
23
Array Design Methods

23.1 Array Design Methods

As we mentioned in Sec. 22.4, the array design problem is essentially equivalent to the
problem of designing FIR digital filters in DSP. Following this equivalence, we discuss
several array design methods, such as:

1. Schelkunoff’s zero placement method
2. Fourier series method with windowing
3. Woodward-Lawson frequency-sampling design
4. Narrow-beam low-sidelobe design methods
5. Multi-beam array design

Next, we establish some common notation. One-dimensional equally-spaced arrays
are usually considered symmetrically with respect to the origin of the array axis. This
requires a slight redefinition of the array factor in the case of even number of array
elements. Consider an array ofN elements at locations xm along the x-axis with element
spacing d. The array factor will be:

A(φ)=
∑
m
amejkxxm =

∑
m
amejkxm cosφ

where kx = k cosφ (for polar angle θ = π/2.) If N is odd, say N = 2M + 1, we can
define the element locations xm symmetrically as:

xm =md, m = 0,±1,±2, . . . ,±M
This was the definition we used in Sec. 22.4. The array factor can be written then as

a discrete-space Fourier transform or as a spatial z-transform:

A(ψ) =
M∑

m=−M
amejmψ = a0 +

M∑
m=1

[
amejmψ + a−me−jmψ

]

A(z) =
M∑

m=−M
amzm = a0 +

M∑
m=1

[
amzm + a−mz−m

] (23.1.1)
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where ψ = kxd = kd cosφ and z = ejψ. On the other hand, if N is even, say N = 2M,
in order to have symmetry with respect to the origin, we must place the elements at the
half-integer locations:

x±m = ±
(
md− d

2

) = ±(m− 1

2

)
d, m = 1,2, . . . ,M

The array factor will be now:

A(ψ) =
M∑
m=1

[
amej(m−1/2)ψ + a−me−j(m−1/2)ψ

]

A(z) =
M∑
m=1

[
amzm−1/2 + a−mz−(m−1/2)

] (23.1.2)

In particular, if the array weights am are symmetric with respect to the origin, am =
a−m, as they are in most design methods, then the array factor can be simplified into
the cosine forms:

A(ψ)= a0 + 2
M∑
m=1

am cos(mψ), (N = 2M + 1)

A(ψ)= 2
M∑
m=1

am cos
(
(m− 1/2)ψ)

)
, (N = 2M)

(23.1.3)

In both the odd and even cases, Eqs. (23.1.1) and (23.1.2) can be expressed as the
left-shifted version of a right-sided z-transform:

A(z)= z−(N−1)/2Ã(z)= z−(N−1)/2
N−1∑
n=0

ãnzn (23.1.4)

where a = [ã0, ã1, . . . , ãN−1] is the vector of array weights reindexed to be right-sided.
In terms of the original symmetric weights, we have:

[ã0, ã1, . . . , ãN−1]= [a−M, . . . , a−1, a0, a1, . . . , aM], (N = 2M + 1)

[ã0, ã1, . . . , ãN−1]= [a−M, . . . , a−1, a1, . . . , aM], (N = 2M)
(23.1.5)

In time-domain DSP, a factor of z represents a time-advance or left shift. But in the
spatial domain, a left shift is represented by z−1 because of the opposite sign convention
in the definition of the z-transform. Thus, the factor z−(N−1)/2 represents a left shift by
a distance (N − 1)d/2, which places the middle of the right-sided array at the origin.
For instance, see Examples 22.3.1 and 22.3.2.

The corresponding array factors in ψ-space are related in a similar fashion. Setting
z = ejψ, we have:

A(ψ)= e−jψ(N−1)/2Ã(ψ)= e−jψ(N−1)/2
N−1∑
n=0

ãnejnψ (23.1.6)
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Working with Ã(ψ) is more convenient for programming purposes, as it can be
computed by an ordinary DTFT routine, such as that in Ref. [49], Ã(ψ)= dtft(a,−ψ).
The phase factor e−jψ(N−1)/2 does not affect the power gain of the array; indeed, we
have |A(ψ)|2 = |Ã(ψ)|2 = |dtft(a,−ψ)|2.

Some differences arise also for steered array factors. Given a steering phase ψ0 =
kd cosφ0, we define the steered array factor as A′(ψ)= A(ψ−ψ0). Then, we have:

A′(ψ)= A(ψ−ψ0)= e−j(ψ−ψ0)(N−1)/2Ã(ψ−ψ0)= e−jψ(N−1)/2Ã′(ψ)

It follows that the steered version of Ã(ψ) will be:

Ã′(ψ)= ejψ0(N−1)/2Ã(ψ−ψ0) (23.1.7)

which implies for the weights:

ã′n = ãne−jψ0(n−(N−1)/2) , n = 0,1, . . . ,N − 1 (23.1.8)

This simply means that the progressive phase is measured with respect to the middle
of the array. Again, the common phase factor ejψ0(N−1)/2 is usually unimportant. One
case where it is important is the case of multiple beams steered towards different angles;
these are discussed in Sec. 23.14. In the symmetric notation, the steered weights are as
follows:

a′m = ame−jmψ0 , m = 0,±1,±2, . . . ,±M, (N = 2M + 1)

a′±m = a±me∓j(m−1/2)ψ0 , m = 1,2, . . . ,M, (N = 2M)
(23.1.9)

The MATLAB functions scan and steer perform the desired progressive phasing of
the weights according to Eq. (23.1.8). Their usage is as follows:

ascan = scan(a, psi0); % scan array with given scanning phase ψ0

asteer = steer(d, a, ph0); % steer array towards given angle φ0

Example 23.1.1: For the cases N = 7 and N = 6, we have M = 3. The symmetric and right-
sided array weights will be related as follows:

a = [ã0, ã1, ã2, ã3, ã4, ã5, ã6]= [a−3, a−2, a−1, a0, a1, a2, a3]

a = [ã0, ã1, ã2, ã3, ã4, ã5]= [a−3, a−2, a−1, a1, a2, a3]

For N = 7 we have (N − 1)/2 = 3, and for N = 6, (N − 1)/2 = 5/2. Thus, the array
locations along the x-axis will be:

xm =
{−3d, −2d, −d, 0, d, 2d, 3d

}

xm =
{−5

2
d, −3

2
d, −1

2
d,

1

2
d,

3

2
d,

5

2
d
}

Eq. (23.1.4) reads as follows in the two cases:

A(z) = a−3z−3 + a−2z−2 + a−1z−1 + a0 + a1z+ a2z2 + a3z3

= z−3
[
a−3 + a−2z+ a−1z2 + a0z3 + a1z4 + a2z5 + a3z6

] = z−3Ã(z)

A(z) = a−3z−5/2 + a−2z−3/2 + a−1z−1/2 + a1z1/2 + a2z3/2 + a3z5/2

= z−5/2[a−3 + a−2z+ a−1z2 + a1z3 + a2z4 + a3z5
] = z−5/2Ã(z)
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If the arrays are steered, the weights pick up the progressive phases:

[
a−3ej3ψ0 , a−2ej2ψ0 , a−1ejψ0 , a0, a1e−jψ0 , a2e−j2ψ0 , a3e−j3ψ0

]
= ej3ψ0

[
a−3, a−2e−jψ0 , a−1e−2jψ0 , a0e−3jψ0 , a1e−4jψ0 , a2e−j5ψ0 , a3e−j6ψ0

]
[
a−3ej5ψ0/2, a−2ej3ψ0/2, a−1ejψ0/2, a1e−jψ0/2, a2e−j3ψ0/2, a3e−j5ψ0/2

]
= ej5ψ0/2

[
a−3, a−2e−jψ0 , a−1e−2jψ0 , a1e−3jψ0 , a2e−j4ψ0 , a3e−j5ψ0

]

where ψ0 = kd cosφ0 is the steering phase. ��

Example 23.1.2: The uniform array of Sec. 22.7, was defined as a right-sided array. In the
present notation, the weights and array factor are:

a = [ã0, ã1, . . . , ãN−1]= 1

N
[1,1, . . . ,1], Ã(z)= 1

N
zN − 1

z− 1

Using Eq. (23.1.4), the corresponding symmetric array factor will be:

A(z)= z−(N−1)/2Ã(z)= z−(N−1)/2 1

N
zN − 1

z− 1
= 1

N
zN/2 − z−N/2
z1/2 − z−1/2

Setting z = ejψ, we obtain

A(ψ)=
sin
(
Nψ

2

)

N sin
(
ψ
2

) (23.1.10)

which also follows from Eqs. (22.7.3) and (23.1.6). ��

23.2 Schelkunoff’s Zero Placement Method

The array factor of an N-element array is a polynomial of degree N− 1 and therefore it
has N − 1 zeros:

Ã(z)=
N−1∑
n=0

ãnzn = (z− z1)(z− z2)· · · (z− zN−1)ãN−1 (23.2.1)

By proper placement of the zeros on the z-plane, a desired array factor can be de-
signed. Schelkunoff’s paper of more than 45 years ago [1243] discusses this and the
Fourier series methods.

As an example consider the uniform array that has zeros equally spaced around
the unit circle at the N-th roots of unity, that is, at zi = ejψi , where ψi = 2πi/N,
i = 1,2, . . . ,N − 1. The index i = 0 is excluded as z = 1 or ψ = 0 corresponds to the
mainlobe peak of the array. Depending on the element spacing d, it is possible that not
all of these zeros lie within the visible region and, therefore, they may not correspond to
actual nulls in the angular pattern. This happens when d < λ/2 for a broadside array,
which has a visible region that covers less than the full unit circle, ψvis = 2kd < 2π.
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Fig. 23.2.1 Endfire array zeros and visible regions for N = 6, and d = λ/4 and d = λ/8.

Schelkunoff’s design idea was to place all N− 1 zeros of the array within the visible
region, for example, by equally spacing them within it. Fig. 23.2.1 shows the visible
regions and array zeros for a six-element endfire array with element spacings d = λ/4
and d = λ/8.

The visible region is determined by Eq. (22.9.5). For an endfire (φ0 = 0) array with
d = λ/4 or kd = π/2, the steered wavenumber will be ψ′ = kd(cosφ − cosφ0)=
(cosφ − 1)π/2 and the corresponding visible region, −π ≤ ψ′ ≤ 0. Similarly, when
d = λ/8 or kd = π/4, we haveψ′ = (cosφ−1)π/4 and visible region,−π/2 ≤ ψ′ ≤ 0.

The uniform array has five zeros. When d = λ/4, only three of them lie in the visible
region, and when d = λ/8 only one of them does. By contrast Schelkunoff’s design
method places all five zeros within the visible regions.

Fig. 23.2.2 shows the gains of the two cases and compares them to the gains of the
corresponding uniform array. The presence of more zeros in the visible regions results
in a narrower mainlobe and smaller sidelobes.

The angular nulls corresponding to the zeros that lie in the visible region may be
observed in these graphs for both the uniform and Schelkunoff designs.

Because the visible region is in both cases −2kd ≤ ψ′ ≤ 0, the five zeros are chosen
as zi = ejψi , where ψi = −2kdi/5, i = 1,2, . . . ,5. The array weights can be obtained
by expanding the zero factors of Eq. (23.2.1). The following MATLAB statements will
perform and plot the design:

d=1/4; kd=2*pi*d;
i = 1:5;
psi = -2*kd*i/5;
zi = exp(j*psi);
a = fliplr(poly(zi));
a = steer(d, a, 0);
[g, ph] = array(d, a, 400);
dbz(ph, g, 45, 40);

The function poly computes the expansion coefficients. But because it lists them
from the higher coefficient to the lowest one, that is, from zN−1 to z0, it is necessary to
reverse the vector by fliplr. When the weight vector is symmetric with respect to its
middle, such reversal is not necessary.
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Fig. 23.2.2 Gain of six-element endfire array with d = λ/4 and d = λ/8.

23.3 Fourier Series Method with Windowing

The Fourier series design method is identical to the same method in DSP for designing
FIR digital filters [48,49]. The method is based on the inverse discrete-space Fourier
transforms of the array factor.

Eqs. (23.1.1) and (23.1.2) may be thought of as the truncated or windowed versions
of the corresponding infinite Fourier series. Assuming an infinite and convergent series,
we have for the “odd” case:

A(ψ)= a0 +
∞∑
m=1

[
amejmψ + a−me−jmψ

]
(23.3.1)

Then, the corresponding inverse transform will be:

am = 1

2π

∫ π
−π
A(ψ)e−jmψ dψ , m = 0,±1,±2, . . . (23.3.2)
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Similarly, in the “even” case we have:

A(ψ)=
∞∑
m=1

[
amej(m−1/2)ψ + a−me−j(m−1/2)ψ

]
(23.3.3)

with inverse transform:

a±m = 1

2π

∫ π
−π
A(ψ)e∓j(m−1/2)ψ dψ , m = 1,2, . . . (23.3.4)

In general, a desired array factor requires an infinite number of coefficients am to be
represented exactly. Keeping only a finite number of coefficients in the Fourier series
introduces unwanted ripples in the desired response, known as the Gibbs phenomenon
[48,49]. Such ripples can be minimized using an appropriate window, but at the expense
of wider transition regions.

The Fourier series method may be summarized as follows. Given a desired response,
say Ad(ψ), pick an odd or even window length, for example N = 2M+ 1, and calculate
the N ideal weights by evaluating the inverse transform:

ad(m)= 1

2π

∫ π
−π
Ad(ψ)e−jmψ dψ , m = 0,±1, . . . ,±M (23.3.5)

then, the final weights are obtained by windowing with a length-N window w(m):

a(m)= w(m)ad(m), m = 0,±1, . . . ,±M (23.3.6)

This method is convenient only when the required integral (23.3.5) can be done ex-
actly, as when Ad(ψ) has a simple shape such as an ideal lowpass filter. For arbitrarily
shaped Ad(ψ) one must evaluate the integrals approximately using an inverse DFT
as is done in the Woodward- Lawson frequency-sampling design method discussed in
Sec. 23.5.

In addition, the method requires thatAd(ψ) be specified over one complete Nyquist
interval, −π ≤ ψ ≤ π, regardless of whether the visible region ψvis = 2kd is more or
less than one Nyquist period.

23.4 Sector Beam Array Design

As an example of the Fourier series method, we discuss the design of an array with
angular pattern confined into a desired angular sector.

