0, -k) <n < min(M, M-k)

Thus,
- M min(MM-k) M
A@)@E) = ¥ [ PN ama..‘] z* = ¥ rkp*
k=-M | n=max(0,%) - k=M

The quantity 7 (k) is identical to R, (k). Indeed, if 0 <k < M, then

min(M,M-k) M-k

’(k) = 2 T IORY Ml 2 p o x@n®* = Raa(k)
n=mad0,*) n=0

Similarly, if -M < k < -1, the range in the summation of 7 (k) is k <7 <M, and we find

M M+k
r(k) = Z aﬁ+kau‘ = 2 af—k‘ai = Raa(‘k)* = Rm(k)
nx-k $=0

Problem 3.2:
We start with Egs. (3.4.2) which are the time-domain versions of Egs. (3.4.1). We have

‘anlz' lbnlzz lfn’zlfndlz‘ l'zl‘fs”"fn-l!z:(‘fulz' ;fml!z)(l“ lzllz)

Summing over n, we find

S an | B b2 = A 120D S (1 12 s 1D = (- 12213 1o ]2

m=0 m=0 m=0

where we used the fact that f,, = 0.




Problem 3.3:
Using the following standard z-transform

lklr 1-(12
a —_ —
(1-azt)(1-az)

we find
Sul®) = ki(o.s)l*lz* ! -o.ls;-g‘))g fO.Sz)
Thus, the model is
B(z) = —= and az=1-(05)2;0.75

1-05z1°

The difference equation is y, = 0.5y, + €.

Problem 3.4:
As in the previous problem, we find

- 1-(0.5)? 1- (-0.5)° P 1 1
+ = 1.875 2 3
(1-0521)(1-05) (1+051)(1+052) 1-025z2 1-025

Sw(z) =

Therefore, o2 = 1.875, and

1

B@)= —L1—
@) = 10253

y W= 0-25)":-2 + &,

Problem 3.5:
See solution of Problem 2.9.

Problem 3.6:
Factor the numerator in the form:

218-06(z + z1) = 2L - (A - ) = 21 + 2 -Pf(z +z7Y)
This requires 2.18 = o?(1 + f%) and 0.6 = o°f. Eliminating 0%, we find

1+ 2.18
BE-2E = -0

where we chose the solution for f of magnitude less than one. Then, we have o® = 0.6/f = 2. Thus,
218-0.6(z +z1) = 2(1-0.3z1)(1-0.32)

The denominator is factored in a similar fashion to give



125-05¢ +z%) = (1-0521)(1-05)
Therefore, S,(z) is factored as follows

1-03z7% 1-032
1-05z1 1-052

Sez) =2

We identify, 0? = 2, and

1-03z7

1-05z7 and  y, = 0.5y, + €, -03¢,,

B@) =

Problem 3.7:
Using y, = cx, + v, and the fact that x, and v, are uncorrelated, we find

2
Sy(2) = 355(2) + Sw(z) = _(T.—az%—)%f:;; *R

The required signal model B (z) is found by completing the fraction and factoring the numerator in the
form (with |f | < 1)

€20 +R(1-axV)(1-az) _ o:(1-£N)(A-£)
(1-azt)(1-az) 1-at)(1-az)

Sw() =
Therefore, we must have the identity in z:
¢?Q +R(1-a)(1-az) = oi(1- £ 1)(1- f2)
which gives rise to
A1+ =c*Q+R(1+d>, o¥f=Ra
Solving the second, 0? = Ra /f, and inserting in the first, we find the quadratic equation for f:
aR(1 + f%) = f[c®Q + R(1 + a%)

This equation remains invariant under the substitution f — 1/f. Therefore, if one solution has magni-
tude less than one, the other will have magnitude greater than one. Substituting the expression

Ra

f=R+c2P

into the quadratic equation for f, we find




. 2
ax[u{ Ra }} Ra 120 + R(1 + a?)]

R+c?P| | R+cP
or,
(R + C2P)2 + (Ra)z 2 2
=c¢*Q +R(1+a
R +c?P Q ( )
which gives after some algebra
Ra®P
Q= R +c%P

If P is positive, then f has magnitude less than one. Indeed, since by assumption |a | <1, we have

2
|f]=—lﬁ-l—< L <1, where xz-%;—)-

1+x " 1+x

To show that one solution for P is positive and the other negative, we work with the variable x defined
above. Then, the quadratic Riccati equation reads

x* +(1-a% -

1+x

2
, Where fA= <o
R
It can be written in the form

x3.ax-f=0

where a = 8 - (1 - a2). The two solutions are

. _a+Vad®+48 x2~a-\/a2+4g
- _ 2 ’ - 2

Because f > 0, it follows that regardless of the value of o, x, will be positive and x, negative.

Finally, inserting the expression of f in terms of P into o2, we find

£=%‘i=R+c2P

Problem 3.8:

For n <i we have By = by; =0 because of the causality of b,. Also, (BT)w = Bix = b = b n .

Therefore, it is the matrix that corresponds to b,. If C = 4B, then Cu = (AB)w =Y AuBr
k

= Y ansbesi. Setm =k -itoget
k
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Chapter 4

Problem 4.1: : ,

The ML estimate is that x which maximizes the conditional density p (y | x). This density is easily found
by recognizing that if x is given, then the only randomness left in y arises from the gaussian noise term
v; ie.,

P [ x)a"y = p,(v)a¥v

where N = n, -n, + 1is the dimension of Y. The Jacobian of the transformation from v to Yy is unity,
that is, ¥y = d¥v. Thus,

AN e-iy-éche
p()'lx) =Pv(") = (27!')”/269’ = k (21\’)”/203

Maximizing this density with respect to x is equivalent to minimizing the exponent € = |y-Cx |2 with
respect to x. Setting the corresponding gradient to zero gives

% = -ZCT(y-Cx) =0

or, equivalently,
CTCcx=CTy = x=(CTC)CTy

Problem 4.2:
The optimal H was found to be:

Hop = EyTJE[Wy']" = RyRE

a. The above is equivalent to the correlation canceler discussed in Section 1.4. There, it was shown
that H = H, minimizes the estimation error covariance matrix R.. = E[ee”]. In fact, we found
there that for a deviation H = H . + AH from the optimal value, the error covariance matrix
was R, = R + AHR,AHT. And, it is minimized when AH = 0,

b. Using this result and the matrix identity eTQe = tr(ee”Q), we find

E[70¢] = u(Efee”Iq) = r(ReQ) = tr(RFQ) + tr(AHR, AHTOQ)

Since Q is positive semi-definite, the second term will be non-negative, and again the minimum
value will be attained at AH = 0.

¢. For any given n, let Q, be the matrix that has 1 at the nth slot of its diagonal and zeros every-
where else, that is, its matrix elements are
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(@n)ij = bin b
Then, it is shown easily that
E[eTQe] = E[e?]

Problem 4.3:
The smoothing estimate is X = Hy, where H = Ro,R;L. We find

Ry = E[xy"] = E[x(FCT + ¥)] = R.CT
Ry = E[yy'] = E[(Cx + V)(<"CT + ¥7)] = CR,CT +R,,

where we used the fact that R, = 0. It follows that
H = RyR} = R_CT[CRLCT + R,J*

Problem 4.4:
In all Wiener filtering problems the optimal estimate is given by

% = Ely IE[yy'I'y = Hy
In each case, we must identify the vector of observations y on which the estimate is based. For a first

In
order Wiener filter, we have y = Yau I Thus,

E[oy'] = E fa[Yn, Yo ]l = [Re(0), Ryy(1)]
In Ry (0) Ry (1)
E[YJ’T] = E[{y"‘l} Dns Ynall = [Rw(l) Rw(o)]

Usingy, = x, + v, and the fact that x, is uncorrelated with vy, we find

R#l(k) = Rn(k) + Rn:(k) = Ra::(k) = Ufa k|
Ry (k) = Re(k) + Rp(k) = o2al*1 + o25(k)

It follows that
1+p a
EW]=O§[1"I]: E[yf]:a-z[ a 1+P]
o3 . . .
where p = ;2— 1S a noise to signal ratio. Then,




_ | _1+p-a® ap |
(1+P)2‘¢22 ' (1+p)2“02j

S
H=ng}£{yf}~‘={na1[ :plfp]

and the estimate becomes

X,=Hy=H

Yn 1+p-a ap
= + .
[y"‘lj (1+p)?*-a® e (1 +p)?-a? Yui

Note that if the noise term is absent, o2 = 0, then p = 0 and we have £, = y,, as it should because then
Yna

Xn = Yn. The 2nd order predictor is handled in a similar manner. Now, y = { Yz and
»

E[xnyT] = E{xu[yu-l syn-2n = [Rw(l): R:w(z)] =4 [ls a]ag

This differs by a factor a from part (a); also, because of étationarity, the vector y will have the same
autocorrelation matrix as that of part (a). Thus, we find ‘

= gH

1 -1
Hopea = Eru¥E YT = a[La][ i li,,]

where H was given in part (a). Therefore,

2 Yna

P —
(1+p)-a

n Yna 1+ _a2
= Hpgy=H|. | =a-ttee®
X, [.Yu-x] a a+ P)2 a2 Yna ¥

If we denote by x,;, the optimal filtered estimate based on {Vn>¥Ya1} and by x4/, the optimal
predicted estimate based on {y,.; , ya2}, then we have found the interesting relationship

‘i:"/“'l = ai’t'l/ﬂ-l = £n-q-l/n = afu/n,
The given expression for R, (k) implies the signal model for x,:
Xn =AXqq + &, U? = (1‘02)‘73

Thus, the above relationship between the predicted and filtered estimates is very reasonable. It states
that to get the optimal prediction of x, on the basis of the past two values of y,, first find the optimal
filtered estimate of x,,.; based on the same two past values, and then boost it ahead in time according to
the system’s transition matrix,

Problem 4.5:
Writing the estimate in vector form, we have

y(ny)

J?u =h (n’na)y (na) +h (n7nb).y (nb) = (h (n:na): h(n:nb)][

y(na)}
= Hy
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It is given that y(n,) = x,, andy (ny) = x,,. The required correlations are computed as follows:
Efy] = Eltalt, , %, ]] = R 0), Ra(nns)] = o2fa "™ g 17
Similarly,

X, Ra(0)  Ru(ng-my)
E[ny] = E Xy, {x"‘ Y B [ Re(ny -n,) R (0) ]

1 g !maml
=0z a [np-ny] 1

Solving for H = E [x,y" |E [yy* I, we find

H = 1 [a |men, | -a |neny | -Hq,-n., a [R-ny| -a [n-n,] +ub-n‘]

N 1- aq"b"‘t)

This expression is valid for all values of .

