
10
Surface Waveguides

In this chapter we discuss a variety of surface waveguides, such as plasmonic wavegui-
des, which have the ability to confine light at sub-wavelength scales, and the Sommerfeld
wire and Goubau lines, in which there is renewed interest for THz applications. We also
use the Sommerfeld wire as the ideal example to explain the skin effect in conductors.

10.1 Plasmonic Waveguides

Surface plasmons have a large number of applications in the field of nanophotonic de-
vices, waveguides, and nanocircuits, and in the area of biological and chemical sensors,
and other applications [593–631]. Their distinguishing feature is their ability to confine
light at sub-wavelength scales and guide it at long (relative to nanoscale) distances.

In this section, we consider plasmonic waveguides [934–981] from the point of view
the longitudinal-transverse waveguide decompositions that we developed in this chap-
ter. The asymmetric dielectric waveguide problem of Sec. 9.12 is very similar—a very
significant difference being that in the plasmonic case at least one the layers is metal-
lic with a dielectric constant having negative real-part in the operating frequency range
(typically, infrared to optical).

Fig. 10.1.1 depicts a typical plasmonic waveguide consisting of a thin film εf , sand-
wiched between a cladding cover εc and a substrate εs. We discuss three cases: (a)
single interface between a dielectric εc and a metal εf , (b) metal-dielectric-metal (MDM)
configuration in which εf is a lossless dielectric and εc, εs are metals, (c) dielectric-metal-
dielectric (DMD) configuration in which εf is a metal and εc, εs are lossless dielectrics.†

Here, the quantities εc, εf , εs denote that relative permittivities of the media, that
is, εi = εi/ε0, i = c, f , s, where εi is the permittivities of the ith medium and ε0, the
permittivity of vacuum.

In the geometry of Fig. 10.1.1, propagation is in the z-direction, the transverse con-
finement is along the x-direction, the layers have infinite extent along the y-direction,
and the film thickness is 2a. We look for field solutions that have t, z propagation
dependence of ejωt−jβz, and decay exponentially away from the interfaces so that the

†Also known as metal-insulator-metal (MIM) and insulator-metal-insulator (IMI) configurations.

412 10. Surface Waveguides

Fig. 10.1.1 Plasmonic waveguide depicting TM modes in either a DMD or MDM configuration.

transverse attenuation coefficients αs,αc in the substrate and cladding have positive
real parts, thus, the x-dependence of the fields is as follows for x < −a and x > a:

e−αs|x| for x < −a (substrate) and e−αcx for x > a (cladding)

As in the asymmetric dielectric guide of the previous section,

α2
s = β2 − k2

0εs

α2
c = β2 − k2

0εc
(10.1.1)

where k0 = 2π/λ0 is the vacuum wavenumber and λ0 the vacuum wavelength, with
operating frequency f = c0/λ0 in Hz. Acceptable solutions must have z-propagation
wavenumber β with negative imaginary part, β = βR − jβI, βI ≥ 0, so that the wave
attenuates exponentially as it propagates in the positive z-direction:

e−jβz = e−j(βR−jβI)z = e−jβRze−βIz

A measure of the effective propagation distance is L = β−1
I , or L = (2βI)−1 if it is

referred to power, and the attenuation is 20 log10(e)βI = 8.686βI in units of dB/m.
Within the film εf , the transverse cutoff wavenumber satisfies k2

f = k2
0εf − β2. If

the film is a metal with a dielectric constant εf with negative real part, then k2
f will be

essentially negative or kf imaginary, and therefore, it makes sense to work with the
“attenuation” coefficient defined by γ = jkf , so that γ2 = −k2

f ,

γ2 = β2 − k2
0εf (10.1.2)

Thus, within the film, instead of assuming an x-dependence that is a linear combina-
tion of oscillatory cos(kfx) and sin(kfx) terms, we may work with a linear combination
of hyperbolic terms sinh(γx) and cosh(γx)—referred to as plasmonic solutions.

Another way to justify the change in notation to γ = jkf , is to note that because
the metals are lossy, the fields cannot penetrate too deeply into the metal and will be
essentially surface waves that are concentrated primarily at the metal-dielectric inter-
faces (i.e., at x = ±a) and attenuating away from them. By contrast, in the dielectric
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waveguide of the previous sections, the fields typically peak in the center of the film. In
other words, in plasmonic waveguides most of the field energy is carried at or near the
metal-dielectric interfaces instead of at the center of the film.

We will consider only TM plasmonic modes, although in more complicated media,
such as magnetic materials and metamaterials, TE modes are also possible. The recent
book [934] includes examples of all possible types of media and modes.

The TM modes are obtained by solving Eqs. (9.3.10) in each region and applying the
boundary conditions. Thus, we must solve in each region:

(∂2
x−γ2)Ez = 0 , Ex = − jβ

−γ2
∂xEz , Hy = 1

ηTM
Ex , ηTM = β

ωε0ε
, γ2 = β2−k2

0ε

or, more specifically,

for |x| ≤ a , (∂2
x − γ2)Ez = 0 , γ2 = β2 − k2

0εf , ηTM = β/(ωε0εf)

for x ≥ a , (∂2
x −α2

c)Ez = 0 , α2
c = β2 − k2

0εc , ηTM = β/(ωε0εc)

for x ≤ −a , (∂2
x −α2

s)Ez = 0 , α2
s = β2 − k2

0εs , ηTM = β/(ωε0εs)

The solutions for Ez(x) that automatically satisfy the tangential E-field boundary
conditions at x = ±a can be expressed as follows, where E0 is a constant and ψ, a
parameter to be determined:

Ez(x)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E0 sinh(γx+ψ) , |x| ≤ a
E0 sinh(γa+ψ)e−αc(x−a) , x ≥ a

−E0 sinh(γa−ψ)eαs(x+a) , x ≤ −a
(10.1.3)

The complete space-time dependence is Ez(x)ejωt−jβz. Eq. (10.1.3) results in the
following transverse E-field:

Ex(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− jβ
−γ2

∂xEz = E0
jβ
γ

cosh(γx+ψ) , |x| ≤ a

− jβ
−α2

c
∂xEz = −E0

jβ
αc

sinh(γa+ψ)e−αc(x−a) , x ≥ a

− jβ
−α2

s
∂xEz = −E0

jβ
αs

sinh(γa−ψ)eαs(x+a) , x ≤ −a

(10.1.4)

The corresponding transverse magnetic fields are then obtained from Hy = Ex/ηTM.

Hy(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

jωε0E0
εf
γ

cosh(γx+ψ) , |x| ≤ a

−jωε0E0
εc
αc

sinh(γa+ψ)e−αc(x−a) , x ≥ a

−jωε0E0
εs
αs

sinh(γa−ψ)eαs(x+a) , x ≤ −a

(10.1.5)
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which, using the continuity conditions (10.1.7), can also be written as,

Hy(x)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H0 cosh(γx+ψ) , |x| ≤ a

H0 cosh(γa+ψ)e−αc(x−a) , x ≥ a

H0 cosh(γa−ψ)eαs(x+a) , x ≤ −a

(10.1.6)

where H0 = jωε0E0εf/γ. The continuity of the tangential H-field of Eq. (10.1.5) at the
interfaces is equivalent to the continuity of the normal D-field, that is, εEx, resulting
into the two conditions:

εf
γ

cosh(γa+ψ)= − εc
αc

sinh(γa+ψ)

εf
γ

cosh(γa−ψ)= − εs
αs

sinh(γa−ψ)
⇒

tanh(γa+ψ)= −pcαc
γ

tanh(γa−ψ)= −psαs
γ

(10.1.7)
where we defined as in Eq. (9.12.23):

pc = εfεc , ps = εfεs (10.1.8)

The two conditions (10.1.7), together with,

γ2 = β2 − k2
0εf

α2
c = β2 − k2

0εc
α2
s = β2 − k2

0εs

(10.1.9)

allow the determination of the parameters β,γ,αc,αs, and ψ. Eqs. (10.1.7) can also be
written in the forms:

e2(γa+ψ) = γ− pcαc
γ+ pcαc , e2(γa−ψ) = γ− psαs

γ+ psαs (10.1.10)

which immediately decouple into,

e4γa = (γ− pcαc)(γ− psαs)
(γ+ pcαc)(γ+ psαs) (10.1.11)

e4ψ = (γ− pcαc)(γ+ psαs)
(γ+ pcαc)(γ− psαs) (10.1.12)

and can also be written in the equivalent forms:

tanh(2γa)= −γ(pcαc + psαs)
γ2 + pcαcpsαs (10.1.13)

tanh(2ψ)= −γ(pcαc − psαs)
γ2 − pcαcpsαs (10.1.14)
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The quantities β,γ,αc.αs may be determined from Eqs. (10.1.9) and (10.1.11), or
(10.1.13). Then, the parameter ψ can be calculated from Eq. (10.1.14). The quantity ψ
is defined up to an integer multiple of jπ/2 because of the identity tanh(2ψ± jmπ)=
tanh(2ψ), and the integer m serves to label particular modes. For example, a possible
way of introducing the integerm in the inverse of Eqs. (10.1.7) is:

γa+ψ = atanh

(
−pcαc
γ

)

γa−ψ = atanh

(
−psαs
γ

)
− jmπ

which result into:

γa = 1

2
atanh

(
−pcαc
γ

)
+ 1

2
atanh

(
−psαs
γ

)
− 1

2
jmπ

ψ = 1

2
atanh

(
−pcαc
γ

)
− 1

2
atanh

(
−psαs
γ

)
+ 1

2
jmπ

(10.1.15)

Eq. (10.1.13) has a very rich solution structure because, in general, the quantities
β,γ,αc,αs are complex-valued when the media are lossy. See, for example, Refs. [941–
944,954,955] for a discussion of the variety of possible solutions.

The above choice of them-terms was made so that the casesm = 0 andm = 1 will
correspond to the TM0 and TM1 modes, respectively. Additional jπ/2 terms may arise
depending on the values of the parameters. For example, if εc, εs are real and negative
and εf is positive as in an MDM case, and if |pc|αc/γ > 1 and |ps|αs/γ > 1, then using
the identity,

atanh
(

1

x

)
= atanh(x)+sign(x)

jπ
2
, x real, |x| < 1

we may rewrite Eq. (10.1.15) in the form:

γa = 1

2
atanh

(
− γ
pcαc

)
+ 1

2
atanh

(
− γ
psαs

)
− 1

2
j(m− 1)π

ψ = 1

2
atanh

(
− γ
pcαc

)
− 1

2
atanh

(
− γ
psαs

)
+ 1

2
jmπ

(10.1.16)

Oscillatory Modes

In addition to the plasmonic waveguide modes, there may also be oscillatory modes. The
plasmonic solutions have a value for γ that is predominantly real-valued, with the fields
peaking at the metal-dielectric interfaces, whereas the oscillatory modes have a γ that is
dominantly imaginary. In fact, replacing, γ = jkf , in Eq. (10.1.13) and using the identity,
tanh(jx)= j tan(x), we obtain the characteristic equation for the oscillatory modes:

tan(2kfa)= kf(pcαc + psαs)k2
f − pcαcpsαs

(oscillatory modes) (10.1.17)
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where kf =
√
k2

0εf − β2. In an MDM configuration, kf is predominantly real, whereas in
an DMD configuration that has Re(εf)< 0, kf will be predominantly imaginary, i.e., of
the plasmonic type. Thus, Eq. (10.1.17) applies to the MDM case and admits both TE
and TM type of solutions, with the TE ones obtained by replacing, pc = ps = 1, as in
Sec. 9.12. Setting ψ = jφ, the two matching conditions (10.1.7) read now

tan(kfa+φ)= pcαckf
tan(kfa−φ)= psαskf

(10.1.18)

which can be inverted and solved in terms of the mode numberm:

kfa = 1

2
atan

(
pcαc
kf

)
+ 1

2
atan

(
psαs
kf

)
+ 1

2
mπ

φ = 1

2
atan

(
pcαc
kf

)
− 1

2
atan

(
psαs
kf

)
+ 1

2
mπ

(10.1.19)

These apply to both the TE and TM cases. For the TM case of the MDM configuration,
because pc, ps are dominantly negative-real, we may use the identity,

atan(x)= π
2
+ atan

(
−1

x

)
, x > 0

applied, for example, with x = −kf/pcαc, to rewrite Eq. (10.1.19) in the form:

kfa = 1

2
atan

(
− kf
pcαc

)
+ 1

2
atan

(
− kf
psαs

)
+ 1

2
(m− 1)π

φ = 1

2
atan

(
− kf
pcαc

)
− 1

2
atan

(
− kf
psαs

)
+ 1

2
mπ

(10.1.20)

We will use this form to determine the cutoff waveguide thicknesses of certain
modes. Replacing γ = jkf and ψ = jφ in Eq. (10.1.6), we also obtain the transverse
magnetic field of the oscillatory TM modes:

Hy(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

H0 cos(kfx+φ) , |x| ≤ a

H0 cos(kfa+φ)e−αc(x−a) , x ≥ a

H0 cos(kfa−φ)eαs(x+a) , x ≤ −a

(10.1.21)

where H0 = ωε0E0εf/kf . In the examples below, we look at the special roles played
by the TM0 plasmonic mode (m = 0), and the TM1 plasmonic and oscillatory modes
(m = 1).
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Relationship to Surface Plasmon Resonance

We note also that Eq. (10.1.11) is equivalent to the surface plasmon resonance condition
discussed in Sec. 8.5. The reflection coefficient Γ of the Kretschmann-Raether configu-
ration of Fig. 8.5.2 is given by Eq. (8.5.7),

Γ = ρa + ρbe−2jkzd

1+ ρaρbe−2jkzd
, ρa = kzεa − kzaεkzεa + kzaε , ρb = kzbε− kzεbkzbε+ kzεb

The surface plasmon resonance condition [608] corresponds to a pole of Γ, that is,
the vanishing of the denominator, 1 + ρaρbe−2jkzd = 0, which is indeed the same as
Eq. (10.1.11). To see this, we map the notation of Sec. 8.5 to that of the present section:

x→ z , z→ x , kz → −jγ , kza → −jαs , kzb → −jαc , ε→ εf , εa → εs , εb → εc
which imply,

ρa → γ− psαs
γ+ psαs , ρb → −γ− pcαc

γ+ pcαc

1+ ρaρbe−2jkzd = 0 → 1−
(
γ− psαs
γ+ psαs

)(
γ− pcαc
γ+ pcαc

)
e−4γa = 0

Symmetric Configuration

When the cladding and substrate media are the same, i.e., εc = εs, then αc = αs and
pc = ps, and the characteristic equations (10.1.7) simplify further. Indeed, we note
from Eq. (10.1.14) that e4ψ = 1, which implies the two basic casesψ = 0 andψ = jπ/2.
Noting the identity tanh(x± jπ/2)= coth(x), the two characteristic equations (10.1.7)
become a single one, given as follows for the two cases of ψ:

(even) ψ = 0 , e2γa = +γ− pcαc
γ+ pcαc , tanh(γa)= −pcαc

γ

(odd) ψ = jπ
2
, e2γa = −γ− pcαc

γ+ pcαc , coth(γa)= −pcαc
γ

(10.1.22)

The labeling as even or odd (symmetric or antisymmetric) refers to the symmetry or
antisymmetry of the transverse electric and magnetic fields Ex(x) and Hy(x) as func-
tions of x within the film region.† Indeed, it is evident from Eq. (10.1.4) that if ψ = 0,
then Ex(x) is proportional to cosh(γx), an even function of x, and if ψ = jπ/2, then
because of the identity cosh(x+ jπ/2)= j sinh(x), the field Ex(x) will be proportional
to sinh(γx), an odd function of x.

The nomenclature carries over loosely to the asymmetric waveguide that has εc �= εs,
with the “symmetric/even” case corresponding to a value ofψ that is predominantly real,
and the “antisymmetric/odd” one corresponding to a ψ whose imaginary part is near
jπ/2. Examples of these are given below.

†In the literature, sometimes the labeling is reversed, referring instead to the symmetry or antisymmetry
of the longitudinal field Ez(x) which is the opposite of that of Ex(x).
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Power Transfer

The z-component of the Poynting vector gives the power flow in the z-direction per unit
xy area. Since Ex = ηTMHy, ηTM = β/(ωε), we obtain from Eq. (10.1.6),

Pz(x)= 1

2
Re
[
Ex(x)H∗y (x)

] = 1

2
Re(ηTM)|Hy(x)|2

and since k0 =ω/c0, we may write ηTM in the form,

ηTM = β
ωε

= β
k0c0ε0ε

= η0
β
k0ε

, η0 =
√
μ0

ε0

The Poynting vector is then in the three regions,

Pz(x)= 1

2
η0 |H0|2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Re

(
β
k0εf

)∣∣cosh(γx+ψ)∣∣2 , |x| ≤ a

Re
(
β
k0εc

)∣∣cosh(γa+ψ)∣∣2 e−2αcR(x−a) , x ≥ a

Re
(
β
k0εs

)∣∣cosh(γa−ψ)∣∣2 e2αsR(x+a) , x ≤ −a

(10.1.23)

where αcR,αsR denote the real parts of αc,αs. Integrating (10.3.2) over an xy area,
dS = dx · (1 m along y), we obtain the powers transmitted (per unit y-length) along
the z-direction within each region. Dropping the overall unimportant factor η0 |H0|2/2,
and denoting the real and imaginary parts of γ,ψ by γR,ψR and γI,ψI, we have,

Pf = Re

(
β
k0εf

)[
sinh(2γRa) cosh(2ψR)

2γR
+ sin(2γIa)cos(2ψI)

2γI

]

Pc = Re
(
β
k0εc

) ∣∣cosh(γa+ψ)∣∣2

2αcR

Ps = Re
(
β
k0εs

) ∣∣cosh(γa−ψ)∣∣2

2αsR

(10.1.24)

and the net power is,
P = Pf + Pc + Ps (10.1.25)

These expressions must be multiplied by e−2βIz, where β = βR− jβI, for the attenu-
ation of power with propagation distance z. These also apply to the lossless case, where
we must replace sin(2γIa)/(2γI)

∣∣
γI=0 = a. Note that we may also write,

∣∣cosh(γa±ψ)∣∣2 = 1

2

[
cosh(2γRa± 2ψR)+ cos(2γIa± 2ψI)

]
The MATLAB function, pwgpower, implements Eqs. (10.1.24) and (10.1.25):

[P, Pf, Pc, Ps] = pwgpower(a,ef,ec,es,be,m); % transmitted power in plasmonic waveguide

where a and β are in units of k−1
0 and k0, respectively, and m = 0,1, for TM0 or TM1

modes, where ψ is calculated from Eq. (10.1.15).
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10.2 Single Metal-Dielectric Interface

The case of a single metal-dielectric interface can be thought of as the limit of a DMD con-
figuration when the film thickness tends to infinity, a→∞. It is depicted in Fig. 10.2.1.

Fig. 10.2.1 Surface plasmon wave propagating along metal-dielectric interface.

Because γ has positive real part, the left-hand side of Eq. (10.1.11) tends to infinity
as a → ∞, and this requires the vanishing of the denominator of the right-hand side,
that is, one of the conditions:

γ = −pcαc , or, γ = −psαs (10.2.1)

Let us consider the first one. Because εf is a metal with a negative real part, the
condition γ = −pcαc = −εfαc/εc is consistent with the requirement that both γ and
αc have positive real parts. Assuming that the interface is positioned at x = 0, the
longitudinal electric field will be for TM modes:

Ez(x)=
⎧⎨
⎩
E0e−αcx , x ≥ 0

E0eγx = E0e−γ|x| , x ≤ 0
(10.2.2)

with complete space-time dependence Ez(x)ejωt−jβz. The Ex component will be:

Ex(x)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
− jβ
−α2

c
∂xEz = −E0

jβ
αc
e−αcx , x ≥ 0

− jβ
−γ2

∂xEz = E0
jβ
γ
eγx , x ≤ 0

(10.2.3)

The corresponding magnetic field is obtained fromHy = Ex/ηTM, where ηTM = β/(ωε),

Hy(x)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−jωε0E0

εc
αc
e−αcx , x ≥ 0

jωε0E0
εf
γ
eγx , x ≤ 0

(10.2.4)
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The continuity of either Dx = εEx, or Hy at x = 0 gives the first condition in
Eq. (10.2.1). These results are equivalent to those of Sec. 7.11. Indeed, the propaga-
tion wavenumber β, as well as γ,αc, are obtained from:

γ = −εfαc
εc

⇒ β2 − k2
0εf =

ε2
f

ε2
c
(β2 − k2

0εc) (10.2.5)

or, solving for β,γ,αc,

β = k0

√
εfεc
εf + εc , γ = −k0εf√−εf − εc , αc = k0εc√−εf − εc (10.2.6)

where the square root signs have been selected to satisfy the requirements that β have
negative imaginary part and β,γ,αc, positive real parts. To see this in more detail, set
εf = −εR − jεI, with εR > 0, and assume εR > εc, as in Sec. 7.11. Then, a first-order
calculation in εI yields the expressions:

β = k0

√
εRεc
εR − εc

[
1− j εcεI

2εR(εR − εc)
]

γ = k0εR√
εR − εc

[
1+ j (εR − 2εc)εI

2εR(εR − εc)
]

αc = k0εc√
εR − εc

[
1− j εI

2(εR − εc)
]

(10.2.7)

Eq. (10.2.7) shows explicitly how the condition εR > εc guarantees the existence of
plasmonic waves with Re(β)> 0 and Im(β)< 0. We note also that Re(γ)/Re(αc)=
εR/εc, which is typically much greater than unity, εR/εc 
 1. Therefore, the attenu-
ation length within the metal is typically much shorter than that in the dielectric, i.e.,
1/Re(γ)� 1/Re(αc). This is depicted in Figs. 10.2.1 and 10.2.2.

Example 10.2.1: Following Example 7.11.1, we use the value εf = −16 − 0.5j for silver at
λ0 = 0.632 μm, and air εc = 1. Then, k0 = 2π/λ0 = 9.94 rad/μm and Eqs. (10.2.6)
give the following values for the parameters β,γ,αc and corresponding propagation and
penetration distances:

β = 10.2674− 0.0107j rad/μm , Lz = − 1

Im(β)
= 93.5969 μm

γ = 41.0755+ 0.5989j rad/μm , Lf = 1

Re(γ)
= 0.0243 μm

αc = 2.5659− 0.0428j rad/μm , Lc = 1

Re(αc)
= 0.3897 μm

Thus, the fields extend more into the dielectric than the metal, but at either side they
are confined to distances that are less than their free-space wavelength. The transverse
magnetic field Hy(x), which is continuous at the interface, is shown in Fig. 10.2.2. It was
plotted with the MATLAB code:

ec = 1; ef = -16-0.5*j; la0 = 0.632; k0 = 2*pi/la0;
b = k0*sqrt(ef*ec/(ef+ec));
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ga = -k0*ef/sqrt(-ef-ec); % or, ga = sqrt(b^2 - k0^2*ef);
ac = k0*ec/sqrt(-ef-ec); % or, ac = sqrt(b^2 - k0^2*ec);
x = linspace(-0.4, 1, 141);
Hy = abs(exp(ga*x).*(x<0) + exp(-ac*x).*(x>=0));
plot(x,Hy);
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Fig. 10.2.2 Surface plasmon magnetic field profile.

10.3 Power Transfer, Energy & Group Velocities

Replacingβ = βR−jβI, εf = −εR−jεI, andαc = αR−jαI, γ = γR+jγI into Eq. (10.2.7),
we note also the following relationships, with the second following by equating real parts
in Eq. (10.2.5):

2βRβI = 2αRαI = k2
0 ε2
c εI

(εR − εc)2+ε2
I
, εcγR = εRαR + εIαI (10.3.1)

and since εI ≥ 0, Eq. (10.3.1) implies that βR ≥ 0 and αI ≥ 0 since βI ≥ 0 and αR ≥ 0.
The power flow along the propagation direction is described by the z-component of

the Poynting vector. From Eqs. (10.2.3) and (10.2.4), we obtain,

Pz(x)= 1

2
Re
[
Ex(x)H∗y (x)

] = 1

2
ωε0|E0|2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Re[βε∗c ]
|αc|2 e−2αRx , x ≥ 0

Re[βε∗f ]
|γ|2 e2γRx , x ≤ 0

(10.3.2)

Integrating (10.3.2) over an xy area, dS = dx·(1 m along y), we obtain the net power
transmitted (per unit y-length) along the z-direction:

PT =
∫∞
−∞
Pzdx = 1

4
ωε0|E0|2

[
βRεc
αR|αc|2 −

βRεR − βIεI
γR|γ|2

]
(10.3.3)
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where the first term represents the power flow within the dielectric, and the second, the
power flow within the metal. Since typically, βRεR
 βIεI, the second term is negative,
representing power flow along the negative z direction within the metal. However, the
sum of the two terms is positive, so that the net power flow is along the positive z-
direction. In fact, since also, |γ| 
 |αc|, the second term will be much smaller than
the first one, which is to be expected since the fields tend to be attenuate more quickly
within the metal than in the dielectric. Indeed, for the values given in Example 10.2.1,
we find the terms in the brackets to be:[

βRεc
αR|αc|2 −

βRεR − βIεI
γR|γ|2

]
= 0.6076− 0.0024 = 0.6053

Using the second of Eqs. (10.3.1), one can show that the term in brackets in (10.3.3)
becomes[

βRεc
αR|αc|2 −

βRεR − βIεI
γR|γ|2

]
= βRαRεR(ε

2
R − ε2

c + ε2
I )+βRαIεI(ε2

R + ε2
I )+βIαRεIε2

c

αRγRε2
c|γ|2

which is positive since we assumed εR > εc, and all other terms are non-negative. The
power, of course, attenuates exponentially with distance z, and the expression (10.3.3)
for PT must be multiplied by the factor e−2βIz.

The positivity of PT implies also the positivity of the energy velocity, ven = PT/W′,
whereW′ is the energy density per unit z-length (see Sec. 9.7), which is always positive.
In the lossless case, we show below that the group velocity, vg = dω/dβ, is equal to the
energy velocity, and hence vg will also be positive. This can also be seen from Fig. 7.11.2
depicting theω–β dispersion relationship, which has a positive slope dω/dβ.

However, when losses are taken into account, it can be shown [973], using for exam-
ple the Drude model for the metal permittivity, that there are frequency regions in which
the group velocity is negative. Similar situations arise in MDM and DMD configurations
in which, depending on the media permittivities and layer thicknesses, there can exist
modes that have negative group velocities—see, for example, Refs. [943] and [965–981].

