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Alternative DFT Beams

Fig. 23.14.3 Woodward-Lawson-Butler beams for N = 8.

Then, choose n̄ such that n̄ ≤ N/2 and define an N-element array by its N − 1 zeros:

un =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
σ
√
B2 + n2 , for 1 ≤ n ≤ n̄− 1

n , for n̄ ≤ n ≤ N − n̄
−σ

√
B2 + (N − n)2 , for N − n̄+ 1 ≤ n ≤ N − 1

(23.15.1)

Fix the parameter σ such that σ
√
B2 + n̄2 = n̄. Then, define the array polynomial:

A(z)=
N−1∏
n=1

(z− zn) , ψn = 2πun
N

, zn = ejψn , n = 1,2, . . . ,N − 1 (23.15.2)

Write a MATLAB function that implements this procedure, and takes as input the parameters
N,R, n̄ and outputs the array weights and 3-dB width.

Apply your function to the following example N = 21, R = 30 dB, n̄ = 5, with half-
wavelength spacing d = λ/2. You will notice that, like the prolate array, the mainlobe is
slightly narrower and the sidelobe level slightly better matched than the Taylor-Kaiser array.
On the same graph, plot the array patterns |A(ψ)| in dB for the present design, the Taylor
Kaiser and the prolate arrays designed with the same specifications. Vary n̄ to understand
its effect on the design.

23.2 Computer Experiment—Villeneuve array design. Redesign the examples shown in Fig. 23.12.1
using Villeneuve’s array design method and plot the array responses together with those of
that figure. Vary the parametersN,R, n̄ and compare the range of similarity of the Villeneuve
versus the Taylor n̄ method.

24
Currents on Linear Antennas

24.1 Hallén and Pocklington Integral Equations

In Sec. 15.4, we determined the electromagnetic fields generated by a given current
distribution on a thin linear antenna, but did not discuss the mechanism by which the
current distribution is set up and maintained. In Chap. 17, we assumed that the currents
were sinusoidal, but this was only an approximation. Here, we discuss the integral
equations that determine the exact form of the currents.

An antenna, whether transmitting or receiving, is always driven by an external source
field. In transmitting mode, the antenna is driven by a generator voltage applied to its
input terminals, and in receiving mode, by an incident electric field (typically, a uniform
plane wave if it is arriving from far distances.) In either case, we will refer to this external
source field as the “incident” field Ein.

The incident field Ein induces a current on the antenna. In turn, the current generates
its own field E, which is radiated away. The total electric field is the sum Etot = E +
Ein. Assuming a perfectly conducting antenna, the boundary conditions are that the
tangential components of the total electric field vanish on the antenna surface. These
boundary conditions are enough to determine the current distribution induced on the
antenna.

Fig. 24.1.1 depicts a z-directed thin cylindrical antenna of length l and radius a, with
a current distribution I(z) along its length. We will concentrate only on the z-component
Ez of the electric field generated by the current and use cylindrical coordinates.

For a perfectly conducting antenna, the current is essentially a surface current at
radial distance ρ = a with surface density Js(z)= ẑ I(z)/2πa, where in the “thin-
wire approximation,” we may assume that the density is azimuthally symmetric with no
dependence on the azimuthal angle φ. The corresponding volume current density will
be as in Eq. (15.4.2):

J(r)= Js(z)δ(ρ− a)= ẑ I(z)δ(ρ− a) 1

2πa
≡ ẑJz(r)
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Fig. 24.1.1 Thin-wire model of cylindrical antenna.

Following the procedure of Sec. 15.4, we obtain the z-component of the vector potential:

Az(z, ρ,φ) = μ
4π

∫
V′

Jz(r′)e−jkR

R
d3r′ = μ

4π

∫
V′

I(z′)δ(ρ′ − a)e−jkR
2πaR

ρ′dρ′dφ′dz′

= μ
4π

∫ l/2
−l/2

∫ 2π

0

I(z′)e−jkR

2πR
dφ′dz′

where R = |r− r′| =
√
(z− z′)2+|ρρρ−ρρρ′|2. Because ρ′ = a, we have:

|ρρρ−ρρρ′|2 = ρ2 + a2 − 2ρρρ ·ρρρ′ = ρ2 + a2 − 2ρa cos(φ′ −φ)
and becauseφ′ appears only through the differenceφ′ −φ, we may change the variable
of integration from φ′ to φ′ −φ. This implies that Az will be cylindrically symmetric,
that is, independent of φ. It follows that:

Az(z, ρ)= μ
4π

∫ l/2
−l/2

I(z′)G(z− z′, ρ)dz′ (24.1.1)

where we defined the exact thin-wire kernel :

G(z− z′, ρ)= 1

2π

∫ 2π

0

e−jkR

R
dφ′ (24.1.2)

with R =
√
(z− z′)2+ρ2 + a2 − 2ρa cosφ′. In the limit of a thin antenna, a → 0,

Eq. (24.1.1) reduces to:

Az(z, ρ)= μ
4π

∫ l/2
−l/2

I(z′)Gapp(z− z′, ρ)dz′ (24.1.3)

where Gapp(z− z′, ρ) is the approximate or reduced thin-wire kernel :

Gapp(z− z′, ρ)= e
−jkR

R
(24.1.4)
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with R = √
(z− z′)2+ρ2. Eq. (24.1.3) is the same as (15.4.3) because the limit a = 0 is

equivalent to assuming that the current density is a line current J(r)= ẑ I(z)δ(x)δ(y),
as given by Eq. (15.4.1).

Given the vector potential Az(z, ρ), the z-component of the electric field generated
by the current is obtained from Eq. (15.4.6):

jωμεEz(z, ρ)= (∂2
z + k2)Az(z, ρ) (24.1.5)

The values of the vector potential Az and the electric field Ez on the surface of the
wire antenna are obtained by setting ρ = a:

Az(z, a)= μ
4π

∫ l/2
−l/2

I(z′)G(z− z′, a)dz′ (24.1.6)

To simplify the notation, we will denote Az(z, a) and G(z − z′, a) by Az(z) and
G(z− z′). The boundary condition on the surface is that the z-component of the total
electric field vanish, that is, at ρ = a:

Ez,tot(z, a)= Ez(z, a)+Ez,in(z, a)= 0

Thus, with Ez(z)= Ez(z, a) and Ein(z)= Ez,in(z, a), we have Ez(z)= −Ein(z), and
Eq. (24.1.5) can be expressed in terms of the z-component of the incident field:

(∂2
z + k2)Az(z)= −jωμεEin(z) (24.1.7)

Either kernel can be used in Eq. (24.1.6). If the approximate kernel Gapp(z) is used,
then it is still meaningful to consider the boundary conditions at the cylindrical surface
(i.e., at ρ = a) of the antenna, as shown on the right of Fig. 24.1.1.

To summarize, given an incident field Ein(z) that is known along the length of the
antenna, Eq. (24.1.7) may be solved for Az(z) and then the integral equation (24.1.6)
can be solved for the current I(z).

Depending on how this procedure is carried out, one obtains either the Hallén or
the Pocklington equations. Solving Eq. (24.1.7) by formally inverting the differential
operator (∂2

z + k2) and combining with (24.1.6), we obtain Hallén’s integral equation:

μ
4π

∫ l/2
−l/2

I(z′)G(z− z′)dz′ = −jωμε(∂2
z + k2)−1Ein(z) (Hallén) (24.1.8)

Alternatively, applying the differential operator (∂2
z+k2) directly to Eq. (24.1.6) and

combining with (24.1.7) , we obtain Pocklington’s integral equation:

μ
4π

∫ l/2
−l/2

I(z′)(∂2
z + k2)G(z− z′)dz′ = −jωμεEin(z) (Pocklington) (24.1.9)

The two integral equations must be solved subject to the constraint that the current
I(z) vanish at the antenna ends, that is, I(l/2)= I(−l/2)= 0. The exact and approxi-
mate kernels evaluated on the antenna surface are:

G(z− z′)= 1

2π

∫ 2π

0

e−jkR

R
dφ′ , R =

√
(z− z′)2+2a2 − 2a2 cosφ′

Gapp(z− z′)= e
−jkR

R
, R =

√
(z− z′)2+a2

(24.1.10)
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The inverse differential operator in the right-hand side of Eq. (24.1.8) can be rewritten
as an integral convolutional operator acting on Ein. We discuss this in detail in Sec. 24.3.
We will then consider the numerical solutions of these equations using either the exact
or the approximate kernels. The numerical evaluation of these kernels is discussed in
Sec. 24.7.

24.2 Delta-Gap, Frill Generator, and Plane-Wave Sources

Although the external source field Ein(z) can be specified arbitrarily, there are two spe-
cial cases of practical importance. One is the so-called delta-gap model, which imitates
the way a transmitting antenna is fed by a transmission line. The other is a uniform
plane wave incident at an angle on a receiving antenna connected to a load impedance.
Fig. 24.2.1 depicts these cases.

Fig. 24.2.1 External sources acting on a linear antenna.

The left figure shows the delta-gap model of a generator voltage applied between
the upper and lower halves of the antenna across a short gap of length Δz. The applied
voltage V0 can be thought of as arising from an electric field—the “incident” field in this
case—which exists only within the gap, such that

V0 =
∫ Δz/2
−Δz/2

Ein(z)dz (24.2.1)

A simplified case arises when we take the limit Δz → 0. Then, approximately, V0 =
EinΔz, or Ein = V0/Δz. In order to maintain a finite value of V0 in the left-hand side of
Eq. (24.2.1), Ein must become commensurately large. This means that in this limit,

Ein(z)= V0δ(z) (delta-gap model of incident field) (24.2.2)
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King [3] has discussed the case of a finite Δz. An alternative type of excitation input
is the frill generator [6,7] defined by:

Ein(z)= V0

2 ln(b/a)

[
e−jkRa
Ra

− e
−jkRb
Rb

]
,

Ra =
√
z2 + a2

Rb =
√
z2 + b2 (24.2.3)

where b > a. The case of a receiving antenna with a uniform plane wave incident at a
polar angle θ and such that the propagation vector k̂ is co-planar with the antenna axis
is shown on the right of Fig. 24.2.1.

The electric field vector is perpendicular to k̂ and has a space dependence E0e−jk·r.
For a thin antenna, we may evaluate the field along the z-axis, that is, we set x = y = 0
so that e−jk·r = e−jkzz = ejkz cosθ because kz = −k cosθ. Then, the z-component of the
incident field will be:

Ein(z)= E0 sinθejkz cosθ (incident uniform plane wave) (24.2.4)

If the wave is incident from broadside (θ = π/2), then Ein(z)= E0, that is, a constant
along the antenna length. And, if θ = 0 or π, then Ein(z)= 0.

24.3 Solving Hallén’s Equation

Instead of working with the vector potential Az(z) it proves convenient to work with a
scaled version of it that has units of volts and is defined as:

V(z)= 2jcAz(z) (24.3.1)

where c is the speed of light. We note thatV(z) is not the scalar potentialϕ(z) along the
antenna length. From the Lorenz condition, Eq. (15.4.5), we have ∂zAz = −jωμεϕ(z).
Multiplying by 2jc and noting that cωεμ =ω/c = k, we find:

∂zV(z)= 2kϕ(z) (24.3.2)

Multiplying both sides of Eq. (24.1.7) by 2jc, we can rewrite it as:

(∂2
z + k2)V(z)= 2kEin(z) (24.3.3)

Similarly, Eq. (24.1.6) becomes:

jη
2π

∫ h
−h
G(z− z′)I(z′)dz′ = V(z) (24.3.4)

where η = √
μ/ε, and for later convenience, we introduced the half-length h = l/2 of

the antenna. Eqs. (24.3.3)–(24.3.4) represent our rescaled version of Hallén’s equations.
Formally, we can write V(z)= 2k(∂2

z + k2)−1Ein(z), but we prefer to express V(z)
as an integral operator acting on Ein(z). A particular solution of (24.3.3) is obtained
with the help of the Green’s function F(z) for this differential equation:

(∂2
z + k2)F(z)= 2kδ(z) (24.3.5)
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The general solution of Eq. (24.3.3) is obtained by adding the most general solution
of the homogeneous equation, (∂2

z + k2)V(z)= 0, to the Green’s function solution:

V(z)= C1ejkz +C2e−jkz +
∫ h
−h
F(z− z′)Ein(z′)dz′ (24.3.6)

With a re-definition of the constants C1, C2, we can also write:

V(z)= C1 coskz+C2 sinkz+
∫ h
−h
F(z− z′)Ein(z′)dz′ (24.3.7)

In fact, F(z) itself is defined up to an arbitrary solution of the homogeneous equa-
tion. If F(z) satisfies Eq. (24.3.5), so does F1(z)= F(z)+C1ejkz+C2e−jkz, with arbitrary
constants C1, C2. Some possible choices for F(z) are as follows. They differ from each
other by a homogeneous term:

F1(z) = je−jk|z| = F2(z)+j coskz

F2(z) = sink|z| = F3(z)− sinkz

F3(z) = 2 sin(kz)u(z)= F4(z)+2 sinkz

F4(z) = −2 sin(kz)u(−z)

(24.3.8)

where u(z) is the unit-step function. All satisfy Eq. (24.3.5) as well as the required
discontinuity conditions on their first derivative, that is,

F′(0+)−F′(0−)= 2k (24.3.9)

This discontinuity condition is obtained by integrating Eq. (24.3.5) over the small
interval −ε ≤ z ≤ ε and then taking the limit ε → 0 and assuming that F(z) itself is
continuous at z = 0. Depending on the choice of F(z), the corresponding solutionV(z)
of Eq. (24.3.3) can be written in the equivalent forms (each with different C1, C2):

V(z) = C1ejkz +C2e−jkz +
∫ h
−h
je−jk|z−z

′|Ein(z′)dz′

V(z) = C1ejkz +C2e−jkz +
∫ h
−h

sin
(
k|z− z′|)Ein(z′)dz′

V(z) = C1ejkz +C2e−jkz + 2

∫ z
−h

sin
(
k(z− z′))Ein(z′)dz′

V(z) = C1ejkz +C2e−jkz − 2

∫ h
z

sin
(
k(z− z′))Ein(z′)dz′

(24.3.10)

We will use mostly the first and second choices for F(z), that is, F(z)= je−jk|z|
and F(z)= sink|z|. Combining the solution for V(z) with Eq. (24.3.4), we obtain the
equivalent form of Hallén’s integral equation for an arbitrary incident field :

jη
2π

∫ h
−h
G(z− z′)I(z′)dz′ = C1ejkz +C2e−jkz +

∫ h
−h
F(z− z′)Ein(z′)dz′ (24.3.11)
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or, alternatively,

jη
2π

∫ h
−h
G(z− z′)I(z′)dz′ = C1 coskz+C2 sinkz+

∫ h
−h
F(z− z′)Ein(z′)dz′

The constants C1, C2 are determined from the end conditions I(h)= I(−h)= 0.
Next, we consider the particular forms of Eq. (24.3.11) in the delta-gap and plane-wave
cases. In the delta-gap case, we have Ein(z)= V0δ(z) and the integral on the right-hand
side can be done trivially, giving:

∫ h
−h
F(z− z′)Ein(z′)dz′ =

∫ h
−h
F(z− z′)V0δ(z′)dz′ = V0F(z)

Thus, we have the integral equation:

jη
2π

∫ h
−h
G(z− z′)I(z′)dz′ = C1 coskz+C2 sinkz+V0F(z)

We expect the current I(z) to be an even function of z (because Ein(z) is), and thus
we may drop the C2 term. Using F(z)= sink|z| as our Green’s function choice, we
obtain Hallén’s equation for the delta-gap case:

jη
2π

∫ h
−h
G(z− z′)I(z′)dz′ = V(z)= C1 coskz+V0 sink|z| (24.3.12)

This equation forms the basis for determining the current on a center-driven lin-
ear antenna. We will consider several approximate solutions of it as well as numerical
solutions based on moment methods.