Problem 4.6;
Since x,, and v, are uncorrelated, we have

1 1-04z7 1-04z
= = +5=625
Sw(z) S,,(Z)} + Sw(z) (1 i 052-1)(1 -0.5) 1-0.5% 1-0.5z
Therefore, we identify the signal model for y,:
1-04z
B(Z):_l—:_a.—S;l—’ o? =625
Similarly, we find S, (z) = Sa(z) = L And,

(1-05z1)(1-05)

1

Sx@)] _ (1-0.52‘1)(1~0.52)‘ _ 1 ] _ 125

BEY|, 1-0.4z } (1-05)(1-04)] ~ 1-057
1-05 .

The corresponding Wiener filter is

1.25
__ 1 [Sa@] _ _1-0%F _ _ 02
FB@) [BEY)|, 4,5 1-04%  1-047

1-0.521

H(z)

with a difference equation %, /, = 0.4, /n-1 + 0.2y,. The estimation error is computed by the contour
integral:




= 2 - . dz - 0.8 __CZZ_ = =
& = Elea] = [ ) - HE)Sue)] 2z~ L M 05y 2y T R 7!
The improvement over not filtering at all and using y, as the estimate of x, is i 1/5, or 6.9

dB.

The prediction part is handled by defining x, (1) = x,,,. The problem of predicting x,, ., on the basis
of Y, is equivalent to the problem of estimating x; (1) on the basis of Y. Using the filtering equation
X1(@z) = zX (2), we find

Z
(1 -0.5z7)(1-0.52)

Szw(z) =285,(2) =

The optimal predic!;ioﬁ filter is
_Ga _ S :
@) = Dapgy s vhere G@) = BEY)  (1-057Y)(1-04)

The causal part of G(2)is found by first computing the inverse z-transform g, and then summing it up
forn >0:

zn+1

n =
&= f O A

= 0.4(0.5)"

where n > 0. Therefore,

C@), = 3 g = —04
n=0 1- O'Sz-l

The prediction filter is then

0.1

Hy(z) = ToaT o Xns1jn = 042,01 + 0.1y,

where we denoted x, , /n = x;(n). We note that the prediction filter H,(z) is related to the estimation
filter H(z) by H,(z) = 0.5H (z). Since both filters have the same input, that is, y,, it follows that

fn-o-l/n = 0-5'{;1;/»

Noting that S, z) = zS,(z)z?! = S=(2), and Sz, (z) = Sy(2)z?, we find for the prediction error

dz 1 dz
]

= — =125
2rjz (z -04)(1-0.52) 2nj

El = E[eizt-rl/n] = I[lezx(z) ’HI(Z)S&,(Z)]

wc.

It is slightly worse than the estimation error € because the estimation filter uses one more observation
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than the prediction filter, and thus, makes a better estimate.
Next, we derive the above results using a Kalman filter formulation. The state and measurement equa-
tions are '
Xne1 =05%, + W, and  yp =X, + v,
with parameters

=05, ¢=1, Q=1, R=5

The corresponding algebraic Riccati equation is:

PRa®? _ - p.l25P
‘Recr? T TisepT]

with positive solution P = 1.25. The Kalman gains are

cP
G=—%L _ _02, K=4G-=01
R + 2P e

We also find
f=a-cK=04, o2=R+c%P =625
Therefore, the prediction and filtering equations will be

-iu-)-l/n = fin/u-l + Ky, = 0.4&5/1;-1 + 0.1y,
£:m/;z =f fa—l/n-l +G }'ﬁ = 0'4315-1/3-1 + 02y,

Finally, note
RP
&, :EIe,":.,,ll,,} =P =125, & =E{eﬁ/,,} = m =1
- Problem 4.7:
Solving the Riccati equation
PRa®
R +c®P Q

withQ = 05,R = 1,4 = 1,and¢c = 1, we find P = 1. Thus,

- cP
G = —
R +¢?P

=05, K=aG =05, f=a-cK=05, o?2=R +c?P=2




FR——————.ry

The prediction and filtering equations become

in+1/n = 0.5.'?,,/,‘.1 + 0.5y,
f»/u = 05x3—1/§-1 + 0.5y,
Note, fp41/a = @kn/n = Xa/a. Also, because the signal model is marginally stable (rather than strictly
stable), the signal x, is not truly stationary. Therefore, it is not entirely correct to apply the above Kal-

man filter methods which were derived by assuming strict stationarity. However, as shown in Example
4.9.1, the time-varying Kalman filter converges asymptotically to the above stationary one.

Problem 4.8:
First, we derive a difference equation for e,/n1 = Xy - Zp/n-1.

€nilfn = X4l ‘£n+1/n = (axtp + Wp) - (.ﬁn/u-l + Kyn) = fen/n-l + Wy - Kv,

where we used y, = &x, + v, anda = f + cK. We may think of e, 1/, as the output of the filter

“;’.“__. M(ﬂ g &

M@Z) =

Nnatfa

L
1-f7

driven by the white noise input u, = w, - Kv,. Because w, and v, are uncorrelated, the variance of u,
will be ‘

0 = E[u?] = E[w?] + K’Ep?] = 0 + K?R
The power spectral density of e, , 4 /a Will be

- 1y _Q+KR
Su@) = AMOME™) = o s

Integrating S..(z) over the unit circle we find the variance of e, , 1/nt

) . & _ ¢ O+KR dz _o _Q+KR
P = E[ei.pl/u] = i-su(z) 2rjz - o (z -f)(l-fz) 2xj I}:fs l‘fq

The derivative of P with respect to the Kalman gain K is

_c_if_=2IG€-§cP
K~ 1-p
Setting this to zero, we find
KR =feP = (a-cK)eP = K=—9F _
R +c?pP

We can use this result to express f in terms of P:
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¢ acP = aR
R +c¢?P R +¢?%P

fza-cK:a-

Inserting the above expressions for f and K into P = Q—-ii—}lgi, we find

Problem 4.9: .
In the previous problem we derived the difference equation

€niifn = fenina + Uy, ‘Where u, =w,-Kv,

Because u, is white, it follows from the causality of this difference equation that E [¢,/s.1 #,] = 0. Using
this and stationarity we find

P = Efe,1)a] = PE[ens] + E[s2] = /P + (Q + K°R)

which may be solved for P = -Q—li—;iﬂz— Next, we relate the variance of e, , to the variance of e, /n-
We have

Cnslfn = Xnyi ‘£n+1/n = (@t + W) 'tlf,,/,, = ey fy + Wy

wy, is uncorrelated with e, /» because it is uncorrelated with x,,, y,, and all the past xs and ys. It follows
that

E[G?.u/n] =d’E {e?s/u] + E[W%] = P= azE[erzz/n] +Q
Solving for E [e2 /] and using the Riccati equation, we find

E[eﬁ/,] - £2-9 ___PR_

a® R +c%P

Problem 4.10:
Using the measurement equation y, = cx, + v,, we find

En = Yn - Xnjpag = (Cxu + vu) " nfn = Ceujn.y + Va

Now, v, is uncorrelated with x, and all past xs. Therefore, it is uncorrelated with ¥ and all past ys. It
follows that it is uncorrelated with €n/n-1- Thus,




02 = E[e2] = ¢*E[e3p1] + E[3] = c?P + R

Problem 4.13: '
First, note that the nth diagonal entry of this performance index incorporates the constraints required
for the nth estimate: :

Jo=E[ez] + (AH ) + (HA ) = E[eZ] + 2 3 At

i>n
Using R, = Ry - HRy, - RyHT + HR HT, derived in Section 1.4, we find
J =R, = Ry -HR,, - RyHT + HRGHT + AHT + HAT
The first order variation with respect to H is
& = (HRy - Ry, + A)EHT + 6H‘(fIRw “Ry + A
The unconstrained minimization of J requires & = 0 for all H. Thus, we obtain the conditions

HRy, -Ry +A = Ry -HR, = A = strictly upper triangular

which is the same as Eq. (4.8.3) subject to Eq. (4.8.2).
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Chapter §

Problem 5.1: .
Letx, = yn.p,sothat X (z) = z2Y (z). Then, the cross power spectral density will be

Sa(2) = 2P5,(z) = 022PB(2)B(z?) where S,(z) = 02B (2)B (z )

The Wiener filter for estimating x, from y, is then,

1 [Sa@)] 1 .p
H = = B Z
(Z) 0’33 (Z) {B(z.l)‘l+ B(Z) [Z ( )]+
The causal instruction is removed as follows:
EPB@), =20 +by2Pt +b5zP2 4+ oo 4 by +bp, gzt + -e e =
=bp + bg.._lz'l + e o= ZD(bDZ'D + bD+12"D‘1 + .- }

D1
=2P [B @-X b,,‘z""}

m:=0

Therefore, the prediction filter becomes

1 D-1
H(z) = ZD [1 - 'E‘(;—)- gobmz'm}

Note that its input is y, and its output is the estimate y, , p /n Of Yuy D
The first few terms in the power series expansion of Example 5.1.1 are

1

1097 10253 ~ 110927 + 06127 + -
-UJz 22

B@z) =

Therefore, the D =2 predictor will be:
H(@) =22 ( 1-(1-0921 + 022%)(1 + o.9z-1)] = 0.61-0.182"
with an I/O equation J, ,5/s = 0.61y, - 0.18y,.,. For D = 3, we find

H(z) = 22 [1 -(1-09z + 0.222)(1 + 0921 + o.slz'zj = 0.729 - 01222

with I/O equation }7,“3/,, = -0.729y, - 0.122y, . For Example 5.1.2, we have




2 42-
-025:2 |
B(z) = 129227 _ 1,08t + 03027 + o
1-0.8*
The 2-step predictor becomes