Next, we determine the x-component of the Poynting vector, which describes power
flow from the dielectric into the metal, and we show that the power entering the metal
and the power flowing in the z-direction in the metal are completely dissipated into heat
as ohmic and dielectric losses. We have,

Px(x)= −1

2
Re
[
Ez(x)H∗y (x)

] = 1

2
ωε0|E0|2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− Im
(
εc
αc

)
e−2αRx , x ≥ 0

Im

(
εf
γ

)
e2γRx , x ≤ 0

(10.3.4)

The power flow Px is continuous across the interface at x = 0 because of the condi-
tion εc/αc = −εf/γ. The negative sign on the dielectric side simply means that power
flows towards the negative x direction into the metal. The z-dependence of Px is ob-
tained by multiplying Eq. (10.3.4) by e−2βIz.

To account for the power dissipation within the metal, we consider a rectangular
volume of sides L,d, b along the z, x, y directions lying within the metal below the yz
interface plane, as shown below.
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The net power entering and leaving the top and bottom sides is obtained by restoring
the factor e−2βIz and integrating (10.3.4) over the L× b area and subtracting the values
at x = 0 and x = −d,

Px,net = 1

2
ωε0|E0|2 Im

(
εc
αc

)
(1− e−2βIL)

2βI
(1− e−2γR d)b (10.3.5)

Similarly, the net power entering and leaving the left and right sides is obtained by
integrating (10.3.2) over the area d× b and subtracting the values at z = 0 and z = L,

Pz,net = −1

2
ωε0|E0|2

Re[βε∗f ]
|γ|2

(1− e−2γR d)
2γR

(1− e−2βIL)b (10.3.6)

The sum of these two powers must equal the power loss within the volume L× d× b,

Ploss = 1

2
Re(jωεf)

∫
V

E · E∗ dV = 1

2
ε0ωεI

∫
V

(|Ex|2 + |Ez|2)dV
Restoring the factor e−jβz in Ex, Ez, we obtain from Eqs. (10.2.2) and (10.2.3):

Ploss = 1

2
ωε0|E0|2 εI

(
1+ |β|

2

|γ|2
)
(1− e−2γR d)(1− e−2βIL)

2γR · 2βI
b (10.3.7)

Energy conservation requires that, Px,net + Pz,net = Ploss. Canceling some common
factors, this condition is equivalent to,

2γR Im
(
εc
αc

)
− 2βI

Re[βε∗f ]
|γ|2 = εI

(
1+ |β|

2

|γ|2
)

(10.3.8)

The proof of this result is left for Problem 10.1, however, we note that this calculation
is an example of the more general result stated in Problem 1.5. We note also that (10.3.8)
is trivially satisfied in the lossless case that has βI = αI = εI = 0.

We conclude this section by showing the equality vg = ven in the lossless case and
assuming an arbitrary frequency dependence of the (real-valued) metal permittivity.

We assume that εf = −εR is a real negative function of frequency ω, εc is positive
constant such that εR > εc, and both media are non-magnetic, μ = μ0. Then, the
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quantities β,αc, γ are given by the real parts of Eqs. (10.2.7). Inserting these expressions
into PT, we find:

PT = 1

4
ε0|E0|2 c

2
0(εR + εc)(εR − εc)2

ωε3/2
R ε3/2

c
(10.3.9)

For lossless non-magnetic media, the time-averaged energy density is given by

wen = 1

4
(ωε)′|E|2 + 1

4
μ0|H |2 , (ωε)′≡ d(ωε)

dω
or,

wen = 1

4
(ωε)′

(|Ex|2 + |Ez|2)+ 1

4
μ0|Hy|2

Using Eqs. (10.2.2)-(10.2.4), we obtain,

wen = 1

4
ε0|E0|2

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
εc

(
1+ β

2

α2
c

)
+ k

2
0ε2
c

α2
c

]
e−αcx , x ≥ 0

⎡
⎣(ωεf)′

(
1+ β

2

γ2

)
+ k

2
0ε

2
f

γ2

⎤
⎦eγx , x ≤ 0

Integrating over x, we find the energy density per unit z-length and unit y-length:

W′ =
∫∞
−∞
wendx =

= 1

4
ε0|E0|2

⎧⎨
⎩
[
εc

(
1+ β

2

α2
c

)
+ k

2
0ε2
c

α2
c

]
1

2αc
+
⎡
⎣(ωεf)′

(
1+ β

2

γ2

)
+ k

2
0ε

2
f

γ2

⎤
⎦ 1

2γ

⎫⎬
⎭

The derivative term (ωεf)′ can be replaced by

(ωεf)′= −(ωεR)′= −εR −ωε′R , ε′R ≡
dεR
dω

By differentiating with respect toω both sides of the equation,

β2 = ω
2

c2
0

εRεc
εR − εc

we may relate the derivative ε′R to the derivative β′ = dβ/dω, as follows:

ε′R = 2
(
β
ω
− β′

) ε2
Rω2

β3c2
0

(10.3.10)

Substituting this intoW′, we find after some algebra,

W′ = 1

4
ε0|E0|2 β

′ c2
0(εR + εc)(εR − εc)2

ωε3/2
R ε3/2

c
(10.3.11)

This implies that the energy velocity will be equal to the group velocity:

ven = PTW′ =
1

β′
= dω
dβ

= vg
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10.4 MDM Configuration – Lossless Case

An MDM waveguide is depicted in Fig. 10.4.1. To gain an understanding of the properties
of the propagating modes, we will assume initially that all three media are lossless, with
εf real positive, and εc, εs real negative, so that we can set εc = −|εc| and εs = −|εs|.
Without loss of generality, we will also assume that |εc| ≥ |εs|. Following [943], we
distinguish three cases:

1. |εs| ≤ εf ≤ |εc| ⇒ |pc| ≤ 1 ≤ |ps|
2. |εs| ≤ |εc| ≤ εf ⇒ 1 ≤ |pc| ≤ |ps|
3. εf ≤ |εs| ≤ |εc| ⇒ |pc| ≤ |ps| ≤ 1

(10.4.1)

where pc = εf/εc and ps = εf/εs. These cases define three regions labeled 1,2,3, on
the pc, ps parameter plane, as shown in Fig. 10.4.2. Regions 1′,2′,3′ are obtained by
interchanging the roles of εc and εs. For typical metals like silver and gold at optical
frequencies, the relevant region is 3. For example, the permittivity of silver at λ = 650
nm is εs = −15.48− 1.15j, while typically, εf is less than 5.

Fig. 10.4.1 MDM plasmonic waveguide.

Fig. 10.4.2 Possible regions in MDM lossless case.

The characteristic equations (10.1.7), (10.1.11) and (10.1.13) can be written in the forms,

tanh(γa+ψ) = −pcαc
γ

= |pc|αc
γ

tanh(γa−ψ) = −psαs
γ

= |ps|αs
γ

(10.4.2)

e4γa = (γ− pcαc)(γ− psαs)
(γ+ pcαc)(γ+ psαs) =

|pc|αc + γ
|pc|αc − γ ·

|ps|αs + γ
|ps|αs − γ (10.4.3)
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tanh(2γa)= −γ(pcαc + psαs)
γ2 + pcαcpsαs =

γ(|pc|αc + |ps|αs)
γ2 + |pc|αc |ps|αs (10.4.4)

We note also that Eqs. (10.1.9) can be written as,

γ =
√
β2 − k2

0εf

αc =
√
β2 − k2

0εc =
√
γ2 + k2

0(εf + |εc|)

αs =
√
β2 − k2

0εs =
√
γ2 + k2

0(εf + |εs|)

(10.4.5)

Because we are looking for plasmonic solutions that have real and positiveβ,γ,αc,αs,
it follows that β and γ must be restricted to the ranges β ≥ k0

√εf and γ ≥ 0. Taking
the limit of (10.4.4) as γ → 0, and using the Taylor series approximation tanh(x)� x,
valid for small x, we obtain the cutoff thickness of the dielectric layer,

tanh(2γa)� 2γa = γ(|pc|αc + |ps|αs)
γ2 + |pc|αc |ps|αs ⇒ 2a = 1

|pc|αc +
1

|ps|αs

∣∣∣∣∣
γ=0

, or,

2k0acutoff = |εc|
εf
√
εf + |εc|

+ |εs|
εf
√
εf + |εs|

(10.4.6)

But the upper limit of β, and whether acutoff is an upper or a lower cutoff, will depend
on which region in Fig. 10.4.2 we are. A plot of β versus the film thickness a can be made
by solving Eq. (10.4.4) and varying β over its allowed range,

a = 1

2γ
atanh

(
−γ(pcαc + psαs)
γ2 + pcαcpsαs

)
(10.4.7)

Depending on the mode and region, amay be an increasing or a decreasing function
of β. This can be determined from the derivative of a with respect to β, given by,

da
dβ

= β
γ
da
dγ

= β|pc|(εf + |εc|)
2γ2αc(p2

cα2
c − γ2)

+ β|ps|(εf + |εs|)
2γ2αs(p2

sα2
s − γ2)

− βa
γ2

(10.4.8)

Region 1

Region-1 is defined by the conditions, |εs| ≤ εf ≤ |εc|, or, |pc| ≤ 1 ≤ |ps|. Because
|ps| ≥ 1 and αs > γ, it follows that |ps|αs/γ ≥ 1. But this means that the equation,
tanh(γa−ψ)= |ps|αs/γ ≥ 1, can be satisfied only ifψ has a jπ/2 imaginary part, that
is, ψ = χ+ jπ/2, with real χ, so that

tanh(γa−ψ)= tanh
(
γa− χ− jπ

2

)
= coth(γa− χ)= |ps|αs

γ
≥ 1

But then |pc|αc/γ is also forced to be greater than one because,

tanh(γa+ψ)= tanh
(
γa+ χ+ jπ

2

)
= coth(γa+ χ)= |pc|αc

γ
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Thus, with γ,χ real, we have | coth(γa + χ)| ≥ 1 so that |pc|αc/γ ≥ 1. The same
conclusion is reached by inspecting Eq. (10.4.3), which requires both denominator fac-
tors to have the same sign since e4γa is real and positive. The condition |pc|αc/γ ≥ 1
imposes an upper limit on β, indeed, we have γ2 ≤ p2

cα2
c , or,

β2 − k2
0εf ≤ p2

c(β2 + k2
0|εc|) ⇒ β2 ≤ k2

0
p2
c|εc| + εf
1− p2

c
= k2

0
|εc|εf
|εc| − εf , or,

β ≤ βc,∞ ≡ k0

√
|εc|εf
|εc| − εf = k0

√
εc εf
εc + εf (10.4.9)

The limit βc,∞ is recognized as the wavenumber of a surface plasmon at the εf–εc
dielectric-metal interface obtained in the limit of infinite thickness for εf , in fact, the
interface condition γ = |pc|αc = −pcαc is realized exactly at β = βc,∞. Thus, the
allowed range of β is,

k0
√
εf ≤ β ≤ βc,∞ (region 1) (10.4.10)

Moreover, for this range of β, the film thickness a is an increasing function of β,
so that its range will be acutoff ≤ a < ∞, therefore, acutoff will be a lower cutoff. Next,
we show that the corresponding field solution will be an antisymmetric-like TM1 mode.
The characteristic equations,

coth(γa+ χ)= |pc|αc
γ

, coth(γa− χ)= |ps|αs
γ

can be inverted,

tanh(γa+ χ) = γ
|pc|αc ≤ 1

tanh(γa− χ) = γ
|ps|αs ≤ 1

⇒
γa+ χ = atanh

(
γ

|pc|αc

)

γa− χ = atanh

(
γ

|ps|αs

)

and separated,

γa = 1

2
atanh

(
γ

|pc|αc

)
+ 1

2
atanh

(
γ

|ps|αs

)

ψ = χ+ jπ
2
= 1

2
atanh

(
γ

|pc|αc

)
− 1

2
atanh

(
γ

|ps|αs

)
+ jπ

2

(10.4.11)

These have exactly the form of Eqs. (10.1.16) with m = 1, so that we have a TM1

mode. The magnetic field is given by Eq. (10.1.6),

Hy(x)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H0 cosh(γx+ψ) , |x| ≤ a

H0 cosh(γa+ψ)e−αc(x−a) , x ≥ a

H0 cosh(γa−ψ)eαs(x+a) , x ≤ −a

(10.4.12)
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where H0 = jωε0E0εf/γ. Using the identity cosh(x + jπ/2)= j sinh(x), we see that
within the dielectric film,Hy resembles an antisymmetric solution (provided χ is small),

Hy(z)= H0 cosh(γx+ψ)= H0 cosh(γx+ χ+ jπ/2)= jH0 sinh(γx+ χ)

Given a film thickness a, the characteristic equation (10.4.4) can be solved by writing
it in the following form,

γ = −γ
2 + pcαcpsαs
pcαc + psαs tanh(2γa)

and replacing it by the iteration,

γn+1 = −γ
2
n + pcαcnpsαsn
pcαcn + psαsn tanh(2γna) , n = 0,1,2, . . . (10.4.13)

and initialized at a value of β that lies somewhere in the interval k0
√εf < β ≤ βc,∞ (the

value β = k0
√εf should be not be used to initialize because it corresponds to γ = 0 and

the iteration will remain stuck at γ = 0.)
The iteration can be stopped when a desired level of accuracy is reached, that is, when

|γn+1 − γn| ≤ tol, for some desired error tolerance, such as tol = 10−12. Alternative
iterative methods for this type of problem can be found in [963].

Example 10.4.1: We choose a region-1 example from Ref. [943] to verify our approach. Consider
the permittivity values:

εc = −2.22 = −4, εf = 1.52 = 2.25, εs = −1.32 = −1.69

and the two normalized film thickness k0a = 0.6 and k0a = 0.8. The following MATLAB
code illustrates the iteration (10.4.13), randomly initialized within the interval k0

√εf <
β ≤ βc,∞, and demonstrates the calculation and plotting of the magnetic field profile.

ec = -2^2; ef = 1.5^2; es = -1.3^2; % region-1 has |ec|>ef>|es|
k0 = 1; % use normalized units k0=1
a = 0.6; % half-thickness of dielectric film
% a = 0.8; % uncomment for the case k0*a = 0.8

pc = ef/ec; ps = ef/es; % |pc|=0.5625, |ps|=1.3314, |pc|<1<|ps|

b0 = sqrt(ef); % b0 = 1.5, lower limit of beta
bcinf = sqrt(ef*ec/(ef+ec)); % bcinf = 2.2678, upper limit of beta

rng(101); % initialize random number generator
binit = (bcinf-b0)*rand(1) + b0; % binit = 1.8965, random initial value
ac = sqrt(binit^2 - ec); % initialize ac,as,ga
as = sqrt(binit^2 - es);
ga = sqrt(binit^2 - ef);

tol = 1e-12; n = 0; % tolerance and starting iteration index

while 1 % forever loop
ga_new = -(ga^2 + pc*ac*ps*as)/(pc*ac+ps*as)*tanh(2*ga*a*k0);
if abs(ga_new-ga) < tol, break; end
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ga = ga_new;
be = sqrt(ga^2 + ef);
as = sqrt(be^2 - es);
ac = sqrt(be^2 - ec);
n = n+1;

end

% upon exit from loop, print the number of iterations and the effective index beta
n % n = 203 when k0*a = 0.6, and n = 113 when k0*a = 0.8
be % be = 1.9394 when k0*a = 0.6, and be = 2.2127 when k0*a = 0.8

psi = atanh(-ga/pc/ac)/2 - atanh(-ga/ps/as)/2 + j*pi/2; % psi = 0.3193 + j*pi/2

% computational error of characteristic equation
E = abs(tanh(2*k0*a*ga) + ga*(pc*ac+ps*as)/(ga^2+pc*ac*ps*as)) % 6.95e-13

% be = pwga(2*pi,ef,ec,es,a,binit,1,tol); % alternative calculation using PWGA

% magnetic field profile
x = linspace(-3,3,601)*a; % x in units of a

Hy = j*cosh(ga*k0*a - psi).*exp(k0*as*(x+a)).*(x<-a) + ...
j*cosh(ga*k0*a + psi).*exp(-k0*ac*(x-a)).*(x>a) + ...
j*cosh(k0*ga*x + psi).*(abs(x)<=a); % up to an overall constant

fill([-3, -1, -1, -3], [-4 -4, 1, 1], [0.9 0.9 0.9]); hold on
fill([1, 3, 3, 1], [-4 -4, 1, 1], [0.9 0.9 0.9]);

plot(x/a,real(Hy), ’linewidth’,2);

axis([-3,3,-4,1]);
xlabel(’{\itx/a}’); ylabel(’{\itH_y}({\itx})’);
title([’magnetic field profile, {\itk}_0{\ita} = ’,num2str(a)]);

line([-3,3],[0,0],’linestyle’,’--’,’linewidth’,0.5);
line([0,0],[-4,1],’linestyle’,’--’,’linewidth’,0.5);

text(-2.1,-2,’\epsilon_{s}’);
text(-0.6,-2,’\epsilon_{f}’);
text(1.9,-2, ’\epsilon_{c}’);

where the quantity, E, measures the computational error of the characteristic equation
(10.4.4), and the final n is the number of iterations to converge. The computed values are
shown in the comments of the above code segment and printed below.

k0a β/k0 γ/k0 αc/k0 αs/k0 ψ n E

0.6 1.9394 1.2294 2.7859 2.3348 0.3193+ jπ/2 203 6.95×10−13

0.8 2.2127 1.6266 2.9826 2.5663 0.7834+ jπ/2 113 5.64×10−13

The quantities β,γ,αc,αs are in units of k0. The magnetic field is shown in Fig. 10.4.3
for the cases k0a = 0.6 and k0a = 0.8. Because H0 = jωε0E0εf/γ, we have chosen the
(completely arbitrary) constant H0 = j for the magnetic field. Note that as the thickness
increases, the magnetic field tends to be more concentrated on the εf–εc dielectric-metal
interface, because as we saw, the solution tends to the single-interface solution as a →
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Fig. 10.4.3 Magnetic field profiles, Hy(x) versus x for antisymmetric-like TM1 mode.

∞. The εf–εs interface cannot support a surface plasmon because it does not meet the
necessary condition |εs| > εf , but the εf–εc interface does because |εc| > εf .
Fig. 10.4.4 shows a plot of the effective index β/k0 versus the normalized thickness k0a.
The computed values of β for the two cases k0 = 0.6 and k0a = 0.8 are shown on the
graph, as is the lower cutoff thickness k0acutoff = 0.5448 computed from Eq. (10.4.6). It is
evident from this graph that the thickness a is an increasing function of β.
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Fig. 10.4.4 Effective index, β/k0, versus normalized thickness, k0a. Region 1.

The following MATLAB code was used to produce the graph.

ac = sqrt(ef-ec);
as = sqrt(ef-es);
k0a_min = -1/2*(1/pc/ac + 1/ps/as) % 0.5448 - lower cutoff

be = linspace(b0, 0.9985*bcinf, 401); % plot almost up to bcinf

ga = sqrt(be.^2 - ef);
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ac = sqrt(be.^2 - ec);
as = sqrt(be.^2 - es);

% solve tanh(2*k0*a*ga) = -ga.*(pc*ac+ps*as)./(ga.^2 + pc*ps*ac.*as) for k0*a

k0a = atanh(-ga.*(pc*ac+ps*as)./(ga.^2 + pc*ps*ac.*as))/2./ga;

plot(k0a,be); hold on % be vs. k0a
plot(k0*a1,be1,’.’); % k0*a1 = 0.6, be1 = 1.9394, found above
plot(k0*a2,be2,’.’); % k0*a2 = 0.8, be2 = 2.2127, found above
plot(k0a_min,b0,’o’); % a_cutoff corresponds to b0
plot(k0a(end),bcinf,’s’); % add bcinf to the last value of k0a

axis([0,1.2,1.5,3]);
xlabel(’normalized width, {\itk}_0{\ita}’);
ylabel(’effective index, \beta / {\itk}_0’);

Also, shown is the asymptotic value βc,∞, which was added to the last value of the k0a
array as a reference, although it is actually realized at k0a = ∞. ��

Region 2

Region-2 is defined by the conditions, |εs| ≤ |εc| ≤ εf , or, 1 ≤ |pc| ≤ |ps|. Therefore,
both |pc|αc/γ ≥ 1 and |ps|αs/γ ≥ 1 are automatically satisfied, and hence, there is no
restriction on β other than β ≥ k0

√εf . Thus its range is,

k0
√
εf ≤ β <∞ (region 2) (10.4.14)

Moreover, for this range of β, the thickness a is a decreasing function of β, so that it
varies over, 0 ≤ a ≤ acutoff, and therefore, acutoff is an upper cutoff. The characteristic
equations and magnetic field, Eqs. (10.4.11) and (10.4.12), remain the same as in the
region-1 case, so that again, we have an antisymmetric-like TM1 mode.

As a → 0, we may derive a simplified approximation of the characteristic equation.
Since β is large in that limit, it follows that γ,αc,αs are all approximately equal to β,
and we obtain, after canceling some common factors of β in the right-hand side,

e4γa = |pc|αc + γ
|pc|αc − γ ·

|ps|αs + γ
|ps|αs − γ ⇒ e4βa = |pc| + 1

|pc| − 1
· |ps| + 1

|ps| − 1
, or,

β ≈ 1

4a
ln

[
|pc| + 1

|pc| − 1
· |ps| + 1

|ps| − 1

]
, a→ 0 (10.4.15)

For region 2, the characteristic equation (10.4.4) can be solved for any given value of
a < acutoff by rearranging it in the form,

γ =
√
−γ(pcαc + psαs)coth(2γa)−pcαcpsαs

and replacing it by the iteration, for n = 0,1,2, . . . , initialized just above β = k0
√εf ,

γn+1 =
√
−γn(pcαcn + psαsn)coth(2γna)−pcαcnpsαsn (10.4.16)
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Example 10.4.2: Consider the following permittivity values from Ref. [943],

εc = −1.42 = −1.96, εf = 1.52 = 2.25, εs = −1.32 = −1.69

and the two normalized film thickness k0a = 0.3 and k0a = 0.1. The cutoff thickness
is k0acutoff = 0.4015, calculated from Eq. (10.4.6). Fig. 10.4.5 shows the magnetic field
profiles. Fig. 10.4.6 plots the effective index β/k0 versus film thickness a over the range
0 ≤ a ≤ acutoff, and demonstrates that β is a decreasing function of a. Superimposed on
that graph is the approximation of Eq. (10.4.15).
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Fig. 10.4.5 Magnetic field profiles, Hy(x) versus x for region 2.

The following MATLAB code illustrates the iteration (10.4.16). The code for generating
Fig. 10.4.5 is not given—it is the same as that in Example 10.4.1.

ef = 1.5^2; ec = -1.4^2; es = -1.3^2;
k0 = 1;
a = 0.3;
% a = 0.1;

pc = ef/ec; ps = ef/es;

b0 = 1.01*sqrt(ef); % could choose any b0 above b_min, e.g., b0 = 10*sqrt(ef)
ga = sqrt(b0^2 - ef); % initialize ga, ac, as
as = sqrt(b0^2 - es);
ac = sqrt(b0^2 - ec);

tol = 1e-12; n = 1;

while 1
ga_new = sqrt(-pc*ac.*as*ps - ga.*(pc*ac+ps*as).*coth(2*ga*a*k0));
if abs(ga_new-ga) < tol, break; end
ga = ga_new;
be = sqrt(ga^2 + ef);
as = sqrt(be^2 - es);
ac = sqrt(be^2 - ec);
n=n+1;

end
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psi = atanh(-ga*(pc*ac-ps*as)/(ga^2 - pc*ac*ps*as))/2 + j*pi/2;

% computational error of characteristic equation
E = abs(tanh(2*k0*a*ga) + ga*(pc*ac+ps*as)/(ga^2+pc*ac*ps*as));

% be = pwga(2*pi,ef,ec,es,a,b0,1,tol); % alternative calculation using PWGA

where the quantity, E, measures the computational error of the characteristic equation,
and the final n is the number of iterations to converge. The calculated values for the two
thicknesses are as follows,

k0a β/k0 γ/k0 αc/k0 αs/k0 ψ n E

0.3 2.8886 2.4686 3.2100 3.1677 0.0700+ jπ/2 99 1.78×10−13

0.1 11.2518 11.1513 11.3385 11.3266 0.1658+ jπ/2 205 6.01×10−14

The following MATLAB code generates Fig. 10.4.6.

be0 = sqrt(ef);
as = sqrt(ef-es);
ac = sqrt(ef-ec);
k0a_c = -1/2*(1/pc/ac + 1/ps/as); % upper cutoff

be = linspace(be0, 30, 1001);

ga = sqrt(be.^2 - ef);
ac = sqrt(be.^2 - ec);
as = sqrt(be.^2 - es);

k0a = atanh(-ga.*(pc*ac+ps*as)./(ga.^2 + pc*ps*ac.*as))/2./ga;

bapp = log((1-pc)/(1+pc)*(1-ps)/(1+ps))/4./k0a; % approximate solution

figure; plot(k0a,be,’-’, k0a,bapp,’--’) % graph annotations are omitted

Even though both surface plasmon conditions |εc| > εf and |εs| > εf are violated in
region 2, and therefore, separate surface plasmons cannot exist at those interfaces, yet,
the solution for finite thickness still exhibits peaks at the two interfaces. ��

Region 3

In region-3, we have the conditions, εf ≤ |εs| ≤ |εc|, or, |pc| ≤ |ps| ≤ 1. We will see that
in this region, there are two types of plasmonic modes, a symmetric-like TM0 mode that
has no cutoffs, and an antisymmetric-like TM1 mode with a lower cutoff. In addition,
there are TE and TM oscillatory modes with certain lower cutoffs. In particular, the TM1

mode is special in the sense that its oscillatory version also has an upper cutoff beyond
which the mode becomes plasmonic.

In the limit of infinite thickness, both the εf–εc and εf–εs interfaces can support
surface plasmons with corresponding wavenumbers,

βc,∞ = k0

√
εcεf
εc + εf , βs,∞ = k0

√
εsεf
εs + εf (10.4.17)
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Fig. 10.4.6 Effective index, β/k0, versus normalized thickness, k0a. Region 2.

Because of the assumption, εf ≤ |εs| ≤ |εc|, it follows that k0
√εf < βc,∞ ≤ βs,∞.

