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Diffraction – Fourier Optics

This chapter continues the discussion of diffraction and emphasizes Fourier optics top-
ics, Fresnel and Fraunhofer approximations, Talbot effect, Fourier properties of lens
systems, 1-D and 2-D apodizer design, aperture synthesis concentrating on narrow
beamwidths and low sidelobe designs, and concluding with a discussion of superres-
olution, superdirectivity, and superoscillations.

20.1 Fresnel Approximation

The Fresnel approximation for planar apertures is obtained from the Rayleigh-Sommerfeld
formula (19.1.6). Using (19.1.7), we have:

E(r⊥, z)=
∫
S
E(r⊥′,0)

2z
R

(
jk+ 1

R

)
e−jkR

4πR
d2r⊥′ (20.1.1)

where R = √
(x− x′)2+(y − y′)2+z2 = √|r⊥ − r⊥′|2 + z2. The Fresnel approximation

assumes that z is large enough such that |r⊥ − r⊥′| � z, which can be realized if the
aperture has dimension d so that |r⊥′| < d, and one assumes that the observation point
r⊥ remains close to the z-axis (the paraxial approximation) such that |r⊥| < d, and z is
chosen such that z� d. Then, we can approximate R as follows:

R =
√
|r⊥ − r⊥′|2 + z2 = z

√
1+ |r⊥ − r⊥′|2

z2
� z

[
1+ 1

2

|r⊥ − r⊥′|2
z2

]
= z+ |r⊥ − r⊥′|2

2z

where we used the Taylor series expansion
√

1+ x � 1+ x/2. Assuming also that R or
z is much greater than the wavelength of the wave, z� λ, so that k� 1/R we obtain,

2z
R

(
jk+ 1

R

)
e−jkR

4πR
� jke

−jk(z+|r⊥−r⊥′|2/2z)

2πz
= jk

2πz
e−jkz e−jk|r⊥−r⊥′|2/2z (20.1.2)

where we set R � z in the amplitude factors, but kept the quadratic approximation in
the phase e−jkR. The Fresnel approximation is finally:

E(r⊥, z)= jk
2πz

e−jkz
∫
S
E(r⊥′,0) e−jk|r⊥−r⊥′|2/2z d2r⊥′ (Fresnel) (20.1.3)
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This amounts to replacing the propagator impulse response h(r⊥, z) of Eq. (19.2.9)
by the approximation of Eq. (20.1.2):

h(r⊥, z)= jk
2πz

e−jkz e−jk|r⊥|
2/2z = jk

2πz
e−jkz e−jk(x

2+y2)/2z (Fresnel) (20.1.4)

Noting that k = 2π/λ, the constant factor in front is often written as:

jk
2πz

= j
λz

The accuracy of the Fresnel approximation can be quantified by considering the
higher-order terms in the expansion of the square root in,

kR = k
√
z2 + |r⊥ − r⊥′|2 ≈ kz+ k|r⊥ − r⊥′|2

2z
− k|r⊥ − r⊥′|4

8z3
+ · · ·

The approximation will be accurate if the third term is small. For an aperture of
typical size D, the quantity |r⊥ − r⊥′| remains of the order of D, thus, we obtain the
following condition on the distance z at which the Fresnel approximation is accurate,

kD4

8z3
� 1 ⇒ z3 � 1

8
kD4 ⇒ kz� 1

2
(kD)4/3 (20.1.5)

The Fresnel approximation can also be understood from the plane-wave spectrum
point of view. The Fourier transform of (20.1.4) is obtained from the following Fourier
integral, which is a special case of Eq. (3.5.18):√

jk
2πz

∫∞
−∞
ejkxx e−jkx

2/2z dx = ejk2
x z/2k (20.1.6)

where
√
j should be understood as ejπ/4. More generally,√

jk
2πz

∫∞
−∞
ejkxx e−jk(x−x0)2/2z dx = ejkxx0 ejk

2
x z/2k (20.1.7)

Applying (20.1.6) with respect to the x and y integrations, we obtain the two-dimensional
spatial Fourier transform of h(r⊥, z):

ĥ(k⊥, z)=
∫∞
−∞
h(r⊥, z) ejk⊥·r⊥ d2r⊥ = jk

2πz
e−jkz

∫∞
−∞
e−jk|r⊥|

2/2z ejk⊥·r⊥ d2r⊥ , or,

ĥ(k⊥, z)= e−jkz ej|k⊥|2z/2k = e−jkz ej(k2
x+k2

y)z/2k (20.1.8)

Then, Eq. (20.1.3) can be written in the wavenumber domain as,

E(r⊥, z)=
∫∞
−∞
Ê(k⊥, z) e−jk⊥·r⊥

d2k⊥
(2π)2

=
∫∞
−∞
Ê(k⊥,0) ĥ(k⊥.z) e−jk⊥·r⊥

d2k⊥
(2π)2

with,

E(r⊥,0)=
∫∞
−∞
Ê(k⊥,0) e−jk⊥·r⊥

d2k⊥
(2π)2

� Ê(k⊥,0)=
∫∞
−∞
E(r⊥,0) ejk⊥·r⊥ d2r⊥
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Thus, we may write the Fresnel diffraction formula convolutionally and in its plane-
wave spectrum form, where we expanded, |r⊥ − r⊥′|2 = |r⊥|2 + |r⊥′|2 − 2r⊥ · r⊥′, in the
third expression,

E(r⊥, z) = e−jkz
∫∞
−∞
Ê(k⊥,0) ej|k⊥|

2z/2k e−jk⊥·r⊥
d2k⊥
(2π)2

= jk
2πz

e−jkz
∫
S
E(r⊥′,0) e−jk|r⊥−r⊥′|2/2z d2r⊥′

= jk
2πz

e−jkz e−jk|r⊥|
2/2z

∫
S
E(r⊥′,0) e−jk|r⊥

′|2/2z ejkr⊥·r⊥′/z d2r⊥′

(Fresnel)

(20.1.9)
The last integral is recognized as the two-dimensional Fourier transform of the prod-

uct, E(r⊥′,0) e−jk|r⊥
′|2/2z, evaluated at k⊥ = kr⊥/z.

Eq. (20.1.8) can also be obtained from the exact form ĥ(k⊥, z)= e−jkzz by assum-
ing that for large z the evanescent modes will have already decayed and assuming the
approximation k2

x + k2
y � k2 for the propagating modes. Then, we can write:

kz =
√
k2 − |k⊥|2 = k

√
1− |k⊥|

2

k2
� k

[
1− 1

2

|k⊥|2
k2

]
= k− |k⊥|

2

2k

and, hence
e−jkzz � e−jkz ej|k⊥|2z/2k

Because of the assumption |k⊥| < k, the maximum transverse wavenumber will
be |k⊥| = k = 2π/λ, and correspondingly the smallest achievable transverse spatial
resolution will be Δr⊥ ∼ 1/|k⊥| ∼ λ, that is, about one wavelength. This is the basic
diffraction limit of optical instruments, such as lenses and microscopes. Implicit in
Eq. (20.1.9) then, is that the range of integration in k⊥-space must be restricted to the
propagating range, |k⊥| ≤ k.

Near-field optics methods [534–553], where the evanescent modes are not ignored,
overcome this limitation and can achieve much higher, subwavelength, resolutions. Al-
though ordinary lenses are diffraction-limited, it has been shown recently [398] that
“superlenses” made from metamaterials having negative refractive index can achieve
perfect resolution.

Circularly Symmetric and One-Dimensional Cases

In the special case when the fields have circular symmetry, as it happens often when
working with circular apertures and scalar fields, the above expressions can be written
as 0th-order Hankel transforms, i.e., with respect to the J0 Bessel function.
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Introducing cylindrical coordinates in the space and wavenumber domains, similar
to Eqs. (19.11.1) and (19.12.8) of Chap. 19,

r⊥ = |r⊥| =
√
x2 + y2

φ = atan2(y, x)

k⊥ = |k⊥| =
√
k2
x + k2

y

ψ = atan2(ky, kx)

�

x = r⊥ cosφ

y = r⊥ sinφ

kx = k⊥ cosψ

ky = k⊥ sinψ

(20.1.10)

and assuming that E(r⊥,0) depends only on, r⊥ = |r⊥|, all angular integrations can be
done with the help of the following integral of Eq. (19.12.22),∫ 2π

0
ejk⊥r⊥ cos(ψ−φ) dψ

2π
= J0(k⊥r⊥) (20.1.11)

then, Ê(k⊥,0) will depend only on k⊥ = |k⊥|, and will satisfy the following Hankel
transform relationships,

Ê(k⊥,0) =
∫∞

0
E(r⊥,0) J0(k⊥r⊥)2πr⊥dr⊥

E(r⊥,0) =
∫∞

0
Ê(k⊥,0) J0(k⊥r⊥)

k⊥dk⊥
2π

(20.1.12)

Then, the cylindrical symmetry is preserved by the propagation process, and (20.1.9)
can be written as follows, where we replaced, r⊥ · r⊥′ = r⊥r′⊥ cos(φ −φ′), and the φ′

integration was done with (20.1.11),

E(r⊥, z) = e−jkz
∫∞

0
Ê(k⊥,0) ejk

2⊥ z/2k J0(k⊥r⊥)
k⊥dk⊥

2π

= jk
2πz

e−jkz e−jkr
2⊥/2z

∫∞
0
E(r′⊥,0) e−jkr

′2⊥ /2z J0

(kr⊥r′⊥
z

)
2πr′⊥dr′⊥

(20.1.13)
Another special case is when the aperture field E(x′, y′,0) depends only on one

transverse coordinate, say, E(x′,0). Then, the dependence of (20.1.3) on the y direction
can be integrated out using the integral√

jk
2πz

∫∞
−∞
e−jk(y−y

′)2/2z dy′ = 1 (20.1.14)

and we obtain the following 1-D version of the propagation impulse response,

h(x, z)=
∫∞
−∞
h(r⊥, z)dz = jk

2πz
e−jkz e−jkx

2/2z
∫∞
−∞
e−jky

2/2z dy , or,

h(x, z)=
√
jk

2πz
e−jkz e−jkx

2/2z � ĥ(kx, z)= e−jkz ejk2
xz/2k (20.1.15)
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and the corresponding one-dimensional Fresnel formula, written convolutionally and in
its plane-wave spectrum form,

E(x, z) = e−jkz
∫∞
−∞
Ê(kx,0) ejk

2
xz/2k e−jkxx

dkx
2π

=
√
jk

2πz
e−jkz

∫∞
−∞
E(x′,0) e−jk(x−x

′)2/2z dx′

=
√
jk

2πz
e−jkz e−jkx

2/2z
∫∞
−∞
E(x′,0)e−jkx

′2/2z ejkxx
′/z dx

(20.1.16)

where again, the kx-integration may be restricted to |kx| ≤ k for distances z that are
large enough so that the evanescent modes have decayed.

Example 20.1.1: Knife-Edge Diffraction. We revisit the problem of knife-edge diffraction using
the Fresnel formula (20.1.16). The infinite edge is along the y direction and it occupies the
region x < 0, as shown in the figure below. The incident plane-wave field and the diffracted
field at distance z are:

Einc(x, z)= E0e−jkz

E(x, z)=
√
jk

2πz
e−jkz

∫∞
−∞
E(x′,0) e−jk(x−x

′)2/2z dx′

At the input plane, E(x′,0)= E0, for x′ ≥ 0, and E(x′,0)= 0, for x′ < 0. Then, the above
integral becomes:

E(x, z)= E0e−jkz
√
jk

2πz

∫ ∞
0
e−jk(x−x

′)2/2z dx′

Making the change of variables,√
k
2z
(x′ − x)=

√
π
2
u , v =

√
k
πz
x

the above integral can be reduced to the Fresnel integral F(x) of Appendix F:

E(x, z)= E0e−jkz
√
j
2

∫∞
−v
e−jπu

2/2 du = E0e−jkz
1

1− j
[
F(v)+1− j

2

]
This is identical (up to the paraxial assumption) to the case discussed in Sec. 18.14. When
x < 0, the observation point lies in the shadow region. ��

Example 20.1.2: Diffraction by an infinite slit. Consider an infinite slit on an opaque screen.
The y-dimension of the slit is infinite and its x-size is |x| ≤ a, as shown on the left in the
figure below. The same figure also shows an opaque strip of the same size.
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The incident field is a uniform plane wave, Einc(x, z)= E0e−jkz, whose values on the slit
are E(x′,0)= E0. The diffracted field at distance z is given by Eq. (20.1.16):

E(x, z)=
√
jk

2πz
e−jkz

∫ ∞
−∞
E(x′,0) e−jk(x−x

′)2/2z dx′ = E0

√
jk

2πz
e−jkz

∫ a
−a
e−jk(x−x

′)2/2z dx′

The integral can be reduced to the Fresnel integral F(x) of Appendix F by making the
change of variables: √

k
2z
(x′ − x)=

√
π
2
u , v± =

√
k
πz
(±a− x)

so that√
jk

2πz

∫ a
−a
e−jk(x−x

′)2/2z dx′ =
√
j
2

∫ v+
v−
e−jπu

2/2 du = F(v+)−F(v−)
1− j ≡ D(x, z)

where we used
√
j/2 = 1/(1− j). Thus, E(x, z) becomes:

E(x, z)= e−jkz D(x, z) (20.1.17)

For the case of the strip, the limits of integration are changed to:√
jk

2πz

(∫ ∞
a
+
∫ −a
−∞

)
e−jk(x−x

′)2/2z dx′ = F(∞)−F(v+)+F(v−)−F(−∞)
1− j = 1−D(x, z)

where we used F(∞)= −F(−∞)= (1 − j)/2. Thus, the diffracted field in the strip case
will be given by the complementary expression

E(x, z)= e−jkz [1−D(x, z)] (20.1.18)

This result is an example of the scalar Babinet principle discussed in Sec. 19.13,

Eslit(x, z)+Estrip(x, z)= e−jkz

Fig. 20.1.1 shows the diffracted patterns in the two cases. The graphs plot the quantities
|D(x, z)| and |1−D(x, z)| versus x in the two cases.

The slit was chosen to be four wavelengths wide, a = 4λ, and the diffracted patterns
correspond to the near, medium, and far distances z = a, z = 20a, and z = 100a. The
latter case corresponds to the Fraunhofer pattern having a small ratio a2/λz = 1/25.
For example, for the slit case, the corresponding pattern approximates (but it is not quite
there yet) the typical sinc-function Fourier transform of the rectangular slit distribution
E(x′,0)= E0, for −a ≤ x′ ≤ a :

Ê(kx,0)=
∫ a
−a
E0 ejkxx

′
dx′ = 2aE0

sin(kxa)
kxa

where this is to be evaluated at kx = kx/z for the diffraction pattern E(x, z). The property
that at the center of the strip, x = 0, the diffracted pattern is not zero is an example of the
so-called Poisson’s spot, or, Arago’s spot [638]. ��
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Fig. 20.1.1 Fresnel diffraction by a slit and a strip

Example 20.1.3: Gaussian beam propagation. In laser applications one often assumes a beam
with a gaussian profile at the launch position (z = 0), which broadens as it propagates
to z > 0. In the Fresnel approximation, the propagated field can be worked out in closed
form. For simplicity, we consider a 1-D version with an initial beam profile of width w,

E(x,0)= E0 exp

[
− x2

2w2

]
(20.1.19)

Using (20.1.16) the propagated field to distance z can be obtained by the following steps,

Ê(kx,0)=
∫ ∞
−∞
E(x,0)ejkxx dx = E0

√
2πw2 exp

[
−1

2
k2
xw2

]

Ê(kx, z)= e−jkz ejk2
xz/2k Ê(kx,0)= E0e−jkz

√
2πw2 exp

[
−1

2
k2
x

(
w2 − j z

k

)]

E(x, z)=
∫∞
−∞
Ê(kx, z) e−jkxx

dkx
2π

= E0e−jkz
√

w2

w2 − jz/k exp

[
− x2

2(w2 − jz/k)

]

where the integrals were done with the help of the integral of Eq. (3.5.18). Defining the
distance, z0 = kw2, and its inverse, α0 = 1/z0 = 1/(kw2), we may rewrite E(x, z) as,

E(x, z) = E0e−jkz (1− jα0z)−1/2 exp

[
− x2

2w2(1− jα0z)

]

= E0e−jkz (1− jα0z)−1/2 exp

[
− x2(1+ jα0z)

2w2(1+α2
0z2)

] (20.1.20)

with magnitude,

∣∣E(x, z)∣∣ = E0(1+α2
0z2)−1/4 exp

[
− x2

2w2(1+α2
0z2)

]
(20.1.21)

It is evident that the gaussian beam is getting wider and shorter as it propagates, with an
effective width and effective height given as functions of z by,

w(z)= w(1+α2
0z2)1/2 , E0(z)= E0(1+α2

0z2)−1/4 (20.1.22)
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Fig. 20.1.2 Gaussian beam propagation.

Fig. 20.1.2 plots Eq. (20.1.21) as a function of x at four distances z = 0, z0,2z0,3z0; it also
plots Eqs. (20.1.22) over the range 0 ≤ z ≤ 4z0. The parameters were, E0 = w = z0 = 1.

Mathematically, this example is the same as the gaussian pulse propagation example dis-
cussed in Eqs. (3.6.1)–(3.6.6) of Sec. 3.6. The analogies between pulse compression and
dispersion compensation on the one hand, and Fresnel approximation and lenses on the
other, have been discussed by Papoulis [1416,1431]. ��

20.2 Self-Imaging of Periodic Structures – Talbot Effect

The Talbot or self-imaging effect, first observed by Talbot in 1836, arises when a periodic
grating is illuminated by a normally-incident plane wave. In the Fresnel approximation
regime, the original grating image appears to be reproduced exactly at multiples of
a certain distance called the Talbot length, and furthermore, there is a complicated
structure of subimages at fractions of the Talbot length. Fig. 20.2.1 shows an example
of the resulting fractal-type structure, termed a Talbot carpet. References [1459–1478]
include some of the original papers, some recent reviews on applications, and the related
Lau effect which involves a double grating. Our discussion is based on [1474–1477].

There are certain classes of fields, such as plane-waves, for which the plane-wave
spectrum representation can be evaluated exactly. For example, consider a linear com-
bination of TE plane waves (with TE defined relative to the xz plane) incident at different
angles on the z = 0 plane. The y-component of the total E-field at z = 0 is given by a
sum of, say, N terms,

E(x,0)=
N∑
n=1

Ene−jknxx , knx = k sinθn

where θn are the angles of incidence measured with respect to the z-axis. The corre-
sponding 1-D Fourier transform is,

Ê(kx,0)=
∫∞
−∞
E(x,0)ejkxx dx =

N∑
n=1

En 2πδ(kx − knx)
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Then, the exact and the Fresnel plane-wave spectrum representations at z ≥ 0 are,

E(x, z) =
∫∞
−∞
Ê(kx,0)e−jkzz e−jkxx

dkx
2π

=
N∑
n=1

En e−jknzz e−jknxx , knz = k cosθn

E(x, z) =
∫∞
−∞
Ê(kx,0)e−jkz ejk

2
xz/2k e−jkxx

dkx
2π

= e−jkz
N∑
n=1

En ejk
2
nxz/2k e−jknxx

(20.2.1)
where the Fresnel case can also be obtained from the exact one by the following approx-
imation that effectively assumes that all the angles θn are small,

knz =
√
k2 − k2

nx ≈ k− k
2
nx

2k

Another class of fields that can be computed exactly are periodic gratings that are
periodic in x with some period, say, d, so that they can be expanded in a finite or infinite
Fourier series of harmonics in the form,

E(x,0)=
∞∑

n=−∞
En e−nkdx , kd = 2π

d
= fundamental harmonic (20.2.2)

with Fourier coefficients, for −∞ < n <∞,

En = 1

d

∫ d/2
−d/2

E(x,0) ejnkdx dx = 1

d

∫ d/2
−d/2

E(x,0) e2πjnx/d dx (20.2.3)

This case is similar to (20.2.1) if we identify, knx = nkd. Thus, we have,

E(x, z)=
∞∑

n=−∞
En e−jz

√
k2−n2k2

d e−jnkdx (exact)

E(x, z)= e−jkz
∞∑

n=−∞
En ejn

2k2
dz/2k e−jnkdx (Fresnel)

(20.2.4)

We will concentrate on the Fresnel case. Let us define the Talbot length by,

zT = 2πk
k2
d
= d

2

λ
(Talbot length) (20.2.5)

so that the Fresnel expression in (20.2.4) can be written as,

E(x, z)= e−jkz
∞∑

n=−∞
En ejπn

2z/zT e−2πjnx/d (20.2.6)

At z = 2zT, the quadratic phase factor becomes unity, indeed,

ejπn
2z/zT

∣∣∣
z=zT = e

jπn2(2zT)/zT = e2πjn2 = 1 , for all n
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It follows from (20.2.6) that the initial field reproduces itself at this distance,

E(x,2zT)= e−2jkzT E(x,0) ⇒ ∣∣E(x,2zT)∣∣ = ∣∣E(x,0)∣∣
which implies that

∣∣E(x, z)∣∣ is periodic in z with period twice the Talbot length, 2zT.
Similarly, at z = zT, we have, ejπn2z/zT = ejπn2 = ejπn, for all n, with the latter

identity following from the observation that ejπn2 = ejπn = 1 if n is even, and when n
is odd, i.e., n = 2m+ 1, we have, ejπn2 = ejπ(2m+1)n = e2πjnmejπn = ejπn. In this case,
the two exponentials in (20.2.6) can be combined as follows,

E(x, zT)= e−jkzT
∞∑

n=−∞
En ejπn e−2πjnx/d = e−jkzT

∞∑
n=−∞

En e−2πjn(x−d/2)/d , or,

E(x, zT)= e−jkzT E(x− 1
2d, 0) (20.2.7)

Thus, the initial field is reproduced exactly but is laterally shifted by half-period 1
2d.

To summarize, we have relative to an arbitrary distance z0,

E(x, z0 + z)= e−jkzE(x− 1
2d, z0) , when z an odd multiple of zT

E(x, z0 + z)= e−jkzE(x, z0) , when z is an even multiple of zT
(20.2.8)

Of course, the former implies the latter by applying it twice, and invoking the peri-
odicity in x, e.g.,

∣∣E(x,2zT)∣∣ = ∣∣E(x− 1
2d, zT)

∣∣ = ∣∣E(x− d,0)∣∣ = ∣∣E(x,0)∣∣.
The fractional Talbot effect corresponds to subimages that are generated at the

fractional distances zpq = (p/q)zT, where p,q are coprime integers.
To zpq we can add any multiple of zT. Indeed, if we set, z = z0 + zpq, with z0 =

(2s+r)zT, where r = 0,1, we will have, E(x, z0+zpq)= e−jkz0 E
(
x− 1

2rd, zpq
)
. Setting

now z = zpq = (p/q)zT in (20.2.6), we obtain,

E(x, zpq)= e−jkzpq
∞∑

n=−∞
En ejπn

2p/q e−2πjnx/d (20.2.9)

The fractional Talbot subimages are a consequence of this expression. We note that
if p is even (so q must be odd), then, the factor, an = ejπn2p/q, is periodic in n with
period q, as can be verified explicitly,

an+q = ejπ(n+q)2p/q = ejπn2p/q · e2πjnp · ejπpq = ejπn2p/q · 1 · 1 = an
On the other hand, if p is odd (now q can be even or odd), then the sequence, ejπn2p/q

is no longer periodic with period q. But the following sequence is, an = ejπn2p/qe−jπn,
indeed since p− 1 is even, we have,

an+q = ejπ(n+q)2p/qe−jπ(n+q) = ejπn2p/qe−jπn · ejπ(p−1)q = an
Combining the two cases, we denote by r the remainder of the division of p by 2,

that is, r = rem(p,2), and define the sequence, an = ejπn2p/qe−jπnr , which will now be
periodic with period q, for all p.
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This periodicity implies that an can be expanded in a discrete Fourier series [48], i.e.,
as an inverse DFT consisting of a linear combination of q discrete sinusoids at the q
DFT frequencies,ωm = 2πm/q,m = 0,1, . . . , q− 1, that is,

an = ejπn2p/qe−jπnr = 1

q

q−1∑
m=0

Am e2πjmn/q −∞ < n <∞ (20.2.10)

where the q coefficients Am are recognized as the q-point DFT of the discrete sequence
an, defined as follows form = 0,1, . . . , q− 1,

Am =
q−1∑
n=0

an e−2πjnm/q =
q−1∑
n=0

ejπn
2p/qe−jπnr e−2πjnm/q (20.2.11)

The DFT coefficients Am are known as quadratic Gauss sums and play a prominent
role in Number Theory. Closed-form expressions for Am in terms of p,q have been
given in [1474–1476]. Adapted to our case, they are form = 0,1, . . . , q− 1,

Am =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√q
(
p
q

)
exp

[
−jπ

(
q− 1

4
+ p
q
(p\q)2m2

)]
, p, q = even, odd

√q
(
q
p

)
exp

[
jπ
(
p
4
− p

4q
(p\q)2 (2m+ q)2

)]
, p, q = odd, even

√q
(
p
q

)
exp

[
−jπ

(
q− 1

4
+ 2p
q
(2\q)(2p\q)2 (2m+ q)2

)]
, p, q = odd, odd

(20.2.12)
where

(
p
q

)
is the Jacobi symbol taking on the values ±1, and (p\q) denotes the integer

or modular inverse of p relative to q.†

It is evident that the coefficients Am have constant magnitude, |Am| = √q, for
m = 0,1, . . . , q − 1. The MATLAB function talbot, computes Am from Eq. (20.2.12). It
requires that p,q be coprime and has usage,

A = talbot(p,q) % Gauss sums for the fractional Talbot effect

In our simulation examples below, we find it simpler to compute them numerically
by a DFT matrix transformation. Example 20.2.2 compares the two methods. Replacing

†The definitions of these concepts may be found in Wikipedia, https://www.wikipedia.org
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now, ejπn2p/q = an ejπnr , into Eq. (20.2.9) and using (20.2.10), we obtain,

E(x, zpq) = e−jkzpq
∞∑

n=−∞
En ejπn

2p/q e−2πjnx/d

= e−jkzpq
∞∑

n=−∞
En an ejπnr e−2πjnx/d

= e−jkzpq
∞∑

n=−∞
En

1

q

q−1∑
m=0

Am e2πjmn/q ejπnr e−2πjnx/d

= e−jkzpq 1

q

q−1∑
m=0

Am
∞∑

n=−∞
En e−2πjn(x−md/q−rd/2)/d , or,

E(x, zpq)= e−jkzpq 1

q

q−1∑
m=0

Am E
(
x−md

q
− rd

2
, 0
)

(20.2.13)

which shows thatE(x, zpq) is a linear combination ofq overlapping copies of the original
grating E(x,0), displaced laterally at multiples of d/q, with an overall displacement by
d/2 when p is odd.

Example 20.2.1: This example from [1477] illustrates the generation of a Talbot carpet. Figure
20.2.1 plots the magnitude,

∣∣E(x, z)∣∣, as a function of x, z, over the ranges, −2d ≤ x ≤ 2d
and−0.5zT ≤ z ≤ 3.5zT . One can observe the periodicity at z = 2zT , relative to z = 0, and
the lateral shift at z = zT and z = 3zT , as well as some of the fractional Talbot subimages
at distances (p/q)zT .

The periodic grating was taken to be a square wave with a duty cycle, α = 0.1, defined as
follows over one period, −d/2 ≤ x ≤ d/2,

E(x,0)=
⎧⎪⎨⎪⎩

1 , |x| ≤ 1
2αd

0 , 1
2αd < |x| ≤ 1

2d
(20.2.14)

The bright spots correspond to the narrow square pulses of the grating. The duty cycle
was chosen to be small enough so that the laterally repeated subimages at spacings d/q
are clearly visible. The Fourier coefficients were calculated from Eq. (20.2.3),

En = sin(απn)
πn

, −∞ < n <∞ (E0 = α) (20.2.15)

The field E(x, z) was computed using the following truncated version of the Fourier series
(20.2.6), where the coefficients En were multiplied by a Hamming window wn in order to
reduce the Gibbs ripples arising from the truncation,

E(x, z)= e−jkz
M∑

n=−M
wnEn ejπn

2z/zT e−2πjnx/d (20.2.16)

with, wn = 0.54+ 0.46 cos(πn/M). The following MATLAB code segment illustrates the
generation of this graph,
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Fig. 20.2.1 Talbot carpet.

d = 1; a = 0.1; % d = period, a = duty cycle
M = 100; n = -M:M; % no. Fourier series coefficients

w = @(n) 0.54 + 0.46*cos(pi*n/M); % Hamming window
En = @(n) a*sinc(a*n).*w(n); % windowed coefficients

E = @(x,z) sum(En(n).*exp(j*pi*n.^2*z).*exp(-2*pi*j*n*x)); % E(x,z)

x = linspace(-2, 2, 801); % x in units of d
z = linspace(-0.5, 3.5, 801); % z in units of z_T

for i=1:length(x) % calculate |E(x,z)|
for j=1:length(z)

F(i,j) = abs(E(x(i),z(j)));
end

end

Emag = 300*F/max(max(F)); % normalized magnitude

figure; image(z,x,Emag); % plot image
colormap(gray(128));

Example 20.2.2: This example from [1474] illustrates the computation of the fractional subim-
ages. The grating was again a square wave, but with a duty cycle of α = 0.5, known as
a Ronchi grating. Fig. 20.2.2 plots the magnitudes

∣∣E(x, zpq∣∣ at zpq = (p/q)zT , for the
choices, q = 20, and, p = 0,1,2,3,4,5,6,7,8.

The typical MATLAB code for generating these graphs is as follows, shown for the specific
case p = 3. The code also verifies that the two methods of calculating E(x, zpq) from
Eqs. (20.2.9) and (20.2.13) produce the same result to within MATLAB’s numerical accuracy,
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Fig. 20.2.2 Magnitude
∣∣E(x, zpq)∣∣ versus x, over one period, 0 ≤ x ≤ d.

d = 1; a = 0.5; % d = period, a = duty cycle
M = 1000; n = -M:M; % no. Fourier series coefficients

w = @(n) 0.54 + 0.46*cos(pi*n/M); % Hamming window
En = @(n) a*sinc(a*n).*w(n); % Fourier series coefficients

E = @(x,z) sum(En(n).*exp(j*pi*n.^2*z).*exp(-2*pi*j*n*x));

x = linspace(0,1,251); % x in units of d

p=3; q=20; r = rem(p,2);
zpq = p/q;

for i=1:length(x), % calculate E(x,zpq) using Eq.(20.2.9)
F(i) = E(x(i),zpq);

end

figure; plot(x,abs(F),’b-’); % plot magnitude |E(x,z_pq)|

n = (0:q-1)’; D = exp(-2*pi*j*n*n’/q); % qxq DFT matrix
a = exp(j*pi*n.^2*p/q).*exp(-j*pi*n*r); % qx1 sequence a(n)
A = D*a; % qx1 DFT coefficients A(m)
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for i=1:length(x) % calculate E(x,zpq) using Eq.(20.2.12)
S = 0;
for m=0:q-1

S = S + A(m+1)*E(x(i)-m*d/q-r*d/2,0);
end
Fpq(i) = S/q;

end

Ediff = norm(F-Fpq) % compare methods, Ediff = 8.9675e-13

B = talbot(p,q); % here, p=3,q=20 are coprime

Err = norm(A-B); % compare DFT with TALBOT, Err = 2.7907e-11

For q = 20 and the values p = 0,2,4,5,6,8, the pairs p,q are not coprime. In these cases
the ratios p/q are reduced to their coprime versions, i.e., p/q = [0,2,4,5,6,8]/20 =
[0/1, 1/10, 1/5, 1/4, 3/10, 2/5]. The q-term expansion (20.2.13) is still valid, but the q-
point DFT Am has zero entries that effectively reduce it to the equivalent coprime value
of q. The table below shows the (q = 20) values of Am, m = 0,1, . . . ,19, rounded to two
digits for display purposes, for the cases of p = 0,1,2,3,4,5.