First, we consider the design in ψ-space of an ideal bandpass array factor centered
at wavenumber ψ0 with bandwidth of 2ψb. We will see later how to map these spec-
ifications into an actual angular sector. The ideal bandpass response is defined over
−π ≤ ψ ≤ π as follows:

ABP(ψ)=
{

1, ψ0 −ψb ≤ ψ ≤ ψ0 +ψb
0, otherwise
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For the odd case, the corresponding ideal weights are obtained from Eq. (23.3.2):

aBP(m)= 1

2π

∫ π
−π
ABP(ψ)e−jmψ dψ = 1

2π

∫ ψ0+ψb

ψ0−ψb
1 · e−jmψ dψ

which gives:

aBP(m)= e−jmψ0
sin(ψbm)
πm

, m = 0,±1,±2, . . . (23.4.1)

This problem is equivalent to designing an ideal lowpass response with cutoff fre-
quency ψb and then translating it by ABP(ψ)= ALP(ψ′)= ALP(ψ −ψ0), where ψ′ =
ψ−ψ0. The lowpass response is defined as:

ALP(ψ′)=
{

1, −ψb ≤ ψ′ ≤ ψb
0, otherwise

and its ideal weights are:

aLP(m)= 1

2π

∫ π
−π
ALP(ψ′)e−jmψ

′
dψ′ = 1

2π

∫ ψb
−ψb

1 · e−jmψ′ dψ′ = sin(ψbm)
πm

Thus, as expected, the ideal weights for the bandpass and lowpass designs are related
by a scanning phase: aBP(m)= e−jmψ0aLP(m).

A more realistic design of the bandpass response is to prescribe “brickwall” specifi-
cations, that is, defining a passband range over which the response is essentially flat and
a stopband range over which the response is essentially zero. These ranges are defined
by the bandedge frequencies ψp and ψs, such that the passband is |ψ−ψ0| ≤ ψp and
the stopband |ψ−ψ0| ≥ ψs. The specifications of the equivalent lowpass response are
shown in Fig. 23.4.1.

Fig. 23.4.1 Specifications of equivalent lowpass response.

Over the stopband, the attenuation is required to be greater than a minimum value,
say A dB. The attenuation over the passband need not be specified, because the window
method always results in extremely flat passbands for reasonable values of A, e.g., for
A > 35 dB. Indeed, the maximum passband attenuation is related to A by the approxi-
mate formula Apass = 17.4δ dB, where δ = 10−A/20 (see Ref. [49].)

Most windows do not allow a user-defined choice for the stopband attenuation. For
example, the Hamming window has A = 54 dB and the rectangular window A = 21 dB.
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The Kaiser window is the best and simplest of a small class of windows that allow a
variable choice for A.

Thus, the design specifications are the quantities {ψp,ψs,A}. Alternatively, we can
take them to be {ψp,Δψ,A}, where Δψ = ψs −ψp is the transition width. We prefer
the latter choice. The design steps for the bandpass response using the Kaiser window
are summarized below:

1. From the stopband attenuation A, calculate the so-called D-factor of the window
(similar to the broadening factor):

D =
⎧⎪⎨
⎪⎩
A− 7.95

14.36
, if A > 21

0.922, if A ≤ 21
(23.4.2)

and the window’s shape parameter α:

α =

⎧⎪⎪⎨
⎪⎪⎩

0.1102(A− 8.7), if A≥ 50

0.5842(A− 21)0.4+0.07886(A− 21), if 21<A< 50

0, if A ≤ 21

(23.4.3)

2. From the transition width Δψ, calculate the length of the window by choosing the
smallest odd integer N = 2M + 1 that satisfies:

Δψ = 2πD
N − 1

(23.4.4)

Alternatively, if N is given, calculate the transition width Δψ.

3. Calculate the samples of the Kaiser window:

w(m)= I0
(
α
√

1−m2/M2
)

I0(α)
, m = 0,±1, . . . ,±M (23.4.5)

where I0(x) is the modified Bessel function of first kind and zeroth order.

4. Calculate the ideal cutoff frequency ψb by taking it to be at the middle between
the passband and stopband frequencies:

ψb = 1

2
(ψp +ψs)= ψp + 1

2
Δψ (23.4.6)

5. Calculate the final windowed array weights from a(m)= w(m)aBP(m):

a(m)= w(m)e−jmψ0
sin(ψbm)
πm

, m = 0,±1, . . . ,±M (23.4.7)
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Next, we use the above bandpass design inψ-space to design an array with an angular
sector response inφ-space. The ideal array will have a pattern that is uniformly flat over
an angular sector [φ1,φ2]:

A(φ)=
{

1, φ1 ≤ φ ≤ φ2

0, otherwise

Alternatively, we can define the sector by means of its center angle and its width,
φc = (φ1 +φ2)/2 and φb = φ2 −φ1. Thus, we have the equivalent definitions of the
angular sector:

φc = 1

2
(φ1 +φ2)

φb = φ2 −φ1

�
φ1 = φc − 1

2
φb

φ2 = φc + 1

2
φb

(23.4.8)

For a practical design, we may take [φ1,φ2] to represent the passband of the re-
sponse and assume an angular stopband with attenuation of at least A dB that begins
after a small angular transition width Δφ on either side of the passband.

In filter design, the stopband attenuation and the transition width are used to deter-
mine the window length N. But in the array problem, because we are usually limited in
the number N of available array elements, we must assume that N is given and deter-
mine the transition width Δφ from A and N.

Thus, our design specifications are the quantities {φ1,φ2,N,A}, or alternatively,
{φc,φb,N,A}. These specifications must be mapped into equivalent ones in ψ-space
using the steered wavenumber ψ′ = kd(cosφ− cosφ0).

We require that the angular passband [φ1,φ2] be mapped onto the lowpass pass-
band [−ψp,ψp] in ψ′-space. Thus, we have the conditions:

ψp = kd cosφ1 −ψ0

−ψp = kd cosφ2 −ψ0

They may be solved for ψp and ψ0 as follows:

ψp = 1

2
kd(cosφ1 − cosφ2)

ψ0 = 1

2
kd(cosφ1 + cosφ2)

(23.4.9)

Using Eq. (23.4.8) and some trigonometry, we have equivalently:

ψp = kd sin(φc)sin
(φb

2

)

ψ0 = kd cos(φc)cos
(φb

2

) (23.4.10)

Setting ψ0 = kd cosφ0, we find the effective steering angle φ0:

cosφ0 = cos(φc)cos
(φb

2

) ⇒ φ0 = acos
(
cos(φc)cos(φb/2)

)
(23.4.11)
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Note that φ0 is not equal to φc, except for very narrow widths φb.
The design procedure is then completed as follows. Given the attenuation A, we

calculate the window parameters D,α from Eqs. (23.4.2) and (23.4.3). Since N is given,
we calculate the transition width Δψ directly from Eq. (23.4.4). Then, the ideal lowpass
frequency ψb is calculated from Eq. (23.4.6), that is,

ψb = ψp + 1

2
Δψ = kd sin(φc)sin

(φb
2

)+ πD
N − 1

(23.4.12)

Finally, the array weights are obtained from Eq. (23.4.7). The transition width Δφ
can be approximated by linearizing ψ = kd cosφ around φ1, or around φ2, or around
φc. We prefer the latter choice, giving:

Δφ = Δψ
kd sinφc

= 2πD
kd(N − 1)sinφc

(23.4.13)

The design method can be extended to the case of evenN = 2M. The integral (23.3.4)
can still be done exactly. The Kaiser window expression (23.4.5) remains the same for
m = ±1,±2, . . . ,±M. We note the symmetry w(−m)= w(m). After windowing and
scanning with ψ0, we get the final designed weights:

a(±m)= w(m)e∓j(m−1/2)ψ0
sin
(
ψb(m− 1/2)

)
π(m− 1/2)

, m = 1,2, . . . ,M (23.4.14)

The MATLAB function sector implements the above design steps for either even or
odd N. Its usage is as follows:

[a, dph] = sector(d, ph1, ph2, N, A); % A=stopband attenuation in dB

Fig. 23.4.2 shows four design examples having sector [φ1,φ2]= [45o,75o], or cen-
ter φc = 60o and width φb = 30o. The number of array elements was N = 21 and
N = 41, with half-wavelength spacing d = λ/2. The stopband attenuations wereA = 20
and A = 40 dB. The two cases with A = 20 dB are equivalent to using the rectangular
window. They have visible Gibbs ripples in their passband. Some typical MATLAB code
for generating these graphs is as follows:

d=0.5; ph1=45; ph2=75; N=21; A=20;
[a, dph] = sector(d, ph1, ph2, N, A);
[g, ph] = array(d, a, 400);
dbz(ph,g, 30, 80);
addray(ph1, ’--’); addray(ph2, ’--’);

The basic design tradeoff is betweenN andA and is captured by Eq. (23.4.4). Because
D is linearly increasing with A, the transition width will increase with A and decrease
with N. As A increases, the passband exhibits no Gibbs ripples but at the expense of
larger transition width.

23.5 Woodward-Lawson Frequency-Sampling Design

As we mentioned earlier, the Fourier series method is feasible only when the inverse
transform integrals (23.3.2) and (23.3.4) can be done exactly. If not, we may use the
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Fig. 23.4.2 Angular sector array design with the Kaiser window.

frequency-sampling design method of DSP [48,49]. In the array context, the method is
referred to as the Woodward-Lawson method.

For anN-element array, the method is based on performing an inverseN-point DFT.
It assumes thatN samples of the desired array factorA(ψ) are available, that is,A(ψi),
i = 0,1, . . . ,N − 1, where ψi are the N DFT frequencies:

ψi = 2πi
N

, i = 0,1, . . . ,N − 1, (DFT frequencies) (23.5.1)

The frequency samples A(ψi) are related to the array weights via the forward N-
point DFT’s obtained by evaluating Eqs. (23.1.1) and (23.1.2) at the N DFT frequencies:

A(ψi) = a0 +
M∑
m=1

[
amejmψi + a−me−jmψi

]
,

A(ψi) =
M∑
m=1

[
amej(m−1/2)ψi + a−me−j(m−1/2)ψi

]
,

(N = 2M + 1)

(N = 2M)

(23.5.2)
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where ψi are given by Eq. (23.5.1). The corresponding inverse N-point DFT’s are as
follows. For odd N = 2M + 1,

am = 1

N

N−1∑
i=0

A(ψi)e−jmψi , m = 0,±1,±2, . . . ,±M (23.5.3)

and for even N = 2M,

a±m = 1

N

N−1∑
i=0

A(ψi)e∓j(m−1/2)ψi , m = 1,2, . . . ,M (23.5.4)

There is an alternative definition of theN DFT frequenciesψi for which the forms of
the forward and inverse DFT’s, Eqs. (23.5.2)–(23.5.4), remain the same. For either even
or odd N, we define:

ψi = 2π(i−K)
N

, (alternative DFT frequencies) (23.5.5)

where i = 0,1, . . . ,N − 1 and K = (N − 1)/2.
This definition makes a difference only for evenN, in which case the index i−K takes

on all the half-integer values in the symmetric interval [−K,K]. For odd N, Eq. (23.5.5)
amounts to a re-indexing of Eq. (23.5.1), with i−K taking values now over the symmetric
integer interval [−K,K].

For both the standard and the alternative sets, theN complex numbers zi = ejψi are
equally spaced around the unit circle. For odd N, they are the N-th roots of unity, that
is, the solutions of the equation zN = 1. For the alternative set with even N, they are
the N solutions of the equation zN = −1.

The alternative set is usually preferred in array processing. In DSP, it leads to the
discrete cosine transform. The MATLAB function woodward implements the inverse DFT
operations (23.5.3) and (23.5.4), for either the standard or the alternative definition of
ψi. Its usage is as follows:

a = woodward(A, alt); % alt=0,1 for standard or alternative

The frequency-sampling array design method is summarized as follows: Given a set
ofN frequency response valuesA(ψi), i = 0,1, . . . ,N−1, calculate theN array weights
a(m) using the inverse DFT formulas (23.5.3) or (23.5.4). Then, replace the weights by
their windowed versions using any symmetric length-N window. The final expressions
for the windowed weights are, for odd N = 2M + 1,

a(m)= w(m) 1

N

N−1∑
i=0

A(ψi)e−jmψi , m = 0,±1,±2, . . . ,±M (23.5.6)

and for even N = 2M,

a(±m)= w(±m) 1

N

N−1∑
i=0

A(ψi)e∓j(m−1/2)ψi , m = 1,2, . . . ,M (23.5.7)
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As an example, consider the design of a sector beam with edges at φ1 = 45o and
φ2 = 75o. Thus, the beam is centered at φc = 60o and has width φb = 30o.

Asφ ranges over [φ1,φ2], the wavenumberψ = kd cosφ will range over kd cosφ2

≤ ψ ≤ kd cosφ1. For all DFT frequencies ψi that lie in this interval, we set A(ψi)= 1,
otherwise, we set A(ψi)= 0. Assuming the alternative definition for ψi, we have the
passband condition:

kd cosφ2 ≤ 2π(i−K)
N

≤ kd cosφ1

Setting kd = 2πd/λ and solving for the DFT index i−K, we find:

j1 ≤ i−K ≤ j2, where j1 = Ndλ cosφ2, j2 = Ndλ cosφ1

This range determines the DFT indices i for which A(ψi)= 1. The inverse DFT
summation over i will then be restricted over this subset of i’s. Fig. 23.5.1 shows the
response of a 20-element array with half-wavelength spacing, d = λ/2, designed with a
rectangular and a Hamming window. The MATLAB code for generating the right graph
was as follows:

d=0.5; N=20; ph1=45; ph2=75; alt=1; K=(N-1)/2;
j1 = N*d*cos(ph2*pi/180);
j2 = N*d*cos(ph1*pi/180);
i = (0:N-1); % DFT index

j = i - alt*K; % alternative DFT index

A = (j>=j1)&(j<=j2); % equals 1, if j1 ≤ j ≤ j2, and 0, otherwise

a = woodward(A, alt); % inverse DFT

w = 0.54 - 0.46*cos(2*pi*i/(N-1)); % Hamming window

awind = a .* w; % windowed weights

[g,ph] = array(0.5, awind, 400); % array gain

dbz(ph, g, 30, 80);
addray(ph1,’--’); addray(ph2,’--’);
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Fig. 23.5.1 Angular sector array design with Woodward-Lawson method.