We note also the relationships,

p2
cα2
c − γ2 = (1− p2

c)(β2
c,∞ − β2)

p2
sα2
s − γ2 = (1− p2

s)(β2
s,∞ − β2)

(10.4.18)

Because |pc| ≤ |ps| ≤ 1, it is possible for the ratios |pc|αc/γ and |ps|αs/γ to
be either both greater than one, or both less than one, with the former case leading
to the TM1 plasmonic mode, and the latter, to the TM0 mode. That both ratios must
be simultaneously greater or less than one follows from Eq. (10.4.3), which requires
that the denominator be a positive quantity. The corresponding ranges of β are easily
determined from Eq. (10.4.18). If |pc|αc ≥ γ, then, β ≤ βc,∞ ≤ βs,∞, and if, |ps|αs ≤ γ,
then, β ≥ βs,∞ ≥ βc,∞. Thus, the possible β ranges for the two plasmonic modes are,

|pc,s|αc,s ≤ γ
|pc,s|αc,s ≥ γ

⇒
βs,∞ ≤ β <∞ (TM0 plasmonic mode)

k0
√εf ≤ β ≤ βc,∞ (TM1 plasmonic mode)

(10.4.19)

For the TM0 mode, the film width a is a decreasing function of β, and varies over
0 ≤ a ≤ ∞, where a = ∞ at β = βs,∞. For the TM1 mode, the width a is an increasing
function of β varying over the range, acutoff ≤ a ≤ ∞, with acutoff realized at β = k0

√εf
and given by Eq. (10.4.6), with a = ∞ realized at β = βc,∞.

For the TM1 case, the characteristic equations are the same as in Eq. (10.4.11), while
those for the TM0 mode can be obtained by inverting,

tanh(γa+ψ)= |pc|αc
γ

≤ 1 , tanh(γa−ψ)= |ps|αs
γ

≤ 1
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These imply that ψ must be real, thus, inverting and separating, we have,

γa = 1

2
atanh

(
−pcαc
γ

)
+ 1

2
atanh

(
−psαs
γ

)

ψ = 1

2
atanh

(
−pcαc
γ

)
− 1

2
atanh

(
−psαs
γ

) (10.4.20)

which are recognized to have the form of Eqs. (10.1.15) withm = 0, that is, a TM0 mode.
The characteristic equation can be solved using the iteration (10.4.13) for the TM1 mode,
and (10.4.16), for the TM0 mode.

Example 10.4.3: Fig. 10.4.7 shows the dependence of β on the width a for the two modes, for
the following permittivity and width parameters from [943],

εf = 1.52 = 2.25 , εs = −1.82 = −3.24 , εc = −22 = −4 , k0a = 0.8
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Fig. 10.4.7 Effective index, β/k0, versus normalized thickness, k0a.

The lower cutoff, k0acutoff = 0.6628, was computed from Eq. (10.4.6). Fig. 10.4.8 shows
the magnetic field profiles of the two modes, with the TM0 one being symmetric-like,and
the TM1, antisymmetric-like. The computed values of β,γ,αc,αs,ψ are in the two cases,

mode β/k0 γ/k0 αc/k0 αs/k0 ψ n E

TM0 2.7612 2.3182 3.4094 3.2961 −0.6751 427 4.68×10−13

TM1 2.0301 1.3680 2.8498 2.7132 0.1741+ jπ/2 339 6.78×10−13

Also shown are, n,E, the number of iterations to converge with a tolerance of tol = 10−12,
and the computational error of the characteristic equation defined as

E =
∣∣∣∣∣tanh(2γa)+γ(pcαc + psαs)

γ2 + pcαcpsαs

∣∣∣∣∣
The MATLAB code for this example is given below, where one should comment/uncomment
the appropriate lines to generate the TM0 and TM1 solutions.
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ef = 1.5^2; ec = -2^2; es = -1.8^2;
k0 = 1; a = 0.80;
pc = ef/ec; ps = ef/es;

ac = sqrt(ef-ec); as = sqrt(ef-es);
acutoff = -(1/ac/pc + 1/as/ps)/2; % units of k0=1

binit = 1.1*sqrt(ef);
ga = sqrt(binit^2-ef); as = sqrt(binit^2-es); ac = sqrt(binit^2-ec);

tol = 1e-12; n = 1;

while 1
ga_new = sqrt(-pc*ac*as*ps - ga*(pc*ac+ps*as)*coth(2*ga*a*k0)); % TM0
% ga_new = -(ga^2 + pc*ac*as*ps)/(pc*ac+ps*as) * tanh(2*ga*a*k0); % TM1
if abs(ga_new-ga) < tol, break; end
ga = ga_new;
be = sqrt(ga^2 + ef);
as = sqrt(be^2 - es);
ac = sqrt(be^2 - ec);
n=n+1;

end

E = abs(tanh(2*k0*a*ga) + ga*(pc*ac+ps*as)/(ga^2+pc*ac*ps*as));
m=0; % set m=0 for TM0, m=1 for TM1
psi = atanh(-pc*ac/ga)/2 - atanh(-ps*as/ga)/2 + j*m*pi/2;

% be = pwga(2*pi,ef,ec,es,a,binit,0,tol); % alternative calculation using PWGA
% be = pwga(2*pi,ef,ec,es,a,binit,1,tol);

And, for the magnetic field profiles, using the calculated values of γ,αc,αs,ψ from above,

x = linspace(-3,3,601)*a;

Hy = j*cosh(ga*k0*a - psi).*exp(k0*as*(x+a)).*(x<-a) + ...
j*cosh(ga*k0*a + psi).*exp(-k0*ac*(x-a)).*(x>a) + ...
j*cosh(k0*ga*x + psi).*(abs(x)<=a);

plot(x/a, imag(Hy)); % TM0
% plot(x/a, real(Hy)); % TM1

The H-field constant was arbitrarily set to H0 = j. But then, in the TM0 case because ψ is
real,Hy is effectively imaginary, whereas in the TM1 case, becauseψ has a jπ/2 imaginary
part, Hy becomes real. This explains the above plotting choices for Hy.

The calculation and plotting of the β–a dispersion curves was done by the MATLAB code,

be0 = sqrt(ef);
bcinf = sqrt(ef*ec/(ef+ec));
bsinf = sqrt(ef*es/(ef+es));

be = linspace(1.001*bsinf, 40, 2001); % TM0 mode
ga = sqrt(be.^2 - ef); ac = sqrt(be.^2 - ec); as = sqrt(be.^2 - es);

k0a = atanh(-ga.*(pc*ac+ps*as)./(ga.^2 + pc*ps*ac.*as))/2./ga;
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Fig. 10.4.8 Magnetic field profiles of TM0 and TM1 modes for k0a = 0.80. Region 3.

figure; plot(k0a,be); hold on

be = linspace(1.00001*be0, 0.995*bcinf, 2001); % TM1 mode
ga = sqrt(be.^2 - ef); ac = sqrt(be.^2 - ec); as = sqrt(be.^2 - es);

k0a = atanh(-ga.*(pc*ac+ps*as)./(ga.^2 + pc*ps*ac.*as))/2./ga;

plot(k0a,be, ’--’); axis([0,1,0,4.5]);

For the TM0 mode, a range of values over βs,∞ ≤ β < ∞ was used to evaluate the corre-
sponding thickness a, and a range over k0

√εf ≤ β ≤ βc,∞ was used for the TM1 mode. ��

10.5 Oscillatory Modes

In addition to the plasmonic modes, there are also oscillatory TE and TM modes char-

acterized by an imaginary γ = jkf , with kf =
√
k2

0εf − β2. Because kf is real, the wave-
number β is restricted to the values β ≤ k0

√εf .
In the lossless asymmetric waveguide case of Sec. 9.12, the positivity of the decay

parameters αc,αs, imposed also a lower limit on β, see Eq. (9.12.3). However here,

αc,s =
√
β2 − k2

0εc,s =
√
β2 + k2

0|εc,s|, and αc,αs remain positive even at β = 0. Thus,
the range of βs for all oscillatory modes is

0 ≤ β ≤ k0
√
εf (oscillatory modes) (10.5.1)

The TEm modes are obtained by setting pc = ps = 1 in the characteristic equations
(10.1.19), form = 0,1,2, . . . ,

kfa = 1

2
atan

(
αc
kf

)
+ 1

2
atan

(
αs
kf

)
+ 1

2
mπ

φ = 1

2
atan

(
αc
kf

)
− 1

2
atan

(
αs
kf

)
+ 1

2
mπ

(TEm) (10.5.2)
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The TMm modes are indexed by m = 1,2,3, . . . , and Eqs. (10.1.20) are more appro-
priate because pc, ps are negative,

kfa = 1

2
atan

(
− kf
pcαc

)
+ 1

2
atan

(
− kf
psαs

)
+ 1

2
(m− 1)π

φ = 1

2
atan

(
− kf
pcαc

)
− 1

2
atan

(
− kf
psαs

)
+ 1

2
mπ

(TMm) (10.5.3)

All modes have a lower cutoff found by setting β = 0, kf = k0
√εf , αc,s = k0

√−εc,s,
in the characteristic equations (10.5.2) and (10.5.3), resulting basically in the same ex-
pression,

2k0amin = 1√εf

[
atan

(√−εc
εf

)
+ atan

(√−εs
εf

)
+mπ

]
(TEm)

2k0amin = 1√εf

[
atan

(√−εc
εf

)
+ atan

(√−εs
εf

)
+ (m− 1)π

]
(TMm)

(10.5.4)

For all, but the TM1 oscillatory mode, there is no upper cutoff thickness, that is, the
upper limit β = k0

√εf is reached at infinite width, a → ∞. Indeed, using the property
that atan(x)→ ±π/2 − 1/x as x → ±∞, we find from (10.1.19) that as β → k0

√εf and
a→∞, then kf → 0 and αc,s → k0

√
εf − εc,s, and

kfa→ ±π
4
± π

4
− 1

2
kf

[
1

k0pc
√
εf − εc +

1

k0ps
√
εf − εs

]
+ mπ

2
, or,

kf ≈ (m± 1)π
2(a− ac) , ac = − 1

2k0

[
1

pc
√
εf − εc +

1

ps
√
εf − εs

]
(10.5.5)

where ’+’ corresponds to TEm and ’−’ to TMm. This leads to the approximation for β,

β =
√
k2

0εf − k2
f ≈ k0

√
εf −

k2
f

2k0
√εf = k0

√
εf − (m± 1)2π2

8(a− ac)2k0
√εf , a→∞ (10.5.6)

The quantity ac is recognized as acutoff of Eq. (10.4.6) in the TM case, but in the TE
case, ac is negative and has no special meaning. For large a, one could simply replace
(a− ac)2 by a2 in (10.5.6).

The TM1 oscillatory case is special because it also has an upper cutoff, which is the
same as the lower cutoff of the TM1 plasmonic mode, that is, acutoff of Eq. (10.4.6). In-
deed, whenm = 1, a common factor of kf can be canceled from both sides of Eq. (10.5.3)
in the limit kf → 0, leading to the expression (10.4.6). Thus, the TM1 oscillatory mode
exists only for thicknesses amin ≤ a ≤ acutoff and for 0 ≤ β ≤ k0

√εf , and then it
becomes plasmonic for acutoff ≤ a <∞ and k0

√εf ≤ β ≤ βc,∞.

Example 10.5.1: Fig. 10.5.1 shows the dependence of β on the width a for the oscillatory modes
TM1, TM2, TM3, TE0, TE1, TE2 for the same permittivity values as in Example 10.5.1.

The graphs were generated by calculating the values of a from Eqs. (10.5.2) and (10.5.3)
over the range of values 0 ≤ β ≤ k0

√εf . For example, the MATLAB code for calculating
the TM1, TE0, TM2, and TE1 curves was,
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ef = 1.5^2; ec = -2^2; es = -1.8^2;

pc = ef/ec; ps = ef/es;

be = linspace(0, 0.995*sqrt(ef), 201);
kf = sqrt(ef - be.^2); ac = sqrt(be.^2 - ec); as = sqrt(be.^2 - es);

a_tm1 = (atan(-kf./ac/pc) + atan(-kf./as/ps))./kf/2;
a_tm2 = (atan(-kf./ac/pc) + atan(-kf./as/ps) + pi)./kf/2;
a_te0 = (atan(ac./kf) + atan(as./kf))./kf/2;
a_te1 = (atan(ac./kf) + atan(as./kf) + pi)./kf/2;

plot(a_tm1, be, ’-’, a_te0, be, ’--’, a_tm2, be, ’-’, a_te1, be, ’--’); xlim([0,5]);
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Fig. 10.5.1 Oscillatory TE and TM modes, and the approximation of Eq. (10.5.6).

The lower cutoffs and the upper cutoff of the TM1 mode were,

k0acutoff = 0.6628 , upper cutoff, TM1 mode
k0amin = 0.6011 , lower cutoff, TM1, TE0 modes
k0amin = 1.6483 , lower cutoff, TM2, TE1 modes
k0amin = 2.6955 , lower cutoff, TM3, TE2 modes

The graph on the right compares the large-a approximation of Eq. (10.5.6) with the exact
solutions. The approximation is applicable to all but the TM1 mode. ��

Example 10.5.2: In this example we look at the TM0 plasmonic, and TM1 oscillatory and plas-
monic modes. The permittivity parameters are as in Example 10.4.3. In that example, we
determined the field profiles for k0a = 0.8, which lies in the plasmonic range for TM1 since
k0a > k0acutoff. The allowed thickness range of the TM1 oscillatory mode was found in the
previous example to be rather narrow, k0[amin, acutoff]= [0.6011,0.6628]. Here, we de-
termine β and the field profiles for an intermediate value of a, such as, k0a = 0.63, which
lies in the oscillatory range for TM1, while TM0 remains plasmonic. Fig. 10.5.2 displays the
β–a relationships.

We observe how the oscillatory TM1 mode switches to its plasmonic version at a = acutoff.
The TM0 effective index andψ parameter were β/k0 = 2.8685 andψ = −0.4292, and were
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Fig. 10.5.2 Effective index of oscillatory and plasmonic modes.

computed by the same code as that in Example 10.4.3 with k0a = 0.63. The oscillatory
TM1 index and phase factor were β/k0 = 1.1434 and φ = 1.6021, and were computed by
the following MATLAB code, including its magnetic field profile,

ef = 1.5^2; ec = -2^2; es = -1.8^2; % a = 0.63
k0 = 1; a = 0.63;

pc = ef/ec; ps = ef/es;

binit = 0.5*sqrt(ef);
kf = sqrt(ef-binit^2); as = sqrt(binit^2-es); ac = sqrt(binit^2-ec);

tol = 1e-12; n = 1;

while 1
kf_new = (atan(-kf/ac/pc)+atan(-kf/as/ps))/2/a;
if abs(kf_new-kf) < tol, break; end
kf = kf_new;
be = sqrt(ef - kf^2);
as = sqrt(be^2 - es);
ac = sqrt(be^2 - ec);
n=n+1;

end

E = abs(tan(2*k0*a*kf) - kf*(pc*ac+ps*as)/(kf^2 - pc*ac*ps*as))
phi = (atan(pc*ac/kf) - atan(ps*as/kf) + pi)/2

% be = pwga(2*pi,ef,ec,es,a,binit,0,tol); % alternative calculation using PWGA
% be = pwga(2*pi,ef,ec,es,a,binit,1,tol);

x = linspace(-3,3,601)*a;

Hy = cos(kf*k0*a - phi).*exp(k0*as*(x+a)).*(x<-a) + ...
cos(kf*k0*a + phi).*exp(-k0*ac*(x-a)).*(x>a) + ...
cos(kf*k0*x + phi).*(abs(x)<=a);

plot(x/a, real(Hy));
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Fig. 10.5.3 Magnetic field profiles of TM0 and oscillatory TM1 modes for k0a = 0.63.

The iterative method was the same as that discussed in Sec. 9.12 for the asymmetric di-
electric waveguides. The number of iterations to converge and the computational error of
the characteristic equation (10.1.17) were n = 267 and E = 1.01×10−11.

The MATLAB code for calculating the β–a dispersion curves for the TM1 oscillatory and
plasmonic portions is the same as in Examples 10.4.3 and 10.5.1.

Figures 10.5.4, 10.5.5, and 10.5.6 show the dispersion curves and magnetic field profiles for
the cases k0a = 0.8 and k0a = 0.63 for a symmetric MDM configuration with permittivities
εf = 1.52 and εs = εc = −2.22. The magnetic field profiles are now either completely
symmetric or antisymmetric. The dispersion curves have the same asymptotic limit for
large a, that is, βc,∞ = βs,∞ = 2.2678k0. The calculated (normalized by k0) propagation
wavenumbers were β = 2.4586 and β = 1.8197 for the TM0 and TM1 modes at k0a = 0.80,
and β = 2.5951 and β = 0.6448 for the case k0a = 0.63. ��
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Fig. 10.5.5 Magnetic field profiles of TM0 and TM1 modes for k0a = 0.80. Symmetric guide.
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Fig. 10.5.6 Magnetic field profiles of TM0 and TM1 modes for k0a = 0.63. Symmetric guide.

Complex Modes

It should be noted that complex-valued solutions for β (with negative imaginary part)
also exist (and there is an infinity of them), even though we have assumed lossless media
[952]. For example, for the symmetric configuration of Example 10.5.2 at k0a = 0.8, the
following are all solutions of the TM0 characteristic equation, γ tanh(γa)+pcαc = 0,

q β/k0 γ/k0 αc/k0 E
0 2.4586 1.9480 3.1694 0.022×10−14

1 0.6391− 3.5638j 0.5902− 3.8589j 0.7645− 2.9794j 0.076×10−14

2 0.7585− 7.7008j 0.7446− 7.8442j 0.7851− 7.4393j 0.562×10−14

3 0.7790− 11.6825j 0.7727− 11.7780j 0.7906− 11.5108j 0.289×10−14

4 0.7862− 15.6351j 0.7827− 15.7067j 0.7927− 15.5069j 6.671×10−14

5 0.7896− 19.5770j 0.7873− 19.6343j 0.7938− 19.4747j 1.212×10−14
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where E = |γ tanh(γa)+pcαc| is the computational error. They were computed with
the help of the MATLAB function, pwg, discussed in the next section. The MATLAB code
was as follows,

la0 = 2*pi; k0 = 1; ef = 2.25; ec = -4; es = ec; a = 0.8; % units of k0=1
pc = ef/ec; ps = ef/es;
bcinf = sqrt(ec*ef/(ec+ef));

M = 5; q = (0:M)’;
ga0 = 1/k0/a*atanh(-pc) - j*pi*q/a/k0; % justified in next section
be0 = sqrt(ga0.^2 + ef); % vector of initial search points

be = pwg(la0,ef,ec,a,be0); % uses built-in FSOLVE to find the solutions

ga = sqrt(be.^2-ef);
ac = sqrt(be.^2 -ec);
E = abs(ga.*tanh(ga*a) + pc*ac);

The first one is the real-valued solution of Example 10.5.2. All of the complex ones
do have positive real parts for γ,αc. However, the imaginary parts of β, albeit negative,
are very large and therefore, these modes are highly damped and cannot be considered
as propagating. In fact, for the lossless case, such modes carry no net power in the
propagation direction [952]—see Problem 10.4. For such modes, the power flowing
forward in the dielectric film cancels the power flowing backward in the metal sides.
Indeed, using the MATLAB function, pwgpower, or the results of Problem 10.4, the net
power and the powers in each medium are as follows for the above example,

q P Pf Pc Ps
0 2.8401 4.0337 −0.59682 −0.59682

1 0 0.2586 −0.12928 −0.12928

2 0 0.3378 −0.16891 −0.16891

3 0 0.3531 −0.17654 −0.17654

4 0 0.3585 −0.17927 −0.17927

5 0 0.3611 −0.18055 −0.18055

where P = Pf + Pc + Ps. The units of P are arbitrary. The MATLAB code was,

[P,Pf,Pc,Ps] = pwgpower(k0*a,ef,ec,es,be,0);

where the input be is the vector of β/k0 calculated above. We discuss such anomalous
modes further in Sec. 10.9.

10.6 MDM Configuration – Lossy Case

In the previous section, we ignored losses in the metal cladding and substrate of an
MDM guide in order to simplify the problem and gain some insight into the possible
types of propagating plasmonic modes—their essential feature being the subwavelength
confinement of the fields in the transverse direction.

Here, we assume that the metals are lossy with permittivities that have both negative
real and imaginary parts, εc = εcR − jεcI, where εcR < 0 and εcI ≥ 0, and similarly,
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εs = εsR− jεsI, where εsR < 0 and εsI ≥ 0. The dielectric film will still be assumed to be
lossless, εf > 0. Moreover, as is typically the case in practice, we will assume that the
real parts satisfy the region-3 conditions, εf ≤ |εsR| ≤ |εcR|, which imply the existence
of single-interface surface plasmons at both interfaces in the case of infinite thickness.

The propagation parameters, β,γ,αc,αs, become complex-valued, and in particular,
we require that αc,αs have positive real parts, and β, negative imaginary part, β =
βR − jβI, with βI ≥ 0, so that the wave attenuates as it propagates along the positive
z-direction, that is, e−jβz = e−jβRz e−βIz, while it remains confined in the transverse
direction, e.g., e−αcx = e−αcRxe−jαcIx, for x ≥ a. The field expressions and characteristic
equations (10.1.3)–(10.1.16) remain valid.

Let us consider the symmetric case, εc = εs, whose characteristic equations for the
symmetric TM0 mode and antisymmetric TM1 mode are ,

tanh(γa+ψ)= −pcαc
γ

, ψ = jmπ
2
, m = 0,1 (10.6.1)

where pc = εf/εc, and γ =
√
β2 − k2

0εf , αc =
√
β2 − k2

0εc. Equivalently,

e2γa+2ψ = γ− pcαc
γ+ pcαc , ψ = jmπ

2
, m = 0,1 (10.6.2)

In the limit of large separation, a → ∞, both the TM0 and TM1 modes, tend to the
single-interface surface plasmon solution. Indeed, because γ has a positive real part,
we have tanh(γa+ψ)→ 1, and thus, −pcαc = γ, which corresponds to,

βc,∞ = k0

√
εfεc
εf + εc (10.6.3)

A variety of approaches can be taken to solving the characteristic equation (10.6.1).
We discuss three.

First, if the losses are small, εcI � |εcR|, the solutions for the TM0 and TM1 modes
evolve smoothly from the corresponding ones of the lossless case, as we verify in the
example below. The results of Problem 10.5 can be used to construct the lossy solutions
from the lossless ones by a first-order approximation in the parameter εcI.

Second, Eq. (10.6.1) can be solved iteratively by turning it into the following iteration
[963], initialized at β = βc,∞,

γn+1 = −pc αc,n coth(γna+ψ) , n = 0,1,2, . . . (10.6.4)

and stopping when two successive iterates get closer to each other than some specified
error tolerance, |γn+1 − γn| ≤ tol, such as tol = 10−12.

Third, we have written a MATLAB function, pwg, which uses the built-in function,
fsolve, to solve the system of two equations consisting of the real and imaginary parts
of the characteristic equation,

E = γ tanh(γa+ψ)+pcαc = 0 (10.6.5)

in the two unknowns, the real and imaginary parts of β. It has usage:
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[be,E] = pwg(la0,ef,ec,a,be0,mode,tol) % plasmonic modes for symmetric guides

la0 = operating wavelength, k0 = 2*pi/la0 = free-space wavenumber

ef,ec = permittivities of film and cladding/substrate

a = half-width of film in same units as la0

be0 = starting search point in units of k0 - can be a vector of choices

mode = 0,1 for TM0 or TM1 mode, default mode=0

tol = computational error tolerance, default tol=1e-12

be = propagation wavenumber in units of k0 - same size as be0

E = value of the characteristic equation (10.6.5) - same size as be0

There is also a version, pwga, for asymmetric guides, with similar usage:

[be,E] = pwga(la0,ef,ec,es,a,be0,mode,tol) % plasmonic modes for asymmetric guides

The iterative method generally works well for the primary TM0 and TM1 modes.
However, it is not capable of finding the anomalous complex-mode solutions that are
highly damped. Those can be found using pwg with properly choosing the initial search
points, as we discuss later.

Example 10.6.1: This example, with parameters taken from [953], illustrates the three numeri-
cal approaches. Consider a symmetric silver-air-silver waveguide at an operating free-space
wavelength of λ0 = 650 nm and permittivity of silver† εc = εs = −19.6224− 0.443j, and
εf = 1 for an air gap of width 2a = 100 nm.

The following MATLAB code computes the propagation parameters β,γ,αc for the sym-
metric TM0 mode (ψ = 0) using the pwg function and the 1st-order approximation using
Eq. (10.21.3) of Problem 10.5.

la0 = 650; k0 = 2*pi/la0; a = 100/2; % la0,a in nm
ef = 1; ec = -19.6224-0.443*j; es = ec;

pc = ef/ec; ps = ef/es;
bcinf = sqrt(ec*ef/(ec+ef)); % bcinf = 1.0265 - 0.0006i
tol = 1e-12;
mode=0;
be = pwg(la0,ef,ec,a,bcinf,mode,tol); % be = 1.2261 - 0.0026i

ac = sqrt(be^2 - ec); as = ac; % ac = as = 4.5965 + 0.0475i
ga = sqrt(be^2 - ef); % ga = 0.7095 - 0.0045i

E = abs(pc*ac + ga*tanh(ga*k0*a)); % E = 5.5518e-17

[P,Pf,Pc,Ps] = pwgpower(k0*a,ef,ec,es,be,0); % power flow in the three media

Powers = [P,Pf,Pc,Ps]; % Powers = [1.2175, 1.2328, -0.0076, -0.0076]

% ---- 1st order calculation --------------

ecr = real(ec); % lossless case, ecr = -19.6224
bcinr = sqrt(ecr*ef/(ecr+ef)); % bcinr = 1.0265

†Our MATLAB function DRUDE, from Sec. 1.12, based on [163], gives εc = −15.4758− 1.1513j.
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pcr = ef/ecr;

ber = pwg(la0,ef,ecr,a,bcinr,0,tol); % lossless solution
gr = sqrt(ber^2-ef); acr = sqrt(ber^2-ecr);

Dec = imag(ec)*j; % correction to ec

Dg = pcr*gr*(acr^2/ecr+1/2)*dec/(k0*a*(gr^2*acr)*(1-pcr^2*acr^2/gr^2)-pcr*(ef-ecr));
Db = gr/ber*Dg;

be1 = ber + Db; % approximate lossy solution

num2str([be;be1],’%2.7f’) % be = 1.2261233 - 0.0026097i % exact from PWG
% be1 = 1.2261699 - 0.0026106i % 1st order

The numerical values are given in the comments. As expected, energy flow is negative in
the metals and positive in the dielectric. We note that the 1st-order approximation is very
good because εcI � |εcR|. The iterative version is implemented by the following code
segment and results into the same solution to within the error tolerance tol.

binit = bcinf; % initialize iteration
ga = sqrt(binit^2 - ef);
ac = sqrt(binit^2 - ec);

N = 1; % number of iterations to converge
while 1 % forever while loop

ga_new = -pc*ac*coth(ga*a*k0);
if abs(ga_new-ga) < tol, break; end
ga = ga_new;
be = sqrt(ga^2 + ef);
ac = sqrt(be^2 - ec);
N=N+1;

end

N, be % N = 270, be = 1.2261233 - 0.0026097i

The iteration was initialized at β = βc,∞, but the algorithm is very insensitive to the initial
choice, for example, it converges equally fast with β = 0 or β = 10βc,∞.