In the coprime cases, p = 1 and p = 3, the array Am is full. In the case p = 2, which
reduces to p/q = 2/20 = 1/10 with a reduced q of 10, the array Am effectively reduces to
a 10-dimensional one. In the p = 4 case with p/q = 4/20 = 1/5, Am effectively reduces to
a 5-dimensional one. For p = 5 with p/q = 5/20 = 1/4, it reduces to a 4-dimensional one,
and in the trivial p = 0 case, to 1-dimensional. We note also that in these non-coprime
cases, the magnitude of the non-zeroAm’s is |Am| = √gq, where g is the greatest common
divisor of p,q, where g can be calculated in MATLAB with the command, g = gcd(p,q).

m p = 0 p = 1 p = 2 p = 3 p = 4 p = 5
-------------------------------------------------------------------------------
0 20.00 -3.16-3.16i 4.47+4.47i -3.16+3.16i 0 -7.07-7.07i
1 0 3.62+2.63i 0 1.38+4.25i 0 0
2 0 -4.42-0.70i 5.64+2.87i -2.03-3.98i 7.24+5.26i 0
3 0 3.62-2.63i 0 1.38-4.25i 0 0
4 0 0.70+4.42i 5.64-2.87i -3.98-2.03i 0 0
5 0 -4.47+0.00i 0 4.47+0.00i 0 10.00
6 0 -0.70-4.42i -2.87-5.64i 3.98+2.03i 7.24-5.26i 0
7 0 3.62-2.63i 0 1.38-4.25i 0 0
8 0 4.42+0.70i -2.87+5.64i 2.03+3.98i 0 0
9 0 3.62+2.63i 0 1.38+4.25i 0 0

10 0 3.16+3.16i 4.47-4.47i 3.16-3.16i -8.94+0.00i 7.07+7.07i
11 0 3.62+2.63i 0 1.38+4.25i 0 0
12 0 4.42+0.70i -2.87+5.64i 2.03+3.98i 0 0
13 0 3.62-2.63i 0 1.38-4.25i 0 0
14 0 -0.70-4.42i -2.87-5.64i 3.98+2.03i 7.24-5.26i 0
15 0 -4.47+0.00i 0 4.47+0.00i 0 10.00
16 0 0.70+4.42i 5.64-2.87i -3.98-2.03i 0 0
17 0 3.62-2.63i 0 1.38-4.25i 0 0
18 0 -4.42-0.70i 5.64+2.87i -2.03-3.98i 7.24+5.26i 0
19 0 3.62+2.63i 0 1.38+4.25i 0 0

For the particular coprime case, p = 3, q = 20, the above code segment compares also
the calculation of the Am coefficients using the DFT matrix approach and the closed-form
expressions (20.2.12) as implemented by the function TALBOT.
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In the non-coprime cases, after p,q are reduced by their greatest common divisor, g =
gcd(p, q), so that, p = gp0, q = gq0, and p/q = p0/q0, then one can apply TALBOT to
the reduced pair p0, q0 and obtain the q0-point DFT coefficients, which correspond to the
non-zero entries in the above columns, up to a circular shift by q/2 and an overall factor
g, noting that these columns have magnitudes,

√gq = √g2q0 = g√q0.

For a more thorough test, we have computed Am for all possible coprime pairs in the
ranges, 1 ≤ p ≤ 30 and 1 ≤ q ≤ 30, using the DFT method and the closed-form expressions
(20.2.12), implemented by the following code segment,

P=30; Q=30;
Err=[];

for p=1:P
for q=1:Q

if gcd(p,q)~=1, continue; end % skip non-coprime pairs

r = rem(p,2);
n = (0:q-1)’; D = exp(-2*pi*j*n*n’/q); % qxq DFT matrix
a = exp(j*pi*n.^2*p/q).*exp(-j*pi*n*r); % q-point discrete signal a(n)
A = D*a; % q-point DFT of a(n)

B = talbot(p,q); % q-point DFT from TALBOT

Err = [Err,norm(A-B)]; % Euclidean norm error
end

end

Emax = max(Err) % overall maximum error

figure; semilogy(Err, ’b.-’) % plot error

The error, plotted in Fig. 20.2.3, is measured by the Euclidean norm between the two DFT
vectors, ‖A − B‖. Its maximal value was Emax = 5.7348×10−7. For certain p,q pairs, the
error is zero and such points appear as gaps in the semilogy plot. ��
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Fig. 20.2.3 Computational error between DFT method and closed-form expressions (20.2.12).
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20.3 Fraunhofer Approximation

The Fraunhofer approximation is a limiting case of the Fresnel approximation when the
distance z is even larger than that in the Fresnel case. More precisely, it is obtained in
the far-field limit when k|r⊥′|2 � z, or, kz� (kD)2, whereD is the size of the aperture.

In this approximation, the field E(r⊥, z) becomes proportional to the Fourier trans-
form Ê(k⊥,0) of the field at the input plane. It is similar to the far-field approximation
of Eq. (19.3.3) discussed in Sec. 19.3, except now we are further assuming the paraxial
approximation in which z is much larger than the transverse directions |r⊥|.

A direct way of deriving the Fraunhofer approximation is by applying the stationary-
phase approximation—Eq. (H.6) of Appendix H—to the evaluation of the plane-wave
spectrum integral (20.1.9). Define the phase function

φ(k⊥)= |k⊥|2z
2k

− k⊥ · r⊥ =
[
k2
xz

2k
− kxx

]
+
[
k2
yz

2k
− kyy

]
≡ φx(kx)+φy(ky)

Then, the stationary-point with respect to the kx variable is,

φ′x(kx)=
kxz
k
− x = 0 ⇒ kx = xkz , φ′′x (kx)=

z
k

and similar expressions for φy(ky). Thus, vectorially, the stationary point is at k⊥ =
kr⊥/z. Using Eq. (H.6) (with diagonal matrix Φ), we obtain:∫∞
−∞
Ê(k⊥,0) ejφ(k⊥)

d2k⊥
(2π)2

�
√

2πj
φ′′x (kx)

· 2πj
φ′′y (ky)

[
Ê(k⊥,0) ejφ(k⊥)

1

(2π)2

]
k⊥= kr⊥

z

Noting that φ(k⊥)= −k|r⊥|2/2z at k⊥ = kr⊥/z, we finally find:

E(r⊥, z)= jk
2πz

e−jkz e−jk|r⊥|
2/2z

[
Ê(k⊥,0)

]
k⊥= kr⊥

z
(Fraunhofer) (20.3.1)

A simpler way of deriving (20.3.1) is by using (20.1.9) and noting that the factor
e−jk|r⊥′|2/2z can be ignored if we assume that k|r⊥′|2 � z, which leads to:

E(r⊥, z)= jk
2πz

e−jkz e−jk|r⊥|
2/2z

∫∞
−∞
E(r⊥′,0) ejkr⊥·r⊥′/z d2r⊥′ (20.3.2)

and the last integral factor is recognized as Ê(k⊥,0) evaluated at k⊥ = kr⊥/z. The
Fraunhofer condition, k|r⊥′|2 � z, implicitly assumes that the aperture is finite so that
the transverse integration over r⊥′ is limited to a finite range. If we denote by D the
typical extent of the aperture, then, the condition reads, kD2 � z, or, kz� (kD)2.

In the circularly symmetric case, the Fourier integral in (20.3.2) reduces to a Hankel
transform,

E(r⊥, z) = jk
2πz

e−jkz e−jkr
2⊥/2z

∫∞
−∞
E(r′⊥,0) J0

(kr⊥r′⊥
z

)
2πr′⊥dr′⊥

= jk
2πz

e−jkz e−jkr
2⊥/2z

[
Ê(k⊥,0)

]
k⊥= kr⊥z

(20.3.3)
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The one-dimensional version of (20.3.1) is obtained in a similar way from Eq. (20.1.16),

E(x, z)=
√
jk

2πz
e−jkz e−jkx

2/2z
[
Ê(kx,0)

]
kx= kxz

(Fraunhofer) (20.3.4)

Example 20.3.1: Exact, Fresnel, and Fraunhofer diffraction by circular apertures [1433–1445].
Consider a circular aperture of radiusa, and assume a uniform field, E(r⊥,0)= u

(
a−|r⊥|

)
,

at z = 0, where u(·) is the unit-step function. The on-axis field at distance z ≥ 0 can be
calculated in closed-form and compared for the three cases of using: (a) the exact Rayleigh-
Sommerfeld integral (20.1.1), (b) the circularly-symmetric Fresnel formula (20.1.13), and (c)
the Fraunhofer formula (20.3.1).

Setting E(r⊥′,0)= 1 and r⊥ = 0 in (20.1.1), we have R = √|r⊥ − r⊥′|2 + z2 =
√
r′2⊥ + z2.

The angular integration in d2r⊥′ = r′⊥dr′⊥dφ′ can be done immediately, replacing it by
2πr′⊥dr′⊥, and the remaining integral over r′⊥ can be done in closed-form,

E(0, z) =
∫ a

0

2z
R

(
jk+ 1

R

)
e−jkR

4πR
2πr′⊥dr′⊥

= e−jkz − z√
z2 + a2

e−jk
√
z2+a2

(exact) (20.3.5)

Setting r⊥ = 0 in the Fresnel formula (20.1.13) and noting that J0(0)= 1, we obtain,

E(0, z) = jk
2πz

e−jkz
∫ a

0
e−jkr

′2⊥ /2z 2πr′⊥dr′⊥

= e−jkz − e−jkz e−jka2/2z

(Fresnel) (20.3.6)

This can also be obtained from Eq. (20.3.5) by making the approximation in the exponential,

√
z2 + a2 ≈ z+ a

2

2z

while setting,
√
z2 + a2 ≈ z, in the amplitude factors. For the Fraunhofer case, we must

determine the Fourier transform of E(r′⊥,0)= 1 over the aperture, that is, from (20.1.12),

Ê(k⊥,0)=
∫ a

0
J0(k⊥r⊥)2πr⊥dr⊥ = πa2 2J1(k⊥a)

k⊥a
(20.3.7)

which evaluates to Ê(0,0)= πa2, at k⊥ = kr⊥/z = 0, so that (20.3.1) gives,

E(0, z)= jk
2πz

e−jkz
[
Ê(k⊥,0)

]
k⊥=0

= e−jkz jka
2

2z
(Fraunhofer) (20.3.8)

and this can also be obtained from (20.3.6) by assuming z � ka2 and using the Taylor
series approximation of the exponential, ejka2/2z ≈ 1+ jka2/2z.

Fig. 20.3.1 plots the exact, Fresnel, and Fraunhofer fields for the case a = 10λ. The Fresnel
and Fraunhofer distances, shown as the dotted vertical lines, were zfresnel = 39.8λ = 3.98a
and zfraunh = 628.3λ = 62.83a, and were computed from the expressions,

kzfresnel = (ka)4/3 , kzfraunh = (ka)2
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Fig. 20.3.1 Magnitude plots,
∣∣E(0, z)∣∣ vs. z.

The exact expression (20.3.5) was evaluated and plotted over the range, 10−1 ≤ z/λ ≤ 104.
The Fresnel expression (20.3.6) was plotted only for z ≥ zfresnel, and is barely distinguish-
able on the graph from the exact expression (see color graph online). Similarly, the Fraun-
hofer expression was plotted for z ≥ zfraunh, and is also barely distinguishable from the
exact case.

The envelopes of the oscillating exact field were defined by setting, e−jk
√
z2+a2 = ±e−jkz,

in the magnitude of (20.3.5), that is, they are the curves,

Eenv(z)= 1± z√
z2 + a2

This example demonstrates how the fields transition gradually from the exact expression
to Fresnel, and then to Fraunhofer, as z is gradually increased.

The case of the complementary aperture consisting of an opaque disk of radius a, as well
the cases of an annular aperture of inner and outer radii a,b, and its complementary ring
aperture are depicted below.

The integral (20.3.5) can be done exactly in all cases, resulting in,

E(0, z)= z√
z2 + a2

e−jk
√
z2+a2

(opaque disk)

E(0, z)= z√
z2 + a2

e−jk
√
z2+a2 − z√

z2 + b2
e−jk

√
z2+b2

(annular)

E(0, z)= e−jkz − z√
z2 + a2

e−jk
√
z2+a2 + z√

z2 + b2
e−jk

√
z2+b2

(annular ring)

(20.3.9)
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We note also that the scalar Babinet principle of Eq. (19.13.17) is satisfied for both the disk
and the annular cases, that is, E(0, z)+Ecompl(0, z)= e−jkz ��

Example 20.3.2: Fresnel zone-plate lens [1435].† An aperture consisting of alternating trans-
parent and opaque annular apertures, as shown below, can act as a lens with a prescribed
focal length, say, F, provided the radii of the transparent zones are properly chosen so
that the diffracted waves from these zones interfere constructively at distance F.

ForN transparent zones, the n-th zone is defined by, r2n ≤ r⊥ ≤ r2n+1, n = 0,1, . . . ,N−1,
that is, they are the intervals, [r0, r1], [r2, r3], [r4, r5], . . . , starting with r0 = 0. Similarly,
the opaque zones are the intervals, [r1, r2], [r3, r4], [r5, r6], etc. For the complementary
aperture shown above the groups of subintervals are interchanged.

Assuming a uniform incident field E0 = 1 from the left side and using the results of the
previous example for a single annular aperture, the net field at distance z along the axis
arising from all N annuli will be given by the sum,

E(0, z)=
N−1∑
n=0

⎡⎣ z√
z2 + r2

2n

e−jk
√
z2+r2

2n − z√
z2 + r2

2n+1

e−jk
√
z2+r2

2n+1

⎤⎦ (20.3.10)

In order for the sum (20.3.10) to exhibit constructive interference at z = F, the zone radii
must be chosen such that the relative path lengths from the zone edges to the focal point
F be multiples of half-wavelength, that is,√

F2 + r2
m − F =mλ

2
⇒ r2

m =mλ
(
F + mλ

4

)
, m = 0,1,2, . . . (20.3.11)

Thus, at z = F we have,
√
F2 + r2

m = F +mλ/2, and,

E(0, F)=
N−1∑
n=0

[
F

F + (2n)λ/2 e
−jk(F+(2n)λ/2) − F

F + (2n+ 1)λ/2
e−jk(F+(2n+1)λ/2)

]

But, e−jknλ = e−2πjn = 1 and e−jk(nλ+λ/2) = e−2πjne−jπ = −1, so that,

E(0, F)= e−jkF
N−1∑
n=0

[
F

F + nλ +
F

F + nλ+ λ/2
]

(20.3.12)

Typically, we have F� Nλ, and hence,

E(0, F)= e−jkF
N−1∑
n=0

[
F

F + nλ +
F

F + nλ+ λ/2
]
≈ e−jkF

N−1∑
n=0

[
F
F
+ F
F

]
= 2Ne−jkF

†see also, http://zoneplate.lbl.gov/theory



20.3. Fraunhofer Approximation 943

The half-wavelength choice in (20.3.11) is now evident: it causes the presence of the factor,
e−jπ = −1, which changes the sign of the second term in (20.3.10) from negative to positive.
Had the right-hand side in (20.3.11) been mλ, then, the two terms would have canceled
causing destructive interference. The opaque zones block the contribution of such terms,
thus enhancing the constructive interference. For any F, the summation (20.3.12) can
be expressed in terms of the digamma function ψ(x)= Γ′(x)/Γ(x),† which is a built-in
function in MATLAB. Setting, f = F/λ, we obtain,

E(0, F)= e−jkF f
[
ψ(f +N)−ψ(f)+ψ(f + 1/2+N)−ψ(f + 1/2)

]
(20.3.13)

Fig. 20.3.2 plots the normalized magnitude square,
∣∣E(0, z)/E(0, F)∣∣2

, over the range
0 ≤ z/F ≤ 2. The focal length was chosen to be F = 50λ and two cases, N = 10 and
N = 20, were considered. The following MATLAB code illustrates the computation,

la = 1; k = 2*pi/la; F = 50*la;

z = linspace(0,2,901); % z in units of F

for N = [10,20]
[Z,n] = meshgrid(z*F, 0:N-1);

Ra = sqrt(Z.^2 + 2*n*la.*(F+2*n*la/4));
Rb = sqrt(Z.^2 + (2*n+1)*la.*(F+(2*n+1)*la/4));
E = sum(Z./Ra.*exp(-j*k*Ra) - Z./Rb.*exp(-j*k*Rb));

f = F/la;
Ef = f*(psi(f+N)-psi(f) + psi(f+1/2+N)-psi(f+1/2)) % psi(x)
Dz = 0.886/N; z1 = 1-Dz/2; z2 = 1+Dz/2; % Dz in units of F

figure; plot(z,abs(E/Ef).^2,’b-’, [z1,z2],[1,1]/2,’r-’);
end
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Fig. 20.3.2 Focusing by Fresnel zone plate.

†Eq. (20.3.13) was derived from the relationship, ψ(x+N)−ψ(x)=
N−1∑
n=0

1

x+ n .
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The peak at z = F is the result of the constructive interference, and gets narrower with
the number of zones N. The following approximate expression may be derived [1435] for
its 3-dB width (i.e., full-width-at-half-maximum),

Δz = 0.886
F
N

(20.3.14)

The graphs display Δz as the short (red) horizontal line at the one-half level. To derive
(20.3.14), we may use the Fresnel approximation of Eq. (20.3.10), as in Eq. (20.3.6),

E(0, z)= e−jkz
N−1∑
n=0

[
e−jkr

2
2n/2z − e−jkr2

2n+1/2z
]

(20.3.15)

We may also set approximately, r2
m =mλ(F +mλ/4)≈mλF, to obtain,

E(0, z) = e−jkz
N−1∑
n=0

[
e−2πjnF/z − e−2πjnF/ze−jπF/z

]
= e−jkz (1− e−jπF/z)N−1∑

n=0

e−2πjnF/z

= e−jkz (1− e−jπF/z) 1− e−2πjNF/z

1− e−2πjF/z = e−jkz 1− e−2πjNF/z

1+ e−πjF/z

Since z is centered around F, we may set z = F±δz, for small δz, and write approximately,
F/z ≈ 1∓ δz/F, and use the approximate value, E(0, F)= 2Ne−jkF , for normalization,∣∣∣∣E(0, z)E(0, F)

∣∣∣∣ = 1

2N

∣∣∣∣∣1− e−2πjN(1∓δz/F)

1+ e−πj(1∓δz/F)
∣∣∣∣∣ = 1

2N

∣∣∣∣∣1− e±2πjNδz/F

1− e±πjδz/F)
∣∣∣∣∣ = sin(πNδz/F)

2N sin(πδz/2F)

We anticipate that δz = xF/N with some constant x to be determined from the 3-dB
condition, which reads after replacing δz/F = x/N,∣∣∣∣E(0, z)E(0, F)

∣∣∣∣ = sin(πx)

2N sin
(
πx
2N

) ≈ sin(πx)

2N · πx
2N

= sin(πx)
πx

= 1√
2

where we approximated sin(πx/2N)≈ πx/(2N) for large N. We note now that the solu-
tion of the equation, sin(πx)/(πx)= 1/

√
2, is x = 0.443, so that δz = 0.443F/N, which

leads to (20.3.14) for the full width, Δz = 2δz. ��

20.4 Cascading of Optical Elements

In Fourier optics applications, one considers the passage of light through various optical
elements that perform certain functions, such as Fourier transformation using lenses.
For example, Fig. 20.4.1 shows an input field starting at aperture plane a, then propa-
gating a distance z1 to a thin optical element where it is modified by a transmittance
function, and then propagating another distance z2 to an aperture plane b.

Assuming that the input/output relationship of the optical element is multiplicative,
E+(r⊥)= T(r⊥)E−(r⊥), the relationship between the output field at plane b to the input
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Fig. 20.4.1 Field propagated from plane a to plane b through a thin optical element.

field at plane a is obtained by successively applying the propagation equation (19.5.1),
where in the optics context, the Fresnel form (20.1.4) is used for h(r⊥, z),

Eout(r⊥) =
∫
S
h(r⊥−u⊥, z2)E+(u⊥)d2u⊥ =

∫
S
h(r⊥−u⊥, z2)T(u⊥)E−(u⊥)d2u⊥

=
∫
S
h(r⊥−u⊥, z2)T(u⊥)h(u⊥−r⊥′, z1)Ein(r⊥′)d2u⊥ d2r⊥′

=
∫
S
h(r⊥, r⊥′)Ein(r⊥′)d2r⊥′

where the overall transfer function from plane a to plane b will be:

h(r⊥, r⊥′)=
∫
S
h(r⊥−u⊥, z2)T(u⊥)h(u⊥−r⊥′, z1)d2u⊥ (20.4.1)

and we labeled the spatial x, y coordinates by r⊥′,u⊥, and r⊥ on the planes (a), the
optical element, and plane (b).

In a similar fashion, one can work out the transfer function of more complicated
configurations. For example, passing through two transmittance elements as shown in
Fig. 20.4.2, we will have:

Eout(r⊥)=
∫
S
h(r⊥, r⊥′)Ein(r⊥′)d2r⊥′ (20.4.2)

where

h(r⊥, r⊥′)=
∫
S
h(r⊥−u⊥, z2)T2(u⊥)h(u⊥−v⊥, z0)T1(v⊥)h(v⊥−r⊥′, z1)d2u⊥ d2v⊥

(20.4.3)

20.5 Lenses – Transmittance Properties

Lenses are probably the most important optical elements. Their interesting properties
arise from their transmittance function, which has the quadratic phase:

T(r⊥)= ejk|r⊥|2/2F = ejk(x2+y2)/2F (lens transmittance) (20.5.1)
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Fig. 20.4.2 Field propagated from plane a to plane b through multiple optical elements.

where F > 0 is the focal length. This applies to convex lenses. For concave ones, Fmust
be replaced by −F in (20.5.1).

Because the Fresnel propagation factor e−jk|r⊥|2/2z also has the same type of quadratic
phase, but with the opposite sign, it is possible for lenses to act as spatial “dispersion
compensation” elements, much like the dispersion compensation and pulse compres-
sion filters of Chap. 3. Lenses have many uses, such as compensating propagation effects
and focusing the waves on appropriate planes, or performing spatial Fourier transforms.

The transmittance function (20.5.1) can be derived with the help of Fig. 20.5.1, which
shows a ray entering a (convex) spherical glass surface from the left at a distance x from
the axis.

Fig. 20.5.1 Transmittance of a thin spherical lens.

Let R and d denote the radius of the spherical element, and its maximum width
along its axis to the flat back plane, and let n be its refractive index. The wave travels a
distance a in air and a distance b in the glass. If k is the free-space wavenumber, then
in the glass it changes to kg = kn. Therefore, the wave will accumulate the following
phase as it propagates from the front plane to the back plane:

e−jφ(x) = e−jka e−jkgb
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where we are assuming a thin lens, which allows us to ignore the bending of the ray
arising from refraction. Because, a+ b = d, we have for the net phase:

φ(x)= ka+ kgb = ka+ nk(d− a)= nkd− (n− 1)ka

The distance a is easily seen from the above figure to be:

a = R−
√
R2 − x2

Assuming that x� R, we can expand the square root to get:

a = R−R
√

1− x
2

R2
� R−R

[
1− 1

2

x2

R2

]
= x2

2R

Thus, the phase φ(x) is approximately,

φ(x)= knd− (n− 1)ka = knd− (n− 1)kx2

2R

If we make up a convex lens by putting together two such spherical lenses with radii
R1 and R2, as shown in Fig. 20.5.1, then the net phase change between the front and
back planes will be, ignoring the constant nkd terms:

φ(x)= −(n− 1)
(

1

R1
+ 1

R2

)
kx2

2
≡ −kx

2

2F
(20.5.2)

where we defined the focal length F of the lens through the “lensmaker’s equation,”

1

F
= (n− 1)

(
1

R1
+ 1

R2

)
(20.5.3)

In a two-dimensional description, we replace x2 by |r⊥|2 = x2 + y2. Thus, the phase
change and corresponding transmittance function will be:

φ(r⊥)= −k|r⊥|
2

2F
⇒ T(r⊥)= e−jφ(r⊥) = ejk|r⊥|2/2F

Some examples of the various effects that can be accomplished with lenses can be ob-
tained by applying the configurations of Figs. 20.4.1 and 20.4.2 with appropriate choices
of the aperture planes and focal lengths. We will use the Fresnel approximation (20.1.4)
for h(r⊥, z) in all of the examples and assume that the transmittance (20.5.1) extends
over the entire xy plane—in effect, we are replacing the lens with the ideal case of an
infinitely thin transparency with transmittance (20.5.1).

The main property of a lens is to turn an incident plane wave from the left into
a spherical wave converging on the lens focus on the right, and similarly, if a source
of a spherical wave is placed at the focus on the left, then the diverging wave will be
converted into a plane wave after it passes through the lens. These cases are shown in
Fig. 20.5.2.

The case on the left corresponds to the choices z1 = 0 and z2 = F in Fig. 20.4.1,
that is, the input plane coincides with the left plane of the lens. The incident wave has a
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Fig. 20.5.2 Spherical waves converging to, or diverging from, a lens focal point.

constant amplitude on the plane Ein(r⊥)= E0. Noting that h(r⊥′ −u⊥,0)= δ(r⊥′ −u⊥),†

we obtain from Eq. (20.4.1) with z1 = 0 and z2 = F,

h(r⊥, r⊥′)= T(r⊥′)h(r⊥ − r⊥′, F)= jk
2πF

e−jkF ejk|r⊥
′|2/2F e−jk|r⊥−r⊥′|2/2F

the quadratic phase terms combine as follows:

ejk|r⊥
′|2/2F e−jk|r⊥−r⊥′|2/2F = e−jk|r⊥|2/2F ejkr⊥·r⊥′/F

and result in the following transfer function from the left plane of the lens to its right
focal point,

h(r⊥, r⊥′)= T(r⊥′)h(r⊥ − r⊥′, F)= jk
2πF

e−jkF e−jk|r⊥|
2/2F ejkr⊥·r⊥′/F (20.5.4)

Its integration with the constant input results in:

E(r⊥, F)=
∫
S
h(r⊥, r⊥′)Ein(r⊥′)d2r⊥′ = jk

2πF
e−jkF E0e−jk|r⊥|

2/2F
∫∞
−∞
ejkr⊥·r⊥′/F d2r⊥′

The integral is equal to the Dirac delta, (2π)2δ(kr⊥/F)= (2π)2δ(r⊥)F2/k2.† Thus,

E(r⊥, F)= j2πFk e−jkF E0 δ(r⊥) (20.5.5)

which is sharply focused onto the focal point r⊥ = 0 and z = F. This represents the ideal
case of a lense of infinite extent. The case of a lens with a finite aperture is discussed
later. For the second case depicted on the right in Fig. 20.5.2, we first note that the
paraxial approximation for a spherical wave of a point source placed at the origin is
obtained by setting, E(r⊥′,0)= E0δ(r⊥′), in Eq. (20.1.1) and expanding for large z,

E0
2z
r

(
jk+ 1

r

)
e−jkr

4πr
� E0

jk
2πz

e−jkz e−jk|r⊥|
2/2z , r =

√
z2 + |r⊥|2 � z+ |r⊥|

2

2z

If this source is placed at the left focal point of the lens, then, the diverging paraxial
spherical wave, after traveling distance z = F, will arrive at the left plane of the lens as,

Ein(r⊥′,0)= E0
jk

2πF
e−jkF e−jk|r⊥

′|2/2F ≡ E1 e−jk|r⊥
′|2/2F

†Here, δ(r⊥)= δ(x)δ(y), denotes the two-dimensional delta function.
†where we used the property, δ(ar⊥)= δ(r⊥)/a2, for 2-D delta functions.
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The transmittance of the lens will compensate this propagation phase resulting into
a constant field at the output plane of the lens, which will then propagate to the right
as a plane wave:

E(r⊥′,0)= T(r⊥′)Ein(r⊥′,0)= ejk|r⊥′|2/2F E1 e−jk|r⊥
′|2/2F = E1

The propagated field to distance z is obtained from Eq. (20.1.3):

E(r⊥, z)= e−jkz jk
2πz

∫∞
−∞
E1e−jk|r⊥−r⊥′|2/2z d2r⊥′ = E1 e−jkz

jk
2πz

2πz
jk

= E1e−jkz

where the integral was evaluated using twice the result of Eq. (20.1.14). Thus, the trans-
mitted wave is a uniform plane wave propagating along the z-direction.

20.6 Magnification Properties of Lenses

Next, we look at the magnifying properties of a lens. Fig. 20.6.1 shows an image placed
at distance z1 from the left and its image formed at distance z2 on the right. It is
well-known that the distances z1, z2 must be related by:

1

z1
+ 1

z2
= 1

F
(20.6.1)

The magnification law relates the size of the image to the size of the object:

M = x2

x1
= z2

z1
(magnification ratio) (20.6.2)

These properties can be derived by tracing the rays emanating from the top of the
object. The ray that is parallel to the lens axis will bend to pass through the focal point
on the right. The ray from the top of the object through the left focal point will bend to
become parallel to the axis. The intersection of these two rays defines the top point of
the image. From the geometry of the graph one has:

x1

z1 − F =
x2

F
and

x2

z2 − F =
x1

F

Fig. 20.6.1 Lens law of magnification.
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The consistency of these equations requires the condition, (z1 − F)(z2 − F)= F2,
which is known as Newton’s relationship and is equivalent to (20.6.1). Then, Eq. (20.6.2)
follows by replacing F from (20.6.1) into the ratio, x2/x1 = (z2 − F)/F.†

To understand (20.6.1) and (20.6.2) from the point of view of Fresnel diffraction, we
note that the transfer function (20.4.1) involves the following quadratic phase factors,
with the middle one being the lens transmittance:

e−jk|r⊥−u⊥|2/2z2 ejk|u⊥|
2/2F e−jk|u⊥−r⊥′|2/2z1

= e−jk|r⊥|2/2z2 e−jk|r⊥
′|2/2z1 e−jk(1/z1+1/z2−1/F)|u⊥|2/2 ejku⊥·(r⊥/z2+r⊥′/z1)

Because of Eq. (20.6.1), the term that depends quadratically on u⊥ cancels and one is
left only with a linear dependence on u⊥. This integrates into a delta function in (20.4.1),
resulting in

h(r⊥, r⊥′)= jke
−jkz1

2πz1

jke−jkz2

2πz2
e−jk|r⊥|

2/2z2 e−jk|r⊥
′|2/2z1 (2π)2δ

(
kr⊥
z2

+ kr⊥′

z1

)
(20.6.3)

The delta function forces r⊥ = −(z2/z1)r⊥′, which is the same as (20.6.2). The
negative sign means that the image is upside down. Noting that

δ
(
kr⊥
z2

+ kr⊥′

z1

)
= z

2
1

k2
δ
(

r⊥′ + z1

z2
r⊥
)

we obtain for the field at the output plane:

Eout(r⊥)= −z1

z2
Ein

(
−z1

z2
r⊥
)
e−jk(z1+z2) e−jk|r⊥|

2(z1+z2)/2z2
2 (20.6.4)

which represents a scaled and reversed version of the input. The overall negative sign
comes from the two j factors in (20.6.3), which are usually ignored in the literature. The
geometrical image, i.e., the image according to geometrical optics, will be denoted by,

Eg(r⊥)= −z1

z2
Ein

(
−z1

z2
r⊥
)

(20.6.5)

therefore, ignoring the phase factors, e−jk(z1+z2) e−jk|r⊥|2(z1+z2)/2z2
2 ,

Eout(r⊥)= −z1

z2
Ein

(
−z1

z2
r⊥
)

� −z2

z1
Eout

(
−z2

z1
r⊥
)
= Ein(r⊥) (20.6.6)

20.7 Point-Spread Function of a Lens

In the previous section, we considered a lens with infinite extent, which led to the delta-
function transfer function (20.6.3) and the geometric-optics result (20.6.4).

A thin lens with a finite aperture is characterized by its so called exit pupil function
P(u⊥) of the transverse coordinates u⊥ on the lens plane, which vanishes outside the
extent of the lens. In its simplest form, P(u⊥) is the characteristic or indicator function

†here, x1, x2 are positive, representing the geometrical lengths shown in Fig. 20.6.1.
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of the aperture, which is equal to unity for u⊥ in the aperture, and zero outside it. For
example, an ordinary circular lens of radius a, will have a pupil function defined in terms
of the unit-step function u(x) as follows,

P(u⊥)= u
(
a− |u⊥|

) =
⎧⎨⎩1 , |u⊥| < a

0 , |u⊥| > a

The overall transfer function of the lens, from its entry plane to its exit plane, will
be P(u⊥)ejk|u⊥|

2/2F. More generally, as shown in Fig. 20.7.1, an appropriate filter may
be placed at the exit pupil, which may be designed to achieve certain properties, such as
improving resolution or reducing the sidelobes. In such case, the effective pupil function
will be the product of the filter and the aperture’s indicator function.

Fig. 20.7.1 Lens imaging system and its point-spread function.

The transfer relationship between the fields at the input and output planes will have
the usual linear form,

Eout(r⊥)=
∫
h(r⊥, r⊥′)Ein(r⊥′)d2r⊥′ (20.7.1)

but with the transfer function integral being restricted over the lens aperture S only,

h(r⊥, r⊥′) =
∫
S
h(r⊥ − u⊥, z2)P(u⊥)ejk|u⊥|

2/2Fh(u⊥ − r⊥′, z1)d2u⊥

= jke
−jkz1

2πz1

jke−jkz2

2πz2

∫
S
e−jk|r⊥−u⊥|2/2z2 P(u⊥)ejk|u⊥|

2/2F e−jk|u⊥−r⊥′|2/2z1 d2u⊥

Assuming that z1, z2 satisfy the lens law (20.6.1), the phase factors that are quadratic
in u⊥ would still cancel as before, resulting in,

h(r⊥, r⊥′)= jke
−jkz1

2πz1

jke−jkz2

2πz2
e−jk|r⊥|

2/2z2e−jk|r⊥
′|2/2z1

∫
S
P(u⊥)ejku⊥·(r⊥/z2+r⊥′/z1) d2u⊥

(20.7.2)
The last integral is recognized as the 2-D spatial Fourier transform of the pupil

function P(u⊥), that is,

P̂(k⊥)=
∫
S
P(u⊥) ejk⊥·u⊥ d2u⊥ (pupil’s 2-D Fourier transform) (20.7.3)
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where the finite support of P(u⊥) restricts the integration to be over the aperture only.
Thus, (20.7.2) becomes,

h(r⊥, r⊥′) = jke
−jkz1

2πz1

jke−jkz2

2πz2
e−jk|r⊥|

2/2z2e−jk|r⊥
′|2/2z1

[
P̂(k⊥)

]
k⊥=k

(
r⊥
z2
+ r⊥′
z1

)

= jke
−jkz1

2πz1

jke−jkz2

2πz2
e−jk|r⊥|

2/2z2e−jk|r⊥
′|2/2z1 P̂

(
kr⊥
z2

+ kr⊥′

z1

) (20.7.4)

This is the point-spread function (PSF) also known as the impulse response of the lens
system. The name is justified by considering a delta-function point source at the origin,
Ein(r⊥′)= δ(r⊥′), then, Eq. (20.7.1) gives,

Eout(r⊥)=
∫
h(r⊥, r⊥′)δ(r⊥′)d2r⊥′ = h(r⊥,0)

Similarly, if the point source is centered at r0⊥, that is, Ein(r⊥′)= δ(r⊥′ − r0⊥), then,
Eout(r⊥)= h(r⊥, r0⊥).