The sidelobes of the Hamming window are down approximately at the expected 54-
dB level (they reach 54 dB for larger N.) The design is comparable to that of Fig. 23.4.2.
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The power of this method lies in the ability to specify any shape for the array factor
through its frequency samples. The method works well for half-wavelength spacing
d = λ/2, because allN DFT frequenciesψi lie within the visible region, which coincides
in this case with the full Nyquist interval, −π ≤ ψ ≤ π.

As another example, we consider the design of an array with a secant-squared gain
pattern, which is relevant in air search radars as discussed in Sec. 16.11. We consider an
array of N elements along the z-direction with half-wavelength spacing d = λ/2. The
corresponding wavenumber ψ will be ψ = kzd, or

ψ = kd cosθ

The design of the secant-squared gain pattern requires that the array factor itself
have a secant dependence. Indeed,

g(θ)= |A(ψ)|2 = K
cos2 θ

⇒ |A(ψ)| = K1/2

| cosθ|
Because the secant pattern is defined only up to an angle θmax, we may define the

theoretical array factor in the normalized form:

A(θ)=
⎧⎪⎨
⎪⎩

cosθmax

cosθ
, if 0 ≤ θ ≤ θmax

1, if θmax < θ ≤ 90o
(23.5.8)

As θ varies over [0, θmax], the wavenumberψ = kd cosθ will vary over [ψmax, kd],
whereψmax = kd cosθmax. Because d = λ/2, we have kd = π and theψ-range becomes
[ψmax,π]. Noting that cosθmax/ cosθ = ψmax/ψ, we can rewrite Eq. (23.5.8) in terms
of ψ:

A(ψ)=
⎧⎪⎨
⎪⎩
ψmax

ψ
, if ψmax ≤ ψ ≤ π

1, if 0 ≤ ψ < ψmax

(23.5.9)

We symmetrize A(−ψ)= A(ψ) to cover the entire 2π Nyquist interval in ψ. Eval-
uating Eq. (23.5.9) at the N DFT frequencies ψi = 2πi/N, we obtain the array weights
by doing an inverse DFT and then windowing the array coefficients with a Hamming
window. Fig. 23.5.2 shows a design case with N = 21 and θmax = 70o. The figure com-
pares the Hamming and rectangular window designs to the exact expression (23.5.8).
The details of the design are indicated in the MATLAB code:

N=21; K=(N-1)/2; d=0.5; thmax=70;

psmax = 2*pi*d * cos(thmax*pi/180);

Ai = ones(1,K+1);
psi = 2*pi*(0:K)/N; % half of DFT frequencies

j = find(psi); % non-zero ψ’s

Ai(j) = psmax*(psi(j)>=psmax)./psi(j) + (psi(j)<psmax); % half of the DFT values

Ai = [Ai, Ai(K:-1:1)]; % all the DFT values

a = woodward(Ai, 0) / N; % inverse DFT with alt=0
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aw = a .* (0.54 - 0.46*cos(2*pi*(0:N-1)/(N-1))); % Hamming

th = (0:200) * 90 / 200;
ps = 2*pi*d * cos(th*pi/180);

A = abs(dtft(a, -ps)); % rectangular design

Aw = abs(dtft(aw,-ps)); % Hamming design

A0 = psmax*(ps>=psmax)./ps + (ps<psmax); % exact pattern
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Fig. 23.5.2 Woodward-Lawson design of secant-squared array gain.

23.6 Discretization of Continuous Line Sources

One-dimensional arrays may be thought of as arising from the spatial sampling of con-
tinuous line current distributions. Consider, for example, a current I(x) flowing along
the x-axis. Its current density is Jx(x, y, x)= I(x)δ(y)δ(z), where the delta functions
confine the current on the x-axis. The corresponding radiation vector will have only an
x-component:

Fx(kx, ky, kz) =
∫
Jx(x, y, z)ejkxx+jkyy+jkzz dxdydz

=
∫
I(x)δ(y)δ(z)ejkxx+jkyy+jkzz dxdydz =

∫∞
−∞
I(x)ejkxxdx

Thus, Fx(kx) depends only on the kx wavevector component and is the spatial
Fourier transform of the line current I(x):

Fx(kx)=
∫∞
−∞
I(x)ejkxxdx (23.6.1)

In spherical coordinates, kx is given by kx = k sinθ cosφ, with k = 2π/λ. The range
of kx values when θ,φ vary over 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π is the “visible region”.
The inversion of the Fourier transform, however, requires knowledge of Fx(kx) over all
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kx, and in such case the inverse is:

I(x)= 1

2π

∫∞
−∞
Fx(kx)e−jkxx dkx (23.6.2)

Suppose now that the current I(x) is sampled at the regular intervals xm = md
with spacing d and integer m. The sampled current may be represented as the sum of
impulses:

Î(x)=
∞∑

m=−∞
I(xm)δ(x− xm)=

∞∑
m=−∞

Im δ(x−md) (23.6.3)

where we set Im = I(xm)= I(md). Then, the corresponding Fourier transform will be:

F̂x(kx)=
∫∞
−∞
Î(x)ejkxxdx =

∞∑
m=−∞

Im ejmkxd =
∞∑

m=−∞
Im ejmψ (23.6.4)

This has precisely the form of an array factor with ψ = kxd. The pattern F̂x(kx)
is periodic in kx with period ks = 2π/d, which is the sampling frequency in units
of radians/meter. Equivalently, F̂x(kx) is periodic in ψ with period 2π. The Poisson
summation formula [48] relates F̂x(kx) to the unsampled pattern Fx(kx) as a sum of
shifted replicas:

F̂x(kx)= 1

d

∞∑
n=−∞

Fx(kx − nks) (23.6.5)

Aliasing, that is, the overlapping of the spectral replicas, can be avoided only if
Fx(kx) is bandlimited to within the Nyquist interval, |kx| ≤ ks/2. This would imply that
I(x) have infinite extent.

In practice, I(x) is assumed to be space-limited with a finite extent, say, over an in-
terval−l/2 ≤ x ≤ l/2. In this case, Fx(kx) cannot be bandlimited and therefore, aliasing
will always occur. However, if the pattern F(kx) attenuates with large kx, aliasing may
be minimized by selecting a small enough d.

Eqs. (23.6.4) and (23.6.5) provide two equivalent ways to express the spectrum of the
sampled current. Eq. (23.6.4) can be inverted to recover the current samples Im:

Im = 1

ks

∫ ks/2
−ks/2

F̂x(kx)e−jmkxd dkx = 1

2π

∫ π
−π
F̂x(ψ)e−jmψ dψ (23.6.6)

which is the inverse discrete-space Fourier transform that we introduced in (22.4.8).
By using the z-domain variable z = ejψ, (23.6.4) can also be written as the spatial z-
transform:

F̂x(z)=
∞∑

m=−∞
Im zn (23.6.7)

Next, we focus on finite line sources I(x), −l/2 ≤ x ≤ l/2. Then, (23.6.1) reads:

Fx(kx)=
∫ l/2
−l/2

I(x)ejkxx dx (23.6.8)

It proves convenient to define a normalized wavenumber variable u by:

u = lkx
2π

� kx = 2πu
l

� u = l
λ

sinθ cosφ (23.6.9)
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and define a scaled pattern F(u)= Fx(kx)/l. Then, we have the Fourier relationships:

F(u)= 1

l

∫ l/2
−l/2

I(x)ej2πux/l dx � I(x)=
∫∞
−∞
F(u)e−j2πux/l du (23.6.10)

If I(x)were periodic with period l, then 2π/lwould be its fundamental harmonic and
2πu/l would be interpreted as the uth harmonic. Indeed, the continuous-line version
of the Woodward-Lawson method gives u just such an interpretation. Let us define the
periodic extension of the space-limited I(x) with period l to be the sum of its replicas:

Ĩ(x)=
∞∑

n=−∞
I(x− nl) (23.6.11)

Then, Ĩ(x), being periodic, could be expanded in a Fourier series with coefficients:

Ĩ(x)=
∞∑

p=−∞
cp e−j2πpx/l , cp = 1

l

∫ l/2
−l/2

Ĩ(x)ej2πpx/l dx (23.6.12)

Because Ĩ(x)= I(x) over the period −l/2 ≤ x ≤ l/2, the above integral for the pth
coefficient implies from (23.6.10) that cp = F(u) with u = p. Thus, restricting x over
its basic period, we have the representation:

I(x)=
∞∑

p=−∞
F(p)e−j2πpx/l , − l

2
≤ x ≤ l

2
(23.6.13)

The pattern F(u) may itself be expressed in terms of its samples F(p). We have
from (23.6.13):

F(u)= 1

l

∫ l/2
−l/2

I(x)ej2πux/l dx =
∞∑

p=−∞
F(p)

1

l

∫ l/2
−l/2

ej2π(u−p)x/l dx , or,

F(u)=
∞∑

p=−∞
F(p)

sin
(
π(u− p))
π(u− p) (23.6.14)

Eqs. (23.6.13) and (23.6.14) are the continuous-line version of the Woodward-Lawson
method, which is of course equivalent to the application of Shannon’s sampling theorem
to the space-limited function I(x), and our derivation is nothing more than the proof
of that theorem.

For discrete arrays, we must sample in space xm =md, not in frequency. By taking
N samples over the length l, that is, d = l/N, and truncating the summation in (23.6.13)
to p = 0,1, . . . ,N− 1, we obtain the practical version of the Woodward-Lawson method
that we used in the previous section.

For an N-element finite array, the z-transform F̂x(z) of Eq. (23.6.7) becomes a poly-
nomial of degree N − 1 in z. Such an array can be designed directly in discrete-space
domain, or it can be designed by mapping a given continuous line source pattern to the
discrete case. This can be accomplished approximately by mapping N − 1 zeros of the
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continuous pattern toN−1 zeros of the array using the mapping z = ejψ = ejkxd. Since
d = l/N, the mapping from u-space toψ-space becomesψ = kxd = 2πud/l = 2πu/N:

ψ = kxd = 2πu
N

(23.6.15)

Therefore, if un, n = 1,2, . . . ,N−1 are theN−1 zeros of the pattern F(u) on which
the design is to be based, then, we may define the corresponding zeros of the array by:

ψn = 2πun
N

⇒ zn = ejψn = ej2πun/N , n = 1,2, . . . ,N − 1 (23.6.16)

and construct the array pattern polynomial from these zeros:

A(z)=
N−1∏
n=1

(z− zn) (23.6.17)

The method is an approximation because F(u) generally has an infinity of zeros.
However, good results are obtained if N is large (e.g., N > 10).

To clarify the above definitions and Fourier relationships, we consider three exam-
ples: (a) the uniform line source and how it relates to the uniform array, (b) Taylor’s
one-parameter line source and its use to design Taylor-Kaiser arrays, and (c) Taylor’s
ideal line source, which is an idealization of the Chebyshev array, and leads to the so-
called Taylor’s n̄ distribution. A uniform line source has constant current:

I(x)=
⎧⎨
⎩1 , if − l/2 ≤ x ≤ l/2

0 , otherwise
(23.6.18)

Its pattern is:

F(u)= 1

l

∫ l/2
−l/2

I(x)ej2πux/l dx = 1

l

∫ l/2
−l/2

ej2πux/l dx = sin(πu)
πu

(23.6.19)

Its zeros are at the non-zero integers un = ±n, for n = 1,2, . . . . By selecting the first
N− 1 of these, un = n, for n = 1,2, . . . ,N− 1, we may map them to the N− 1 zeros of
the uniform array:

zn = ej2πun/N = ej2πn/N , n = 1,2, . . . ,N − 1

The constructed array polynomial will be then,

A(z)= 1

N

N−1∏
n=1

(z− zn)= 1

N

N−1∏
n=1

(
z− ej2πn/N) = 1

N

N−1∏
n=0

(
z− ej2πn/N)
z− 1

where we introduced a scale factor 1/N and multiplied and divided by the factor (z−1).
But the numerator polynomial, being a monic polynomial and having as roots the Nth
roots of unity, must be equal to zN − 1. Thus,

A(z)= 1

N
zN − 1

z− 1
= 1

N
(
1+ z+ z2 + · · · + zN−1)

1138 23. Array Design Methods

which has uniform array weights, am = 1/N. Replacing z = ejψ = ej2πu/N, we have:

A(ψ)= 1

N
ejψN − 1

ejψ − 1
= sin(Nψ/2)
N sin(ψ/2)

ejψ(N−1)/2 = sin(πu)
N sin(πu/N)

ejπu(N−1)/N

For large N and fixed value of u, we may use the approximation sinx � x in the
denominator which tends to N sin(πu/N)� N(πu/N)= πu, thus, approximating the
sinπu/πu pattern of the continuous line case.

Taylor’s one-parameter continuous line source [1262] has current I(x) and corre-
sponding pattern F(u) given by the Fourier transform pair [194]:

F(u)=
sinh

(
π
√
B2 − u2

)
π
√
B2 − u2

� I(x)= I0
(
πB
√

1− (2x/l)2

)
(23.6.20)

where −l/2 ≤ x ≤ l/2 and I0(·) is the modified Bessel function of first kind and zeroth
order, and B is a positive parameter that controls the sidelobe level. For u > B, the
pattern becomes a sinc-pattern in the variable

√
u2 − B2, and for large u, it tends to the

pattern of the uniform line source. We will discuss this further in Sec. 23.10.
Taylor’s ideal line source [1602] also has a parameter that controls the sidelobe level

and is is defined by the Fourier pair [194]:

F(u) = cosh
(
π
√
A2 − u2

)

I(x) =
I1
(
πA

√
1− (2x/l)2

)
√

1− (2x/l)2

πA
l
+ δ

(
x− l

2

)
+ δ

(
x+ l

2

) (23.6.21)

where I1(·) is the modified Bessel function of first kind and first order. Van der Maas
[1250] showed first that this pair is the limit of a Dolph-Chebyshev array in the limit of
a large number of array elements. We will explore it further in Sec. 23.12.

23.7 Narrow-Beam Low-Sidelobe Designs

The problem of designing arrays having narrow beams with low sidelobes is equivalent to
the DSP problem of spectral analysis of windowed sinusoids. A single beam corresponds
to a single sinusoid, multiple beams to multiple sinusoids.