The corresponding magnetic field profile Hy(x) is plotted in Fig. 10.6.1. The following
MATLAB code generates the graph (annotations are omitted.)

x = linspace(-200,200,401); % units of nm

Hy = cosh(ga*k0*a)*exp(-k0*ac*(abs(x)-a)).*(abs(x)>a) + cosh(k0*ga*x).*(abs(x)<=a);

fill([-200, -50, -50, -200],[0, 0, 1.5, 1.5], [0.9 0.9 0.9]); hold on
fill([50, 200, 200, 50],[0, 0, 1.5, 1.5], [0.9 0.9 0.9]);
plot(x,real(Hy), ’linewidth’,2);

Next, we calculate and plot the β-a dispersion relationship by solving for β over the range
of thicknesses, 5 ≤ 2a ≤ 3500 nm. Fig. 10.6.2 plots the effective phase index Re(β)/k0

and propagation length L = −[2 Im(β)]−1 versus a, where L is plotted in units of μm. The
previously computed solution for 2a = 100 nm is also added to the graph. It is interesting



10.6. MDM Configuration – Lossy Case 447

−200 −150 −100 −50 0 50 100 150 200
0

0.5

1

1.5

x  (nm)

H
y(x

),
  a

rb
it

ra
ry

 u
n

it
s

tranverse magnetic field, H
y
(x)

silver silverair gap

λ
0
 = 650 nm

Fig. 10.6.1 Magnetic field profile of silver-air-silver guide (λ0 = 650 nm, 2a = 100 nm).
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to note that L exhibits a maximum before settling towards its asymptotic limit, with the
maximum occurring approximately at [957],

2amaxk0 = π
√∣∣1+ Re(εc)

∣∣
The maximum was added in the graph. The following MATLAB code illustrates the com-
putation using the pwg function as well as the iterative method (again, graph annotation
details are omitted.)

w1 = 2*a; be1 = be; % save previous results for 2a=100
L1 = -1/2/imag(be1)/k0/1000; % propagation length in microns

wmax = pi/k0*sqrt(abs(real(ec)+1)) % max L at wmax = 1402.49 nm
bemax = pwg(la0,ef,ec,wmax/2,bcinf,0,tol); % bemax = 1.030361 - 0.000577i
Lmax = -1/2./imag(bemax)/k0/1000; % Lmax = 89.5901 microns
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w = (5:10:3500); a = w/2; % vector of gap thicknesses w in nm

for i=1:length(w) % PWG method
be(i) = pwg(la0,ef,ec,a(i),bcinf,0,tol); % la0,ef,ec,bcinf,tol, as above

end

L = -1/2./imag(be)/k0/1000; % propagation length in micrometers

ac = sqrt(be.^2 - ec); ga = sqrt(be.^2 - ef);
E = abs(pc*ac + ga.*tanh(ga.*a*k0)); % vector of computational errors

figure; plot(w,real(be),’-’, w1,real(be1),’.’); % plot effective index
figure; plot(w,L,’-’, w1,L1,’.’, wmax,Lmax,’ro’); % plot propagation length

% ---------- iterative version ----------

for i=1:length(w)
binit = bcinf; % initialize iteration
ga = sqrt(binit^2 - ef);
ac = sqrt(binit^2 - ec);
N(i) = 1; % number of iterations for i-th thickness
while 1

ga_new = -pc*ac*coth(ga*a(i)*k0);
if abs(ga_new-ga) < tol, break; end
ga = ga_new;
beit(i) = sqrt(ga^2 + ef); % beta for i-th thickness
ac = sqrt(beit(i)^2 - es);
N(i) = N(i)+1;

end % end while-loop
end % end for-loop

ac = sqrt(beit.^2 -ec); ga = sqrt(beit.^2 - ef);

Eit = abs(pc*ac + ga.*tanh(ga.*a*k0)); % vector of errors

norm(be-beit) % compare PWG and iterative methods, ans = 2.5818e-12

Fig. 10.6.3 plots the computational errorE = |γ tanh(γa)+pcαc| versus thicknessw = 2a,
for both the PWG and the iterative methods, showing that it remains below the specified
error tolerance of 10−12. The figure also shows a plot versusw of the number of iterations
N required for convergence of the iterative method, where N is saved during the iteration
for each thickness. ��

10.7 Gap Surface Plasmons

The TM0 symmetric mode illustrated by the above example is the only mode that exists
for the symmetric MDM guide for all values of the gap thickness 2a, and is known as a
gap surface plasmon polariton (G-SPP) mode [981]. For small values of a, the propagation
wavenumber β becomes very large. Indeed, assuming that |γa| � 1 and using the
approximation tanh(x)≈ x, the characteristic equation (10.6.1) (with ψ = 0) becomes,

γa = −pcαc
γ

⇒ γ2a = −pc
√
γ2 + (εf − εc)k2

0 (10.7.1)
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Fig. 10.6.3 Computational error and number of iterations (λ0 = 0.650 nm, tol = 10−12).

This is a second-order algebraic equation in the variable γ2 with solution for γ2 and β,

γ2 = p2
c

2a2
+
√
p4
c

4a4
+ p

2
ck

2
0

a2
(εf − εc)

β =
√
k2

0εf + γ2 =
√√√√k2

0εf +
p2
c

2a2
+
√
p4
c

4a4
+ p

2
ck

2
0

a2
(εf − εc)

(10.7.2)

For very small a, the quartic term p4
c/a4 wins inside the above square roots, so

that γ2 ≈ p2
c/a2. Its square root is taken with negative sign, γ = −pc/a, in order to

guarantee a positive real part for γ. This results in the simpler expression for β ≈ γ,

β = −pc
a
, for k0a� 1 (10.7.3)

The same can also be derived from the characteristic equation (10.7.1) when γ is large,

γ2a = −pc
√
γ2 + (εf − εc)k2

0 ≈ −pcγ ⇒ γ = −pc
a

On the other hand, if a is small but not too small so that the quartic term p4
c/a4

can be ignored inside the square roots of Eq. (10.7.2), then we obtain another simple
expression which works well [981] over a substantial range of a,

γ2 ≈
√
p2
ck

2
0

a2
(εf − εc) = −pck0

a
√
εf − εc

β = k0

√
εf − pc

k0a
√
εf − εc

(10.7.4)

TM1 modes

We saw in Sec. 10.4 that, in the lossless case, region-3 supported antisymmetric TM1

plasmonic modes for k0
√εf ≤ β ≤ βc,∞, corresponding to the film’s half-width range
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acutoff ≤ a < ∞, where for symmetric guides (εc = εs), the cutoff thickness is given by
Eq. (10.4.6) and is obtained by setting, β = k0

√εf , or γ = 0, in the TM1 characteristic
equation,

tanh(γa)= − γ
pcαc

∣∣∣∣∣
γ=0

⇒ k0acutoff = − 1

pc
√
εf − εc −

εc
εf
√
εf − εc

In the lossy case, because εc and β are complex-valued, an approximate value for
the cutoff with may be obtained by taking the real part of the above expression,

k0acutoff = −Re

[
1

pc
√
εf − εc

]
(10.7.5)

Example 10.7.1: Here, we look at the TM1 modes of Example 10.6.1 that had operating free-
space wavelength of λ0 = 650 nm and permittivity of silver εc = εs = −19.6224− 0.443j,
and εf = 1 for air. The cutoff width calculated from Eq. (10.7.5) is found to be

wcutoff = 2acutoff = 894.0795 nm

The TM1 modes were calculated over the thickness range,wcutoff ≤ 2a ≤ 3500 nm, and the
TM0 modes over, 5 ≤ 2a ≤ 3500 nm. Fig. 10.7.1 shows the effective index Re(β)/k0 and
propagation distance L = −[2 Im(β)

]−1
in units of nm. The solutions for the specific value,

2a = 1000m, that lies above the cutoff, were also placed on the graphs. The following
MATLAB code segment illustrates the computations.

la0 = 650; k0 = 2*pi/la0; ef = 1; ec = -19.6224-0.443*j; es=ec;
pc = ef/ec; ps = ef/es;
bcinf = sqrt(ec*ef/(ec+ef));
tol = 1e-12;
acut = -real(1/pc/sqrt(ef-ec))/k0;
wc = 2*acut;
nc = sqrt(ef);

w = 5:10:3500; % thickness range for TM0
w1 = 1.001*wc:10:3500; % thickness range for TM1

for i=1:length(w)
be0(i) = pwg(la0,ef,ec,w(i)/2,bcinf,0,tol); % TM0

end

for i=1:length(w1)
be1(i) = pwg(la0,ef,ec,w1(i)/2,bcinf,1,tol); % TM1

end

neff0 = real(be0); L0 = -1/2./imag(be0)/k0/1000; % TM0 index & distance
neff1 = real(be1); L1 = -1/2./imag(be1)/k0/1000; % TM1 index & distance

w2=1000; a = w2/2; % specific solutions
be02 = pwg(la0,ef,ec,a2,bcinf,0,tol); % TM0
be12 = pwg(la0,ef,ec,a2,bcinf,1,tol); % TM1

neff02 = real(be02); L02 = -1/2/imag(be02)/k0/1000;
neff12 = real(be12); L12 = -1/2/imag(be12)/k0/1000;
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figure; plot(w,neff0,’-’, w1,neff1,’r--’, ...
[w2,w2],[neff02,neff12],’o’, wc,nc,’s’, ’markersize’,9);

yaxis(1, 1.15, 1:0.05:1.15);
xaxis(0,3500, 0:500:3500);

figure; plot(w,L0,’-’, w1,L1,’r--’, [w2,w2],[L02,L12],’o’, ’markersize’,9);
yaxis(0,100,0:20:100);
xaxis(0,3500, 0:500:3500);
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Fig. 10.7.1 Effective index and propagation distance for TM0 and TM1 plasmonic modes.

The symmetric TM0 and antisymmetric TM1 magnetic field profiles Hy(x) for the case
2a = 1000 nm are shown in Fig. 10.7.2. They were computed and plotted by the following
MATLAB code segment (annotations are omitted.)

−1500 −1000 −500 0 500 1000 1500
0

0.5

1

1.5

2

x  (nm)

H
y(x

),
  a

rb
it

ra
ry

 u
n

it
s

tranverse magnetic field, H
y
(x)

silver silver

air gap

TM
0
 mode

−1500 −1000 −500 0 500 1000 1500
−1

−0.5

0

0.5

1

x  (nm)

H
y(x

),
  a

rb
it

ra
ry

 u
n

it
s

tranverse magnetic field, H
y
(x)

silver silver
air gap

TM
1
 mode

Fig. 10.7.2 Transverse magnetic field profiles for TM0 and TM1 plasmonic modes.

x = linspace(-1500,1500,601);
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ga = sqrt(be02^2 - ef); % transverse wavenumbers for TM0
ac = sqrt(be02^2 - ec); % ga = 0.2690-0.0023i; ac = 4.5494+0.0486i
psi = 0;
Hy = cosh(ga*k0*a+psi)*exp(-k0*ac*(x-a)).*(x > a) +... % TM0 field

cosh(ga*k0*a-psi)*exp(k0*ac*(x+a)).*(x <-a) +... % here, a=1000/2
cosh(k0*ga*x+psi).*(abs(x)<=a);

figure; fill([-1500, -500, -500, -1500],[0, 0, 2, 2], [0.9 0.9 0.9]); hold on
fill([500, 1500, 1500, 500],[0, 0, 2, 2], [0.9 0.9 0.9]);
plot(x,real(Hy), ’linewidth’,2); % plot TM0

xaxis(-1500, 1500, -1500:500:1500); yaxis(0,2, 0:0.5:2);

ga = sqrt(be12^2 - ef); % transverse wavenumbers for TM1
ac = sqrt(be12^2 - ec); % ga = 0.1251-0.0072i; ac = 4.5432+0.0486i
psi = j*pi/2;
Hy = cosh(ga*k0*a+psi)*exp(-k0*ac*(x-a)).*(x > a) +... % TM1 field

cosh(ga*k0*a-psi)*exp(k0*ac*(x+a)).*(x <-a) +...
cosh(k0*ga*x+psi).*(abs(x)<=a);

figure; fill([-1500, -500, -500, -1500],[-1, -1, 1, 1], [0.9 0.9 0.9]); hold on
fill([500, 1500, 1500, 500],[-1, -1, 1, 1], [0.9 0.9 0.9]);
plot(x,imag(Hy), ’linewidth’,2); % plot TM1

xaxis(-1500, 1500, -1500:500:1500); yaxis(-1,1, -1:0.5:1);

We note that because of the rather large thickness of 1000 nm, the TM0 field resembles
two separate single-interface surface plasmons at the two silver-air interfaces. ��

10.8 PEC Limit

Plasmonic waveguides operate near the visible and infrared spectrum and excel at guid-
ing light at decent propagation distances, while being laterally confined at subwave-
length distances.

At the microwave regime, MDM waveguides behave very much like ordinary parallel-
plate TEM transmission lines, or like parallel-plate waveguides supporting TM and TE
modes. The connection to the plasmonic case can be seen in the perfect-electric con-
ductor (PEC) limit [961]. We recall from Chapter 1 that the effective dielectric constant
of a conductor is related to its conductivity σ(ω) by

εc = 1− j σ(ω)
ε0ω

(10.8.1)

The PEC limit assumes that the metals are perfect conductors (σ → ∞), so that
εc →∞, and therefore, pc = εf/εc → 0. In this limit, the characteristic equation (10.6.1)
of a symmetric MDM guide becomes for the even and odd TM modes,

tanh(γa+ψ)= −pcαc
γ

→ εfk0
√−εc
εcγ

→ 0 , ψ = jmπ
2
, m = 0,1
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where we replaced αc =
√
β2 − k2

0εc → k0
√−εc. This condition then requires that

γa+ψ = jπq, with integer q, resulting in the quantized values of γ,

γ = jkc , kc = π(2q+m)
2a

, q = 0,1,2, . . . , m = 0,1 (10.8.2)

The quantities kc are recognized as the cutoff wavenumbers of the TM modes of a
parallel-plate waveguide with perfectly conducting walls. The corresponding dispersion

relationship is obtained from β =
√
γ2 + k2

0εf =
√
k2

0εf − k2
c , and requires that the guide

be operated above cutoff, k0
√εf ≥ kc.

The case q = m = 0, or, γ = 0, is special and corresponds to the parallel-plate
TEM transmission line discussed in the next chapter. The TEM property follows from
Eq. (10.1.3), which shows that Ez = 0 in this case. Moreover, Ex,Hy become constants,
independent of x, and Ex/Hy = η0.

TE modes, which generally do not exist in the plasmonic case, correspond to setting
pc = 1 in the characteristic equation (10.6.1), which would have the PEC limit,

tanh(γa±ψ)= −αc
γ
→ k0

√−εc
γ

→∞ , ψ = jmπ
2
, m = 0,1

This condition gives the quantized values for γ and TE cutoff wavenumbers:

γ = jkc , kc = π(2q+m+ 1)
2a

, q = 0,1,2, . . . , m = 0,1 (10.8.3)

We note that γ = 0 is not possible for TE modes.

Example 10.8.1: The following graphs show the magnetic field profiles for a fictitious symmet-
ric MDM guide with λ0 = 650 nm, εf = 1, with film width of 100 nm, and the successive
values of εc having increasingly larger imaginary parts:

εc = −20− 10j
εc = −20− 100j
εc = −20− 1000j
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The MATLAB code is the same as in Example 10.6.1. We observe how the magnetic field
tends to the TEM limit, becoming progressively constant, and more quickly decaying in the
metal. The computed values for β,γ,αc were,

β/k0 γ/k0 αc/k0

1.20520− 0.04899j 0.67656− 0.08727j 4.74695+ 1.04087j
1.07807− 0.06220j 0.42772− 0.15677j 7.84987+ 6.36099j
1.02333− 0.02255j 0.23702− 0.09736j 22.59670+ 22.12610j
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10.9 Anomalous Complex Modes

As we mentioned at the end of Sec. 10.5, there exist complex-modes even in the lossless
case, that are anomalous in the sense that they are stable and laterally confined, having
propagation wavenumber, β = βR − jβI, with βI > 0, but with βI so large that they
cannot be considered as propagating, nor are they necessarily evanescent, which would
have βR = 0 and βI > 0, although such evanescent modes do exist.

The mode spectrum of MDM guides for the lossless and lossy cases has been studied
in various references such as [952–955,965].

Consider a symmetric configuration (εc = εs), whose even and odd TM modes must
satisfy the characteristic equation (10.6.1),

tanh(γa±ψ)= −pcαc
γ

, ψ = jmπ
2
, m = 0,1 (10.9.1)

Because we are looking for anomalous modes that have large values of β, or, γ =√
β2 + k2

0εf , we have, αc =
√
γ2 + k2

0(εf − εc) ≈ γ. It follows that the right-hand-side
of Eq. (10.9.1) tends to a constant,

tanh(γa±ψ)≈ −pc , for |β| 
 k0

But this equation does not uniquely define γ, since,

tanh(γa±ψ)= tanh(γa±ψ± jπq)= −pc
for any integer q. Replacing ψ = jmπ/2, for m = 0,1, and inverting, we obtain an
infinite family of possible solutions, which will have large |γ| for large values of q,

γ = 1

a
atanh(−pc)± jπ(2q+m)

2a
, m = 0,1, q = 0,1,2, . . . (10.9.2)

This is similar to Eq. (10.8.2). By using these approximate γs as the initial search
points of the function, pwg, we may derive the exact values of the anomalous modes.

To clarify the role of the ± sign choices, we note that in the lossless case (real εc, εf ),
because the characteristic equation has real parameters then if β is a solution, so will
be the complex conjugate, β∗. Moreover, since the dependence on β comes through β2,
it follows that given a solution β, all four choices, ±β,±β∗, would also be solutions.
However, if β = βR − jβI with βI ≥ 0, then the only other physically acceptable choice
would be, −β∗ = −βR− jβI, that also has negative imaginary part. Thus, in the lossless
case the anomalous complex modes come in pairs, {β,−β∗}, or, ±βR−jβI [952]. The±
signs in Eq. (10.9.2) typically correspond to such pair β,−β∗. In the lossy case, however,
this conjugate symmetry is broken, making the two values in the pair β,−β∗ slightly
different.

Example 10.9.1: Consider again the silver-air-silver guide of Example 10.6.1 with free-space
wavelength of λ0 = 650 nm, silver permittivity, εc = εs = −19.6224− 0.443j, and εf = 1
for an air gap of width 2a = 100 nm.

The following table shows the solutions for the even modes (m = 0), for q = 0,1,2,3 and
the two ± sign choices. The computational error vector, E = γ tanh(γa+ψ)+pcαc, has
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norm ‖E‖ = 4.3687×10−14. The second table shows the odd solutions (m = 1). Its error
norm was ‖E‖ = 9.1312×10−14.

The q = 0 even solution is the fundamental G-SPP mode that we considered in Example
10.6.1. For the rest of the even cases and all the odd ones, we observe that all solutions
are acceptable, in the sense that they have βI = − Im(β)> 0, and Re(αc)> 0, however,
they cannot be considered as propagating because of their large value of βI . We note also
that they have a γ that is predominantly imaginary, so that those modes may be viewed as
oscillatory as opposed to plasmonic.

q β/k0 (even modes) γ/k0 αc/k0

0 1.226123− 0.002610j 0.709501− 0.004510j 4.596523+ 0.047492j
1 − 0.076360− 6.424289j 0.075451− 6.501643j 0.057829− 4.652592j
1 + −0.076321− 6.419272j 0.075411+ 6.496685j 0.153066+ 4.647824j
2 − 0.099118− 12.963768j 0.098824− 13.002278j 0.087286− 12.183377j
2 + −0.099113− 12.958989j 0.098819+ 12.997513j 0.123651+ 12.178607j
3 − 0.102709− 19.476698j 0.102573− 19.502352j 0.093794− 18.966223j
3 + −0.102707− 19.471926j 0.102572+ 19.497586j 0.117154+ 18.961452j

q β/k0 (odd modes) γ/k0 αc/k0

0 0.000249− 2.976418j 0.000236− 3.139915j 3.281442+ 0.067275j
1 − 0.093819− 9.700739j 0.093325− 9.752140j 0.079792− 8.630150j
1 + −0.093808− 9.695937j 0.093313+ 9.747364j 0.131131+ 8.625381j
2 − 0.101461− 16.221536j 0.101269− 16.252329j 0.091276− 15.604931j
2 + −0.101459− 16.216762j 0.101267+ 16.247564j 0.119668+ 15.600160j
3 − 0.103452− 22.730378j 0.103352− 22.752364j 0.095539− 22.294531j
3 + −0.103451− 22.725607j 0.103351+ 22.747597j 0.115411+ 22.289760j

The tables were produced by the following MATLAB code:

la0 = 650; k0 = 2*pi/la0; a = 100/2; % la0,a in nm
ef = 1; ec = -19.6224 - 0.443*j; % set ec = -16.6224 for lossless case
pc = ef/ec; tol = 1e-12;
q = (0:3)’; m=0; % set m=0,1 for even or odd modes

ga1 = 1/k0/a*atanh(-pc) - j*pi/2/a/k0*(m+2*q);
ga2 = 1/k0/a*atanh(-pc) + j*pi/2/a/k0*(m+2*q);

gin = [ga1.’; ga2.’]; gin = gin(:); % list them as -/+ pairs
q = [q’;q’]; q = q(:);
gin(1)=[]; q(1)=[]; % eliminate duplicate q=0 case

bin = sqrt(gin.^2 + ef); % initial search vector

be = pwg(la0,ef,ec,a,bin,m,tol); % solution vector for beta

ga = sqrt(be.^2 - ef); ac = sqrt(be.^2 - ec); % gamma and alpha_c vectors

E = norm(pc*ac + ga.*tanh(ga*k0*a + j*m*pi/2)) % computational error norm

num2str([be,ga,ac],’%12.6f’) % table
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We note also that the ± pairs for the same value of q are very close to each other. If we
execute the same code for the lossless case (εc = −19.6224), we will find that the pairs
are numerically equal, that is, ±βR − jβI . ��

Example 10.9.2: This example is from [955], and we have also added the odd modes. A sym-
metric silver-air-silver MDM waveguide at free-space wavelength λ0 = 1550 nm, has film
width 2a = λ0/4, film permittivity εf = 1, and silver permittivity εc = −143.497−9.517j,
or, εc = −143.417 in the lossless limit.†

la0 = 1550; k0=2*pi/la0; a = la0/8;
ef=1; ec=-143.497 - j*9.517*0; % ec=-143.497 - j*9.517 in lossy case
pc = ef/ec;
tol = 1e-12;

q = (0:4)’; m=0; % even modes TM0, TM2, TM4, TM6, TM8

gin = 1/k0/a*atanh(-pc) - j*pi/2/a/k0*(m+2*q);
bin = sqrt(gin.^2 + ef);

be_even = pwg(la0,ef,ec,a,bin,m,tol); % even mode solutions

m=1; % odd modes TM1, TM3, TM5, TM7, TM9

gin = 1/k0/a*atanh(-pc) - j*pi/2/a/k0*(m+2*q);
bin = sqrt(gin.^2 + ef);

be_odd = pwg(la0,ef,ec,a,bin,m,tol); % odd mode solutions

be = [be_even, be_odd].’; be = be(:); % list modes sequentially

ga = sqrt(be.^2-ef); ac = sqrt(be.^2 - ec);

num2str([be,ga,ac],’%11.5f’) % table

M = repmat([0;1], length(q),1);

E = norm(pc*ac + ga.*tanh(ga*a*k0 + j*M*pi/2)) % error norm of all modes

The calculated error norms for the lossless and lossy cases were ‖E‖ = 5.3579×10−14 and
2.6947×10−14, respectively. The following two tables list the solutions for the two cases.

mode β/k0 (lossless case) γ/k0 αc/k0

0 1.05313 0.33027 12.02523

1 −1.66934j −1.94594j 11.86214

2 −3.84683j −3.97468j 11.34456

3 −5.90040j 5.98454j 10.42508

4 −7.92720j 7.99003j 8.98089

5 −9.94391j 9.99407j 6.67949

6 −11.95773j −11.99947j 0.71391

7 0.00456− 13.96424j 0.00455− 14.00000j 0.00887− 7.17656j
8 0.00587− 15.96872j 0.00586− 16.00000j 0.00887− 10.55950j
9 0.00661− 17.97220j 0.00660− 18.00000j 0.00887− 13.39787j

†Note that our DRUDE function gives here εc = −103.332− 8.130j.
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mode β/k0 (lossy case) γ/k0 αc/k0

0 1.05304− 0.00176j 0.33004− 0.00563j 12.03172+ 0.39534j
1 0.00210− 1.66945j 0.00180− 1.94603j 11.86889+ 0.40063j
2 0.00077− 3.84686j 0.00075− 3.97471j 11.35228+ 0.41891j
3 0.00035− 5.90041j 0.00035− 5.98455j 10.43503+ 0.45581j
4 0.00008− 7.92719j 0.00008− 7.99001j 8.99646+ 0.52886j
5 −0.00023− 9.94387j 0.00023+ 9.99402j 6.71706+ 0.70877j
6 −0.00146− 11.95650j 0.00145+ 11.99824j 2.24792+ 2.12461j
7 −0.00453− 13.96352j 0.00452+ 13.99928j 0.66911+ 7.20628j
8 −0.00583− 15.96808j 0.00582+ 15.99936j 0.45906+ 10.56850j
9 −0.00658− 17.97159j 0.00657+ 17.99939j 0.36388+ 13.40199j

The listed mode numbers were the quantities, 2q + m, for q = 0,1,2,3,4, m = 0,1.
The q = 0 mode is the fundamental G-SPP mode. For the lossless case, modes 1–6 are
evanescent in the sense that they have βR = 0 and βI = − Im(β)> 0, but they are laterally
confined because αc is positive-real. These modes carry no power in any of the three
media, because the media were assumed to be lossless, so that the factors that appear in
the expressions Eq. (10.1.24) for the transmitted powers are, Re(β/ε)= Re(β)/ε = 0. The
numerical values for the even modes given in [955] differ slightly from ours, but that is
probably due to using different calculation procedures. ��

In this section, we have discussed only the modes of the discrete spectrum. Modes
belonging to the continuous spectrum are not laterally confined. If β = βR − jβI, then,
the lateral decay parameter is,

αc =
√
β2 − k2

0εc =
√
β2
R − β2

I − 2jβRβI − k2
0εc

Continuous modes would have an imaginary αc, or, α2
c < 0. For the lossless case

(εc = −|εc|), this would require that

α2
c = β2

R − β2
I + k2

0|εc| − 2jβRβI < 0 ⇒
⎧⎨
⎩βRβI = 0

β2
R − β2

I + k2
0|εc| < 0

The two conditions can only be satisfied with βR = 0 and β2
I > k

2
0|εc|, or, βI >

k0
√|εc|. Such modes have been discussed in [952,955]. and are unbounded laterally,

but decay along the propagation direction as e−βIz.