Example 20.7.1: For a circular uncoated lens aperture of radius a, the 2-D transform of the
pupil reduces to the usual Airy pattern, 2J1(x)/x,

P̂(k⊥)=
∫
S
ejk⊥·u⊥ d2u⊥ =

∫ a
0
J0(k⊥ρ)2πρdρ = πa2 2J1(k⊥a)

k⊥a
(20.7.5)

where k⊥ = |k⊥|. The PSF is then, with r⊥ = |r⊥|,

h(r⊥,0)= jke
−jkz1

2πz1

jke−jkz2

2πz2
e−jkr

2⊥/2z2 πa2
2J1

(
kr⊥a
z2

)
kr⊥a
z2

(20.7.6)

This is depicted in Fig. 20.7.1. As seen in that figure, the geometrical optics cone from
the lens to the origin on the image plane is defined by the numerical aperture ratio, NA =
a/z2 = tanα, which for small angles α can be written approximately as NA = a/z2 =
tanα ≈ sinα ≈ α. Thus, the PSF reads,

h(r⊥,0)= jke
−jkz1

2πz1

jke−jkz2

2πz2
e−jkr

2⊥/2z2 πa2 2J1(kr⊥NA)
kr⊥NA

A related point of view is to introduce the angle θ defined by, tanθ = r⊥/z2, subtended
from the origin of the lens to the point r⊥ on the image plane. For small such angles, we
can approximate again, sinθ ≈ tanθ = r⊥/z2, and

h(r⊥,0)= jke
−jkz1

2πz1

jke−jkz2

2πz2
e−jkr

2⊥/2z2 πa2 2J1(ka sinθ)
ka sinθ

This is essentially the same as the result of Eq. (18.9.3), the only difference being that here
we are using the paraxial Fresnel approximation to describe the propagation through the
lens system, whereas in Sec. 18.9 we worked with the radiation-field approximation. ��
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20.8 Cylindrically-Symmetric and One-Dimensional Lenses

More generally, for a circularly-symmetric pupil function, Eq. (20.7.3) reduces to the
pupil’s Hankel transform, that is, with k⊥ = |k⊥,

P̂(k⊥)=
∫ a

0
P(ρ)J0(k⊥ρ)2πρdρ (20.8.1)

and the PSF becomes,

h(r⊥,0)= jke
−jkz1

2πz1

jke−jkz2

2πz2
e−jkr

2⊥/2z2 P̂
(
kr⊥
z2

)
(20.8.2)

For the case of a 1-D cylindrical lens, we will have the input/output relationship,

Eout(x)=
∫
h(x, x′)Ein(x′)dx′ (20.8.3)

The 1-D spatial Fourier transform of the pupil,

P̂(kx)=
∫
S
P(u)ejkxu du (pupil’s 1-D Fourier transform) (20.8.4)

And, the transfer function between input and output planes,

h(x, x′) =
√

jk
2πz1

√
jk

2πz2
e−jk(z1+z2)e−jkx

2/2z2e−jkx
′2/2z1

[
P̂(kx)

]
kx=k

(
x
z2
+ x′z1

)

=
√

jk
2πz1

√
jk

2πz2
e−jk(z1+z2)e−jkx

2/2z2e−jkx
′2/2z1 P̂

(
kx
z2
+ kx

′

z1

)
(20.8.5)

Example 20.8.1: As an example of an uncoated lens of extent, −a ≤ u ≤ a, we have,

P̂(kx)=
∫ a
−a
ejkxu du = 2a

sin(kxa)
kxa

(20.8.6)

This is the 1-D version of (20.7.5). The 1-D PSF is then,

h(x,0)=
√

jk
2πz1

√
jk

2πz2
e−jk(z1+z2)e−jkx

2/2z2 2a
sin(kxa/z2)
kxa/z2

20.9 Shift-Invariance and Coherent Transfer Function

As it stands, the transfer functionh(r⊥, r⊥′) of Eq. (20.7.4) does not depend on the differ-
ence, r⊥−r⊥′, and therefore, the input/output transfer relationship (20.7.1) is linear but
not shift-invariant. However, under certain conditions, shift-invariance can be argued.
First, let us define the geometrical-optics images of the PSF and the input projected onto
the image plane, as in (20.6.5),

hg(r⊥, r⊥′) = −z1

z2
h
(

r⊥, −z1

z2
r⊥′
)

Eg(r⊥) = −z1

z2
Ein

(
−z1

z2
r⊥
) (20.9.1)
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Changing integration variables, the input/output equation (20.7.1) can be rewritten as,

Eout(r⊥)=
∫
h(r⊥, r⊥′′)Ein(r⊥′′)d2r⊥′′ =

∫
hg(r⊥, r⊥′)Eg(r⊥′)d2r⊥′ (20.9.2)

The scaled PSF, hg(r⊥, r⊥′), comes close to being shift-invariant,

h(r⊥, r⊥′′) = jke
−jkz1

2πz1

jke−jkz2

2πz2
e−jk|r⊥|

2/2z2e−jk|r⊥
′′|2/2z1 P̂

(
kr⊥
z2

+ kr⊥′′

z1

)

hg(r⊥, r⊥′) = −z1

z2

jke−jkz1

2πz1

jke−jkz2

2πz2
e−jk|r⊥|

2/2z2e−jk|r⊥
′|2z1/2z2

2 P̂
(
k
z2
(r⊥ − r⊥′)

)
where we replaced r⊥′′ = −z1r⊥′/z2. The phase factor, e−jk|r⊥|2/2z2 can be ignored since
it only affects the phase of the output, not its magnitude. The other phase factor
e−jk|r⊥′′|2/2z1 = e−jk|r⊥′|2z1/2z2

2 could be ignored [1422,1446] if the size of the input is
small enough such that k|r⊥′′|2 � z1. Under these circumstances, the effective PSF
becomes shift-invariant,

hg(r⊥, r⊥′)= hg(r⊥ − r⊥′)= e−jk(z1+z2) k2

(2π)2z2
2
P̂
(
k
z2
(r⊥ − r⊥′)

)
(20.9.3)

The linearity and shift-invariance of the input/output relationship allows one to
define the spatial frequency response of the lens system, also called the coherent transfer
function (CTF) or the amplitude transfer function, defined as the 2-D spatial Fourier
transform of the PSF, that is,

ĥg(k⊥)=
∫∞
−∞
hg(r⊥) ejk⊥·r⊥ d2r⊥ (20.9.4)

The transfer relationship (20.9.2) can now be expressed either convolutionally in the
space domain or multiplicatively in the wavenumber domain in terms of the correspond-
ing 2-D Fourier transforms,

Eout(r⊥)=
∫
hg(r⊥ − r⊥′)Eg(r⊥′)d2r⊥′ � Êout(k⊥)= ĥg(k⊥)Êg(k⊥) (20.9.5)

Inserting (20.9.3) into (20.9.4) we obtain,

ĥg(k⊥)= e−jk(z1+z2)
∫∞
−∞
P̂
(
kr⊥
z2

)
ejk⊥·r⊥

k2

z2
2

d2r⊥
(2π)2

(20.9.6)

But the pupil P(u⊥) is related to P̂(k⊥) by the inverse Fourier transform,

P(u⊥)=
∫∞
−∞
P̂(k⊥)e−jk⊥·u⊥

d2k⊥
(2π)2

If in (20.9.6) we make the replacements, u⊥ = −k⊥z2/k, and k⊥ = r⊥k/z2 and change
variables of integration, we recognize that ĥg(k⊥) is essentially the pupil function itself,

ĥg(k⊥)= e−jk(z1+z2)
[
P(u⊥)

]
u⊥=− k⊥z2

k
= e−jk(z1+z2) P

(
−k⊥z2

k

)
(20.9.7)
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Because P(u⊥) is space-limited, Eq. (20.9.7) implies that the frequency response will
be bandlimited. For example, for a pupil of radius a, bandlimiting restricts the range of
wavenumbers to be less than a maximum value,

|u⊥| < a ⇒
∣∣∣∣k⊥z2

k

∣∣∣∣ < a ⇒ |k⊥| < kmax = kaz2
= kNA (20.9.8)

Thus, the lens system acts as a spatial low-pass filter that reduces the resolution of
the image. The smallest transverse distance that can be resolved is roughly of the order
of 1/kmax or of the order of λ/NA. This is effectively the so-called Abbe diffraction limit
of the resolving power of optical systems, such as a microscope.

We mention also that similar results hold in the 1-D case, where now one must define
the scaled geometric-image quantities by,

Eg(x)= ejπ/2
√
z1

z2
Ein

(
−z1

z2
x
)
, hg(x, x′)= e−jπ/2

√
z1

z2
h
(
x, −z1

z2
x′
)

(20.9.9)

with input/output relationship,

Eout(x)=
∫∞
−∞
h(x, x′)Ein(x′)dx′ =

∫∞
−∞
hg(x, x′)Eg(x′)dx′ (20.9.10)

Under the same type of approximations, we have the shift-invariant versions,

h(x, x′′) =
√

jk
2πz1

jk
2πz2

e−jk(z1+z2) e−jkx
2/2z2e−jkx

′′2/2z1 P̂
(
kx
z2
+ kx

′′

z1

)

hg(x, x′) = −j
√
z1

z2

jk
2πz1

jk
2πz2

e−jk(z1+z2) e−jkx
2/2z2e−jkx

′2z1/2z2
2 P̂
(
k
z2
(x− x′)

)

hg(x, x′) ≈ hg(x− x′)= k
2πz2

e−jk(z1+z2) P̂
(
k
z2
(x− x′)

)
with coherent transfer function,

ĥg(kx)= e−jk(z1+z2)
∫∞
−∞
P̂
(
kx
z2

)
ejkxx

k
z2

dx
2π

= e−jk(z1+z2) P
(
−kxz2

k

)
(20.9.11)

20.10 Fourier Transformation Properties of Lenses

To see the Fourier transformation property of lenses, consider the left picture in Fig. 20.5.2
with the output plane placed at the right focal point z2 = F, but take an arbitrary field
Ein(r⊥′) incident at the left plane of the lens, as shown in Fig. 20.10.1.
Assuming initially an infinite lens, the overall transfer function is still the same as in
Eq. (20.5.4), thus, giving:

E(r⊥, F) =
∫∞
−∞
h(r⊥, r⊥′)Ein(r⊥′)d2r⊥′

= jk
2πF

e−jkF e−jk|r⊥|
2/2F

∫∞
−∞
Ein(r⊥′) ejkr⊥·r⊥′/F d2r⊥′

(20.10.1)
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Fig. 20.10.1 Fourier transformation at focal plane of a lens.

The last integral factor is recognized as the Fourier transform of the input, Êin(k⊥),
evaluated at wavenumber, k⊥ = kr⊥/F. Thus, we obtain:

E(r⊥, F)= jk
2πF

e−jkF e−jk|r⊥|
2/2F

[
Êin(k⊥)

]
k⊥= kr⊥

F
(20.10.2)

This result is similar to the Fraunhofer case of Eq. (20.3.1), but it is valid at the
much shorter Fresnel distance z = F, instead of the far-field distances. It is analogous
to the output of the pulse compression filter in chirp radar discussed in Chap. 3, see
for example Eq. (3.10.14). Another difference is that (20.10.2) is valid only at the focal
distance z = F, whereas the Fraunhofer equation (20.3.1) is valid at any (large) z. In the
1-D case, Eq. (20.10.2) reads,

E(x, F) =
√
jk

2πF
e−jkF e−jkx

2/2F
∫∞
−∞
Ein(x′) ejkxx

′/F dx′

=
√
jk

2πF
e−jkF e−jkx

2/2F
[
Êin(kx)

]
kx= kxF

(20.10.3)

The focusing result of Eq. (20.5.5) is a special case of (20.10.2); indeed, a constant
input, Ein(r⊥)= E0, has the 2-D Fourier transform Êin(k⊥)= δ(k⊥), which leads to
(20.5.5) when evaluated at k⊥ = kr⊥/F.

When the finite extent of the lens is taken into account with a pupil function P(r⊥′),
then, the output E(r⊥, F) will be proportional to the 2-D Fourier transform of the prod-
uct Ein(r⊥′)P(r⊥′), with the integration restricted over the lens aperture, that is,

E(r⊥, F)= jk
2πF

e−jkF e−jk|r⊥|
2/2F

∫
S
Ein(r⊥′)P(r⊥′) ejkr⊥·r⊥′/F d2r⊥′ (20.10.4)

Fig. 20.10.2 shows two additional configurations of interest. One is when the input
plane lies at some distance d to the left of the lens but the output plane is still the focal
plane on the right at z = F. The other is when the input plane coincides with the left
plane of the lens at z = 0, but the output plane is slightly axially shifted to z �= F,
referred to as axial defocusing.

In the first case, we may apply the result of Eq. (20.10.2) to the field Ea(r⊥) at the left
plane of the lens. Its Fourier transform is obtained by propagating the input’s Fourier
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Fig. 20.10.2 Fourier transformation and axial defocusing.

transform by a distance d, using the Fresnel propagation filter (20.1.4), that is,

Êa(k⊥)= ĥ(k⊥, d)Êin(k⊥)= e−jkd ej|k⊥|2d/2k Êin(k⊥)

thus we find at the output plane z = F,

E(r⊥, F) = jk
2πF

e−jkF e−jk|r⊥|
2/2F

[
Êa(k⊥)

]
k⊥= kr⊥

F

= jk
2πF

e−jkF e−jk|r⊥|
2/2F

[
e−jkd ej|k⊥|

2d/2k Êin(k⊥)
]

k⊥= kr⊥
F
, or,

E(r⊥, F) = jk
2πF

e−jk(d+F) e−jk|r⊥|
2(F−d)/2F2

[
Êin(k⊥)

]
k⊥= kr⊥

F

= jk
2πF

e−jk(d+F) e−jk|r⊥|
2(F−d)/2F2

∫∞
−∞
Ein(r⊥′) ejkr⊥·r⊥′/F d2r⊥′

(20.10.5)

The result is still proportional to the Fourier transform of the input. In the special
case when d = F, known as a 2F-system, the quadratic phase factor is eliminated,

E(r⊥, F) = jk
2πF

e−2jkF
∫∞
−∞
Ein(r⊥′) ejkr⊥·r⊥′/F d2r⊥′

= jk
2πF

e−2jkF
[
Êin(k⊥)

]
k⊥= kr⊥

F

(2F system) (20.10.6)
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The 1-D version of (20.10.5) reads,

E(x, F) =
√
jk

2πF
e−jk(d+F) e−jkx

2(F−d)/2F2
[
Êin(kx)

]
kx= kxF

=
√
jk

2πF
e−jk(d+F) e−jkx

2(F−d)/2F2
∫∞
−∞
Ein(x′) ejkxx

′/F dx′
(20.10.7)

For a lens with finite pupil P(r⊥), we may apply the result (20.10.4) to the field
Ea(r⊥) at the left plane of the lens, and then back-propagate Ea(r⊥) to the input plane
at distance d, that is, we have the two-step process,

Ea(u⊥) = jke
−jkd

2πd

∫∞
−∞
e−jk|u⊥−r⊥′|2/2d Ein(r⊥′)d2r⊥′

E(r⊥, F) = jke
−jkF

2πF
e−jk|r⊥|

2/2F
∫
S
Ea(u⊥)P(u⊥) ejku⊥·r⊥/F d2u⊥

Combining the two and changing variables from u⊥ to v⊥ = u⊥ − r⊥′ − dF r⊥, we

obtain after some algebra,

E(r⊥, F)= jke
−jk(d+F)

2πF
e−jk|r⊥|

2(F−d)/2F2
∫∞
−∞
Ein(r⊥′)Pd

(
r⊥′ + dF r⊥

)
ejkr⊥·r⊥′/F d2r⊥′

(20.10.8)
where Pd is a weighted version of P defined as,

Pd(r⊥)= jk
2πd

∫∞
−∞
e−jk|v⊥|

2/2d P(v⊥ + r⊥)d2v⊥ (20.10.9)

where P(v⊥ + r⊥) restricts the integration range over v⊥ such that v⊥ + r⊥ lies in the
lens aperture. For an infinite lens that has P(r⊥)= 1 for all r⊥, we find, Pd(r⊥)= 1,
and we recover (20.10.5). For a finite lens, the following approximation has been used
[1422],

Pd(r⊥)= jk
2πd

∫∞
−∞
e−jk|v⊥|

2/2d P(v⊥ + r⊥)d2v⊥ ≈ P(r⊥) (20.10.10)

which is justified for small d relative to the lens size. In this approximation, referred to
as vignetting, we have,

E(r⊥, F)= jke
−jk(d+F)

2πF
e−jk|r⊥|

2(F−d)/2F2
∫∞
−∞
Ein(r⊥′)P

(
r⊥′ + dF r⊥

)
ejkr⊥·r⊥′/F d2r⊥′

(20.10.11)
In the 1-D case, we have,

E(x, F)=
√
jk

2πF
e−jk(d+F) e−jkx

2(F−d)/2F2
∫∞
−∞
Ein(x′)Pd

(
x′ + d

F
x
)
ejkxx

′/F dx′

(20.10.12)

Pd(x)=
√
jk

2πd

∫∞
−∞
e−jkv

2/2d P(v+ x)dv (20.10.13)
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One explanation of the approximation (20.10.10) is that for small d, the phase factor
e−jkv2⊥/2d oscillates rapidly, except in the vicinity of v⊥ = 0, and effectively only the
v⊥ = 0 value of the integrand contributes to the integral (20.10.9). In fact, Eq. (20.10.10)
follows from the stationary-phase approximation to this integral. If we apply Eq. (H.6)
of Appendix H to the phase function φ(vx, vy)= −k(v2

x + v2
y)/2d = −k|v⊥|2/2d,

which has a stationary point at v⊥ = 0, and a diagonal second-derivative matrix, Φ =
diag(−k/d,−k/d), then the stationary-phase approximation to the integral is,

jk
2πd

∫∞
−∞
e−jk|v⊥|

2/2d P(v⊥ + r⊥)d2v⊥ ≈ jk
2πd

· e−jπ/2 2π√
k2/d2

P(r⊥)= P(r⊥)

Example 20.10.1: To check the approximation (20.10.10) numerically, consider the 1-D version
of the above, for a uniform pupil P(x)= u(a− |x|),
Pd(x)=

√
jk

2πd

∫ ∞
−∞
e−jkv

2/2d u
(
a− |v+ x|)dv =

√
jk

2πd

∫ a−x
−a−x

e−jkv
2/2d dv (20.10.14)

This integral can be expressed in terms of the Fresnel integral F(x) defined in Eq. (F.2) of
Appendix F, and evaluated by the MATLAB function fcs, that is, after changing integration
variables, we have,

Pd(x)=
√
j
2

⎡⎣F
⎛⎝√ k

πd
(a− x)

⎞⎠−F
⎛⎝√ k

πd
(−a− x)

⎞⎠⎤⎦ (20.10.15)

For the values, k = 1, a = 10, Fig. 20.10.3 plots Pd(x) for the following values, d = a/5,
d = a/10, d = a/100, and d = a/1000, over the range −2a ≤ x ≤ 2x. As d gets smaller,
Pd(x) tends to the unit-step pupil P(x). The MATLAB code used to generate these graphs
was as follows,

k=1; a=10;
x = linspace(-2,2,401); % x in units of a

for M = [5, 10, 100, 1000]
d = a/M;

t1 = sqrt(k/pi/d) * (-x-1) * a; % limits of Fresnel function
t2 = sqrt(k/pi/d) * (-x+1) * a;

Pd = sqrt(j/2) * (fcs(t2) - fcs(t1));

figure; plot(x,real(Pd),’b-’, x,imag(Pd),’r--’)
end

In the second configuration depicted in Fig. 20.10.2, the propagation response from
the left plane of the lens to distance z on the right is as follows, where we also allow for
a pupil function for the lens,

h(r⊥, r⊥′) = h(r⊥−r⊥′, z)ejk|r⊥
′|2/2FP(r⊥′)= jk

2πz
e−jkz e−jk|r⊥−r⊥′|2/2z ejk|r⊥

′|2/2FP(r⊥′)

= jk
2πz

e−jkz e−jk|r⊥|
2/2z ejk|r⊥

′|2(z−F)/2Fz ejkr⊥·r⊥′/zP(r⊥′)
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Fig. 20.10.3 Pupil stationary-phase approximation.

so that the output field at distance z is,

E(r⊥, z)= jk
2πz

e−jkz e−jk|r⊥|
2/2z

∫
S
ejk|r⊥

′|2(z−F)/2Fz ejkr⊥·r⊥′/z Ein(r⊥′)P(r⊥′)d2r⊥′

(20.10.16)
and is proportional to the Fourier transform of, ejk|r⊥′|2(z−F)/2Fz Ein(r⊥′)P(r⊥′). In the
circularly symmetric and 1-D cases, (20.10.16) reduces to,

E(r⊥, z)= jk
2πz

e−jkz e−jkr
2⊥/2z

∫∞
0
ejkr

′2⊥ (z−F)/2FzJ0

(kr⊥r′⊥
z

)
Ein(r′⊥)P(r′⊥)2πr′⊥dr′⊥

E(x, z)=
√
jk

2πz
e−jkz e−jkx

2/2z
∫∞
−∞
ejkx

′2(z−F)/2Fz ejkxx
′/z Ein(x′)P(x′)dx′

(20.10.17)
For distances near the focus, we may set, z = F + δz, and retain δz only in the

quadratic exponent, resulting in the following approximation that is used to quantify
axial defocusing [638],

E(r⊥, F + δz)= jk
2πF

e−jkFe−jk|r⊥|
2/2F

∫∞
−∞
ejk|r⊥

′|2δz/2F2
ejkr⊥·r⊥′/F Ein(r⊥′)P(r⊥′)d2r⊥′

(20.10.18)
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Summary

The two-dimensional Fourier transform of the input field appears in the output field
in several optical contexts (in some cases, the input may be modulated by a quadratic
phase factor, such as e−jk|r⊥|2/2z ).

a. at the focal plane of a lens under the Fresnel approximation, Eqs. (20.10.2)

b. at the focal plane in a 2F-system, Eqs. (20.10.5) and (20.10.6)

c. at a large distance z under the Fraunhofer approximation, Eq. (20.3.1)

d. at large radial distance r under the far-field approximation, Eq. (19.3.3)

e. at a large distance z under the Fresnel approximation, Eq. (20.1.9)

f. near the focal point of a lens in an axially defocused system, Eq. (20.10.18)

g. the PSF of a lens system is the 2-D Fourier transform of the exit pupil, Eq. (20.7.4)

Moreover as we see below, the 2-D Fourier transform of the input becomes an es-
sential part of the so-called 4F imaging system in which a finite aperture at the Fourier
plane causes the spatial filtering of the input, thus decreasing the resolution, but also
allowing more specialized filtering, such as deblurring.

20.11 4F Optical Processor

A 4F imaging system consists of two 2F systems in cascade as shown in Fig. 20.11.1.
Assuming large lens pupils and ignoring vignetting effects, the first 2F system will pro-
duce the 2-D Fourier transform of the input at the middle focal plane (the Fourier plane).
After multiplication by an appropriate spatial filter with transfer function, say, H(k⊥),
the second 2F system produces the Fourier transform of the product at the output plane.

Fig. 20.11.1 4F optical processor.

But the Fourier transform of a product of Fourier transforms becomes a convolution
in the space domain, thus, the operation of the 4F system can be described symbolically
as follows, where the hat denotes Fourier transformation and the dot and asterisk denote
ordinary multiplication and convolution, respectively.

Ein ⇒ H · Êin ⇒ Eout = %H · Êin = Ĥ ∗ Ein (20.11.1)
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In absence of any processing at the Fourier plane (that is, H ≡ 1), the second 2F
system will produce the original input up to a reversal and magnification. This is the
expected result on the basis of geometrical optics, as shown in Fig. 20.11.2. This follows
essentially from the property that the Fourier transform of a Fourier transform is the
original field reversed. Thus, we expect in this case the same geometrical-optics result
as in Eq. (20.6.6), up to a 4F propagation delay,

Eout(r⊥)= −F1

F2
Ein

(
−F1

F2
r⊥
)

� −F2

F1
Eout

(
−F2

F1
r⊥
)
= Ein(r⊥) (20.11.2)

where the first represents the geometric-optics projection of the object onto the image
plane, and the second, the projection of the image back onto the object plane.

Fig. 20.11.2 Geometric image in 4F optical processor.

To derive the operations of Eq. (20.11.1) in some detail, let us denote the transverse
coordinates on the Fourier plane by v⊥ and assume that the filter shown in Fig. 20.11.1
has a given transmittance function, say, F(v⊥), so that the fields across the plane will
be related by, Eb(v⊥)= F(v⊥)Ea(v⊥). Applying Eq. (20.10.6) in succession then gives,

Ea(v⊥) = G1 e−2jkF1

∫∞
−∞
Ein(r⊥′) ejkv⊥·r⊥′/F1 d2r⊥′

Eb(v⊥) = F(v⊥)Ea(v⊥)

Eout(r⊥) = G2 e−2jkF2

∫∞
−∞
Eb(v⊥) ejkr⊥·v⊥/F2 d2v⊥

(20.11.3)

where, for convenience, we defined,

G1 = jk
2πF1

, G2 = jk
2πF2

(20.11.4)

Remapping the output to the object plane by the geometric-optics projection of
Eq. (20.11.2), we have,

Ea(v⊥) = G1 e−2jkF1

∫∞
−∞
Ein(r⊥′) ejkv⊥·r⊥′/F1 d2r⊥′

Eg,out(r⊥) ≡ −F2

F1
Eout

(
−F2

F1
r⊥
)
= −G1 e−2jkF2

∫∞
−∞
F(v⊥)Ea(v⊥) e−jkr⊥·v⊥/F1 d2v⊥

(20.11.5)
In order to write the first equation as a Fourier transform and the second as an

inverse Fourier transform, let us redefine the functions F(v⊥) and Ea(v⊥) as functions
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of the wavenumber, k⊥ = kv⊥/F1, or, v⊥ = F1k⊥/k,

H(k⊥)= F(v⊥)
∣∣∣∣

v⊥= k⊥F1
k

, E(k⊥)= 1

G1
Ea(v⊥)

∣∣∣∣
v⊥= k⊥F1

k

(20.11.6)

where we also rescaled Ea by the gain factor G1. Then, after changing integration vari-
ables from v⊥ to k⊥, we obtain,

E(k⊥) = e−2jkF1

∫∞
−∞
Ein(r⊥′) ejk⊥·r⊥

′
d2r⊥′ = e−2jkF1 Êin(k⊥)

Eg,out(r⊥) = e−2jkF2

∫∞
−∞
H(k⊥)E(k⊥) e−jk⊥·r⊥

d2k⊥
(2π)2

(20.11.7)

These represent the actions of the two 2F stages of the 4F system. Inserting the first
equation into the second, the result may be written as a space-domain convolution that
represents the overall input/output relationship,

Eg,out(r⊥) = e−2jk(F1+F2)
∫∞
−∞
H(k⊥)Êin(k⊥) e−jk⊥·r⊥

d2k⊥
(2π)2

= e−2jk(F1+F2)
∫∞
−∞
h(r⊥− r⊥′)Ein(r⊥′)d2r⊥′

(20.11.8)

where h(r⊥) is the impulse response of the filter, i.e., the inverse Fourier transform,

h(r⊥)=
∫∞
−∞
H(k⊥) e−jk⊥·r⊥

d2k⊥
(2π)2

(20.11.9)

Thus, the 4F system acts as a linear shift-invariant spatial filter with a prescribed
transfer functionH(k⊥) or impulse response h(r⊥). We note thatH(k⊥) of Eq. (20.11.6)
is essentially the same as that of Eq. (20.9.7) if we think of F(v⊥) as a pupil function.

In the one-dimensional case, the analogous relationship to the geometrical optics
result (20.11.2) is according to Eq. (20.9.9),

Eout(x)= ejπ/2
√
F1

F2
Ein

(
−F1

F2
x
)

� e−jπ/2
√
F2

F1
Eout

(
−F2

F1
x
)
= Ein(x)

(20.11.10)
Using Eq. (20.10.7) with d = F, the 1-D versions of Eqs. (20.11.5) will be then,

Ea(v) = G1 e−2jkF1

∫∞
−∞
Ein(x′) ejkvx

′/F1 dx′

Eout(x) = G2 e−2jkF2

∫∞
−∞
F(v)Ea(v) ejkxv/F2 dv

Eg,out(x) ≡ e−jπ/2
√
F2

F1
Eout

(
−F2

F1
x
)

= e−jπ/2G1 e−2jkF2

∫∞
−∞
F(v)Ea(v) e−jkxv/F1 dv

(20.11.11)
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where now we have the definitions,

G1 = ejπ/4
√

k
2πF1

, G2 = ejπ/4
√

k
2πF2

(20.11.12)

We may redefine again F(v) and Ea(v) as functions of the wavenumber, kx = kv/F1,

H(kx)= F(v)
∣∣∣∣
v= kxF1

k

, E(kx)= 1

G1
Ea(v)

∣∣∣∣
v= kxF1

k

(20.11.13)

Then, after changing integration variables from v to kx, the two-stage operations of
the 4F system will read,

E(kx) = e−2jkF1

∫∞
−∞
Ein(x′) ejkxx

′
dx′ = e−2jkF1 Êin(kx)

Eg,out(x) = e−2jkF2

∫∞
−∞
H(kx)E(kx) e−jkxx

dkx
2π

(20.11.14)

which combine into the single filtering operation,

Eg,out(x) = e−2jk(F1+F2)
∫∞
−∞
H(kx)Êin(kx) e−jkxx

dkx
2π

= e−2jk(F1+F2)
∫∞
−∞
h(x− x′)Ein(x′)dx′

(20.11.15)

where h(x) is the 1-D impulse response of the filter H(kx)= F(v),

h(x)=
∫∞
−∞
H(kx) e−jkxx

dkx
2π

(20.11.16)

Fig. 20.11.3 depicts three examples: (a) a lowpass spatial filter consisting simply of a
finite aperture that lets through only low frequencies, (b) a highpass filter consisting of
an aperture stop that blocks low frequencies, and (c) a cascaded example of two 4F sys-
tems of transfer functions H1,H2, which acts as the equivalent filter, H1(k⊥)·H2(k⊥),
indeed, the essential operations at each of the outputs of the five image planes are as
follows, denoting the inverse Fourier transforms by, h1 = Ĥ1 and h2 = Ĥ2,

Ein ⇒ H1 · Êin ⇒ h1 ∗ Ein ⇒ H2 ·H1 · Êin ⇒ (h2 ∗ h1)∗Ein

Example 20.11.1: For the lowpass filter shown in Fig. 20.11.3, we assume a circular aperture of
radius b. Then, the filter’s transmittance function will be defined in terms of the unit-step
function, F(v⊥)= u

(
b− |v⊥|

)
. The filter’s transfer function will be,

H(k⊥)= F(v⊥)
∣∣∣∣

v⊥= k⊥F1
k

= u
(
b− |k⊥|F1

k

)
= u(kmax − |k⊥|

)
, kmax = k bF1
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Fig. 20.11.3 Lowpass, highpass, and cascaded filter examples.

Thus the filter acts as a bandlimiting filter, cutting off all higher spatial frequencies that
are above kmax and letting through only those for which, |k⊥| ≤ kmax. The corresponding
impulse response has the usual 2J1(x)/x form,

h(r⊥) =
∫ ∞
−∞
H(k⊥) e−jk⊥·r⊥

d2k⊥
(2π)2

=
∫
|k⊥|≤kmax

e−jk⊥·r⊥
d2k⊥
(2π)2

=
∫ kmax

0
J0(k⊥r⊥)

2πk⊥dk⊥
(2π)2

= kmax
J1(kmaxr⊥)

2πr⊥

= |G1|2 ·πb2 · 2J1(kmaxr⊥)
kmaxr⊥

(20.11.17)

where we set, k⊥ = |k⊥| and r⊥ = |r⊥|, and G1 was defined in (20.11.4).

For the one-dimensional case, we assume a slit opening with support −b ≤ v ≤ b, defined
in terms of the unit-step, F(v)= u(b− |v|). Then, the filter’s transfer function will be,

H(kx)= u
(
b− |kx|F1

k

)
= u(kmax − |kx|

)
, kmax = k bF1

Its impulse response has the usual sinx/x form,

h(x) =
∫∞
−∞
H(kx) e−jkxx

dkx
2π

=
∫ kmax

−kmax

e−jkxx
dkx
2π

= sin(kmaxx)
πx

= |G1|2 · 2b · sin(kmaxx)
kmaxx

(20.11.18)
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where G1 is defined in Eq. (20.11.12). Using (20.11.14), the two-stage filtering operations
will have the explicit forms,

E(kx) = e−2jkF1

∫∞
−∞
Ein(x′) ejkxx

′
dx′ = e−2jkF1 Êin(kx)

Eg,out(x) = e−2jkF2

∫∞
−∞
u
(
kmax − |kx|

)
E(kx) e−jkxx

dkx
2π

= e−2jkF2

∫ kmax

−kmax

E(kx) e−jkxx
dkx
2π

= e−2jk(F1+F2)
∫ kmax

−kmax

Êin(kx) e−jkxx
dkx
2π

= e−2jk(F1+F2)
∫ ∞
−∞

sin
(
kmax(x− x′)

)
π(x− x′) Ein(x′)dx′

(20.11.19)

It is evident that the output, Eg,out(x), is bandlimited to the range, |kx| ≤ kmax, with a
bandlimited Fourier transform,

Êg,out(kx)= e−2jk(F1+F2) Êin(kx)·u
(
kmax − |kx|

)
(20.11.20)

Fig. 20.11.4 plots the normalized impulse responses, that is, the functions,

(2-D case) h(u)= 2J1(πu)
πu

, πu = kmaxr⊥

(1-D case) h(u)= sin(πu)
πu

, πu = kmaxx
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Fig. 20.11.4 2-D and 1-D lowpass inpulse responses.