We can verify that V(z) correctly gives the potential difference between the upper
and lower halves of the antenna. DifferentiatingV(z) about z = 0 and using Eq. (24.3.2),
we have:

V′(0+)−V′(0−)= 2kV0 = 2k
(
ϕ(0+)−ϕ(0−)) ⇒ ϕ(0+)−ϕ(0−)= V0

As a second example, consider the case of an antenna receiving a uniform plane wave
with incident field as in Eq. (24.2.4). Using F(z)= je−jk|z| as the Green’s function, the
convolution integral of F(z) and Ein(z) can be done easily giving:

∫ h
−h
je−jk|z−z

′|E0 sinθejkz
′ cosθ dz′ = 2E0

k sinθ
ejkz cosθ + (homogeneous terms)

where the last terms are solutions of the homogeneous equation, and thus, can be ab-
sorbed into the other homogeneous terms of V(z). Because the current is not expected
to be symmetric in z, we must keep both homogeneous terms, resulting in Hallén’s
equation for a receiving antenna:

jη
2π

∫ h
−h
G(z− z′)I(z′)dz′ = V(z)= C1ejkz +C2e−jkz + 2E0

k sinθ
ejkz cosθ (24.3.13)
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24.4 Sinusoidal Current Approximation

Here, we look at simplified solutions of Eq. (24.3.12), which justify the common sinu-
soidal assumption for the current. We work with the approximate kernel.

Inspecting the quantity Gapp(z−z′)= e−jkR/R in the integral equation (24.3.12), we
note that as the integration variable z′ sweeps past z, the denominator becomes very
large, because R = a at z′ = z. Therefore, the integral is dominated by the value of the
integrand near z′ = z. We can write approximately,

jη
2π

∫ h
−h
Gapp(z− z′)I(z′)dz′ � Z̄(z)I(z)� Z̄I(z) (24.4.1)

where Z̄(z) is a sort of an average value of jηGapp(z− z′)/2π in the neighborhood of
z′ = z. This quantity varies slowly with z and we may approximate it with a constant,
say Z̄. Then, Hallén’s equation (24.3.12) becomes approximately:

Z̄I(z)= V(z)= C1 coskz+V0 sink|z|

This shows that I(z) is approximately sinusoidal. The constant C1 is fixed by the
end-condition I(h)= 0, which gives:

C1 coskh+V0 sinkh = 0 ⇒ C1 = −V0
sinkh
coskh

so that I(z) becomes:

Z̄I(z)= −V0
1

coskh
[
sinkh coskz− coskh sink|z|] = −V0

1

coskh
sin

(
k(h− |z|))

Solving for I(z), we obtain the common standing-wave expression for the current:

I(z)= I(0)sin
(
k(h− |z|))
sinkh

, I(0)= −V0 sinkh
Z̄ coskh

(24.4.2)

where I(0) is the input current at z = 0. The crude approximation of Eq. (24.4.1) can
be refined further using King’s three-term approximation discussed in Sec. 24.6. From
Eq. (24.4.2), the antenna input impedance is seen to be:

ZA = V0

I(0)
= −Z̄ cotkh (24.4.3)

24.5 Reflecting and Center-Loaded Receiving Antennas

A similar approximation to Hallén’s equation can be carried out in the plane-wave case
shown in Fig. 24.2.1. We distinguish three cases: (a)ZL = 0, corresponding to a reflecting
parasitic antenna with short-circuited output terminals, (b) ZL = ∞, corresponding to
open-circuited terminals, and (c) arbitraryZL, corresponding to a center-loaded receiving
antenna. See Ref. [12] for more details on this approach.

By finding the short-circuit current from case (a) and the open-circuit voltage from
case (b), we will determine the output impedance of the receiving antenna, that is, the
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Thevénin impedance ZA of the model of Sec. 16.4, and show that it is equal to the
input impedance (24.4.3) of the transmitting antenna, in accordance with the reciprocity
principle. We will also show from case (c) that the angular gain pattern of the receiving
antenna agrees with that of the transmitting one.

Starting with the short-circuited case, the approximation of Eq. (24.4.1) applied to
(24.3.13) gives:

Z̄I(z)= V(z)= C1ejkz +C2e−jkz + 2E0

k sinθ
ejkz cosθ

The end-point conditions I(h)= I(−h)= 0 provide two equations in the two un-
knowns C1, C2, that is,

C1ejkh +C2e−jkh + 2E0

k sinθ
ejkh cosθ = 0

C1e−jkh +C2ejkh + 2E0

k sinθ
e−jkh cosθ = 0

with solution:

C1 = −E0 sin
(
kh(1+ cosθ)

)
k sinθ sinkh coskh

, C2 = −E0 sin
(
kh(1− cosθ)

)
k sinθ sinkh coskh

Then, the current I(z) becomes:

I(z)= 1

Z̄
[
C1ejkz +C2e−jkz + 2E0

k sinθ
ejkz cosθ] (24.5.1)

For normal incidence, θ = 90o, we have C1 = C2 and Eq. (24.5.1) becomes:

I(z)= 2E0

Z̄k coskh
(coskh− coskz) (24.5.2)

For θ = 0 and θ = π, the z-component of the incident field is zero, Ein(z)= 0, and
we expect I(z)= 0. This can be verified by carefully taking the limit of Eq. (24.5.1) at
θ = 0,π, with the seemingly diverging term 2E0/k sinθ getting canceled.

The short-circuit current at the output terminals is obtained by setting z = 0 in
Eq. (24.5.1):

Isc = I(0)= 1

Z̄
[
C1 +C2 + 2E0

k sinθ
]

Inserting the expressions for C1, C2, we find:

Isc = 2E0

Z̄k coskh
coskh− cos(kh cosθ)

sinθ
(24.5.3)

For the open-circuit case, the incident field will induce an open-circuit voltage across
the gap, and therefore, the scalar potential ϕ(z) will be discontinuous at z = 0. In
addition, the current must vanish at z = 0. Therefore, we must apply Eq. (24.3.13)
separately to the upper and lower halves of the antenna. Using coskz and sinkz as the
homogeneous terms, instead of e±jkz, we have the approximation:

Z̄I(z)= V(z)=

⎧⎪⎪⎨
⎪⎪⎩
C1 coskz+C2 sinkz+ 2E0

k sinθ
ejkz cosθ, z ≥ 0

D1 coskz+D2 sinkz+ 2E0

k sinθ
ejkz cosθ, z ≤ 0
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The conditions I(0+)= I(h)= 0 and I(0−)= I(−h)= 0 provide four equations in
the four unknowns C1, C2,D1,D2. They are:

C1 + 2E0

k sinθ
= 0, C1 coskh+C2 sinkh+ 2E0

k sinθ
ejkh cosθ = 0

D1 + 2E0

k sinθ
= 0, D1 coskh−D2 sinkh+ 2E0

k sinθ
e−jkh cosθ = 0

with solution:

C1 = D1 = − 2E0

k sinθ

C2 = 2E0(coskh− ejkh cosθ)
k sinθ sinkh

, D2 = −2E0(coskh− e−jkh cosθ)
k sinθ sinkh

The open-circuit voltage is Voc =ϕ(0+)−ϕ(0−). Using Eq. (24.3.2), we have:

V′(0+)−V′(0−)= 2kVoc = k(C2 −D2) ⇒ Voc = 1

2
(C2 −D2)

and using the solution for C2,D2, we find:

Voc = 2E0

k sinkh
coskh− cos(kh cosθ)

sinθ
(24.5.4)

Having found the short-circuit current and open-circuit voltage, we obtain the cor-
responding output Thevénin impedance by dividing Eq. (24.5.4) and (24.5.3):

ZA = −Voc

Isc
= −Z̄ cotkh (24.5.5)

where the minus sign is due to the fact that Isc is flowing into (instead of out of) the top
antenna terminal. We note that Eq. (24.5.5) agrees with (24.4.3) of the transmitting case.

Equations (24.5.3) and (24.5.4) are special cases of a more general result, which is a
consequence of the reciprocity principle (for example, see [34]). Given an incident field
on a receiving linear antenna, the induced short-circuit current and open-circuit voltage
at its terminals are given by:

Isc = 1

V0

∫ h
−h
Ein(z)I(z)dz , Voc = − 1

I0

∫ h
−h
Ein(z)I(z)dz (24.5.6)

where I(z) is the current generated by V0 when the antenna is transmitting. Inserting
Eq. (24.4.2) into (24.5.6), we can easily derive Eqs. (24.5.3) and (24.5.4). We will use
(24.5.6) in Sec. 25.3 to derive the mutual impedance between two antennas.

Finally, we consider case (c) of an arbitrary load impedance ZL. The current will be
continuous across the gap but it does not have to vanish at z = 0. The voltage difference
across the gap will be equal to the voltage drop across the load, that is, VL = −ZLI(0).
The approximate Hallén equation is now:

Z̄I(z)= V(z)=

⎧⎪⎪⎨
⎪⎪⎩
C1 coskz+C2 sinkz+ 2E0

k sinθ
ejkz cosθ, z ≥ 0

D1 coskz+D2 sinkz+ 2E0

k sinθ
ejkz cosθ, z ≤ 0
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where D1 = C1 because of the continuity of I(z) at z = 0. The end conditions, I(h)=
I(−h)= 0, give:

C1 coskh+C2 sinkh+ 2E0

k sinθ
ejkh cosθ = 0

C1 coskh−D2 sinkh+ 2E0

k sinθ
e−jkh cosθ = 0

Moreover, we have the discontinuity condition:

V′(0+)−V′(0−)= 2kVL = k(C2 −D2) ⇒ VL = 1

2
(C2 −D2)

Ohm’s law at the load gives:

VL = −ZLI(0)= −ZLZ̄
(
C1 + 2E0

k sinθ

)
= ZL
ZA

(
C1 + 2E0

k sinθ

)
cotkh

where we used Eq. (24.5.5). Solving the above four equations for C1, C2,D2, VL, we find
eventually:

VL = ZL
ZA + ZL

2E0

k sinkh
coskh− cos(kh cosθ)

sinθ
= VocZL
ZA + ZL (24.5.7)

This is equivalent to the Thevénin model that we used in Sec. 16.4. The power
delivered to the load will be proportional to |VL|2, which is proportional to the gain
pattern of a transmitting dipole, that is,

∣∣∣∣coskh− cos(kh cosθ)
sinθ

∣∣∣∣2

24.6 King’s Three-Term Approximation

To improve the crude sinusoidal approximation of Eq. (24.4.1), we must look more care-
fully at the properties of the kernel. Separating its real and imaginary parts, we have:

jη
2π
Gapp(z− z′)= jη

2π
e−jkR

R
= kη

2π

[
sinkR
kR

+ j coskR
kR

]

For R near zero, the imaginary part becomes very large and we may apply the ap-
proximation (24.4.1) to it. But, the real part remains finite at R = 0. For kR ≤ π,
which will be guaranteed if kh ≤ π, the sinc function can be very well approximated by
cos(kR/2)� cos(k|z−z′|/2) as can be verified by plotting the two functions. Therefore,

sinkR
kR

� cos(kR/2)� cos
(
k(z− z′)/2), for kR ≤ π (24.6.1)

Using this approximation for the real part of the kernel, and applying the approx-
imation of Eq. (24.4.1) to its imaginary part, King has shown [4,94] that an improved
approximation of the convolution integral is as follows:

jη
2π

∫ h
−h
Gapp(z− z′)I(z′)dz′ � R cos

(kz
2

)+ jXI(z) (24.6.2)
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where R,X are appropriate constants, which are real if I(z) is real. The approximation
also assumes that the current is symmetric, I(z)= I(−z). Indeed, we have:

jη
2π

∫ h
−h
Gapp(z− z′)I(z′)dz′ = kη

2π

∫ h
−h

[
cos

(k(z− z′)
2

)+ j coskR
kR

]
I(z′)dz′

= kη
2π

∫ h
−h

[
cos

(kz
2

)
cos

(kz′
2

)
I(z′)+ sin

(kz
2

)
sin

(kz′
2

)
I(z′)+j coskR

kR
I(z′)