To understand this equivalence, suppose one wants to design an infinitely narrow
beam toward some look direction φ = φ0. In ψ-space, the array factor (spatial or
wavenumber spectrum) should be the infinitely thin spectral line:†

A(ψ)= 2πδ(ψ−ψ0)

where ψ = kd cosφ and ψ0 = kd cosφ0. Inserting this into the inverse DSFT of
Eq. (23.3.2), gives the double-sided infinitely-long array, for −∞ < m <∞:

a(m)= 1

2π

∫ π
−π
A(ψ)e−jmψdψ = 1

2π

∫ π
−π

2πδ(ψ−ψ0)e−jmψdψ = e−jψ0m

†To be periodic in ψ, all the Nyquist replicas of this term must be added. But they are not shown here
because ψ0 and ψ are assumed to lie in the central Nyquist interval [−π,π].
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This is the spatial analog of an infinite sinusoid a(n)= ejω0n whose spectrum is the
sharp spectral line A(ω)= 2πδ(ω −ω0). A finite-duration sinusoid is obtained by
windowing with a length-N time window w(n) resulting in a(n)= w(n)ejω0n.

In the frequency domain, the effect of windowing is to replace the spectral line
δ(ω−ω0) by its smeared versionW(ω−ω0), whereW(ω) is the DTFT of the window
w(n). The spectrum W(ω −ω0) exhibits a main lobe at ω = ω0 and sidelobes. The
main lobe gets narrower with increasing N.

A finiteN-element array with a narrow beam and low sidelobes, and steered towards
an angle φ0, can be obtained by windowing the infinite narrow-beam array with an
appropriate length-N spatial window w(m). For odd N = 2M+ 1, or even N = 2M, we
define respectively:

a(m) = e−jmψ0w(m), m = 0,±1,±2, . . . ,±M
a(±m) = e∓j(m−1/2)ψ0w(±m), m = 1,2, . . . ,M

(23.7.1)

In both cases, the array factor of Eqs. (23.1.1) and (23.1.2) becomes:

A(ψ)=W(ψ−ψ0) (narrow beam array factor) (23.7.2)

whereW(ψ) is the DSFT of the window, defined for odd or even N as:

W(ψ) = w(0)+
M∑
m=1

[
w(m)ejmψ +w(−m)e−jmψ

]

W(ψ) =
M∑
m=1

[
w(m)ej(m−1/2)ψ +w(−m)e−j(m−1/2)ψ

] (23.7.3)

Assuming a symmetric window, w(−m)= w(m), we can rewrite:

W(ψ) = w(0)+2
M∑
m=1

w(m)cos(mψ)

W(ψ) = 2
M∑
m=1

w(m)cos
(
(m− 1/2)ψ

)
(N = 2M + 1)

(N = 2M)

(23.7.4)

At broadside,ψ0 = 0,φ0 = 90o, Eq. (23.7.1) reduces to a(m)= w(m) and the array
factor becomesA(ψ)=W(ψ). Thus, the weights of a broadside narrow beam array are
the window samples a(m)= w(m). The steered weights (23.7.1) can be calculated with
the help of the MATLAB function scan, or steer:

a = scan(w, psi0);

a = steer(d, w, phi0);

The primary issue in choosing a window function w(m) is the tradeoff between fre-
quency resolution and frequency leakage, that is, between main-lobe width and sidelobe
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level [48,49]. Ideally, one would like to meet, as best as possible, the two conflicting
requirements of having a very narrow mainlobe and very small sidelobes.

Fig. 23.7.1 shows four narrow-beam design examples illustrating this tradeoff. All
designs are 7-element arrays with half-wavelength spacing, d = λ/2, and steered to-
wards 90o. The Dolph-Chebyshev and Taylor-Kaiser arrays were designed with sidelobe
level of R = 20 dB.
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Fig. 23.7.1 Narrow beam design examples.

Shown on the graphs are also the half-power 3-dB circles being intersected by the
angular rays at the 3-dB angles. For comparison, we list below the designed array weights
(normalized to unity at their endpoints) and the corresponding 3-dB angular widths (in
degrees):
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Uniform Dolph-Chebyshev Taylor-Kaiser Binomial
1 1.0000 1.0000 1
1 1.2764 1.8998 6
1 1.6837 2.6057 15
1 1.8387 2.8728 20
1 1.6837 2.6057 15
1 1.2764 1.8998 6
1 1.0000 1.0000 1

14.5o 16.4o 16.8o 24.6o

The uniform array has the narrowest mainlobe but also the highest sidelobes. The
Dolph-Chebyshev is optimum in the sense that, for the given sidelobe level of 20 dB, it
has the narrowest width. The Taylor-Kaiser is somewhat wider than the Dolph-Chebyshev,
but it exhibits better sidelobe behavior. The binomial array has the widest mainlobe but
no sidelobes at all.

Fig. 23.7.2 shows another set of examples. All designs are 21-element arrays with
half-wavelength spacing, d = λ/2, and scanned towards 60o.

The Dolph-Chebyshev and Taylor arrays were designed with sidelobe level of R = 25
dB. The uniform array has sidelobes atR = 13 dB. BecauseN is higher than in Fig. 23.7.1,
the beams will be much narrower. The 3-dB beamwidths are in the four cases:

Δφ3dB = 5.58o Uniform
Δφ3dB = 6.44o Dolph-Chebyshev
Δφ3dB = 7.03o Taylor-Kaiser
Δφ3dB = 15.64o Binomial

The two key parameters characterizing a window are the 3-dB width of its main lobe,
Δψ3dB, and its sidelobe level R (in dB). For some windows, such as Dolph-Chebyshev
and binomial, Δψ3dB can be calculated exactly. In others, such as Taylor-Kaiser and
Hamming, it can be calculated approximately by Eq. (22.10.2), that is,

Δψ3dB = 0.886
2πb
N

(3-dB width in ψ-space) (23.7.5)

where b is a broadening factor that depends on the choice of window and increases
with the sidelobe attenuation R. As discussed in Sec. 22.10, once Δψ3dB is known, the
angular 3-dB width of the steered array can be computed approximately by:

Δφ3dB =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δψ3dB

kd sinφ0
, for 0o < φ0 < 180o

2

√
Δψ3dB

kd
, for φ0 = 0o, 180o

(23.7.6)

This is an adequate approximation in practice. In succeeding sections, we discuss
the binomial, Dolph-Chebyshev, and Taylor-Kaiser arrays in more detail. In addition, we
discuss prolate arrays, Taylor’s n̄ distribution, and Villeneuve arrays.
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Fig. 23.7.2 Comparison of steered 21-element narrow-beam arrays.

We finish this section by summarizing the uniform array, which is based on the
rectangular window and has b = 1 and sidelobe level R = 13 dB. Its weights, symmetric
DSFT, and symmetric z-transform were determined in Example 23.1.2:

w = 1

N
[1,1, . . . ,1]

W(ψ) =
sin
(
Nψ

2

)

N sin
(
ψ
2

)

W(z) = 1

N
zN/2 − z−N/2
z1/2 − z−1/2 = z−(N−1)/2 1

N
zN − 1

z− 1

(23.7.7)

23.8 Binomial Arrays

The weights of an N-element binomial array are the binomial coefficients:

w(m)= (N − 1)!
m!(N − 1−m)! , m = 0,1, . . . ,N − 1 (23.8.1)
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For example, for N = 4 and N = 5 they are:

w = [1,3,3,1]
w = [1,4,6,4,1]

The binomial weights are the expansion coefficients of the polynomial (1 + z)N−1. In-
deed, the symmetric z-transform of the binomial array is defined as:

W(z)= (z1/2 + z−1/2)N−1 = z−(N−1)/2(1+ z)N−1 (23.8.2)

Setting z = ejψ, we find the array factor in ψ-space:

W(ψ)= (ejψ/2 + e−jψ/2)N−1 =
[

2 cos
(ψ

2

)]N−1

(23.8.3)

This response falls monotonically on either side of the peak atψ = 0 until it becomes
zero at the Nyquist frequency ψ = ±π. Indeed, the z-transform has a multiple zero of
order N − 1 at z = −1.

Thus, the binomial response has no sidelobes. This is, of course, at the expense of
a fairly wide mainlobe. The 3-dB width Δψ3dB can be determined by finding the 3-dB
frequencies ±ψ3 that satisfy the half-power condition:

|W(ψ3)|2
|W(0)|2 = 1

2
⇒

[
cos
(ψ3

2

)]2(N−1)
= 1

2

The solution is:
ψ3 = 2 acos

(
2−0.5/(N−1))

Therefore, the 3-dB width will be Δψ3dB = 2ψ3:

Δψ3dB = 4 acos
(

2−0.5/(N−1)
)

(23.8.4)

Once Δψ3dB is found, the 3-dB width Δφ3dB in angle space, for an array steered
towards an angle φ0, can be found from Eq. (23.7.6). The MATLAB function binomial
generates the array weights (steered towards φ0) and 3-dB width. Its usage is:

[a, dph] = binomial(d, ph0, N); % binomial array coefficients and beamwidth

For example, the fourth graph of the binomial response of Fig. 23.7.1 was generated
by the MATLAB code:

[a, dph] = binomial(0.5, 90, 5); % array weights and 3-dB width

[g, ph] = array(0.5, a, 200); % compute array gain

dbz(ph, g, 45, 40); % plot gain in dB with 40-dB scale

addcirc(3, 40, ’--’); % add 3-dB grid circle

addray(90 + dph/2, ’-’); % add rays at 3-dB angles

addray(90 - dph/2, ’-’);
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23.9 Dolph-Chebyshev Arrays

Most windows have largest sidelobes near the main lobe. If a window is designed to
achieve a minimum sidelobe attenuation of R dB, then typically R will be the atten-
uation of the sidelobes nearest to the mainlobe; the sidelobes further away will have
attenuations higher than R.

Because of the tradeoff between mainlobe width and sidelobe attenuation, the extra
attenuation of the furthest sidelobes will come at the expense of increased mainlobe
width. If the attenuation of these sidelobes could be decreased (up to the level of the
minimum R), then the mainlobe width would narrow.

It follows that for a given minimum desired sidelobe levelR, the narrowest mainlobe
width will be achieved by a window whose sidelobes are all equal to R. Conversely,
for a given maximum desired mainlobe width, the largest sidelobe attenuation will be
achieved by a window with equal sidelobe levels.

This “optimum” window is the Dolph-Chebyshev window, which is constructed with
the help of Chebyshev polynomials. Themth Chebyshev polynomial Tm(x) is:

Tm(x)= cos
(
m acos(x)

)
(23.9.1)

If |x| > 1, the inverse cosine acos(x) becomes imaginary, and the expression can be
rewritten in terms of hyperbolic cosines: Tm(x)= cosh

(
m acosh(x)

)
.

Setting x = cosθ, or θ = acos(x), we see that Tm(x)= cos(mθ). Using trigonomet-
ric identities, the quantity cos(mθ) can always be expanded as a polynomial in powers
of cosθ. The expansion coefficients are precisely the coefficients of the powers of x of
the Chebyshev polynomial. For example, we have:

cos(0θ)= 1 T0(x)= 1
cos(1θ)= cosθ T1(x)= x
cos(2θ)= 2 cos2 θ− 1 ⇒ T2(x)= 2x2 − 1
cos(3θ)= 4 cos3 θ− 3 cosθ T3(x)= 4x3 − 3x
cos(4θ)= 8 cos4 θ− 8 cos2 θ+ 1 T4(x)= 8x4 − 8x2 + 1

For |x| < 1, the Chebyshev polynomial has equal ripples, whereas for |x| > 1, it
increases like xm. Moreover, Tm(x) is even in x if m is even, and odd in x if m is odd.
Fig. 23.9.1 depicts the Chebyshev polynomials T9(x) and T10(x).

Fig. 23.9.1 Chebyshev polynomials of orders nine and ten.
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The Dolph-Chebyshev window is defined such that its sidelobes will correspond to
a portion of the equi-ripple range |x| ≤ 1 of the Chebyshev polynomial, whereas its
mainlobe will correspond to a portion of the range x > 1.

For either even or odd N, Eq. (23.7.4) implies that any window spectrumW(ψ) can
be written in general as a polynomial of degree N − 1 in the variable u = cos(ψ/2).
Indeed, we have for themth terms:

cos(mψ)= cos
(

2m
ψ
2

)
= T2m(u)

cos
(
(m− 1/2)ψ)= cos

(
(2m− 1)

ψ
2

)
= T2m−1(u)

Thus in the odd case, the summation in Eq. (23.7.4) will result in a polynomial of
maximal degree 2M = N − 1 in the variable u, and in the even case, it will result into a
polynomial of degree 2M − 1 = N − 1.

The Dolph-Chebyshev [1244] array factor is defined by the Chebyshev polynomial of
degree N − 1 in the scaled variable x = x0 cos(ψ/2), that is,

W(ψ)= TN−1(x), x = x0 cos
(
ψ
2

)
(Dolph-Chebyshev array factor) (23.9.2)

The scale factor x0 is always x0 > 1 and is determined below. For a broadside design,
as the azimuthal angle φ ranges over the interval 0o ≤ φ ≤ 180o, the wavenumberψ =
kd cosφwill range over the visible region−kd ≤ ψ ≤ kd. The quantity x = x0 cos(ψ/2)
will range from xmin = x0 cos(kd/2) to the value x = x0, which is reached broadside at
φ = 90o or ψ = 0, and then x will move back to xmin. Thus, the range of variation of x
will be xmin ≤ x ≤ x0.

Assuming that xmin is in the interval −1 ≤ xmin ≤ 1, we can split the interval
[xmin, x0] into the two subintervals: [xmin,1] and [1, x0], as shown in Fig. 23.9.2. We
require that the subinterval [xmin,1] coincide with the sidelobe interval of the array
factor W(ψ), and that the subinterval [1, x0] coincide with the mainlobe interval. The
zeros of the Chebyshev polynomial within [xmin,1] become the sidelobe zeros of the
array factor and get repeated twice as φ varies over [0o,180o].

In Fig. 23.9.2, for spacing d = λ/2, we have kd = π and xmin = x0 cos(kd/2)
= x0 cos(π/2)= 0. Similarly, we have xmin = x0 cos(3π/4)= −0.707x0 for d = 3λ/4,
and xmin = x0 cos(π/4)= 0.707x0 for d = λ/4.