The first nulls and 3dB points are also shown. The first nulls correspond to the Rayleigh
and Abbe resolution criteria that give the smallest resolvable transverse separations, i.e.,

kmaxrmin = πu0 = 1.2197π ⇒ rmin = 1.2197
λ

2NA
(2-D case)

kmaxxmin = πu0 = π ⇒ xmin = λ
2NA

(1-D case)
(20.11.21)
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where in both cases, D = 2b and NA = b/F1 = D/2F1, The same criteria can also be
expressed in terms of the smallest angular separations, θmin = rmin/F1 or θmin = xmin/F1,
assuming F1 � λ,

θmin = rmin

F1
= 1.2197

λ
D
= 70o λ

D
, θmin = xmin

F1
= λ
D
= 57o λ

D
(20.11.22)

Example 20.11.2: Lyot coronagraph.† The purpose of a coronagraph is to block the intense
light from the sun when a telescope is pointed towards it, allowing a nearby object to be
seen that lies at a small angular distance. It is an example of a 6F system consisting of a
highpass blocking filter H(u⊥), called the Lyot mask, at the first Fourier plane (u⊥ plane),
followed by a lowpass filter L(w⊥), called the Lyot stop, at the second Fourier plane (w⊥
plane), which is simply an aperture opening, as shown in Fig. 20.11.5.

Fig. 20.11.5 Lyot coronagraph.

The Lyot mask blocks most of the sunlight, but similar to eclipses of the sun, enough light
still diffracts from the edges of the mask. The purpose of the second Lyot stop is to remove
that diffracted light. In this example, we will assume that the input pupil of the telescope
has radius a, the Lyot mask has radius b < a, and the Lyot stop, radius c � a. Thus, the
transmittance functions at the input and v,w planes are in terms of the unit-step function,

A(r⊥′) = u
(
a− |r⊥′|

)
H(v⊥) = u

(|v⊥| − b)
L(w⊥) = u

(
c− |w⊥|

)
The fields at the outputs of the three planes will be symbolically,

A · Ein ⇒ H · (Â∗ Êin) ⇒ L · [Ĥ ∗ (A · Ein)
]

The input field Ein from the sun may be assumed to be uniformly filling the entire input
aperture, so that at the output of the input aperture we may set, Ein(r⊥′)= u

(
a− |r⊥′|

)
.

For simplicity, we will work with the 1-D version and assume that all lenses have the
same focal length, F. Denoting by Ea(v) the field at the left input of the Lyot mask, and
by, Eb(v)= H(v)Ea(v), the field at its output, and denoting the propagation gain by

G0 = e−2jkFejπ/4
√
k/2πF, we have applying (20.11.11),

†http://www.lyot.org
http://www. lyot.org/background/coronagraphy.html

968 20. Diffraction – Fourier Optics

Ea(v) = G0

∫∞
−∞
Ein(x′)ejkvx

′/F dx′

= G0

∫∞
−∞
u
(
a− |x′|)ejkvx′/F dx′ = G0

∫ a
−a
ejkvx

′/F dx′

= G0 · 2a · sin(kav/F)
kav/F

Eb(v) = H(v)Ea(v)= G0 · 2a · sin(kav/F)
kav/F

· u(|v| − b)
Then, the field at the left input of the Lyot spot at the w-plane, will be,

Ec(w) = G0

∫∞
−∞
Eb(v)ejkwv/F du = G2

0

∫
|v|≥b

2a · sin(kav/F)
kav/F

ejkwv/F dv

= G2
0

[∫∞
−∞
−
∫ b
−b

]
2a · sin(kav/F)

kav/F
ejkwv/F dv

= G2
0

2πF
k

[
u
(
a− |w|)− 1

π

∫ b
0

2 sin(kav/F)cos(kwv/F)
v

dv
]

= G2
0

2πF
k

[
u
(
a− |w|)− 1

π

∫ b
0

sin
(
ku(a+w)/F)+ sin

(
ku(a−w)/F)

u
du
]

= G2
0

2πF
k

[
u
(
a− |w|)− 1

π
Si
(
kb(a+w)

F

)
− 1

π
Si
(
kb(a−w)

F

)]

where Si(z) is the sine-integral function defined in Eq. (G.2) of Appendix G, and computed
by our MATLAB function, Si, or, the built-in function sinint,

Si(z)=
∫ z

0

sin t
t
dt

We note that the overall gain factor is simply a phase, G2
0 2πF/k = e−jπ/2e−4jkF , and

ignoring it, we may write,

Ec(w)= u
(
a− |w|)− 1

π

[
Si
(
kb(a+w)

F

)
+ Si

(
kb(a−w)

F

)]
(20.11.23)

This represents the diffracted light from the tails of the main lobe of Ea(v), and is con-
centrated near the edges of the entrance pupil. The field at the output of the Lyot spot
will be then, Ec(w)L(w)= Ec(w)·u

(
c − |w|), whose job is to further remove such edge

contributions.

Fig. 20.11.6 plots the fields Ea(v), Eb(v), Ec(w) and L(w)Ec(w). The parameter values,
chosen only for display convenience, were,

k = 1 , a = 20 , F = 20 , b = 0.5a = 10 , c = 0.85a = 17

The scales of the top two and bottom two graphs are not the same—the field Ea(v) was
normalized to its maximum 2a = 40, so that the real scale of the bottom two graphs
should be 1/40 of what is shown. The MATLAB code for generating these graphs was,
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k=1; a=20; F=20; b=0.5*a; c = 0.85*a;

v = linspace(-2,2,1001)*a;
w = v;

Ea = sinc(k*a*v/F/pi); % normalized to unity at u=0

H = (abs(v)>=b); % Lyot mask

Eb = H.*Ea; % output of Lyot mask

Ec = (abs(w)<a) - (Si(k*b*(a+w)/F) + Si(k*b*(a-w)/F))/pi;

L = (abs(w)<=c); % Lyot spot

Ed = L.*Ec; % output of Lyot spot

figure; plot(v/a,abs(Ea),’b-’, v/a,H,’r--’);
figure; plot(v/a,abs(Eb),’b-’, v/a,H,’r--’);
figure; plot(w/a,abs(Ec),’b-’, w/a,L,’r--’);
figure; plot(w/a,abs(Ed),’b-’, w/a,L,’r--’);

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

v/a

|E
a(v

)|

Lyot mask input

 

 

 input
 filter H

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

v/a

|E
b(v

)|

Lyot mask output

 

 

 output
 filter H

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

w/a

|E
c(w

)|

Lyot stop input

 

 
 input
 filter L

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

w/a

|L
(w

) ⋅
 E

c(w
)|

Lyot stop output

 

 
 input
 filter L

Fig. 20.11.6 Coronagraph operations.
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20.12 Apodization Design and Aperture Synthesis

We have seen that at far distances from an input plane under the Fraunhofer approxi-
mation, or, under the Fresnel approximation in a 2F system such as the one shown in
Fig. 20.12.1, the radiated field is proportional to the spatial Fourier transform of the
input. For example, in the one-dimensional case, we have,

E(v, z)=
√
jk

2πz
e−jkz e−jkv2/2z

[
Êin(kx)

]
kx= kvz

(Fraunhofer)

E(v, F)=
√
jk

2πF
e−2jkF

[
Êin(kx)

]
kx= kvF

(2F system)

(20.12.1)

where v is the transverse coordinate at the Fourier plane, with the Fourier transform
defined as follows, where x is the transverse coordinate on the input plane,

Êin(kx)=
∫∞
−∞
Ein(x)ejkxx dx (20.12.2)

Fig. 20.12.1 Apodization or windowing.

Similarly, in the far-field approximation of Eq. (19.4.9), the radiation field in the
direction θ at large radial distances r from the input plane is,

E(r,θ)≈ ej π4
√

k
2πr

e−jkr cosθ
[
Êin(kx)

]
kx=k sinθ

(20.12.3)

where k is in the radial direction, that is, k = kr̂ = x̂kx + ẑkz = x̂k sinθ+ ẑk cosθ.
The effect of a finite aperture at the input plane is to multiply the incident field

by a transmittance function, known as an apodizing or windowing function, say, A(x),
which in its simplest form is the characteristic or indicator function of the aperture.
The resulting field, A(x)·Ein(x), then propagates to the Fourier plane where its Fourier
transform becomes the convolution of the transforms of the two factors,

A(x)·Ein(x) ⇒ %A · Ein(kx)= (Â∗ Êin)(kx)=
∫∞
−∞
Â(kx − k′x)Êin(k′x)

dk′x
2π

(20.12.4)
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The convolution operation causes the smearing of Êin(kx) and may result in loss
of resolution and the inability to detect weak sources. For example, suppose the input
consists of two incident plane waves arriving at the z = 0 plane at angles θ1, θ2, and
with relative strengths, E1, E2. Then, the input, its Fourier transform, and the smeared
output at the Fourier plane will be as follows, where kx1 = k sinθ1 and kx2 = k sinθ2,

Ein(x) = E1e−jkx1x + E2e−jkx2x

Êin(kx) = 2πE1δ(kx − kx1)+2πE2δ(kx − kx2)
Â(kx)∗Êin(kx) = E1 Â(kx − kx1)+E2 Â(kx − kx2)

A typical Â(kx) has a central peak (main lobe) at kx = 0 of a certain width, sur-
rounded by sidelobes of a certain height, as shown on the left in Fig. 20.12.2. The two
sharp (delta-function) spectral lines at kx1, kx2 of the above field Êin(kx) are smeared
and replaced at the Fourier plane by shifted copies of Â(kx) centered at kx1, kx2, as
depicted on the right in Fig. 20.12.2.

If the peaks are too close to each other, they will overlap and tend to appear as
a single peak. Their resolvability requires that their separation be greater than about
one mainlobe width, that is, |kx2 − kx1| � Δk. This translates to the smallest angular
separation that can be resolved (near the forward direction), |θ2 − θ1| � Δk/k. But,
even when they do meet this condition, if one of the signals is too weak, it may be lost
under the sea of sidelobes from the stronger one. For example, in the search for planets
of distant suns, the expected light intensity from the planet is about 100 dB below that
of the sun, i.e., 10−10 times weaker in power, or 10−5 times in amplitude. Therefore, to
be able to “see” such planets, the sidelobes must be down by at least 100 dB.

Fig. 20.12.2 Basic parameters of an apodizing function.

Thus, the important parameters of any apodizing function that determine its resolu-
tion and detectability properties are its mainlobe width and its sidelobe level. The ideal
apodizing window A(x) will have the narrowest mainlobe and the smallest sidelobes.†

The mainlobe width, Δk, can be measured either at the 3-dB level (half-power level),
or, as half of the mainlobe base measured from null to null.

The Rayleigh resolution criterion takes the first null as the minimum resolvable sep-
aration. If we denote that null by k0 and the 3-dB wavenumber by k3, i.e., the points

†The word “apodize” comes from the greek word for “without feet”, i.e., no sidelobes.
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at which Â(k0)= 0 and, |Â(k3)/Â(0)|2 = 1/2, then, the 3-dB width (full-width at half-
maximum) will be 2k3. The two possible choices for the mainlobe width will be Δk = k0

and Δk = 2k3, leading to the resolution criteria,

|kx2 − kx1| � k0 (Rayleigh criterion)

|kx2 − kx1| � 2k3 (3-dB criterion)
(20.12.5)

For example, a uniform rectangular aperture, A(x)= u(a − |x|), will have a sinc-
function transform,

A(x)= u(a− |x|) ⇒ Â(kx)=
∫ a
−a
A(x)ejkxx dx = 2a · sin(kxa)

kxa
(20.12.6)

Its first-null and 3-dB wavenumbers are,

k0 = πa , k3 = 0.443π
a

, 2k3 = 0.886π
a

(20.12.7)

The corresponding Rayleigh and 3-dB criteria expressed in terms of the smallest
resolvable wavenumber separation Δk, or the smallest angular separation Δθ = Δk/k,
will be as follows, where we replaced, k = 2π/λ,

(Rayleigh) Δk = π
a
, Δθ = λ

2a

(3-dB) Δk = 0.886π
a

, Δθ = 0.886
λ
2a

(20.12.8)

The highest sidelobe lies at 13.26 dB below the main lobe and occurs at a wavenumber
kside = 1.43π/a. The numerical values were calculated with the MATLAB code,

u3 = fzero(@(u) sinc(u)-1/sqrt(2), 0.4); % 2*u3 = 0.8859
us = fminbnd(@(u) -abs(sinc(u)), 1,2); % us = 1.4303
R = -20*log10(abs(sinc(us))); % R = 13.26 dB

For typical apodizing functions, the mainlobe width is inversely proportional to the
aperture size a, thus, the resolution capability improves as a increases. Indeed, in the
limit of largea, the transform Â(kx) in the above example becomes increasingly sharper,
converging to a delta function δ(kx). This can be seen from the limit,

lim
a→∞ Â(kx)= lim

a→∞
2 sin(kxa)

kx
= 2πδ(kx)

In optics and antenna applications, there is of course a practical limit to the physical
size of the apertures. By contrast, in time-series spectrum estimation applications, it
is often (but not always) possible to improve resolution by increasing the length of the
time-window by simply measuring a longer time signal. Next, we discuss design methods
for apodization functions and aperture distributions.

There is a large literature in signal processing, antenna array design, optics, and
astronomy on designing apodization functions that achieve narrow beamwidths and low
sidelobes, including the design of apodized coronagraphs, star-shaped masks, and petal-
shaped starshade occulters, as well as designs for superresolving and superdirective
apertures [1241–1284,1479–1618].
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We discuss several windowing functions in Chap. 23 with the emphasis on discrete
arrays. Here, we concentrate on their continuous versions, considering A(x) to be a
function of the continuous variable x.

In the context of a radiating aperture, as depicted for example in (20.12.3), we note
that A(x) is not an apodization function, but rather it represents the actual field Ein(x)
at the aperture, and is referred to as the aperture distribution. Here, the objective is to
design A(x) so that the aperture will radiate a desired radiation pattern Â(kx).

Mathematically, the two problems of designing an apodization function and syn-
thesizing an aperture distribution are the same. Since A(x) is aperture-limited to an
interval −a ≤ x ≤ a, its Fourier transform Â(kx) cannot be bandlimited,

Â(kx)=
∫ a
−a
A(x)ejkxx dx � A(x)=

∫∞
−∞
Â(kx)e−jkxx

dkx
2π

(20.12.9)

The total “power” contained in A(x) may be defined via the Parseval identity,∫ a
−a
|A(x)|2 dx =

∫∞
−∞
|Â(kx)|2 dkx

2π
(20.12.10)

Typically, the function A(x) is characterized by certain properties: It is even in x
and normalized to unity at its center, A(0)= 1. Its transform Â(kx) is real-valued
and highly peaked in the forward direction, kx = 0, with a mainlobe assumed to be
concentrated in an interval, |kx| ≤ k0, such as the null-to-null interval. Moreover, it
follows from Eq. (20.12.9) that Â(kx) is an entire function of kx in the complex kx-
plane, which imposes certain restrictions on the types of apodization functions that can
be designed.

Several design parameters have been used to assess apodizing functions, and we
collect them here.

• The mainlobe width, Δk, measured either at the 3-dB level or at first-null.

• The sidelobe level R in dB relative to the mainlobe peak. Denoting by |Â|side the
maximum sidelobe height of |Â(kx)|, we have the definition,

R = 10 log10

[
|Â(0)|2
|Â|2side

]
= sidelobe level (20.12.11)

• The “encircled energy” [1504], also known as the “beam gain”, or the “beam effi-
ciency,” defined as the fraction of the total power that resides within the mainlobe,
that is, within the range, |kx| ≤ k0,

E(k0)=

∫ k0

−k0

|Â(kx)|2 dkx∫∞
−∞
|Â(kx)|2 dkx

(20.12.12)

• The “Strehl ratio”, defined as the ratio of the mainlobe peak value at kx = 0, relative
to the corresponding value of a uniform, unapodized, aperture of the same size
Aunif(x)= u

(
a− |x|), so that Âunif(0)= 2a, as implied by Eq. (20.12.6),

S = |Â(0)|2
|Âunif(0)|2

=
∣∣∣∣ 1

2a

∫ a
−a
A(x)dx

∣∣∣∣2

(20.12.13)
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• The “transmission” factor, defined as the ratio of the total power to that of the
uniform unapodized aperture Aunif(x),

τ =

∫ a
−a
|A(x)|2 dx∫ a

−a
|Aunif(x)|2 dx

= 1

2a

∫ a
−a
|A(x)|2 dx = 1

2a

∫∞
−∞
|Â(kx)|2 dkx

2π

(20.12.14)

In the context of aperture distributions, the quantity (20.12.10) is not quite the ra-
diated power. Assuming for simplicity that A(x) is a TE or a TM field relative to the xz
plane, that is, Ey(x) or ηHy(x), we recall from Eq. (19.7.14) that the radiated power is
given by an integral over the visible region only, −k ≤ kx ≤ k,

2ηPrad =
∫ k
−k
Â(kx)|2 kzk

dkx
2π

(20.12.15)

where kx = k sinθ, kz = k cosθ. A similar integral over the invisible region, |kx| > k,
represents the reactive power stored in the vicinity of the aperture. The directivity,
assumed to be maximum towards the forward direction, is given by (19.7.16),

D
2ak

= |Â(0)|2

2a
∫ k
−k
|Â(kx)|2 kzk

dkx
2π

(20.12.16)

where we normalizedD by the dimensionless variable 2ak. Following Taylor [1262,1602],
one can argue that since Â(kx) is highly peaked in the forward direction kx = 0, or,
θ = 0, one may replace the quantity kz/k = cosθ by unity and arrive at the following
approximate definitions of power and directivity,

2ηPrad =
∫ k
−k
Â(kx)|2 dkx

2π
,

D
2ak

= |Â(0)|2

2a
∫ k
−k
|Â(kx)|2 dkx

2π

(20.12.17)

With Taylor we may also define the limiting directivityD∞ integrated over the entire
kx range, and the so-called supergain or superdirectivity ratio γ,

D∞
2ak

= |Â(0)|2

2a
∫∞
−∞

|Â(kx)|2 dkx
2π

=

∣∣∣∣∫ a−a A(x)dx
∣∣∣∣2

2a
∫ a
−a
|A(x)|2 dx

γ = D
D∞

=

∫∞
−∞

|Â(kx)|2 dkx∫ k
−k
|Â(kx)|2 dkx

, γ− 1 =

∫
|kx|>k

|Â(kx)|2 dkx∫
|kx|≤k

|Â(kx)|2 dkx

(20.12.18)

We note that the maximum value of D∞/(2ak) is unity and is realized for uniform
apertures. The superdirectivity ratio γ is a measure of the proportion of the reactive
power to the radiated power, and is similar to (the inverse of) the encircled energy E(k),
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but is defined over the entire visible region, not just the main beam. The quantities in
Eqs. (20.12.17) and (20.12.18) can be used as additional measures to assess the proper-
ties of apodizing functions A(x). We note also thatD/2ak andD∞/2ak are referred to
as “specific gains,” or “aperture or taper efficiencies.”

Since A(x) is aperture-limited in the interval −a ≤ x ≤ a, one may apply the theory
of bandlimited functions discussed in Appendix J. One needs to make the following
mapping between the time-frequency variables (t,ω) of that Appendix and the spatial
variables (kx, x) here, so that a function that is frequency-limited in [−ω0,ω0] becomes
space-limited in [−a,a], and a function that is time-concentrated in an interval [−t0, t0]
becomes wavenumber-concentrated in some desired wavenumber interval [−k0, k0],

t0 , ω0 , t , ω ⇒ k0 , a , kx , x (20.12.19)

Eqs. (J.48)–(J.54) of Appendix J summarize three function bases for describing ban-
dlimited functions: (a) the prolate spheroidal wave functions (PSWF), (b) the spherical
Bessel functions, and (c) the sinc functions. Under the above mapping, the basis func-
tions are mapped as follows:

(PSWF) ψn(t0,ω0, t) ⇒ ψn(k0, a, kx)=
∫ a
−a

1

aμn
ψn

(
k0, a,

x
a
k0

)
ejkxx dx

(Bessel) jn(ω0t) ⇒ jn(akx)=
∫ a
−a

1

in2a
Pn
(
x
a

)
ejkxx dx

(sinc)
sin(ω0t −πn)
ω0t −πn ⇒ sin(akx −πn)

akx −πn =
∫ a
−a

1

2a
e−jπnx/a ejkxx dx

(20.12.20)
where we have also expressed them as spatial Fourier transforms so that one can deter-
mine by inspection the corresponding aperture-limited basis function in the x-domain.
The index n runs over 0 ≤ n <∞ for the prolate and Bessel cases, and over−∞ < n <∞
for the sinc basis. The functionPn(ξ) is the standard un-normalizednth-order Legendre
polynomial defined over |ξ| ≤ 1. The parameter μn is given by μn = in

√
2πλn/c, where

c = ak0 is the space-bandwidth product, and λn is the nth eigenvalue characterizing the
prolate functions, as discussed in Appendix J.

To clarify the notation, we have definedψn(k0, a, kx) in terms of the standard scaled
PSWF function φn(c,η) of Eq. (J.7) as follows,

ψn(k0, a, kx)= 1√
k0
φn

(
c,
kx
k0

)
, c = ak0 (20.12.21)

The bases satisfy the following orthogonality properties, adapted from Appendix J,
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∫∞
−∞
ψn(k0, a, kx)ψm(k0, a, kx)dkx = δnm

∫ k0

−k0

ψn(k0, a, kx)ψm(k0, a, kx)dkx = λnδnm∫∞
−∞
jn(akx)jm(akx)dkx = πa

δnm
2n+ 1∫∞

−∞
sin(akx −πn)
akx −πn · sin(akx −πm)

akx −πm dkx = πa δnm

(20.12.22)

where the prolate basis satisfies dual orthogonality properties over the infinite interval
and over the finite interval [−k0, k0].

Because these bases are complete in the space of (square-integrable) aperture-limited
functions, it follows that Â(kx) andA(x) can be expanded as linear combinations of the
basis functions, with the expansion coefficients determined with the help of the above
orthogonality properties.

Denoting the indicator function of the interval [−a,a] by, χa(x)= u
(
a − |x|), we

have the following expansions with respect to the PSWF basis,

Â(kx)=
∞∑
n=0

Ânψn(k0, a, kx)

A(x)=
∞∑
n=0

Ân
aμn

ψn
(
k0, a,

x
a
k0

)
· χa(x)

Ân =
∫∞
−∞
Â(kx)ψn(k0, a, kx)dkx = 2π

aμ∗n

∫ a
−a
A(x)ψn

(
k0, a,

x
a
k0

)
dx

= 1

λn

∫ k0

−k0

Â(kx)ψn(k0, a, kx)dkx

(20.12.23)

The spherical Bessel function basis is not very common, however, see [1678,1679]
for some applications to communications and antenna design. The expansions are,

Â(kx)=
∞∑
n=0

Ân jn(akx)

A(x)=
∞∑
n=0

Ân
in2a

Pn
(
x
a

)
· χa(x)

Ân = a(2n+ 1)
π

∫∞
−∞
Â(kx)jn(akx)dkx = in(2n+ 1)

∫ a
−a
A(x)Pn

(
x
a

)
dx

(20.12.24)

In the sinc-function basis the expansion is very simple, with the coefficients Ân being
simply the samples of Â(kx) at the discrete wavenumbers kx = nks, where ks = π/a is
the sampling interval,
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Â(kx)=
∞∑

n=−∞
Ân

sin(akx −πn)
akx −πn =

∞∑
n=−∞

Ân
sin
(
a(kx − nks)

)
a(kx − nks)

A(x)= 1

2a

∞∑
n=−∞

Ân e−jπnx/a · χa(x)= 1

2a

∞∑
n=−∞

Ân e−jnksx · χa(x)

Ân = Â(nks)= Â
(
πn
a

)
=
∫ a
−a
A(x)ejπnx/a dx

(20.12.25)

Eq. (20.12.25) is a consequence of Shannon’s sampling theorem, as applied to the
aperture-limited function A(x) and is known in the antenna design context as the
Woodward-Lawson method [1600,1601]. Its discrete version for array design is dis-
cussed in Sec. 23.5. The method is useful if the sum over n is finite, as it is in the
case of Taylor’s n-bar method considered below.

It is often convenient to think of Â(kx) as a function of the normalized wavenumber
variable, u = kx/ks = akx/π, or, kx = uks = πu/a, that is, define,

F(u)= Â(kx)
∣∣∣
kx=πua

(20.12.26)

Then, the Fourier transform relationships (20.12.9) read,

F(u)=
∫ a
−a
A(x)ejπux/a dx � A(x)= 1

2a

∫∞
−∞
F(u)e−jπux/a du (20.12.27)

The sampled wavenumbers kx = nks in the Woodward-Lawson case then become
integers in u-space, u = kx/ks = nks/ks = n, and Eqs. (20.12.25) read,

F(u)=
∞∑

n=−∞
F(n)

sin
(
π(u− n))
π(u− n)

A(x)= 1

2a

∞∑
n=−∞

F(n)e−jπnx/a · χa(x)

F(n)=
∫ a
−a
A(x)ejπnx/a dx

(20.12.28)

The quantity u represents the observation angle θ (or, rather, sinθ), in the standard
beamwidth units of λ/(2a), indeed, since kx = k sinθ, we have with k = 2π/λ,

sinθ = kx
k
= u λ

2a
(20.12.29)

If the mainlobe of Â(kx) is concentrated in |kx| ≤ k0, then, in u-units, F(u) will
be concentrated in |u| ≤ u0, where u0 = ak0/π. The space-bandwidth product will be
c = ak0 = πu0, and the maximum angle of the mainlobe,

sinθ0 = k0

k
= u0

λ
2a

(20.12.30)
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Thus, to be able to resolve a weaker signal from a stronger one, the weaker one must
have u > u0, falling in the sidelobe range of the stronger one, and its strength must be
above the sidelobe level R.

Next, we discuss three highly effective apodization functions that are optimum
in some sense and have narrow mainlobes and controllable sidelobes: (a) the prolate
apodization function, which is optimal in the sense that it maximizes the encircled en-
ergy, (b) Taylor’s I0-sinh one-parameter distribution, which is an excellent closed-form
approximation to the optimum prolate, and (c) Taylor’s n-bar distribution, which is a
compromise between the optimum prolate and the optimum Chebyshev window.

The Chebyshev window has equiripple sidelobes and is optimum in a different sense,
that is, it has the narrowest mainlobe for a given sidelobe level. To understand this
intuitively, we note that as one pushes the sidelobes down, the mainlobe gets wider, and
conversely, if one allows the sidelobes to go up, then the mainlobe will get narrower.
Thus, for a prescribed sidelobe level, if all sidelobes have the same height, the mainlobe
will be the narrowest possible.

20.13 Prolate Window

The prolate apodization function is up to a scale factor the zero-order PSWF function
ψ0 considered above, and was originally derived by Slepian for both the 1-D and 2-D
problems [1505]. It is defined by the parameters k0, a, where the interval [−k0, k0] is a
measure of the width of the mainlobe (but k0 is not a null point). The window is optimum
in the sense that Â(kx) maximizes the power contained in the interval [−k0, k0], that
is, the encircled energy ratio,

E(k0)=

∫ k0

−k0

|Â(kx)|2 dkx∫∞
−∞
|Â(kx)|2 dkx

= max (20.13.1)

This problem was solved in Eq. (J.57) of Appendix J where it was shown that the
solution is the zero-order PSWF function, therefore, keeping only the n = 0 term in
(20.12.23) we have in the kx and x domains,

Â(kx)= Â0ψ0(k0, a, kx) , A(x)= Â0

aμ0
ψ0

(
k0, a,

x
a
k0

)
· χa(x)

with the maximized value of the encircled energy given by the λ0 eigenvalue, E(k0)= λ0.
The constant Â0 can be determined by requiring that A(0)= 1, so that,

Â0

aμ0
ψ0(k0, a,0)= 1

Thus,

Â(kx)= aμ0
ψ0(k0, a, kx)
ψ0(k0, a,0)

, A(x)=
ψ0

(
k0, a,

x
a
k0

)
ψ0(k0, a,0)

· χa(x) (20.13.2)
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There is no obvious relationship between the wavenumber k0 that defines the extent
of the mainlobe and the corresponding sidelobe level R in dB. One would like to be able
to specify R and determine the proper value of k0 to be used in the design.

There is a roundabout solution to this. Because Taylor’s one-parameter I0-sinh win-
dow discussed in the next section is a close approximation to the prolate ψ0 window,
one can use the sidelobe-width calculation for that window and slightly tweak it to make
it applicable here. Taylor’s window depends on a single parameter B which is related to
the sidelobe level R in dB by the relationship,

R = R0 + 20 log10

(
sinh(πB)
πB

)
(20.13.3)

where R0 = 13.26 dB is the maximum sidelobe level of the rectangular window that we
calculated in Sec. 20.12. Given R, one can solve (20.13.3) for B numerically. Then, one
could take the space-bandwidth product to be approximately, c = ak0 ≈ πB. However,
as we showed in Sec. 23.11, a better choice is,

c = ak0 = (0.95B+ 0.14)π (20.13.4)

This works well over the range, 15 ≤ R ≤ 150 dB. The MATLAB function, tbw,
described in the next section can be used to solve (20.13.3) for B, Then, k0 is calculated
from (20.13.4). Alternatively, one can use the slightly less accurate Kaiser-Schafer [1266]
empirical expression of Eq. (20.14.5). The directivity and other window parameters are
worked out in Problem 20.6. For large kx or u = akx/π, it follows from Eq. (J.10) that
Â(kx) decays like sinc(u),

Â(kx)→ const.
sin(akx)
akx

= const.
sin(πu)
πu

, as |kx| → ∞

Example 20.13.1: Fig. 20.13.1 shows two prolate windows designed for R = 60 and R = 100
dB. The aperture half-width was a = 1. The following MATLAB code segment illustrates
the calculation. The function pswf from Appendix J was used,

a=1;
x = linspace(-1,1,401)*a;
u = linspace(-20,20,2001); kx = pi*u/a;

for R = [60,100]
[B,Du] = tbw(R); % Du = 3-dB width
c = (0.96*B+0.14)*pi; % c parameter for prolate window
k0 = c/a; % k0 parameter
u0 = c/pi; % k0 in units of u

Ak = pswf(k0,a,0,kx); % A(kx), kx domain, PSWF from Appendix J
[A0,la0] = pswf(k0,a,0,0); % A(0) and lambda0
Ax = pswf(k0,a,0,x*k0/a); % A(x), x-domain

Ak = abs(Ak/A0); % normalized to unity at kx=0 for plotting in dB
Ax = Ax/A0; % normalized to unity at x=0 by convention

figure; plot(u, 20*log10(Ak));
figure; plot(x, Ax);

end
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The wavenumber plots were in units of u = akx/π. The space-bandwidth products were
in the two cases, c = 8.2880 and c = 12.1736, and the corresponding u-parameters,
u0 = ak0/π = 2.6382 and u0 = 4.1933. ��
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Fig. 20.13.1 Prolate window, |Â(kx)| in dB versus u = akx/π, and A(x) versus x.