]
dz′

The first term is of the form R cos(kz/2), the second term vanishes because of the
assumed even symmetry of I(z), and the third term is of the form jXI(z). It follows
that the Hallén equation (24.3.12) can be approximated by:

R cos
(kz

2

)+ jXI(z)= V(z)= C1 coskz+V0 sink|z|

This shows that the current I(z) is a linear combination of the sinusoidal terms
sink|z|, coskz, and cos(kz/2), and leads to King’s three-term approximation for the
current [4,94], which incorporates the condition I(h)= 0. There are two alternative
forms:

I(z)= A1I1(z)+A2I2(z)+A3I3(z)= A′1I′1(z)+A′2I′2(z)+A′3I′3(z) (24.6.3)

where the expansion currents are defined by:

I1(z) = sink|z| − sinkh

I2(z) = coskz− coskh

I3(z) = cos(kz/2)− cos(kh/2)

,

I′1(z) = sin
(
k(h− |z|))

I′2(z) = coskz− coskh

I′3(z) = cos(kz/2)− cos(kh/2)

(24.6.4)

Using the trigonometric identity I1(z)= I′2(z)tankh−I′1(z)/ coskh, the relationship
between the primed and unprimed coefficients is:[

A′1
A′2

]
= 1

coskh

[
−1 0

sinkh coskh

][
A1

A2

]
, A′3 = A3 (24.6.5)

The condition number of the transformation matrix is 1/| coskh|, and the transfor-
mation breaks down when coskh = 0, that is, when the antenna length l = 2h is an
odd-multiple of λ/2. In that case, only the unprimed form may be used. Otherwise,
the primed form is preferable because the term I′1(z)= sin

(
k(h−|z|)) has the conven-

tional standing-wave form. We will work with the unprimed form because it is always
possible. The MATLAB function kingprime transforms the unprimed coefficients into
the primed ones:

Aprime = kingprime(L,A); % converts from unprimed to primed form

To determine the expansion coefficientsA1,A2,A3, we insert Eq. (24.6.3) into Hallén’s
equation (24.3.12) and get:

A1V1(z)+A2V2(z)+A3V3(z)= V(z)= C1 coskz+V0 sink|z| (24.6.6)
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where

Vi(z)= jη
2π

∫ h
−h
Gapp(z− z′)Ii(z′)dz′ , i = 1,2,3 (24.6.7)

At z = h, we have:

A1V1(h)+A2V2(h)+A3V3(h)= V(h)= C1 coskh+V0 sinkh (24.6.8)

Subtracting Eqs. (24.6.6) and (24.6.8), and defining Vdi(z)= Vi(z)−Vi(h), we have:

A1Vd1(z)+A2Vd2(z)+A3Vd3(z)= C1(coskz− coskh)+V0(sink|z| − sinkh)

Using the definition (24.6.4), we can write:

A1Vd1(z)+A2Vd2(z)+A3Vd3(z)= C1I2(z)+V0I1(z) (24.6.9)

Introducing the difference kernel Gd(z− z′)= Gapp(z− z′)−Gapp(h− z′), we have:

Vdi(z)= jη
2π

∫ h
−h
Gd(z− z′)Ii(z′)dz′ , i = 1,2,3 (24.6.10)

The improved approximation (24.6.2) applied to the difference kernel gives:

jη
2π

∫ h
−h
Gd(z− z′)I(z′)dz′ = R

(
cos(kz/2)− cos(kh/2)

)+ jXI(z)= RI3(z)+jXI(z)
Therefore, applying it to the three separate currents I1(z), I2(z), I3(z), we obtain:

Vdi(z)= Vi(z)−Vi(h)= RiI3(z)+jXiIi(z) , i = 1,2,3 (24.6.11)

Inserting these approximations in Eq. (24.6.6), we have:

A1
[
R1I3(z)+jX1I1(z)

]+A2
[
R2I3(z)+jX2I2(z)

]+A3
[
R3I3(z)+jX3I3(z)

] =
= C1I2(z)+V0I1(z)

Defining Z3 = R3 + jX3 and matching the coefficients of I1(z), I2(z), I3(z) in the
two sides, gives three equations in the four unknowns A1,A2,A3, C1:

jX1A1 = V0, jX2A2 −C1 = 0, R1A1 +R2A2 + Z3A3 = 0

The fourth equation is (24.6.8). Thus, we obtain the linear system:

⎡
⎢⎢⎢⎣

jX1 0 0 0
0 jX2 0 −1
R1 R2 Z3 0
V1(h) V2(h) V3(h) − coskh

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
A1

A2

A3

C1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

V0

0
0

V0 sinkh

⎤
⎥⎥⎥⎦ (24.6.12)

The matrix elements can be determined by evaluating the defining approximations
(24.6.11) at z-points at which the currents Ii(z) take on their maximum values. For
I1(z), the maximum occurs at z1 = 0 if h ≤ λ/4 and at z1 = h−λ/4 if λ/4 ≤ h ≤ 5λ/8.
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For I2(z) and I3(z), the maxima occur at z = 0. Thus, the defining equations for the
matrix elements are:

Vd1(z1)= V1(z1)−V1(h)= R1I3(z1)+jX1I1(z1)

Vd2(0)= V2(0)−V2(h)= R2I3(0)+jX2I2(0)

Vd3(0)= V3(0)−V3(h)= Z3I3(0)

(24.6.13)

The coefficients R1, X1, R2, X2 are obtained by extracting the real and imaginary
parts of these expressions. The left-hand sides can be computed by direct numerical
integration of the definitions (24.6.7). The expected range of applicability of the 3-term
approximation is for antenna lengths l ≤ 1.25λ (see [4,94].) However, it works well even
for longer lengths.

The MATLAB function king implements the design equations (24.6.12) and (24.6.13).
It has usage:

A = king(L,a); % King’s 3-term sinusoidal approximation

where L,a are the antenna length and its radius in units of λ and the output A is the
column vector of the coefficients Ai of the (unprimed) representation (24.6.3) of the
current.

The numerical integrations are done with a 32-point Gauss-Legendre quadrature in-
tegration routine implemented with the function quadr, which provides the appropriate
weights and evaluation points for the integration.

Example 24.6.1: Fig. 24.6.1 compares the three-term approximation to the standard sinusoidal
approximation, I(z)= sin

(
k(h − |z|)), and to the exact numerical solution of Hallén’s

equation for the two cases of l = λ and l = 1.5λ. The antenna radius was a = 0.005λ.
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Fig. 24.6.1 Three-term approximation for l = λ and l = 1.5λ.

In the full-wavelength case, the sinusoidal approximation has I(0)= 0, which would imply
infinite antenna impedance. The three-term approximation gives a nonzero value for I(0).
The computed three-term coefficients are in the two cases:⎡

⎢⎣ A1

A2

A3

⎤
⎥⎦ = 10−3

⎡
⎢⎣ −2.6035j

0.2737+ 0.2779j
0.2666+ 0.2376j

⎤
⎥⎦ ,

⎡
⎢⎣ A1

A2

A3

⎤
⎥⎦ = 10−3

⎡
⎢⎣ −2.1403j

7.7886− 3.6840j
0.8688+ 2.4546j

⎤
⎥⎦
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We used the unprimed representation for both cases (the primed one coincides with the
unprimed one for the case l = λ because coskh = −1 and the transformation matrix
(24.6.5) becomes the identity matrix.) The graphs were generated by the following example
code (for the l = 1.5λ case):

L = 1.5; h = L/2; a = 0.005; % length and radius

k = 2*pi; % wavenumber in units of λ = 1

M = 30; % number of cells is 2M + 1

[In,zn] = hdelta(L,a,M,’e’); % numerical solution of Hallén equation with exact kernel

In = In(M+1:end); % keep only upper half of the values

zn = zn(M+1:end);

A = king(L,a); % King’s three-term approximation

z = 0:h/150:h; % evaluation points on upper half

Ik = abs(kingeval(L,A,z)); % evaluate King’s three-term current

B = kingfit(L,In,zn,1); % fit one-term sinusoidal current

I1 = abs(kingeval(L,B,z)); % evaluate one-term sinusoidal current

C = kingfit(L,In,zn,3); % fit three-term current to the numerical values

I3 = abs(kingeval(L,C,z)); % evaluate fitted three-term current

plot(z,Ik,’-’, z,I3,’:’, z,I1,’--’, zn,abs(In), ’.’);

The currents I1(z) and I3(z) represent the one-term and three-term fits to the numerical
samples In at the points zn, as described below. ��

As is evident from the above example, King’s three-term approximation does not
work particularly well for larger antenna lengths (about l > 1.25λ). This can be at-
tributed to the crude approximation of computing the coefficients Ai by matching the
defining currents only at one point along the antenna (at the current maxima).

It turns out, however, that the three-term approximation is very accurate if fitted to
the “exact” current as computed by solving Hallén’s equation numerically, with a range
of applicability of up to about l = 2λ. With a 4-term fit, the range increases to l = 3λ.

Typically, numerical methods generate a set of N current values In at N points zn,
n = 1,2, . . . ,N, along the antenna. These values can be fitted to a three-term expression
of the form of Eq. (24.6.3) using the least-squares criterion:

J =
N∑
n=1

∣∣Is(zn)−In∣∣2 = min , where Is(z)=
3∑
i=1

AiIi(z) (24.6.14)

where J is minimized with respect to the three coefficients A1,A2,A3. This is equiva-
lent to finding the least-squares solution of the overdetermined N×3 linear system of
equations (assuming N > 3):⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1(z1) I2(z1) I3(z1)
...

...
...

I1(zn) I2(zn) I3(zn)
...

...
...

I1(zN) I2(zN) I3(zN)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣A1

A2

A3

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1
...
In
...
IN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24.6.15)
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Writing this system in the compact matrix form SA = I, its MATLAB solution is
obtained by the backslash operation: A = S\I. More generally, one may perform the fit
to p = 1,2,3,4 sinusoidal terms, that is,

Is(z)=
p∑
i=1

AiIi(z) (24.6.16)

For p = 1,2,3, the basis currents Ii(z) are as in Eq. (24.6.4). For p = 1, the basis
is always defined as I1(z)= sin

(
kh − k|z|). For p = 4, the first two basis currents,

I1(z), I2(z), are as in (24.6.4), and the last two are:

I3(z) = cos(kz/4)− cos(kh/4)

I4(z) = cos(3kz/4)− cos(3kh/4)
(24.6.17)

The MATLAB function kingfit solves the system of equations (24.6.15), or its more
general version, and returns the coefficients Ai. It has the following usage, where p is
the desired number of terms:

A = kingfit(L,In,zn,p); % p-term fit to sinusoidal currents

The function kingeval evaluates the p-term approximation (24.6.16) at a given num-
ber of z-points:

I = kingeval(L,A,z); % evaluate p-term expression I(z) at the points z

where the number of termsp is determined from the number of coefficientsAi. The right
graph of Fig. 24.6.1 compares King’s and the least-squares three-term approximations.

The four-term approximation is justified as follows. The three-term case was based
on the approximation sinkR/kR � cos(kR/2). To improve it, we consider the identity:

sinkR
kR

= sin(kR/2)
kR/2

cos(kR/2)= sin(kR/4)
kR/4

cos(kR/4)cos(kR/2)

The three-term case is obtained by replacing sin(kR/2)/(kR/2)� 1, which is ap-
proximately valid for R ≤ λ/2. A better approximation is obtained from the second
identity by setting sin(kR/4)/(kR/4)� 1. This results in the approximation:

sinkR
kR

� cos(kR/4)cos(kR/2)= 1

2

[
cos(kR/4)+ cos(3kR/4)

]
(24.6.18)

which is well satisfied up toR ≤ 3λ/2. Using the same arguments that led to Eq. (24.6.2),
we now obtain the approximation:

jη
2π

∫ h
−h
Gapp(z− z′)I(z′)dz′ � R cos

(kz
4

)+R′ cos
(3kz

4

)+ jXI(z) (24.6.19)

where R,R′, X are appropriate constants. Thus, Hallén’s equation (24.3.12) can be ap-
proximated as:

R cos
(kz

4

)+R′ cos
(3kz

4

)+ jXI(z)= V(z)= C1 coskz+V0 sink|z|
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which implies that I(z) can be written as the sum of four sinusoidal currents, I1(z), I2(z),
given by Eq. (24.6.3), and I3(z), I4(z), given by (24.6.17).

Fig. 24.6.2 compares the three-term and four-term fits for the two antenna lengths
l = λ and l = 3λ. For the l = λ case, the two fits are virtually indistinguishable. The
antenna radius was a = 0.005λ and the “exact” numerical solution was computed using
the exact kernel with 2M + 1 = 101 segments. The graphs can be generated by the
following example code:

L=3; a=0.005; M=50;

[Ie,z] = hdelta(L,a,M,’e’); % solve Hallén equation with exact kernel and delta-gap input

A = kingfit(L,Ie,z,3); I3 = kingeval(L,A,z);
B = kingfit(L,Ie,z,4); I4 = kingeval(L,B,z);

plot(z,real(Ie),’.’, z,real(I4),’-’, z,real(I3),’--’);
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Fig. 24.6.2 Three- and four-term approximations for l = λ and l = 3λ.