10.10 DMD Configuration – Lossless Case

A DMD plasmonic waveguide consists of a metal film εf , surrounded by two possibly
different dielectrics εc, εs, as shown in Fig. 10.10.1 . It is operated at optical or infrared
frequencies where the metal has permittivity with negative real part, εf = −εR − jεI,
εR > 0 and εI ≥ 0. The dielectrics may be assumed to be lossless. Moreover, without
loss of generality, we will assume that εc ≥ εs > 0.

The field and characteristic equations were given by Eqs. (10.1.4)–(10.1.16). The var-
ious solution modes have been discussed extensively in the literature, see for example,
[939–945] and the reviews [962,981].
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Fig. 10.10.1 DMD plasmonic waveguide.

As in the MDM case, we begin our discussion by first considering the lossless case,
εI = 0, so that we may write, εf = −|εf |. Since εc ≥ εs, the quantities, pc = εf/εc,
ps = εf/εs, satisfy the inequality |pc| ≤ |ps|. We note the following relationships,

γ =
√
β2 − k2

0εf =
√
β2 + k2

0|εf |

αc =
√
β2 − k2

0εc

αs =
√
β2 − k2

0εs

⇒
γ =

√
α2
c + k2

0

(
εc + |εf |

)
γ =

√
α2
s + k2

0

(
εs + |εf |

) (10.10.1)

which imply that, αc ≤ αs < γ.† Note also,

p2
cα2
c − γ2 = (p2

c − 1)(β2 − β2
c,∞)

p2
sα2
s − γ2 = (p2

s − 1)(β2 − β2
s,∞)

(10.10.2)

β2
s,∞ − k2

0εc = k2
0|εf |

[
1

|ps| − 1
− 1

|pc|

]
(10.10.3)

where βc,∞, βs,∞ are the would-be plasmonic wavenumbers of the single f−c and f−s
metal-dielectric interfaces,

β2
c,∞ =

k2
0 εcεf
εc + εf =

k2
0|εf |

|pc| − 1
, β2

s,∞ =
k2

0 εsεf
εs + εf =

k2
0|εf |

|ps| − 1
(10.10.4)

Clearly, for the single interfaces to support surface plasmons, we must have |pc| > 1
and |ps| > 1. The characteristic equations (10.1.10) can be written in the forms:

e2γa+2ψ = γ+ |pc|αc
γ− |pc|αc , e2γa−2ψ = γ+ |ps|αs

γ− |ps|αs (10.10.5)

e4γa = γ+ |pc|αc
γ− |pc|αc ·

γ+ |ps|αs
γ− |ps|αs ⇒ tanh(2γa)= γ

(|pc|αc + |ps|αs)
γ2 + |pc|αc|ps|αs (10.10.6)

We are looking for plasmonic solutions that have real and positive β,αc,αs, γ pa-
rameters. There exist, of course, complex-mode solutions as in the MDM case, which
can be derived by taking the large-γ limit of Eq. (10.10.6), that is, up to any integer q,

e4γa = e4γa−2πjq = 1+ |pc|
1− |pc| ·

1+ |ps|
1− |ps| ⇒ γ = 1

4a
ln

[
1+ |pc|
1− |pc| ·

1+ |ps|
1− |ps|

]
+ jπq

2a

†In the MDM lossless case, we had the complementary inequality, αc ≥ αs > γ.
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For all plasmonic solutions with positive real β, it is evident from (10.10.1) that
the lateral confinement conditions αc ≥ 0 and αs ≥ 0 require that β ≥ k0

√
εc and

β ≥ k0
√
εs, which, because εc ≥ εs, reduce into one,

β ≥ k0
√
εc (10.10.7)

For such solutions, because γ is real, it follows from (10.10.6) that in order for
the quantity e4γa to be positive, the quantities, (γ − |pc|αc) and (γ − |ps|αc), must
either be both positive or both negative. If they are both positive, then, it follows from
Eq. (10.10.5) that ψ must be real, so the solution is a TM0 even-like mode, and when
they are both negative, then,ψmust have a jπ/2 imaginary part, so that the solution is
a TM1 odd-like mode. We summarize,

γ− |pc,s|αc,s > 0 , Im[ψ]= 0 , (TM0 mode)

γ− |pc,s|αc,s < 0 , Im[ψ]= jπ
2
, (TM1 mode)

(10.10.8)

Thus, ψ is calculated from Eq. (10.1.7), withm = 0,1, for TM0 or TM1,

ψ = 1

2
atanh

(
−pcαc
γ

)
− 1

2
atanh

(
−psαs
γ

)
+ 1

2
jmπ (10.10.9)

Finally, we recall that the magnetic field is given by,

Hy(x)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H0 cosh(γx+ψ) , |x| ≤ a

H0 cosh(γa+ψ)e−αc(x−a) , x ≥ a

H0 cosh(γa−ψ)eαs(x+a) , x ≤ −a

(10.10.10)

The possible plasmonic solutions can be understood with the aid of the following
diagram that divides the pc−ps plane into five regions [943], as defined below,†

0. |pc| ≤ 1 ≤ |ps| , |ps| > |pc| + 1

1. |pc| ≤ 1 ≤ |ps| , |ps| ≤ |pc| + 1

2. 1 ≤ |pc| ≤ |ps| , |ps| > |pc| + 1

3. 1 ≤ |pc| ≤ |ps| , |ps| ≤ |pc| + 1

4. |pc| ≤ |ps| ≤ 1

The regions below the diagonal are obtained by switching the roles of εc, εs. The one
of most practical interest is region-3, because most metals (like gold and silver) have

†Because we are working with the variables pc, ps, our geometry of the regions differs from that of [943],
but the results are equivalent.
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|εf | > εc ≥ εs, at optical frequencies and using typical dielectrics with a small difference,
εc − εs Next, we determine the nature of solutions in each region, but summarize the
results here,

0. no solution exists

1. TM0 mode with lower cutoff, k0
√
εc ≤ β < βs,∞, acutoff ≤ a <∞

2. TM1 mode with no cutoff, β > βc,∞, 0 < a <∞
3. TM0 mode with lower cutoff, k0

√
εc ≤ β < βs,∞, acutoff ≤ a <∞

TM1 mode with no cutoff, β > βc,∞, 0 < a <∞
4. TM0 mode with upper cutoff, βmax ≤ β <∞, amax ≥ a > 0

TM0 mode with lower cutoff, k0
√
εc ≤ β ≤ βmax, acutoff ≤ a ≤ amax

Region – 0

Because |pc| ≤ 1 and αc < γ, we have (|pc|αc − γ)< 0, so necessarily we must also
have, (|ps|αs−γ)< 0. It follows that the first of Eqs. (10.10.2) is automatically satisfied
because β2

c,∞ < 0 and p2
c < 1. But, because β2

s,∞ > 0, the second constraint in (10.10.2)
requires that β < βs,∞. On the other hand, in region-0, Eq. (10.10.3) implies that βs,∞ <
k0
√εf , and combining the two inequalities, β < βs,∞ < k0

√εf . Thus, it is not possible
to fulfill condition (10.10.7) and, therefore, no solutions exist in this region.

Region – 1

The only difference with region-0 is that now Eq. (10.10.3) implies that βs,∞ > k0
√
εc,

and therefore, there can exist a solution with β spanning the range,

k0
√
εc ≤ β ≤ βs,∞ (10.10.11)

The upper limit, β = βs,∞, is reached in the limit of infinite thickness a → ∞.
The lower limit implies a lower cutoff thickness obtained from Eq. (10.10.6) by setting

β = k0
√
εc, and hence, αc = 0, γ = k0

√
εc + |εf |, and αs = k0

√
εc − εs, resulting in,

tanh
(
2k0acutoff

√
εc + |εf |

) = |ps|√εc − εs√
εc + |εf |

= |εf |√εc − εs
εs
√
εc + |εf |

2k0acutoff = 1√
εc + |εf |

atanh

⎡
⎣ |εf |√εc − εs
εs
√
εc + |εf |

⎤
⎦ , βcutoff = k0

√
εc (10.10.12)

The argument of the arc-tanh function must be less than unity, but this follows from
the condition βs,∞ > k0

√
εc, which implies the allowed range for εc, or for εs, [941,942],

εs ≤ εc ≤ |εf |εs
|εf | − εs �

|εf |εc
|εf | + εc ≤ εs ≤ εc (10.10.13)

To decide whether this solution is even-like or odd-like, we look at Eqs. (10.10.5).
Because both denominators are positive, then e2γa±2ψ will be positive and greater than
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unity, so that ψ must be real. Therefore, this mode is TM0 even-like. As the film thick-
ness increases, it resembles more and more a single surface plasmon at the f−s interface,
while the f−c interface does not support a surface plasmon because β2

c,∞ < 0.

Example 10.10.1: We consider an example from [943] in order to compare our results. It has
parameters, εc = 2.22, εs = 1.72, εf = −22, and half-width, k0a = 0.3. It belongs to region-
1 because |pc| = 0.8264, |ps| = 0.3841, and |ps| − |pc| = 0.5576 < 1. The left graph in
Fig. 10.10.2 shows the transverse magnetic field Hy(x). The calculated mode parameters
were,

k0a β/k0 γ/k0 αc/k0 αs/k0 ψ E

0.3 2.9165 3.5364 1.9147 2.3699 −0.5794 1.1102×10−16

where E is the computational error for the characteristic equation (10.10.6),†

E =
∣∣∣∣∣tanh(2γa)−γ

(|pc|αc + |ps|αs)
γ2 + |pc|αc|ps|αs

∣∣∣∣∣
The solution was obtained with the help of the MATLAB function, pwga,

k0 = 1; la0 = 2*pi/k0; a = 0.3;
ec = 2.2^2; es = 1.7^2; ef = -4;
pc = ef/ec; ps = ef/es;
tol = 1e-12;

bsinf = sqrt(ef*es/(ef+es));

[be,E] = pwga(la0,ef,ec,es, a, bsinf, 0, tol); % TM0 mode

ga = sqrt(be^2-ef); as = sqrt(be^2-es); ac = sqrt(be^2-ec);
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Fig. 10.10.2 DMD region-1, TM0 mode.

It can also be computed recursively by transforming the characteristic equation into the
iteration:

γ = −γ
2 + pcαc psαs
pcαc + psαs tanh(2γa) ⇒ γn+1 = −γ

2
n + pcαcn psαsn
pcαcn + psαsn tanh(2γna)

†The achieved E is actually half of MATLAB’s machine epsilon, eps = 2.2204e-16.
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The magnetic field was computed and plotted by the code,

psi = atanh(-pc*ac/ga)/2- atanh(-ps*as/ga)/2

x = linspace(-3,3,601)*a;

Hy = cosh(ga*a - psi).*exp(as*(x+a)).*(x<-a) + ...
cosh(ga*a + psi).*exp(-ac*(x-a)).*(x>a) + ...
cosh(ga*x + psi).*(abs(x)<=a);

fill([-1, 1, 1, -1], [-2 -2, 4, 4], [0.9, 0.9, 0.9]);
hold on
plot(x/a, real(Hy), ’linewidth’,2);

The right graph in Fig. 10.10.1 shows the β−a dispersion relationship, with the half-width
varying over acutoff ≤ a < ∞, as β varies over k0

√
εc ≤ β < βs,∞. The calculated values

were,
k0acutoff = 0.1304 ,

√
εc = 2.2 , βs,∞ = 3.2271

and the graph was generated by the following code, where for plotting convenience, we
evaluated the solution only up to k0amax = 0.5 where β has effectively converged to βs,∞,

acut = 1/2/sqrt(ec-ef) * atanh(-ef*sqrt(ec-es)/es/sqrt(ec-ef));
amax = 0.5;

a = linspace(1.01*acut,amax, 101); % span interval a_cut < a < amax

for i=1:length(a)
be(i) = pwga(la0,ef,ec,es, a(i), bsinf, 0, tol);

end

be = abs(real(be)); % make sure beta is positive real

plot(a,be, acut,sqrt(ec),’s’, amax,bsinf,’o’);
hold on
plot(a1,be1,’.’); % here, a1 = 0.3, be1 = 2.9165
xlim([0,0.5]); ylim([1,9])

Region – 2

Here, it follows from Eqs. (10.10.3) and (10.10.4) that, 0 < βs,∞ < k0
√
εc < βc,∞. This

excludes a solution that would have, |ps|αs − γ < 0, because it would require from
Eqs. (10.10.2) that β < βs,∞ and therefore, it could not satisfy (10.10.7). On the other
hand, a solution exists that satisfies, |pc,s|αc,s − γ > 0, which requires from (10.10.2)
that β ≥ βc,∞ and β ≥ βs,∞, the latter being satisfied a fortiori from the former.

Thus, such solution will have range β ≥ βc,∞, with β = βc,∞ achieved at infinite
thickness a → ∞, and at the other end, β → ∞ as the thickness tends to zero, a → 0.
Interestingly, although the s−f interface can support a surface plasmon, it is not the
limit of one of the modes.

Because |pc,s|αc,s − γ > 0, it follows from Eqs. (10.10.5) that the left-hand sides
e2γa±2ψ will be negative, and that can only happen if ψ has a jπ/2 imaginary part.
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Therefore, this solution is a TM1 odd-like mode, with ψ given by (10.1.16),

ψ = 1

2
atanh

(
−pcαc
γ

)
− 1

2
atanh

(
−psαs
γ

)
+ 1

2
jπ (10.10.14)

Example 10.10.2: This example is from [943]. It has parameters, εc = 1.92, εs = 1.32, εf = −22,
and half-width, k0a = 0.15. It belongs to region-2 because |pc| = 1.1080, |ps| = 2.3669,
and |ps|−|pc| = 1.2588 > 1. The left graph in Fig. 10.10.3 shows the transverse magnetic
field Hy(x). The calculated mode parameters were,

k0a β/k0 γ/k0 αc/k0 αs/k0 ψ E

0.15 7.8273 8.0788 7.5932 7.7186 0.7368+ jπ/2 1.1102×10−16

where E is the computational error for the characteristic equation (10.10.6),

E =
∣∣∣∣∣tanh(2γa)−γ

(|pc|αc + |ps|αs)
γ2 + |pc|αc|ps|αs

∣∣∣∣∣
The solution was obtained with the help of the MATLAB function, pwga,

k0 = 1; la0 = 2*pi/k0; a = 0.15;
ec = 1.9^2; es = 1.3^2; ef = -2^2;
pc = ef/ec; ps = ef/es;
tol = 1e-12;

bcinf = sqrt(ef*ec/(ef+ec));

[be,E] = pwga(la0,ef,ec,es, a, bcinf, 1, tol); % run with mode=1

ga = sqrt(be^2-ef); as = sqrt(be^2-es); ac = sqrt(be^2-ec);

It can also be computed recursively by transforming the characteristic equation into the
iteration:

γ =
√
−pcαc psαs − γ(pcαc + psαs)coth(2γa)

γn+1 =
√
−pcαcn psαsn − γ(pcαcn + psαsn)coth(2γna)

The magnetic field was computed and plotted by the code,

psi = atanh(-pc*ac/ga)/2- atanh(-ps*as/ga)/2 + j*pi/2

x = linspace(-3,3,601)*a;

Hy = cosh(ga*a - psi).*exp(as*(x+a)).*(x<-a) + ...
cosh(ga*a + psi).*exp(-ac*(x-a)).*(x>a) + ...
cosh(ga*x + psi).*(abs(x)<=a);

fill([-1, 1, 1, -1], [-2 -2, 4, 4], [0.9, 0.9, 0.9]);
hold on
plot(x/a, imag(Hy), ’linewidth’,2); % because cosh(ga*x+psi) = imaginary

The right graph in Fig. 10.10.2 shows the β−a dispersion relationship, with the half-width
varying over 0 < a < ∞, as β varies over ∞ > β > βc,∞, with βc,∞/k0 = 6.0849. The
graph was generated by the following code, where for plotting convenience, the solution
was evaluated only over the interval amin ≤ a ≤ amax, with k0amin = 0.1 and k0amax = 0.5.
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Fig. 10.10.3 DMD region-2, TM1 mode.

amin = 0.1; amax = 0.5;

a = linspace(amin, amax, 101);

for i=1:length(a),
[be(i),Err(i)]= pwga(la0,ef,ec,es, a(i), bcinf, 1, tol);

end

be = abs(real(be)); % make sure beta is positive real

plot(a,be, amax,bcinf, ’o’, ’markersize’,8);
hold on
plot(a1,be1,’.’, ’markersize’,20); % here a1 = 0.15, be1 = 7.8273
xlim([0,0.5]); ylim([1,9])

Region – 3

In this case, it follows from Eqs. (10.10.3) and (10.10.4) that, k0
√
εc < βs,∞ < βc,∞.

Therefore, the solution that had been excluded in region-2, that would have, |ps|αs −
γ < 0, is now allowed and will have a range, k0

√
εc ≤ β < βs,∞. Moreover, because

|pc,s|αc,s − γ < 0, then Eq. (10.10.5) implies that ψ must be real-valued, and hence,
this is a TM0 even-like mode. Setting β = k0

√
εc, defines a lower cutoff thickness, given

exactly by Eq. (10.10.12).
Similarly, the solution that satisfies, |pc,s|αc,s−γ > 0, also exists, and as in region-2,

it will have range, βc,∞ < β <∞, and will be a TM1 odd-like mode. To summarize, there
are two types of solutions:

TM1 with no cutoff, 0 < a <∞, βc,∞ < β <∞
TM0 with lower cutoff, acutoff < a <∞, k0

√
εc < β < βs,∞

Example 10.10.3: This example is also from [943] and has parameters, εc = 1.92, εs = 1.82,
εf = −22, k0a = 0.3. It belongs to region-3 because |pc| = 1.1080, |ps| = 1.2346,
|ps| − |pc| = 0.1265 < 1. The calculated asymptotic values for the TM0 and TM1 modes



10.10. DMD Configuration – Lossless Case 465

are, βs,∞/k0 = 4.1295, βc,∞/k0 = 6.0849, and the lower cutoff, k0acutoff = 0.0506. The
calculated wavenumbers are,

mode β/k0 γ/k0 αc/k0 αs/k0 ψ E

TM0 3.1487 3.7302 2.5109 2.5835 −0.1556 1.1102×10−16

TM1 6.4132 6.7178 6.1253 6.1554 0.6215+ jπ/2 1.1102×10−16

The MATLAB code is identical to that of Example 10.10.1 for the TM0 mode, and to that
of Example 10.10.2 for the TM1 mode. The following recursions can also be used for the
calculation,

TM0 : γn+1 = −γ
2
n + pcαcn psαsn
pcαcn + psαsn tanh(2γna)

TM1 : γn+1 =
√
−pcαcn psαsn − γ(pcαcn + psαsn)coth(2γna)
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Fig. 10.10.4 DMD region-3, TM0 and TM1 modes.

Fig. 10.10.4 shows the magnetic field profiles and the β−a relationships, displaying also
the cutoff point, the specific solutions for k0a = 0.3, and the asymptotic values. ��

Region-3 is the most relevant case in practice, and in fact, as we shall see in Sec. 10.11,
the TM0 mode becomes in the lossy case the so-called long-range surface plasmon po-
lariton (LR-SPP) mode that has received a lot of attention in the literature [962,981].

Region – 4

In region-4, because |pc| ≤ |ps| ≤ 1, neither metal-dielectric interface can support a
separate surface plasmon because both β2

s,∞, β2
c,∞ are negative. Nevertheless, for suf-

ficiently narrow widths, there is a solution. Because αc ≤ αs ≤ γ, it follows that
|pc,s|αc,s − γ < 0, and therefore from Eq. (10.10.8), the solution will be a TM0 mode.

Eqs. (10.10.2) and (10.10.3) are automatically satisfied and impose no further restric-
tions on the range of β. Thus, β ranges over, k0

√
εc ≤ β < ∞. Over this range, we may

think of Eq. (10.10.6) as defining the width a as a function of β, indeed,

a = 1

4γ
ln

[(
γ+ |pc|αc

)(
γ+ |ps|αs

)
(
γ− |pc|αc

)(
γ− |ps|αs

)
]
≡ F(β) (10.10.15)
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This function has the property that, starting at β = k0
√
εc with a = acutoff of

Eq. (10.10.12), it first increases up to a maximum value, say, amax at some β = βmax,
and then decreases to zero for β > βmax. Therefore, we may distinguish two solution
branches:

(lower branch) , k0
√
εc ≤ β ≤ βmax , acutoff ≤ a ≤ amax

(upper branch) , βmax ≤ β <∞ , amax ≥ a > 0
(10.10.16)

The maximum point, βmax, amax, can easily be determined using MATLAB’s built-
in function, fminbnd. Once βmax is known, the two solutions can be found using the
function, pwga, by initializing it above and below βmax.

Example 10.10.4: This example, from [943], is defined by the parameters, εc = 2.22, εs = 2.12,
εf = −22, k0a = 0.15, and has |pc| = 0.8264, |ps| = 0.9070, and k0acutoff = 0.0341, and
imaginary βs,∞/k0 = 6.5593j, βc,∞/k0 = 4.8008j.

The maximum point is, βmax/k0 = 4.2090 and k0amax = 0.1759, and was calculated by
the following MATLAB code, which defines the function F(β) and passes its negative into
the fminbnd function, with a search interval [

√
εc,∞), where ∞ is numerically replaced

by the inverse of the machine epsilon,

k0 = 1; la0 = 2*pi/k0; a = 0.15;
ec = 2.2^2; es = 2.1^2; ef = -2^2;
pc = ef/ec; ps = ef/es;

ga = @(b) sqrt(b.^2 - ef); % auxiliary functions
ac = @(b) sqrt(b.^2 - ec);
as = @(b) sqrt(b.^2 - es);
F = @(b) 1/4./ga(b) .* log((ga(b)-pc*ac(b)).*(ga(b)-ps*as(b))./...

(ga(b)+pc*ac(b))./(ga(b)+ps*as(b)));

bmax = fminbnd(@(b) -F(b), sqrt(ec), 1/eps);
amax = F(bmax);

With βmax at hand, we search above and below it for the TM0 solutions corresponding to
the value k0a = 0.15. This is implemented by the code segment,

tol = 1e-12;

[be1,E1] = pwga(la0,ef,ec,es, a, bmax/2, 0, tol); % lower
be1 = abs(real(be1));
ga1 = sqrt(be1^2-ef); as1 = sqrt(be1^2-es); ac1 = sqrt(be1^2-ec);

[be2,E2] = pwga(la0,ef,ec,es, a, bmax*2, 0, tol); % upper
be2 = abs(real(be2));
ga2 = sqrt(be2^2-ef); as2 = sqrt(be2^2-es); ac2 = sqrt(be2^2-ec);

[Ptot,Pf,Pc,Ps] = pwgpower(a,ef,ec,es,[be1; be2], 0); % transmitted powers

The computed values were,

mode β/k0 γ/k0 αc/k0 αs/k0 ψ E

lower 2.9271 3.5452 1.9309 2.5835 −0.0469 1.1102×10−16

upper 6.9626 7.2441 6.6059 6.6383 −0.1053 7.6494×10−14
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Using the function, pwgpower, the above code segment also calculates the transmitted
powers within each medium, as well as the total power for the two solutions,

mode Ptot Pf Pc Ps

lower 0.1780 −0.2420 0.1964 0.2236

upper −0.1570 −0.7937 0.2520 0.3847

As noted in [943], the total power is negative for the upper mode, implying that it has
negative group velocity. See Refs. [965–980] for more on the issue of backward waves and
negative group velocity in plasmonic waveguides.

Fig. 10.10.5 shows the corresponding magnetic field profiles computed from Eq. (10.10.10),
as well as the β−a dispersion relationship, with the above computed points included.
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Fig. 10.10.5 DMD region-4, upper and lower TM0 modes.

10.11 DMD Configuration – Lossy Case

We assume now that the metal film is lossy, εf = −εR − jεI, with εR > 0 and εI > 0.
The dielectric claddings will be assumed to be lossless with εc ≥ εs > 0. We will also
assume that εR > εc ≥ εs, which is satisfied by typical metals and typical dielectrics in
the optical and infrared regimes.

The presence of losses causes β to develop a negative imaginary part, β = βR − jβI,
with the wave attenuating like, e−jβz = e−jβRze−βIz, as it propagates in the positive z-
direction. The effective index, propagation length, and propagation loss in dB/m are
defined by (βI is in units of nepers/m),

neff = Re(β)
k0

= βR
k0
, L = − 1

2 Im(β)
= 1

2βI
, dB = 20 log10(e)βI (10.11.1)

We will discuss the impact of losses, as well as the impact of asymmetry (εc �= εs),
on the two basic plasmonic modes, the even-like TM0 and the odd-like TM1 modes.

These modes have drastically different behavior as the film thickness is varied, with
the TM0 mode having an increasing propagation length as the film width decreases, while

468 10. Surface Waveguides

the TM1 mode has a decreasing propagation length. Because of this property, the TM0

and TM1 modes are called the long-range (LRSP) and short-range (SRSP) surface plasmon
modes. Equivalently, the propagation losses, quantified by the value of βI, tend to zero
for the LRSP mode, and to infinity for SRSP, as the film width tends to zero for symmetric
guides (for asymmetric ones, there is a lower cutoff width).

A tradeoff to the LRSP property, however, is that as the film width becomes smaller
and the propagation length longer, the guided wave becomes less confined laterally,
penetrating more deeply into the dielectric claddings. We discuss this below.