Example 20.13.2: To examine the feasibility of detecting exo-planets with the R = 100 dB
window that has u0 = 4.2, consider a Mercury-type planet at a distance of 5×1010 meters
(about one-third A.U.) from its sun, and relative intensity 10−10, at a distance of 1017 meters
(about 11 light years) from earth. The subtended angle will be θ ≈ sinθ = 5×1010/1017 =
5×10−7 radians, and the corresponding value of u for visible light at, say, 500 nm, using
a 4-meter telescope,

u = akx
π

= 2a
λ

sinθ = 4

500×10−9
· 5×10−7 = 4

which is at the threshold of visibility since u � u0. On the other hand, a Jupiter-like planet
with intensity 10−10, at 5 A.U. from its sun, and at a distance of 16 light years (106 A.U.)
from earth would have,

u = 2a
λ

sinθ = 4

500×10−9
· 5

106
= 40

and would be easily resolvable with such a window. ��
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20.14 Taylor’s One-Parameter Window

Taylor’s one-parameter window function [1262] is based on the Fourier transform pair,

sinh
(
a
√
k2

0 − k2
x
)

a
√
k2

0 − k2
x

= 1

2a

∫ a
−a
I0
(
k0

√
a2 − x2

)
ejkxxdx (20.14.1)

where I0 is the order-0 modified Bessel function of the first kind and k0 is a parameter
playing the same role as in the prolate window. Thus, we define,

Â(kx)=
sinh

(
a
√
k2

0 − k2
x
)

a
√
k2

0 − k2
x

� A(x)= 1

2a
I0
(
k0

√
a2 − x2

) · χa(x) (20.14.2)

Its discrete version is the Taylor-Kaiser window used in Sec. 23.10 for array design.
Introducing the variable, πB = ak0, and the normalized wavenumber, u = akx/π, we
may rewrite (20.14.2) in the notation of Eq. (20.12.26),

F(u) = sinh
(
π
√
B2 − u2

)
π
√
B2 − u2

= sin
(
π
√
u2 − B2

)
π
√
u2 − B2

A(x) = 1

2a
I0
(
πB

√
1− x2/a2

) · χa(x)
(20.14.3)

If so desired, A(x) may be normalized to unity at x = 0. The pattern function F(u)
switches from its sinh to its sine form at u = B, and behaves like sin(πu)/πu for
large u. The first null occurs at

√
u2 − B2 = 1, or, u1 =

√
B2 + 1, with the sidelobe

structure beginning after that. The highest sidelobe level is the maximum value of the
ratio | sin(πu)/πu| other than at u = 0. That was determined in Sec. 20.12 to be,
R0 = 13.26 dB. The sidelobe level R is defined as the relative ratio of the value at
u = 0, that is, F(0)= sinh(πB)/πB, to the highest sidelobe level R0, thus, we obtain
the following relationship between B and R, which was used in (20.13.3),

R = 20 log10

[ |F(0)|
|F|max side

]
= R0 + 20 log10

(
sinh(πB)
πB

)
(20.14.4)

This equation may be solved numerically for B. Alternatively, one can calculate B
using the slightly less accurate Kaiser-Schafer [1266] empirical expression discussed in
Sec. 23.10 in the context of array design,

πB =
⎧⎨⎩ 0.76609(R−R0)0.4+0.09834(R−R0), R0 <R≤ 60

0.12438(R+ 6.3), 60<R< 120
(20.14.5)

The 3-dB width in u-units is given by Δu = 2u3, where u3 is the solution of the
half-power condition, |F(u3)/F(0)|2 = 1/2,

sin
(
π
√
u2

3 − B2
)

π
√
u2

3 − B2
= 1√

2

sinh(πB)
πB

(20.14.6)
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The beam efficiency or encircled energy may be defined with respect to k0 = πB/a,
or, with respect to the first null, k1 = πu1/a = π

√
B2 + 1/a. We choose the former,

E(k0)=

∫ k0

−k0

|Â(kx)|2 dkx∫∞
−∞
|Â(kx)|2 dkx

=

∫ B
−B
|F(u)|2 du∫∞

−∞
|F(u)|2 du

(20.14.7)

in which the denominator can be expressed in terms of A(x), using Parseval’s identity,

E(k0)=

∫ B
−B
|F(u)|2 du

2a
∫ a
−a
|A(x)|2 dx

=

∫ B
−B

∣∣∣sinc
(√
u2 − B2

)∣∣∣2
du∫ 1

0

∣∣∣I0 (πB√1− x2
)∣∣∣2

dx
(20.14.8)

Similarly, the normalized directivity can be expressed as,

D∞
2ak

= |F(0)|2∫∞
−∞
|F(u)|2 du

=
∣∣sinh(πB)

∣∣2

(πB)2

∫ 1

0

∣∣∣I0 (πB√1− x2
)∣∣∣2

dx
(20.14.9)

The numerical calculation of B,Δu,D∞,E from R is implemented by the MATLAB
function, tbw,† with usage,

[B,Du,D,E] = tbw(R) % Taylor’s B-parameter and beamwidth

Eqs. (20.14.4) and (20.14.6) are solved with the built-in function fzero, while the finite
integrations in (20.14.8) and (20.14.9) are implemented with the help of the tanh-sinh
quadrature function quadts. To clarify the calculation, the essential MATLAB code of
the tbw function is,

F = @(u,B) abs(sinc(sqrt(u.^2-B.^2))); % pattern function

u0 = fminbnd(@(u) -F(u,0), 1,2); % u0 = 1.430292
R0 = -20*log10(F(u0,0)); % R0 = 13.261459 dB
B0 = 0.04*R + 0.06; % initial search estimates
u3 = 0.005*R + 0.5; % initial search estimates

B = fzero(@(B) 20*log10(F(0,B)) + R0 - R, B0);
Du = 2*fzero(@(u) F(u,B) - F(0,B)/sqrt(2), u3);

[wx,x] = quadts(0,1); % weights, quadrature points for x-integration
[wu,u] = quadts(0,B); % weights, quadrature points for u-integration
%[wu,u]=quadts(0,sqrt(B^2+1)); % if mainlobe is defined null-to-null

P = wx’ * besseli(0,pi*B*sqrt(1-x.^2)).^2; % total power
P0 = 2 * wu’ * F(u,B).^2; % power in mainlobe

D = F(0,B)^2 / P; % directivity
E = P0 / P; % beam efficiency

†which supplants the older function, taylorbw
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Example 20.14.1: The following MATLAB code segment shows how to calculate the aperture
distribution and the wavenumber pattern of the Taylor window, for the same specifications
as in Example 20.13.1.

a=1;
x = linspace(-1,1,401)*a;
u = linspace(-20,20,2001); kx = pi*u/a;

F = @(u,B) abs(sinc(sqrt(u.^2-B.^2)));

for R = [60,100]
[B,Du] = tbw(R); % Du = 3-dB width

Fk = 20*log10(F(u,B) / F(0,B));
Fx = besseli(0,pi*B*sqrt(1-x.^2/a^2)) / besseli(0,pi*B);

figure; plot(u,Fk,’b-’);
figure; plot(x,Fx,’b-’);

end

The graphs are not shown since they are virtually indistinguishable from those of Fig. 20.13.1.

20.15 Taylor’s N-bar Window

It is evident from Fig. 20.13.1 that the prolate and Taylor’s one-parameter windows
have their largest sidelobes near the mainlobe, meeting the design specification for R.
The sidelobes that are further away have attenuations higher than R (with an envelope
decaying like 1/u). Thus, the sidelobe behavior of these windows is better than it needs
to be, and this comes at the expense of a wider mainlobe. If the farther sidelobes could
be raised to the same specified level R, then the mainlobe would narrow.

This is the idea behind the Dolph-Chebyshev window, whose application to discrete
arrays is discussed in Sec. 23.9. Van der Maas [1250] has shown that in the continuous-
space limit (i.e., for large number of equally-spaced array elements with infinitesimal
spacings spanning the aperture of length 2a), the Dolph-Chebyshev window reduces to
the ideal pattern,

Â0(kx)= cosh
(
a
√
k2

0 − k2
x

)
= cos

(
a
√
k2
x − k2

0

)
(20.15.1)

or, in units of u = akx/π, defining the parameter A through, πA = ak0,

F0(u)= Â0(kx)
∣∣∣∣
kx=πua

= cosh
(
π
√
A2 − u2

)
= cos

(
π
√
u2 −A2

)
(20.15.2)

The mainlobe corresponds to the range, |kx| ≤ k0, or, |u| ≤ A. The sidelobe range
begins at u = A, where the hyperbolic cosine switches to ordinary cosine, which has
equal ripples. Since the maximum value of the cosine ripples is unity, and the value at
u = 0 is, F0(0)= cosh(πA), it follows that the attenuation R will be in terms of A,

R = 20 log10

[ |F0(0)|
1

]
= 20 log10

[
cosh(πA)

]
(dB)

A = 1

π
acosh(10R/20)

(20.15.3)
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Unfortunately, the ideal pattern Â0(kx) is not realizable because its inverse Fourier
transform A(x) has spikes at its end points at x = ±a, and is not bounded. To see this,
consider the Fourier transform pair (20.14.2) of Taylor’s one-parameter window,

sinh
(
a
√
k2

0 − k2
x
)√

k2
0 − k2

x
�

1

2
I0
(
k0

√
a2 − x2

) · χa(x) (20.15.4)

It is evident that Â0(kx)= cosh
(
a
√
k2

0 − k2
x
)

is the derivative of the left-hand side of
the above with respect to the parameter a. Thus, taking the a-derivatives of both sides
in (20.15.4), we obtain the Fourier pair,†

cosh
(
a
√
k2

0 − k2
x

)
�

ak0

2

I1
(
k0

√
a2 − x2

)
√
a2 − x2

) · χa(x)+1

2

[
δ(x− a)+δ(x+ a)]

(20.15.5)
where we used the modified Bessel function property I′0(z)= I1(z), and I0(0)= 1.
The delta functions arise from the differentiation of the indicator function. Indeed,
noting that χa(x) can be written as the product of unit steps, χa(x)= u

(
a − |x|) =

u(a− x)·u(a+ x), and using the differentiation property, u′(z)= δ(z), we have,

∂
∂a
χa(x)= δ(a− x)·u(a+ x)+δ(a+ x)·u(a− x)= δ(x− a)+δ(x+ a)

In Taylor’s n-bar window method [1602] only the first few nearest sidelobes are
equiripple at levelR, while the rest decay like sinc(u) as in the prolate and one-parameter
cases. To explain the method, we start with the standard infinite product expansions of
the ideal response and the sinc response in terms of their zeros [1791],

cos
(
π
√(
u/σ

)2 −A2

)
= cosh(πA)·

∞∏
n=1

[
1− u2

σ2
[
A2 + (n− 1

2)2
]]

sinc(u)= sin(πu)
πu

=
∞∏
n=1

[
1− u

2

n2

] (20.15.6)

where a dilation factor σ � 1 has been introduced in the ideal pattern resulting in a

slightly wider mainlobe. The zeros of the ideal pattern are at un = ±σ
√
A2 + (n− 1

2)2,
and those of the sinc, un = ±n. A modified pattern can be made up whose first n̄ − 1
zeros are taken from the equiripple pattern, and the rest from the sinc, that is,

F(u)= cosh(πA)·
n̄−1∏
n=1

[
1− u2

σ2
[
A2 + (n− 1

2)2
]] · ∞∏

n=n̄

[
1− u

2

n2

]
(20.15.7)

In order to pass smoothly from the first group of zeros to the second, the dilation
factor σ is chosen such that two groups match at n = n̄, that is,

σ
√
A2 + (n̄− 1

2

)2 = n̄ ⇒ σ = n̄
A2 + (n̄− 1

2

)2 (20.15.8)

†Previously, we encountered this pair in a somewhat different form in Sec. 3.3.
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In addition, Taylor imposes the condition that ∂σ/∂n̄ < 0, which requires that
n̄ > 2A2+ 1

2 . However, this requirement can be relaxed if one is interested in satisfying
the sidelobe specification R only in a neighborhood near the mainlobe and is willing to
let farther sidelobes rise above R, which will result in an even narrower mainlobe.

As n̄ increases, F(u) resembles more and more the ideal pattern of Eq. (20.15.6). The
second product in F(u) consisting of the sinc zeros can be expressed more conveniently
in terms of gamma functions,†

∞∏
n=n̄

[
1− u

2

n2

]
= Γ2(n̄)
Γ(n̄+ u)Γ(n̄− u) (20.15.9)

Thus, F(u) takes the simpler form,

F(u)= cosh(πA)· Γ2(n̄)
Γ(n̄+ u)Γ(n̄− u) ·

n̄−1∏
n=1

[
1− u2

σ2
[
A2 + (n− 1

2)2
]] (20.15.10)

Since Eq. (20.15.9) vanishes at all integers u = |n| ≥ n̄, the samples of F(u) will
also vanish at those integers, that is, F(n)= 0, for |n| ≥ n̄. One can then express
F(u), and the corresponding aperture distribution A(x), in an alternative form using
the Woodward-Lawson expansions of Eq. (20.12.28) as finite sums involving the surviving
samples, F(n), |n| ≤ n̄− 1,

F(u)=
n̄−1∑

n=−n̄+1

F(n)
sin
(
π(u− n))
π(u− n)

A(x)= 1

2a

n̄−1∑
n=−n̄+1

F(n)e−jπnx/a · χa(x)
(20.15.11)

The required values of F(n) are computed from (20.15.10), for −(n̄− 1)≤ n ≤ n̄− 1,

F(n)= cosh(πA)· Γ2(n̄)
Γ(n̄+ n)Γ(n̄− n) ·

n̄−1∏
m=1

[
1− n2

σ2
[
A2 + (m− 1

2)2
]] (20.15.12)

The center value is F(0)= cosh(πA). The 3-dB width can be estimated accurately
by finding the 3-dB frequency of the ideal pattern, that is, the solution of the equation,

cosh
(
π
√
A2 − (u3/σ)2

)
= 1√

2
cosh(πA)

which implies for the width, Δu = 2u3,

Δu = 2σ

√
A2 − 1

π2
acosh2

(
1√
2

cosh(πA)
)

(20.15.13)

The directivity/specific gain is given by the finite sum,

D∞
2ak

= |F(0)|2∫∞
−∞
|F(u)|2du

= |F(0)|2
n̄−1∑

n=−n̄+1

|F(n)|2
(20.15.14)

†Following from the representation, 1/Γ(z)= zeγz∏∞
n=1 e−z/n

(
1+ z

n

)
, γ is Euler’s constant.
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The transition point between the cosh and cosine behavior,
√
A2 − (u/σ)2 = 0, or,

u0 = σA, can be used as an estimate of the mainlobe width. Alternatively, one can use

the first null, u1 = σ
√
A2 + 1

4 . The beam efficiency/encircled energy can be computed
relative to the interval [−u0, u0] or [−u1, u1]. We choose the former,

E0 =

∫ u0

−u0

|F(u)|2du∫∞
−∞
|F(u)|2du

=

∫ u0

−u0

|F(u)|2du
n̄−1∑

n=−n̄+1

|F(n)|2
(20.15.15)

Given R, n̄, the MATLAB function, tnb1, calculates the parameters A,Δu,D∞, E0, as
well as the coefficient vector, F(n), |n| ≤ n̄− 1. It has usage,

[A,Fn,Du,D,E] = tnb1(R,nb); % Taylor’s n-bar window (1-D)

In tnb1, the integral in (20.15.15) is computed numerically using the tanh-sinh quadra-
ture function quadts. Although, Eq. (20.15.12) is convenient for the evaluation of F(n),
the numerical evaluation of the gamma-functions can lead to extremely large values for
larger n̄, for example, Γ(100)= 9.3326×10155, and the ratios of such large values in
(20.15.12) might lead to inaccuracies. An alternative way to calculate F(n) is by writing
(20.15.7) in the form,

F(u)= cosh(πA)·sin(πu)
πu

·

n̄−1∏
n=1

[
1− u2

σ2
[
A2 + (n− 1

2)2
]]

n̄−1∏
n=1

[
1− u

2

n2

] (20.15.16)

The ratio of the sinc function and the product in the denominator involves pole/zero
cancellations at u = ±n. By taking the limit u→ n and allowing for such cancellations,
we arrive at the following alternative expression for F(n), which is implemented in the
function tnb1,

F(n)= cosh(πA)·
(−1)n+1

n̄−1∏
m=1

[
1− n2

σ2
[
A2 + (m− 1

2)2
]]

2
n̄−1∏
m=1
m �=n

[
1− n

2

m2

] (20.15.17)

for 1 ≤ n ≤ n̄− 1, then setting, F(−n)= F(n), and, F(0)= cosh(πA).

Example 20.15.1: This example illustrates how to use the output of tnb1 to calculate F(u) and
A(x) in a vectorized fashion (in u and x). The specifications were R = 100 dB and n̄ = 30.
Fig. 20.15.1 plots F(u) over the range 0 ≤ u ≤ 40, and in an expanded view on the right,
and compares it to the one-parameter design. The MATLAB code used to generate these
graphs was as follows,
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Fig. 20.15.1 Comparison of Taylor’s n-bar and one-parameter windows.

R = 100; nb = 30;

[A,Fn,Du,D,E] = tnb1(R,nb);

sigma = nb / sqrt(A^2 + (nb-0.5)^2);
u0 = sigma * A; % turning point
% u0 = sigma * sqrt(A^2 + 1/4); % first null

u = linspace(0,40,4001);
x = linspace(-1,1,401);

F=0; Ax=0;
for n = -(nb-1) : nb-1

F = F + Fn(nb+n)*sinc(u-n);
Ax = Ax + Fn(nb+n)*cos(pi*n*x)/2;

end

Fabs = abs(F); FdB = 20*log10(Fabs/max(Fabs));
Amax = max(abs(Ax)); Ax = Ax/Amax;

f = @(u,B) abs(sinc(sqrt(u.^2-B.^2)));
[B,Dub] = tbw(R);
v0 = B; % turning point
% ub = sqrt(B^2+1); % first null

GdB = 20*log10(f(u,B) / f(0,B));

figure; plot(u,FdB,’b-’, u,GdB,’r--’)

The calculated transition points were u0 = σA = 3.9173 for the n̄ case, and u0 = B =
4.2222 for the one-parameter design. The values ofA,σ wereA = 3.8853 andσ = 1.0082,
and the minimum value of n̄ > 2A2+1/2 = 30.67. If n̄ is chosen less than that, then as we
mentioned, the far sidelobes would become higher than the specified R and the mainlobe
a little narrower.

Fig. 20.15.2 shows the pattern resulting from n̄ = 6 and a somewhat higher R = 110 dB in
order to still meet the 100 dB requirement in a narrow range, u0 ≤ u ≤ 5, where for this
design the mainlobe transition point was u0 = 3.67. ��

988 20. Diffraction – Fourier Optics

0 4 8 12 16 20 24 28 32 36 40

−120

−100

−80

−60

−40

−20

0

u

dB

R = 110 dB,  n−bar = 6

0 1 2 3 4 5 6 7 8 9 10

−120

−100

−80

−60

−40

−20

0

u

dB

R = 110 dB,  n−bar = 6

 

 
 n−bar,  u

0
 = 3.67

 one−parameter,  u
0
 = 4.22

Fig. 20.15.2 Using a smaller n̄.

20.16 Circularly Symmetric Apodization Functions

For a general two-dimensional planar aperture S the apodization function A(r⊥) would
be a tapered version of the indicator function χS(r⊥) of the aperture. The wavenumber
pattern Â(k⊥) would be the 2-D Fourier transform of A(r⊥). For a circularly symmet-
ric apodization function over a circular aperture of radius a, the Fourier relationship
reduces to a Hankel transform. Thus, we have the Fourier pair in the general case,

Â(k⊥) =
∫
S
A(r⊥)ejk⊥·r⊥ d2r⊥

A(r⊥) =
∫∞
−∞
Â(k⊥)e−jk⊥·r⊥

d2k⊥
(2π)2

(20.16.1)

In the circularly symmetric case, A(r⊥), Â(k⊥), are functions of the radial coordi-

nates, r⊥ = |r⊥| =
√
x2 + y2, and, k⊥ = |k⊥| =

√
k2
x + k2

y. Then, Eqs. (20.16.1) can be

written as the self-reciprocal order-0 Hankel transforms,†

Â(k⊥) =
∫ a

0
A(r⊥) J0(k⊥r⊥)2πr⊥dr⊥

A(r⊥) =
∫∞

0
Â(k⊥) J0(k⊥r⊥)

k⊥dk⊥
2π

(20.16.2)

For two functions, A(r⊥), B(r⊥), that are both aperture-limited in 0 ≤ r⊥ ≤ a, and
have Fourier/Hankel transforms, Â(k⊥), B̂(k⊥), we have the Parseval identity,∫ a

0
A∗(r⊥)B(r⊥)2πr⊥dr⊥ =

∫∞
0
Â∗(k⊥)B(k⊥)

k⊥dk⊥
2π

(20.16.3)

Depending on the implementation, the wavenumber k⊥ is proportional to the trans-
verse displacement on the image plane, for example, k⊥ = kv⊥/F, in a 2-D version
of Fig. 20.12.1, or, in a far-field/radiation-field interpretation, since kx = k sinθ cosφ,

†actually, the pair A(r⊥) and Â(k⊥)/2π are self-reciprocal.
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ky = k sinθ sinφ, we have, k⊥ =
√
k2
x + k2

y = k sinθ. As in the 1-D case, it will be useful

to think of Â(k⊥) as a function of the variable u = ak⊥/π, which represents the angle
direction in the standard beamwidth units of λ/2a,

sinθ = k⊥
k
= u λ

2a
(20.16.4)

As an example, for a uniform aperture, the function A(r⊥) is simply the indicator
function, A(r⊥)= χa(r⊥)= u(a − r⊥), and we obtain the usual Airy pattern (see also
Sec. 18.9, where it is plotted versus angle θ),

A(r⊥) = χa(r)= u(a− r⊥)

Â(k⊥) = πa2 · 2J1(ak⊥)
ak⊥

= πa2 · 2J1(πu)
πu

(20.16.5)

The function, 2J1(πu)/πu, is the two-dimensional version of the sinc, sin(πu)/πu,
and is sometimes referred to as the “jinc” function. It is implemented by the MATLAB
function, jinc, in the EWA toolbox, and is depicted in Fig. 20.16.1.

The first null is at u0 = 1.2197, corresponding Rayleigh’s resolution criterion, and
the first sidelobe maximum is at uside = 1.6347 with a value, Rside = 0.1323, or, in dB,
R0 = −20 log10(Rside)= 17.570150 dB. The 3-dB point is at u3 = 0.5145 and the full
width, Δu = 2u3 = 1.0290. These values can be determined easily by the MATLAB code,

u0 = fzero(@jinc,1);
us = fminbnd(@(u) -abs(jinc(u)), 1,2);
R0 = -20*log10(abs(jinc(us)));
u3 = fzero(@(u) abs(jinc(u))-1/sqrt(2), 1);
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0
 = 1.2197

 3−dB,  u
3
 = 0.5145

Fig. 20.16.1 The Airy pattern, |F(u)| = ∣∣2J1(πu)/πu
∣∣.

The definitions of the various 1-D design parameters [1504] carry over to the 2-D
case. The encircled energy is defined relative to an interval, 0 ≤ k⊥ ≤ k0 = πu0/a,
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E(k0)=

∫ k0

0
|Â(k⊥)|2 k⊥dk⊥∫∞

0
|Â(k⊥)|2 k⊥dk⊥

=

∫ u0

0
|F(u)|2 udu

(2a)2

∫ a
0
|A(r⊥)|2r⊥dr⊥

(20.16.6)

The Strehl ratio and transmission factor, normalized relative to the corresponding
values of the uniform aperture, Aunif(r⊥)= u(a− r⊥), are given by,

S = |Â(0)|2
|Âunif(0)|2

=
∣∣∣∣ 1

πa2

∫ a
0
A(r⊥)2πr⊥dr⊥

∣∣∣∣2

τ =

∫ a
0
|A(r⊥)|2 2πr⊥dr⊥∫ a

0
|Aunif(r⊥)|2 2πr⊥dr⊥

= 1

πa2

∫ a
0
|A(r⊥)|2 2πr⊥dr⊥

(20.16.7)

Similarly, the two-dimensional limiting directivity of Eq. (19.7.11), normalized to its
uniform value, Dunif = 4π(πa2)/λ2 = (ka)2, is given by,

D∞
(ka)2

= |Â(0)|2

πa2

∫∞
0
|Â(k⊥)|2 k⊥dk⊥

2π

=

∣∣∣∣∫ a
0
A(r⊥)2πr⊥dr⊥

∣∣∣∣2

πa2

∫ a
0
|A(r⊥)|2 2πr⊥dr⊥

(20.16.8)

There is a large literature on circularly symmetric apodization functions, reviewed
in [1504]. One widely used family of functions in both optics and aperture antennas,
such as dish antennas, are the so-called lambda functions or Sonine functions, defined
as follows for integer n, or real-valued n, such that n > −1,

A(r⊥) =
(

1− r
2⊥
a2

)n
· χa(r⊥)

Â(k⊥) = πa2 · Γ(n+ 1)2n+1Jn+1(k⊥a)
(k⊥a)n+1

(20.16.9)

where A(r⊥) and Â(k⊥) are Hankel pairs as in (20.16.2). The case n = 0 corresponds
to the usual Airy pattern. The cases n = 1,2 are used in dish antennas. Linear combi-
nations of such functions have also been used to represent more general apodization
functions [1502]. However, we do not pursue these further since we are more interested
in designs with narrow beams and low sidelobes.

Among the latter are the generalized prolate spheroidal wave functions derived by
Slepian [1505,1646], which are the 2-D versions of the 1-D prolates that we discussed
above. Hansen’s one-parameter window discussed in the next section provides a good
approximation to the generalized prolates, just like Taylor’s one-parameter window is
a good approximation to the optimum 1-D case. Besides Hansen’s one-parameter win-
dow, we also discuss below the Fourier-Bessel and Dini series representations of circular
apodization functions, as well as the 2-D version of Taylor’s n-bar window.
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20.17 Hansen One-Parameter Window

The generalization of Taylor’s one-parameter window to two dimensions was derived
by Hansen [1606]. It is based on the following Fourier/Hankel transform pair,† which is
the 2-D version of the 1-D pair of Eq. (20.14.2),

A(r⊥) = I0
(
k0

√
a2 − r2⊥

)
· χa(r⊥)

Â(k⊥) = πa2 ·
2I1

(
a
√
k2

0 − k2⊥
)

a
√
k2

0 − k2⊥
= πa2 ·

2J1

(
a
√
k2⊥ − k2

0

)
a
√
k2⊥ − k2

0

(20.17.1)

where k0 is a positive parameter that defines the extent of the mainlobe. Introducing
the parameter H through, πH = ak0, we may rewrite the above in u-units,

A(r⊥) = I0
(
πH

√
1− (r⊥/a)2

)
· χa(r⊥)

F(u) = πa2 ·
2I1

(
π
√
H2 − u2

)
π
√
H2 − u2

= πa2 ·
2J1

(
π
√
u2 −H2

)
π
√
u2 −H2

(20.17.2)

where F(u)= Â(k⊥) at k⊥ = πu/a. At u = H, the function F(u) switches from I1 to
J1, and for large u it decays like a sinc, sin(πu)/πu,

The first null occurs at
√
u2

0 −H2 = μ1, or, u0 =
√
H2 + μ2

1, where μ1 = 1.2197 is
the first null of 2J1(πu)/πu, or, the first non-zero null of J1, that is, J1(πμ1)= 0. The
sidelobe structure begins after that. As we saw above, the highest sidelobe of the Airy
pattern is R0 = 17.57 dB below the main peak, therefore, the analogous relationship to
(20.13.3) becomes,

R = R0 + 20 log10

(
2I1(πH)
πH

)
(20.17.3)

The 3-dB width in u-units is given by Δu = 2u3, where u3 is the solution of the
half-power condition, |F(u3)/F(0)|2 = 1/2,

J1

(
π
√
u2

3 −H2

)
π
√
u2

3 −H2
= 1√

2

I1(πH)
πH

(20.17.4)

The beam efficiency/encircled energy and the normalized directivity given by (20.16.6)
and (20.16.8), can be written in closed form,

E(u0) =

∫ u0

0
|F(u)|2 udu

(2a)2

∫ a
0
|A(r⊥)|2r⊥dr⊥

= 1−
J2

0

(
π
√
u2

0 −H2

)
+ J2

1

(
π
√
u2

0 −H2

)
I20(πH)−I21(πH)

D∞
(ka)2

=

∣∣∣∣∫ a
0
A(r⊥)2πr⊥dr⊥

∣∣∣∣2

πa2

∫ a
0
|A(r⊥)|2 2πr⊥dr⊥

=

[
2I1(πH)
πH

]2

I20(πH)−I21(πH)
(20.17.5)

†see Gradshtein [1791], entry 6.596.6.
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where the expression for E(u0) is valid for both u0 ≥ H and u0 < H, where in the latter
case, we have,

J2
0

(
π
√
u2

0 −H2

)
+ J2

1

(
π
√
u2

0 −H2

)
= I20

(
π
√
H2 − u2

0

)
− I21

(
π
√
H2 − u2

0

)
Example 20.17.1: Fig. 20.17.1 plots the functions |F(u)| andA(r⊥) for the two cases ofR = 60

and R = 100 dB, and demonstrates how to computeH and the 3-dB width Δu from R. The
MATLAB code below illustrates the computation,

us = fminbnd(@(u) -abs(jinc(u)), 1,2);
R0 = -20*log10(abs(jinc(us))); % find R0 = 17.57 dB

f = @(u,H) abs(jinc(sqrt(u.^2-H.^2)));

G = @(u,H) real(besseli(0,pi*sqrt(H^2-u^2))^2 - besseli(1,pi*sqrt(H^2-u^2))^2);

r = linspace(0,1,201); % units of a
u = linspace(0,20,2001);

for R = [60,100]

H0 = 0.04*R + 1.07;
H = fzero(@(H) R0 + 20*log10(f(0,H)) - R, H0);

u30 = 0.031*R + 0.46;
Du = 2*fzero(@(u) f(u,H)-f(0,H)/sqrt(2), u30); % 3-dB width
m0 = fzero(@(u) besselj(1,pi*u),1.25);
u0 = sqrt(H^2 + m0^2); % first null

E0 = 1 - G(u0,H)/G(0,H); % encircled to u0
D = f(0,H)^2 / G(0,H); % normalized directivity

F = 20*log10(f(u,H) / f(0,H)); % normalized to unity at u=0

A = besseli(0,pi*H*sqrt(1-r.^2)) / besseli(0,pi*H); % normalized to A(0)=1

figure; plot(u,F,’b-’);
figure; plot(r,A,’b-’);

end

Because of the log vertical scales, the first-null u0 =
√
H2 + μ2

1 was placed on each graph
at the level of −R dB. In the limit u0 → ∞, E(u0) in (20.17.5) tends to unity as it should.
However, for large R, most of the energy resides in the mainlobe and we expect E(u0) to
be practically unity. The computed values are shown below,

R H Δu D u0 E0

60 2.6548 1.6669 0.4209 2.9216 0.999996097701
100 4.3503 2.0611 0.2710 4.5180 0.999999999749
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Fig. 20.17.1 Hansen window, |Â(k⊥)| in dB versus u = ak⊥/π, and A(r⊥) versus r⊥/a.

20.18 Fourier-Bessel and Dini Series Expansions

In the two-dimensional circularly-symmetric case, the role of the Woodward-Lawson
sinc-basis expansions of Eq. (20.12.25), is played by the Fourier-Bessel and Dini series
expansions [1641,1642].

The Fourier-Bessel expansion is with respect to the zeros of J0(z), whereas the Dini
expansion uses the zeros of J1(z). The following Lommel-type integrals [1641,1642]
can be used to derive all the results in this section,

1

πa2

∫ a
0
J0

(
α
ρ
a

)
J0

(
β
ρ
a

)
2πρdρ = 2αJ1(α)J0(β)−2βJ1(β)J0(α)

α2 − β2

1

πa2

∫ a
0
J2

0

(
α
ρ
a

)
2πρdρ = J2

0(α)+J2
1(α)

(20.18.1)

In particular, if we set α = αn equal to the nth root of J0(z), that is, J0(αn)= 0,
then Eqs. (20.18.1) reduce to a form suitable for the Fourier-Bessel expansions,

1

πa2

∫ a
0
J0

(
αn
ρ
a

)
J0

(
β
ρ
a

)
2πρdρ = 2αnJ1(αn)J0(β)

α2
n − β2

1

πa2

∫ a
0
J2

0

(
αn
ρ
a

)
2πρdρ = J2

1(αn)

(20.18.2)
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Similarly, if αn is a zero of J1(z), that is, J1(αn)= 0, then,

1

πa2

∫ a
0
J0

(
αn
ρ
a

)
J0

(
β
ρ
a

)
2πρdρ = 2βJ1(β)J0(αn)

β2 −α2
n

1

πa2

∫ a
0
J2

0

(
αn
ρ
a

)
2πρdρ = J2

0(αn)

(20.18.3)

It is straightforward to show that if β tends to a zero, β→ αm, then, the right-hand
sides of the top equations in (20.18.2) or (20.18.3) become zero if αm �= αn, and they
reduce to the bottom equations if αm = αn.