We will look at further examples later on. The main advantage of such fits is that
they provide simple analytical expressions for the current, which can be used in turn to
compute the radiation pattern. We saw in Eq. (17.1.7) that the radiation intensity of a
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linear antenna is given by

U(θ)= ηk2

32π2
|Fz(θ)|2 sin2 θ

where Fz(θ) is the z-component of the radiation vector:

Fz(θ)=
∫ h
−h
I(z)ejkz cosθdz

For the p-term current given by Eq. (24.6.16), we have:

Fz(θ)=
p∑
i=1

Ai
∫ h
−h
Ii(z)ejkz cosθdz =

p∑
i=1

AiFi(θ) (24.6.20)

The individual radiation vectors Fi(θ) are given by closed-form expressions as fol-
lows. For I1(z) and I′1(z), we have:

F1(θ) =
∫ h
−h

(
sink|z| − sinkh

)
ejkz cosθdz =

= 1

k

(
1− cos(kh cosθ)coskh

)
cosθ− sin(kh cosθ)sinkh

cosθ sin2 θ

F′1(θ) =
∫ h
−h

sin
(
kh− k|z|)ejkz cosθdz = 2

k
cos(kh cosθ)− coskh

sin2 θ

(24.6.21)

The rest of the radiation vectors are obtained from the following integral, with the
parameter values α = 1, 1/2, 1/4, 3/4:

∫ h
−h

[
cos(kαz)− cos(kαh)

]
ejkz cosθdz =

= α
k
(α+ cosθ)sin

(
kh(α− cosθ)

)− (α− cosθ)sin
(
kh(α+ cosθ)

)
cosθ(α2 − cos2 θ)

(24.6.22)

24.7 Evaluation of the Exact Kernel

Numerical methods for Hallén’s and Pocklington’s equations require the numerical eval-
uation (and integration) of the exact or approximate kernel. A sample of such numerical
methods is given in Refs. [1725–1788].

The evaluation of the approximate kernel is straightforward. The exact kernel re-
quires a more careful treatment because of its singularity at z = 0. Here, we follow
[1781] and express the exact kernel in terms of elliptic functions and discuss its numer-
ical evaluation. The exact kernel was defined in Eq. (24.1.2):

G(z,ρ)= 1

2π

∫ 2π

0

e−jkR

R
dφ′ , R =

√
z2 + ρ2 + a2 − 2ρa cosφ′ (24.7.1)
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The distance R may be written in the alternative forms:

R =
√
z2 + (ρ+ a)2−2ρa(1+ cosφ′)

=
√
z2 + (ρ+ a)2−4ρa cos2(φ′/2)

=
√
z2 + (ρ+ a)2−4ρa sin2 θ

= Rmax

√
1− κ2 sin2 θ

(24.7.2)

where we defined:

Rmax =
√
z2 + (ρ+ a)2 , κ = 2

√
aρ

Rmax
= 2

√
aρ√

z2 + (ρ+ a)2
(24.7.3)

and made the change of variablesφ′ = π+2θ. Under this change, the integration range
[0,2π] in φ′ maps onto [−π/2,π/2] in θ, and because R is even in θ, that range can
be further reduced to [0,π/2], resulting into the expression for the kernel:

G(z,ρ)= 2

π

∫ π/2
0

e−jkR

R
dθ = 2

πRmax

∫ π/2
0

e−jkRmax

√
1−κ2 sin2 θ√

1− κ2 sin2 θ
dθ (24.7.4)

where Rmax represents the maximum value of R as θ varies. The approximate kernel
corresponds to the limit a = 0 or κ = 0. The connection to elliptic functions comes
about as follows [1790–1794]. The change of variables,

u =
∫ θ

0

dα√
1− κ2 sin2α

⇒ du = dθ√
1− κ2 sin2 θ

(24.7.5)

defines θ indirectly as a function of u. The Jacobian elliptic functions sn(u, κ) and
dn(u, k) are then defined by

sn(u, κ) = sinθ

dn(u, k) =
√

1− κ2sn2(u, κ) =
√

1− κ2 sin2 θ
(24.7.6)

where κ is referred to as the elliptic modulus. The complete elliptic integrals of the first
and second kinds are given by:

K(κ)=
∫ π/2

0

dθ√
1− κ2 sin2 θ

, E(κ)=
∫ π/2

0

√
1− κ2 sin2 θdθ (24.7.7)

Thus, when θ = π/2, then u = K(κ). With these definitions, Eq. (24.7.4) can be
written as:

G(z,ρ)= 2

πRmax

∫ K(κ)
0

e−jkRmax dn(u,κ) du (24.7.8)

Changing variables from u to uK(κ), we may write:

G(z,ρ)= 2K(κ)
πRmax

∫ 1

0
e−jkRmax dn(uK,κ) du (24.7.9)
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For points on the surface of the antenna wire (ρ = a), the kernel and the quantities
Rmax and κ simplify into:

G(z)= 2

π

∫ π/2
0

e−jkR

R
dθ = 2K(κ)

πRmax

∫ 1

0
e−jkRmax dn(uK,κ) du (exact kernel) (24.7.10)

with R =
√
z2 + 4a2 − 4a2 sin2 θ = Rmax

√
1− κ2 sin2 θ and

Rmax =
√
z2 + 4a2 , κ = 2a

Rmax
= 2a√

z2 + 4a2
(24.7.11)

As u varies over the interval 0 ≤ u ≤ 1, the quantity dn(uK,κ) stays bounded,
varying over the range:

κ′ ≤ dn(uK,κ)≤ 1 (24.7.12)

where we introduced the complementary modulus:

κ′ =
√

1− κ2 = |z|√
z2 + 4a2

= |z|
Rmax

(24.7.13)

Therefore, the integral in Eq. (24.7.10) remains bounded and less than one in magni-
tude for all values of z. On the other hand, the factor K(κ) incorporates the logarithmic
singularity at z = 0. Indeed, as z→ 0, the moduli κ and κ′ tend to 1 and 0, respectively,
and K(κ) behaves as ln(4/κ′) [1793]:

K(κ)� ln
(

4

κ′

)
� ln

(
4Rmax

|z|
)
� ln

(
8a
|z|

)
, as z→ 0 (24.7.14)

where we replaced Rmax � 2a as z→ 0. Thus, the kernel behaves like

G(z)� 1

πa
ln

(
8a
|z|

)
, as z→ 0 (24.7.15)

The MATLAB function kernel implements Eq. (24.7.10) to compute G(z) at any
vector of z points. For smaller values of z, it uses the asymptotic form (24.7.15). It has
usage:

G = kernel(z,a,’e’); % exact kernel

G = kernel(z,a,’a’); % approximate kernel

It employs the following set of MATLAB functions for the evaluation of the complete
elliptic integrals and the function dn(uK,κ):

K = ellipK(k); % elliptic integral K(κ) at a vector of κ’s

E = ellipE(k); % elliptic integral E(κ) at a vector of κ’s

v = landenv(k); % Landen transformations of a vector of κ’s

w = snv(u,k); % sn(uK,κ) function at a vector of u’s and a vector of κ’s

w = dnv(u,k); % dn(uK,κ) function at a vector of u’s and a vector of κ’s

These are based on a set of similar functions developed for the implementation
of elliptic filters [1795–1797] that were modified here to handle a vector of moduli κ
arising from a vector of z points. Using these functions, the integral in Eq. (24.7.10) is
implemented with a 32-point Gauss-Legendre integration over the interval 0 ≤ u ≤ 1.
Let wi, ui, i = 1,2, . . . ,32, denote the weights and evaluation points obtained by calling
the quadrature function quadr:
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[w,u] = quadr(0,1,32); % 32-point Gauss-Legendre integration over the interval [0,1]

Then, Eq. (24.7.10) can be evaluated by

G(z)= 2K(κ)
πRmax

32∑
i=1

wi e−jkRmax dn(uiK,κ) (24.7.16)

The function kernel has an additional input parameter, method,

G = kernel(z,a,’e’,method); % exact kernel

that allows one to select faster but somewhat less accurate methods of computing the
kernel. The method of Eq. (24.7.16) is selected with method = 3. The integral in (24.7.10)
can be expanded approximately as follows [1781]:

J(κ) = K
∫ 1

0
e−jkRmax dn(uK,κ) du =

∫ K
0
e−jkRmax dn(u,κ) du

= e−jkRmax

∫ K
0
e−jkRmax

(
dn(u,κ)−1

)
du

� e−jkRmax

∫ K
0

[
1− jkRmax

(
dn(u, κ)−1

)+ (−jkRmax)2

2

(
dn(u, κ)−1

)2

]
du

Using the definitions (24.7.5)–(24.7.7), we find:∫ K
0

(
dn(u, κ)−1

)
du = π

2
−K ,

∫ K
0

(
dn(u, κ)−1

)2du = K + E −π

Thus, J(κ) can be written approximately as

J(κ)=
∫ K

0
e−jkRmax dn(u,κ) � e−jkRmax

[
K + jkRmax

(
K − π

2

)
+ (jkRmax)2

2
(K + E −π)

]

This leads to the following approximations for the kernel G(z). If only the linear
term in (jkRmax) is kept, then

G(z)= 2e−jkRmax

πRmax

[
K + jkRmax

(
K − π

2

)]
(24.7.17)

and, if both the linear and the quadratic terms are kept,

G(z)= 2e−jkRmax

πRmax

[
K + jkRmax

(
K − π

2

)
+ (jkRmax)2

2
(K + E −π)

]
(24.7.18)

Eqs. (24.7.17) and (24.7.18) are selected with the method = 1,2, respectively, and
provide faster alternatives to the slower but more accurate method of Eq. (24.7.16).

Becauseκ2 = 1−κ′2, floating point accuracy limits the values ofκ′2 to be greater than
about the machine epsilon, that is, κ′ >

√
ε, which for MATLAB gives ε = 2.22×10−16

and κ′ >
√
ε = 1.49×10−8. Since for small z we have κ′ = z/2a, this limitation trans-

lates to a minimum value of z below which the elliptic function calculations cannot be
used and one must use the asymptotic form (24.7.15):

zmin

2a
= κ′ = √ε ⇒ zmin = (2.98×10−8)a (24.7.19)
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An alternative computation method, which will also help refine the asymptotic form
(24.7.15), is based on a straightforward series expansion of the integral in (24.7.10):

J(κ) = K
∫ 1

0
e−jkRmax dn(uK,κ) du =

∫ K
0
e−jkRmax dn(u,κ) du

=
∞∑
m=0

(−jkRmax)m

m!

∫ K
0

dnm(u,κ)du

Defining the integrals,

Jm(κ)=
∫ K

0
dnm(u,κ)du =

∫ π/2
0

(√
1− κ2 sin2 θ

)m−1

dθ , m ≥ 0 (24.7.20)

we have:

J(κ)=
∞∑
m=0

(−jkRmax)m

m!
Jm(κ) (24.7.21)

The first few of these are:

J0(κ) = K(κ)

J1(κ) = π
2

J2(κ) = E(κ)

J3(κ) = π
4
(1+ κ′2)

J4(κ) = 1

3

[
2(1+ κ′2)E(κ)−κ′2K(κ)]

(24.7.22)

where κ′2 = 1− κ2. The rest can be computed from the following recursion [1793]:

Jm+1(κ)= (m− 1)(1+ κ′2)Jm−1(κ)−(m− 2)κ′2Jm−3(κ)
m

, m ≥ 4 (24.7.23)

Separating them = 0 term from the rest, the kernel can be written in the form:

G(z)= 2

πRmax

(
K(κ)+C(κ)) , C(κ)=

∞∑
m=1

(−jkRmax)m

m!
Jm(κ) (24.7.24)

In the limit κ → 1, the quantities Jm(κ) have a finite limit, with the exception of
J0(κ), which diverges as J0(κ)= K(κ)= ln(4/κ′). For example, the term κ′2K(κ) in
J4(κ) converges to zero:

lim
κ→1
κ′2K(κ)= lim

κ′→0
k′2 ln

(
4

κ′

)
= 0

In this limit, the integrals in (24.7.20) can be done in closed form and expressed in
terms of the gamma function [1790]:

Jm(1)=
∫ π/2

0
(cosθ)m−1dθ =

√
π
2

Γ
(
m
2

)

Γ
(
m+ 1

2

) , m ≥ 1 (24.7.25)
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Therefore, the term C(κ) in (24.7.24) also has a finite limit given by:

C(1)=
∞∑
m=1

(−2jka)m

m!
Jm(1) (24.7.26)

where we replaced Rmax = 2a. Then, the asymptotic form (24.7.15) of the kernel may
be modified by adding the constant C(1):

G(z)= 1

πa

[
ln

(
8a
|z|

)
+C(1)

]
, as z→ 0 (24.7.27)

In the function kernel, we use this approximation for |z| < zmin, where the series
for C(1) converges very fast requiring about 4–5 terms for typical values of the radius,
such as 0.001λ ≤ a ≤ 0.01λ.

For |z| ≥ zmin, one may use the series expansion (24.7.24). The smaller the z, the
smaller the number of terms required for convergence of the sum. For example, for the
case a = 0.005λ and for some typical values of z, the number of terms were:

z/λ 3 2 1 0.5 0.05 0.005 0.0005

M 76 58 38 22 10 7 7

The method (24.7.24) is selected by the value method = 4 in the function kernel. We
have included all four methods described by Eqs. (24.7.16)–(24.7.18), and (24.7.24) as
options in kernel. The default method is that of Eq. (24.7.18) selected with method = 2.

24.8 Method of Moments

The method of moments (MoM) refers to a family of numerical methods for solving
integral equations [1734–1740]. We summarize the method in the context of solving
Hallén’s equations for a delta-gap input, and later on, we apply it to the cases of arbitrary
incident fields and Pocklington’s equation. For an antenna of length l, half-length h =
l/2, and radius a, Hallén’s equation reads:

jη
2π

∫ h
−h
G(z− z′)I(z′)dz′ = V(z)= C1 coskz+V0 sink|z| (24.8.1)

where G(z − z′) is the exact or the approximate kernel. The antenna is divided into
N = 2M + 1 segments of width Δ = l/N = 2h/(2M + 1), as shown in Fig. 24.8.1, with
centers at the positions:

zm =mΔ, −M ≤m ≤M (24.8.2)

and the current is expanded into a sum of basis functions:

I(z′)=
M∑

m=−M
Im B(z′ − zm) (24.8.3)

where B(z′ − zm) are localized functions centered on the mth segment. For example,
in the case of pulse basis functions shown in Fig. 24.8.1, we have:

B(z′ − zm)=
⎧⎨
⎩ 1, if |z′ − zm| ≤ 1

2
Δ

0, otherwise
(24.8.4)
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Fig. 24.8.1 Pulse-function segments along an antenna, with N = 11,M = 5.