The properties of long-range surface plasmons in DMD waveguides have been re-
viewed by Berini [962] with an extensive bibliography, including the impact of asym-
metry. Another review is [981] and earlier [957]. Some of the earliest references on
long-range surface plasmons are [937–942], on which we have based some of our com-
putational examples.

10.12 Symmetric DMD Waveguides

We begin with the symmetric case (εc = εs) for which the TM0 and TM1 modes are ex-
actly even or odd. The characteristic equations (10.1.22) can be written in the equivalent
forms:

γ− pcαc
γ+ pcαc = e

2γa+2ψ =
⎧⎪⎨
⎪⎩
e2γa , ψ = 0 , TM0 mode, even , (LRSP)

−e2γa , ψ = jπ
2
, TM1 mode, odd , (SRSP)

(10.12.1)

pcαc
γ

= − tanh(γa+ψ)=
⎧⎪⎨
⎪⎩
− tanh(γa) , ψ = 0 , (LRSP)

− coth(γa) , ψ = jπ
2
, (SRSP)

(10.12.2)

The even or odd labeling refers to the transverse magnetic field,

Hy(x)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H0 cosh(γx+ψ) , |x| ≤ a
H0 cosh(γa+ψ)e−αc(x−a) , x ≥ a
H0 cosh(γa−ψ)eαc(x+a) , x ≤ −a

(10.12.3)

The reduced losses for the LRSP case can be intuitively understood by noting that
the ohmic losses are due to the longitudinal electric field Ez(x), which has the opposite
symmetry than Hy(x), and it is odd for the LRSP mode, thus, having a zero crossing
within the metal film reducing its strength.

A very efficient way of solving the characteristic equations (10.12.2) is by turning
them into the following iterative algorithm, which converges extremely fast, requiring
very few iterations, like 5–6,

αc = − 1

pc
γ tanh(γa+ψ) ⇒

⎧⎪⎪⎨
⎪⎪⎩
γn =

√
α2
c,n + k2

0(εc − εf)

αc,n+1 = − 1

pc
γn tanh(γna+ψ)

(10.12.4)
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The iteration can be initialized atαc,0 = 0. In fact, just one step of the iteration pro-
vides an excellent approximation [981] and results in a simple closed-form expression.

Indeed, from αc,0 = 0, we have, γ0 =
√
α2
c,0 + k2

0(εc − εf) = k0
√
εc − εf , and the next

αc and corresponding β are,

αc1 = − 1

pc
γ0 tanh(γ0a+ψ)

β =
√
k2

0εc +α2
c1 = k0

√√√√εc + ε2
c

ε2
f
(εc − εf) tanh2(k0a

√
εc − εf +ψ

)

or, specifically, in the LRSP and SRSP cases, (ψ = 0 , ψ = jπ/2),

β = k0

√√√√εc + ε2
c

ε2
f
(εc − εf) tanh2(k0a

√
εc − εf

)
(LRSP)

β = k0

√√√√εc + ε2
c

ε2
f
(εc − εf) coth2(k0a

√
εc − εf

)
(SRSP)

(10.12.5)

The following MATLAB function, dmds, implements the iteration (10.12.4), with the
iteration stopping when two successive values of αc become closer to each other than
a specified error tolerance, such as, tol = 10−12. It has usage,

[be,E,N] = dmds(la0,ef,ec,a,mode,tol,be0); % symmetric DMD guide – iterative solution

la0 = operating wavelength, k0 = 2*pi/la0 = free-space wavenumber

ef,ec = permittivities of film and cladding/substrate

a = vector of half-widths of film, in same units as la0

mode = 0,1 for TM0 or TM1 mode

tol = computational error tolerance, default tol = 1e-12

be0 = starting search point in units of k0 - default be0 = sqrt(ec)

be = vector of propagation wavenumbers in units of k0 - size(a)

E = vector of computational errors of characteristic equation - size(a)

N = number of iterations to converge to within tol

In the limit of small thickness a, Eqs. (10.12.5) simplify further by making the small-x
approximation, tanh(x)≈ x,

β = k0

√√√√εc + ε2
c

ε2
f
(εc − εf)2 (k0a)2 (LRSP)

β = k0

√√√√εc + ε2
c

ε2
f (k0a)2

(SRSP)

(10.12.6)

These can also be obtained by applying the same approximation, directly to the
characteristic equations (10.12.2), that is,

γa ≈ −pcαc
γ

(LRSP) and
1

γa
≈ −pcαc

γ
(SRSP) , or,
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γ2a = −pcαc (LRSP) and αc = − 1

pca
(SRSP)

For the SRSP case, substituting αc into β =
√
k2

0εc +α2
c leads to Eq. (10.12.6). For

the LRSP case, an additional step is required by writing,

−pcαc = γ2a = [α2
c + k2

0(εc − εf)
]
a

and noting that this implies that αc is already small and order-a, and therefore, the
second-order term α2

c can be ignored on the right side, so that, −pcαc = k2
0(εc − εf)a,

αc = − 1

pc
k2

0(εc − εf)a = k0
εc(εf − εc)

εf
(k0a) (10.12.7)

resulting in Eq. (10.12.6). Making the further approximation,
√

1+ x ≈ 1+x/2, we obtain
the more explicit relationships for the real and imaginary parts of β in the LRSP case,

β = k0

√√√√εc + ε2
c

ε2
f
(εc − εf)2 (k0a)2) ≈ k0

√
εc

⎡
⎣1+ εc(εc − εf)

2

2ε2
f

(k0a)2

⎤
⎦ (10.12.8)

Setting β = βR − jβI and εf = −εR − jεI, and noting that,

(εc − εf)2

ε2
f

= ε
∗2
f (εc − εf)2

|εf |4 =
(|εf |2 − εcε∗f )2

|εf |4 =
(|εf |2 + εcεR − jεcεI)2

|εf |4

=
(|εf |2 + εcεR)2 − ε2

cε
2
I − 2jεcεI

(|εf |2 + εcεR)
|εf |4

where |εf |2 = ε2
R + ε2

I , we obtain the real and imaginary parts of β [942],

βR = k0
√
εc

[
1+

(|εf |2 + εcεR)2 − ε2
cε

2
I

2|εf |4 εc(k0a)2

]

βI = k0
√
εc
ε2
cεI
(|εf |2 + εcεR)
|εf |4 (k0a)2

(LRSP) (10.12.9)

The long-range property follows from the fact that βI tends to zero for small a.
This remarkable property comes with the tradeoff that as a decreases and the range
increases, the wave becomes less confined laterally. This follows from Eq. (10.12.7)
which shows that the lateral decay constant αc also goes to zero with a. Its real and
imaginary parts can be given explicitly by,

αc = k0

εc
(|εf |2 − εcε∗f )

|εf |2 (k0a)= k0
εc
(|εf |2 + εcεR − jεcεI)

|εf |2 (k0a) (10.12.10)

The factor, |εf |2+ εcεR, is positive since we assumed εR > 0, therefore, both βI and
the real-part of αc are non-negative, as required for stability and lateral confinement.
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For the short-range mode, both βI and the real part of αc increase like 1/a, result-
ing in shorter propagation distances, but more confinement. These follow from the
approximation (10.12.6), as a→ 0,

β ≈ αc = − εcεfa = k0
εc(εR − jεI)
|εf |2(k0a)

(SRSP) (10.12.11)

Example 10.12.1: This example is from [981] and demonstrates the primary features of the
LRSP and SRSP modes. The operating wavelength is 775 nm, the metal film is gold with
εf = −23.5 − 1.69j,† surrounded by air, εc = εs = 1, and the film thickness 2a is varied
over the range 1 ≤ 2a ≤ 210 nm. Fig. 10.12.1 shows the effective index neff = βR/k0 as a
function of a for both the LR and SP modes, as well as the propagation length L = 1/(2βI)
in units of μm.
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Fig. 10.12.1 Effective index and propagation length of long and short-range modes.

The graphs were generated with the help of the function, dmds, by the MATLAB code,

la0 = 775; k0 = 2*pi/la0; ec = 1; ef = -23.6 - 1.69*j;
pc = ef/ec;
bcinf = sqrt(ef*ec/(ef+ec)); % asymptotic value
ninf = real(bcinf);
Linf = -1/2/k0./imag(bcinf)/1000; % units of microns

w = 1:210; a = w/2; % film thicknesses

tol = 1e-12; % error tolerance

for i = 1:length(w)
[be0(i), E0(i), N0(i)] = dmds(la0,ef,ec,a(i),0,tol); % LRSP
[be1(i), E1(i), N1(i)] = dmds(la0,ef,ec,a(i),1,tol); % SRSP

end

% [be0, E0, N0] = dmds(la0,ef,ec,a,0,tol); % vectorized computation

neff0 = real(be0); L0 = -1/2/k0./imag(be0)/1000; % LRPP
neff1 = real(be1); L1 = -1/2/k0./imag(be1)/1000; % SRSP

†at 775 nm, the DRUDE function produces, εf = −18.57− 2.008j.
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figure; plot(w,neff0,’-’, w,neff1,’--’, w(end),ninf,’s’); % eff. index
figure; semilogy(w,L0,’-’, w,L1,’--’, w(end),Linf,’s’); % propag. length

g0 = sqrt(ec-ef);

be0a = sqrt(ec + g0^2/pc^2 * tanh(g0*k0*a).^2); % approximation
be1a = sqrt(ec + g0^2/pc^2 * coth(g0*k0*a).^2);

diff0 = norm(be0 - be0a); % diff0 = 4.7377e-04
diff1 = norm(be1 - be1a); % diff1 = 0.0076

Because of the symmetric geometry, LRSP and SRSP both converge to the same asymptotic
value for large a,

βc,∞
k0

=
√
εcεf
εc + εf = 1.0218− 0.0016j , neff = βRk0

= 1.0218 , L = 1

2βI
= 38.3023 μm

The code also computes the approximate solutions using Eq. (10.12.5), but does not plot
them, because they are visually indistinguishable from the exact ones. As a measure of
the approximation accuracy, the norms of the difference between the vector of the exact
βs and the approximate ones, ‖β− βapprox‖, was computed for the two cases – the values
are shown in the comments. Fig. 10.12.2 shows the computational errors as defined in the
function dmds,

E = ∣∣pcαc + γ tanh(γa)
∣∣ (LRSP)

E = ∣∣pcαc + γ coth(γa)
∣∣ (SRSP)
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Fig. 10.12.2 Computational error.

The error values are small but not quite as small as the specified tolerance, tol = 10−12, be-
cause tol measures the closeness of two successive iterates ofαc, not the value of the error
E. The norms of the error vectors were ‖E‖ = 8.0235×10−11 and ‖E‖ = 2.0993×10−10.

The function dmds also calculates the number of iterations required to converge to within
the specified error tolerance. The number of iterations for each thickness are plotted in
Fig. 10.12.3. One observes how quick the iterative method is. ��

Example 10.12.2: This example, also from [981], illustrates the more realistic case of a gold
film at the operating wavelength of 1550 nm, with permittivity, εf = −131.9475−12.65j,†

†εf is from Palik [162], but the DRUDE function gives, εf = −103.3325− 8.1301j.
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Fig. 10.12.3 Number of iterations to converge.

surrounded by the often-used benzocyclobutene (BCB) polymer dielectric, with εc = εs =
1.5352. The film thickness is varied over the range 10 ≤ 2a ≤ 110 nm. The MATLAB code
is identical to that of the previous example, with the change in first two lines,

la0 = 1550; k0 = 2*pi/la0;
ec = 1.535^2; ef = -131.9475 - 12.65j;

Fig. 10.12.4 shows the effective index and the propagation loss measured in dB/mm, and
computed by the formula, dB = 20 log10(e)βI = 8.68589βI . The approximations (10.12.5)
are still visually indistinguishable from the exact values, and are not plotted, nor are the
number of iterations which are of the order of 4–5.
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Fig. 10.12.4 Effective index and propagation length of long and short-range modes.

Fig. 10.12.5 shows the computational error for the LRSP and SRSP modes, and on the right,
the lateral penetration depth into the two dielectric sides defined by Lc = 1/Re(αc). We
observe the basic tradeoff of DMD guides that even though the gold film has thickness of
nanometers, and the propagation loss is fairly small, the fields are not very well confined
laterally, penetrating at hundreds of micro-meters into the dielectrics. In this regard, MDM
guides provide perhaps a better solution that results in much better lateral confinement,
at the expense of shorter propagation distances. ��
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Fig. 10.12.5 Computational error.

Example 10.12.3: To illustrate the basic tradeoff between propagation distance and lateral
confinement, we compare three waveguides, all operating at 1550 nm wavelength: (a) the
LRSP mode of the DMD guide of the previous example with a 20 nm gold film embedded
in BCB polymer, (b) the complementary MDM waveguide with a 50 nm BCB film and gold
claddings, and (c) a surface plasmon on a single BCB-gold interface. For each case, we
calculateβ,αc, and the propagation attenuation in dB/mm, dB = 8.686βI , the propagation
distance, L = (2βI)−1, and the lateral penetration depth into the dielectric side, Lc =
1/Re(αc). The following table shows the results.

guide β/k0 αc/k0 dB/mm L (μm) Lc (μm)

DMD 1.537673− 0.000042j 0.090632− 0.000721j 1.50 2904.47 2.72

single 1.548762− 0.001337j 0.206246− 0.010042j 47.09 92.23 1.20

MDM 2.102705− 0.024595j 11.690006+ 0.536637j 865.97 5.02 0.02

They were computed by the following MATLAB code,

la0 = 1550; k0 = 2*pi/la0;
a1 = 20/2; a3 = 50/2; % DMD and MDM half-widths
ec = 1.535^2; ef = -131.9475-12.65j; % BCB and gold

Ec = [ec; ec; ef]; % interchange ec,ef for MDM
deb = 20*log10(exp(1)); % conversion factor to dB
tol = 1e-12; % error tolerance

be1 = dmds(la0,ef,ec,a1,0,tol); % DMD, 20 nm
be2 = sqrt(ef*ec/(ef+ec)); % single interface
be3 = pwg(la0,ec,ef,a3,be2,0,tol); % MDM, 50 nm, interchange ec,ef

be = [be1; be2; be3]; % propagation wavenumbers
ac = sqrt(be.^2 - Ec); % lateral wavenumbers

dBmm = - imag(be) * k0 * deb * 1e6; % propagation loss in dB/mm
L = -1/2/k0./imag(be)/1000; % propagation length in microns
Lc = 1/k0./real(ac)/1000; % lateral depth in microns
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num2str([be,ac],’%10.6f’)
num2str([dBmm,L,Lc], ’%10.2f’) % table

They are listed in order increasing propagation loss or decreasing propagation distance,
and decreasing lateral confinement or increasing lateral penetration. ��

Example 10.12.4: One of the earliest investigations of LRSP and SRSP modes in symmetric DMD
guides was Kovacs [937]. The metal film was indium (In) at λ0 = 450 nm wavelength, with
permittivity εf = −20.358 − 6.019j, symmetrically surrounded by magnesium fluoride
(MgF2) dielectric with εc = εs = 1.3822 = 1.9099.

Kovacs computed the propagation parameters for both the LRSP and SRSP modes at three
film thicknesses, w = [10, 30, 50] nm, and noted their basic trends, namely, that the
propagation length increases (decreases) for the LRSP (SRSP) mode as w gets smaller, and
that both LRSP and SRSP tend to the same value (i.e., βc,∞) as w increases. The following
MATLAB code reproduces the results of [937],

la0 = 450; k0=2*pi/la0; ef=-20.358-6.019j; es=1.382^2;
tol = 1e-12;

w = [10; 30; 50];

[be0,E0,N0] = dmds(la0,ef,ec,w/2,0,tol); % LRSP
ga0 = sqrt(be0.^2 - ef); % E0 = computational error
ac0 = sqrt(be0.^2 - ec); % N0 = number of iterations

L0 = -1/2/k0./imag(be0)/1000; % units of microns
Lc0 = 1./real(ac0)/k0; % units of nm

num2str([w, real(be0), imag(be0), L0, Lc0],’%11.5f’) % make table

[be1,E1,N1] = dmds(la0,ef,ec,w/2,1,tol); % SRSP
ga1 = sqrt(be1.^2 - ef);
ac1 = sqrt(be1.^2 - ec);

L1 = -1/2/k0./imag(be1)/1000;
Lc1 = 1./real(ac1)/k0;

num2str([w, real(be1), imag(be1), L1, Lc1],’%11.5f’)

bcinf = sqrt(ec*ef/(ec+ef)); % w = inf
gcinf = sqrt(bcinf^2 - ef);
acinf = sqrt(bcinf^2 - ec);

Linf = -1/2/k0./imag(bcinf)/1000;
Lcinf = 1./real(acinf)/k0;

num2str([real(bcinf), imag(bcinf), Linf, Lcinf],’%11.5f’)

The computed values of β = βR − jβI , propagation length, L = 1/(2βI), and lateral
penetration depth into the dielectric, Lc = 1/Re(αc), are given below.
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LRSP

w (nm) β/k0 L (μm) Lc (nm)

10 1.38905− 0.00047j 76.88 512.00

20 1.42100− 0.00658j 5.44 215.87
50 1.43873− 0.01443j 2.48 177.69
∞ 1.44535− 0.02017j 1.76 167.26

SRSP

w (nm) β/k0 L (μm) Lc (nm)

10 1.86878− 0.25421j 0.14 55.68

20 1.48238− 0.04757j 0.75 130.38
50 1.45247− 0.02707j 1.32 157.60
∞ 1.44535− 0.02017j 1.76 167.26

where β = βc,∞ =
√
εcεf /(εc + εf) atw = ∞. The norm of the computational error (for the

three thicknesses) and the number of iterations to converge were ‖E0‖ = 1.5035×10−14,
N0 = 7 for the LRSP case, and ‖E1‖ = 4.9127×10−15, N1 = 7 for SRSP. ��

10.13 Asymmetric DMD Waveguides

The main result for asymmetric guides is that, just like the lossless case, the asymmetry
introduces a lower cutoff thickness for the TM0, LRSP, mode, and that the propagation
length increases dramatically as the thickness approaches the cutoff from above, but
at the expense of becoming less confined laterally. For a given film thickness, there is
a critical value of the permittivity εc that achieves much larger propagation lengths as
compared to the symmetric case (εc = εs) of the same thickness. Of course, one could
also lower the thickness of the symmetric case to increase the propagation length, as
we saw in the previous section.

To simplify the discussion, we will assume that the metal, εf = −εR − jεI, where
εR > 0, εI ≥ 0, and lossless dielectrics, εc, εs > 0, satisfy the condition εR > εc ≥ εs, as
well as the region-3 condition of the lossless case, that is,

εR
εs
≤ εR
εc
+ 1 (10.13.1)

which implies the following range restrictions on εs, εc, also given in Eq. (10.10.13),

εs ≤ εc ≤ εRεs
εR − εs �

εRεc
εR + εc ≤ εs ≤ εc (10.13.2)

We recall from the region-3 discussion that in the lossless case (εf = −εR), the
quantity βs,∞ is equal to εRεs/(εR − εs), and that Eq. (10.13.2) implies the existence of
two modes: a TM0 mode with range, k0

√
εc ≤ β < βs,∞, with a lower thickness cutoff,

acutoff ≤ a <∞, and a TM1 mode with range, β ≥ βc,∞, and no cutoff. The cutoff width
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is realized at β = k0
√
εc and is given by Eq. (10.10.12),

2k0acutoff = 1√
εc + |εf |

atanh

⎡
⎣ |εf |√εc − εs
εs
√
εc + |εf |

⎤
⎦ , βcutoff = k0

√
εc (10.13.3)

For a small difference, 0 ≤ (εc − εs)� εc, εs, we obtain a simpler expression, using
the approximation atanh(x)≈ x,

2k0acutoff = |εf |√εc − εs
εs |εf − εc| (10.13.4)

We will see below that this approximation is also valid in the lossy case with εf being
replaced by its complex-valued version, εf = −εR − jεI.

In the lossy case, because β is complex, β = βR − jβI, one can no longer set β =
k0
√
εc in the characteristic equation to find the cutoff width. Instead, because the cutoff

corresponds to infinite propagation length, one sets βI = 0, or, β = βR, to obtain a
system of two equations (the real and imaginary parts of the characteristic equation) in
the two unknowns, acutoff, βR,

tanh(2γacutoff)= −γ(pcαc + psαs)γ2 + pcαcpsαs ,

γ =
√
β2
R + k2

0(εR + jεI)

αc =
√
β2
R − k2

0εc

αs =
√
β2
R − k2

0εs

(10.13.5)

These can be solved numerically. However, a simple estimate can be obtained by
simply setting βR = k0

√
εc and taking the complex absolute value of the solution,†

wcut = 2acutoff ≈ 1

k0

∣∣∣∣∣ 1√
εc − εf atanh

(−εf√εc − εs
εs
√
εc − εf

)∣∣∣∣∣ (10.13.6)

This provides a better estimate than Eq. (10.13.4), which is valid for thin films. The
MATLAB function, dmdcut, implements Eq. (10.13.6),

wcut = dmdcut(la0,ef,ec,es); % cutoff film width (vectorized in ec) – same units as λ0

Next, we discuss the numerical solution of the characteristic equation (10.1.13) for
an asymmetric DMD guide of a given film width 2a,

tanh(2γa)= −γ(pcαc + psαs)
γ2 + pcαcpsαs (10.13.7)

Once this is solved, one can calculate theψ parameter from Eq. (10.1.15), by setting
m = 0, orm = 1, for the LRSP or SRSP modes,

ψ = 1

2
atanh

(
−pcαc
γ

)
− 1

2
atanh

(
−psαs
γ

)
+ 1

2
jmπ (10.13.8)

†Alternatively, one can simply set εf = −εR in Eq. (10.13.6), which would lead back to (10.13.3), see for
example [940].
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and determine the transverse magnetic field,

Hy(x)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H0 cosh(γx+ψ) , |x| ≤ a

H0 cosh(γa+ψ)e−αc(x−a) , x ≥ a

H0 cosh(γa−ψ)eαs(x+a) , x ≤ −a

(10.13.9)

Eq. (10.13.7) can be solved efficiently using the following iteration proposed in [963],

for n = 0,1,2, . . . , do:

Â = −γn coth(2γna)±
√
B2
n + γ2

n
(
coth2(2γna)−1

)

B̂ =
√
γ2
n + 2γnÂ coth(2γna)+Â2

αc = 1

pc
(Â+ B̂)

γn+1 =
√
α2
c + k2

0(εc − εf)

αs =
√
γ2
n+1 + k2

0(εf − εs)

Bn+1 = 1

2
(pcαc − psαs)

(10.13.10)

where ± correspond to the TM0 and TM1 modes, respectively. The iteration may be
initialized at β = k0

√
εc. For a symmetric guide, we have B = 0 and the iteration

reduces to that of Eq. (10.12.4). This follows from the hyperbolic trigonometric identity,

− cosh(2x)±
√

coth2(2x)−1 = − coth(2x)± 1

sinh(2x)
=
⎧⎨
⎩− tanh(x) , + sign

− coth(x) , − sign

The iteration (10.13.10) can be justified by defining the following quantities A,B,

A = 1

2
(pcαc + psαs)

B = 1

2
(pcαc − psαs)

⇒
αc = 1

pc
(A+ B)

pcαc psαs = A2 − B2

and rewriting the characteristic equation in the form,

tanh(2γa)= −γ(pcαc + psαs)
γ2 + pcαcpsαs = −

2γA
γ2 +A2 − B2

and then, solving it for A in terms of B, or, for B in terms of A,

A = −γ coth(2γa)±
√
B2 + γ2

(
coth2(2γa)−1

)
B =

√
γ2 + 2γA coth(2γa)+A2

(10.13.11)
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The following MATLAB function, dmda, implements the iteration (10.13.10), with the
iteration stopping when two successive values of γn become closer to each other than
a specified error tolerance, such as, tol = 10−12, that is, |γn+1 −γn| < tol. The function
accepts a vector of widths a, and calculates the corresponding vector of wavenumbers
β. It has usage,

[be,E,N] = dmda(la0,ef,ec,es,a,mode,tol,be0); % asymmetric DMD guide – iterative solution

la0 = operating wavelength, k0 = 2*pi/la0 = free-space wavenumber

ef,ec,es = permittivities of metal film, dielectric cladding and substrate

a = vector of half-widths of film in the same units as la0

mode = 0,1 for TM0 or TM1 mode

tol = computational error tolerance, default tol=1e-12

be0 = starting search point in units of k0 - default be0 = sqrt(ec)

be = vector of propagation constants in units of k0 - size(a)

E = vector of computational errors of the characteristic equation - size(a)

N = number of iterations to convergence, until norm(ga_new - ga) < tol

with the computational error defined as,

E =
∣∣∣∣∣tanh(2γa)+γ(pcαc + psαs)

γ2 + pcαcpsαs

∣∣∣∣∣ (10.13.12)

As discussed in [611], the existence of the cutoff for the LRSP mode, and the proper-
ties of the solutions near it, can be demonstrated by deriving an approximate analytical
solution of the characteristic equation in the case of thin films and small permittivity
difference (εc − εs). To simplify the algebra, we will work with units of k0 = 1, and
restore k0 at the end. Denoting the normalized width by w = 2k0a, the characteristic
equation reads

tanh(γw)= −γ(pcαc + psαs)
γ2 + pcαcpsαs ,

γ =
√
β2 − εf =

√
β2 + εR + jεI

αc =
√
β2 − εc

αs =
√
β2 − εs

(10.13.13)

Because we are interested in the LRSP mode near cutoff, we will study the solution

near β ≈ √εc, or, equivalently, when αc is small. Because, αs =
√
α2
c + εc − εs, if we

assume that (εc−εs)� 1, then, αs will also be small. On the other hand, γ is not small

because γ =
√
α2
c + εc − εf , and |εf | is typically much larger than εc. If we now assume

that the normalized width w = 2k0a is small, w � 1, or, more accurately, |γw| � 1,
we may use the approximation, tanh(x)≈ x, to simplify the characteristic equation,

tanh(γw)≈ γw = −γ(pcαc + psαs)
γ2 + pcαcpsαs ⇒ w = − pcαc + psαs

γ2 + pcαcpsαs
Under our assumptions, γ2 is much larger than the product αcαs, and we obtain

the further simplification,
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w = −pcαc + psαs
γ2

pcαc + psαs = −γ2w

αs
εs
+ αc
εc
= −γ

2w
εf

or,
αs
εs
= −αc

εc
− γ

2w
εf

= −αc
εc
− (α

2
c + εc − εf)w

εf

α2
s

ε2
s
=
(
αc
εc
+ γ

2w
εf

)2

= α
2
c

ε2
c
+ 2αcγ2w

εcεf
+ γ

4w2

ε2
f

α2
c + εc − εs
ε2
s

= α
2
c

ε2
c
+ 2αc(α2

c + εc − εf)w
εcεf

+ (α
2
c + εc − εf)2w2

ε2
f

Ignoring all terms that involve α2
c , these reduce further to,

αs
εs
= −αc

εc
+ (εf − εc)w

εf

εc − εs
ε2
s

= −2αc(εf − εc)w
εcεf

+ (εf − εc)
2w2

ε2
f

(10.13.14)

Let us define the quantities,

A = εf − εc
εf

= (εf − εc)ε
∗
f

|εf |2 = |εf |2 − εcε∗f
|εf |2 = |εf |2 + εcεR − jεcεI

|εf |2 (10.13.15)

w2
c =

εc − εs
ε2
s |A|2 =

(εc − εs)|εf |2
ε2
s |εf − εc|2 ⇒ wc =

√
εc − εs |εf |
εs |εf − εc| (10.13.16)

Setting wc = 2k0acutoff, we see that Eq. (10.13.16) is the same as (10.13.4). Noting
that, (εc − εs)/ε2

s = |A|2w2
c = AA∗w2

c , and canceling a common factor of A from the
second of Eqs. (10.13.14), we may rewrite them in the form,

αs
εs
= −αc

εc
+Aw

A∗w2
c = −

2αc w
εc

+Aw2
(10.13.17)

and solve them for αc,αs,

αc
εc
= 1

2w
(Aw2 −A∗w2

c)

αs
εs
= 1

2w
(Aw2 +A∗w2

c)
(10.13.18)
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and after separating their real and imaginary parts, αc = αcR − jαcI, αs = αsR − jαsI,
αcR
εc

= AR
2w
(w2 −w2

c) ,
αcI
εc

= AI
2w
(w2 +w2

c)

αsR
εs

= AR
2w
(w2 +w2

c) ,
αsI
εc

= AI
2w
(w2 −w2

c)
(10.13.19)

where AR and AI are the real and imaginary parts of A, defined from Eq. (10.13.15) by,

A = AR − jAI , AR = |εf |2 + εcεR
|εf |2 = 1+ εcεR|εf |2 , AI = εcεI

|εf |2 (10.13.20)

Using these results, we can now obtain an approximation to the propagation wave
number β = βR − jβI,

β =
√
εc +α2

c = √εc
√

1+ α
2
c
εc
≈ √εc

(
1+ α

2
c

2εc

)
= √εc

(
1+ εc

2

α2
cR −α2

cI − 2jαcRαcI
ε2
c

)

Using Eqs. (10.13.19), the real and imaginary parts are, after restoring the factor k0,

βR = k0
√
εc

[
1+ εc

2

A2
R(w2 −w2

c)2−A2
I (w2 +w2

c)2

4w2

]

βI = k0
√
εc εc

ARAI(w4 −w4
c)

4w2

(10.13.21)

where, w = 2k0a, and, wc = 2k0acutoff. For a symmetric guide (εc = εs), we have
wc = 0, and Eqs. (10.13.21) reduce to (10.12.9).