The required roots of J0(z) and J1(z) can be computed easily by MATLAB’s built-in
function, fzero. The table below shows the first 10 rootsαn, as well as the values,αn/π,

n | J0, a(n) | J1, a(n) n | a(n)/pi | a(n)/pi
-------------------------- --------------------------
0 | - | 0 0 | - | 0
1 | 2.4048 | 3.8317 1 | 0.7655 | 1.2197
2 | 5.5201 | 7.0156 2 | 1.7571 | 2.2331
3 | 8.6537 | 10.1735 3 | 2.7546 | 3.2383
4 | 11.7915 | 13.3237 4 | 3.7534 | 4.2411
5 | 14.9309 | 16.4706 5 | 4.7527 | 5.2428
6 | 18.0711 | 19.6159 6 | 5.7522 | 6.2439
7 | 21.2116 | 22.7601 7 | 6.7519 | 7.2448
8 | 24.3525 | 25.9037 8 | 7.7516 | 8.2454
9 | 27.4935 | 29.0468 9 | 8.7514 | 9.2459
10 | 30.6346 | 32.1897 10 | 9.7513 | 10.2463

Note that J1(z) has an extra zero at z = 0. The table was generated by the following
MATLAB code, which can easily be modified to compute as many roots as desired,

for n=1:10,

a0(n) = fzero(@(z) besselj(0,z), pi*(n-1/4)); % zeros of J0
a1(n) = fzero(@(z) besselj(1,z), pi*(n+1/4)); % zeros of J1

fprintf(’%2d | %7.4f | %7.4f’, n, a0(n),a1(n));
fprintf(’ %2d | %7.4f | %7.4f\n’, n, a0(n)/pi,a1(n)/pi);

end

For large n, the zeros are given approximately by,

αn = π
(
n− 1

4

)
(for J0)

αn = π
(
n+ 1

4

)
(for J1)

(20.18.4)

which also serve to initialize the search argument of fzero. This trend is already evident
in the above table.
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Fourier-Bessel Series

Using (20.18.2) and reverting to our original transverse space and wavenumber variables,
r⊥, k⊥, we define the following aperture-limited and mutually orthogonal basis functions
and their Hankel transforms, for n = 1,2, . . . ,

Φn(r⊥) = J0(knr⊥)
πa2 J2

1(kna)
· χa(r⊥)

Φ̂n(k⊥) =
∫ a

0
Φn(r⊥)J0(k⊥r⊥)2πr⊥dr⊥ = 2knJ0(k⊥a)

aJ1(kna)(k2
n − k2⊥)

(20.18.5)

where kn are related to the roots of J0(z) via, kna = αn, so that,

J0(kna)= J0(αn)= 0 , n = 1,2, . . . (20.18.6)

The scale factors have been chosen so that the Hankel transforms satisfy the follow-
ing property, which is equivalent to the mutual orthogonality of Φn(r⊥),

Φ̂n(km)= δnm , n,m = 1,2, . . . , (20.18.7)

This can be proven by taking the limit k⊥ → km in (20.18.5), and using the Taylor
expansion, J0(k⊥a)≈ J′0(kma)(k⊥a−kma)= −J1(kma)(k⊥−km)a. The orthogonality
property follows by noting that,∫ a

0
Φn(r⊥)Φm(r⊥)2πr⊥dr⊥ = 1

πa2 J2
1(kma)

∫ a
0
Φn(r⊥)J0(kmr⊥)2πr⊥dr⊥

= Φ̂n(km)
πa2 J2

1(kma)
= δnm
πa2 J2

1(kma)

(20.18.8)

The Fourier-Bessel series is an expansion of an aperture-limited apodization function
A(r⊥) in theΦn(r⊥) basis, which also implies the corresponding expansion of its Hankel
transform Â(k⊥) in the Φ̂n(k⊥) basis,

A(r⊥) =
∞∑
n=1

cnΦn(r⊥)

Â(k⊥) =
∞∑
n=1

cn Φ̂n(k⊥)

(Fourier-Bessel series) (20.18.9)

The reason for the normalization choice (20.18.7) now becomes apparent: it imme-
diately implies that the expansion coefficients are the sampled values of the Hankel
transform at the Bessel function zeros, that is,

cn = Â(kn)=
∫ a

0
A(r⊥)J0(knr⊥)2πr⊥dr⊥ , n = 1,2, . . . (20.18.10)
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Dini Series

Similar expansions can be written for the Dini series, which uses the zeros of J1(z).
Now, the zero-wavenumbers kn must be defined by kna = αn, which also include the
zero case, k0a = α0 = 0, so that,

J1(kna)= J1(αn)= 0 , n = 0,1,2, . . . (20.18.11)

Using (20.18.3), we define the Dini basis functions and their Hankel transforms by,

Φn(r⊥) = J0(knr⊥)
πa2 J2

0(kna)
· χa(r⊥)

Φ̂n(k⊥) =
∫ a

0
Φn(r⊥)J0(k⊥r⊥)2πr⊥dr⊥ = 2k⊥J1(k⊥a)

aJ0(kna)(k2⊥ − k2
n)

(20.18.12)

Again, the normalization factors have been chosen so that,

Φ̂n(km)= δnm , n,m = 1,2, . . . , (20.18.13)

from which the mutual orthogonality property follows, as in (20.18.8),∫ a
0
Φn(r⊥)Φm(r⊥)2πr⊥dr⊥ = δnm

πa2 J2
0(kna)

, n,m = 0,1,2, . . . (20.18.14)

The function Φ̂n(k⊥)may be rewritten as follows, and can be evaluated at any vector
of k⊥ and any Bessel root αn = kna with the MATLAB function jinc,

Φ̂n(k⊥)= 2k⊥J1(k⊥a)
aJ0(kna)(k2⊥ − k2

n)
= 2J1(k⊥a)

k⊥a
· k2⊥
k2⊥ − k2

n
· 1

J0(kna)
(20.18.15)

The n = 0 case, reduces to the usual Airy pattern, with Φ̂0(0)= 1,

Φ̂0(k⊥)= 2J1(k⊥a)
k⊥a

The Dini series expansion of an apodization function and its Hankel transform will be,

A(r⊥) =
∞∑
n=0

cnΦn(r⊥)

Â(k⊥) =
∞∑
n=0

cn Φ̂n(k⊥)

(Dini series) (20.18.16)

where, again, cn are the sampled values of the Hankel transform,

cn = Â(kn)=
∫ a

0
A(r⊥)J0(knr⊥)2πr⊥dr⊥ , n = 0,1,2, . . . (20.18.17)

The Dini series is the 2-D version of the Woodward-Lawson sampling expansion in
the 1-D sinc basis. To compare the two, we write (20.18.16) explicitly, and also rewrite
Eq. (20.12.25) by defining kn = nπ/a in that case,
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Â(k⊥)=
∞∑
n=0

Â(kn)
2J1(k⊥a)
k⊥a

· k2⊥
k2⊥ − k2

n
· 1

J0(kna)

Â(kx)=
∞∑

n=−∞
Â(kn)

sin(kxa− kna)
a(kx − kn)

(20.18.18)

Noting that sin(kxa−kna)= sin(kxa−πn)= (−1)n sin(kxa), and folding the sum
over n into non-negative values of n, assuming that Â(kx) is even in kx, we can rewrite
the Dini and Woodward-Lawson cases in a very similar way,

Â(k⊥)= Â(0) 2J1(k⊥a)
k⊥a

+
∞∑
n=1

Â(kn)
2J1(k⊥a)
k⊥a

· k2⊥
k2⊥ − k2

n
· 1

J0(kna)

Â(kx)= Â(0) sin(kxa)
kxa

+
∞∑
n=1

Â(kn)
2 sin(kxa)
kxa

· k2
x

k2
x − k2

n
· (−1)n

(20.18.19)

where we note that the factor J0(kna) alternates in sign exactly like (−1)n.
The expansions (20.18.9) and (20.18.16) are useful only if the number of terms is

finite. In this respect, Dini’s series is more useful in practice. Indeed, a finite number
of terms is needed in Taylor’s n-bar window discussed in the next section. A finite Dini
series has also been used in the design of super-resolving pupils [1497,1498].

20.19 Taylor’s Two-Dimensional N-bar Window

Taylor’s two-dimensional generalization of hisn-bar window [1603] is implemented with
the help of the Dini series. As in the 1-D case, it proves convenient to work in u-units,
defined as follows,

u = k⊥a
π
, μn = knaπ = αn

π
, n = 0,1,2, . . . (20.19.1)

where αn are the zeros of J1(z). Defining the aperture pattern by F(u)= Â(k⊥) at
k⊥ = πu/a, then, F(μn)= Â(kn), and the Dini series expansions (20.18.16) will read,

A(r⊥) =
∞∑
n=0

F(μn)
J0(πμnr⊥/a)
πa2 J2

0(πμn)
· χa(r⊥)

F(u) =
∞∑
n=0

F(μn)
2J1(πu)
πu

· u2

u2 − μ2
n
· 1

J0(πμn)

(20.19.2)

As in the 1-D case, the function F(u) of the n-bar distribution is built out of n̄− 1
zeros of the ideal, slightly dilated, Chebyshev pattern, with the rest of the zeros taken
from the Airy jinc-function pattern, whose zeros are the μn for n > 0. Thus, the 2-D
version of Eq. (20.15.6) will be,

cos
(
π
√(
u/σ

)2 −A2

)
= cosh(πA)·

∞∏
n=1

[
1− u2

σ2
[
A2 + (n− 1

2)2
]]

jinc(u)= 2J1(πu)
πu

=
∞∏
n=1

[
1− u

2

μ2
n

] (20.19.3)
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and F(u) is constructed as,

F(u)= cosh(πA)·
n̄−1∏
n=1

[
1− u2

σ2
[
A2 + (n− 1

2)2
]] · ∞∏

n=n̄

[
1− u

2

μ2
n

]
(20.19.4)

Since the value at u = 0 is, F(0)= cosh(πA), it follows that the sidelobe attenuation
R (in dB) will be given in terms of the parameter A by the same equation as (20.15.3),

R = 20 log10

[
cosh(πA)

]
� A = 1

π
acosh(10R/20) (20.19.5)

As in the 1-D case, the dilation factor σ is chosen such that two groups of zeros
match at n = n̄, that is,

σ
√
A2 + (n̄− 1

2

)2 = μn̄ ⇒ σ = μn̄
A2 + (n̄− 1

2

)2 (20.19.6)

Since F(u) vanishes by construction at all Bessel zeros μn with n ≥ n̄, that is,
F(μn)= 0, for n ≥ n̄, it follows that the Dini representation (20.19.2) will consist of a
finite sum only over the surviving samples, F(μn), for 0 ≤ n ≤ n̄− 1,

A(r⊥) =
n̄−1∑
n=0

F(μn)
J0(πμnr⊥/a)
πa2 J2

0(πμn)
· χa(r⊥)

F(u) =
n̄−1∑
n=0

F(μn)
2J1(πu)
πu

· u2

u2 − μ2
n
· 1

J0(πμn)

(20.19.7)

In order to calculate the required values of F(μn), we follow the same procedure as
in Eq. (20.15.16) and rewrite (20.19.4) in the pole/zero cancellation form,

F(u)= cosh(πA)·2J1(πu)
πu

·

n̄−1∏
n=1

[
1− u2

σ2
[
A2 + (n− 1

2)2
]]

n̄−1∏
n=1

[
1− u

2

μ2
n

] (20.19.8)

By taking the limit u → μn and allowing for such cancellations,† we obtain the
following expression [1603] for F(μn), for 1 ≤ n ≤ n̄− 1,

F(μn)= − cosh(πA)·
J0(πμn)

n̄−1∏
m=1

[
1− μ2

n

σ2
[
A2 + (m− 1

2)2
]]

n̄−1∏
m=1
m�=n

[
1− μ

2
n
μ2
m

] (20.19.9)

and F(0)= 1. The 3-dB width can be calculated by (20.15.13), that is,

Δu = 2σ

√
A2 − 1

π2
acosh2

(
1√
2

cosh(πA)
)

(20.19.10)

†using the Taylor expansion around the μn zero, J1(πu)≈ J′1(πμn)π(u− μn)= J0(πμn)π(u− μn).
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The encircled energy/beam gain can be defined by (20.16.6), relative to the first-null

interval [0, u0], where, u0 = σ
√
A2 + 1

4 ,

E(u0)=

∫ u0

0
|F(u)|2 udu

(2a)2

∫ a
0
|A(r⊥)|2r⊥dr⊥

=
π2

2

∫ u0

0
|F(u)|2 udu

πa2

∫ a
0
|A(r⊥)|2 2πr⊥dr⊥

(20.19.11)

The numerator can be evaluated numerically, while the denominator can be ex-
pressed as a (finite, in this case) sum over the pattern sampled values Â(kn), as follows
from the Dini series expansion and orthogonality property (20.18.14),

πa2
∫ a

0
|A(r⊥)|2 2πr⊥dr⊥ =

n̄−1∑
n=0

∣∣∣∣∣ Â(kn)J0(kna)

∣∣∣∣∣
2

(20.19.12)

Similarly, the two-dimensional limiting directivity, normalized to its uniform value,
Dunif = 4π(πa2)/λ2 = (ka)2, is given by Eq. (20.16.8),

D∞
(ka)2

= |Â(0)|2

πa2

∫ a
0
|A(r⊥)|2 2πr⊥dr⊥

= |Â(0)|2
n̄−1∑
n=0

∣∣∣∣∣ Â(kn)J0(kna)

∣∣∣∣∣
2 (20.19.13)

Given R, n̄, the MATLAB function, tnb2, calculates the parameters A,Δu,D∞, E0,
and the coefficient and Bessel zero vectors, F(μn), μn, n = 0,1, . . . , n̄− 1. It has usage,

[A,Fn,mu,Du,D,E] = tnb2(R,nb); % Taylor’s n-bar window (2-D)

Example 20.19.1: This example demonstrates how to use tnb2 to calculate F(u) andA(r⊥) in
a vectorized fashion. Fig. 20.19.1 plots the functions |F(u)| and A(r⊥) for the two cases
of R = 60 dB, n̄ = 10, and, R = 100, n̄ = 30. The MATLAB code below illustrates the
computation,

R = 100; nb = 30;

[Ap,Fn,mu,Du,D,E] = tnb2(R,nb);

r = linspace(0,1,201); % units of a
u = linspace(0,20,2001);

F = 0; A = 0;
for n=1:nb, % calculate F(u) and A(r)

F = F + Fn(n) * jinc(u,mu(n));
A = A + Fn(n) * besselj(0,pi*mu(n)*r)/besselj(0,pi*mu(n))^2/pi;

end

sigma = mu(nb+1) / sqrt(Ap^2 + (nb-0.5)^2);
u0 = sigma * sqrt(Ap^2 + 1/4); % first null

A = A/max(A); F = abs(F); Fdb = 20*log10(F/max(F));

figure; plot(u,Fdb,’b-’, u0,-R,’r.’);
figure; plot(r,A,’b-’);
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Fig. 20.19.1 Taylor’s n-bar window, |F(u)| in dB versus u, and A(r⊥) versus r⊥/a.

As in Example 20.17.1, because of the log vertical scales, the first-null u0 was placed on
each graph at the level of −R dB. Because R is large, most of the energy resides in the
mainlobe and E(u0) is practically unity. The computed values are shown below,

R A Δu D u0 E0

60 2.4194 1.5098 0.5180 2.5822 0.999887111028
100 3.8853 1.8691 0.3310 3.9824 0.999999948865

The results of this example can be compared directly with those of Example 20.17.1 on the
Hansen window with the same specifications. One observes that the n-bar design produces
a narrower mainlobe because the sidelobes remain almost equiripple for a while. ��

20.20 Star-Shaped Masks, Starshade Occulters

The realization and manufacture of a smoothly varying circularly symmetric apodization
functionA(r⊥) is a challenging problem, requiring special materials and transparencies
with precise tolerances to achieve the design objectives. The realization would be more
straightforward if A(r⊥) were binary, consisting simply of either opaque (A = 0) or
fully transparent (A = 1), open, parts.
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In an interesting paper, Vanderbei, Spergel, and Kasdin [1531] have shown that it is
possible to replace any† smooth circularly symmetric apodizerA(r⊥)with an equivalent
binary mask consisting of a number of star-shaped vanes, as shown in Fig. 20.20.1.

For a given number of vanes N, the equivalence is valid over a finite wavenumber
range, 0 ≤ k⊥ ≤ kmax, with the outer limit kmax increasing with N. The shape of the
vanes depends on the shape of A(r⊥) and the vanes converge to a tip at the edge of the
star-shaped aperture provided A(r⊥) is a decreasing function of r⊥, as is typically (but
not always) the case.

To see this equivalence, consider a set ofN opaque vanes, with the surface openings
between the vanes defined as the following set of cylindrical coordinates (r⊥,φ),

S = {(r⊥,φ) ∣∣ 0 ≤ r⊥ ≤ a , φ ∈ Φ(r⊥)
}

Φ(r⊥) =
N−1⋃
n=0

[
π(2n+ 1)

N
− π
N
A(r⊥),

π(2n+ 1)
N

+ π
N
A(r⊥)

] (20.20.1)

where A(r⊥) is the equivalent smooth apodization function to be realized by the star-
shaped mask, and [α,β] denotes the angle interval, α ≤ φ ≤ β. Using cylindrical
coordinates for the transverse wavenumber k⊥ as defined in Eq. (20.1.10), it follows that
the Fourier pattern (20.16.1) over the open aperture S, will be,

Â(k⊥,ψ)=
∫
S
ejk⊥·r⊥ d2r⊥ =

∫
S
ejk⊥r⊥ cos(ψ−φ) r⊥dr⊥dφ (20.20.2)

The exponential may be replaced by a sum over Bessel functions using the identity
of Eq. (19.12.24), that is,

ejk⊥r⊥ cos(ψ−φ) =
∞∑
m=0

jmJm(k⊥r⊥) ejm(ψ−φ) (20.20.3)

Then, Eq. (20.20.2) becomes,

Â(k⊥,ψ)=
∞∑
m=0

jmejmψ
∫ a

0
Jm(k⊥r⊥)

(∫
Φ(r⊥)

e−jmφ dφ
)
r⊥dr⊥ (20.20.4)

The integral over Φ(r⊥) is calculated by assuming initially thatm is any real number,

∫
Φ(r⊥)

e−jmφ dφ =
N−1∑
n=0

∫ [2n+1+A(r⊥)
]
π/N[

2n+1−A(r⊥)
]
π/N

e−jmφ dφ

= 2ejπm/N
sin
(
πmA(r⊥)/N

)
m

N−1∑
n=0

e2πjnm/N

= 2ejπm/N
sin

(
πmA(r⊥)/N

)
m

1− e2πjm

1− e2πjm/N

(20.20.5)

and taking appropriate limits at integer values ofm, we have more explicitly,

†assumed to be real-valued and satisfying, 0 ≤ A(r⊥)≤ 1.
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∫
Φ(r⊥)

e−jmφ dφ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2πA(r⊥) , if m = 0

2ejπp
sin
(
πpA(r⊥)

)
p

, if m = pN, p �= 0

0 , other m

(20.20.6)

It follows that,

Â(k⊥,ψ) =
∫ a

0
J0(k⊥r⊥)A(r⊥)2πr⊥dr⊥

+ 2
∞∑
p=1

ejpNψ jpN
ejπp

p

∫ a
0
JpN(k⊥r⊥) sin

(
πpA(r⊥)

)
r⊥dr⊥

(20.20.7)

For k⊥a < 2
√
N + 1, the p ≥ 1 terms can be shown [1531] to converge rapidly to

zero with increasingN. Therefore, effectively only the first term survives, which demon-
strates the equivalence of the star-shaped mask with the given circularly-symmetric
apodization function A(r⊥), satisfying the Hankel transform relationship (20.16.2).

Example 20.20.1: Fig. 20.20.1 shows the star-shaped masks withN = 20, corresponding to the
two designed cases of Example 20.19.1 with sidelobe levels R = 60 dB and R = 100 dB.
The MATLAB code for producing these figures is as follows (shown for R = 100),

R = 60 dB R = 100 dB

Fig. 20.20.1 Star-shaped mask realizations of Example 20.19.1.

r = linspace(0,1,501); % units of a

u = linspace(0,20,2001); % wavenumber in u-units

R = 100; nb = 30;

[Ap,Fn,mu] = tnb2(R,nb);
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F = 0; A = 0;
for n=1:nb,

F = F + Fn(n) * jinc(u,mu(n));
A = A + Fn(n) * besselj(0,pi*mu(n)*r)/besselj(0,pi*mu(n))^2/pi;

end

A = A/max(A);
F = abs(F); Fdb = 20*log10(F/max(F));

figure; plot(u,Fdb,’b-’); % wavenumber pattern
figure; plot(r,A,’b-’); % apodization function A(r)

N = 20;

figure; hold on
for n=0:N-1, % draw N vanes

phi = (2*n+1-A)*pi/N; % lower half of a vane
x = r.*cos(phi); y = r.*sin(phi);
plot(x,y,’k-’);

phi= (2*n+1+A)*pi/N; % upper half of a vane
x = r.*cos(phi); y = r.*sin(phi);
plot(x,y,’k-’);

end
axis equal; axis square;

To see what happens whenA(r⊥) is not monotonically decreasing, run the same code with
R = 50 dB and n̄ = 20. ��

Starshade Occulters

The search for extrasolar Earth-like planets orbiting nearby stars is a challenging task
for ordinary telescopes—the light from the star blots out the weak light from the planet.
The light intensity from such a typical planet is expected to be 100 dB (i.e., 10−10 times)
weaker than that of its parent star.

The use of an external occulter, or starshade, that blocks the starlight from reaching
the telescope has been proposed as possible solution [1516–1544]. However, a plain
opaque disk would not work as an occulter because of the spot of Arago caused by light
diffraction around the edges of the disk. The shape of the occulter must be properly
designed to suppress such diffracted light. A typical starshade is depicted in Fig. 20.20.2.

Fig. 20.20.2 Starshade occulter.

If the occulter has radius R and is positioned at a distance z from the telescope,
the planet to be detected must lie beyond the edge of the occulter, that is, at an angular
separation of at least, θ ≈ tanθ = R/z. This can be solved for z to determine the proper
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placement of the occulter for a given R and desired θ, that is, z = R/θ. For example,
for an occulter of radius of 25 meters and a nominal angle of 65 mas (milliarcsec), we
must have,

z = R
θ
= 25

(0.065/3600)π/180
= 79332.6 km

Such distances z are large enough so that the Fresnel approximation can be applied
at optical wavelengths, but are too short for the simpler Fraunhofer approximation. For
example, for R = 25 meters and λ = 500 nm, we obtain the following estimates of the
Fresnel and Fraunhofer distances beyond which the respective approximations can be
applied (see also Example 20.3.1),

zfresnel = 1

k
(kR)4/3= 17 km , zfraunh = 1

k
(kR)2= 7.85×106 km

To apply the Fresnel approximation to this problem, we will assume that the tele-
scope and starshade are aligned with the star under observation and choose coordinates
so that the starshade is at z = 0 and the telescope at a distance z to the right as shown
above. The light from the star is assumed to be a plane wave of amplitude E0 incident
normally on the starshade. Thus, the plane wave measured at distance z will be E0e−jkz.

The starshade may be designed to apply a circularly symmetric apodization function,
say, A(r⊥), on the incident plane wave. The complementary aperture to the starshade
will have a corresponding apodization function Ac(r⊥)= 1−A(r⊥). Using the Fresnel
approximation of Eq. (20.1.13), the occulted field measured at the plane of the telescope
at distance z can be expressed [1535,1543] either in terms of A(r⊥), or through the
Babinet principle, in terms of Ac(r⊥) (see also Problem 20.9),

E(r⊥, z) = E0 e−jkz
jk

2πz
e−jkr

2⊥/2z
∫∞

0
A(r′⊥) e−jkr

′2⊥ /2z J0

(kr⊥r′⊥
z

)
2πr′⊥dr′⊥

= E0 e−jkz
[

1− jk
2πz

e−jkr
2⊥/2z

∫∞
0
Ac(r′⊥) e−jkr

′2⊥ /2z J0

(kr⊥r′⊥
z

)
2πr′⊥dr′⊥

]
The r′⊥ integration in the latter expression can be restricted to be over the effective

radius, say, R, of the complementary hole aperture, so that,

E(r⊥, z)= E0 e−jkz
[

1− jk
2πz

e−jkr
2⊥/2z

∫ R
0
Ac(r′⊥) e−jkr

′2⊥ /2z J0

(kr⊥r′⊥
z

)
2πr′⊥dr′⊥

]
(20.20.8)

The design requirement forA(r′⊥) is that,
∣∣E(r⊥, z)∣∣2 ≤ 10−10 |E0|2, over an appro-

priate range, 0 ≤ r⊥ ≤ rmax ≤ R. Once A(r′⊥) is found, Eq. (20.20.8) may be computed
numerically, and may be realized as a star-shaped mask as we discussed above. As an
example, we consider the “offset hyper-gaussian” apodization function introduced by
Cash for the New Worlds Observer (NWO) platform [1534,1540,1543],

A(r⊥)=
⎧⎪⎨⎪⎩

0 , r⊥ ≤ a
1− exp

[
−
(
r⊥ − a
b

)m]
, r⊥ > a

(20.20.9)

and its complementary function, Ac(r⊥)= 1−A(r⊥),

Ac(r⊥)=
⎧⎪⎨⎪⎩

1 , r⊥ ≤ a
exp

[
−
(
r⊥ − a
b

)m]
, r⊥ > a

(20.20.10)
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These functions are plotted in Fig. 20.20.3 for the proposed values [1534] of the
parameters, a = b = 12.5 meters, m = 6, with the overall radius of the occulter R =
31.25 meters, so that a = b = 0.4R, and telescope-occulter distance of z = 80,000
km. We note that the inflection point occurs at r⊥ = a + b(1 − 1/m)1/m, which is
approximately equal to a+ b for largem.

The corresponding star-shaped realization using N = 16 petals is also shown in the
same figure. Such petal realizations, but using polynomial functions A(r⊥), were first
considered by Marchal [1517].
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Fig. 20.20.3 Occulting apodizer and its star-shaped realization.

Although the definition (20.20.9) contains no upper cutoff for r⊥, the valueR = 31.25
is a practical cutoff beyond which the exponential term becomes effectively zero. In
computing the integral in (20.20.8) numerically, we found it beneficial to extend the
integration range to 1.5R.

Fig. 20.20.4 plots the occulted field intensity,
∣∣E(r⊥, z)∣∣2

versus transverse distance
r⊥ at the plane of the telescope at distance z = 80,000 km. The left graph shows the
same four wavelength cases as in [1543], that is, λ = 2000, 1000, 500, 250 nm. We
observe that the desired 100-dB suppression is well satisfied within a 5-meter radius for
the optical band.

The right graph shows the case of a plain opaque circular disk of radius R that has
A(r⊥)= u(r⊥−R) orAc(r⊥)= u(R−r⊥), at wavelengthλ = 500 nm. The spot of Arago
phenomenon is evident at the center r⊥ = 0. It is precisely the diffracted components
near r⊥ = 0 that are being eliminated by the apodized occulter.

The MATLAB code used to generate the above graphs is as follows, in which the inte-
grations in (20.20.8) are implemented with the tanh-sinh quadrature function, quadts,

R = 31.25; % meters
a = 0.4; b = 0.4; m = 6; % a,b in units of R
z = 80000e3; % meters, z = 80000 km
N = 16; % number of petals

A = @(r) (r>=a) .* (1 - exp(-((r-a)/b).^m)); % occulter
Ac = @(r) 1 - A(r); % complementary
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Fig. 20.20.4 Occulted field intensity |E(r⊥, z)|2 versus r⊥, at plane of telescope.

r = linspace(0,1,501);

figure; plot(r,A(r),’b-’, r,Ac(r),’r--’);

figure; hold on % generate star-shaped mask
for n=0:N-1, % Ac(r) could also be used

phi = (2*n+1-A(r))*pi/N;
x = r.*cos(phi); y = r.*sin(phi);
plot(x,y,’k-’);
phi= (2*n+1+A(r))*pi/N;
x = r.*cos(phi); y = r.*sin(phi);
plot(x,y,’k-’);

end
axis equal; axis square;

Rq = 1.5; % extended integration range
[wq,rq] = quadts(0,Rq,8); % quadts weights and evaluation points

E = [];

for la = [250, 500, 1000, 2000] % nanometers

k = 2*pi/la * 1e9; % rads/meter
F = k*R^2/z; % Fresnel number = F/(2*pi) = R^2/(lambda*z)

for i=1:length(r) % Eq.(20.20.11)
I = wq’ * (besselj(0,F*r(i)*rq) .* exp(-j*F*rq.^2/2) .* Ac(rq) .* rq);
Ek(i) = 1 - j*F * exp(-j*F*r(i)^2/2) * I;

end

E = [E; abs(Ek).^2]; % intensities

end

figure; semilogy(r*R, E(4,:), ’k:’, r*R, E(3,:), ’m-.’, ...
r*R, E(2,:), ’b-’, r*R, E(1,:), ’r--’);
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For the purpose of computing Eq. (20.20.8), we may rewrite it in terms of the nor-
malized variables, ρ = r⊥/R, ρ′ = r′⊥/R, and the Fresnel number, F = kR2/z,†

E(ρ, z)= E0 e−jkz
[

1− jF e−jFρ2/2
∫ 1

0
Ac(ρ′) e−jFρ

′2/2 J0(Fρρ′)ρ′dρ′
]

(20.20.11)

The computed Fresnel numbers were as follows for the four wavelength cases,

λ (nm) F F/(2π)
250 306.80 48.83
500 153.40 24.41

1000 76.70 12.21
2000 38.35 6.10

References [1516–1544] contain further details on the design of optimum apodizers
for occulters and coronagraphs, star-shaped and spiderweb masks. See also the NWO
web site, http://newworlds.colorado.edu/.

20.21 Superresolving Apertures

The emphasis of the apodization designs that we discussed in Sections 20.12–20.20,
was to suppress the sidelobes in order to be able to detect weak sources. We mentioned
that as one tries to suppress the sidelobes, the mainlobe gets wider, thus, potentially
decreasing the resolution in Rayleigh’s sense that two sources of approximately equal
strength cannot be distinguished if they both fall within the range of the mainlobe.

The question then arises whether it is possible to make the mainlobe narrower than
the diffraction limit of the uniform aperture while at the same time sufficiently suppress-
ing the sidelobes—at least within a finite field of view (FOV), i.e., within a finite distance
from the mainlobe. More generally, is it possible to obtain any desired wavenumber
pattern, even infinitely narrow, from an aperture or source of finite size?

The answer is that “in principle, yes,” but “in practice, no.” The question has been
addressed by Bouwkamp and de Bruijn [1599] for linear antennas, and by Woodward and
Lawson [1601] for apertures, as well as by Toraldo di Francia [1481,1482] for circular
apertures. See also the additional references on superdirective antennas [1599–1618]
and [1479–1500] on extensions of Toraldo di Francia’s approach and its experimental
demonstration [1494].

Even though such superresolving designs work well within the FOV, they are usu-
ally accompanied by incredibly large sidelobes outside the FOV, where most of the en-
ergy is concentrated, or, in the case of aperture antennas they are accompanied by very
large reactive energy stored in the vicinity of the antennas. Moreover, because of the
widely ranging values of the design parameters, the manufacturing tolerances become
extremely difficult to meet. These remarks will be illustrated below.

†actually the Fresnel number is F/(2π)= R2/(λz).

1008 20. Diffraction – Fourier Optics

Toraldo Rings and Annuli

We recall that a uniform circular aperture of radius a, has the standard, 2J1(v)/v,
wavenumber pattern, that is, if A(r⊥)= u(a− r⊥), then

Â(k⊥)=
∫∞

0
A(r⊥)J0(k⊥r⊥)2πr⊥dr⊥ = πa2 · 2J1(k⊥a)

k⊥a
(20.21.1)

whose first null at k⊥a = v1 = 3.8317 determines the extent of the mainlobe. Introduc-
ing the variable v = k⊥a, we may define F(v)= Â(k⊥) and write (20.21.1) as,

F(v)= πa2 · 2J1(v)
v

(20.21.2)

The integral (20.21.1) is a linear combination of J0(k⊥r⊥) ring patterns of different
radii r⊥. As noted by Rayleigh and Airy [1479,1480], a single such narrow ring, say
at radius a, would have A(r⊥)= δ(r⊥ − a) and Â(k⊥)= 2πa · J0(k⊥a), or, F(v)=
2πaJ0(v), and would exhibit better resolution than the uniform case, having a narrower
mainlobe since the first null of the pattern is now at k⊥a = v0 = 2.4048.† However, this
comes at the expense of higher sidelobes. The ring and the uniform cases are compared
in the top-left graph of Fig. 20.21.2.

The “superresolution gain”, defined as the ratio of the first null of the uniform case
to the first null of the superresolved mainlobe, would be in this case, g = v1/v0 =
3.8317/2.4048 = 1.5934.

Toraldo di Francia’s idea [1481] was to try to diminish the sidelobes of J0 without
altering the first null at v0, by forming a linear combination of a finite number of rings
such that additional zeros are introduced near the sidelobes of J0. Fig. 20.21.1 depicts
the case of four rings. Alternatively, in order to allow more light through, he also pro-
posed the use of annuli [1482], as shown on the right in this figure.

Fig. 20.21.1 Toraldo rings and annuli (N = 4).

The simplest example from [1481] is a pattern formed by three rings at radii, a1 =
a/3, a2 = 2a/3, and a3 = a,

Â(k⊥) = c1J0(k⊥a1)+c2J0(k⊥a2)+c1J0(k⊥a3) , or,

F(v) = c1J0

(
v
3

)
+ c2J0

(
2v
3

)
+ c3J0(v)

†v1, v0 are the smallest non-zero roots satisfying, J1(v1)= J0(v0)= 0.
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Fig. 20.21.2 Toraldo di Francia examples with N = 1,3,4,5 rings, gain g = 1.59.

Choosing the extra zero to be at v = v1 = 3.8317, the coefficients are then deter-
mined by the three conditions, F(0)= 1, F(v0)= F(v1)= 0,

F(0) = c1J0(0)+c2J0(0)+c3J0(0)= c1 + c2 + c3 = 1

F(v0) = c1J0

(
v0

3

)
+ c2J0

(
2v0

3

)
+ c3J0(v0)= 0

F(v1) = c1J0

(
v1

3

)
+ c2J0

(
2v1

3

)
+ c3J0(v1)= 0

The solution of these equations gives, [c1, c2, c3]= [0.9505, −1.7723, 1.8218], and
the resulting pattern is plotted in the top-right graph of Fig. 20.21.2. The suppression
of the first sidelobe of J0 has resulted in a finite field of view, but also in very large
sidelobes further away. The FOV can be further widened by increasing the number of
rings and imposing additional zeros at further sidelobes.