The relative sidelobe attenuation level in absolute units and in dB is defined in terms
of the ratio of the mainlobe to the sidelobe heights:

Ra = Wmain

Wside
, R = 20 log10(Ra) , Ra = 10R/20

Because the mainlobe peak occurs at ψ = 0 or x = x0, we will have Wmain =
TN−1(x0), and because the sidelobe level is equal to the Chebyshev level within |x| ≤ 1,
we will haveWside = 1. Thus, we find:

Ra = TN−1(x0)= cosh
(
(N − 1)acosh(x0)

)
(23.9.3)
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Fig. 23.9.2 Chebyshev polynomials and array factors for d = λ/2, d = 3λ/4, and d = λ/4.

which can be solved for x0 in terms of Ra:

x0 = cosh
(

acosh(Ra)
N − 1

)
(23.9.4)

Once the scale factor x0 is determined, the window samplesw(m) can be computed
by constructing the z-transform of the array factor from its zeros and then doing an
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inverse z-transform. The N − 1 zeros of TN−1(x) are easily found to be:

TN−1(x)= cos
(
(N − 1)acos(x)

) = 0 ⇒ xi = cos
(
(i− 1/2)π
N − 1

)

for i = 1,2, . . . ,N − 1. Solving for the corresponding wavenumbers through xi =
x0 cos(ψi/2), we find the pattern zeros:

ψi = 2 acos
( xi
x0

)
, zi = ejψi , i = 1,2, . . . ,N − 1

We note that the zeros xi do not have to lie within the sidelobe range [xmin,1] and
the corresponding ψi do not all have to be in the visible region.

The symmetric z-transform of the window is constructed in terms of the one-sided
transform using Eq. (23.1.4) as follows:

W(z)= z−(N−1)/2 W̃(z)= z−(N−1)/2
N−1∏
i=1

(z− zi) (23.9.5)

The inverse z-transform of W(z) are the window coefficients w(m). The MATLAB
function dolph.m of Appendix L implements this design procedure with the help of
the function poly2.m, which calculates the coefficients from the zeros.† The typical
MATLAB code in dolph.m is as follows:

N1 = N-1; % number of zeros

Ra = 10^(R/20); % sidelobe level in absolute units

x0 = cosh(acosh(Ra)/N1); % scaling factor

i = 1:N1;
xi = cos(pi*(i-0.5)/N1); % N1 zeros of Chebyshev polynomial

psi = 2 * acos(xi/x0); % N1 array pattern zeros in psi-space

zi = exp(j*psi); % N1 zeros of array polynomial

a = real(poly2(zi)); % zeros-to-polynomial form (N coefficients)

The window coefficients resulting from definition (23.9.5) are normalized to unity
values at their end-points. This definition differs from that of Eq. (23.9.2) by the scale
factor xN−1

0 /2.
The function dolph.m also returns the 3-dB width of the main lobe. The 3-dB fre-

quency ψ3 is defined by the half-power condition:

W(ψ3)= TN−1(x3)= TN−1(x0)√
2

= Ra√
2

⇒ cosh
(
(N − 1)acosh(x3)

) = Ra√
2

Solving for x3 and the corresponding 3-dB angle, x3 = x0 cos(ψ3/2), we have:

x3 = cosh

(
acosh(Ra/

√
2)

N − 1

)
, ψ3 = 2 acos

(
x3

x0

)
(23.9.6)

which yields the 3-dB width in ψ-space, Δψ3dB = 2ψ3. The 3-dB width in angle space,
Δφ3dB, is then computed from Eq. (23.7.6) or (22.10.6).

†See Sec. 6.8 regarding the accuracy of poly2 versus poly.
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There exist several alternative methods for calculating the Chebyshev array coeffi-
cients [1248–1257,1259] and have been compared in [1258]. One particularly accurate
and effective method is that of Bresler [1252], which has recently been implemented by
Simon [1254] with the MATLAB function chebarray.m.

Example 23.9.1: The second graph of Fig. 23.7.1 was generated by the MATLAB commands:

[a, dph] = dolph(0.5, 90, 5, 20); % array weights and 3-dB width

[g, ph] = array(0.5, a, 200); % compute array gain

dbz(ph, g, 45); % plot gain in dB

addcirc(3, 40, ’--’); % add 3-dB gain circle

addray(90 + dph/2, ’--’); % add 3-dB angles

addray(90 - dph/2, ’--’);

The array weights and 3-dB width were given previously in the table of Fig. 23.7.1. The
weights are constructed as follows. The scale parameter x0 is found to be x0 = 1.2933.
The zeros xi, ψi, and zi are found to be:

i xi ψi zi
1 0.9239 1.5502 0.0206+ 0.9998j
2 0.3827 2.5408 −0.8249+ 0.5653j
3 −0.3827 3.7424 −0.8249− 0.5653j
4 −0.9239 4.7330 0.0206− 0.9998j

It follows that the one-sided array polynomial will be:

W̃(z)= (z− z1)(z− z2)(z− z3)(z− z4)= z4 + 1.6085z3 + 1.9319z2 + 1.6085z+ 1

and the symmetric z-transform:

W(z)= z−2 W̃(z)= z2 + 1.6085z+ 1.9319+ 1.6085z−1 + z−2

resulting in the array weights w = [1.0000, 1.6085, 1.9319, 1.6085, 1.0000]. We note
that the array zeros come in conjugate pairs. Only the first two xi and ψi lie in the visible
region and show up as pattern zeros in the array factor. ��

Example 23.9.2: The second graph of Fig. 23.7.2 was generated by the MATLAB commands:

[a, dph] = dolph(0.5, 60, 21, 25);
[g, ph] = array(0.5, a, 200);
dbz(ph, g);

The function dolph.m was called with the parameters N = 21, R = 20 dB and was steered
towards the angle φ0 = 60o. ��

Example 23.9.3: As another example, consider the design of a nine-element broadside Dolph-
Chebyshev array with half-wavelength spacing and sidelobe attenuation level of R = 20
dB. The array factor is shown in Fig. 23.9.2.

The absolute attenuation level is Ra = 10R/20 = 1020/20 = 10, that is, if the peak is
normalized to height Ra = 10, the sidelobes will have height of unity. The scale factor x0

is found to be x0 = 1.0708, and the array weights:

w = [1.0000, 1.0231, 1.3503, 1.5800, 1.6627, 1.5800, 1.3503, 1.0231, 1.0000]
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The array zeros are constructed as follows:

i xi ψi zi
1 0.9808 0.8260 0.6778+ 0.7352j
2 0.8315 1.3635 0.2059+ 0.9786j
3 0.5556 2.0506 −0.4616+ 0.8871j
4 0.1951 2.7752 −0.9336+ 0.3583j
5 −0.1951 3.5080 −0.9336− 0.3583j
6 −0.5556 4.2326 −0.4616− 0.8871j
7 −0.8315 4.9197 0.2059− 0.9786j
8 −0.9808 5.4572 0.6778− 0.7352j

The 3-dB width is found from Eq. (23.9.6) to be Δφ3dB = 12.51o. ��

In order for the Chebyshev interval [xmin,1] to be mapped onto the sidelobe region
of the array factor, we must require that xmin ≥ −1.

If d < λ/2, then this condition is automatically satisfied because kd < π/2 and
xmin = x0 cos(kd/2)> 0. (In this case, we must also demand that xmin ≤ 1. However,
as we discuss below, when d < λ/2 Dolph’s construction is no longer optimal and is
replaced by the alternative procedure of Riblet.)

If λ/2 < d < λ, then π < kd < 2π and xmin < 0 and can exceed the left limit
x = −1. This requires that for the given sidelobe level R, the array spacing may not
exceed a maximum value that satisfies xmin = x0 cos(kdmax/2)= −1. This gives:

kdmax = 2 acos
(
− 1

x0

)
⇒ dmax = λπ acos

(
− 1

x0

)
(23.9.7)

An alternative way of phrasing the condition xmin ≥ −1 is to say that for the given
value of the array spacing d (such that λ/2 < d < λ), there is a maximum sidelobe
attenuation that may be designed. The corresponding maximum value of x0 will satisfy
xmin = x0,max cos(kd/2)= −1, which gives:

x0,max = − 1

cos(kd/2)
⇒ Ra,max = TN−1(x0,max) (23.9.8)

Example 23.9.4: Consider the case d = 3λ/4, R = 20 dB, N = 9. Then for the given R, the
maximum element spacing that we can have is dmax = 0.8836λ.

Alternatively, for the given spacing d = 3λ/4, the maximum sidelobe attenuation that we
can have is Ra,max = 577, or, Rmax = 55.22 dB.

An array designed with the maximum spacing d = dmax will have the narrowest mainlobe,
because its total length will be the longest possible. For example, the following two calls
to the function dolph will calculate the required 3-dB beamwidths:

[w, dph1] = dolph(0.75, 90, 9, 20); % spacing d = 3/4

[w, dph2] = dolph(0.8836, 90, 9, 20); % spacing d = dmax

We find Δφ1 = 8.34o and Δφ2 = 7.08o. The array weights w are the same in the two cases
and equal to those of Example 23.9.3. The gains are shown in Fig. 23.9.3. ��
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Fig. 23.9.3 Chebyshev arrays with N = 9, R = 20 dB, d = 3λ/4 and d = 0.8836λ.

As pointed out by Riblet [1245], Dolph’s procedure is optimal only for element spac-
ings that are greater than half a wavelength, d ≥ λ/2. For d < λ/2, it is possible to
find another set of window coefficients that would result into a narrower main lobe.
Riblet modified Dolph’s method to obtain an optimal design for both cases, d < λ/2
and d ≥ λ/2, but only for an odd number of array elements, N = 2M + 1.

It follows from Eq. (23.7.4) that if N is odd, the array factorW(ψ) can be expressed
either as a polynomial in the variable cos(ψ/2) or as a polynomial in the variable cosψ.

Dolph’s original definition of Eq. (23.9.2) used a Chebyshev polynomial T2M(x) of
order 2M = N − 1 in the variable x = x0 cos(ψ/2). Riblet used instead a Chebyshev
polynomial TM(y) of orderM in the new variable y = A cosψ+B, where the constants
A,B are to be determined from the desired spacing d and sidelobe attenuation R. The
array factor is defined as:

W(ψ)= TM(y), y = A cosψ+ B (Riblet’s modification) (23.9.9)

The mainlobe peak of height Ra at φ = 90o (orψ = 0) will correspond to a value y0

such that:

Ra = TM(y0)= cosh
(
M acosh(y0)

)
(23.9.10)

which may be solved for y0:

y0 = cosh
(

acosh(Ra)
M

)
(23.9.11)

We note that y0 is related to x0 of Eq. (23.9.3) by y0 = 2x2
0−1. This follows from the

general property of Chebyshev polynomials that:

y = 2x2 − 1 ⇒ T2M(x)= TM(y) (23.9.12)

Indeed, setting x = cosθ and y = cos(2θ)= 2 cos2 θ − 1 = 2x2 − 1, we have
θ = acos(x) and 2θ = acos(y), and therefore:

T2M(x)= cos
(
(2M)θ)= cos

(
M(2θ)

) = TM(y)
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As the azimuthal angle φ varies over 0o ≤ φ ≤ 180o and the wavenumber ψ over
the visible region −kd ≤ ψ ≤ kd, the quantity c = cosψ will vary from c = cos(kd) at
φ = 0o to c = 1 at φ = 90o, and then back to c = cos(kd) at φ = 180o.

If λ/2 ≤ d ≤ λ, then π ≤ kd ≤ 2π and ψ = kd cosφ will pass through the value
ψ = π before it reaches the valueψ = kd. It follows that the quantity c will go through
c = −1 before it reaches c = cos(kd). Thus, in this case the widest range of variation
of c = cosψ is −1 ≤ c ≤ 1.

On the other hand, if d < λ/2, then kd < π and c never reaches the value c = −1.
Its minimum value is c = cos(kd), and the range of c is [cos(kd),1]. To summarize,
the range of variation of c will be the interval [c0,1], where

c0 =
{
−1, if d ≥ λ/2
cos(kd), if d < λ/2 (23.9.13)

Assuming A > 0, it follows that the range of variation of y = A cosψ+B will be the
interval [Ac0 +B, A+B]. The parameters A,B are fixed by requiring that this interval
coincide with the interval [−1, y0] so that the right end will correspond to the mainlobe
peak, while the left end will ensure that we use the maximum size of the equi-ripple
interval of the Chebyshev variable y. Thus, we require the conditions:

Ac0 + B = −1

A+ B = y0

(23.9.14)

which may be solved for A,B:

A = 1+ y0

1− c0

B = −1+ y0c0

1− c0

(23.9.15)

For d ≥ λ/2, the method coincides with Dolph’s original method. In this case,
c0 = −1, and A,B become:

A = y0 + 1

2
= x2

0

B = y0 − 1

2
= x2

0 − 1

(23.9.16)

where we used y0 = 2x2
0 − 1, as discussed above. It follows that the y variable will be

related to the Dolph variable x = x0 cos(ψ/2) by:

y = x2
0 cosψ+ x2

0 − 1 = x2
0(cosψ+ 1)−1 = 2x2

0 cos2(ψ
2

)− 1 = 2x2 − 1

and therefore, Eq. (23.9.12) implies thatW(ψ)= TM(y)= T2M(x).
Once the parameters A,B are determined, the window w(m) may be constructed

from the zeros of the Chebyshev polynomials. TheM zeros of TM(y) are:

yi = cos
(
(i− 1/2)π

M

)
, i = 1,2, . . . ,M
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The corresponding wavenumbers are found by inverting yi = A cosψi + B:

ψi = acos
(
yi − B
A

)
, i = 1,2, . . . ,M

The 2M = N − 1 zeros of the z-transform of the array are the conjugate pairs:{
ejψi e−jψi

}
, i = 1,2, . . . ,M

The symmetrized z-transform will be then:

W(z)= z−MW̃(z)= z−M
M∏
i=1

(
(z− ejψi)(z− e−jψi))

The inverse z-transform of W(z) will be the desired array weights w(m). This
procedure is implemented by the MATLAB function dolph2.m of Appendix L. We note
again that this definition differs from that of Eq. (23.9.9) by the scale factor AM/2.

The function dolph2 also returns the 3-dB width of the main lobe. The 3-dB fre-
quency ψ3 is computed from the half-power condition:

W(ψ3)= TM(y3)= TM(y0)√
2

= Ra√
2

⇒ y3 = cosh

(
acosh(Ra/

√
2)

M

)

Inverting y3 = A cosψ3 + B, we obtain the 3-dB width in ψ-space:

ψ3 = acos
(
y3 − B
A

)
, Δψ3dB = 2ψ3 (23.9.17)

For the case d ≥ λ/2, the maximum element spacing given by Eq. (23.9.7) can also
be expressed in terms of the variable y0 as follows:

dmax = λ
[

1− 1

2π
acos

(3− y0

1+ y0

)]
(23.9.18)

This follows from the condition xmin = x0 cos(kdmax/2)= −1. The corresponding
value of y will be y = 2x2

min − 1 = 1. Using Eq. (23.9.16), this condition reads:

y = y0 + 1

2
cos(kdmax)+y0 − 1

2
= 1 ⇒ cos(kdmax)= 3− y0

1+ y0

Because the function acos always returns a value in the range [0,π], and we want a
value kdmax > π, we must invert the cosine as follows:

kdmax = 2π− acos
(3− y0

1+ y0

)
which implies Eq. (23.9.18).