Although the approximations (10.13.19) and (10.13.21) are valid for small w and
small wc, they capture the essential properties near cutoff. Above cutoff, both βI and
αcR are positive as they should be for a proper solution (αsR is positive, too). As cutoff
is approached from above, βI tends to zero resulting in infinite propagation length,
but at the same time the lateral confinement decreases since αcR also tends to zero.
Below cutoff, bothαcR and βI become negative, resulting in unbounded waves. We note
also that at cutoff, w = wc, the real part βR is somewhat less than k0

√
εc, as has been

observed in [941].

Example 10.13.1: The nomenclature “long-range mode” originates with Sarid [939]. Here, we
reproduce the results of that reference. The DMD guide, operated at λ0 = 632.8 nm,
consists of a 20-nm silver film of permittivity, εf = (0.0657− 4j)2= −15.9957− 0.5256j,
surrounded by dielectrics εs = 1.52 = 2.25 and εc = 1.552 = 2.4025.

The cutoff thickness calculated from Eq. (10.13.6) is wcutoff = 2acutoff = 18.0929 nm.
Therefore, the chosen thickness of 20 nm, lies close to the cutoff, and we expect long
propagation lengths for the LRSP mode, and poor lateral confinement. Indeed, the calcu-
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lated propagation parameters are given below and agree closely with those of [939],

LRSP SRSP

β/k0 1.550707− 0.000164j 2.184165− 0.035423j
γ/k0 4.290002+ 0.061199j 4.557045+ 0.040691j
αc/k0 0.047132− 0.005394j 1.539269− 0.050264j
αs/k0 0.393310− 0.000646j 1.587985− 0.048722j
ψ −0.3525− 0.0131j 0.0249+ 1.5716j

error, E 1.0745×10−10 1.2194×10−14

iterations, N 34 5

L = 1/(2βI) 307.15 μm 1.42 μm

Lc = 1/αcR 2136.82 nm 65.43 nm

Ls = 1/αsR 256.07 nm 63.42 nm

We note the large value of L for the LRSP case, but also its large lateral penetration depth
Lc (relative to the film width). By contrast, the propagation lengths of the single-interface
plasmons at the s−f and c−f interfaces are much shorter:

βc,∞
k0

=
√
εcεf
εc + εf = 1.681224− 0.004876j , L = − 1

Im(βc,∞)
= 10.33 μm

βs,∞
k0

=
√
εsεf
εs + εf = 1.617955− 0.004346j , L = − 1

Im(βs,∞)
= 11.59 μm
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Fig. 10.13.1 Magnetic field profiles, 2a = 20 nm film.

The corresponding magnetic field profiles, shown in Fig. 10.13.1, demonstrate the asym-
metry as well as the poor lateral binding of the LRSP mode. The above were generated by
the following MATLAB code.

la0 = 632.8; k0 = 2*pi/la0; a = 20/2; % la0,a in units of nm
es = 1.5^2; ec = 1.55^2; ef = (0.0657-4*j)^2;
tol = 1e-12; % error tolerance

[be0,E0,N0] = dmda(la0,ef,ec,es,a,0,tol); % LRSP
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ga0 = sqrt(be0^2 - ef); % E0 = computational error
ac0 = sqrt(be0^2 - ec); % N0 = number of iterations
as0 = sqrt(be0^2 - es);

[be1,E1,N1] = dmda(la0,ef,ec,es,a,1,tol); % SRSP
ga1 = sqrt(be1^2 - ef);
ac1 = sqrt(be1^2 - ec);
as1 = sqrt(be1^2 - es);

num2str([[be0;ga0;ac0;as0], [be1;ga1;ac1;as1]],’%12.6f’) % make table

L0 = -1/2/k0/imag(be0)/1000; % units of microns
L1 = -1/2/k0/imag(be1)/1000;
Lc0 = 1/real(ac0)/k0; Ls0 = 1/real(as0)/k0; % units of nm
Lc1 = 1/real(ac1)/k0; Ls1 = 1/real(as1)/k0

pc = ef/ec; ps = ef/es;

psi0 = atanh(-pc*ac0/ga0)/2 - atanh(-ps*as0/ga0)/2;
psi1 = atanh(-pc*ac1/ga1)/2 - atanh(-ps*as1/ga1)/2 + j*pi/2;

x = linspace(-8,8,1601)*a; % units of half-width a

Hy0 = cosh(ga0*a*k0 - psi0).*exp(as0*(x+a)*k0).*(x<-a) + ...
cosh(ga0*a*k0 + psi0).*exp(-ac0*(x-a)*k0).*(x>a) + ...
cosh(ga0*x*k0 + psi0).*(abs(x)<=a);

Hy1 = cosh(ga1*a*k0 - psi1).*exp(as1*(x+a)*k0).*(x<-a) + ...
cosh(ga1*a*k0 + psi1).*exp(-ac1*(x-a)*k0).*(x>a) + ...
cosh(ga1*x*k0 + psi1).*(abs(x)<=a);

figure;
fill([-1 1 1 -1],[0.6 0.6, 1.6, 1.6], [0.9 0.9 0.9]); hold on
plot(x/a, abs(Hy0)); % LRSP

figure;
fill([-1 1 1 -1],[0 0, 0.6, 0.6], [0.9 0.9 0.9]); hold on
plot(x/a, abs(Hy1)); % SRSP

The effect of asymmetry can also be seen by the distribution of power within the media,

P Pf Pc Ps
LRSP 360.81 −1 296.26 65.55

SRSP 66.87 −1 37.34 30.53

They were computed with the pwgpower MATLAB function and normalized to unity within
the metal,

[P,Pf,Pc,Ps] = pwgpower(a*k0,ef,ec,es,be0,0); P0 = [P,Pf,Pc,Ps]/-Pf;
[P,Pf,Pc,Ps] = pwgpower(a*k0,ef,ec,es,be1,1); P1 = [P,Pf,Pc,Ps]/-Pf;

For the LRSP case, most of the power is pushed into the εc dielectric and out of the metal,
thus, having lower power losses, and longer propagation distances.

484 10. Surface Waveguides

The estimated cutoff widths calculated from Eqs. (10.13.4) and (10.13.6) arewc = 15.1993
and wc = 18.0929 nm, respectively. If we use the latter value, wc = 18.0929, we can
compare the approximation (10.13.21) to the exact solution,

exact LRSP approximate

β/k0 1.550707− 0.000164j 1.550799− 0.000069j
γ/k0 4.290002+ 0.061199j 4.290036+ 0.061233j
αc/k0 0.047132− 0.005394j 0.049831− 0.002139j
αs/k0 0.393310− 0.000646j 0.393673− 0.000271j

The approximation is fairly good even though εc − εs is not that small. The following
MATLAB code was used for this calculation,

A = (ef-ec)/ef; AR = real(A); AI = -imag(A);

wc_app = sqrt(ec-es) / es / abs(A);
wc = abs(1/sqrt(ec-ef)*atanh(-ef*sqrt(ec-es)/es/sqrt(ec-ef)));
w = 2*a*k0;

wc_app_nm = wc_app/k0 % cutoff in units of nm
wc_nm = wc/k0

beR = sqrt(ec)*(1 + ec/2 * (AR^2*(w^2 - wc^2)^2 - ...
AI^2*(w^2 + wc^2)^2)/4/w^2);

beI = sqrt(ec)*ec * AR*AI * (w^4 - wc^4)/4/w^2;

be = beR-j*beI;
ga = sqrt(be^2 - ef); ac = sqrt(be^2 - ec); as = sqrt(be^2 - es);

num2str([[be0;ga0;ac0;as0], [be;ga;ac;as]],’%12.6f’) % make table

Finally, Fig. 10.13.2 shows the LRSP and SRSP propagation wavenumbers as functions of
the film width 2a, starting at cutoff, 2acutoff = 18.0929 nm. For large a, the LRSP β tends to
the single-interface βs,∞ of the s−f interface, while the SRSP tends to βc,∞. Superimposed
on the graph of the imaginary part, is the approximation (10.13.21) evaluated from just
below cutoff for plotting purposes.

The graphs were generated by the following MATLAB code,

w = linspace(1.01*wcut,100, 1000); % start just above wcut

[be0,E0,N0] = dmda(la0,ef,ec,es, w/2, 0,tol); % LRSP
[be1,E1,N1] = dmda(la0,ef,ec,es, w/2, 1,tol); % SRSP

wa = linspace(0.8*wcut,100,1001); % start a bit below wcut

beR = sqrt(ec) * (1 + ec/2 * (AR^2*(wa.^2 - wcut^2).^2 - ...
AI^2*(wa.^2 + wcut^2).^2)/4./wa.^2 * k0^2);

beI = sqrt(ec) * ec * AR*AI * (wa.^4 - wcut^4)/4./wa.^2 * k0^2;

figure; plot(w,real(be0),’-’, w,real(be1),’--’);
figure; semilogy(w,-imag(be0),’-’, w,-imag(be1),’-.’, wa,abs(beI),’r--’)
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Fig. 10.13.2 Real and imaginary parts of wavenumber β.

The computational errors, as measured by the norms of the error vectors E0 and E1, were
‖E0‖ = 3.1757×10−10 and ‖E1‖ = 2.0696×10−14, while the number of iterations to con-
verge (for the entire vector of widths) were N0 = 38 and N1 = 10. ��

Example 10.13.2: To see how the approximation (10.13.21) improves for smaller permittivity
difference (εc − εs), we consider the same example, but change the permittivity εc to
the hypothetical value, εc = 1.512 = 2.2801, with all other parameters kept the same.
Figs. 10.13.3 and 10.13.4 show the magnetic field profiles of the LRSP and SRSP modes,
and the dependence of β on the film width.

The estimated cutoff width calculated from Eqs. (10.13.4) and (10.13.6) iswc = 6.7978 nm
and wc = 6.9964 nm, respectively. Using the latter value, we can compare the approxima-
tion (10.13.21) to the exact solution,

exact LRSP approximate

β/k0 1.524661− 0.000226j 1.527059− 0.000179j
γ/k0 4.280658+ 0.061312j 4.281513+ 0.061316j
αc/k0 0.210935− 0.001635j 0.227622− 0.001199j
αs/k0 0.273116− 0.001263j 0.286201− 0.000954j

Example 10.13.3: Another early reference on LRSP modes in asymmetric DMD guides is Wendler
& Haupt [940], who considered the dependence of the propagation length as a function of
the permittivity difference (εc − εs). Here, we reproduce their results. The DMD guide
consists of a silver film with permittivity εf = −18 − 0.47j at λ0 = 632.8 nm.† The sub-
strate is fused silica with εs = 2.1211, and the cover’s permittivity will be varied over the
range 1.9 ≤ εc ≤ 2.35.

The function dmdcut determines the cutoff width given the values of εc, εs. It can also
be used to find the value of εc that would make a given width w = 2a equal to the cutoff
width. This can be done by solving for εc the equation,

dmdcut(λ0, εf , εc, εs)= w (10.13.22)

†In the previous example, we used, εf = −15.9957−0.5256j, our DRUDE function gives, εf = −14.4824−
1.0946j, and the value interpolated from Palik [162] at λ0 = 632.8 nm is, εf = −15.8742− 1.0728j.
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Fig. 10.13.3 Magnetic field profiles, 2a = 20 nm film.
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Fig. 10.13.4 Real and imaginary parts of wavenumber β.

It can be implemented easily in MATLAB, for example, using the fzero function, with εs as
the initial search point,

ec = fzero(@(e) dmdcut(la0,ef,e,es)-w, es)

Fig. 10.13.5 shows the propagation lengths (in cm) for the LRSP mode, for three different
film thicknesses, w = 2a = [10,17,30] nm, as a function of the variable εc. For each
case, as εc comes close to its critical value calculated from Eq. (10.13.22) that renders w
equal to the cutoff width, the propagation length tends to infinity. To prevent clutter, the
graph has been plotted twice, with the one on the right showing the vertical lines at the
calculated critical values of εc,

εc,cut = [1.9432, 2.0177, 2.0744, 2.1702, 2.2364, 2.3362 ]

where the left three values correspond to the part of the graph to the left of the dividing
line εc = εs. The functions dmda and dmdcut assume that εc ≥ εs. The cases εc < εs
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Fig. 10.13.5 Propagation length L vs. permittivity εc.

can be handled by interchanging the roles of εc, εs. The following MATLAB code segment
generates the right graph,

la0 = 632.8; k0 = 2*pi/la0; % la0 in nm
ef = -18-0.47j; es = 2.1211;
tol = 1e-12;

ec = linspace(1.9, 2.35, 2000); % 1.9 <= ec <= 2.35

w = [10, 17, 30];

for i=1:length(ec),
eci = max(ec(i),es); esi = min(ec(i),es); % interchange es,ec when ec<es
be = dmda(la0,ef,eci,esi, w/2, 0, tol);
L(i,:) = -1/2/k0./imag(be)/1e7; % units of cm

end

L(L<0) = NaN; % ignore all negative L’s that lie beyond the ec-cutoffs

semilogy(ec, L(:,1), ’-’, ec, L(:,2), ’--’, ec,L(:,3),’-.’);

line([es,es],[10^-3, 10^3],’linestyle’,’:’); % es=ec dividing line

for i=1:length(w) % ec cutoff lines
eccut(i) = fzero(@(e) dmdcut(la0,ef,e,es) - w(i), es);
escut(i) = fzero(@(e) dmdcut(la0,ef,es,e) - w(i), es);
line([eccut(i),eccut(i)],[10^-3,10^3],’linestyle’,’:’,’color’,’r’)
line([escut(i),escut(i)],[10^-3,10^3],’linestyle’,’:’,’color’,’r’)

end

Fig. 10.13.6 shows the propagation lengths as functions of film thickness, with εs = 2.1121
and five values of εc,

εc = [2.1211, 2.1256, 2.1700, 2.2200, 2.3000]

The graphs were generated by the MATLAB code,
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Fig. 10.13.6 Propagation length L vs. film width.

es = 2.1211;
ec = [2.1211, 2.1256, 2.1700, 2.2200, 2.3000];
tol = 1e-12;

wcut = dmdcut(la0,ef,ec,es); % dmdcut is vectorized in ec

style = {’-’, ’r--’, ’:’, ’-.’, ’b--’};

for i=1:length(ec),
w = linspace(wcut(i), 50, 2001); % compute for w >= wcut only

if i==1
be = dmds(la0,ef,es, w/2, 0, tol); % use dmds when ec=es

else
be = dmda(la0,ef,ec(i),es, w/2, 0, tol);

end

L = 1/2/k0./abs(imag(be)) * 1e-7; % units of cm

semilogy(w,L,style{i});

line([wcut(i),wcut(i)],[10^-3,10^3],’linestyle’,’:’, ’color’,’r’);
end

The cutoff widths corresponding to the five εc values, calculated from Eq. (10.13.6), are,

wcut = 2acut = [0, 2.8644, 9.9815, 15.2990, 24.3452] (nm)

and have been placed on the right graph, which is the same as the left one. As the width
comes close to one of the cutoff widths, the propagation length becomes very large. ��

10.14 Note on Computations

The characteristic equations of plasmonic waveguides are generally difficult to solve
accurately because of the complex-valued nature of the permittivity parameters. We
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have been unable to come up with a single algorithm that works robustly for both MDM
and DMD waveguides over a wide range of material parameters. Instead, we have pre-
sented a variety of solution approaches, which could be viewed as tools to be tried.
Our PWG and PWGA functions may work, but one must choose a starting point that
is near the true solution. The iterative methods that we discussed work under many
circumstances, but not always. We tried to give sufficient code examples to clarify
these methods. The plasmonic waveguide literature is somewhat lacking of published
numerical examples that could be used as benchmarks, with some notable exceptions
[937,939,940,953,955,956,963].

10.15 Sommerfeld Wire

The problem of a TM surface wave propagating along a cylindrical conductor was solved
by Sommerfeld in 1899. He showed that the finite conductivity of the conductor was
essential in localizing the wave near the surface of the conductor, while exhibiting very
low attenuation along its length [982,983,1293]. The planar version of this problem is
the Zenneck surface wave that we discussed in Sec. 7.10.

The lateral localization is not particularly good but can be improved by adding a
dielectric coating on the surface of the conductor as considered first by Harms and
studied later in detail by Goubau [984–999]—a configuration generally referred to as a
Goubau line, or a Harms-Goubau line. We discuss this further in Sec. 10.19.

Even though the attenuation along the conductor is very low, these early waveguiding
systems, envisioning propagation at long distances of tens of meters or even kilometers,
did not catch on for use at RF, primarily because of the poor lateral localization, which
could be disturbed by nearby objects, imperfections or bends along the line.

With the rapid development of terahertz applications in the past two decades, inter-
est in the Sommerfeld and Goubau lines has been revived for use at THz frequencies,
providing a viable means of waveguiding at relatively short distances (e.g., centimeters),
with low attenuation and high degree of confinement. We discuss the interplay of fre-
quency, conductor radius, and dielectric coating in Sec. 10.19.

The THz band typically spans the range of [0.1, 10] THz, or, [0.03, 3] millimeter,
and lies between the microwave and infrared/optical bands. There are a large number of
THz applications in astrophysics, remote sensing, plasma diagnostics, spectroscopy in
chemistry and biology, gas identification, complex molecular dynamics, DNA signature
detection, communications, medical imaging, and imaging for homeland security, drug
enforcement, pharmaceuticals, biosensing, and non-destructive testing in manufactur-
ing for quality and process control.

For example, Wien’s radiation law relating black body temperature and the frequency
of the maximum of the Planck spectrum is, f = 58.7891T, where f is in GHz and T in
degrees Kelvin. Thus, the Big Bang cosmic microwave background at 2.725 K peaks at
f = 160.2 GHz, which lies at the low end of the THz band; similarly, interstellar gas
clouds at temperatures of 30 K correspond to f = 1.76 THz.†

Interest in THz imaging for homeland security arises because several everyday ma-
terials, such as clothing, paper, plastics, wood, and ceramics are transparent to THz

†Some historical references on the CMB, and its data fitting, may be found in [129–137].
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waves. Medical imaging at THz is also a very promising area because THz radiation
does not have the same harmful effects as X-rays.

Several reviews and applications of THz technology may be found in the following
(very incomplete list of) references [1017–1053].

The Sommerfeld wire is an infinitely long cylindrical conductor of radius a and finite
conductivity σ, immersed in air, as shown in Fig. 10.15.1. The permittivities of air and
conductor are taken to be εa = ε0 and

jωεc = jωε0 +σ ⇒ εc = ε0 − j σω (10.15.1)

with relative permittivities,

εc = εcε0
= 1− j σ

ωε0
, εa = εaε0

= 1 (10.15.2)

The conductivityσ is assumed to be a constant in frequency, but it can also be taken
to be frequency-dependent, as given for example by Drude’s law (see Sec. 1.12),

σ = σdc

1+ jωτ , τ = collisional time , σdc = conductivity at DC (10.15.3)

Fig. 10.15.1 Sommerfeld wire, shown in cylindrical coordinates.

Using cylindrical coordinates and assuming, with Sommerfeld, a TM wave with cylin-
drical symmetry, it follows from Eqs. (9.1.23) and (9.1.24) by setting ∂φ = 0 andHz = 0
that only the field components Ez, Eρ,Hφ will be non-zero and will be functions only of
the radial distance ρ, satisfying the equations:

1

ρ
∂
∂ρ

(
ρ
∂Ez
∂ρ

)
+ γ2Ez = 0 , γ2 =ω2με− β2

Eρ = − jβγ2

∂Ez
∂ρ

, Hφ = 1

ηTM
Eρ = − jωεγ2

∂Ez
∂ρ

(10.15.4)

where we assumed the usual t, z dependence, ejωt−jβz, and replaced ηTM = β/ωε.
Eqs. (10.15.4) must be solved in each region (inside and outside the conductor) using
the appropriate values of ε, and hence γ. The E andH tangential fields must be matched
at the surface of the conductor (i.e., at ρ = a).

The most general solution of the above cylindrical Helmholtz equation for Ez is a
linear combination of the 0th order Bessel functions of first and second kinds, J0(γρ)
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andY0(γρ), or of the Hankel functions,H(1,2)0 (γρ)= J0(γρ)±jY0(γρ).† Let us denote
any of these functions, or linear combinations thereof, by C0(γρ), and note that they
satisfy the property ∂C0(γρ)/∂ρ = −γC1(γρ), that is, the corresponding 1st order
Bessel function. Then, the solutions of Eq. (10.15.4) can be written in general as,

Ez = C0(γρ) , Eρ = jβγ C1(γρ) , Hφ = jk0ε
η0γ

C1(γρ) (10.15.5)

where γ2 = ω2μ0ε− β2 = k2
0ε− β2, and k0 = ω√μ0ε0, η0 =

√
μ0/ε0 are the vacuum

wavenumber and impedance, and ε = ε/ε0, and we assumed non-magnetic media. Note
the equivalent expression for k0ε/η0 =ω√με0ε/

√
μ0/ε0 =ωε0ε =ωε.