L.a -0821)(1 + 08)) 039

1-0252 | 1-0257

H(z) =22{

with difference equation Y .2/a = 0.25Yn/a.2 + 0.39y,. The 3-step predictor is

(1-081)(1 + 08T +0397) _ 0312
1-0.252 J o 1-0257

H(z) =23{1

with difference equation Y .3/ = 0.25¥n+1/n2 + 0.3125. -
Problem 5.2:

The prediction-error filter 4 (z) = 1/B (z) determines the projection onto the infinite past. Working
with z-transforms we have '

V) = Y(2)-ez) = [1-A@IY @) = -[a1z? + az? + -+ +az?|Y(2)
or, in the time-domain

n = '{al)’u—]. tagypa t 0+ apyn-pl

The prediction coefficients must satisfy Egs. (5.2.5) which are identical to Egs. (5.3.7) that determine
the projection onto the past p samples.
Problem 5.3:
p
Using e, = ¥ @ Yas, We find

1=0
P P T
o? =E[e2] = Y @E [YaiYnsla; = 3 aR(j-i)a; = a Ra
$,5=0 . §,)=0

The constraint ao = 1 can be written in vector form aTu = 1, where u is the unit vector

u=[1,0, ---,0f. The extended performance index incorporating this constraint with a Lagrange
multiplier will be

J = aTRa + 22(1-a"u)

Its first order variation with respect to a is

& = 25aTRa - 2aTu = 25a” (Ra - Ju)
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The minimization condition & = 0 requires
Ra = Ju
The Lagrange multiplier is fixed by imposing the constraint. Multiplying by aT we find
02 =a"Ra =)aTu =)

Thus, we obtain Eq. (53.7), Ra = o%u.

Problem 5.4:
Noting the 4% (z) are the reverse polynomials, we find for the inverse z-transform of Eq. (5.3.17):

rap+Lp+1- - 0 B r 11
Aps1p ap ap1
= “Tp+1
ap+1,1 a,,l aPP
1 1 0
L J L |

It is recognized as the upside down (i.e., reversed) version of Eq. (5.3.15).

Problem 5.5:
For arbitrary «, we have the matrix identity

1 1 411 -] 1 1-4% -l 4 gt _[10
1-¢ (% 2z|l-y 2 | 1.2 |2-2 1-7 | |01
Problem 5.6:

Sending the reflection coefficients through the routine frwlev, gives all the prediction-error filters up to
order four, with their coefficients arranged in reverse order into the matrix L:

1 0 o o
05 1 0 ¢
L={05 075 1 ¢

050875 4 1
05 -1 13125 .1.25

The 4th order polynomial extracted from the last row of L is

Ayz) =1-12521 + 1312522 .23 + 0524

Sending the coefficients of 4,(z) and E, = 40.5 through the routine rlev, gives the autocorrelation
lags:




Problem 5.7: a
Initialize by R (0)-1 = E,, which gives Eq = 256. Enlarge _thc 0Oth order normal equations by padding a
Zero:

256 128][1] [256 '

128 256|{0] = | Ay | = S0 =128
Thus,

Ho 128
M= = 5 T 05, and E; = (1-7)E; =192

The 1st order prediction filter will be

REEHRN

Next, enlarge to next size by padding a zero:

256 128 327 1 192
128 256 128{| 05| =] 0 = A =-96
-32 128 2564 0O ¥
Therefore,
A 96
']3’-'2“1":"1_9—2':‘0.5, and E2=(1"‘[§)E1=144
and the 2nd order prediction filter will be
1 1 0 1
an|=]-05[-(-05)]05|=]-075
axn 0 1 0.5
Enlarging to the next size, we get
256 128 -32 -16][ 1 144
128 256 128 32| 0.75
-32 128 256 128]| 05 | T = Hy=T2

0
0
-16 32 128 256|| 0 A,
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=2 -2 _05, and Es=(1-4)E, =108
T3 E, 144 an s =( "lg) 2
and the 3d order prediction filter will be
1 1 0 1 .
ax| |-075 0.5 -1
ag| =] 05|95 075! = |0s7s
B 0 1 0.5
Enlarging to order 4 by padding a zero, we get
256 128 32 -16 2 1 108
128 256 128 32 -16|| -1 0
-32 128 256 128 32| 0.875| = 0] = A;=-54
-16 32 128 256 128(| 0.5 0
22 -16 -32 128 256|| o As
Thus,
A -54
1‘='E-E3.=-05’ and E,=(1-7)E; =81
The 4th order filter will be
1 1 0 1
aq -1 0.5 -1.25
g = ]0875(-(0.5)]0875| = | 1.3125
da 0.5 -1 -1
Qu 0 1 0.5
Problem 5.8:

Sending the coefficients of A,(z) and £, = 0.81 through the routine rlev, gives the same matrix L as

that of Problem 5.6, and the following autocorrelation lags:

{R(0), R(1), R(2), R(3), R(4) } = {2.56, 1.28, 0.32, -0.16, 0.22}

Problem 5.10:
The sample autocorrelation of the first sequence is computed by

Rk) = § COMECD)R = (DF(5-k), for k=0,1,23,4

n=0

or,




{R(©0),R(1),R2),R(3), R@)} = {5, 4,3,2, 1}

Sending these through the routine lev, gives all the prediction filters up to order four, arranged into the

matrix L: :
1 0 0 0
08 1 0 0
L =]-0.1111 08889 1 0

0125 0 0875 1
01429 0 0 08571

and the vector of prediction errors
{Eo,E,,Eq,E3,E} = {518, 1..778, 1.75, 1.7143}
The I/0O equation of the 4th order predictor will be
y“,.‘ = 0.8571ypy - 0149y, == y, = -0.8571 + 0.1429 = -0.7142
The second sequence has autocorrelation lags
{R(0), R(1), R(2), R(3), R(4)} = {55, 40, 26, 14,5}
Sending these through lev, givles
1 0 o g
07273 1 0 0
L=1]01193 0814 1 0

0.0937 0043 08029 1

0
0
0
0
0.0543 0.0501 0.0454 -0.7978 1

with 4th order prediction
Fn = 0.7978y,, - 0.0454y, 5 - 0.0501y, 5 - 0.0543 y,

Problem 5.11; ’

For the first sequence, we have v, = R(1)/R(0) = 0.5 and E; = (1-7%)R(0) = 0.75. The maximum
entropy extension keeps all the prediction error filters equal to the first order filter, that is, 4, (2)
=1-9z? = 1-0.5z". The maximum entropy spectral density will be, then

_ E, _ 0.75
T Ay@dA Y (1-0521)(1-0.52)

Sw(®)

The inverse z-transform of this leads to R (k) = (0.5)!*!. For the second sequence, we determine the
first two reflection coefficients {;, 72} = {0, 0.25}, and the corresponding 2nd order prediction filter
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Aa(z) = 1-0.25z* and prediction error E, = 3.75. Therefore, the maximum entropy spectrum will be

@) = — 22 . 315
w Ax(2)a(h)  (1-02527)(1-0.2527)

Taking the inverse z-transform of this spectral density leads to
R(k) = 2(05)%! + 2(0.5)!*!

Problem 5.12:
We have from (5.3.24);

p+l 4
R(I) +1) = e 2 ap+1,!'R@ +1'l) = - 2aP+L;R(p ""1'!) 'ap+1’p,,.1R(0)

f=1 f==1

From the Levinson recursion, we have @p,1p41 = -Tps1 and Gp.1; = dp-Ype1@ppiter fOT
i =1, +--, p. Therefore,

R (P +1) = - f} (ap' “Tp+l ap,p+1-i)R(p +1‘i) + '7y+1R(0) = Tp+l [R (O) + Zp:ap,pq»l-o'R(p +1‘i)] - é axx'R(P +1'i)

=1 =1 f=1

But, we recognize

R(O) + iam,,,l..-R(p +1-i) = f)a,.R(i) = Ep

$=1 §=0

Problem 5.13:
Initialize the split Levinson recursion by

1
b =12, ‘fx=[1], 70 =R(@0) =25, %=0

1
Next, compute r; = [R(0), R(1)}f; = [256, 128] 1| =384, and ay = 1 /ro = 384/256 = 1.5, and then,
Nn=-1+a/(1-v%)=-1+15=05.Then, up&ate the symmetric polynomial

£1 o 0] [1] [o 0 1
fa=[0]+[4-q L =|1]+[1]-15[2| =1
o] |1 o] |1

Next, compute




1
2= RO R, RO = 256,128, 32| 1| =96 — o= 2= 2025
1 1
and find v, = -1 + a3/(1-4;) =-0.5. And then, update to fy:
1 0 0 1
8], [0 M ETE 1| |25
Tlol o h = g ] a]-025 ) 1] = | oas
0 0 1 0 1
Next, compute
1
_ 025 s 216
= RO RO, RE), RE)s = (256,128, 32, 16]) 35| =216 = oy = > = 26 - g5
2
1
and find 75 = -1 + a5/(1 - ;) =0.5. And then, construct f,:
1 0 0 1
£ [o 01 |-025 1 1 15
fy = [0] + [f3] ~aylf| = | 025{ +|-025]-225]-1] = 1.75
0 1 025 1 15
0 1 0 1
Next, compute
1
1 T 54
7 = [R(0), R(1), R(2), RG)R (At = [256, 128, -32, -16, 2)| 1.75| = 54 = @ = == =025
-1.5 3
1

and find v, = -1 + ay /(1 -73) =-0.5.

Problem 5.14: ,
The prediction-error filters of Problems 5.6-5.8 are all the same. The fourth order polynomial is

Agz) =1-125z7 + 131252222 + 0524

The corresponding reflection coefficients are

{m,m,m,u}={05-0505 05}
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The analysis lattice filter is

4 +
> AQ)
€ (»
The synthesis filter is
Yo €
NE-2
Problem 5.15:

Sending the coefficients of the first polynomial through the routine bkwlev, gives the reflection
coefficients:

{’71)‘72’73;74} = {2?0'3’ 0~4’ 0'5}

Because one of the reflection coefficients has magnitude greater than one, the polynomial will not be
minimal phase. The reflection coefficients of the second polynomial are:

{7,727, u}={02030405}

Since all of them have magnitude less than one, the polynomial will be minimal phase.