Other basis functions are possible such as triangular, sinusoidal, or even plain delta-
functions, and we will consider them in succeeding sections. Because of the localized
nature of the basis, the expansion (24.8.3) is referred to as a sub-domain expansion.
Alternatively, entire-domain basis functions can be used that are defined over the entire
length l of the antenna. Substitution of I(z′) into the Hallén equation gives:

jη
2π

M∑
m=−M

Im
∫ h
−h
G(z− z′)B(z′ − zm)dz′ = V(z) (24.8.5)

The localized nature of B(z′−zm) restricts this integral to be over themth segment.
Next, a local weighted average is formed about each point zn = nΔ by using another
local weighting (or testing) functionW(z− zn), which is centered on zn :

jη
2π

M∑
m=−M

Im
∫ h
−h

∫ h
−h
W(z− zn)G(z− z′)B(z′ − zm)dzdz′ =

∫ h
−h
W(z− zn)V(z)dz

This may be written in the N×N matrix form:

M∑
m=−M

ZnmIm = vn , −M ≤ n ≤M (24.8.6)

where we defined

Znm = jη
2π

∫ h
−h

∫ h
−h
W(z− zn)G(z− z′)B(z′ − zm)dzdz′

vn =
∫ h
−h
W(z− zn)V(z)dz

(24.8.7)

Two popular choices for the weighting function are the Galerkin and the point-
matching or collocation choices. In the Galerkin method the weighting function is taken
to be the same as the basis function, and in the point-matching case, it is a delta function:

W(z− zn)= δ(z− zn) (point-matching)

W(z− zn)= B(z− zn) (Galerkin)
(24.8.8)
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Thus, in the point-matching method, Eqs. (24.8.7) reduce to:

Znm = jη
2π

∫ h
−h
G(zn − z′)B(z′ − zm)dz′

vn = V(zn)= C1 coskzn +V0 sink|zn|
(24.8.9)

Similarly, in the Galerkin method, we have:

Znm = jη
2π

∫ h
−h

∫ h
−h
B(z− zn)G(z− z′)B(z′ − zm)dzdz′

vn =
∫ h
−h
B(z− zn)V(z)dz

(24.8.10)

In succeeding sections, we will consider the following cases and discuss how to
compute the quantities Znm and vn:

– Delta-function basis with point matching
– Pulse-function basis with point matching
– Pulse-function basis with Galerkin weighting
– Triangular basis with point matching
– Sinusoidal spline basis (NEC basis) with point matching
– Method of moments for Hallén’s equation with arbitrary incident field
– Method of moments for Pocklington’s equation

We will also consider the following issues that have been discussed extensively in the
literature regarding the existence of solutions of Hallén’s equation (24.8.1) with delta-
gap input [1765–1777]:

1. The approximate kernel is non-singular at z = 0. Yet, the numerical solution of
Hallén’s equation using the approximate kernel does not converge and becomes
unusable for increasing number of segments N and/or for increasing radius a,
whereas the solution based on the exact kernel does converge. However, for mod-
erate values of N, one does get useful results from the approximate kernel.

2. In fact, the approximate-kernel Hallén equation for a delta-gap input does not,
strictly speaking, have a solution, whereas the one with the exact kernel does.

3. The input impedance of the antenna, Z0 = V0/I(0), for the delta-gap case does
not converge to a constant value for the approximate kernel asN increases, but it
does so for the exact kernel. Generally, numerical methods get the resistive part
of Z0 fairly accurately, but have a hard time for the reactive part.

4. The solution I(z) for the exact kernel in the delta-gap case has a logarithmic
singularity at z = 0 of the form:

I(z)� −j 4kaV0

η
ln
(
k|z|) , z � 0 (24.8.11)

Therefore, one may wonder if the numerical solutions have any use. However, this
logarithmic singularity is confined to a very narrow range around z = 0 and for
all other values of z, the exact-kernel solution is accurate and useful.
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5. King’s empirical three-term approximation for the current is also very accurate
(except in the immediate vicinity of the logarithmic singularity at z = 0), if fitted
to the exact-kernel solution.

24.9 Delta-Function Basis

Here, we discuss numerical solutions of (24.8.1) using a delta-function basis with point
matching. The basis functions are defined by:

B(z′ − zm)= δ(z′ − zm)Δ (24.9.1)

Fig. 24.9.1 depicts the delta functions as narrow pulses of width δ. The factor Δ is
needed to give I(z′) the right dimensions.

Fig. 24.9.1 Delta-function segments along an antenna, with N = 11,M = 5.

Inserting this basis into Eq. (24.8.9), we find

Znm = jη
2π
G(zn − zm)Δ , −M ≤ n,m ≤M

vn = C1 coskzn +V0 sink|zn| , −M ≤ n ≤M
(24.9.2)

Because zn−zm = (n−m)Δ, the diagonal entries Znn correspond to the evaluation
of the kernel G(z) at z = 0. For the approximate kernel, G(0) is finite (corresponding
to the small but finite radius R = a). But for the exact kernel, G(0) is infinite because
of its logarithmic singularity at z = 0. A reasonable way of modifying Znn is to replace
the infinitely thin delta-function by a finite-width pulse:

B(z)= δ(z)Δ→ u(z+ δ/2)−u(z− δ/2)
δ

Δ

where u(z) is the unit-step. Then, Eq. (24.9.3) gives in the case n =m:

Znn = jη
2π

∫ h
−h
G(zn − z′)B(z′ − zn)dz′ = Δδ

jη
2π

∫ δ/2
−δ/2

G(z)dz

where we used the even-ness of G(z). The best choice for δ which yields results com-
parable to the other bases is the value δ = Δ, giving:

Znn = jη
2π

∫ Δ/2
−Δ/2

G(z)dz , −M ≤ n ≤M (24.9.3)
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We evaluate this integral numerically using Gauss-Legendre integration, However,
one could also use quadrature rules [1755,1756] that are more appropriate for the loga-
rithmic singularity of G(z). The above method of regularizing the impedance matrix by
local averaging about the singularity region is akin to alternative discretizations based
on locally-corrected Nyström methods that replace the integral equation by a quadrature
integration rule, such as Gauss-Legendre [1761–1764].

With the definitions (24.9.2) and (24.9.3), the matrix equation (24.8.6) may be written
in the compact form:

ZI = v = C1c+V0s (24.9.4)

where Z is theN×N matrix with matrix elements Znm and I, s, c are the column vectors
with elements In, cn = coskzn, and sn = sink|zn|, for n = −M, . . . ,M. The vector I is
symmetric about its middle, that is, I−n = In, and similarly for c, s. Therefore, we have:

I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IM
...
I1
I0
I1
...
IM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vM
...
v1

v0

v1

...
vM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cM
...
c1

c0

c1

...
cM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sM
...
s1
s0
s1
...
sM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24.9.5)

The matrix Z is a symmetric Toeplitz matrix because the matrix element Znm de-
pends only on the difference |n −m|. Taking advantage of the Toeplitz nature of Z
and the symmetry of the vectors (24.9.5), the matrix system (24.9.4) can be replaced by
one essentially half its size, thus, speeding up the solution. To see this, we partition the
vector I into its upper (negative-z), middle, and lower (positive-z) parts:

I =
⎡
⎢⎣ IR1
I0
I1

⎤
⎥⎦ , I1 =

⎡
⎢⎢⎢⎢⎢⎣
I1
I2
...
IM

⎤
⎥⎥⎥⎥⎥⎦ , IR1 =

⎡
⎢⎢⎢⎢⎢⎣
IM
...
I2
I1

⎤
⎥⎥⎥⎥⎥⎦

The upper part IR1 is the reverse of the lower part I1. The reversal operation can be
expressed as a matrix operation:

IR1 = JI1 , J =

⎡
⎢⎢⎢⎢⎢⎣

0 · · · 0 1
0 · · · 1 0
... . .

. ...
...

1 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

where J is theM×M reversing matrix J, that is, the matrix with ones along its antidiag-
onal. Then, the impedance matrix Z and Eq. (24.9.4) can be partitioned in a compatible
way as follows: ⎡

⎢⎣ A
R aR BR

aTR a0 aT

B a A

⎤
⎥⎦
⎡
⎢⎣ IR1
I0
I1

⎤
⎥⎦ =

⎡
⎢⎣ vR1
v0

v1

⎤
⎥⎦ (24.9.6)
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where we have separated the middle column and row of Z. Because Z satisfies the
reversal invariance condition Z(n,m)= Z(−n,−m), the upper-left blockAR will be the
reverse of the lower-right block A, and the upper-right, the reverse of the lower-left.
Moreover, because Z is symmetric, we have AR = AT = A and BR = BT.

The reverse of a matrix is obtained by reversing its columns and then reversing its
rows, an operation which is equivalent to multiplication by the reversing matrix J from
left and right:

AR = JAJ
Writing out the three sub-block equations of Eq. (24.9.6), we obtain:

ARIR1 + aRI0 + BRI1 = vR1

aTRIR1 + a0I0 + aTI1 = v0

BIR1 + aI0 +AI1 = v1

But, the first is exactly the reverse of the last, and therefore redundant. Noting that
aTRIR1 = aTI1 and BIR1 = BJI1, we obtain the reduced system:

a0I0 + 2aTI1 = v0

aI0 + (A+ BJ)I1 = v1

which can be written in the reduced block matrix form:[
a0 2aT

a A+ BJ
][

I0
I1

]
=

[
v0

v1

]
(24.9.7)

Thus, we can replace the N×N system (24.9.4) or (24.9.6) by the (M + 1)×(M + 1)
system (24.9.7) acting only on half-vectors. We will write Eq. (24.9.7) in the following
compact form:

ZI = v = C1c+V0s (24.9.8)

where Z is constructed from Z according to (24.9.7) and the vectors are the half-vectors:

I =

⎡
⎢⎢⎢⎢⎢⎣
I0
I1
...
IM

⎤
⎥⎥⎥⎥⎥⎦ , v =

⎡
⎢⎢⎢⎢⎢⎣
v0

v1

...
vM

⎤
⎥⎥⎥⎥⎥⎦ , c =

⎡
⎢⎢⎢⎢⎢⎣
c0

c1

...
cM

⎤
⎥⎥⎥⎥⎥⎦ , s =

⎡
⎢⎢⎢⎢⎢⎣
s0
s1
...
sM

⎤
⎥⎥⎥⎥⎥⎦ (24.9.9)

Next, we impose the condition that IM = 0 from which the constant C1 can be
determined. This condition can be written vectorially in the form uTI = 0, where uT =
[0, . . . ,0,1]. Solving (24.9.8) for I, we obtain:

I = C1Z−1c+V0Z−1s (24.9.10)

Multiplying both sides by uT, we obtain the condition:

uTI = C1uTZ−1c+V0uTZ−1s = 0
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which may be solved for C1:

C1 = −V0
uTZ−1s

uTZ−1c
(24.9.11)

The two equations (24.9.10) and (24.9.11) provide the complete solution of the dis-
cretized Hallén equation. The MATLAB function hdelta implements the above solution
procedure. It has usage:

[I,z,cnd] = hdelta(L,a,M,ker,basis); % solve Hallén equation with delta-gap input

The string parameter inputs ker and basis take the possible values:

ker = ’e’, ’a’ % exact or approximate kernel

basis = ’p’, ’t’, ’n’, ’d’ % pulse, triangular, NEC, or delta-function basis

where the choice basis=’d’ applies in this section. This function solves the half system
(24.9.8), but returns the fullN-dimensional symmetric vector I of Eq. (24.9.5). The quan-
tity z is theN-dimensional vector of sampled z-points (24.8.2), and cnd is the condition
number of the matrix Z that is being inverted. The quantities L,a are the antenna length
and radius in units of λ, andM has the same meaning as above.

The matrix inversions required in (24.9.10) can be implemented efficiently by MAT-
LAB’s backslash operation Z\[c, s]. The function assumes V0 = 1. Therefore, the input
impedance of the antenna will be Z0 = V0/I0 = 1/I0, where I0 is the middle of the
output vector I (i.e., the sample I(M + 1) in MATLAB indexing.)

Internally, the function hdelta calls the functions hmat and hwrap to construct the
impedance matrices Z and Z:

[Z,B] = hmat(L,a,M,ker,basis); % construct the (2M + 1)×(2M + 1) Hallén impedance matrix

Zwrap = hwrap(Z); % wrap impedance matrix to size (M + 1)×(M + 1)

where B is a tridiagonal matrix that is applicable only in the NEC basis case, as explained
in Sec. 24.12, and is equal to the identity matrix otherwise.

Fast Toeplitz solvers can also be used, based on the Levinson recursion and fast
Cholesky factorizations [49]. However, we found that the built-in linear system solver
of MATLAB is much faster for sizes of the orderM = 20–200.