In general, using N rings at radii an, n = 1,2, . . . ,N, the aperture distribution and
pattern are constructed as follows,

1010 20. Diffraction – Fourier Optics

A(r⊥) =
N∑
n=1

cn
δ(r⊥ − an)

2πan

Â(k⊥) =
N∑
n=1

cnJ0(k⊥an) , F(v)=
N∑
n=1

cnJ0(αnv)

(20.21.3)

where αn = an/a, n = 1,2, . . . ,N. The N coefficients cn are determined by imposing
the N conditions, F(0)= 1 and F(vi)= 0 at N − 1 appropriately chosen zeros, vi,
i = 1,2, . . . ,N − 1, resulting in the N×N linear system of equations,

F(0) =
N∑
n=1

cn = 1

F(vi) =
N∑
n=1

cnJ0(αnvi)= 0 , i = 1,2, . . . ,N − 1

(20.21.4)

where the ring radii an = αna can be arbitrarily chosen. Following Toraldo di Francia,
we choose them to be equally-spaced in [0, a], that is, αn = n/N, n = 1,2, . . . ,N.

Two further examples from [1481] shown in the lower two graphs in Fig. 20.21.2,
correspond to the cases of N = 4 and N = 5 rings, with the N − 1 zeros chosen to
alternate between the zeros of J0(v) and J1(v),

N = 4, vi = [2.4048, 3.8317, 5.5201]

N = 5, vi = [2.4048, 3.8317, 5.5201, 7.0156]

and resulting in the coefficients cn,

N = 4, cn = [−2.8130, 7.6524, −7.5827, 3.7433]

N = 5, cn = [13.6152, −37.3952, 43.8297, −27.7134, 8.6636]

We observe again the widening of the FOV, but at the expense of large values beyond.
The above examples had the same superresolution gain ofg = v1/v0 = 3.8317/2.4048 =
1.5934. The next example, from [1488,1489], has gain g = 2 and attempts to create a
mainlobe that closely follows the compressed Airy mainlobe, that is,

F(v)= 2J1(gv)
gv

(20.21.5)

Five zeros are chosen (N = 6) to coincide with the first five non-zero roots of
J1(gv)= 0, with the six constraint equations, F(0)= 1 and F(vi)= 0, i = 1,2, . . . ,5.
The resulting pattern is plotted on the top-left in Fig. 20.21.3, and on bottom-left in
semilogy units. We observe that the mainlobe closely follows that of Eq. (20.21.5). The
computed zeros vi and coefficients ci are,
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Fig. 20.21.3 Superresolution gain g = 2, with 5 zeros of J1(gv)= 0, and interpolated zeros.

i vi ci
1 1.915853 −2.291191×102

2 3.507793 6.545794×102

3 5.086734 −8.196087×102

4 6.661846 6.027091×102

5 8.235315 −2.618712×102

6 5.431055×101

In order to improve the FOV and further reduce the sidelobes, we may introduce ad-
ditional zeros between the above zeros. For simplicity, we take them to be the midpoint
averages between the original zeros. The resulting pattern is plotted on the top-right in
Fig. 20.21.3 and on the bottom-right in semilogy units. The FOV has been effectively ex-
tended from v = 5 to about v = 7, but the price is to introduce incredibly large sidelobes
outside the FOV. Contrary to intuition, suppressing the FOV sidelobes actually resulted
in a slightly narrower mainlobe than that of (20.21.5), shifting the extra energy to the
far sidelobes. The zeros and coefficients were as follows in this case,
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i vi ci
1 1.915853 −2.803205×109

2 2.711823 8.622638×109

3 3.507793 −1.244824×1010

4 4.297264 1.173322×1010

5 5.086734 −7.909577×109

6 5.874290 3.905794×109

7 6.661846 −1.396901×109

8 7.448580 3.457084×108

9 8.235315 −5.332753×107

10 3.884012×106

The extremely large values of the coefficients and their wide range of variation by
four orders of magnitude would be very difficult, if not impossible, to realize in practice.
The MATLAB code used to generate these graphs is as follows,

g = 2; % superresolution gain
N = 6; % number of rings, N-1 zeros

an = (1:N)/N; % radii
vi = zeros(N,1); % vi(1)=0 is not a zero, but corresponds to F(0)=1

for i=1:N-1,
vi(i+1) = fzero(@(v) besselj(1,v*g), (i+1/4)*pi/g); % zeros of J1(g*v)=0

end

Vi = vi * an; % NxN matrix [vi/N, 2*vi/N, 3*vi/N, ..., N*vi/N]
Fi = [1; zeros(N-1,1)]; % Fi(1)=1 corresponds to vi(1)=0

c = besselj(0,Vi) \ Fi; % expansion coefficients, besselj is vectorized

v = linspace(0,10,2001)’; % column vector

V = v * an; % matrix [v/N, 2*v/N, 3*v/N, ..., N*v/N]

F = abs(besselj(0, V) * c).^2; % evaluate F(v), same size as v

figure; plot(v,F,’b-’); ylim([0, 1]);

% --- interpolated case ---

y = filter([1,1]/2,1,vi); % compute averages between zeros
vi(2:2:2*N-2) = vi(2:N); % keep original zeros
vi(3:2:2*N-3) = y(3:N); % add interpolated zeros, new vi has length 2*N-2

N = 2*N-2; % new N
an = (1:N)/N; % new radii

Vi = vi * an;
Fi = [1; zeros(N-1,1)];

c = besselj(0,Vi) \ Fi; % expansion coefficients
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V = v * an;

F = abs(besselj(0, V) * c).^2;

figure; plot(v,F,’b-’); ylim([0, 1]);

Toraldo di Francia’s alternative method of using annuli instead of rings is as easily
implemented. The nth annulus is defined by the radial range, an−1 ≤ r⊥ ≤ an, for
n = 1,2, . . . ,N, where by convention, a0 = 0, so that the first annulus is the circle of
radius a1. The aperture distribution (normalized by πa2) and pattern are in this case,

A(r⊥) = 1

πa2

N∑
n=1

cn
[
u(an − r⊥)−u(r⊥ − an−1)

]

Â(k⊥) = 1

πa2

N∑
n=1

cn
[
πa2

n
2J1(k⊥an)
k⊥an

−πa2
n−1

2J1(k⊥an−1)
k⊥an−1

]

F(v) =
N∑
n=1

cn
[
α2
n

2J1(αnv)
αnv

−α2
n−1

2J1(αn−1v)
αn−1v

]
(20.21.6)

where as before, αn = an/a, n = 0,1, . . . ,N, and the values are chosen to be αn =√
n/N, so that all annuli have the same area, that is, 1/N the total πa2 of the aperture,

indeed, we have, α2
n − α2

n−1 = n/N − (n − 1)/N = 1/N. The N coefficients cn are
determined by imposing N conditions at v = 0 and at N − 1 zeros.

Fig. 20.21.4 shows the same example of Fig. 20.21.3 using annuli instead of rings.
The essential features remain the same. The computed zeros are the same as before,
and the coefficients cn are now,

n cn cn, interpolated

1 −3.880891×102 −4.814752×108

2 2.547225×103 4.711524×109

3 −6.716727×103 −2.049879×1010

4 8.910165×103 5.204489×1010

5 −5.950388×103 −8.497935×1010

6 1.603814×103 9.254088×1010

7 −6.721158×1010

8 3.139471×1010

9 −8.558137×109

10 1.037337×109

The MATLAB code for generating these graphs was as follows,

g = 2;
N = 6;

a = sqrt((0:N)/N); % radii
vi = zeros(N,1);

f = @(v,a,b) b^2 * jinc(b*v/pi) - a^2 * jinc(a*v/pi); % pattern of [a,b] annulus
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Fig. 20.21.4 Superresolution gain g = 2, with 5 zeros of J1(gv)= 0, and interpolated zeros.

for i=1:N-1,
vi(i+1) = fzero(@(v) besselj(1,v*g), (i+1/4)*pi/g); % zeros of J1(g*v)=0

end

v = linspace(0,10,2001)’;

Gi = []; G = [];
for i=1:N, % construct pattern matrices

Gi = [Gi, f(vi, a(i),a(i+1))]; % for coefficients c
G = [G, f(v, a(i),a(i+1))]; % for pattern F(v)

end

Fi = [1; zeros(N-1,1)];

c = Gi \ Fi; % expansion coefficients

F = abs(G * c).^2; % evaluate F(v)

figure; plot(v,F,’b-’); ylim([0, 1]);



20.21. Superresolving Apertures 1015

% --- interpolated zeros ---

N = length(vi);
y = filter([1,1]/2,1,vi);
vi(2:2:2*N-2) = vi(2:N);
vi(3:2:2*N-3) = y(3:N);

N = 2*N-2; % new N
a = sqrt((0:N)/N); % new radii

Gi = []; G = [];
for i=1:N, % construct pattern matrices

Gi = [Gi, f(vi, a(i),a(i+1))]; % for coefficients c
G = [G, f(v, a(i),a(i+1))]; % for pattern F(v)

end

Fi = [1; zeros(N-1,1)];

c = Gi \ Fi; % expansion coefficients

F = abs(G * c).^2; % evaluate F(v)

figure; plot(v,F,’b-’); ylim([0, 1]);

Woodward-Lawson Superresolving 1-D Apertures

Perhaps the first example of a superresolving aperture was by Woodward and Lawson
[1601], who considered a 1-D aperture of length 2a = λ and designed an aperture
distribution that has a superresolution gain of g = 2.

In the 1-D case, we recall that a uniform aperture of dimensions [−a,a] will have
the standard sinc-function pattern, that is, with A(x)= u(a− |x|), and, v = kxa,

Â(kx)=
∫∞
−∞
A(x)ejkxxdx = 2a · sin(kxa)

kxa
= 2a · sin(v)

v
(20.21.7)

Since in the antenna context, kx = k sinθ, where k = 2π/λ, it follows that the visible
region corresponding to real anglesθ is the range, |kx| ≤ k or, |v| ≤ ka, in v-units. Since
2a = λ in the Woodward-Lawson example, we have ka = 2πa/λ = π, so that the visible
region becomes, |v| ≤ π. A compressed sinc-pattern by a superresolution factor g, will
have response,

Fg(v)= sin(gv)
gv

(20.21.8)

The first nulls of the standard and the compressed patterns, which define the extents
of the corresponding mainlobes, will be the smallest non-zero roots of, sin(v)= 0, and,
sin(gv)= 0, respectively, that is, v = π, and, v = π/g. Thus, for the compressed
pattern, the interval |v| ≤ π/g defines the mainlobe, and π/g ≤ |v| ≤ π, is that
portion of the sidelobe range that lies in the visible region. Woodward-Lawson’s idea
was to introduce additional zeros in the visible range [π/g, π] in order to further
suppress those sidelobes. The aperture distribution and pattern were constructed as
linear combinations of shifted sinc-functions, as follows,
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A(x) = 1

2a

M∑
n=−M

cne−jknx · χa(x)

Â(kx) =
M∑

n=−M
cn

sin
(
(kx − kn)a

)
(kx − kn)a , F(v)=

M∑
n=−M

cn
sin(v− vn)
v− vn

(20.21.9)

where vn = kna, n = ±1,±2, . . . ,±M are the chosen zeros. The 2M+1 linear combina-
tion coefficients cn, −M ≤ n ≤M, are determined by imposing the 2M + 1 conditions,

F(0) = 1

F(vn) = 0 , n = ±1,±2, . . . ,±M
The zeros are symmetrically placed about n = 0 and as a result, the coefficients cn,

and F(v) and A(x) are symmetric and real-valued.
Such expansions are reminiscent of the Woodward-Lawson orthogonal basis expan-

sions of Eq. (20.12.25), however, here they are different because vn do hot have to be
chosen at the multiples, vn = πn. With arbitrarily chosen vn, the above shifted sinc
functions are linearly independent, but not necessarily mutually orthogonal.

Fig. 20.21.5 shows the patterns |F(v)| and aperture distributions A(x) constructed
via (20.21.9), for the cases, 2a = λ, g = 2, and the following choices of M zeros in the
interval [π/g, π], the first being the original Woodward-Lawson example [1601],

M = 3 , vn = π
2
+ (n− 1)

π
4
, n = 1,2,3 (Woodward-Lawson)

M = 4 , vn = π
2
+ (n− 1)

π
6
, n = 1,2,3,4

We observe similar features as in the 2-D case, namely, (a) the solution follows closely
the mainlobe of the compressed sinc, (b) the sidelobes are suppressed in the visible re-
gion, e.g., |v| ≤ π, but are huge in the invisible region, (c) the coefficients cn and aper-
ture distribution A(x) undergo huge variations over the range [−a,a]. The computed
coefficients cn were as follows in the two cases,

n cn cn
−4 39396219.62
−3 −16678.51 −192113502.42
−2 58231.42 347572126.67
−1 −66582.91 −241677043.29

0 49825.86 93654887.13
1 −66582.91 −241677044.03
2 58231.42 347572128.11
3 −16678.51 −192113503.43
4 39396219.88

The MATLAB code used to generate the graphs and coefficients cn is as follows,
where the values of g,M can be changed to try different cases,
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Fig. 20.21.5 Superresolution gain g = 2, withM = 3,4 zeros, visible region −π ≤ v ≤ π.

a = 1/2; % units of lambda, here, k*a = pi
g = 2; % gain
M = 3; % M zeros in [1/g, 1]
un = linspace(1/g, 1, M); % vn = pi*un

Fn = [zeros(M,1); 1; zeros(M,1)]; % response at zeros and u=0
un = [-flip(un), 0, un]’; % symmetrize for convenience
N = length(un); % N = 2*M+1

u = linspace(-2,2,8001)’; % column vector, v = pi*u

Gn = []; G = [];
for i=1:N % data matrices

Gn = [Gn, sinc(un - un(i))]; % for coefficients c
G = [G, sinc(u - un(i))]; % for F(v) evaluation

end

c = Gn\Fn; % expansion coefficients

F = abs(G*c); % evaluate |F(v)|
F1 = abs(sinc(u)); % uniform sinc
Fg = abs(sinc(g*u)); % compressed sinc
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figure; plot(u,F,’b-’, u,F1,’k:’, u,Fg,’r--’); ylim([0,1]);

kn = pi*un/a; % wavenumbers at un
x = linspace(-1,1,1001)*a; % x in [-a,a]
A = c’ * exp(-j*kn*x) / (2*a); % aperture distribution

figure; plot(x, real(A), ’b-’)

20.22 Superdirectivity, Superresolution, Superoscillations

The concepts of superdirectivity or supergain, superresolution, and superoscillations
have played a prominent role in recent years. In this section, we discuss their inter-
relationships using prolate spheroidal wave functions (PSWF) as our primary tool. A
comprehensive review of superresolution concepts may be found in [1545].

Superdirectivity

It was alluded in the beginning of the previous section that it is possible, at least the-
oretically, to achieve any desired wavenumber pattern from a finite aperture, even one
that has infinite directivity. For example, in the 1-D case, such ideal pattern would be a
delta-function, Â(kx)= δ(kx), at least within the visible region.

To accomplish such goal, one may expand the desired pattern Â(kx) into a complete
and orthogonal set of basis functions in kx space, determine the expansion coefficients,
and through an inverse spatial Fourier transform, construct the corresponding aperture-
limited distribution A(x). The prolate spheroidal wave functions (and the generalized
ones for the 2-D case), mentioned in Sec. 20.12, are a convenient set of basis functions.

Examples of this procedure can be found in [1571,1487,1489,1653] for 2-D aper-
tures, in [1615,1616] for 1-D apertures, and in [1447,1609–1613] for optimum aperture
distributions under reactive-energy constraints.

Here, we consider only the 1-D case over a finite aperture [−a,a]. With kx = k sinθ,
the visible region is the wavenumber interval [−k, k]. We recall from Sec. 20.12 (see
also Appendix J) that the PSWF basis functions, ψn(k, a, kx), are completely defined
relative to the two intervals [−a,a] in x-space, and [−k, k] in kx-space, with the space-
bandwidth product, c = ka.† They are self-invariant under Fourier transformation,

ψn(k, a, kx)=
∫ a
−a

1

aμn
ψn

(
k, a,

x
a
k0

)
ejkxx dx , μn = in

√
2πλn
c

(20.22.1)

for n ≥ 0, and satisfy the dual orthogonality and completeness properties,∫∞
−∞
ψn(k, a, kx)ψm(k, a, kx)dkx = δnm

∫ k
−k
ψn(k, a, kx)ψm(k, a, kx)dkx = λnδnm

(20.22.2)

†in this section, we take, k0 = k = 2π/λ.



20.22. Superdirectivity, Superresolution, Superoscillations 1019

∞∑
n=0

1

λn
ψn(k, a, kx)ψn(k, a, k′x)= δ(kx − k′x) , for kx, k′x ∈ [−k, k] (20.22.3)

Any (square-integrable) aperture-limited function A(x) over [−a,a] and its Fourier
transform Â(kx), can be expanded as linear combinations of theψn functions, with the
coefficients determined from the orthogonality properties. Thus, as in Eq. (20.12.23),

Â(kx)=
∫ a
−a
A(x)ejkxxdx =

∞∑
n=0

cnψn(k, a, kx)

A(x)=
∫∞
−∞
Â(kx)ejkxx

dkx
2π

=
∞∑
n=0

cn
aμn

ψn
(
k, a,

x
a
k
)
· χa(x)

cn =
∫∞
−∞
Â(kx)ψn(k, a, kx)dkx = 1

λn

∫ k
−k
Â(kx)ψn(k, a, kx)dkx

(20.22.4)

where χa(x)= u
(
a− |x|) is the indicator function of the interval [−a,a].

We see right away that if we wish to obtain a sharp delta-function wavenumber
pattern , Â(kx)= δ(kx), over the visible region −k ≤ kx ≤ k, then the last expression
in (20.22.4) gives for the coefficients,

cn = 1

λn

∫ k
−k
Â(kx)ψn(k, a, kx)dkx = 1

λn

∫ k
−k
δ(kx)ψn(k, a, kx)dkx , or,

cn = 1

λn
ψn(k, a,0) , n ≥ 0 (20.22.5)

which when inserted back into (20.22.4) gives,

Â(kx)=
∞∑
n=0

1

λn
ψn(k, a,0)ψn(k, a, kx)= δ(kx) , for |kx| ≤ k

A(x)=
∞∑
n=0

1

aμnλn
ψn(k, a,0)ψn

(
k, a,

x
a
k
)
· χa(x)

(20.22.6)

This is also a consequence of the completeness property (20.22.3) by setting k′x = 0.
The remarkable feature of (20.22.6) is that it expresses the inverse Fourier transform
of a delta-function not as a constant, but as a sum of aperture-limited terms. This is
because Â(kx) is not equal to δ(kx) for all kx, but only over the visible region. In fact,
outside the visible region, Â(kx) has incredibly large values, just like the designs of the
previous section.

Eq. (20.22.6) is an example of superoscillation [1619–1631]. Indeed, if we think of kx
as “time” and x as “frequency”, then A(x) represents a “bandlimited spectrum,” with
maximum frequency x = a, whereas Â(kx)= δ(kx) represents an extremely fast, instan-
taneous, “time” variation over a limited “time” interval [−k, k], which is infinitely faster
than the maximum “frequency” contained in A(x). See also Example J.3 of Appendix J
for a related discussion.
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Since the eigenvaluesλn decrease rapidly to zero, to make numerical sense of (20.22.6)
we must regularize it, for example, by keeping only a finite number of terms, say,M+1
terms, (see Appendix J, Eq. (J.44) for alternative regularizations),

ÂM(kx)=
M∑
n=0

1

λn
ψn(k, a,0)ψn(k, a, kx)≡ δM(kx) , for |kx| ≤ k

AM(x)=
M∑
n=0

1

aμnλn
ψn(k, a,0)ψn

(
k, a,

x
a
k
)
· χa(x)

(20.22.7)

We show next that the coefficients cn given by (20.22.5) are also those that maximize
the directivity [1615,1616], which in fact becomes infinite in the limit M → ∞. We
recall from Sec. 20.12 that the true, approximate, and limiting directivity, and Taylor’s
superdirectivity ratio γ, are defined in terms of Â(kx) by,

Dtrue

2πk
= |Â(0)|2∫ k

−k
|Â(kx)|2 kzk dkx

D
2πk

= |Â(0)|2∫ k
−k
|Â(kx)|2 dkx

,
D∞
2πk

= |Â(0)|2∫∞
−∞

|Â(kx)|2 dkx

γ = D
D∞

=

∫∞
−∞

|Â(kx)|2 dkx∫ k
−k
|Â(kx)|2 dkx

(20.22.8)

As we argued in Sec. 20.12, Dtrue is approximately equal to D for highly forward-
peaked patterns. Therefore, we will work with D. Optimizations based on Dtrue have
been considered by Rhodes [1447,1609–1613]. Inserting the general expansion (20.22.4)
in these expressions and using the orthogonality properties, we may rewrite D,D∞, γ
in terms of the coefficients cn,

D
2πk

=

∣∣∣∣ ∞∑
n=0

cnψn(k, a,0)
∣∣∣∣2

∞∑
n=0

λn|cn|2
,

D∞
2πk

=

∣∣∣∣ ∞∑
n=0

cnψn(k, a,0)
∣∣∣∣2

∞∑
n=0

|cn|2

γ = D
D∞

=

∞∑
n=0

|cn|2

∞∑
n=0

λn|cn|2

(20.22.9)

It is shown in Problem 20.4 that, as expected, the maximization of D∞ leads to
the maximum value D∞ = 2π(2a)/λ = 2ak, and the uniform distribution A(x)=
u
(
a− |x|), and sinc-function pattern, Â(kx)= 2a sin(kxa)/(kxa).
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On the other hand, the maximization ofD leads to the delta-function pattern δ(kx).
Starting with a finite number of termsM and later taking the limitM →∞, we have the
maximization problem for D,

D
2πk

=

∣∣∣∣ M∑
n=0

cnψn(k, a,0)
∣∣∣∣2

M∑
n=0

λn|cn|2
= max

Applying the Cauchy-Schwarz inequality,∣∣∣∣ M∑
n=0

fng∗n
∣∣∣∣2

≤
( M∑
n=0

|fn|2
)( M∑

n=0

|gn|2
)

(20.22.10)

with the choices, fn = λ1/2
n cn, and, gn = λ−1/2

n ψ∗n(k, a,0)= λ−1/2
n ψn(k, a,0), noting

that the ψn functions are real, we have,

D
2πk

=

∣∣∣∣ M∑
n=0

cnψn(k, a,0)
∣∣∣∣2

M∑
n=0

λn|cn|2
≤

M∑
n=0

1

λn
ψ2
n(k, a,0) (20.22.11)

with equality reached in (20.22.10) when fn = gn, or, in our case,

λ1/2
n cn = λ−1/2

n ψn(k, a,0) ⇒ cn = 1

λn
ψn(k, a,0) , 0 ≤ n ≤M (20.22.12)

These agree with (20.22.5), and the maximum value of Eq. (20.22.11) is the value of
ÂM(kx)= δM(kx) at kx = 0. In the limit M → ∞ we obtain infinite directivity since,
δ(kx)= ∞ at kx = 0. For a finite M, since the eigenvalues are in decreasing order,
λ0 ≤ λ1 ≤ · · · ≤ λM, it follows that the superdirectivity ratio γ will be bounded by,

γM =

M∑
n=0

|cn|2

M∑
n=0

λn|cn|2
⇒ 1

λ0
≤ γM ≤ 1

λM
(20.22.13)

The upper bound, 1/λM, tends to infinity as M → ∞. The lower bound, 1/λ0, is
realized when c0 = 1 and cn = 0, for n ≥ 1, that is, when Â(kx)= ψ0(k, a, kx), which
is recognized as the optimum prolate apodizer of Sec. 20.13. On the other hand, in the
optimum superdirective case with cn given by (20.22.12), we have,

γM =

M∑
n=0

1

λ2
n
ψ2
n(k, a,0)

M∑
n=0

1

λn
ψ2
n(k, a,0)

(20.22.14)
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Example 20.22.1: This is a variation of Example J.3 of Appendix J. Figure 20.22.1 plots the
approximations (20.22.7) for the casesM = 20 andM = 30. The space-bandwidth product
was c = ka = 4π, where for convenience we chose k = 1 and a = 4π. We observe how
ÂM(kx) resembles δ(kx) within [−k, k] as M increases. Outside the visible region the
values of ÂM(kx) are extremely large. This is also reflected in the aperture distribution
AM(x) which undergoes huge variations over [−a,a], just like the Woodward-Lawson
example of Fig. 20.21.5. The MATLAB code for this example was,
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Fig. 20.22.1 Optimum superdirective aperture, withM = 20,30.

c=4*pi;
k=1; a=c;

kx = linspace(-2,2,401); % kx in units of k
x = linspace(-1,1,401); % x in units of a

for M = [20,30]

[Psi,La] = pswf(k,a,M,kx);

Psi0 = Psi(:,kx==0);

F = Psi0’ * diag(1./La) * Psi;
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figure; plot(kx, F, ’b-’); ylim([-10,10]);

% ---- aperture distribution ----

[Psi,La] = pswf(k,a,M,x*k);

Psi0 = Psi(:,x==0);

n = (0:M)’;
Mu = i.^n .* sqrt(2*pi*La/c);

A = Psi0’ * diag(1./(a*Mu.*La)) * Psi; % calculate A(x)

figure; plot(x, A, ’b-’);

end

The maximum directivity and ratio γM were calculated from Eqs. (20.22.7) and (20.22.14),
resulting in D/2πk = 7.4187 and 10.4232, and γM = 3.28×1014 and 3.19×1032, for
M = 20 and 30, respectively. ��

Example 20.22.2: Here, we show how to design the Woodward-Lawson example of Fig. 20.21.5
using the PSWF approach. We choose the same parameters, a = λ/2, gain g = 2, and for
convenience, we set k = 1 again, so that, c = ak = 2πa/λ = π. The desired wavenumber
pattern is taken to be a compressed sinc-pattern by the superresolution factor g, but only
over the extent of its mainlobe, setting it to zero outside the mainlobe, that is,

Â(kx)= sin(gkxa)
gkxa

· u(π− |gkxa|) ⇒ Fg(v)= sin(gv)
gv

· u(π− |gv|) (20.22.15)

where the unit-step restricts the non-zero values to the range |gkxa| ≤ π. The graph on
the left of Fig. 20.22.2 shows the designed pattern using M = 10. The designed mainlobe
is virtually indistinguishable from that of Eq. (20.22.15).
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Fig. 20.22.2 Compressed sinc, with gain g = 2, andM = 10.

The values outside the visible region [−k, k] are huge. The graph on the right shows
the aperture distribution, which exhibits the same type of large variations like the ones
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in Fig. 20.21.5. The M + 1 expansion coefficients cn were calculated numerically from
Eq. (20.22.4), in which (20.22.15) was used, for n = 0,1, . . . ,M,

cn = 1

λn

∫ k
−k
Â(kx)ψn(k, a, kx)dkx = 1

λn

∫ π/ga
−π/ga

sin(gkxa)
gkxa

ψn(k, a, kx)dkx

ÂM(kx)=
M∑
n=0

cnψn(k, a, kx) , AM(x)=
M∑
n=0

cn
aμn

ψn
(
k, a,

x
a
k
)
· χa(x)

(20.22.16)

The integrations in cn were done with the tanh-sinh quadrature function quadts. The
following MATLAB code segment illustrates the computation,

k = 1; lambda = 2*pi/k;
a = lambda/2;
c = k*a; % c = pi
g = 2;
M = 10;

[wq,kq] = quadts(-1/g, 1/g); % quadts weights and evaluation points

[Psq,La] = pswf(k,a,M,kq); % PSWFs evaluated at kq

for n=1:M+1
cn(n) = 1/La(n) * (sinc(g*a*kq/pi)’.*Psq(n,:)) * wq; % coefficients c_n

end

u = linspace(-2,2,2001); v = pi*u; kx = v/a; % use v-units for display

[Psi,La] = pswf(k,a,M,kx); % evaluate PSWFs at kx = pi*v

F = abs(cn * Psi); % evaluate pattern F(v)

Fg = abs(sinc(g*u).*(abs(u)<=1/g)); % compressed truncated sinc pattern

figure; plot(u,F,’b-’, u,Fg,’r--’); ylim([0,1]);

% ---- aperture distribution ----

x = linspace(-1,1,401)*a; % x in units of a

[Psi,La] = pswf(k,a,M,x*k/a); % PSWFs for aperture distribution

n = (0:M)’;
Mu = i.^n .* sqrt(2*pi*La/c);

A = cn * diag(1./(a*Mu)) * Psi; % evaluate A(x)

figure; plot(x/lambda, A, ’b-’);

The computed coefficients cn were,
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n cn n cn

0 5.4139×10−1 6 −1.8987×102

1 0 7 0
2 −5.9918×10−1 8 5.2521×103

3 0 9 0
4 7.3039×100 10 1.5445×105

5 0

Because (20.22.15) is even in kx and the ψn are odd when n is odd, it follows that all the
cn vanish for odd n. ��

In the present aperture antenna context, the field of view was taken to be the entire
visible region [−k, k]. The giant sidelobes residing in the invisible region |kx| > k are
associated with large reactive as opposed to radiated power and are responsible for the
extremely large values of the superdirectivity ratio γ, which provides a measure of the
proportion of reactive to radiated power,

γ− 1 =

∫∞
−∞

|Â(kx)|2 dkx∫ k
−k
|Â(kx)|2 dkx

− 1 =

∫
|kx|>k

|Â(kx)|2 dkx∫
|kx|≤k

|Â(kx)|2 dkx
= reactive

radiated

The visible region in, u = kxa/π, units is |u| ≤ 2a/λ. For typical microwave antenna
applications where the antenna size is of the order of λ, the upper limit 2a/λ is of the
order of unity. On the other hand, in astronomical applications involving telescopes
with radii of orders of meters and visible light in nanometers, the upper limit 2a/λ is a
very large. In such cases, the Toraldo di Francia type designs of Sec. 20.21 have a much
more restrictive field of view than the visible region.

Spatial Superresolution

The terms “resolution” and “superresolution” were used in the apodization and su-
perdirectivity contexts to mean “frequency resolution” with the goal of obtaining sharp
wavenumber spectral peaks in k⊥ space from a space-limited aperture. The same terms
are also used in a dual sense in the literature to mean “spatial resolution” with the goal
of obtaining sharp spatial features from a wavenumber-limited system.

All diffraction-limited optical systems are characterized by a finite wavenumber
bandwidth, say, kB, which effectively limits the spatial details to be greater than ap-
proximately 1/kB. Superresolution refers in this context to the attempt to extrapolate
and recover those spatial frequencies higher than kB that were present in the input be-
fore passing through the optical system so that sharper spatial details can be recovered.

There is a vast literature on this subject and our discussion in this section cannot
possibly do justice to it. The reader is referred to the reviews [1545,1548] for further
references.

A prototypical example of a diffraction-limited optical system is the 4F system dis-
cussed in Sec. 20.11. Its one-dimensional version is depicted below in Fig. 20.22.3. The
operation of the system is described by Eqs. (20.11.13)–(20.11.15), or,
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Fig. 20.22.3 Bandlimited optical system.

E(kx) = e−2jkF1 Êin(kx)= e−2jkF1

∫∞
−∞
Ein(x′) ejkxx

′
dx′

∣∣∣∣
kx= kwF1

Eg,out(x) = e−2jk(F1+F2)
∫∞
−∞
H(kx)Êin(kx) e−jkxx

dkx
2π

= e−2jk(F1+F2)
∫∞
−∞
h(x− x′)Ein(x′)dx′

(20.22.17)

They describe the outputs at the Fourier plane and at the image plane, where w
denotes the x-coordinate on the Fourier plane, and the filter H(kx) is evaluated at the
wavenumber, kx = kw/F1. The impulse response h(x) is the inverse Fourier transform,

h(x)=
∫∞
−∞
H(kx) e−jkxx

dkx
2π

(20.22.18)

and, Eg,out(x) is the geometric-optics projected output Eout(x) back onto the object
plane as defined in Eq. (20.11.11), that is,

Eg,out(x)= e−jπ/2
√
F2

F1
Eout

(
−F2

F1
x
)

(20.22.19)

If at the Fourier plane we assume a slit opening with support −b ≤ w ≤ b, then
the transfer function of the aperture can be defined in terms of the unit-step, F(w)=
u
(
b− |w|). In kx units the filter transfer function will represent an ideal lowpass filter

with cutoff, kB = kb/F1, indeed,

H(kx)= F(w)
∣∣∣∣
kx= kwF1

= u
(
b− |kx|F1

k

)
= u(kB − |kx|) , kB = k bF1

= k ·NA

where NA = b/F1 is the numerical aperture of the opening. Thus, kB represents the
maximum spatial frequency let through by the Fourier plane. The corresponding im-
pulse response h(x) will have the usual sinc form of an ideal lowpass filter,

h(x)=
∫∞
−∞
H(kx) e−jkxx

dkx
2π

=
∫ kB
−kB

e−jkxx
dkx
2π

= sin(kBx)
πx

(20.22.20)
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We will also assume that the inputEin(x) has finite extent, say,−a ≤ x ≤ a, vanishing
outside that interval, as depicted by the input slit [−a,a] in Fig. 20.22.3. Under this
assumption, Eqs. (20.22.17) take the simpler form,

E(kx) = Êin(kx)=
∫ a
−a
Ein(x′) ejkxx

′
dx′

Eg,out(x) =
∫ kB
−kB
Êin(kx) e−jkxx

dkx
2π

=
∫ a
−a

sin
(
kB(x− x′)

)
π(x− x′) Ein(x′)dx′

(20.22.21)

where we have also ignored the phase factors e−2jkF1 , e−2jkF2 which represent the prop-
agation delays across the two 2F planes, It is evident that the output, Eg,out(x), is ban-
dlimited to the range, |kx| ≤ kB, with a Fourier transform,

Êg,out(kx)= u
(
kB − |kx|

) · Êin(kx)=
⎧⎨⎩Êin(kx) , |kx| ≤ kB

0 , |kx| > kB
(20.22.22)

Recovering the full Êin(kx), for all −∞ < kx <∞, from the knowledge of Êg,out(kx)
would appear to be impossible. And it is, in general. However, because we assumed a
finite object, Ein(x)�= 0 only for |x| ≤ a, its Fourier transform Êin(kx) given in (20.22.21)
will be an analytic function of kx, and as such, it can be recovered in principle from any
finite segment of kx, such as, |kx| ≤ kB.