Problem 5.16:
For a gaussian density, we have

CXP[";—YTR"?]

(2x)M/?(detR)!/?

PG = —  -lp() = 3 In(@etR) + In (@047 + ZyRy

The entropy S is the expectation value S = E[-Inp]. Noting that YRy = tr(yy*R™), we have
E[Y'RYy] = tr(E[yy'IR™) = tr(RR™) = tr(I) = M. It follows that

S = E[-lop] = -%-ln(detR) rec

where ¢ = In((2x)yM/?) 3 M /2. Using the LU decomposition of R, that is, LRLT = D, we have
(detL)*detR = detD = ] E;. But, detL = 1 because L is unit lower triangular. Therefore,

i=0

$=0

1 1 1, (M 1 M
Sy = =In(detRy) = —In(detDy) = —In| [[ E;| = — S nE;
2 2 2 2 5

It follows that the entropies of the order M and order p cases will differ by

-5 = 3 o) = 3% ) = 3,5, 05

The errors E;,i = p +1, * -+ , M are given in terms of the reflection coefficients Tpels " 5 Tap DY
Ei= (-9 (L-Bu)Ep<Ey, i=p+l, -, M

with the maximum value attained when all the new ~ys are zero, that is, 7? = 0, fori =p +1, --- ,M. It

is evident, then, that Sy, (with S, fixed) will be maximized.

Problem 5.17: »
a. By definition, we have LT = [bg, by, -+ -, by]. It follows that
[ Ed by ]
M ' E{ b
EE-;be:}!;= [b‘)’bl: e ’bM] .' =LTD‘1L —"—'R’l
=0
Ejbi
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g
a;
A@)=ag+ayzt + - +ayzM=[1,2z1, -, 2M])| - | =s)a

am
The inverse z-transform can be written vectorially as
dz 1y dz
G = [AQE™5 = = a= [A@)sE7)5—
‘{. ( 2njz i 2xjz

where, s¢z1) = [1,z, - -+ ,zM[.

¢. Using the results of part (b), we have

K(@zw) = s@)Tkw) = s@z)TR s(w) = s(z)"RRRs(w) = k(z)"Rk(w)

d. First, note

Is@) = g™, - 24 1 =2 M[1,z, -+ 2MF =2 M5z
Using the fact that R and R are invariant under J, that is, JR™™J = R, we obtain

K(@zw) = s@TIRs(w) = zMwMsz1)TRIs(w?) = zMwMK 27 w)

e. From parts (a-c), it follows

K(@zw) = s@)TRIs(w) = T s@@)Th,——bis(w) = 35 —B,()B,(w)
p=0 E, p=0 E,

where, B,(z) = s(z)Th,. Using part (d) and the fact that polynomial B,(z) is the reverse of 4,(z),
we find

M M
K(@w) = 24w MK @ wt) = 24w 5 2By B, 07) = 2 B 2 A, A )
p= P p=

or,

M
Kezw)=Y 1 A,y (2)A, (w)z MP)yM7)
E
p=0 P

Problem 5.18:
By definition, we have R;; = R (i -j). Thus,
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. ieg dz4 _ R dz
RG-1) = [ Su@ 5t = R= [ Sa@sesCN 30
Using the above result and the definition k(z) = Rs(z), we find

R = RIRR = i Sw(z)R‘ls(z"‘)s(z)TR“E;% = ‘L Sw(Z)k(Z“)k(z)"f;

Using the above result and the definition of X (z,w), we find

K(z,w) = s@z)TR s(w) = fSw(u)s(z)Tk(u‘l)k(u)Ts(w)-—-——!;— = fSw(u)K(z uHK (u, w) 2 -

Problem 5.19:
(a) First, note that s,(z) admits the decompositions

1
pe |
R $p-1(2) 1
5() = {' ) =[ z? ]= [z"s,,.;(z)]
znpe
Z‘P

Using the order updating property (5.9.11) (see also (1.7.28)), we have

RL 0 .
R} [oro] ——b,bT

It follows that k,(w) = Rys,(w) can be written as

Ry 0] [ Sp1 (W) kp-l(W)]

K(w) = [ o 0 w-p' ] + 'é:bpbgsp(w) = [ 0 + El;'prp(W)

The second decomposition follows from the order updating formula (5.9.16), or (1.7.35), that s,

R} = 0 & L g af
ORp.l E, L

Then, we have

k?(w) = [0 R;l.l][W'lsp_l(W)] + "E':apapsp(z) = [ lkp (W)} a,,Ap(w)
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The above equation can also be obtained by reversing the first one. To see this, note first that the
reverse of k,(w) is J,k,(w) = RJ,s,(w) = Rj'wPs,(w?) = wPk,(w™), where we used /R, = RjJ,.
Then, using the fact that a, =J,b,, and A,(w) =w?B,(w?), we get k(w) = Jp.f,,k,,(w)
= wPl k,(w?), or,

kp. (W'l)}

‘ , Y
k,(w) = w“’],,{ 0 + -E;;'W?be?Bp(w‘l) = [w-p] 1k l(w-l)] aPAv(w)

and use the property w?J, k.. (W) = w1 o kya W) = wik,a(w).

(b) These recursions can be proved using the results of Problem 5.17(c), or they can be proved
directly as follows .

K, (zw) = 3,@) k() = [522)7, 11[‘("2(‘”)] * Esr B )
or,
Koem) = Kpa(aw) + 5-By@)B,)
Similarly,
K,<z>=s.,(z>fkp<w)=u,z-1s,,.1(z>fl[ ik (w)] B 2ty )
or,

Ky(zw) = 27wk, (z,w) + — ,(z)A,,(w)

(c) Multiplying the first of the above recursions by z7?w™ and subtracting to cancel the
z'w1K,.1(z,w) term, we obtain the required result. Similarly, if we subtract them to cancel the K, (z,w)
term and solve for K, ; (z,w), we obtain the result of part (e).

(d) Because 4,(z) has real coefficients, we have 4,(z*) = 4,(z)*. Then, applying part (c) with
w = z* we obtain

214 2_1B 2
K,62") = @RI 0" = A A1 O L BE)]
P

Ifz = z is a zero of A,(z), that is, 4,(z) = 0, then, we have

1 1B@)1°
E, 1-|z]|?

K,(zi,2*) = s(z)TRs(z)* =
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Because R} is positive definite, the left hand side will be positive. Thus, all the factors in the above
equation are positive, and we obtain 1- |z |2 > 0 or, |2 |2 < 1. Similar methods can be used to
reach the same conclusion by working with the expression in part (e).

Problem 5.20:
Initialize the Schur recursion by
256
128
8 =g = |32
-16
22

Compute v, = g5 (1)/g5(0) = 128/256 = 0.5. Then, using the Schur recursions, construct the order-1
gapped functions for 1 <k < 4. This can be done conveniently in vector form:

J L J L

& (1) [ 128] [ 256 [ 0]
8t (2) 32 128 -96
g®| =167 % 32=]o
g@ |2 16 |30

& (1) r256 - 1281 - 1927

&s| 128 32| |14
g®| 732793 16| = | 24
so| [7] 2] 7]

Then, v, = g (2)/g1 (1) = -96/192 = -0.5. The order-2 gapped functions are for 2 <k < 4:

8] .96 11921 [0
g®)|=]0|-(05]144]=|72
g (4) | 30 ] | 24] |18
&2 190 961 [ 144
8&3)| = |144|-(05)] 0 | = | 144
FACT I Sl [ 30) |9

Then, 13 = g (3)/82(2) = 72/144 =0.5. And, the order-3 three gapped functions are for 3 <k < 4:

83 (3) 72 144 0
ssc0] = []-03 3] - [ 3]
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£ [144 721 [108
o] - [a]-os] - 1]
And we find v4 = g§ (4)/g3(3) = -54/ 108 = 0.5. The figal order-4 gapped functions are for k = 4:
gt (4) =-54-(05108 =0, 31(4) = 108 - (-Oj)-S4 =81
The computed backward gapped function values are the lower triangular part of G; therefore,

26 0 0 0 o
122192 0 ¢ o
G=|-32144 144 ¢ ¢
-16 24 144 108 0
2°27 9 13581

Problem 5.21: :

Let x = [256, 128, -32, -16, 22]" be the input to the forward and backward prediction filters. For each
order p = 0,1,2,3,4, we compute the convolutions a,*x and af*x, and from each keep only the first
M +1= 5 outputs. These are the columns of the matrices Y. We find

256 256 256 256 256 256 -128 128 -128 128
128 0 64 .128 -192 128 192 -128 160 -192
Yr=1329 0 64 144|, Y =|32 144 144 128 197
6 0 2 0 44 16 24 144 108 -128
2 30 18 54 ¢ 2 27 9 135 8

The lower triangular parts of these matrices agree with the gapped function values computed in the
previous problem.

Problem 5.22:
Initialize the split Schur functions by go(0) = R(0) =256, % =0, and go(k) = 2R(k), gi(k)
= R(k) + R(k-1), fork = 1,2,3, 4. This gives,

(200]  [2s6

8:(1) 384
ot I ol I PRCT B
wo)| |2 (B0
804 4

Then, compute oy = g;(1)/g0(0) = 384/256 = 1.5 and 4, = -1 + /(1 -%) = 0.5. Then, using Eq.
(5-10.20) written in vector form, construct gapped function g,(k) for 2<k < 4:




£2(2) 9% 384 256 9%
223) = | 48] + | 96 |-15] 64| = | 144
a@®| L6 48 32 6

and find ap = g2(2)/g:1(1) = 96/384 =025, and v = -1 + op/(1-v) = -0.5. Next, construct the
gapped function ga(k) for3<k < 4: -

8s(3) 144 9% 9% 216
33(4)} = [ 6 } + [144]'0‘25[-48} = [162]

and find a3 = g3(3)/82(2) = 216/96 = 2.25, and 73 = -1 + a3/(1-7) = 0.5. Finally, construct the
gapped function g,(k) fork = 4:

244 = 23(8) + g5(3) -z gz(3) = 162 + 216 - 2.25x144 = 54

Thus, aq = g4(4)/gs(3) = 54/216 = 0.25, and v = -1 + a/(1-73) = -0.5. The order-4 prediction
error is computed by E = go(4)(1 - ) = 54x(1 +.5) = 8L

We illustrate the computation of the Cholesky factors by computing column 1 of G, that is, gj (k) for
k=12 ---,4. The first value is g;-(1) = E; =g,(1)(1-7) = 384x(1-0.5) = 192. Then, Eq.
(5.10.21) written in vector form reads

@] [ 192 961 I 9 192 48
50| =|a@ +(1-o.5){48}-[144}= g @)+ |-168
&M@ &0 61 16] |g@) 3

with solution [g3 (2), £i (3), £i (4)] = [144, -24, -27]. It agrees with Problem 5.20.