Example 23.9.5: The bottom two graphs of Fig. 23.9.2 show the array factor designed using
Dolph’s and Riblet’s methods for the case N = 9, R = 20 dB, and d = λ/4. The Dolph
weights are the same as those given in Example 23.9.3. The Riblet weights computed by
dolph2 are:

w = [1, −3.4884, 7.8029, −11.7919, 13.6780, −11.7919, 7.8029, −3.4884, 1]

The corresponding array gains in dB are shown in Fig. 23.9.4. The 3-dB widths of the Dolph
and Riblet designs are Δφ3dB = 25.01o and Δφ3dB = 17.64o. ��
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Fig. 23.9.4 Dolph and Riblet designs of Chebyshev array with N = 9, R = 20 dB, d = λ/4.

Next, we discuss steered arrays [1246]. We assume a steering angle 0o < φ0 <
180o. The endfire case φ0 = 0o,180o will be treated separately [1247]. The steered
wavenumber will be:

ψ′ = ψ−ψ0 = kd(cosφ− cosφ0) (23.9.19)

where ψ0 = kd cosφ0. The corresponding array weights and array factor will be:

a(m) = e−jmψ0w(m) , −M ≤m ≤M
A(ψ) =W(ψ−ψ0)=W(ψ′)= TM(y′), y′ = A cosψ′ + B

(23.9.20)

where we assumed that N is odd, N = 2M + 1. The visible region becomes now:

kd
(
1− | cosφ0|

) ≤ ψ′ ≤ kd(1+ | cosφ0|
)

In order to avoid grating lobes, the element spacing must be less than the maximum:

d0 = λ
1+ | cosφ0| (23.9.21)

which satisfies kd0
(
1+ | cosφ0|

) = 2π.
The Chebyshev design method is carried out in the same way, except instead of using

the half-wavelength spacing λ/2 as the dividing line between the Riblet and the Dolph
methods, we must use d0/2. Thus, the variable c = cosψ′ = cos(ψ−ψ0) will vary in
the interval [c0,1], where Eq. (23.9.13) is now replaced by

c0 =
{
−1, if d ≥ d0/2
cos
(
kd(1+ | cosφ0|)

)
, if d < d0/2

Replacing 1+ | cosφ0| = λ/d0, we can rewrite this as follows:

c0 =
⎧⎪⎨
⎪⎩
−1, if d ≥ d0/2

cos
(2πd
d0

)
, if d < d0/2

(23.9.22)
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The solutions for A,B will still be given by Eq. (23.9.15) with this new value for c0.
Note that when d < d0/2 the quantities A,B, and hence the array weights w(m), will
depend on φ0. Therefore, the weights must be redesigned for each new value of φ0,
instead of simply steering the broadside weights [1246].

When d ≥ d0/2, we have c0 = −1 and the weights w(m) become independent of
φ0. In this case, the steered weights are obtained by steering the broadside weights.

Example 23.9.6: Fig. 23.9.5 shows the gain of an array steered towards φ0 = 60o, with N = 9,
R = 20 dB, and element spacing d = λ/4.

The grating lobe spacing is d0 = λ/(1+ cos(60o))= 2λ/3, and the dividing line between
Dolph and Riblet designs will be d0/2 = λ/3. The second graph shows the gain of a
broadside array, which is steered towards 60o. It demonstrates that the plain steering of
a broadside design will not work for d < d0/2. The array weights were computed by the
MATLAB commands:

a1 = dolph2(1/4, 60, 9, 20); % steered array

w = dolph2(1/4, 90, 9, 20); % broadside array

a2 = steer(1/4, w, 60); % steered broadside array

The 3-dB width was Δφ3dB = 26.66o. It was obtained using Eq. (23.9.17) and the approx-
imation Eq. (23.7.6). The first graph also shows the 3-dB gain circle intersecting the rays
at the 3-dB angles φ0 ± Δφ3dB/2, that is, at 46.67o and 73.33o. We note also that the
broadside weights w were given in Example 23.9.5. ��
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Fig. 23.9.5 Nine-element array with d = λ/4 steered towards 60o.

Endfire Dolph-Chebyshev arrays require special treatment. DuHamel has shown how
to modify Riblet’s design for this purpose [1247]. The key idea is not to use a steering
angle φ0 = 0o or φ0 = 180o, but rather to make φ0, and the corresponding steering
phase ψ0 = kd cosφ0, a free design parameter.

The steered wavenumber will still be ψ′ = kd cosφ − kd cosφ0 = kd cosφ −ψ0

and the array factor and array weights will still be given by Eq. (23.9.20).
The three parameters {A,B,ψ0} are determined by the following conditions. For a

forward endfire array (with mainlobe peak towards φ = 0o,) we require that y′ = y0 at
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φ = 0, or, at ψ′ = kd−ψ0. Moreover, we require that the two endpoints y′ = −1 and
y′ = 1 of the equi-ripple range of the Chebyshev polynomial are reached at ψ′ = 0 and
at φ = 180o, or, ψ′ = −kd−ψ0. These three conditions can be stated as follows:

A cos(kd−ψ0)+B = y0

A+ B = −1

A cos(kd+ψ0)+B = 1

(23.9.23)

For a backward endfire array (with mainlobe towards φ = 180o,) we must replace
ψ0 by −ψ0. The solution of Eqs. (23.9.23) is:

A = −y0 + 3+ 2 cos(kd)
√

2(y0 + 1)
2 sin2(kd)

B = −1−A

ψ0 = ± asin
(

y0 − 1

2A sin(kd)

) (23.9.24)

where in the solution forψ0, the plus (minus) sign is chosen for the forward (backward)
endfire array. Bidirectional endfire arrays can also be designed. In that case, we set
ψ0 = 0 and only require the first two conditions in (23.9.23), which become

A cos(kd)+B = y0

A+ B = −1
(23.9.25)

with solution:

A = − y0 + 1

1− cos(kd)

B = y0 + cos(kd)
1− cos(kd)

(23.9.26)

In all three of the above endfire designs, we must assume d ≤ λ/2 in order to avoid
grating lobes. The MATLAB function dolph3.m of Appendix L implements all three
cases.

Example 23.9.7: Fig. 23.9.6 shows three endfire designs for a nine-element array with quarter-
wavelength spacing d = λ/4, and sidelobe level of R = 20 dB. The array weights and 3-dB
widths were computed as follows:

[a1, dph1] = dolph3(1, 1/4, 9, 20); % forward endfire

[a2, dph2] = dolph3(-1, 1/4, 9, 20); % backward endfire

[a3, dph3] = dolph3(2, 1/4, 9, 20); % bidirectional endfire

The first argument of dolph3 takes on one of the three values {1,−1,2}, for forward,
backward, and bidirectional designs. In the forward and backward cases, the array weights
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are already scanned by the effective scanning phase ±ψ0. The calculated array weights
are in the three cases:

weights forward backward bidirectional

a0 18.3655 18.3655 20.4676

a1 = a∗−1 −15.8051− 1.0822j −15.8051+ 1.0822j −17.5583

a2 = a∗−2 9.8866+ 1.3603j 9.8866− 1.3603j 10.8723

a3 = a∗−3 −4.1837− 0.8703j −4.1837+ 0.8703j −4.5116

a4 = a∗−4 0.9628+ 0.2701j 0.9628− 0.2701j 1.0000

Because the backward case is obtained by the replacement ψ0 → −ψ0, its weights will be
the conjugates of those of the forward case.

The 3-dB widths are in the three cases: Δφ3dB = 22.85o,22.85o,22.09o. The graphs also
show the 3-dB gain circles intersecting the gains at the 3-dB angles. ��
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Fig. 23.9.6 Forward, backward, and bidirectional endfire designs.

23.10 Taylor One-Parameter Source

In Sec. 23.4, we used the Kaiser window to design a sector array pattern. That de-
sign problem was equivalent to designing an FIR lowpass digital filter using the window
method. Here, we use the Kaiser window to design a narrow beam array—a problem
equivalent to the spectral analysis of windowed sinusoids [48,49,1266].

The broadside array weights are equal to the window coefficients a(m)= w(m),
defined up to an overall normalization constant by:

w(m)= I0
(
α
√

1−m2/M2

)
(23.10.1)

wherem = ±1,±2, . . . ,±M, orm = 0,±1,±2, . . . ,±M, for even or odd number of array
elements, N = 2M or N = 2M + 1.

This window is based on Taylor’s one-parameter continuous line source [1262], and
is obtained by setting xm =md with d = l/(2M) in Eq. (23.6.20), so that 2xm/l =m/M,
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I(xm)= I0
(
πB
√

1− (2xm/l)2

)
= I0

(
πB
√

1− (m/M)2

)

Thus, we note that the Kaiser window shape parameter α is related to Taylor’s pa-
rameter B by α = πB. The parameter B or α control the sidelobe level. The continuous
line pattern of (23.6.20),

F(u)=
sinh

(
π
√
B2 − u2

)
π
√
B2 − u2

=
sin
(
π
√
u2 − B2

)
π
√
u2 − B2

(23.10.2)

has a first null at u0 =
√
B2 + 1, and therefore, the first sidelobe will occur for u > u0.

For this range, we must use the sinc-form of F(u) and to find the maximum sidelobe
level, we must find the maximum of the sinc function (for argument other than zero).
This can be determined, for example, by the MATLAB command:†

x0=fminbnd(’sinc(x)’, 1,2, optimset(’TolX’,eps)); r0 = abs(sinc(x0));

which yields the values:

x0 = 1.4302966532

r0 =
∣∣sinc(x0)

∣∣ = 0.2172336282

R0 = −20 log10(r0)= 13.2614588840 dB

(23.10.3)

The sidelobe levelRa (in absolute units) is defined as the ratio of the pattern at u = 0
to the maximum sidelobe level r0, that is,

Ra = 1

r0

sinh(πB)
πB

(23.10.4)

and in dB, R = 20 log10(Ra),

R = R0 + 20 log10

(
sinh(πB)
πB

)
(23.10.5)

To avoid having to solve (23.10.4) for B for a given Ra, Kaiser and Schafer [1266]
have developed an empirical formula in terms of the sidelobe level R in dB, which is
valid across the range 13 < R < 120 dB:

πB =

⎧⎪⎪⎨
⎪⎪⎩

0, R ≤ 13.26

0.76609(R− 13.26)0.4+0.09834(R− 13.26), 13.26<R≤ 60

0.12438(R+ 6.3), 60<R< 120

(23.10.6)

For R ≤ 13.26, w(m) becomes the rectangular window. The broadening factor b,
and the 3-dB width in ψ-space can also be expressed in terms of the dB sidelobe level
R by the following empirical formula valid for 20 < R < 100 dB:

b = 0.01330R+ 0.9761 , Δψ3dB = 0.886
2πb
N

(23.10.7)

†MATLAB’s sinc function is defined as sinc(x)= sinπx/πx.
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The 3-dB width in angle space, Δφ3dB, is then calculated from Eq. (23.7.6). The 3-dB
beam width may be more accurately calculated by finding it in u-space, say Δu, and
then transforming it to ψ-space using Eq. (23.6.15), Δψ3dB = 2πΔu/N. The width Δu
is given by Δu = 2u3, where u3 is the solution of the half-power condition:

∣∣F(u3)
∣∣2 = 1

2

∣∣F(0)∣∣2 ⇒
sinh

(
π
√
B2 − u2

3

)

π
√
B2 − u2

3

= 1√
2

sinh(πB)
πB

(23.10.8)

For small values of B, the right-hand side becomes less than one, and we must switch
the left-hand side to its sinc form. This happens when B ≤ Bc, where

1√
2

sinh(πBc)
πBc

= 1 ⇒ Bc = 0.4747380492 (23.10.9)

which, through (23.10.5), corresponds to a sidelobe attenuation ofRc = 16.27 dB. Rather
than using the above empirical formulas, Eqs. (23.10.4) and (23.10.8) may be solved
numerically in MATLAB. The function taylorbw implements the solution, returning the
values of B and Δu, for any vector of sidelobe attenuations R:

[B,Du] = taylorbw(R); % Taylor parameter B and beamwidth Δu

It is built on the functions sinhc and asinhc for computing the hyperbolic sinc
function and its inverse:

y = sinhc(x); % hyperbolic sinc function, sinhc(x) = sinh(π x)/π x

x = asinhc(y); % inverse function, finds the x that satisfies sinhc(x) = y

For small x, the equation y = sinh(x)/x is solved for x by using the Taylor series
expansion y = sinh(x)x � 1 + x2/6 + x4/120; for larger x, it is solved by the iteration
sinh(xn)/xn−1 = y, or, xn = asinh(yxn−1), for n = 1,2, . . . .