Example 24.9.1: To clarify the structure of the impedance matrix Z and show how to wrap it
efficiently into the half-size of (24.9.7), consider the case N = 7 or M = 3. Because Z
is Toeplitz and symmetric, it can be built from the knowledge of its first column or first
row. The first column is Zn,−M = Zn+M,0, for −M ≤ n ≤ M. Setting m = n +M, so that
m = 0,1, . . . ,2M, the first column (and first row) consists of the numbers:

am = Zm,0 , m = 0,1, . . . ,2M (24.9.12)

Therefore, the full matrix Z will have the form:

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 a3 a4 a5 a6

a1 a0 a1 a2 a3 a4 a5

a2 a1 a0 a1 a2 a3 a4

a3 a2 a1 a0 a1 a2 a3

a4 a3 a2 a1 a0 a1 a2

a5 a4 a3 a2 a1 a0 a1

a6 a5 a4 a3 a2 a1 a0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where we partitioned it as in Eq. (24.9.7), with submatrices:

A =
⎡
⎢⎣ a0 a1 a2

a1 a0 a1

a2 a1 a0

⎤
⎥⎦ , B =

⎡
⎢⎣ a4 a3 a2

a5 a4 a3

a6 a5 a4

⎤
⎥⎦ , a =

⎡
⎢⎣ a1

a2

a3

⎤
⎥⎦

Therefore, the wrapped version of Z will be:

Z =
[
a0 2aT

a A+ BJ
]
=

⎡
⎢⎢⎢⎣
a0 2a1 2a2 2a3

a1 a0 + a2 a1 + a3 a2 + a4

a2 a1 + a3 a0 + a4 a1 + a5

a3 a2 + a4 a1 + a5 a0 + a6

⎤
⎥⎥⎥⎦ (24.9.13)

This matrix can be constructed quickly as follows. Once the numbers am,m = 0,1, . . . ,2M
are computed, take the first and lastM + 1 numbers, that is, define the two row vectors:

f = [a0, a1, a2, a3, a4, a5, a6] ⇒ g = [a0, a1, a2, a3] , h = [a3, a4, a5, a6]

Then, form the Toeplitz matrix whose first column and first row are g, and add it to the
Hankel matrix whose first column is g and last row is h. This is accomplished easily by the
built-in MATLAB functions toeplitz and hankel:

toeplitz(g,g)+hankel(g,h)=

⎡
⎢⎢⎢⎣

2a0 2a1 2a2 2a3

2a1 a0 + a2 a1 + a3 a2 + a4

2a2 a1 + a3 a0 + a4 a1 + a5

2a3 a2 + a4 a1 + a5 a0 + a6

⎤
⎥⎥⎥⎦

Then, replace the first column by half its value. These procedures are incorporated into the
function hwrap. We note that the full matrix Z can also be constructed using the function
toeplitz by:

Z = toeplitz(f, f)

This is how Z is constructed by the function hmat. ��

24.10 Pulse Basis

The delta function discretization scheme described in the previous section yields com-
parable results to the other bases. Here, we look at the pulse-function basis, which was
defined by Eq. (24.8.4) and shown in Fig. 24.8.1. For the point-matching case, the matrix
elements Znm are given by Eq. (24.8.9):

Znm = jη
2π

∫ h
−h
G(zn − z′)B(z′ − zm)dz′ = jη

2π

∫ zm+Δ/2
zm−Δ/2

G(zn − z′)dz′

or, changing integration variable to z = z′ − zm,

Znm = jη
2π

∫ Δ/2
−Δ/2

G(zn − zm − z)dz , −M ≤ n,m ≤M (24.10.1)
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The integration range can be folded in half giving:

Znm = jη
2π

∫ Δ/2
0

[
G(zn − zm − z)+G(zn − zm + z)

]
dz (24.10.2)

The function hmat with the option, basis=’p’, may be used to evaluate Znm, for
both the exact and the approximate kernels. A 32-point Gauss-Legendre quadrature
integration rule is used to evaluate the integral in (24.10.2). The Hallén matrix equation
is again given by (24.9.4):

ZI = v = C1c+V0s (24.10.3)

and may be solved using the techniques of the previous sections. The function hdelta
solves (24.10.3) with the option, basis=’p’.

For the Galerkin case, the matrix equation (24.10.3) has the same form but with some
redefinitions of the quantities Z, c, s. The matrix elements Znm are given by (24.8.10):

Znm = jη
2π

∫ h
−h

∫ h
−h
B(z− zn)G(z− z′)B(z′ − zm)dzdz′ =

= jη
2π

∫ zn+Δ/2
zn−Δ/2

∫ zm+Δ/2
zm−Δ/2

G(z− z′)dzdz′

= jη
2π

∫ Δ/2
−Δ/2

∫ Δ/2
−Δ/2

G(zn − zm + x− x′)dxdx′

where we changed variables to x = z− zn and x′ = z′ − zm. Defining a new integration
variable z = x− x′, then one of the remaining integrations can be done giving:

Znm = jη
2π

∫ Δ
−Δ

(
Δ− |z|)G(zn − zm + z)dz , −M ≤ n,m ≤M (24.10.4)

Similarly, the right-hand side vector v of (24.10.3) has components:

vn =
∫ h
−h
B(z− zn)V(z)dz =

∫ Δ/2
−Δ/2

V(zn + x)dx

= C1

∫ Δ/2
−Δ/2

cosk(zn + x)dx+V0

∫ Δ/2
−Δ/2

sink|zn + x|dx ≡ C1cn +V0sn

where the individual terms cn, sn can be calculated explicitly:

cn =
∫ Δ/2
−Δ/2

cosk(zn + x)dx = 2

k
sin

(
kΔ
2

)
coskzn

sn =
∫ Δ/2
−Δ/2

sink|zn + x|dx = 4

k
sin2

(
kΔ
4

)
δ(n)+2

k
sin

(
kΔ
2

)
sink|zn|

(24.10.5)

where δ(n) is the Kronecker delta, and zn = nΔ, for −M ≤ n ≤ M. The Galerkin
method yields very comparable results to the point matching case.

Some examples of the point-matching case with pulse-function basis were shown in
Figs. 24.6.1 and 24.6.2. Some further examples are given below based on [1774,1775].
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Fig. 24.10.1 Real and imaginary parts of I(z) for half-wave dipole,M = 50 andM = 100.

Fig. 24.10.1 compares the solutions of (24.10.3) using the exact and the approximate
kernels for a dipole of length l = 0.5λ and radius a = 0.005λ.

The upper two graphs show the real and imaginary parts of the current samples In
(joined here by straight lines) using M = 50, which corresponds to N = 2M + 1 = 101
segments. The lower two graphs show the case of M = 100. We note that for the
approximate kernel, the solution oscillates wildly near the center and the end-points
of the antenna—a behavior attributed to the non-existence of solutions of the Hallén
equation Eq. (24.8.1) in this case. Fig. 24.10.2 depicts the case of a half-wave dipole with
a larger radius a = 0.008λ andM = 100, for which the oscillations get worse.

We have not superimposed King’s three-term fit because it is virtually indistinguish-
able from the exact-kernel solution. The graphs, including the 3-term fit, may be gener-
ated by the following example MATLAB code:

L=0.5; a=0.005; M=100;

[Ie,z] = hdelta(L,a,M,’e’,’p’); % solution of Hallén equation with exact kernel

Ia = hdelta(L,a,M,’a’,’p’); % solution of Hallén equation with approximate kernel

A = kingfit(L,Ie,z,3); % three-term coefficients fitted to exact-kernel solution

I3 = kingeval(L,A,z); % evaluate 3-term current at the sample points z

figure; plot(z,real(Ie),’-’, z,real(Ia),’:’, z,real(I3),’--’);
figure; plot(z,imag(Ie),’-’, z,imag(Ia),’:’, z,imag(I3),’--’);
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Fig. 24.10.2 Current on half-wave dipole of radius a = 0.008λ andM = 100.

In Fig. 24.10.3, we compare how well the logarithmic behavior of Eq. (24.8.11) near
z = 0 fits the computed current I(zn).
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Fig. 24.10.3 Logarithmic behavior of the solution near z = 0.

To make the comparison, we adjust the asymptotic form (24.8.11) to match the
computed value at the the closest z-point to zero, that is, at z1 = Δ. The adjusted
asymptotic current is then,

Ilog(z)� −j 4kaV0

η
ln

∣∣∣∣ zz1

∣∣∣∣+ I(z1) , z � 0 (24.10.6)

so that it satisfies Ilog(z1)= I(z1). For the case a = 0.005λ and M = 50, Fig. 24.10.3
plots the imaginary part of the computed current I(z) based on the exact kernel, to-
gether with the corresponding three-term fit, and the asymptotic current Ilog(z).

The graph on the left is over the interval 0 ≤ z ≤ 0.25λ, whereas the graph on the
right shows only the narrow interval 0 ≤ z ≤ 0.05λ, and both graphs use an expanded
vertical scale compared to that of Fig. 24.10.1. The logarithmic behavior is evident. We
note also that the three-term fit agrees very well with the computed current except in a
narrow interval about z = 0.
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Finally, we look at the stability of the numerical solutions based on the exact and
approximate kernels as the number of segments M increases. Fig. 24.10.4 depicts the
calculated input admittance Y0 = I0/V0 as a function of the number of segmentsM.
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Fig. 24.10.4 Input admittance of half-wave dipole vs. number of segmentsM.

The conductanceG0 = Re(Y0) converges for both the exact and approximate kernel
solutions. However, the susceptance B0 = Im(Y0) diverges for the approximate kernel
case, and converges for the exact kernel—the two agreeing well only forM  30.

Fig. 24.10.5 depicts the dependence of the condition number of the Hallén impedance
matrix Z on the number of segments M. We note the relative well-conditioning of the
exact-kernel case. The above graphs may be computed with the following MATLAB code:

L=0.5; a=0.005;

for M=1:1:100,
[I,z,cnd] = hdelta(L,a,M,’e’,’p’); Ye(M) = I(M+1); ce(M) = cnd;
[I,z,cnd] = hdelta(L,a,M,’a’,’p’); Ya(M) = I(M+1); ca(M) = cnd;

end

M=1:1:100;

figure; plot(M,real(Ye),’-’, M,real(Ya),’.’);
figure; plot(M,imag(Ye),’-’, M,imag(Ya),’.’);
figure; semilogy(M,ce,’-’, M,ca,’--’);

For very small antenna radius, the exact and approximate kernels produce essentially
the same current solutions. Fig. 24.10.6 shows the input impedance Z0 = R + jX =
V0/I0 versus the antenna length in the interval 0.3λ ≤ l ≤ 0.7λ, and for the two radii
a = 0.0005λ and 0.000001λ.

The calculation was carried out using a pulse basis and the approximate kernel with
M = 100 segments, but one could just as well have used the exact kernel or a trian-
gular basis with very little difference in the results. The graphs are similar to those
of Fig. 17.3.1 and show the resonant length at about 0.48λ–0.49λ. The graphs were
produced with the MATLAB code:

L = linspace(0.3,0.7,41);
a = [0.0005, 0.00001];
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Fig. 24.10.5 Condition number of Hallén impedance matrix vs. number of segmentsM.

M = 100;

for i=1:length(L),
for k=1:length(a),

I = hdelta(L(i),a(k),M,’a’,’p’); Z(i,k) = 1/I(M+1);
end

end

figure; plot(L, real(Z(:,1)), ’-’, L, real(Z(:,2)), ’--’);
figure; plot(L, imag(Z(:,1)), ’-’, L, imag(Z(:,2)), ’--’);
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Fig. 24.10.6 Input impedance versus antenna length.

24.11 Triangular Basis

For the triangular basis, the current expansion (24.8.3), reads

I(z′)=
M∑

m=−M
ImB(z′ − zm) (24.11.1)
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where B(z) is the triangular function:

B(z)=
⎧⎪⎨
⎪⎩

1− |z|
Δ
, if |z| ≤ Δ

0 , otherwise
(24.11.2)

The triangular basis functions, depicted in Fig. 24.11.1, have duration 2Δ, that is,
twice as long as the pulse case. The linear combination of (24.11.1) is equivalent to
connecting the sample values Im by straight line segments.

Fig. 24.11.1 Triangular basis functions with N = 11,M = 5.

The antenna is divided into N = 2M segments of width Δ = l/2M = h/M, and the
(2M + 1) points zm =mΔ , −M ≤m ≤ M, lie at the end points of these segments. As
depicted in Fig. 24.11.1, the influence of the last current sample IM at zM (and I−M at
z−M) may be thought of as extending beyond the end of the antenna by an additional
segment. The vanishing of the current at the ends of the antenna is enforced by the
conditions IM = I−M = 0.

For point-matching, the Hallén impedance matrix (24.8.9) will be given as follows:

Znm = jη
2π

∫ h
−h
G(zn − z′)B(z′ − zm)dz′

= jη
2π

∫ zm+Δ
zm−Δ

(
1− |z

′ − zm|
Δ

)
G(zn − z′)dz′

= jη
2π

∫ Δ
−Δ

(
1− |z|

Δ

)
G(zn − zm − z)dz

(24.11.3)

which differs by a factor of Δ from the Galerkin case of the pulse basis, Eq. (24.10.4).
The Hallén matrix equation remains the same as (24.9.4):

ZI = v = C1c+V0s (24.11.4)

with the same right-hand vectors, that is, cn = coskzn and sn = sink|zn|,−M ≤ n ≤M.
It may be solved by the function hmat, called with the option, basis=’t’. A 32-point
Gauss-Legendre quadrature is used to compute the integrals in (24.11.3).

The exact and approximate kernel current solutions and input admittance exhibit
the same behavior in the triangular basis as in the pulse basis.

Using the exact kernel, the triangular basis converges faster than the pulse basis
as the number of segments M increases. Fig. 24.11.2 compares the convergence of the
input admittance of a half-wave dipole with radius a = 0.005λ for the two bases.
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Fig. 24.11.2 Input admittance computed with pulse and triangular basis functions.

24.12 NEC Sinusoidal Basis

The Numerical Electromagnetics Code (NEC) is a widely used public-domain program
for modeling antennas and other structures [1748]. The program solves Pocklington’s
equation using point-matching and a spline-like sinusoidal basis. A similar basis was
originally used by [1732]. For a linear antenna, the basis is defined by:

B(z)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A− + B− sink(z+Δ)+C− cosk(z+Δ) , −3Δ
2
≤ z ≤ −Δ

2

A0 + B0 sinkz+C0 coskz , −Δ
2
≤ z ≤ Δ

2

A+ + B+ sink(z−Δ)+C+ cosk(z−Δ) , Δ
2
≤ z ≤ 3Δ

2

(24.12.1)

whereΔ is the segment length defined as usual byΔ = 2h/(2M+1). The basis function
B(z) is shown on the left of Fig. 24.12.1. It extends over three consecutive segments.

Fig. 24.12.1 NEC sinusoidal basis functions.