Problem 5.23:
(a) The required result follows from the identity

[1-azt|%-|a*+2V |2 =14+ |a|?|z]2-2Re(az?)- |a|%- |z ]|? + 2Re(az?) =

=(@-la|H1- 1z %)

If J]a| <1, then part (a) implies that the left hand side is <1, =1, >1 according as
|z | > 1, =1, < 1. Because 4,(z) is a minimum phase polynomial, it can be factored in the form

P P
A@) = [I(1-a2z") = AF@) =l (w* +2z%)

(234 f=1"

with |a; | < 1. Thus, | S,(z) | % is written as a product of factors as in part (a), and each factor has the
required properties.
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Problem 5.24:
First, find v3 = -S3(00) = -0.125. Then, apply the backward Schur recursion to find

S3@) + 7 _ _0,1111-0.8889z7 + z2
1+ 7S3(z) 1-08889z7 +0.111127

Syz) =z

This gives, 73 = -0.1111, and

z S202) + _ 08+ z1
1+ %S2(z) 1-08z%

$1(@z) =

Thus, v; = 0.8 and So(z) = 1.

Problem 528:
The filtering equations for vy (n) and v,(n) are in the z-domain

Vi) =@V (E) and Vi) = Ha@V Q)

where

1 and H,(2) = 1

Hi@) =
1@) 1-a,27 1-a,z70

Since s (1) is uncorrelated with vo(n), it follows that

1
(1-arz9)(1-a52)

S,,(Z) = S“,’(Z) = HI(Z)H2(Z-1)Sw(Z) =

where we used S, (z) = o7 = L. Similarly,

1
(1-a3z1)(1-a32)

Sw(z) = Svgv;(z) = Hg(Z)Hg(Z')‘)S,,(Z) =

The cross-correlation is computed for k > 0 by

k
z* dz ai

W(k) = fsw(z)zk 2,',]2 -‘{.m ] 1-ayaq

i

Similarly,

zk ﬁ_ as
Ra0) = [ Su O = | e " 1o

The infinite-order Wiener filter is obtained by




.58

HE) -

1 S4(2)
@) |BGY),

with B (z) = H,(z) and 0? = 02 = 1. We find

Sa@ _ HOHEY o

BEY)  Hyzh)
which is already causal. Therefore,
) = =L m@) - S 1 (e L
D e——————— R ——— - a - ———————
¢ H3(2) 1¢ 1-a,2% 1772 a2t

having causal impulse response
h, = 6(n) + (ay -az)at u(n-1), = where u(n) = unit-step

Note, that the infinite-order Wiener filter causes exact cancellation of the v;() component of x (n).
Indeed, working with z-transforms, we find for the estimate of x () '

H,(z)

X@) =HE)Y(E) = Ao

Hy@)V (@) = Hi@)V () = V1(@)

or, £, = vy(n), and the estimation error becomes

e(n) = x(n) -3(r) = s (1) + v2(n) -1(3) = 5 (n)

With the choice of parameters M = 4,a; = -0.5, a3 = 0.8, we find for the first M +1 = 5 values of the
infinite-order impulse response

h = [1, -1.3, 0.65, -0.325, 0.162]"
Using the routine firw, we find for the 4th order Wiener filter
h = [1, -1.3, 0.65, -0.325, 0.116]"
The two h differ only in their last entry. The corresponding lattice weights are also produced by firw:

g = [0.257, -0.929, 0.464, -0.232, 0.116]"
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Problem 5.26:
The matrix inverse is easily verified by direct multiplication. For example, for M = 2, the autocorrela-
tion matrix is

: '1 ag,ag
1
Rw= 2 az; 1 ag
1-a3 2
az daq 1
and we can verify explicitly

1 a, a§ 1 a2, 0 100
12 az 1 az||az b -az{=|010

aaz; 1|0 4, 1 001

The optimum Mth order Wiener filter is given by h = R;lr, where the cross-correlation vector r has
entries

at

rk =RW(k) = 1_a1a2

for k=01, -, M

. Using the expression for Ry, we find for the first and last entries of h
ho =Fg=~dgly = 1
(ay -az)ay"?

hy =ryq-037ma =
1-a;aq

Note how hy, differs from the infinite-order case. For all the other values of k in the range 1 <k < M-1,
the expression for h; agrees with the infinite-order case. We have:

agatt + (1 + ad)ak - axatt?

- S _ kel
hy = aarey +bre-azre,; = = (a; -az)ay

1-a,a,
It is easily verified that the matrix L appearing in the Cholesky factorization of Ry,
LRWLT =D = diag{EO’Els ot sEM}

is the lower triangular matrix (shown here for M = 3):

1 0 009
<42 1 00
L=1o a; 10
0 0 w1




with the prediction errors
Eo=1, E,=1-a3, E,=E,, for p22
Since h = LTg, it follows that hy = g and
hngm-dggm+1 for 0<m<M-1

Problem 5.28:
Initialize the algorithm by defining

e (n) = ya = [4.684, 7247, 8.423, 8650, 8.640,8392] for n =0,1,2,3,4,5

y2 ='60.884. Next, compute the first reflection

Mo

and computing the Oth order error Eo = —é—

n=0

it

coefficient using

5 e (n)es(n-1)

2% ed (n)eg(n-1

- _ 630477
5 638242
S ed ()P + e o

- ma=l

= = 0.987

Then, E; = (1-43)E, = 1.573, and the 1st order prediction error filter will be

1 1 0] [ 1
au| = 0] 0987} 1| = |-0987
Next, we update the forward and backward error signals. Forn = 1to 5 we have

et (1) = €3 (1) -1 €5(0) = 7.246 - 0.987x4.684 = 2.622

€1 (1) = €5(0) - ef (1) = 4.684 - 0.987x8.423 = -2.469

Similarly,
e (2) = 8.423-0987x7.247 = 1.270,  €i(2) = 7.247- 09878423 = -1.067
ef (3) = 8.650 - 0.9878.423 = 0336, €1(3) =8423- 0.987x8.650 = -0.115
ef (4) = 8.640 - 0.9878.650 = 0.102, €7 (4) = 8.650 - 0.9878.640 = 0.122
et (5) = 8.392-0.9878.640 = 0.136, €j(5) = 8.640 - 0.9878.392 = 0.357

The next reflection coefficient is computed from

JORp—
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5
2N ef (n)ei(n-1
E_ﬁ]ﬁ t (n)ei(n-1) T084 _ oo
BETE oo
3 ler (n)? + ei(n-1)%]
n=2

with prediction error E; = (1 -93)E; =0.614. The 2nd order prediction filter will be

1 1 0 1
an| = |-0987]-(-0.781) | -0987| = | -1.758
am 0 1 0.781

Problem 5.29:
See solution of Problem 2.4.

Problem 531:
The boundary conditions at the interface are

E, +E.=E," +E." E¢-E_=—ZZ-,—(E+‘-E_)
Adding and subtracting, we find
1 Z 1 VA . 1 zZ ., 1 V4 .
==l1+ ZE, "+ =1- = ==|1-Z|E, " + =|1+ =|E.
E. 2{1+2'}E+ *2[1 Z’]E’ > E. 2{1 Z'] + z[ Z’]
But, note

Using the above boundary conditions, we have
LRel(E, + E)y*L(E, -E) = LRe|(E, " + E.)*(E, -E.°
2 * Szt 2 * A )

The conservation of the Poynting vector follows from this.

Problem 5.32:
Writing Eq. (5.13.2) in terms of the normalized fields, changes the scale factor -i— to

ivz: _z+Z 1
r vz 2zZzZT ¢

where
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. 12y1/2 s
,_.(1-p2)1/2= 1- Z-Z - VZZT
1z +2Z Z+2Z

Problem 5.33:
Figure 5.14 defines the reflection and transmission responses of a slab structure., From the first figure,

it follows that the incoming fields [0] will cause the outgoing fields [;] From the second figure, the

incoming fields 1| will cause the outgoing fields {T] By definition, the outgoing and incoming

fields are related by the scattering matrix S. Thus, we must have

L=l []-<[3

These must, therefore, be the columns of S; i.e.,
TR’
TIRT
In general, we may write the incoming fields

2] e+ ]

By linear superposition, these will cause the outgoing fields

E” Rl [TR
E.|=|R|E+ *|T|E- RTHE}
Problem 5.34:

By direct matrix multiplication, we have

i /2[1 pl[1 0] ,1/21 - 1 1 -p1[1 @z 1 1‘P2 0
¢(21)T13¢(z)=£;._[m ZHO -I]Zz [p z1 } 2 [PZ 'ZH/) z“}z 1~p2{ 0 1'Pz}=13

Similarly,

Y210 1)1 ][0 1] Ly
Tz, = E_r[l OHp 22'1”1 0} 12{ ﬂz} Pz = We2)

Problem 5.35:

The proof is by induction. The required properties are trivially valid for m = 0. Assuming they are valid
for order m -1, that is,
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Ama@) =1+ - 4 popna 2D Boiy@) = ppa + o+ pz
and using the lattice recursions we find that the properties are satisfied for order m. In fact,

Am(Z) o [1 4 e 4 Popm-lz-(m‘l)] + PmZ'llﬂm.x e POZ“(""’-)] = T4 e 4 Pobmz™

Bm(Z) = Pm,II 4+ e 4 A)Pm-lz.(m.l)] + z‘llpm—l 4 e 4 poz“(m'l)] = fm v 4 poz‘m

Problem 5.36: .
From the given expression for R (z), we identify the polynomials 4 ,(z) and B (z):