Once the B-parameter is determined, the array weightsw(m) can be computed from
(23.10.1) using the built-in function besseli, and then steered towards an angle φ0

using Eq. (23.7.1). In this case, to avoid grating lobes, the element spacing must be less
than the maximum:

d0 = λ
1+ | cosφ0| (23.10.10)

As discussed in Sec. 23.9, in order for the visible region is ψ-space to cover at least
one Nyquist period, the element spacing d must be in the range:

d0

2
≤ d < d0 (23.10.11)

The MATLAB function taylor1p of Appendix L implements this design procedure
and invokes the function taylorbw. The outputs of the function are the steered array
weights and the 3-dB width. It has usage:

[a, dph] = taylor1p(d, ph0, N, R); % Taylor 1-parameter line source
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Example 23.10.1: Fig. 23.10.1 depicts the gain of a 14- and a 15-element Taylor-Kaiser array
with half-wavelength spacing d = λ/2, steered towards φ0 = 60o. The sidelobe level was
R = 20 dB. The array weights were obtained by:

[a1, dph1] = taylor1p(0.5, 60, 14, 20);
[a2, dph2] = taylor1p(0.5, 60, 15, 20);

The graphs in Fig. 23.10.1 can be produced by the following commands:

[g1,ph1] = gain1d(0.5, a1, 720); % compute normalized gain at 720 angles

dbz(ph1,g1); % make azimuthal plot of the gain

addcirc(3); % add 3-dB circle

addray(60-dph1/2); addray(60+dph1/2); % add rays at 3-dB angles

The array weights are already steered towards 60o. The designed unsteered weights were
in the two cases:

w1 = [1.0000, 1.3903, 1.7762, 2.1339, 2.4401, 2.6749, 2.8224,
2.8224, 2.6749, 2.4401, 2.1339, 1.7762, 1.3903, 1.0000]

w2 = [1.0000, 1.3903, 1.7762, 2.1339, 2.4401, 2.6749, 2.8224, 2.8728
2.8224, 2.6749, 2.4401, 2.1339, 1.7762, 1.3903, 1.0000]

The corresponding 3-dB widths were Δφ3dB = 9.68o and Δφ3dB = 9.03o, with the second
being slightly narrower because the array is slightly longer. The graphs show how the rays
at the two 3-dB angles intersect the 3-dB gain circles. The maximum and minimum array
spacings are from (23.10.10): d0 = 2λ/3 and d0/2 = λ/3. ��

 90o

−90o

 0o180o

φ

60o

−60o

30o

−30o

120o

−120o

150o

−150o

−10−20−30
dB

N = 14
 90o

−90o

 0o180o

φ

60o

−60o

30o

−30o

120o

−120o

150o

−150o

−10−20−30
dB

N = 15

Fig. 23.10.1 Taylor-Kaiser arrays with N = 14 and N = 15, and d = λ/2.

Example 23.10.2: Fig. 23.10.2 depicts the gain of a 31-element endfire array with spacing d =
λ/4 and sidelobe level R = 20 dB, steered towards the forward direction,φ0 = 0o, and the
backward one, φ0 = 180o.

The maximum and minimum array spacings, calculated from Eq. (23.10.10) for φ0 = 0o

and φ0 = 180o, are d0 = λ/2 and d0/2 = λ/4. We have chosen d = d0/2 = λ/4.

The 3-dB widths are in both cases Δφ3dB = 43.12o. The graphs also show the 3-dB circle
intersecting the 3-dB angle rays. ��

1160 23. Array Design Methods

 90o

−90o

 0o180o

φ

60o

−60o

30o

−30o

120o

−120o

150o

−150o

−10−20−30
dB

Forward
 90o

−90o

 0o180o

φ

60o

−60o

30o

−30o

120o

−120o

150o

−150o

−10−20−30
dB

Backward

Fig. 23.10.2 Taylor-Kaiser endfire arrays with N = 31 and d = λ/4.

The design method of the section was based on sampling the current distribution
directly, as in Eq. (23.10.1), rather than using the procedure of mapping the pattern
zeros as outlined in Eqs. (23.6.15)–(23.6.17). A variation of the design method array that
uses the latter procedure is discussed in Problem 23.1.

23.11 Prolate Array

Kaiser has noted [1265,1266] that the Kaiser window function (23.10.1) is an excellent
approximation to the 0th order discrete prolate spheroidal sequence that maximizes the
energy concentration in a given frequency interval [1267–1276].

Using the prolate sequence as a window for array design provides a slight improve-
ment over the Taylor-Kaiser case in the sense of having a slightly narrower beamwidth
while meeting the sidelobe specification more precisely. The prolate array can be de-
signed very quickly using the inverse power iteration.

Given an N-dimensional array a = [a0, a1, . . . , aN−1]T with array pattern A(ψ),
the discrete prolate spheroidal performance index which measures the concentration of
energy within the wavenumber interval [−ψc,ψc] is defined by:

J =
1

2π

∫ ψc
−ψc

|A(ψ)|2 dψ
1

2π

∫ π
−π
|A(ψ)|2 dψ

(23.11.1)

The integration range in the denominator may be changed to be the visible region
[−kd, kd] if so desired [1269], but the design technique remains essentially the same.
Inserting the array pattern,

A(ψ)=
N−1∑
n=0

an ejψn (23.11.2)
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into (23.11.1), we may express the performance index J as a Rayleigh quotient involving
the so-called prolate matrix [1268,1276]:

J = a†Aa

a†a
(23.11.3)

where the dagger denotes the Hermitian conjugate and the prolate matrix is defined by
its matrix elements:

Anm = sin
(
ψc(n−m)

)
π(n−m) = sin

(
2πW(n−m))
π(n−m) , n,m = 0,1, . . . ,N − 1 (23.11.4)

where we set ψc = 2πW for later convenience. This matrix is the convolution matrix
arising from the impulse response of the ideal lowpass filter with cutoff ψc.

The problem of maximum energy concentration is to find that finite sequence a that
maximizes the performance indexJ. This problem has been studied extensively both for
discrete and continuous time sequences, see [1270] for a nice review. The maximization
of the Rayleigh quotient is realized by the maximum eigenvector of the prolate matrix
A, that is, the eigenvector belonging to the maximum eigenvalue, say, λ0:

Aa = λ0 a (23.11.5)

The prolate matrix is notoriously ill-conditioned having approximately 2NW eigen-
values that are very near one, and the remaining eigenvalues decreasing rapidly to zero.
The following table lists the eigenvalues in decreasing order for the case N = 21 and
W = 0.2, so that 2NW = 8.4, its condition number being, cond(A)= 5.1063×1016:

i λi
0 0.99999999998517786000
1 0.99999999795514627000
2 0.99999987170540139000
3 0.99999517388508363000
4 0.99987947149714795000
5 0.99792457099956200000
6 0.97588122145542644000
7 0.83446090480119717000
8 0.45591142240913063000
9 0.11887181858959120000

10 0.01567636516215985600

i λi
11 0.00131552671490021500
12 0.00007986915605618046
13 0.00000365494381482577
14 0.00000012731149204486
15 0.00000000336154097643
16 0.00000000006621668668
17 0.00000000000094327944
18 0.00000000000000920186
19 0.00000000000000004034
20 0.00000000000000001958

These were generated by the following MATLAB code:

N = 21; W = 0.2;
n = 0:N-1; f = 2*W*sinc(2*W*n);
A = toeplitz(f,f);
lambda = svd(A);

The eigenvectors of the prolate matrix are referred to as the discrete prolate spheroidal
sequences (DPSS), and the first 2NW of them are relevant in multitaper methods of spec-
tral analysis [1275] .
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For the array problem, we are interested only in the maximum eigenvector. A simple
way to compute it is by the power iteration, that is, an = Aan−1 = Ana0. However,
because the corresponding eigenvalue λ0 and the next highest one are so close to unity,
the iteration will be very slow converging.

A more efficient approach is to apply the inverse power iteration on the matrix
Q = I − A, that is, an+1 = Q−1an = Q−na0. This iteration converges to the minimum
eigenvector of Q, which is the same as the maximum eigenvector of A. The minimum
eigenvalue of Q is 1 − λ0, which is very small and its inverse (1 − λ0)−1 very large,
causing the iteration to converge very fast.

For the array problem one needs to know the relationship of the bandwidth parame-
terW to the desired sidelobe level R and the array length N. Because the Taylor-Kaiser
window is a good approximation to the maximum eigenvector, one expects to have a
relationship among the parameters W,B,N,R. As pointed out by Kaiser and Walden
[1265,1272], this relationship is approximatelyW = B/N.

We have improved this relationship slightly by using the results of [1276] to arrive
at the following empirical formula, which works well over the range 14 ≤ R ≤ 120 dB:

W = 0.95B+ 0.14

N
(23.11.6)

This leads to the following design procedure. Given N and R, we calculate B using
the function taylorbw, described in Sec. 23.10, then calculate W from (23.11.6), and
construct the prolate matrix A, and Q = I −A, then, apply the inverse power iteration
initialized with the unit vector a0 = [1,0,0, . . . ,0]T:

a = [1,0,0, . . . ,0]T
for n = 1,2, . . . ,Niter,

a = Q−1a

The algorithm is insensitive to the choice of the initial vector a0 and converges ex-
tremely fast, requiring about 1–3 iterations (we use 3 by default).

We determine the 3-dB width by simply equating it to that of the Taylor array, that
is, Δψ = 2πΔu/N, whereΔu is also obtained from the function taylorbw. Even so, the
prolate array’s mainlobe, as a whole, is slightly narrower than that of the Taylor array.
The MATLAB function prol implements the above procedure:

[a, dph] = prol(d,ph0,N,R); % prolate array

The function prolmat constructs the prolate matrix for given N,W:

A = prolmat(N,W); % prolate matrix

Fig. 23.11.1 shows a design example with N = 21 and R = 30. The left graph
plots the array patterns |A(ψ)| for the prolate and Taylor designs at broadside. The
right graph shows the same prolate array steered towards 60o. The 3-dB width is also
indicated on the figure. We note that the Taylor array has a slightly wider mainlobe and
slightly lower sidelobes, whereas the prolate design meets the sidelobe specification
exactly. The graphs were computed by the following MATLAB code:
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d = 0.5; N = 21; R = 30; ph0 = 90;

[at,Dt] = taylor1p(d,ph0,N,R); % Taylor design

[ap,Dp] = prol(d,ph0,N,R); % Prolate design

f = linspace(-1,1,1001); psi = pi*f; % normalized wavenumber ψ

At = 20*log10(abs(dtft(at,-psi))); At = At-max(At); % compute pattern

Ap = 20*log10(abs(dtft(ap,-psi))); Ap = Ap-max(Ap);

figure; plot(f,Ap, ’-’, f,At,’--’);

ap = steer(d,ap,60); % redesign steered towards 60o

[gp,phi] = gain1d(d,ap,720); % normalized gain

figure; dbz(phi,gp);
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Fig. 23.11.1 Prolate array design.

Fig. 23.11.2 compares the corresponding array weights of the prolate and Taylor
designs for the cases N = 21 and N = 41, and R = 30 dB.
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Fig. 23.11.2 Comparison of prolate and Taylor array weights.
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23.12 Taylor Line Source

Taylor’s ideal line source pattern [1602], given in Eq. (23.6.21), has a mainlobe when
|u| ≤ A and equiripple sidelobes when |u| ≥ A. The equiripple behavior arises from
the fact that the pattern switches to its cosine form when |u| ≥ A, as shown below:

F(u)=
⎧⎪⎨
⎪⎩

cosh
(
π
√
A2 − u2

)
, if |u| ≤ A

cos
(
π
√
u2 −A2

)
, if |u| ≥ A

(23.12.1)

The sidelobe level (in absolute units) is the ratio of the mainlobe peak height |F(0)| =
cosh(πA) to the sidelobe height, which is unity:

Ra = cosh(πA) ⇒ A = 1

π
acosh(Ra) (23.12.2)

The pattern F(u)may be thought of as a limiting form of the Chebyshev array when
the number N of array elements becomes large [1250]. To see this, we consider the
Chebyshev polynomial TN(x)= cosh(Nξ), where x = coshξ. In the limit of large N
and small ξ, with the product Nξ kept constant, we can use the approximation

x = coshξ � 1+ 1

2
ξ2 ⇒ ξ � √2x− 2 ⇒ TN(x)� cosh

(
N
√

2x− 2
)

(23.12.3)

For an N-element array, the Chebyshev pattern is defined by Eqs. (23.9.2) and (23.9.3):

A(ψ)= TN−1

(
x0 cos

ψ
2

)
, Ra = TN−1(x0) (23.12.4)

Recalling thatψ = 2πu/N, it follows thatψ will be small in the limit of largeN and
fixed u, thus, we may apply the approximation cos(ψ/2)� 1 −ψ2/8. Then, using the
Chebyshev approximation (23.12.3), we have:

A(ψ) � cosh

(
(N − 1)

√
2x0 cos

ψ
2
− 2

)
= cosh

⎛
⎝(N − 1)

√√√√2x0

(
1− ψ

2

8

)
− 2

⎞
⎠

= cosh

⎛
⎝
√
(N − 1)2(2x0 − 2)−

(
(N − 1)ψ

2

)2
⎞
⎠

We also have Ra = TN−1(x0)� cosh
(
(N − 1)

√
2x0 − 2

)
. Comparing with (23.12.2),

we may identify πA = (N − 1)
√

2x0 − 2. We also note that in the large-N limit:

(N − 1)ψ
2

= (N − 1)2πu
2N

� πu

It follows that the limiting form of A(ψ) is precisely the pattern (23.12.1).
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Taylor introduced a modification of the ideal pattern so the first few sidelobes, say
the first n̄, are essentially equiripple at the given sidelobe level R, while the remaining
ones follow the sinπu/πu attenuation rate of the uniform array. The method essentially
preserves the mainlobe width and sidelobe level of the Chebyshev array, while allowing
the far sidelobes to decay faster.

The zeros of the sinπu/πu pattern occur at the integers un = ±n, n = 1,2, . . . ,
whereas the zeros of the ideal pattern (23.12.1) occur at the locations:√

u2
n −A2 = (n− 0.5) ⇒ un = ±

√
A2 + (n− 0.5)2 , n = 1,2, . . . (23.12.5)

Taylor defined a new pattern such that its zeros are:

un =
⎧⎨
⎩±σ

√
A2 + (n− 0.5)2 , for n = 1,2, . . . , n̄− 1

±n , for n ≥ n̄ (23.12.6)

The scale parameter σ is selected to allow a smooth transition between the two sets
of zeros, that is, requiring the matching condition:

σ
√
A2 + (n̄− 0.5)2 = n̄ ⇒ σ = n̄√

A2 + (n̄− 0.5)2
(23.12.7)

The 3-dB width of the ideal pattern is obtained from the condition:

cosh
(
π
√
A2 − u2

3

)
= 1√

2
cosh(πA) ⇒ Δu = 2u3 (23.12.8)

The 3-dB width of the modified pattern is σ times larger:

Δu = 2u3σ = 2σ

√
A2 − 1

π2
acosh2

(
1√
2

cosh(πA)
)

(23.12.9)

As discussed by Taylor [1602], the minimum acceptable value for n̄ should be such
that ∂σ/∂n̄ < 0. This gives the constraint:

n̄ ≥ 2A2 + 1

2
(23.12.10)

Eqs. (23.12.6)–(23.12.10) define completely the properties of the modified pattern.
An N-element array approximating Taylor’s modified pattern can be designed by the
procedure outlined in Eqs. (23.6.16) and (23.6.17), that is, selecting the firstN−1 zeros
of the continuous pattern as the zeros of the discrete pattern.