The practical implementation of this approach is difficult since the analytic contin-
uation process is very sensitive to noise. A more promising approach would be to try to
invert the integral equation in (20.22.21). The PSWF basis functions provide an ideal tool
for this purpose since they are eigenfunctions of that integral operator. However, even
this approach represents an ill-posed problem that requires some sort of regularization
for its implementation.

To apply the PSWF functions, we must make the following mapping between the time-
frequency variables (t,ω) of Appendix J and the spatial variables (x, kx), essentially
interchanging the roles of x and kx in the definitions of Sec. 20.12,

t0 , ω0 , t , ω ⇒ a , kB , x , kx
c = t0ω0 ⇒ c = akB

ψn(t0,ω0, t) ⇒ ψn(a, kB, x)

(20.22.23)

Specifically, the functions ψn(a, kB, x) are defined in terms of the standard scaled
PSWF function φn(c,η) of Eq. (J.7) as follows,

ψn(a, kB, x)= 1√
a
φn

(
c,
x
a

)
, c = akB (20.22.24)

For the rest of this section, we will denote ψn(a, kB, x) by ψn(x). From Appendix
J, we know that the functions ψn(x) are eigenfunctions of the sinc integral operator in
(20.22.21), and satisfy the following dual orthogonality properties on the finite interval
[−a,a] and over the infinite interval,∫ a

−a
sin
(
kB(x− x′)

)
π(x− x′) ψn(x′)dx′ = λnψn(x) , for all x

∫∞
−∞
ψn(x)ψm(x)dx = δnm ,

∫ a
−a
ψn(x)ψm(x)dx = λnδnm

(20.22.25)
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for n,m ≥ 0. Moreover, they satisfy the following completeness properties over the
finite and infinite intervals,

∞∑
n=0

1

λn
ψn(x)ψn(x′)= δ(x− x′) , for x, x′ ∈ [−a,a]

∞∑
n=0

ψn(x)ψn(x′)= sin
(
kB(x− x′)

)
π(x− x′) , for all x, x′

(20.22.26)

The bandlimited spatial Fourier transform of ψn(x) is,

ψ̂n(kx)=
∫∞
−∞
ψn(x)ejkxxdx = 2π

kBμ∗n
ψn

(
kx
kB
a
)
· χkB(kx) (20.22.27)

where μn = in
√

2πλn/c, and the conjugate μ∗n appears in order to conform with the
opposite exponential sign convention used in spatial as opposed to time Fourier trans-
forms, and, χkB(kx)= u

(
kB − |kx|

)
, is the indicator function of the interval [−kB, kB].

An arbitrary square-integrable function E(x) with a Fourier transform Ê(kx) that is
bandlimited over [−kB, kB] can be expanded in the basis functions ψn(x),

E(x) =
∞∑
n=0

cnψn(x)

Ê(kx) =
∞∑
n=0

cn
2π
kBμ∗n

ψn
(
kx
kB
a
)
· χkB(kx)

(20.22.28)

with expansion coefficients computed over the finite or infinite intervals,

cn = 1

λn

∫ a
−a
ψn(x)E(x)dx =

∫∞
−∞
ψn(x)E(x)dx , n ≥ 0 (20.22.29)

BecauseE(x) is bandlimited, it can also be expanded in the sinc-basis of the sampling
theorem, where, d = π/kB denotes the Nyquist sampling space interval,

E(x) = π
kB

∞∑
n=−∞

E(nd)
sin
(
kB(x− nd)

)
π(x− nd)

Ê(kx) = π
kB

∞∑
n=−∞

E(nd)e−jkxnd · χkB(kx)
(20.22.30)

Since the function E(x) is completely characterized by its space samples E(nd) at
multiples of d, we may think of d as defining the spatial resolution for E(x). We note
also that d represents the Rayleigh or Abbe resolution distance, that is, the distance
corresponding to the first null of the impulse response (20.22.20), which is the solution
of, sin(kBx)= 0, or, kBd = π, or, d = π/kB = λ/2NA,

d = λ
2NA

(Abbe diffraction limit) (20.22.31)
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The inversion of the integral operation in (20.22.21), its formulation using PSWFs,
and its application to the image restoration problem was considered first by Barnes
[1569]. We discussed it in some detail in Appendix J, including several regularization
schemes and the sensitivity to noise. The inverse is given formally by,

Eg,out(x) =
∫ a
−a

sin
(
kB(x− x′)

)
π(x− x′) Ein(x′)dx′ ⇒

Ein(x) =
∫ a
−a
K(x, x′)Eg,out(x′)dx′

(20.22.32)

where K(x, x′) is the formal inverse of the sinc kernel over the finite interval [−a,a],

K(x, x′)=
∞∑
n=0

1

λ2
n
ψn(x)ψn(x′) , for x, x′′ ∈ [−a,a] (20.22.33)

satisfying,∫ a
−a
K(x, x′′)

sin
(
kB(x′′ − x′)

)
π(x′′ − x′) dx′′ = δ(x− x′) , for x, x′ ∈ [−a,a] (20.22.34)

A regularized version is obtained by truncating the summation (20.22.33) to n =M,
whereM is of the order of the Shannon number Nc = 2c/π.

An alternative way to invert (20.22.32) is to express the input in terms of the expan-
sion coefficients of the output. Since Eg,out(x) is bandlimited, we may apply (20.22.28),
calculate its expansion coefficients, and recover Ein(x) as follows,

bn = 1

λn

∫ a
−a
ψn(x)Eg,out(x)dx =

∫∞
−∞
ψn(x)Eg,out(x)dx , n ≥ 0

Eg,out(x)=
∞∑
n=0

bnψn(x) ⇒ Ein(x)=
∞∑
n=0

1

λn
bnψn(x)

(20.22.35)

Eq. (20.22.35) can be verified easily, using the eigenvalue equation (20.22.25),

∫ a
−a

sin
(
kB(x− x′)

)
π(x− x′) Ein(x′)dx′ =

∫ a
−a

sin
(
kB(x− x′)

)
π(x− x′)

⎡⎣ ∞∑
n=0

1

λn
bnψn(x)

⎤⎦ =
=

∞∑
n=0

1

λn
bn ·

∫ a
−a

sin
(
kB(x− x′)

)
π(x− x′) ψn(x)dx′ =

∞∑
n=0

1

λn
bn · λnψn(x)= Eg,out(x)

Since the eigenvalues λn decrease rapidly to zero beyond the Shannon number Nc,
the only numerically meaningful coefficients bn/λn are those over the range 0 ≤ n ≤M,
whereM is of the order of Nc. Thus, the effective number of degrees of freedom of the
image can be taken to be the Shannon number Nc [1485]. Truncating, the expansions
(20.22.35), we obtain the approximate inverse,

Ein(x)≈
M∑
n=0

1

λn
bnψn(x) (20.22.36)
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As an example, consider an impulsive input, Ein(x)= δ(x), for −a ≤ x ≤ a. Then,
the output would be the bandlimited impulse response Eg,out(x)= h(x) of (20.22.18).
The required expansions can be derived directly from (20.22.35), or as special cases of
Eq. (20.22.26), setting x′ = 0, and recognizing that the expansion coefficients are,

bn = ψn(0) , n ≥ 0

Thus, we obtain the following expressions for the output h(x), the input δ(x), and
the bandlimited Fourier transform H(kx) of the output,

h(x) = sin(kBx)
πx

=
∞∑
n=0

ψn(0)ψn(x)

δ(x) =
∞∑
n=0

1

λn
ψn(0)ψn(x) , for x ∈ [−a,a]

H(kx) = χkB(kx)=
∞∑
n=0

2π
kBμ∗n

ψn(0)ψn
(
kx
kB
a
)
· χkB(kx)

(20.22.37)

The regularized, truncated, approximations are then,

hM(x) =
M∑
n=0

ψn(0)ψn(x)

δM(x) =
M∑
n=0

1

λn
ψn(0)ψn(x)

HM(kx) =
M∑
n=0

2π
kBμ∗n

ψn(0)ψn
(
kx
kB
a
)
· χkB(kx)

(20.22.38)

Example 20.22.3: Fig. 20.22.4 plots Eqs. (20.22.38) for the cases of M = 5 and M = 20. The
PSWF parameters were chosen to be a = 2π, kB = 1, c = akB = 2π. The MATLAB code
for generating these graphs was,

a = 2*pi; kB = 1; c = a*kB

x = linspace(-3,3,601) * a;
kx = linspace(-1.5,1.5,601);

for M = [5,20]
[Psi,La] = pswf(a,kB,M,x);
Psi0 = Psi(:,x==0); % psi_n(0) values

h = Psi0’ * Psi; % output h(x)
delta = Psi0’ * diag(1./La) * Psi; % estimated input, delta(x)

figure; plot(x/a,h,’b-’, x/a,sinc(kB*x/pi)*kB/pi,’r--’);

figure; plot(x/a,delta, ’b-’); ylim([-0.5,1.5]);

[Psi,La] = pswf(a,kB,M,kx*a/kB); % Fourier transform calculation
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Fig. 20.22.4 Impulse response approximations, forM = 5 andM = 20.

Psi0 = Psi(:,kx==0);

n = (0:M)’;
Mu = i.^n .* sqrt(2*pi*La/c);

chi = (abs(kx)<=kB); % indicator function of [-kB,kB]
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H = (2*pi/kB) * Psi0’ * diag(1./conj(Mu)) * Psi .* chi; % FT of h(x)

figure; plot(kx,H, ’b-’, kx,chi,’r--’);
end

Because the expansion of hM(x) does not involve divisions by λn, it converges very quickly
to the theoretical sinc, and the two are barely distinguishable on the graphs. The same is
true of the estimated Fourier transform HM(kx).

On the other hand, while the values of estimated input δM(x) within the interval [−a,a]
resemble a delta-function spike as M increases, its values outside [−a,a] are enormous.
Within [−a,a], δM(x) exhibits superoscillatory behavior. Indeed, since the maximum
spatial frequency contained in δM(x) is kB, the fastest oscillating sinusoid in δM(x) will
be, cos(kBx), which cycles by an amount of kBa/2π = 1 cycles in the range [0, a]meters.
However, one observes four cycles in the range [0, a] in δM(x) for the caseM = 20. ��

All superresolution designs are typically accompanied by extremely large values out-
side the field of view, and exhibit superoscillatory behavior inside it.

Superoscillations—defined as bandlimited signals that over a particular time period
can oscillate faster than their fastest frequency—are typically characterized by similar
features, namely, weak values within the superoscillating interval and huge values out-
side it. More details on superoscillations and their construction and applications may
be found in Refs. [1619–1631].

Focusing of Plane Waves

We saw in Sec. 19.2 that the plane-wave spectrum representation is equivalent to Rayleigh-
Sommerfeld diffraction theory, and that propagation is equivalent to lowpass filtering,
which at far distances (i.e., in the Fresnel or Fraunhofer regimes) has the effect of remov-
ing the low-frequency evanescent modes, with only the propagating modes surviving.
Thus, similar questions arise as in the 4F case whether it is possible to recover lost
spatial details from observing the propagated/diffracted waveform.

In the one-dimensional version, the propagation filter for propagating by a distance
z = L ≥ 0 along the z-direction, has transfer function, e−jkzL, where kz is the evanescent
square root,

kz =
⎧⎪⎨⎪⎩

√
k2 − k2

x , if |kx| ≤ k
−j
√
k2
x − k2 , if |kx| > k

(20.22.39)

It follows that for the evanescent modes |kx| > k, the filter response decays ex-

ponentially, that is, e−jkzL = exp
(−L√k2

x − k2
)
. Thus, the filter acts effectively as a

lowpass filter, becoming a better filter with increasing L.
The fields Ea(x) and Eb(x) shown in Fig. 20.22.5 at the two planes z = za and

z = zb, separated by distance L = zb − za, are related by the propagation filter e−jkzL.
To determine the output Eb(x) from the input Ea(x), one can first calculate the Fourier
transform ofEa(x), then propagate it by the filter, and then reconstructEb(x) by inverse
Fourier transformation, as outlined in the following steps,
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Êa(kx)=
∫∞
−∞
Ea(x)ejkxxdx

Êb(kx)= Êa(kx)e−jkzL (forward propagation)

Eb(x)=
∫∞
−∞
Êb(kx)e−jkxx

dkx
2π

=
∫∞
−∞
Êa(kx)e−jkzLe−jkxx

dkx
2π

These can be inverted in order to answer the question: what should be the input
Ea(x) that would be reshaped into a particular desired output Eb(x) upon propagating
by a distance L? This is illustrated in Fig. 20.22.5 where the input is being reshaped into
a narrower focal spot.

Inverting, Êb(kx)= Êa(kx)e−jkzL, we have, Êa(kx)= Êb(kx)ejkzL, so that starting
with the desired Eb(x), we may reconstruct Ea(x) as follows,

Êb(kx)=
∫∞
−∞
Eb(x)ejkxxdx

Êa(kx)= Êb(kx)ejkzL

Ea(x)=
∫∞
−∞
Êb(kx)ejkzLe−jkxx

dkx
2π

(inverse diffraction) (20.22.40)

This is the problem of inverse diffraction, which has been widely studied in the
literature [1584–1590]. Not every Eb(x) can be designed. Since for evanescent modes

the inverse filter increases exponentially, ejkzL = exp
(
L
√
k2
x − k2

)
, the desired spectrum

Êb(kx)must be such that to result into a convergent inverse Fourier integral for Ea(x).
For example, a perfect focal spot, Eb(x)= δ(x), for all x, cannot be designed.

Fig. 20.22.5 Focusing onto a narrow spot.

For arbitrary L, Eqs. (20.22.40) can be implemented numerically. However, certain
simplifications take place in the two special cases of a very large L in the far-field, and
a very small L in the near-field.

In the first case, since L is large, by the time Ea(x) propagates to Eb(x), the evanes-
cent modes will have died out and would not contribute to Êb(kx), so that the inverse
Fourier integral for Ea(x) need only be integrated over the propagating modes, |kx| ≤ k.
In the second case, since L is small and the evanescent modes cannot be ignored, one
could try to limit the integration to be only over the evanescent modes by choosing

1034 20. Diffraction – Fourier Optics

Êb(kx) to exist only in the evanescent range, while ensuring the convergence of the
inverse integral for Ea(x). Below, we consider examples of both cases.

For the fist case, if we assume that L is large enough to ignore all the evanescent
modes, then the propagation filter may be thought of as an ideal lowpass filter with
cutoff kx = k, and the propagated spectrum Êb(kx)may be taken to be bandlimited over
the interval [−k, k]. As first proposed in [1554], the machinery of the PSWF functions
can then be used to design any desired Eb(x), specified within a finite field of view, say,
−a ≤ x ≤ a, even a narrow δ(x) restricted over [−a,a].

The design steps require two numerical integrations, one to determine the expansion
coefficients into the ψn(x) functions, and another one to perform the inverse Fourier
transform for Ea(x), with the integration restricted to be only over the [−k, k] interval
because of the bandlimited nature of Êb(kx). We start by specifying Eb(x) over [−a,a],
then, usingM + 1 basis functions, we have,

1. bn = 1

λn

∫ a
−a
ψn(x)Eb(x)dx , n = 0,1, . . . ,M

2. Eb(x)=
M∑
n=0

bnψn(x)

3. Êb(kx)=
M∑
n=0

bn
2π
kμ∗n

ψn
(
kx
k
a
)
· χk(kx)

4. Ea(x)=
∫ k
−k
Êb(kx)ejkzLe−jkxx

dkx
2π

(20.22.41)

where ψn(x) are the functions ψn(a, kB, x) with kB = k. Step two provides a ban-
dlimited approximation to Eb(x), and step three calculates its Fourier transform. Step
four constructs the input Ea(x), also bandlimited in [−k, k], that would propagate into
Eb(x) at distance L.

Example 20.22.4: We consider the same example from [1554], in which the desired focal spot
is taken to be a compressed sinc with superresolution gain, 2πg = 40, over the field of
view [−a,a] with a = 0.6λ, that is,

Eb(x)= sin(gkx)
gkx

= sin(40x/λ)
40x/λ

, for |x| ≤ a = 0.6λ (20.22.42)

where, by contrast, the Abbe diffraction limit corresponds to g = 1. Fig. 20.22.6 displays
the results of the four design steps in (20.22.41), forM = 6 andM = 20. The propagation
distance was chosen to be L = 20λ.

The output Eb(x) was plotted only over twice the FOV, −2a ≤ x ≤ 2a. Outside the FOV,
Eb(x) takes enormous values as is typical of all superresolution examples. The input
Ea(x), being symmetric in x, was plotted over the range, 0 ≤ x ≤ 120λ, and again, we note
its enormous values.

Because of the symmetry of Eb(x) the coefficients bn are non-zero only for even values
of n and are listed below, where those for 0 ≤ n ≤ 6 correspond to the case M = 6, and
continuing for 7 ≤ n ≤ 20 for the case M = 20. We note the enormous dynamic range of
values, ranging over 18 orders of magnitude,



20.22. Superdirectivity, Superresolution, Superoscillations 1035

−1.2 −0.6 0 0.6 1.2
0

0.2

0.4

0.6

0.8

1

x/λ

output E
b
(x),   M = 6

 

 
 estimated
 exact
 g = 1

−1.2 −0.6 0 0.6 1.2
0

0.2

0.4

0.6

0.8

1

x/λ

output E
b
(x),   M = 20

 

 
 estimated
 exact
 g = 1

0 20 40 60 80 100 120
0

10

20

30

40

50

x/λ

input E
a
(x),   M = 6

 

 
 |E

a
(x)|2

0 20 40 60 80 100 120
0

1

2

3
x 10

33

x/λ

input E
a
(x),   M = 20

 

 
 |E

a
(x)|2

Fig. 20.22.6 Subwavelength focusing without evanescent waves,M = 6 andM = 20.

n bn n bn

0 1.0260×10−1 10 −2.3540×10+5

2 −1.0044×10−1 12 3.4742×10+7

4 9.5813×10−1 14 −5.5154×10+9

6 −3.7193×10+1 16 1.8705×10+12

8 1.9365×10+3 18 −7.8910×10+14

20 2.7855×10+17

The MATLAB code used to generate these graphs was as follows, where the required inte-
grations were done with the tanh-sinh quadrature function quadts,

lambda = 1;
k = 2*pi/lambda; a = 1.2*lambda/2; c = a*k
L = 20*lambda; % propagation distance

g = 40/(2*pi); % superresolution gain

Eb = @(x) sinc(g*k*x/pi); % desired Eb(x)
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E1 = @(x) sinc(k*x/pi); % Rayleigh case, g=1

x = linspace(-2,2, 1201)*a; % plotting range for Eb(x)
xa = linspace(0,120,1201) * lambda; % plotting range for Ea(x)

[wq,xq] = quadts(-a,a,8); % quadts weights and evaluation points
[wk,kq] = quadts(-k,k,8);

for M = [6,20]
[Pq,La] = pswf(a,k,M,xq); % psi_n(xq)

m = (0:M)’;
Mu = (i.^m) .* sqrt(2*pi*La/c);

b = (Pq * (wq.*Eb(xq)))./La; % b_n coefficients
b(2:2:end)=0; % b_n = 0 at odd n

Pb = pswf(a,k,M,x); % psi_n(x) at x

Est = b’ * Pb; % estimated Eb(x)

E0 = abs(Est(find(x==0)));
F = Est / E0; % normalize to unity at x=0

F2 = abs(F).^2; Eb2 = abs(Eb(x)).^2; E2 = abs(E1(x)).^2;

figure; plot(x,F2,’b-’, x,Eb2,’r--’, x,E2,’k--’);
xlim([-2,2]*a); ylim([0,1]);

% ---- calculate Ea(x) ----

Pk = pswf(a,k,M,kq*a/k); % psi_n(kx*a/k) at kx=kq

Ebk = (b’ * diag(1./conj(Mu)) * Pk) / k; % Eb(kx), row vector

kz = sqrt(k^2 - kq.^2); % kz at quadts points kq

for p=1:length(xa)
Ea(p) = Ebk * (exp(j*kz*L) .* exp(-j*kq*xa(p)) .* wk);

end

Ea2 = abs(Ea).^2;

figure; plot(xa,Ea2,’b-’)
end

The practical limitations of such designs have been discussed in [1556]. ��

Next, we consider the other special case of the inverse diffraction geometry shown
in Fig. 20.22.5, in which L is in the near field and Eb(x) is chosen to be completely
evanescent. The problem is to determine the input field Ea(x) to achieve a highly fo-
cused output field Eb(x). The general approach of designing such evanescent focusing
fields, referred to as “near-field focusing plates,” was first proposed by Merlin [1591]
and further developed in [1592–1597].
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As a concrete example from [1592,1593], consider an output field that has an ideal
bandpass spectrum over the range ka ≤ |kx| ≤ kb, with k < ka, as shown below,

Êb(kx)=
⎧⎨⎩E0 , ka ≤ |kx| ≤ kb

0 , otherwise

The field Eb(x) is determined by the inverse Fourier transform,

Eb(x) =
∫∞
−∞
Êb(kx)e−jkxx

dkx
2π

=
∫
ka≤|kx|≤kb

E0e−jkxx
dkx
2π

= E0
sin(kbx)− sin(kax)

πx
= E0kb

π

[
sin(kbx)
kbx

− ka
kb

sin(kax)
kax

] (20.22.43)

We note that if kb� ka > k, thenEb(x) is effectively given by a narrow sinc function,
sin(kbx)/(kbx), with resolution distance at first-null, d = π/kb� π/k, which is much
smaller than the diffraction limit d = π/k = λ/2.

The corresponding input field Ea(x) is reconstructed from (20.22.40), in which kz is

replaced by its evanescent version, kz = −j
√
k2
x − k2, because the integration range lies

in the evanescent region, |kx| > k,

Ea(x) =
∫∞
−∞
Êb(kx)ejkzLe−jkxx

dkx
2π

=
∫
ka≤|kx|≤kb

E0ejkzLe−jkxx
dkx
2π

=
∫
ka≤|kx|≤kb

E0eL
√
k2
x−k2e−jkxx

dkx
2π

(20.22.44)

The last integral can be computed numerically, as shown for example in the MATLAB
code below. However, if we further assume that ka� k, then, since |kx| > ka� k, the

evanescent square root can be further approximated by kz = −j
√
k2
x − k2 ≈ −j|kx|, and

the resulting approximate integral can be done in closed form,

Ea(x) =
∫
ka≤|kx|≤kb

E0eL
√
k2
x−k2e−jkxx

dkx
2π

≈
∫
ka≤|kx|≤kb

E0eL|kx|e−jkxx
dkx
2π

= E0

π
Im

[
ejkb(x−jL) − ejka(x−jL)

x− jL

]

= E0

π
ekbL

[
x sin(kbx)+L cos(kbx)

] − ekaL[x sin(kax)+L cos(kax)
]

x2 + L2

(20.22.45)

We note that Ea(x) is much bigger than Eb(x), approximately by the exponential
factor ekbL, which dominates the other factor ekaL. Fig. 20.22.7 plots Eb(x) computed
from (20.22.43), and Ea(x) from (20.22.45), for the following parameter values,

L = λ
16
, ka = 2k , kb = 10k , E0 = π

kb

We observe how the output Eb(x) is narrower but weaker than Ea(x). The exponen-
tial factors have the values, ekaL = 50.7540 and ekaL = 2.1933. The MATLAB code used
to generate these graphs is given below.
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Fig. 20.22.7 Near-field output and input waveforms.

lambda = 1; k = 2*pi/lambda;
ka = 2*k; kb = 10*k; L = lambda/16;

Eb = @(x) sinc(kb*x/pi) - ka/kb * sinc(ka*x/pi);
Ea = @(x) 1/kb * imag((exp(j*kb*(x-j*L)) - exp(j*ka*(x-j*L)))./(x-j*L));

x = linspace(-1,1,2001) * lambda;

% [wq,kq] = quadts(ka,kb,8); % quadts weights and evaluation points
% kz = -j*sqrt(kq.^2 - k^2); % evanescent kz
%
% for i=1:length(x),
% Ee(i) = E0 * wq’ * (2*cos(kq*x(i)).*exp(j*kz*L))/2/pi; % exact Ea(x)
% end

figure; plot(x,Eb(x),’b-’)
% plot(x,Eb(x),’b-’, x,sinc(kb*x/pi),’r--’); % plot exact & approximate Eb(x)

figure; plot(x, Ea(x),’b-’)
% plot(x, Ea(x),’b-’, x,Ee,’r--’) ; % plot exact & approximate Ea(x)

The exact inverse (20.22.44) is not plotted since it essentially coincides with that
of the approximation (20.22.45), however, the MATLAB code needed to compute it was
included in commented form.

20.23 Problems

20.1 A uniform plane wave, E(x, z)= E0e−jk(x sinθ0+z cosθ0), is incident obliquely on a lens at an
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angle θ0 with the z axis, as shown in the figure below.

Using similar methods as for Fig. 20.5.2, show that after passing through the lens, the wave
will converge onto the shifted focal point with coordinates z = F and x = F sinθ0 (the above
diagram implies that x = F tanθ0, which is approximately equal to F sinθ0 for small θ0.)

Conversely, consider a point source of a spherical wave starting at the point z = −F and
x = F sinθ0. Show that upon passage through the lens, the spherical wave will be converted
into the obliquely moving plane wave E(x, z)= E1e−jk(x sinθ0+z cosθ0). What is E1?

20.2 Consider the three lens configurations shown below. They are special cases of Figs. 20.4.1
and 20.4.2, with appropriate choices for the input and output aperture planes a and b.

Working with Eqs. (20.4.1) and (20.4.3), show that the transfer functions h(r⊥, r⊥′) are given
as follows for the three cases:

h(r⊥, r⊥′)= jk
2πF

e−2jkFejk(r⊥·r
′⊥)/F , h(r⊥, r⊥′)= jk

2πF
e−jkFejk(r⊥·r

′⊥)/F

h(r⊥, r⊥′)= −F1

F2
δ
(

r⊥′ + F1

F2
r⊥
)

Show that the first two cases perform a Fourier transformation as in Eq. (20.10.2), but without
the quadratic phase factors. Show that the third case, performs a scaling of the input with
a magnification factorM = −F2/F1.

20.3 Show that the encircled energy ratio for a uniform aperture, A(x)= u(a− |x|), is given by,

E(k0)=

∫ k0

−k0

|Â(kx)|2 dkx∫ ∞
−∞
|Â(kx)|2 dkx

= 2

π

[
Si(2ak0)− sin2(ak0)

ak0

]
(20.23.1)

where Si() is the standard sine integral defined in Appendix G.
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20.4 Consider an aperture-limited apodization function expanded as a sum of PSWF functions
as in Eq. (20.12.23). Choose k0 = k = 2π/λ, and show that the limiting directivity of
Eq. (20.12.18) can be expressed in terms of the expansion coefficients in the following form,

D∞
2ak

= π
a

∣∣∣∣∣∣
∞∑
n=0

Ânψn(k0, a,0)

∣∣∣∣∣∣
2

∞∑
n=0

|Ân|2

Using this expression and the Cauchy-Schwarz inequality, show that the maximum value is
D∞ = 2ak, and is attained with the coefficients Ân = 2πψn(k0, a,0). Moreover, show that
with these coefficients, the expansions of Eq. (20.12.23) lead to the uniform distribution,

A(x)= u(a− |x|) , Â(kx)= 2a · sin(kxa)
kxa

Hint: Eqs. (J.28)–(J.31) of Appendix J.

20.5 Consider an aperture-limited apodization function expanded as a sum of spherical Bessel
functions as in Eq. (20.12.24), or as a sum of sinc-functions as in (20.12.28). Show that
the limiting directivity of Eq. (20.12.18) can be expressed in terms of the corresponding
expansion coefficients in the following forms,

D∞
2ak

= |Â0|2
∞∑
n=0

|Ân|2/(2n+ 1)
= |F(0)|2

∞∑
n=−∞

|F(n)|2

As in the previous problem, show that the maximum value of the directivity is unity, de-
termine the coefficients that realize this maximum, and show that the resulting aperture
distribution is uniform. Moreover, show the following consequences of the Parseval identity
for each case, written with respect to the variable u = akx/π,

(Bessel)

∫∞
−∞
|F(u)|2du = 2a

∫ a
−a
|A(x)|2dx =

∞∑
n=0

|Ân|2
2n+ 1

(sinc)

∫∞
−∞
|F(u)|2du = 2a

∫ a
−a
|A(x)|2dx =

∞∑
n=0

|F(n)|2

20.6 For the optimum prolate apodization function defined in Eq. (20.13.2), show that the encir-
cled energy, Strehl ratio, transmission coefficient, and normalized directivity, are,

E(k0)= λ0 , S = μ
2
0

4
, τ = aμ2

0

4π|ψ0(0)|2 ,
D∞
2ak

= π
a
|ψ0(0)|2

where ψ0(0)= ψ0(k0, a,0), μ0 =
√

2πλ0/c, c = ak0, and λ0 is the 0-th prolate eigenvalue.

20.7 Prove Eq. (20.15.17) from (20.15.16).
Hint: sin

(
π(u− n)) = (−1)nsin(πu), for integer n.
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20.8 For the Hansen window of Eq. (20.17.2), show that the encircled energy ratio and limiting
directivity are given by the following closed-form expressions,

E(u0) =

∫ u0

0
|F(u)|2 udu

(2a)2

∫ a
0
|A(r⊥)|2 r⊥dr⊥

= 1−
J2

0

(
π
√
u2

0 −H2

)
+ J2

1

(
π
√
u2

0 −H2

)
I20(πH)−I21(πH)

D∞
(ka)2

=

∣∣∣∣∫ a
0
A(r⊥)2πr⊥dr⊥

∣∣∣∣2

πa2

∫ a
0
|A(r⊥)|2 2πr⊥dr⊥

=

[
2I1(πH)
πH

]2

I20(πH)−I21(πH)

20.9 To prove Eq. (20.20.8) without invoking the Babinet principle, first derive the following inte-
grals, where r⊥, r⊥′ are two-dimensional transverse vectors with magnitudes r⊥ = |r⊥| and
r′⊥ = |r⊥′|,
jk

2πz

∫∞
−∞
e−jk|r⊥−r⊥′|2/2z d2r⊥′ = jk

2πz
e−jkr

2⊥/2z
∫∞

0
e−jkr

′2⊥ /2z J0

(kr⊥r′⊥
z

)
2πr′⊥dr′⊥ = 1

then, using this result, show the relationship for any A(r⊥) and Ac(r⊥)= 1−A(r⊥),
jk

2πz
e−jkr

2⊥/2z
∫∞

0
A(r′⊥) e−jkr

′2⊥ /2z J0

(kr⊥r′⊥
z

)
2πr′⊥dr′⊥ =

= 1− jk
2πz

e−jkr
2⊥/2z

∫ ∞
0
Ac(r′⊥) e−jkr

′2⊥ /2z J0

(kr⊥r′⊥
z

)
2πr′⊥dr′⊥

20.10 Computer Experiment. Carry out the same experiment using the same numerical values as
in Example 20.22.4, but instead of Eq. (20.22.42), take the ideal focal spot within the field-
of-view [−a,a] to be a delta function,

Eb(x)= δ(x) , for |x| ≤ a = 0.6λ (20.23.2)

Make similar plots as in Fig. 20.22.6. Hint: In this case the expansion coefficients are simply,
bn = ψn(a, k,0)/λn, n = 0,1, . . . ,M.

21
Aperture Antennas

21.1 Open-Ended Waveguides

The aperture fields over an open-ended waveguide are not uniform over the aperture.
The standard assumption is that they are equal to the fields that would exist if the guide
were to be continued [1].

Fig. 21.1.1 shows a waveguide aperture of dimensions a > b. Putting the origin in
the middle of the aperture, we assume that the tangential aperture fields Ea, Ha are
equal to those of the TE10 mode. We have from Eq. (9.4.3):

Fig. 21.1.1 Electric field over a waveguide aperture.

Ey(x′)= E0 cos
(
πx′

a

)
, Hx(x′)= − 1

ηTE
E0 cos

(
πx′

a

)
(21.1.1)

where ηTE = η/K with K =
√

1−ω2
c/ω2 =

√
1− (λ/2a)2. Note that the boundary

conditions are satisfied at the left and right walls, x′ = ±a/2.
For larger apertures, such as a > 2λ, we may set K � 1. For smaller apertures, such

as 0.5λ ≤ a ≤ 2λ, we will work with the generalized Huygens source condition (18.5.7).
The radiated fields are given by Eq. (18.5.5), with fx = 0:

Eθ = jk e
−jkr

2πr
cθ fy(θ,φ)sinφ

Eφ = jk e
−jkr

2πr
cφ fy(θ,φ)cosφ

(21.1.2)