Ayz) = 1-0.125z71 + 0.66423 - 0.0625z4
B(z) = 0.25 + 0.0313z7 + 0234422 -0.265622 + 0.25z

From the lowest coefficient of B (z), we find p, = -0.25. Inserting this into the backward recursions,
Egs. (5.13.36), we find

As(z) = 1-0.125z7 + 0.0625z2
Bs(z) = 025z - 0.26562% + 025z

From the lowest coefficient of B3(z), we find p3 = 0. Then, the backward recursion gives

Az(z) =1-0.125z71 + 0.0625z2
Ba(z) = 0.25-02656z" + 02522

This implies p; = 0.25. The backward recursion gives, then

Ay(z) =1-0.0625z
Bi(z) = 025 + 02577

therefore, py = -0.25. The last backward recursion gives
Ao(z) =1, Bo(z) = p =025

Problem 5.37:
Use the recursion

Om = lmlng ** t1lo = lmOp.y , Where f, =+/1-p2

Then, we have




Ta(z) = amz-mh . tmz-1/2om_lz{m-1)/2 . tmz-ljz Um.iz'(m'l)/z
" An@)  Ani(2) + Anz By (2) 1 Bai@)  Api(2)
: 1+ ppzt—m—2
Am«l(z)
or, |
‘mz /2 Tm-l (Z )
Tn(z) = Y
1+ anz Ry (2)
Problem 5.41:

Using the property tr{AB] = tr[BA] which is valid even for non-square matrices (as long as the pro-
duct 4B is square), we find

tr[P] = ufY (YTY)1¥7] = te[(YTY) YTY] = trilp ] = M +1

where Iy, is the (M +1)X(M +1) identity matrix.
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Chapter 6

Problem 6.2:
Starting with Eq. (6.2.7), we have

M
sLRs, = 33 R(m-De ™) = TR (k)e7*
mJl=0 ki

where we changed the summation indices from the pair {m,/} to the pair {k,/} where k = m - I. Since
m and [ are in the range [0, M], it follows that k will be in the range [-M, M]. Since the / summation is
done first, its range may be further restricted by the value of k. Indeed, / must satisfy both of the fol-
lowing inequalities

0<ISM, 0<m=1+k<M = -k<I<M-k
The two combine into one
max(0, k) <! < min(M, M -k)

Thus, the above sum becomes

M

min(M.M-k) . M .
P Y Rk)e*™ = ¥ [min(M,M -k) - max(0,%) + 1]R (k)e?*
k=-M |=max{0,-k) k=-M
It is now easily verified that

min(M, M -k) - max(0, k) + 1 =M + 1- |k |

Problem 6.3:
The peak of the first sidelobe occurs approximately halfway between the first two zeros of W (w), that
is, at w; = 3r/(M +1). The relative drop with respect to the main lobe will be

(3
W) _lsm{zwm]
W) | 2 I

2AM +1)

Using the limiting property i)—:mi — 1 for small x, we find for large M:

WO N -3—9‘--:1346dB
lW(wl) 2




Problem 6.5: v
Multiply R - 021 = SPS*t from the left by S* and from the right by S to get

SYR -o2D)S = (S’S)P(;S‘ 1) = (S'S)yLsHR -oIDS(StSyt = p

Problem 6.6 .
R itself may be expressed recursively as follows. Let

k
Ry =dll + P, SunSh,
=

Then, R = Ry, and we have the recursion
Rk = Rk-l + Pkswks,f,i

It may be initialized by Ry = o2I. The required expression for R{ follows from the matrix inversion
lemma, that is,

(R + APB)Y! = R .R14(p1 4 pR1y Y!BR
with the substitutions:
R—Ru, 4>s,, B —-sl,, Pop

Problem 6.7:
First, note that for an arbitrary vector a and corresponding polynomial 4 ),

a=lag,ay, -, aq,f, A@)=ao +ayz0 + ... + apz™M
we can write
sl,a=4d (€™
Next, note that the polynomials corresponding to the given vectors e are
E2) =27Eo@@), i =0,1, -~ ,M-1, where Eo(z) = 1-¢™1;1
Since Eo(z) has a zero at e’ so will all of the above. Thus, we find

she =E(e™)=0, i=q1, e M1

But this implies that they are all eigenvectors of R belonging to the minimum eigenvalue A = o2,
Indeed,
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Re; = oje; + Pys, sl e = ol¢

The polynomial 4 (z) corresponding to an arbitrary linear combination of e is

M1 M1 M1 )
A@) = T aE) = ¥z Eo(z) = Eo(z){ Zm.‘}
=0 =0 =0
or,
A@E)=(1 'e-’"’"z‘l)(co +eyzl+ oo 4 Cata z«(M—z))
Problem 6.8:

The first order minimization condition of the extended performance index is

6€ = 6a'Ra + a'Réa - a'a - \a'fa = fa'(Ra - Ja) + (Ra-Ja)lsa = 0
Because éa are varied as though they were unconstrained, the above condition requires
Ra=)a

Multiplying by a' and imposing the constraint ata = 1, we obtain

€ = atRa = Jala = )

That is, the extremal value of the performance index is equal to the corresponding eigenvalue. Thus, to
minimize it we must choose the minimum eigenvalue and corresponding eigenvector.

Problem 6.9: ,
The conditions given in Egs (6.3.9) can be written in vector form

E[v(n)*v(n)T] = 0?1, E[4;(n)v(n)*] =0

Using these, we obtain

R = E[y(n)*y(n)"] = E[v(r)*v(n)"] + §LJ sk E [Ai(n)*4;(n)]sk, = o3I + .SL_,’ se, Pl

6y=1 f,7=1

Problem 6.10:
From the Levinson recursion, we have (depending on whether yyy = -1 or 73, = 1)

Am(2) = Apa 2 2745 @) = Ay () = 2M4,,, @)

It follows that Apg(z) will be symmetric or antisymmetric, and therefore its zeros will come in pairs z;
and 1/z;. Now, because all the zeros must satisfy the minimum phase conditions |z ] <1, it follows




that |1/z | <1 and therefore |z | = 1. The vector of coefficients satisfies the normal equations
Ray = Epu = 0, because Eyy = (1-~3)Ep; = 0. Therefore, ay, is an eigenvector belonging to zero
eigenvalue. Normalize a,, to unit norm by defining ey = ap/|lay]|. Let E = [er, e3, -- -, ey] be the
rest of the eigenvectors belonging to the remaining M nonzero (positive) eigenvalues of R. They satisfy
the eigenvalue equations RE = EA, where A is the MxM diagonal matrix of the nonzero eigenvalues.
The completeness of the M +1 eigenvectors implies EE! + eel = Iy, ;. Therefore, R is representable
only in terms of the nonzero eigenvectors (i.e., the signal subspace eigenvectors)

R = REEt + Reyel = REEY = EAEt

Letz; = e’.““, i =1, --- M, be the M zeros of the polynomial e;, and define the corresponding M
phasing vectors, arranged as the columns of the matrix S:

S=[81,82, ""SM}: =S8, , i=1,2,"',M

Each s; is orthogonal to e,, because sieo = E (e™) = 0. Therefore, they lie in the space spanned by
E. Conversely, if the columns of S are linearly independent (which we assume) then S is a non-
orthogonal basis of the same space. Thus, the two bases £ and S must be linearly related, that is,
E = §C, where C is an MxM invertible matrix. It follows that we may express R in terms of the signal
basis S, as follows

R = EAE' = SCAC'S! = SPSt, where P= cact

Next, we argue that P must be diagonal. Each phasing vector admits the decomposition (see Problem

5.19)
5; 1
S = [ei“J = [e“ii]

where § is a phasing vector of order M -1. It follows that S will admit the dccompositibns
S . . ‘
S=[‘]={§DJ, where D = diag{e™, ..., ¢/

and the “don’t care” entries have been denoted by *. It follows that R admits the decompositions

. _[SPS » . .
R=SEST=1 e wl=l v gpppist

If R is Toeplitz, then its upper left corner must equal its lower right corner (see Section 1.7, p.49).
Thus, we must have

SPS = SDPDISt

But S is a square (MxM) Vandermonde matrix with distinct columns, Thus, it must be invertible. Using
Dt = D™ it follows that

L -
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P=DPD! == PD=DP = P = diagonal

Problem 6.12:
(a) Using the normalization condition a'Qa = 1, we find for any generalized eigenvector

A = Ja'Qa = a'Ra = 0%alQa + ‘%P;(a’sh)(si!a) =02 + f;P,- |A@E*) |2

f=1 [E31

The positivity of the second term implies that the minimum eigenvalue o? will be attained whenever the
eigenpolynomial 4 (z) has roots at the plane waves z; = ™', that is,

sfta=A@Z)=0, i=12 --,L

Conversely, any eigenvector belonging to the minimum eigenvalue must satisfy these L orthogonality
conditions. Thus, the dimensionality of the subspace spanned by such eigenvectors (the noise subspace)
will be M +1-L. It follows from the above expression for A that the remaining L eigenvectors will have
eigenvalues strictly greater than 2.

(b) The orthogonality condition follows from the reality of eigenvalues and the hermiticity of R
and Q. We have

0 = alRa; - alRa, = MalQa, - \alQa, = (2 - A)alQa;,

which implies alQa; = 0if A, #),.
(¢) The L (linearly independent) direction vectors Q- Sk, lie in the signal subspace, because they
are Q-orthogonal to the noise subspace. Indeed, if a is any noise subspace eigenvector, we have

alQ(Q%sy,) = alsy, =A(z)* = 0

(d) We have already seen that any noise subspace eigenpolynomial will have at least L zeros at
the desired locations. The remaining M - L zeros could lie anywhere.