In particular, given the parametersN,R, n̄, we calculateA from (23.12.2) andσ from
(23.12.7), and define the N − 1 conjugate zeros:

un =

⎧⎪⎪⎨
⎪⎪⎩
σ
√
A2 + (n− 0.5)2 , for 1 ≤ n ≤ n̄− 1

n , for n̄ ≤ n ≤ N − n̄
−σ√A2 + (N − n− 0.5)2 , for N − n̄+ 1 ≤ n ≤ N − 1

(23.12.11)

Then, we define the array’s zeros in ψ-space and z-domain:

ψn = 2πun
N

, zn = ejψn , n = 1,2, . . . ,N − 1 (23.12.12)
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and convolve them to get the array pattern polynomial:

A(z)=
N−1∏
n=1

(z− zn) (23.12.13)

The first and last n̄ − 1 zeros are conjugate pairs by construction; the middle ones
come in conjugate pairs because for each n in the range n̄ ≤ n ≤ N−n̄, the integerN−n
is also in the same range and has a conjugated zero: zN−n = ej2π(N−n)/N = e−j2πn/N =
z∗n . An exception is in the case when N is even, for which n = N/2 corresponds to a
real zero.

The 3-dB width of the array is calculated from Δψ = 2πΔu/N. This design method
is implemented by the MATLAB function taylornb with usage:

[a,dph] = taylornb(d,ph0,N,R,nbar); % Taylor’s n-bar line source array design

Fig. 23.12.1 shows two design examples. The left graph has N = 21, R = 30 dB, and
n̄ = 5, while the right graph hasN = 41, R = 40 dB, and n̄ = 10. The required minimum
values for n̄, calculated from (23.12.10), were n̄ = 4.48 and n̄ = 6.69, respectively.
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Fig. 23.12.1 Taylor n̄ line source array design.

In order for the middle range of ns in (23.12.11) to be nontrivial, we must necessarily
have n̄ ≤ N/2, which combined with the restriction (23.12.10) implies a minimum value
for the array length:

N ≥ 4A2 + 1 (23.12.14)

The following table lists some representative values of the minimum N:

R dB n̄ N
15 2 4

20 2 5
25 3 7
30 4 8
35 5 11
40 6 13
45 7 15

R dB n̄ N
50 9 18

55 11 22
60 12 25
65 14 29
70 16 33
75 18 37
80 20 41
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23.13 Villeneuve Arrays

Taylor’s n̄ pattern was based on the ideal continuous line source distribution (23.12.1),
which was the limit of a Dolph-Chebyshev array. The design of an N-element array was
accomplished by the usual method of mappingN−1 continuous-case zeros to theN−1
zeros of the array.

Villeneuve [1277] introduced an alternative design method whose starting point was
a trueN-element Chebyshev array, instead of the ideal limiting form. The modified array
was designed by choosing its first (and last) n̄− 1 zeros to coincide with the (stretched)
zeros of the Chebyshev array, and the remaining zeros to coincide with zeros of an
N-element uniform array.

We recall from Sec. 23.9 that the N−1 zeros of and N-element Chebyshev array are
constructed by:

xn = cos
(
(2n− 1)π
2(N − 1)

)
, ψn = 2 acos

(
xn
x0

)
, zn = ejψn (23.13.1)

for n = 1,2, . . . ,N − 1, where x0 is determined by TN(x0)= Ra, and Ra is the sidelobe
level in absolute units. Villeneuve modified the above zeros as follows:

ψn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+σ 2 acos
(
xn
x0

)
, for 1 ≤ n ≤ n̄− 1

2πn
N
, for n̄ ≤ n ≤ N − n̄

−σ 2 acos
(
xN−n
x0

)
, for N − n̄+ 1 ≤ n ≤ N − 1

(23.13.2)

where xn are given as in (23.13.1). By construction, we have ψN−n = −ψn, for 1 ≤ n ≤
n̄− 1, which implies that the first and last n̄ zeros are conjugate pairs.

The scale factor σ is fixed by requiring a smooth transition between the two sets of
zeros at n = n̄, that is,

σ 2 acos
(
xn̄
x0

)
= 2πn̄
N
, where xn̄ = cos

(
(2n̄− 1)π
2(N − 1)

)
(23.13.3)

With zn = ejψn , the array polynomial is then formed by

A(z)=
N−1∏
n=1

(z− zn)

The 3-dB width of the new design is taken to be σ times greater than that of the
Dolph-Chebyshev case. The MATLAB function ville implements this method:

[a,dph] = ville(d,ph0,N,R,nbar); % Villeneuve array design

The method applied to the two examples of Fig. 23.12.1 produces virtually identical
graphs, and we do not repeat them here.
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23.14 Multibeam Arrays

An array can form multiple narrow beams towards different directions. For example,
suppose it is desired to form three beams towards the steering angles φ1, φ2, and φ3.
The weights for such a multibeam array can be obtained by superimposing the weights
of a single broadside array, say w(m), steered towards the three angles. Defining the
corresponding scanning phases ψi = kd cosφi, i = 1,2,3, we have:

a(m)= A1e−jmψ1w(m)+A2e−jmψ2w(m)+A3e−jmψ3w(m)

where m = 0,±1,±2, . . . ,±M and we assumed an odd number of array elements N =
2M + 1. The complex amplitudes A1, A2, A3 represent the relative importance of the
three beams. The corresponding array factor becomes:

A(ψ)= A1W(ψ−ψ1)+A2W(ψ−ψ2)+A3W(ψ−ψ3)

and will exhibit narrow peaks towards the three steering angles. More generally, we
can form L beams towards the angles φi, i = 1,2, . . . , L by superimposing the steered
beams:

a(m)=
L∑
i=1

Aie−jmψiw(m) , m = 0,±1,±2, . . . ,±M (23.14.1)

where ψi = kd cosφi, i = 1,2, . . . , L. For an even number of array elements, N = 2M,
we replace Eq. (23.14.1) with:

a(±m)=
L∑
i=1

Aie∓j(m−1/2)ψiw(±m) , m = 1,2, . . . ,M (23.14.2)

For either even or odd N, the corresponding array factor will be the superposition:

A(ψ)=
L∑
i=1

AiW(ψ−ψi) (multi-beam array factor) (23.14.3)

The basic broadside array weights w(m) can be designed to achieve a desired side-
lobe level or beam width. As the broadside beam w(m) is steered away from 90o, the
beamwidths will broaden. To avoid grating lobes, the element spacing d must be less
the quantity d0 (and greater than d0/2):

d0 = min
i
di, where di = λ

1+ | cosφi| , i = 1,2, . . . , L

This minimum is realized at the beam angle closest to endfire. If the steering angles
are closer to each other than about one 3-dB beamwidth, the mainlobes will begin to
merge with each other reducing the resolvability of the individual beams. This behavior
is analogous to the problem of frequency resolution of multiple sinusoids.

The MATLAB function multbeam.m of Appendix L implements Eqs. (23.14.1) and
(23.14.2). Its inputs are the vector of broadside array weights w—which can be de-
signed beforehand using for example dolph2 or taylor1p—and the beam angles and
amplitudes φi, Ai.
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Example 23.14.1: Fig. 23.14.1 shows the gains of two 21-element three-beam arrays with half-
wavelength spacing, and steered towards the three angles of 45o, 90o, and 120o. The
broadside array was designed as a Taylor-Kaiser array with sidelobe level of R = 20 and
R = 30 dB.

The relative amplitudes of the three beams were equal to unity. The MATLAB code used
to generate the right figure was:

w = taylor1p(0.5, 90, 21, 30); % unsteered weights

a = multbeam(0.5, w, [1,1,1], [45, 90, 120]); % equal-amplitude beams

[g, ph] = array(d, a, 400); % compute gain

dbz(ph, g); % plot gain in dB

addray(45); addray(-45); % add ± 45o grid rays

We note the broadening of the beam widths of the larger beam angles. The left array
has narrower mainlobes than the right one because its sidelobe attenuation is less. But, it
also exhibits more constructive interference between mainlobes causing somewhat smaller
sidelobe attenuations than the desired one of 20 dB. ��
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Fig. 23.14.1 Multi-beam arrays with R = 20 and R = 30 dB sidelobes.

Equations (23.14.1) and (23.14.2) generalize the Woodward-Lawson frequency sam-
pling design equations (23.5.6) and (23.5.7) in the sense that the steering phasesψi can
be arbitrary and do not have to be the DFT frequencies.

However, if the ψi are chosen to be the DFT frequencies given by Eq. (23.5.1) or
(23.5.5), and the broadside array is chosen to be a length-N uniform array, w(m)= 1,
then the inverse DFT expressions (23.5.6) and (23.5.7) can be thought of as defining
N beams—called the Woodward-Lawson-Butler beams—steered towards the DFT angles
φi = acos(ψi/kd), that is, towards

φi = acos
(
ψi
kd

)
= acos

(
2πi
Nkd

)
= acos

(
λi
Nd

)
, i = 0,1, . . . ,N − 1 (23.14.4)

The array weights will be given then by the inverse DFT:

a(m)= 1

N

N−1∑
i=0

A(ψi)e−jmψi (23.14.5)
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and the corresponding array factor by:

A(ψ)= 1

N

N−1∑
i=0

A(ψi)W(ψ−ψi) (23.14.6)

where W(ψ)= sin(Nψ/2)/ sin(ψ/2) is the array factor of the uniform window. The
DFT values are identified as the relative beam weights Ai = A(ψi)/N.

A single Butler beam, say the jth beam, can be turned on by choosing Ai = δij. By
successively turning on the Butler beams one by one, the array will act as a scanning
array. Fig. 23.14.2 depicts such a multi-beam array structure. The inverse DFT box
implements Eq. (23.14.5). The inputs are the “beams”Ai and the outputs are the weights
a(m).

Fig. 23.14.2 Woodward-Lawson-Butler beam matrix network for N = 8.

Somewhat before the advent of the FFT algorithm, Butler proposed a hardware re-
alization of the inverse DFT network, which was quickly recognized to be equivalent to
the FFT algorithm [1278,1279,1281–1284]. The DFT matrix realization of this network
is called the Blass matrix in the antenna array context [18,10].

Example 23.14.2: Fig. 23.14.3 shows the individual Butler beams turned on successively for
an eight-element array. Both the standard and alternative DFT frequency sets are shown.
There are eight beams in each graph. For the standard DFT set, the two endfire beams
count as one, that is, the i = 0 beam.

The sidelobes are at the 13-dB level because these are scanned versions of the uniform
array. The mainlobes intersect exactly half-way between the DFT frequencies ψi, that is,
the ith beam intersects the neighboring ones at ψ = ψi +π/N = 2π(i + 0.5)/N. These
intersection points are approximately 4 dB down (3.92 dB to be exact) from the main peaks.
The 4-dB gain circle intersects the gain curves at these points. ��

23.15 Problems

23.1 Computer Experiment—Taylor’s one-parameter/n̄ array design. Taylor’s n̄ distribution of
Sec. 23.12 can also be applied to Taylor’s one-parameter continuous distribution of Sec. 23.10.
First, show that the zeros of Eq. (23.10.2) occur at

un =
√
B2 + n2 , n = 1,2, . . .
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Fig. 23.14.3 Woodward-Lawson-Butler beams for N = 8.

Then, choose n̄ such that n̄ ≤ N/2 and define an N-element array by its N − 1 zeros:

un =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
σ
√
B2 + n2 , for 1 ≤ n ≤ n̄− 1

n , for n̄ ≤ n ≤ N − n̄
−σ

√
B2 + (N − n)2 , for N − n̄+ 1 ≤ n ≤ N − 1

(23.15.1)

Fix the parameter σ such that σ
√
B2 + n̄2 = n̄. Then, define the array polynomial:

A(z)=
N−1∏
n=1

(z− zn) , ψn = 2πun
N

, zn = ejψn , n = 1,2, . . . ,N − 1 (23.15.2)

Write a MATLAB function that implements this procedure, and takes as input the parameters
N,R, n̄ and outputs the array weights and 3-dB width.

Apply your function to the following example N = 21, R = 30 dB, n̄ = 5, with half-
wavelength spacing d = λ/2. You will notice that, like the prolate array, the mainlobe is
slightly narrower and the sidelobe level slightly better matched than the Taylor-Kaiser array.
On the same graph, plot the array patterns |A(ψ)| in dB for the present design, the Taylor
Kaiser and the prolate arrays designed with the same specifications. Vary n̄ to understand
its effect on the design.

23.2 Computer Experiment—Villeneuve array design. Redesign the examples shown in Fig. 23.12.1
using Villeneuve’s array design method and plot the array responses together with those of
that figure. Vary the parametersN,R, n̄ and compare the range of similarity of the Villeneuve
versus the Taylor n̄ method.

24
Currents on Linear Antennas

24.1 Hallén and Pocklington Integral Equations

In Sec. 15.4, we determined the electromagnetic fields generated by a given current
distribution on a thin linear antenna, but did not discuss the mechanism by which the
current distribution is set up and maintained. In Chap. 17, we assumed that the currents
were sinusoidal, but this was only an approximation. Here, we discuss the integral
equations that determine the exact form of the currents.

An antenna, whether transmitting or receiving, is always driven by an external source
field. In transmitting mode, the antenna is driven by a generator voltage applied to its
input terminals, and in receiving mode, by an incident electric field (typically, a uniform
plane wave if it is arriving from far distances.) In either case, we will refer to this external
source field as the “incident” field Ein.

The incident field Ein induces a current on the antenna. In turn, the current generates
its own field E, which is radiated away. The total electric field is the sum Etot = E +
Ein. Assuming a perfectly conducting antenna, the boundary conditions are that the
tangential components of the total electric field vanish on the antenna surface. These
boundary conditions are enough to determine the current distribution induced on the
antenna.

Fig. 24.1.1 depicts a z-directed thin cylindrical antenna of length l and radius a, with
a current distribution I(z) along its length. We will concentrate only on the z-component
Ez of the electric field generated by the current and use cylindrical coordinates.

For a perfectly conducting antenna, the current is essentially a surface current at
radial distance ρ = a with surface density Js(z)= ẑ I(z)/2πa, where in the “thin-
wire approximation,” we may assume that the density is azimuthally symmetric with no
dependence on the azimuthal angle φ. The corresponding volume current density will
be as in Eq. (15.4.2):

J(r)= Js(z)δ(ρ− a)= ẑ I(z)δ(ρ− a) 1

2πa
≡ ẑJz(r)