The A,B,C coefficients are determined by imposing the spline-like conditions that
(a) the three pieces of B(z) join continuously, as do their slopes, at the points z = ±Δ/2,
(b) at the end-points z = ±3Δ/2, the function B(z)and its derivative vanish, and (c) at
the center z = 0, B(0) is normalized to one. These conditions provide nine equations
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for the nine coefficients, with solution:

A0 = 1− 2c2
Δ

1+ cΔ − 2c2
Δ
, B0 = 0 , C0 = cΔ

1+ cΔ − 2c2
Δ

(24.12.2)

A± = 1

2(1+ cΔ − 2c2
Δ)
, B± = ∓ sΔ

2(1+ cΔ − 2c2
Δ)
, C± = − cΔ

2(1+ cΔ − 2c2
Δ)

(24.12.3)

where cΔ, sΔ are shorthands for the quantities:

cΔ = cos
(
kΔ
2

)
, sΔ = sin

(
kΔ
2

)
(24.12.4)

The current expansion in terms of this basis is as follows:

I(z)=
M∑

m=−M
bmB(z− zm) (24.12.5)

where zm =mΔ, −M ≤m ≤M and the coefficients bm are to be determined.

Fig. 24.12.2 NEC sinusoidal basis with N = 11,M = 5.

Fig. 24.12.2 depicts (24.12.5). Actually, the NEC basis handles the two end segments
centered at z±M separately [1748] and uses the following expansion instead of (24.12.5):

I(z)= b−MBL(z− z−M)+
(M−1)∑

m=−(M−1)
bmB(z− zm)+bMBR(z− zM) (24.12.6)

where BR(z) and BL(z) are given by:

BR(z)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
AR− + BR− sink(z+Δ)+CR− cosk(z+Δ) , −3Δ

2
≤ z ≤ −Δ

2

AR0 + BR0 sinkz+CR0 coskz , −Δ
2
≤ z ≤ Δ

2

(24.12.7)

and BL(z)= BR(−z), where the coefficients are determined by requiring (a) the conti-
nuity of the two pieces and their derivatives at z = −Δ/2, (b) the vanishing of BR(z)
at z = Δ/2, (c) the vanishing of BR(z) and its derivative at z = −3Δ/2, and (d) the
normalization condition BR(0)= 1. These give:

AR− =
1

1+ 3cΔ − 4c2
Δ
, BR− =

sΔ
1+ 3cΔ − 4c2

Δ
, CR− = −

cΔ
1+ 3cΔ − 4c2

Δ

AR0 =
1− 4c2

Δ
1+ 3cΔ − 4c2

Δ
, BR0 = −

sΔ
1+ 3cΔ − 4c2

Δ
, CR0 =

3cΔ
1+ 3cΔ − 4c2

Δ

(24.12.8)
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The functions BL(z)and BR(z) are depicted on the right of Fig. 24.12.1, and are
shown as dashed curves at the antenna ends in Fig. 24.12.2. Because of the end condi-
tions I±M = 0, it makes very little difference whether one uses (24.12.5) or (24.12.6). We
will use the former.

Because B(z) straddles three adjacent segments and B(±Δ) �= 0, the value of the
current at a sample point zn will receive contributions from the two adjacent samples
zn−1 and zn+1. For −M < n < M, we have from (24.12.5):

In = I(zn)= bn−1B(zn − zn−1)+bnB(zn − zn)+bn+1B(zn − zn+1)

= bn−1B(Δ)+bnB(0)+bn+1B(−Δ)
or, noting that B(0)= 1 and defining β = B(Δ)= B(−Δ),

In = βbn−1 + bn + βbn+1 , −M < n < M (24.12.9)

and for the end points:

I−M = b−M + βb−M+1 , IM = βbM−1 + bM (24.12.10)

Eqs. (24.12.9) and (24.12.10) can be arranged into a tridiagonal matrix, for example,

I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I−3

I−2

I−1

I0
I1
I2
I3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 β 0 0 0 0 0
β 1 β 0 0 0 0
0 β 1 β 0 0 0
0 0 β 1 β 0 0
0 0 0 β 1 β 0
0 0 0 0 β 1 β
0 0 0 0 0 β 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b−3

b−2

b−1

b0

b1

b2

b3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≡ Bb (24.12.11)

It follows from Eq. (24.12.1) that the parameter β is equal to A+ +C+, or,

β = B(Δ)= 1− cΔ
2(1+ cΔ − 2c2

Δ)
(24.12.12)

For the pulse and triangular bases, the matrix B is equal to the identity matrix be-
cause in these cases β = B(Δ)= 0.

Next, we determine the solution of Hallén’s equation with point matching. Inserting
the expansion (24.12.5) into (24.8.1), and evaluating it at the sample point zn, we obtain
the matrix equation for the coefficients bm:

M∑
m=−M

Znmbm = C1 coskzn +V0 sink|zn| , −M ≤ n ≤M (24.12.13)

or, written compactly,
Zb = C1c+V0s (24.12.14)

where the matrix elements Znm are given by:

Znm = jη
2π

∫ h
−h
G(zn − z′)B(z′ − zm)dz′

= jη
2π

∫ 3Δ/2

−3Δ/2
B(z)G(zn − zm − z)dy

(24.12.15)
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Substituting (24.12.11) into (24.12.14), we obtain,

ZB−1I = C1c+V0s (24.12.16)

This has the same form as (24.9.4) with the replacement Z → ZB−1 and therefore,
it can be solved by the same method. The MATLAB function hdelta implements the
solution with the option, basis=’n’.

The function hmat calculates Z, and it also optionally, outputs the matrix B, which
is required in (24.12.16). The integral in (24.12.15) is calculated with Gauss-Legendre
quadrature. The basis function B(z) may be evaluated with the help of the MATLAB
function hbasis, with usage:

B = hbasis(z,Delta,basis); % evaluate basis function B(z) at a vector of z’s

where Delta is the value ofΔ and the string basis can take the possible values ’p’, ’t’,

’n’, ’nR’, ’nL’, for pulse, triangular, and NEC basis (the last two options evaluate the
rightmost and leftmost NEC basis functions.)

The NEC basis for the Hallén equation has very comparable performance to the pulse
basis with point matching—the two agreeing to within one percent or so, and hence, we
do not give any further examples.

24.13 Hallén’s Equation for Arbitrary Incident Field

Here, we discuss the solution of Hallén’s equation (24.3.11) with arbitrary incident field:

jη
2π

∫ h
−h
G(z− z′)I(z′)dz′ = C1ejkz +C2e−jkz +

∫ h
−h
F(z− z′)Ein(z′)dz′ (24.13.1)

In applying the method of moments, we expand the current and the incident field
with respect to a given basis B(z):

I(z′) =
M∑

m=−M
ImB(z′ − zm)

Ein(z′) =
M∑

m=−M
EmB(z′ − zm)

(24.13.2)

We consider only the point-matching case. Sampled at the points zn = nΔz, the
convolution of the incident field with the Green’s function F(z) becomes:

∫ h
−h
F(zn − z′)Ein(z′)dz′ =

M∑
m=−M

Em
∫ h
−h
F(zn − z′)B(z′ − zm)dz′

We define the Green’s matrix Fnm, for −M ≤ n,m ≤M by

Fnm =
∫ h
−h
F(zn − z′)B(z′ − zm)dz′ =

∫ h
−h
F(zn − zm − z)B(z)dz (24.13.3)
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It follows that the discretized Hallén equation (24.13.1) takes the form:

M∑
m=−M

ZnmIm = C1ejkzn +C2e−jkzn +
M∑

m=−M
FnmEm (24.13.4)

where Znm are defined as in the previous sections:

Znm =
∫ h
−h
G(zn − z′)B(z′ − zm)dz′ =

∫ h
−h
G(zn − zm − z)B(z)dz

Eq. (24.13.4) can be written in the compact form:

ZI = C1s1 +C2s2 + FE (24.13.5)

where s1 and s2 are column vectors with elements s1(n)= ejkzn and s2(n)= e−jkzn .
Defining the N×2 matrix S = [s1, s2] and the two-dimensional column vector of con-
stants C = [C1, C2]T, we write Eq. (24.13.5) in the form:

ZI = SC+ FE (24.13.6)

For the NEC basis, the expansion (24.13.2) has the modified form:

I(z′)=
M∑

m=−M
bmB(z′ − zm) , Ein(z′)=

M∑
m=−M

emB(z′ − zm) (24.13.7)

where the vectors of the coefficients bm and em are related to the values of the current
and field, Im and Em, at the sample points zm via the tridiagonal matrix B of (24.12.11):

I = Bb , E = Be (24.13.8)

The discretized Hallén equation now takes the form:

Zb = SC+ Fe (24.13.9)

and expressed in terms of I and E :

ZB−1I = SC+ FB−1E (24.13.10)

For the pulse, triangular, and delta bases B is replaced by the identity matrix. It
is not possible to wrap this equation in half because E is not necessarily symmetric
about its middle. The constants C must be found by imposing the two independent end
conditions I(zM)= I(−zM)= 0. These conditions can be written compactly as:

UTI = 0

where U = [utop,ubot] and utop = [1,0, . . . ,0]T selects the top entry of the vector I,
while ubot = [0, . . . ,0,1]T selects the bottom entry. Solving for I, we have:

I = BZ−1SC+BZ−1FB−1E (24.13.11)
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Multiplying from the left by the matrix UT, we obtain the condition:

UTI = UTBZ−1SC+UTBZ−1FB−1E = 0

which may be solved for C :

C = −(UTBZ−1S)−1(UTBZ−1FB−1E) (24.13.12)

Eqs. (24.13.11) and (24.13.12) describe the complete solution of the discrete Hallén
equation (24.13.10). The MATLAB function hfield implements the solution, with usage:

[I,z,cnd] = hfield(L,a,E,ker,basis); % Hallen’s equation with arbitrary incident E-field

where instead of the parameter M, it has as input the vector E of the samples of the
incident field. The dimensionN = 2M+1 is extracted from the length of E. The strings
ker and basis have the same meaning as for the function hdelta.

The functions hdelta and hfield produce practically identical output in the delta-
gap case, that is, when the incident field is:

E = [0, 0, . . . , 0︸ ︷︷ ︸
M zeros

,
1

Δ
, 0, . . . ,0,0︸ ︷︷ ︸

M zeros

]T (24.13.13)

The middle entry imitates the delta-gap V0δ(z)� V0/Δ near z = 0. For the case of a
field incident at a polar angle θ as in Eq. (24.2.4), the sampled vector E will have entries:

En = E0 sinθejkzn cosθ , zn = nΔ , −M ≤ n ≤M (24.13.14)

Fig. 24.13.1 compares the current solutions using hdelta and hfield with the input
of Eq. (24.13.13), for the case of a half-wave dipole of radius a = 0.005λ, using a pulse
basis withM = 50 and the exact kernel.
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Fig. 24.13.1 Comparison of delta-gap and field solutions for a half-wave dipole.

For larger values of M, the results of the two methods are indistinguishable. The
following example MATLAB code can be used to generate these graphs:
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L=0.5; a=0.005; M = 30; D = L/(2*M+1);
E = zeros(2*M+1,1); E(M+1)=1/D; % define E by Eq. (24.13.13)

[If,z] = hfield(L,a,E,’e’,’p’); % field input

[Id,z] = hdelta(L,a,M,’e’,’p’); % delta-gap input

figure; plot(z,real(If),’-’, z,real(Id),’.’);
figure; plot(z,imag(If),’-’, z,imag(Id),’.’);

Next, we discuss the computation of the matrix elements Fnm for different basis
functions. It follows from Eq. (24.13.3) and the even-ness of B(z) that Fnm is a Toeplitz
and symmetric matrix and, therefore, it depends on n,m through the difference |n−m|.
Thus, it can be constructed by Fnm = f|n−m|, where fm is given by

fm =
∫ h
−h
F(mΔ− z)B(z)dz , m = 0,1, . . . ,2M (24.13.15)

Once the vector f = [f0, f1, . . . , f2M] is computed, the matrix F can be constructed as
a Toeplitz matrix whose first row or first column is f, by calling the function toeplitz:

F = toeplitz(f, f)

For the Green’s function F(z) we choose,

F(z)= sink|z|
although any of those listed in Eq. (24.3.8) could have been chosen. The integrals in
(24.13.15) can be done in closed form resulting in the following expressions for fm in
the various bases. For the delta-function basis B(z)= δ(z)Δ, we have:

fm = F(mΔ)Δ = sin(kmΔ)Δ , 0 ≤m ≤ 2M (24.13.16)

For the pulse basis, fm is given by

fm =
∫ Δ/2
−Δ/2

sin
(
k|mΔ− z|)dz (24.13.17)

which gives:

fm = 2

k
sin

(
kΔ
2

)
sin(kmΔ) , 1 ≤m ≤ 2M

f0 = 2

k

(
1− cos

kΔ
2

) (24.13.18)

For the triangular basis, we have:

fm =
∫ Δ
−Δ

(
1− |z|

Δ

)
sin

(
k|mΔ− z|)dz

with the result:

fm = 2(1− coskΔ)
k2Δ

sin(kmΔ) , 1 ≤m ≤ 2M

f0 = 2(kΔ− sinkΔ)
k2Δ

(24.13.19)
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For the NEC basis, fm is defined by

fm =
∫ 3Δ/2

−3Δ/2
B(z)sin

(
k|mΔ− z|)dz

where B(z) is given by (24.12.1), and we obtain:

fm = Δ
2D

(
cos

kΔ
2
− cos

3kΔ
2

)
sin(kmΔ) , 2 ≤m ≤ 2M

f0 = 2

kD

[
cos

kΔ
2
− coskΔ+ kΔ

4
sin

3kΔ
2

]

f1 = 1

kD

[
1− cos

kΔ
2
+ kΔ

4

(
sin
kΔ
2
+ sin

3kΔ
2

− sin
5kΔ

2

)]
(24.13.20)

where D is the normalization factor:

D = 1+ cos
kΔ
2
− 2 cos2 kΔ

2
= cos

kΔ
2
− coskΔ

As in the delta-gap case, the pulse and NEC bases give almost identical results, while
the triangular basis converges the fastest. For large M, all bases produce virtually the
same result if the exact kernel is used. The approximate kernel solutions suffer from
the same type of oscillations as in the delta-gap case.