Problem 6.13:
It is easily checked that e, and e, are orthogonal to Sg,. For example,

sh.e; = [1, e*?, e 1 | =0 -

It follows that e; are minimum eigenvectors; ie.,

Re; = 07Qe; + Py, (s,e) = o2Qe;

The z-transforms of these eigenvectors are
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Ei@) = 1-¢*21, E,@) =z1E,(2)
Therefore, the polynomial corresponding to an arbitrary linear combination a = e, + p,e, will be
AQ) = E\@) + 2 Ei(2) = (1-e2)(1 + pz)

exhibiting the desired planewave zero and an arbitrary spurious zero. Next, we verify that e3 = Q's;,
is the signal subspace generalized eigenvector

Res = (03Q + Pasy,sk, )0 sk, = [0F + Pa(s, 0 se,)lsk, = AQes
where A = 02 + éz(sl,Q’lsk,). The Q-orthogonality conditions follow from
e&Qe,-’= sl,0'0e; =sl,e =0, for i=1,2
In the M =3 case, the z-transforms of the three given vectors are
Ei(z) =1-e*21, Eu(¢) =2'E,(z), Es()= 22E,(z)
They all have a zero at z, = ¢*?. Therefore, they satisfy
| sl,e; =Ei(z;) =0, for i=123

which implies that they are minimum eigenvectors belonging to A = o2. An arbitrary linear combina-
tion a =e +cye; + cges will have z-transform A (z2) = E;(z)(1 + cy2* + c,22) exhibiting one
desired zero and two spurious ones with arbitrary locations. The generalization to arbitrary M is
straightforward.
For the final example, we note that the given vector e, is orthogonal to both s, and s;,. For example,

1

slzel =1, e’*z' e"«’ﬂcz} _(eJk: + eﬁ‘a) =1-1-% % | JHa-Fa 0
™%

and similarly, sf,e; = 0. These orthogonality conditions imply that e, is a minimum eigenvector:
Re; = 0jQe; + Pasi,(sh,e,) + Pasy, (sh,e1) = o30e -

The corresponding z-transform of e is

E ) =1- (eﬁz + eﬁS)z-l + eﬁaeﬁsz-z = (1-eﬁ2z-1)(1 _eﬁaz-l)
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Problem 6.15: }
We have dr, = -Rdaand dp, = dE + 2o’ Rda. Using Eq. (1.7.35), we find

E? Elal Ndsua'féda «darlé}

-3 — ” -
R7dR = [E"a R'+ E'ad?||  -Rda 0

The product of these two matrices is given in (6.11.9). Writing a similar equation for R§R, that is,

§E + of Réax SR
R16R = E? : :
(bE + o'Réa)a - Eéa -aba®R

and multiplying it with (6.11.9), we obtain

I o [4ESE + dEo"Réa + Eda"Réa *
R'dRRYR = E . EdaboR - dEasa® R

where the “don’t care” entries have been denoted by *. The trace is equal to the sum of the upper left
scalar plus the trace of the lower right matrix, Thus,

tr[R1GRR6R] = E2 [ dESE + dEo”Ra + EdoRéa + tr[EdabalR - dEaﬁaTzi]) =
= E*(dESE + dEo"Ra + Eda"Réa + Eda”Rba - dEa”Réa) =

= E2JESE + 2E da"Réa

Problem 6.16:
(a) The required equivalence follows from

El] = E((€ + ) + jn)) = (E[e€")-ElmT) + j(Elen™] + E[eT)
Using4 = E[¢€7] = E[m"] and B = E [¢n] = -E [n£T}, we obtain

R =E[y*y'] = E[(¢-jm(& + jn)")] = E[&€7] + E[mT] + JE (€] - JE[€T] = 24 + jB)

similarly,
5 £ E[¢"] E[en'] A B
et ][ ] - [

- F G
To show the equality of quadratic forms, let F and G be the subblocks of R = [-G F}' Then, F must

be symmetric and G antisymmetric and must satisfy




A B[ F G 10
"BA ‘GF = OIJ == AF-BG'—"‘-[, AG+BF=O

These two conditions imply now that the inverse of R is of the form R = %(F + jG). From the sym-

metry of F, we have ¢Fn = w7 F¢, and from the antisymmetry of G we have §7G¢ = 0 and 7 Gn = 0.
It follows that

yTR-lylt

i

€+ OFE + J6)E-m) = L (6 + 760- e + ) =

#

1, Fare 1-,-.-

s 99 - e
To show the relationship between the determinants, we note the identity

1 -BA™M[A4 BI[ I o A +BA'B ¢
0 I ||-BA4|lgq1p = 0 4

The first and third matrix factors are unit upper and lower triangular, and thus, they have unit deter-
minants. Using the identity given in the hint, it follows that

A B
det[ B A] = det(4 + B4'B)detd = det(4 + /B)(detd)!det(4 - jB)detd = | det(4 + jB) |2

therefore,
2MdetR = 22 | dey(q + /B)|? = |det[2(4 + jB)] |2 = (detR)?

To find the complex gaussian probability density, nbte that the volume elements are the same, that is,
My = aMy < gMegmy

Using the results of part (a), we have

=p(v) = &X0Cy TRy /2) = exp(-yTRy*
PO =py) COMPQeRYZ = T gan

There are many Wways to prove part (c). One is to use characteristic functions, Another is to use the
- standard identity for gaussian variables

Elyiyayayd] = Elyy,)E baval + ElyryslElyay,] + E DwalE [yays)

e




Elityy*n] = ED’:"J’:IE D] + Epiy*EE byl + ED*iIE e*y;] = RyjRu + 00 + RyRyy

Perhaps, the simplest proof is to consider the Cholesky factorization R = L*LT where L is lower tri-
angular and the associated innovations representation y = Le, where Ee*e’] = I. Then prove the
result for uncorrelated complex gaussian & of unit variance, namely,

E[&."S’ﬁk*q] = 5"’63 + 5,15];7
The proof of this is easy. Then, use the linear transformation y = L& to show

Eliyyeyil = ¥ Lia*LpLi*LuE [e,*epe, %) = Y La*LpLic*Ly(6asbea + 6046) =
ab,cd ab,c,d

= (BLeLs) (SLeLd + (SLuL (DLaLy) = CLOGE LT + LLTRE LT,

To show (6.11.12), let y,; denote the ith component of the nth snapshot y(n). Then, a small generaliza-
tion of the above result is

E Vo *Yni¥mt *Ymi] = RijRug + bunRaRis

where the indices i,j are associated with the nth snapshot y(n) and the indices k,/ with the mth snapshot
¥(m), and we assumed independent snapshots. Then, we find for the correlation of the matrix elements

of R
n A 1 N-1 1 N1 1
E[R;Ry] = N EOE Drne *VnsVmie Yma] = N7 ZO(Ra'jRH + 6unRaRy;) = Ri;Ry + ‘;J“RaRkj
nm= nm=

Using the fact that E [R,] = Ry, we find
E[AR;ARy] = E [(}3-‘:‘ -R‘»,-)(Ii,,, -Ry)] = E [éfféu] -RiRg = ’;TRdej

Problem 6.17:
The joint density of N independent complex gaussian snapshots is

n=0

P(o, Y1, =, ¥ya) = @) (detR)Y exp[ - NEl ¥(n )TR"y(n)*}

Using y(n)"Ry(n)* = tr(R Ty(n)*y(n)T) and NR = l:i‘t y(n)*y(n)T, we obtain

n=0

‘np = + NIn(detR) + 32 y()*Ry(n)* = ¢ + Nln(detR) + tr{R" Ey(n)*y(n)’j

n=0 n=0
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where ¢ = In(2xyM". Using the property In(detR) = tr(InR), we find
-lip = ¢ + Ntr(lnR + R1R)

Problem 6.18:
Taking first order variations of Ra = Eu, we obtain

Aa =E'AFa-R'a, AE =a'ARa = a'éa, fa=ARa
Using (6.11.12), we find E [Sasa] = %R. It follows that

‘ E E E?
2] = af Na = =alRa = &2 = £°
E[(AE) ] = a'E [sasa’]a i Ra NE N

ky

We also find E [AESa] = E [sasat]a = -f—rRa. This implies

2
E[AEAa] = E[AE(E"AEa - R6a)] = E“%a -R %Ra -0

Using this result, we obtain

E[Aapal] = E[Aa(E?AEa' - 6alR1)] = -E[Aasa']RY = -E[(E"AEa -R16a)sal R =
- -E“a[-f—,a*F}R“ +R1 [%R]R“ - -—E—[R : —]-‘-aaf]

Problem 6.19:
Eq. (6.11.12) implies for any four vectors

E[(a'ARD)(c'ARA)] = 7v1-(a*R d)(c'Rb)
Applying this property to AS (k) = s[ARs;, we obtain
E[AS ®))] = E[(s1aRs)(6LARs)] = ~-(sLRs)(sLRs:) = =5 (k)

For the ML spectrum, we have S (k) = s{Rs,. Thus,
S (k)2AS (k) = sIRTARRMs, = AS(k) = S (k)*(s}RIARRs,)

It follows that
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E[(AS ()] = S (k)‘E[(SIR™ARR™s,)(sLR ARRs,)] = § (k)‘*l%;(SLR'lRR‘lsk)z

or,

E[OS ()] = S (' 5 6IR ) = S ('S5 6 = L5 e

Problem 6.20:
We have A4 (k) = s}Aa. Thus,

E[Ad (k)AA (k)*] = sLE [Aanal]s, = sl-f;[R“ i -él—aa']s,, - %{sLR"sk . -é,—A (k)4 (k)i

In Problem 5.17, the reproducing kernel was defined by K (z,w) = s(z)TR™s(w). Setting z = w* =¢*,
we recognize that sfRs, = K(z,2%). Using the order recursion of Problem 5.19(b), we find in the
order-M case

siR sy - ‘El:" [ Ap(k) |2 = Ky(z,2*) - Z}; [ 4p(2) |? = Kppa(2,2%)

which is positive definite. Alternatively, we may use the Schwarz inequality with respect to the positive
definite inner product x'R'y. Then,

(sER™s¢)(u'Rw) > | (stRu) | 2
where u is the usual unit vector. The LP solutionis a = ER"u, and E = (u'R ), It follows that

| IR w) | 2

siR s, - }51‘ Isla|? = slR™s, - E | (s[Ru) | % = (s}R1sy) - (u!R'u)

which is non negative by the above inequality.

As above, we can show that £ [AaAaT] = -E [AasaTR™. And,

E[AafaT] = EaF [AESaT] - RAE [saaT] = —é—a%aTRT - RE [5agaT]
We may also find that E [sasaT] = %J-RaaTR T, This implies

E[AasaT] = ﬁ;aaTRT . YVLR“RaaTRT =0

The first order differential of S (k) = E/ | 4 k) |?%is
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AE A () A4 (0)*]
AS(k) S(k){ P (k) 4 (k)t j

We have E [AA4 (k)AA (k)] = sLE AaAaT]sk = 0, and also E[AEAA (k)] = sLE] AEAa} 0. It follows
that

E[(5 ()] SW{E%E (BB + IgE{ |84 ) m] -

- Lisw )2[

2

|4 (k) ‘2 (s LR 15& ‘A k) 12)] = —1%,—5 (k)2(1 + zs(k)(sLR-lsk) R 2} =

58002 (25 () (sLRse) - 1)

Using the Schwarz inequality, ome can easily show S(k)(sfR?sy)-1 >0 which implies
25 (k)(slR?si) - 12 1.
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Chapter 7

Problem 72:
(a) Incorporate the constraint by means of a Lagrange multiplier defining the “unconstrained”
performance index

J = E[€2] + AT(f- CTh) = Efx?] + hTRh - 2n7r + AT(f- CTh)

The minimization conditions are

ar 1,.
:ﬁl—zth-Zr-CA:O ==t h=h“+?R1CA

where h, = R r. The Lagrange multiplier is fixed by imposing the constraint:
f=CTh=CThy + —%—CTR%A - -;—A = (CTRACY (- CThy)

Substituting into the solution for h, we find
h = h, + RTC(CTR*C)*(f- CThy) .

(b) The condition CTAh = 0 follows from CTP = CT(I - C(CTC)'CT) = 0.

(c) The above gradient is Ah = 2uP(Rh - r). Therefore,
h(n +1) = h(n) + Ah(n) + h(n) - 2uP(Rh(n) - r) = P[h(n) - 2uRh(n) + 2ur] + (I - P)h(n)

But because h(n) must satisfy the constraints CTh(n) = f at each iteration, we have (I - P)h(n)
= C(CTCY'CTh(n) = C(CTC)* = hyg. Part (d) is straightforward.

Problem 7.3:

We have already computed the required gradient in problem 7.2. Then, the ordinary gradient descent
update with respect to the extended performance index will be

h(n +1) = h(n) -pu

61)3(';) = h(n) - 2uRh(n) + 2ur + pCi(n)

If we denote g(n) = (I -2uR)h(n) + 2ur, the above difference equation can be written as h(n +1)
= g(n) + pCA(n). It follows that

f=CThn +1) = CTg(n) + p(CTOWNM) = puA(n) = (CTCY' - (CTCY CTg(n)

from which we obtain, using hys = C(CTCY!f,




HCX(n) = brs - C(CTCY'CTg(n) = bys - (I - P)g(n)
The original difference equation noQ becomes
h(n +1) = g(n) + uCA(n) = g(n) - (I - P)g(n) + bys = Pg(n) + hys = P[( - 2uR)h(n) + 2ur] + hyg

Problem 7.4:
First note that h = R™r is a particular solution of the inhomogeneous difference equation

h=@-2MR)h + 2Mr = R'lr = (I - 2MR)Rr + 2Mr
The homogeneous equation has the general solution
bpomog(n +1) = (1 - 2MR)byye (1)  => honeg (1) = (I - 2MR)c
Thus, the general solution of the inhomogeneous equation will be
h(n) = b + Bpg(n) = h + (7 -iMR)“c
The constant c is fixed by the initial conditions
h(0) =h+¢ == c=h(0)-h

Problem 7.5:
The optimal weights are

32110 4
= Rlp = =
The eigenvalues of R are A = 1, 5. Thus, the adaptation parameter must be restricted in the range

O<u<-—1—- = O<y<§-

The choice u = 1/6 is within this range. The matrix / - 2uR can be written in the following diagonalized
form

2
3 - " U 1 /11
1 | where = —=

03_ V2|11

Therefore,
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LoJesr oo L 1] @A+ EAr (23-@A”
d-2Ry =U { 0 (-2/3)"}1" i "2—[ 23" - @3 @A+ (23"

The transient weights h(n) = h - (I - 2uR)"™h are then

41 1[5@/3)" +3(2/3)"
h(n) = [1} - 5{ 5(-2/3)" - 52/3)" }

Problem 7.6:
The CCL equations are:

€ = Xn-haYn, Huy1 = he + 2ueyn
Setting y, = 1, we find
en =Xp-hy, hp,q =h, + 2pe,
and in the z-domain
E@)=X@)-H@), zH@) =HE)+2uE@)
Eliminating H (z), we find

E@) __ 1-2%
X@) ~ 1-(1-2upt

The filter is causal and stable when |1-2u] <1 or, equivalently, 0 < x < 1. It may be recognized as
a special case of the notch filter of Section 7.9.

Problem 7.7:
With y, = (-1)*, the CCL equations become

en = Xn - (D)%hn,  hayy = hy + 2ue,(-1)"
Setting g, = h,(-1)", we obtain
€n=Xa-8n, Buri =8 t2ea = E@)=X()-G@), 2G@)=G@)+2uE()
Eliminating G (z), we find

CE@) __ 1+zt
X@) 1+ @Q-2u)!

It is another special case of the notch filter of Section 7.9.



Problem 7.8: ,
Consider the one-dimensional case first. Using the change of variables

1 . 1
- = j=(h -h*
kg z(h +}3), h[ ]2( )

we have Shyp/3h* = 1/2 and 8h;/6h* = | /2. Therefore,

OE _9E Ohr SE O _10E  1.0E
Sh*  Ohgp Oh*  Oh; Oh* 28k 27 Ok

Similarly, we find

o _1[eE .oE
ah 2 |ong om;

Gradient descent with respect to kg and k; is equivalent to

. 3E . 0F 8E
Bh = Mhg + oy ""‘[ahk +Jahf} =

In the multidimensional case, the equations apply for each component of h.

Problem 7.9:
The magnitude response of the transfer function of Eq. (7.9.3) is

2(1 - cos(w - wyp))
1-2(1 - ap)cos(w - wp) + (1 -ap)?

|Hw)|? =

where @ = 2(M +1) [ A | ?. Assuming a narrow notch, we set w = wp + Aw and expand to lowest order
in Aw. The numerator becomes proportional to (Aw)? and therefore the denominator may be evaluated
at Aw = 0. Thus,

(Aw)? _ (ow)?
1-2(1-ap) + (1-ap)®  (aw)?

| H (wo + Aw) |? =

Setting this equal to one half the value at some reference frequency w,, chosen to be very far from wy,
we obtain

(a1)*(1 - cos(wpy - wp))
1-2(1 - ap)cos(upy - wo) + (1-ap)®

(8w = @2 | H (ong) | =

Since the numerator is already of order O (u?), this can be simplified if we set 4 = 0 in the denomina-
tor. Then,
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| (Aw)z = _;,(a“f = (Aw)adg = 2(15&1) = \/E_ap

Problem 7.13:
The autocorrelation function of x, is Rg(k) = 028(k) + Pys;sl, where we set Py = |4 |% and s;
= s,,. If A > 0, then the vector r will be

ri = Ro(i + &) = Pie™Be™  —  r=Pe™%,
Similarly the autocorrelation matrix can be expressed as
R = U%I +P 18151

Using the matrix inversion lemma, we find for R?

Rt = ;1-;[1 + d1s1sl] , where d;=- 1

M+1+03
Py

The ALE weights are computed by

. P .
h=R'r= —;21-[1 + dys;s]Pe™Cs, = U; [1+ M +1)d,Je™%s,

P o
and note that :;—[1 +M+1)d,]=1/[M +1+ -i;—}. It follows that
1

b'Rh = hi(o?l + Pys;s})h = oZhth + Py | hfs; |2

and we find
PM+12 3M+]_
Py |h's |% = it ) 7, Oo:b'h= it )z P
v aﬂ
M+1+— M =
m} [ +1+P1]
Thus,
P,|bls |2 P,
A oM+l
U%h?h O%( )

Since there is only one sinewave present, the signal subspace will be one dimensional and the degen-
erate noise subspace will be M-dimensional. The single signal subspace eigenvector is easily found to
be s, . Its eigenvalue is the maximum eigenvalue: A = 02 + Py(M + 1). On the other hand Ay, = o2
Thus,
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dom Py
‘&n_:-1+03(M+1)

If the delay is zero, A = 0, then the vector r becomes
) %= Ra(i) = 03G) + Pe™  — r=ofu+Pps

where u = [1,0, - -, 0. It follows that
P
h=Rr= ';];2'[1 + dlsls{][crfu + P]_Sl] =u+ [dl + ';2];(1 + (M + 1)d1)]51 =u

Problem 7.15:
The extended performance index is J = alRa + A(1 - u”a), with gradient &/ /8a = 2Ra - Au. Therefore,
gradient descent with respect to J will be :

a(n +1) = a(n) - aﬁi) = a(n) - 2uRa(n) + whu = g(n) + whu
where, as in Problem 7.3, we set g = a - 2uRa(n). Imposing the constraint uTa(r +1) = 1, we find
1 ='uTa(n +) =u'gn) +md = u=u -uuTg(n)
which leads to
a(n +1) = g(n) -uu’g(n) + u = (7 - wT(a(n) -2uRa(n)) + u

Note that u is the least squares solution of uTa = 1. Indeed, ars = u(@Tu)1 = u. Dropping the expec-
tation values in Ra(n), that is, replacing Ra(n) = E[y(n)y(n)Tla(n) = E [ye,] by ye,, we obtain

a(n +1) = (I - wu")(a(n) - 2ue,y(n)) + u
This is, of course, equivalent to
ao(n+1) =1 and an +1) = ay(n) - 2uenynq i= L2, - M

Problem 7.18:
The proof is the same as that in Section 7.13.

Problem 7.20:

Let M be the dimension of the vectors. Counting only operations that grow with M, we note that step 1
requires M? operations, steps 2, 3, 5, and 6 require M, and step 4 requires M (M +1)/2 operations,
assuming that only the lower triangular parts need be updated because of the symmetry of the matrices.
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