Fig. 24.13.2 shows the current induced on a half-wave dipole antenna of radius a =
0.005λ by a plane wave incident from broadside. Setting θ = 90o in (24.13.14) results
into constant E-field samples Em = E0, for −M ≤m ≤M. To illustrate the convergence
properties, the current was computed using a triangular basis with M = 30, and then
using a pulse basis with successively increasing values of M = 30, 50, 100, converging
to the triangular case. The M = 50,100 cases for a triangular basis are not shown
because they are indistinguishable from theM = 30 case.
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Fig. 24.13.2 Current on half-wave dipole induced by plane wave incident from broadside.
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24.14 Solving Pocklington’s Equation

In this section, we discuss the numerical solution of Pocklington’ s equation (24.1.9) for
arbitrary incident field. Rearranging some constants, we can write it in the form:

(
∂2
z + k2) jη

2π

∫ h
−h
G(z− z′)I(z′)dz′ = 2kEin(z) (24.14.1)

where G(z) is the exact or the approximate kernel. Eq. (24.14.1) must be solved sub-
ject to the end-point conditions I(±h)= 0. Its numerical solution has been studied
extensively [1725–1785].

In our method of solution we use point matching and, following Ref. [1747], ap-
ply a finite-difference approximation to the Helmholtz operator (∂2

z + k2) to convert
(24.14.1) into a matrix equation for the current. The method generates essentially the
same solutions as the Hallén equation and is efficiently implementable, making use of
the numerical tools that we developed in the previous sections for computing the Hallén
impedance matrix for different bases,

Znm = jη
2π

∫ h
−h
G(zn − zm − z)B(z)dz (24.14.2)

For convenience, we write (24.14.1) in the form:

(∂2
z + k2)V(z)= 2kEin(z) , V(z)= jη

2π

∫ h
−h
G(z− z′)I(z′)dz′ (24.14.3)

Evaluating (24.14.3) at theN = 2M+1 sample points zn = nΔ, −M ≤ n ≤M, where
the spacing Δ is given by Δ = 2h/(2M+1) in the pulse, NEC, and delta-function bases,
and Δ = h/M in the triangular basis, we have:

(∂2
z + k2)V(zn)= 2kEin(zn) , V(zn)= jη

2π

∫ h
−h
G(zn − z′)I(z′)dz′ (24.14.4)

Following [1747], we replace the second derivative in z by the finite difference:

∂2
zV(zn)�

V(zn+1)−2V(zn)+V(zn−1)
Δ2

Denoting Vn = V(zn) and En = Ein(zn), Eq. (24.14.4) becomes:

Vn+1 − 2Vn +Vn−1

Δ2
+ k2Vn = 2kEn

which can be re-written as:

Vn+1 − 2αVn +Vn−1 = End (24.14.5)

where we defined α = 1 − k2Δ2/2 and d = 2kΔ2, and we must restrict n to the range
−(M− 1)≤ n ≤M− 1. Eq. (24.14.5) may be written in the following tridiagonal matrix
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form that displays all the samples Vn and En, −M ≤ n ≤M, shown here forM = 3:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
1 −2α 1 0 0 0 0
0 1 −2α 1 0 0 0
0 0 1 −2α 1 0 0
0 0 0 1 −2α 1 0
0 0 0 0 1 −2α 1
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V−3

V−2

V−1

V0

V1

V2

V3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E−3

E−2

E−1

E0

E1

E2

E3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
d

(24.14.6)
where the top and bottom rows of zeros are redundant and have been added to make
these matrices square, both having rank (N− 2). We may write (24.14.6) compactly as:

AV = QEd (24.14.7)

We note that Q is a projection matrix and so is its complement P = I −Q,† which
enforces the end-point conditions I±M = 0:

PI = (I −Q)I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I−3

I−2

I−1

I0
I1
I2
I3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I−3

0
0
0
0
0
I3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0 (24.14.8)

The samples Vn can be represented in terms of the Hallén impedance matrix and
current samples In with respect to a particular basis B(z). Inserting the expansion,

I(z)=
M∑

m=−M
ImB(z− zm)

into (24.14.4), we have:

Vn =
M∑

m=−M
Im
jη
2π

∫ h
−h
G(zn − zm − z)B(z)dz =

M∑
m=−M

ZnmIm

with Znm given by (24.14.2). Vectorially, we may write

V = ZI

For the NEC basis, we have instead:

I(z)=
M∑

m=−M
bmB(z− zm) , and,

Vn =
M∑

m=−M
bm

jη
2π

∫ h
−h
G(zn − zm − z)B(z)dz =

M∑
m=−M

Znmbm , or,

†here, I is the identity matrix.
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V = Zb , with I = Bb ⇒ V = ZB−1I (24.14.9)

with B defined as in (24.12.11). Combining with (24.14.7), we obtain:

AZB−1I = QEd (24.14.10)

Using (24.14.8) and the idempotent propertyQ2 = Q, we have I = QI = Q2I. Making
this replacement into (24.14.10), we obtain:

(AZB−1Q)(QI)= (QE)d (24.14.11)

This is the discretized Pocklington equation for the current. The operationAZB−1Q
simply extracts the middle portion of the matrix AZB−1, and QI and QE extract the
middle portions of I and E . Indeed, we have

QE =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E−3

E−2

E−1

E0

E1

E2

E3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
E−2

E−1

E0

E1

E2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≡

⎡
⎢⎣ 0

Ē
0

⎤
⎥⎦

and similarly, AZB−1 and AZB−1Q have the structures:

AZB−1 =

⎡
⎢⎢⎣

0 0T 0

a Z̄ b

0 0T 0

⎤
⎥⎥⎦ ⇒ AZB−1Q =

⎡
⎢⎢⎣

0 0T 0

0 Z̄ 0

0 0T 0

⎤
⎥⎥⎦

where Z̄ is an (N−2)×(N−2) non-singular matrix. Thus, (24.14.11) is equivalent to:⎡
⎢⎢⎣

0 0T 0

0 Z̄ 0

0 0T 0

⎤
⎥⎥⎦
⎡
⎢⎣ 0

Ī
0

⎤
⎥⎦ =

⎡
⎢⎣ 0

Ē
0

⎤
⎥⎦d ⇒ Z̄Ī = Ēd (24.14.12)

with solution:

Ī = Z̄−1Ēd , I = QI =
⎡
⎢⎣ 0

Ī
0

⎤
⎥⎦ (24.14.13)

The MATLAB function pfield implements the above solution procedure:

[I,z,cnd] = pfield(L,a,E,ker,basis); solve Pocklington’s equation

where I, E, z are the vectors of sampled values In, En, zn = nΔ, the quantity cnd is the
condition number of the Pocklington impedance matrix Z̄, and the string constants ker
and basis take the possible values:

ker = ’e’, ’a’, % exact or approximate kernel

basis = ’p’, ’t’, ’n’, ’d’, % pulse, triangular, NEC, or delta-function basis
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The condition number of the Pocklington matrix Z̄ can be one or more orders of
magnitude larger than that of the Hallén matrix Z. Yet, the computed currents by the
functions pfield and hfield are remarkably close to each other and virtually indistin-
guishable over a wide range of the parameters L,a,M.

The large condition number is due to the Helmholtz operator (∂2
z+k2)—represented

in discrete form by the matrix A—which causes the Pocklington kernel to become less
well-behaved than the Hallén kernel. This has been a primary concern in all the numerical
methods for solving Pocklington’s equation.

Fig. 24.14.1 shows the currents computed by the Pocklington and Hallén methods
induced on a half-wave dipole antenna of radius a = 0.005λ by a plane wave incident
from broadside (left graph) and by a delta-gap input (right graph).
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Fig. 24.14.1 Comparison of Pocklington and Hallén equation solutions.

The top curves represent the real parts of the currents and the bottom ones, the
imaginary parts. We used a triangular basis with the exact kernel and M = 30 seg-
ments. The condition numbers of the impedance matrices Z and Z̄ were 17 and 377,
respectively. The following MATLAB code illustrates the computation:

L = 0.5; a = 0.005; M = 30; ker = ’e’; basis = ’t’;
if basis==’t’, D = L/(2*M); else D = L/(2*M+1); end

E = zeros(2*M+1,1); E(M+1) = 1/D; % delta-gap input

% E = ones(2*M+1,1); % plane-wave input

[If,zf,cf] = hfield(L,a,E,ker,basis); % Hallén

[Ip,zp,cp] = pfield(L,a,E,ker,basis); % Pocklington

plot(zf,real(If),’.’, zp, real(Ip), ’-’, zf,imag(If),’.’, zp, imag(Ip), ’-’);

To see the dramatic difference between the Hallén and Pocklington impedance ma-
trices Z and Z̄, Fig. 24.14.2 plots the singular values of these matrices (normalized to
their maximum value) for the case of a half-wave dipole of radius a = 0.005λ using a
triangular basis with M = 100 and the exact kernel. The computed condition numbers
for Z and Z̄ were 59 and 1185, respectively.

The numerical solution of Pocklington’s equation has similar properties as the Hallén
case, such as, the triangular basis converging faster than the other bases with increasing
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Fig. 24.14.2 Singular values of the impedance matrices Z and Z̄ for N=2M+1=201.

M, and the use of the approximate kernel causing oscillations at the end-points of the
antenna (and at the center for delta-gap input.)

This chapter dealt with the currents on a single linear antenna. The case of several
antennas forming an array and interacting with each other is treated in Chap. 25.

Hallén’s and Pocklington’s integral equations generalize into a system of several
coupled integral equations for the currents on the antennas. We solve the coupled
Hallén equations in the case of delta-gap center-driven antennas. The linearity of the
equations allows us to collect them together into a block matrix system from which the
currents on each antenna can be obtained.

One simplification arises in the case of an array of identical antennas. Then, the
block linear system can be wrapped in half much like it was done in Sec. 24.9, thus,
reducing the computational cost.

The case of an array of non-identical antennas is also considered and we obtain
solutions for Yagi-Uda arrays with parasitic reflector and director antennas.

24.15 Problems

24.1 Plot the approximations of sinkR/kR given in Eqs. (24.6.1) and (24.6.18) versus R in the
range R ≤ 2λ and verify their validity. Prove the identity:

sinkR
kR

= sin(kR/8)
kR/8

cos(kR/8)cos(kR/4)cos(kR/2)

which leads to the approximation:

sinkR
kR

� cos(kR/8)cos(kR/4)cos(kR/2)

Determine the range of applicability of this approximation and plot it together with the
previous two cases. Show that it leads to a six-term sinusoidal fit for the current. What are
the current basis functions Ii(z), i = 1,2, . . . ,6, in this case?

24.2 Computer Experiment—Solving Hallén’s Equation. Consider a dipole antenna of length l =
0.5λ and radius a = 0.005λ.
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a. For each of the values M = 20,50,100,200, solve Hallén’s equation for a delta-gap
input with voltage V0 = 1 volt using both the exact and the approximate kernels. Plot
the real and imaginary parts of the current Im = I(zm) versus zm over the right half
of the antenna, that is, 0 ≤ zm ≤ h, where h = l/2.

b. Fit to the computed current samples Im of the exact kernel to King’s three-term approx-
imation. Then, place the fitted points on the same graphs as in part (a). Discuss how
well or not the three-term approximation fits the exact-kernel and the approximate-
kernel current.

Repeat by using a two-term approximation. Discuss how well or not the two-term
approximation fits the exact-kernel and the approximate-kernel current.

c. To illustrate the logarithmic singularity near z = 0, evaluate the limiting expression at
the points zm,m = 1,2, . . . ,M, forM = 200 (the point z0 = 0 is to be skipped):

Ilog(zm)= −j 4kaV0

η
ln
(
k|zm|

)+ const.

Adjust the constant so that this expression agrees with the exact-kernel current at the
point z1, that is, Ilog(z1)= I1. Then, plot the imaginary parts of Im and Ilog(zm) versus
zm.

d. Repeat parts (a–c) for the antenna radius a = 0.001 and then for a = 0.008. Discuss
the effect of changing the radius on the quality of the solution, both for the exact and
the approximate kernel cases.

e. Repeat parts (a–d) for the antenna length l = 1.0λ. Comment on the success of the
exact versus approximate kernel calculations versus the parameters l, a,M.

f. For each value of M and current solution Im, −M ≤ m ≤ M, the input impedance of
the antenna can be calculated from the center sample I0, that is, Z0 = V0/I0. Similarly,
the input admittance is:

Y0 = 1

Z0
= I0
V0

= G0 + jB0

where G0, B0 are its real and imaginary parts, that is, the input conductance and sus-
ceptance.

For each of the valuesM = 1,2, . . . ,100, calculate the corresponding conductance and
susceptance, G0(M),B0(M), using the exact and the approximate kernels and plot
them versusM. Use the length and radius l = 0.5λ and a = 0.005λ.

This is a time-consuming question. It requires that you solve the Hallén equation
for each value of M for the exact and approximate kernels and pick the center value
I0. Discuss the convergence properties of the exact versus the approximate kernel
calculation.

25
Coupled Antennas

25.1 Near Fields of Linear Antennas

In calculating mutual coupling effects between closely-spaced linear antennas, we need
to know the fields produced by an antenna at near distances. The fields generated by a
thin wire antenna with current I(z) were worked out in Sec. 15.4.

We summarize these results here. All field components can be obtained from the
knowledge of the z-component of the magnetic vector potential Az(z, ρ):

Az(z, ρ)= μ
4π

∫ h
−h
I(z′)

e−jkR

R
dz′ , R =

√
ρ2 + (z− z′)2 (25.1.1)

where h is the half-length of the antenna, h = l/2, and the geometry is shown in
Fig. 25.1.1. We have used the approximate thin-wire kernel because it differs little from
the exact kernel for distances ρ > a (typically, when ρ � 5a.)

Fig. 25.1.1 Fields of a thin wire antenna.