Within the conductor (ρ ≤ a), only the function J0 is acceptable because Y0(u)
diverges for u = 0. Outside the conductor (ρ ≥ a), because the fields must decay to
zero for large radial distances (ρ→∞), the Hankel functions are the appropriate choice.
In particular, we have the following asymptotic expansions for large u = uR + juI,

H(1,2)0 (u) �
√

2

πu
e±j(u−π/4) =

√
2

π(uR + juI) e
±j(uR−π/4)e∓uI

H(1,2)1 (u) �
√

2

πu
e±j(u−3π/4) =

√
2

π(uR + juI) e
±j(uR−3π/4)e∓uI

(10.15.6)

thus, H(1)0 (u), (resp. H(2)0 (u)), is decaying somewhat faster than exponentially in uI,
provided uI > 0, (resp. uI < 0). With these choices, the fields inside and outside the
conductor are as follows, with A,B to be determined:

0 ≤ ρ ≤ a

Ez = AJ0(γcρ)

Eρ = A jβγc J1(γcρ)

Hφ = A jk0εc
η0γc

J1(γcρ)

γc =
√
k2

0εc − β2

a ≤ ρ <∞

Ez = BH(1)0 (γρ)

Eρ = B jβγ H
(1)
1 (γρ)

Hφ = B jk0εa
η0γ

H(1)1 (γρ)

γ =
√
k2

0εa − β2

(10.15.7)

These expressions must be multiplied by the common factor ejωt−jβz. It will turn
out that γ has positive imaginary part, thus, justifying the choice of H(1)1 (u) instead

of H(2)1 (u). The matching of the tangential fields, Ez and Hφ on the surface of the
conductor, at ρ = a, yields the two conditions:

AJ0(γca)= BH(1)0 (γa)

A
jk0εc
η0γc

J1(γca)= B jk0εa
η0γ

H(1)1 (γa)
(10.15.8)

†For definitions and properties of Bessel functions, see [1790] or [1822], which are available online.
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We note that the matching of the normal D-field, Dρ = εEρ = εηTMHφ = Hφβ/ω,
is equivalent to the matching of Hφ. Dividing the two sides of Eqs. (10.15.8) results in
the following characteristic equation from which the wavenumber βmay be determined:

γ =
√
k2

0εa − β2

γc =
√
k2

0εc − β2

γ
εa
H(1)0 (γa)
H(1)1 (γa)

= γc
εc
J0(γca)
J1(γca)

(10.15.9)

For all good conductors, such as copper, aluminum, and gold, and for frequencies
up to and including the THz band, the permittivity εc can be approximated accurately
by its imaginary part, which is much larger than unity:

εc = 1− j σ
ωε0

≈ −j σ
ωε0

= e−jπ/2 σ
ωε0

(10.15.10)

For example, we have for copper, σ = 5.75×107 siemens/m, and with f in units of THz:

εc = 1− j σ
ωε0

= 1− j 1.03×106

f

so for all f up to 10 THz, the imaginary part is at least 5 orders of magnitude greater than
the real part, e.g., at f = 10 THz, we have εc = 1− j 1.03×105. The same approximation
is also valid if one uses the Drude model for σ of Eq. (10.15.3) up to the THz range.
Because the wavenumber β is of the order of k0, it follows that the lateral wavenumber
γc within the conductor will also be very large and can be approximated by

γc =
√
k2

0εc − β2 ≈ k0
√
εc = k0e−jπ/4

√
σ
ωε0

(10.15.11)

for example, for copper at 1 GHz, we find γc = (1 − j)4.7645×105 per meter, and at
10 THz, γc = (1− j)4.7645×107. For typical conductor radii of millimeters, it follows
that the quantity γca will be very large, e.g., for a = 1 mm, we have

γca = (1− j)4.7645×102 , at 1 GHz

γca = (1− j)4.7645×104 , at 10 THz

For such large complex arguments, the ratio J0(γca)/J1(γca) may be replaced by
J0(γca)/J1(γca)≈ j. Indeed, using the asymptotic expansions [1790], valid for large
complex argument u,

J0(u)≈
√

2

πu
cos

(
u− π

4

)
, J1(u)≈

√
2

πu
cos

(
u− 3π

4

)

we find after setting u = uR + juI and using some trigonometric identities:

J0(u)
J1(u)

= cos
(
u− π

4

)
cos
(
u− 3π

4

) = −j cos
(
uR − π

4

)
cosh

(
uI)−j sin(uR − π

4

)
sinh(uI)

cos
(
uR − π

4

)
sinh(uI)−j sin

(
uR − π

4

)
cosh(uI)

→ −js

in the limit |uI| → ∞, where s = sign(uI). Thus, the ratio is +j for large u with neg-
ative imaginary part, like γc. A more accurate approximation, which we employ in our
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numerical solution of the characteristic equation (10.15.9), follows from the asymptotic
expansions in [1790]:

J0(u)
J1(u)

≈ −js P0(u)−jsQ0(u)
P1(u)−jsQ1(u))

(10.15.12)

where again, s = sign
(
Im(u)

)
, and we defined the polynomials in 1/u:

P0(u)= 1− 9

2(8u)2
+ 3675

8(8u)4
, Q0(u)= − 1

8u
+ 75

2(8u)3

P1(u)= 1+ 15

2(8u)2
− 4725

8(8u)4
, Q1(u)= 3

8u
− 105

2(8u)3

(10.15.13)

The approximation (10.15.12) can be used whenever
∣∣Im(u)

∣∣ > 700. For
∣∣Im(u)

∣∣ ≤
700 , the built-in MATLAB function besselj gives accurate results. The MATLAB func-
tion, J01, in the EWA-toolbox, implements the evaluation of the ratio J0(u)/J1(u) for
any value of u using this improved approximation. It has usage:

y = J01(u); % evaluates the ratio J0(u)/J1(u), vectorized in u

To solve the characteristic equation (10.15.9), Sommerfeld made two approxima-
tions: first, he replaced the Bessel function ratio by J0(γca)/J1(γca)≈ j, and γc by
γc = k0

√
εc, and second, he assumed that the quantity γa is small and used the follow-

ing approximations [1790] for the Hankel functions, valid for small argument u→ 0:

J0(u)≈ 1 , Y0(u)≈ 2

π
ln

(
eCu

2

)
, H(1)0 (u)= J0(u)+jY0(u)≈ 2j

π
ln

(
eCu
2j

)

J1(u)≈ u
2
, Y1(u)≈ − 2

πu
, H(1)1 (u)= J1(u)+jY1(u)≈ − 2j

πu

and for the ratio:
H(1)0 (u)
H(1)1 (u)

≈ −u ln

(
eCu
2j

)
(10.15.14)

where C is the Euler-Mascheroni constant, C = 0.577215 . . . , so that eC = 1.78107.
With these simplifications, Eq. (10.15.9) reduces to:

−γ2a ln

(
eCγa

2j

)
= jεak0√

εc
⇒ γ2 = −

jεak0

a
√
εc

ln

(
eCγa

2j

) (10.15.15)

which Sommerfeld then proceeded to solve iteratively, for n = 0,1,2, . . . ,

γ2
n+1 = −

jεak0

a
√
εc

ln

(
eCγna

2j

) Sommerfeld iteration

initialized at γ2
0 = −

jεak0

a
√
εc

(10.15.16)
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The approximation and iteration works well for frequencies in the GHz range. But,
as discussed by King and Wiltse [994], in the THz range the quantity γa is no longer
small enough to justify the approximation. Our approach to solving Eq. (10.15.9) is to
rewrite it in the following form:

γ = H
(1)
1 (γa)
H(1)0 (γa)

εaγc
εc

J0(γca)
J1(γca)

(10.15.17)

Noting that γ2
c − γ2 = k2

0(εc − εa), or, γc =
√
k2

0(εc − εa)+γ2, Eq. (10.15.17) can
then be turned into the following iteration, for n = 0,1,2, . . . ,

γc =
√
k2

0(εc − εa)+γ2
n

γn+1 = H
(1)
1 (γna)
H(1)0 (γna)

εaγc
εc

J0(γca)
J1(γca)

(10.15.18)

It can be initialized at β0 = 0.9k0, γ0 =
√
k2

0εa − β2
0, or something similar. The

iteration does not require any approximations beyond the use of our function J01 for
the ratio of the Bessel functions. It uses the built-in MATLAB function besselh for the
evaluation of the Hankel functions. The following MATLAB function, sommer, in the EWA
toolbox, implements the iteration (10.15.18):

[be,ga,gc,E,N] = sommer(a,f,sigma,tol,be0); % Sommerfeld wire

[be,ga,gc,E,N] = sommer(a,f,sigma,tol); % (be0 = 0.9*k0)

[be,ga,gc,E,N] = sommer(a,f,sigma); % (tol = 1e-10)

% a = wire radius in meters

% f = vector of frequencies in Hz

% sigma = wire conductivity in siemens/m, scalar or same size as f

% tol = computational tolerance, default, tol = 1e-10

% be0 = initializing vector, size(f), default, be0 = 0.9*k0

%

% be = vector of propagation wavenumbers, (rads/m), same size as f

% ga = lateral wavenumber in air, (1/m), size(f)

% gc = lateral wavenumber in conductor, (1/m), size(f)

% E = computational error of characteristic equation, size(f)

% N = number of iterations to converge, scalar, represents all f’s

To clarify the construction of the function, we list below the essential part of the code:

% ====================================================================

c0 = 299792458; % speed of light, m/sec
ep0 = 8.854187817e-12; % vacuum permittivity, farad/m
tol=1e-10; % default error tolerance

w = 2*pi*f; k0 = w/c0; % f can be a vector
ec = 1 - j * sigma./w/ep0; % sigma must be scalar or size(f)
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be0 = 0.9*k0; % initialize iteration
ga = sqrt(k0.^2 - be0.^2);
N=1;

while 1 % loop forever
gc = sqrt(ga.^2 + k0.^2.*(ec-1));
gnew = besselh(1,1,ga*a)./besselh(0,1,ga*a).*J01(gc*a).*gc./ec;
if norm(ga-gnew)<tol, break; end
N = N+1;
ga = gnew;

end

ga = gnew; % converged values
gc = sqrt(ga.^2 + k0.^2.*(ec-1));
be = sqrt(k0.^2 - ga.^2);
E = abs(ga.*besselh(0,1,ga*a)./besselh(1,1,ga*a) - gc.*J01(gc*a)./ec);

% ====================================================================

We note that the computational error is defined from the last computed γ as follows.

Setting γc =
√
k2

0(εc − εa)+γ2,

E =
∣∣∣∣∣ γεa

H(1)0 (γa)
H(1)1 (γa)

− γc
εc
J0(γca)
J1(γca)

∣∣∣∣∣ (10.15.19)

where E is a vector when f is a vector of frequencies.

Example 10.15.1: We consider the two examples discussed by Sommerfeld in Ref. [983]. The
first one is a copper wire with conductivity σ = 5.75×107 siemens/m, and radius of 1 mm,
at a frequency of 1 GHz. We iterated (10.15.16) five times, with the MATLAB code:

ep0 = 8.854187817e-12; % farad/m,
c0 = 299792458; % m/sec
f = 1e9; % 1 GHz
w = 2*pi*f; % rads/sec
k0 = w/c0; % k0 = 20.958450, rads/m
sigma = 5.75e7; % siemens/m
ec = 1 + sigma/j./w/ep0;
a = 1e-3; % 1 mm
C = 0.577215664901533; % Euler constant

g0 = sqrt(-j*k0/a./sqrt(ec)); % initialize
ga = g0; G=[ga]; % save iterates in G
K=5;

for i=1:K
ga = g0./sqrt(log(exp(C)*ga*a/2/j));
G = [G;ga];

end

num2str(G,’ %1.6f’) % print table of iterates

generating the iterates:
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γ0 = 0.745951− 0.308983j
γ1 = 0.147818+ 0.255109j
γ2 = 0.115696+ 0.255973j
γ3 = 0.113805+ 0.256030j
γ4 = 0.113692+ 0.256039j
γ5 = 0.113685+ 0.256040j

It is evident that after the third iteration, γ has effectively converged. Following Sommer-
feld, we use the third iterate, γ = γ3 = 0.113805+ 0.256030j, to calculate β:

β =
√
k2

0 − γ2 = 20.959705− 0.001390j ⇒ β− k0

k0
= (5.9874− 6.6330j)·10−5

which agrees with Sommerfeld’s rounded result of (β − k0)/k0 = (6.0 − 6.6j)·10−5. We
see also that the phase velocity is essentially that of c0, vph =ω/Re(β)= 0.999940c0.

The attenuation constant βI = − Im(β) can be expressed in dB/m by 8.686βI = 0.0121
dB/m, which is very low and corresponds to an effective propagation length of 1/βI =
719.34 meters along the wire. On the other hand, the lateral attenuation in air is effectively
measured by 1/ Im(γ)= 3.91 meters, which is unacceptably large. The calculation using
our function sommer is implemented by the MATLAB command:

[be,ga,gc,E,N] = sommer(a,f,sigma);

and produces comparable results:

β = βR − jβI = 20.959706− 0.001390j rads/m ⇒ β− k0

k0
= (5.9907− 6.6333j)·10−5

γ = 0.113788+ 0.256080j

γc = (4.7645− 4.7645j)·105 ⇒ γc − k0
√
εc = −(2.3054+ 2.3048j)·10−4

E = 1.94×10−13

N = 186

Sommerfeld’s second example is a platinum wire of radius of a = 2 μm and conductivity
one eighth that of copper,σ = (5.75/8)·107 siemens/m, at a vacuum wavelength ofλ0 = 1
meter, or frequency f = c0/λ0. With these changes in parameters, the results from the
function sommer are:

β = βR − jβI = 8.4603− 6.2561j rads/m

γ = 7.5210+ 7.0374j ⇒ Im(γ)−1= 0.1421 meters

γc = (1− j)·9.2231 · 104 ⇒ γca = (1− j)·0.1845

E = 1.95×10−14 , N = 278

8.686βI = 54.34 dB/m , β−1
I = 0.1598 meters

vph = ω
βR

= 0.7427c0

This solution agrees with Sommerfeld’s, β = 8.5−6.5j, which he obtained using a modified
form of his iteration that does not assume large values ofγca and does not replace the ratio
of Bessel functions by J0(γca)/J1(γca)≈ j, but still using the small-argument expansions
of the Hankel functions. ��
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Example 10.15.2: Here, we repeat the calculations of the previous example (for the copper wire)
using the same MATLAB code with f = 10 THz. The results from the function sommer are:

β = βR − jβI = 2.0959 · 105 − 1.9187j rads/m ⇒ β− k0

k0
= (3.2780− 9.1549j)·10−6

γ = (5.3212+ 7.5573j)·102 ⇒ Im(γ)−1= 0.0013 meters

γc = (4.7645− 4.7645j)·107 ⇒ γc − k0
√
εc = −(2.3049+ 2.3048j)·102

E = 1.73×10−11 , N = 26

8.686βI = 16.67 dB/m , β−1
I = 0.5212 meters

where k0 = 2.0958×105 rads/m. The Sommerfeld iteration does converge, but to the
wrong limit, (β − k0)/k0 = (−2.9511 − 6.2879j)·10−6. We note that the lateral decay
length in air is now only, Im(γ)−1= 1.3 millimeters, and although the attenuation of 16.67
dB/m, or, 0.1667 dB/cm, is much larger than in the previous case, it is still acceptable for
propagation lengths of the order of cm.
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Fig. 10.15.2 Longitudinal electric field profiles, outside and inside the conductor.

Fig. 10.15.2 shows the profile of the electric field |Ez(ρ)| outside and inside the conductor,
normalized to unity at the surface. This normalization fixes the values of the coefficients
A,B in Eq. (10.15.8) so that AJ0(γca)= BH(1)0 (γa)= 1. Thus, the field Ez(ρ) is,

Ez(ρ)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

J0(γcρ)
J0(γca)

, ρ ≤ a

H(1)0 (γρ)
H(1)0 (γa)

, ρ ≥ a
(10.15.20)

The field outside the conductor is easily computed and plotted, in the left graph, with the
help of the MATLAB function:

Ez = @(r) abs(besselh(0,1,ga*r) / besselh(0,1,ga*a));

498 10. Surface Waveguides

The graph also superimposes the asymptotic form of the Hankel function from Eq. (10.15.6),
that is, for ρ
 a, Ez(ρ) can be approximated by,

Ez(ρ)≈ 1

H(1)0 (γa)

√
2

πγρ
ej(γρ−π/4)

Moreover, the 20-dB point is also included on the graph. It can be determined by using the
built-in function fzero to solve the equation |Ez(ρ)|2 = 10−2, which gives ρ = 3.3 mm.
The MATLAB code is as follows and uses the previously constructed function Ez(r):

r_dB = fzero(@(r) Ez(r)-1/10, a);

with initial search point near ρ = a. The calculation of the field inside the conductor
is, on the other hand, very difficult numerically, because the quantity γca = (4.7645 −
4.7645j)·104 is very large, and MATLAB returns the value J0(γca)= ∞. Within a narrow
layer near the surface, ρ � a, we can use the large-argument asymptotic expansion of
J0(u) from [1790] to approximate the ratio J0(γcρ)/J0(γca) in terms of the polynomials
defined in Eq. (10.15.13):

J0(γcρ)
J0(γca)

≈ P0(γcρ)+jQ0(γcρ)
P0(γca)+jQ0(γca)

√
a
ρ
ejγc(ρ−a) , for ρ � a (10.15.21)

Within this narrow layer, the ratio of the polynomials is effectively equal to unity, as is the
ratio

√
a/ρ, thus the entire expression is given by the exponential ejγc(ρ−a). We note the

rapid exponential decay,
∣∣ejγc(ρ−a)∣∣ = e−αc(a−ρ), where αc = − Im(γc) is very large and

positive. The graph on the right was obtained by applying Eq. (10.15.21) over the narrow
range, 0.999a ≤ ρ ≤ a.

The rapid attenuation is essentially a manifestation of the skin effect, indeed,αc is related
to the skin depth of a good conductor αc = 1/δ = √σωμ0/2, as discussed in Sec. 2.8.
This follows by approximating γc by

γc ≈ k0
√
εc =ω√μ0ε0

√
1− j σ

ωε0
≈ω√μ0ε0

√
−j σ
ωε0

= (1− j)
√
σωμ0

2
= 1− j

δ

To better visualize the fields inside and outside the conductor on the same plotting scale,
we consider a different example that has, f = 1 THz and a = 1 μm, and the same σ =
5.75×107. In this case, the solution obtained from the function sommer has parameters:

γa = 0.0008+ 0.0016j
γca = 15.0665− 15.0665j

Fig. 10.15.3 shows the field profile |Ez(ρ)| evaluated using Eq. (10.15.20), plotted on a log-
log scale and on an absolute scale. Since J0(0)= 1, the value of the field at the center of
the conductor (ρ = 0) is small but non-zero, |Ez(0)| = 1/

∣∣J0(γca)
∣∣ = 3.2979×10−6. ��

Example 10.15.3: Here, we compare three cases of a copper wire with conductivity,σ = 5.75×107

siemens/m, and radii, a = 0.01 mm, a = 0.1 mm, and a = 1 mm, and study the depen-
dence of the Sommerfeld wave on frequency over the range 10 GHz ≤ f ≤ 10 THz. The
solutions are obtained in the three cases by the MATLAB code:
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Fig. 10.15.3 Longitudinal electric field profiles.

c0 = 299792458; % m/sec
sigma = 5.75e7; % siemens/m

ff = logspace(-2,1,300); f = 1e12*ff; w = 2*pi*f; % THz

a1 = 1e-5; [be1,ga1,gc1,E1,N1] = sommer(a1,f,sigma); % case 1
a2 = 1e-4; [be2,ga2,gc2,E2,N2] = sommer(a2,f,sigma); % case 2
a3 = 1e-3; [be3,ga3,gc3,E3,N3] = sommer(a3,f,sigma); % case 3

The number of iterations to converge and the norms of the computational errors were:

N1 = 239 , N2 = 198 , N3 = 159

‖E1‖ = 1.1130×10−12 , ‖E2‖ = 0.9234×10−12 , ‖E3‖ = 1.2927×10−12

Fig. 10.15.4 shows on the left the attenuation in dB per cm, given by, dB = 0.08686 · βI ,
defined in terms of the negative imaginary part of β = βR−jβI . The right graph shows the
effective lateral radius of the field outside the conductor, defined as the distance where
the field Ez has dropped to 1/10 its value at the surface, or, 20 dB down. It is obtained as
the solution in ρ of the equation,

∣∣Ez(ρ)∣∣ =
∣∣∣∣∣H

(1)
0 (γρ)
H(1)0 (γa)

∣∣∣∣∣ = 1

10
(10.15.22)

which is solved using the built-in function fzero. The attenuations and 20-dB distances
were computed and plotted by the following MATLAB code:

db = 20*log10(exp(1)); % 8.6859 dB/neper

dB1 = -db * imag(be1) / 100; % attenuations in dB/cm
dB2 = -db * imag(be2) / 100;
dB3 = -db * imag(be3) / 100;

figure; loglog(ff,dB1,’b-’, ff,dB2,’r--’, ff,dB3,’k:’)
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for i=1:length(f)
Ez1 = @(r) abs(besselh(0,1,ga1(i)*r) / besselh(0,1,ga1(i)*a1));
Ez2 = @(r) abs(besselh(0,1,ga2(i)*r) / besselh(0,1,ga2(i)*a2));
Ez3 = @(r) abs(besselh(0,1,ga3(i)*r) / besselh(0,1,ga3(i)*a3));

r1(i) = fzero(@(r) Ez1(r)-1/10, a1)*1000; % lateral radius in mm
r2(i) = fzero(@(r) Ez2(r)-1/10, a2)*1000;
r3(i) = fzero(@(r) Ez3(r)-1/10, a3)*1000;

end

figure; loglog(ff,r1,’b-’, ff,r2,’r--’, ff,r3,’k:’)
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Fig. 10.15.5 Phase velocities vs. frequency.

Within the 1–10 THz range, the attenuations remain fairly small for propagating at dis-
tances of cm, while the lateral footprint of the wave is of the order of 1 cm or smaller.
Finally, Fig. 10.15.5 plots the phase velocities vph = ω/βR versus frequency, showing
some dispersion, but not much, in the THz range. ��
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10.16 Power Transfer and Power Loss

The power transmitted along the wire in the positive z-direction is attenuating with
the factor

∣∣e−jβz∣∣2 = e−2βIz. The part that flows along the wire on the air side is the
useful amount of power that gets transmitted. The part that flows inside the conductor,
together with the amount of power that flows into the wire across its cylindrical surface,
is entirely dissipated into Ohmic losses, as we verify below. The time-averaged Poynting
vector has two components, one along z, and one along the radial direction inwards:

PPP = 1

2
Re
(
E×H∗

) = 1

2
Re
(
(ẑEz + ρ̂ρρEρ)×(φ̂φφH∗φ)

) = ẑ
1

2
Re
(
EρH∗φ

)− ρ̂ρρ 1

2
Re
(
EzH∗φ

)
The total power transmitted is obtained by integrating Pz over the cross-sectional

area outside the wire, i.e, over a ≤ ρ <∞:

PT =
∫∞
a
Pz 2πρdρ =

∫∞
a

1

2
Re
(
EρH∗φ

)
2πρdρ

Similarly, the amount of power flowing through an annular area, a ≤ ρ ≤ r, is given by,

PT(r)=
∫ r
a

1

2
Re
(
EρH∗φ

)
2πρdρ = 1

2
|B|2 βRk0εa

η0|γ|2
∫ r
a

∣∣H(1)1 (γρ)
∣∣2

2πρdρ

where we used Eq. (10.15.7), and we must multiply this expression by the attenuation
factor e−2βIz. Thus, the total transmitted power is PT = PT(r)

∣∣
r=∞. Using the indefinite

integral [1790],

∫
H(1)1 (γρ)H(1)1 (γ∗ρ)2πρdρ = −2πρ

Im
[
γH(1)0 (γρ)H(1)1 (γ∗ρ)

]
Im[γ2]

(10.16.1)

we obtain,

PT(r)= 1

2
|B|2 βRk0εa2π

η0|γ|2
a Im

[
γH(1)0 (γa)H(1)1 (γ∗a)

]− r Im
[
γH(1)0 (γr)H(1)1 (γ∗r)

]
Im[γ2]

Since the Hankel functions attenuate like ρ−1/2e−ρ Im(γ) for large ρ, it follows that
the total transmitted power will be given by,

PT = 1

2
|B|2 βRk0εa

η0|γ|2
[

2πa
Im
[
γH(1)0 (γa)H(1)1 (γ∗a)

]
Im[γ2]

]
(10.16.2)

Dividing PT(r) by PT, we obtain the fraction of the total power contained in the
annular region, a ≤ ρ ≤ r, see also [985,994]:

PT(r)
PT

= 1− Im
[
γrH(1)0 (γr)H(1)1 (γ∗r)

]
Im
[
γaH(1)0 (γa)H(1)1 (γ∗a)

] (10.16.3)

Example 10.16.1: For the copper wire of Example 10.15.2, Fig. 10.16.1 shows a plot ofPT(r)/PT ,
which also includes the radius at which the power ratio is 95%, found to be, r = 2.85 mm,
by solving the equation PT(r)/PT = 0.95 with respect to r. Assuming the same parameter
values as in Example 10.15.2, the following MATLAB code generates the graph,
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P = @(r) 1 - imag(ga*r.*besselh(0,1,ga*r).*conj(besselh(1,1,ga*r))) / ...
imag(ga*a*besselh(0,1,ga*a).*conj(besselh(1,1,ga*a)));

r0 = fzero(@(r) P(r)-0.95, 2*a) % search near 2*a

plot(r/a,100*P(r),’b-’, r0/a,100*P(r0),’r.’); hold on;
fill([0,1,1,0],[0,0,105,105], [0.9 0.9 0.9]);

The 95% power radius and the 20-dB radius discussed earlier are just alternative ways of
defining a measure for the lateral extent of the wave. ��
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Fig. 10.16.1 Transmitted power vs. radial distance.

Next, we discuss power losses. In a lossy medium with complex-permittivity εc =
εR − jεI, the energy flux into a volume within the medium is dissipated completely into
Ohmic losses. This is justified by the following result, first considered in Problem 1.5,
that follows from Maxwell’s equations:

Pin ≡ −
∮
S

1

2
Re[E×H∗]·dS =

∫
V

1

2
Re[E · J∗tot]dV ≡ Ploss (10.16.4)

where Jtot = J+ jωD is the effective current density in the medium that accounts for a
conduction and a displacement current. For our wire, we may assume J = σE and D =
ε0E so that Jtot is given by the effective permittivity defined through, jωεc = σ+ jωε0,

Jtot = J+ jωD = σE+ jωε0E = jωεcE

Noting that Re(jωεc)= Re
(
jω(εR − jεI)

) =ωεI, we may rewrite (10.16.4) as follows,

Pin ≡ −1

2

∮
S

Re[E×H∗]·dS = 1

2
ωεI

∫
V

E · E∗ dV ≡ Ploss (10.16.5)

For our wire, ωεI = σ, but in general, if the dielectric displacement current term
had a complex permittivity, e.g., D = εdE = (εdR− jεdI)E, then it would also contribute
to the effective εI, that is,ωεI = σ +ωεdI.
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We will verify Eq. (10.16.5) explicitly for a length-L segment of the wire, as shown
in Fig. 10.16.2. Using the solution (10.15.7), the power loss will arise from both com-
ponents Ez, Eρ. Because of the cylindrical symmetry, the volume element will be dV =
2πρdρdz, with the z-dependence given by e−2βIz. Then, we find for Ploss,

Ploss = 1

2
ωεI

∫
V

[|Ez|2 + |Eρ|2]dV
= 1

2
|A|2ωεI

∫ L
0

∫ a
0

[|J0(γcρ)|2 + |β|2
|γc|2 |J1(γcρ)|2

] · e−2βIz · 2πρdρdz

= 1

2
|A|2ωεI

(
1− e−2βIL

2βI

)∫ a
0

[|J0(γcρ)|2 + |β|2
|γc|2 |J1(γcρ)|2

]
2πρdρ

Fig. 10.16.2 Length-L section of Sommerfeld wire.

where we performed the z integration to get,

∫ L
0
e−2βIz dz = 1− e−2βIL

2βI

The Bessel function integrals can be done explicitly [1790]:

∫ a
0
|J0(γcρ)|2 2πρdρ = 2πa

Im
[
γ∗c J0(γ∗c a)J1(γca)

]
Im[γ2

c]
∫ a

0
|J1(γcρ)|2 2πρdρ = 2πa

Im
[
γcJ1(γca)J0(γ∗c a)

]
Im[γ2

c]

(10.16.6)

It follows that Ploss will be,

Ploss = 1

2
|A|2(1− e−2βIL

)ω2πaεI
2βI

·

·
Im
[
γ∗c J0(γ∗c a)J1(γca)

]+ |β|2
|γc|2 Im

[
γcJ1(γca)J0(γ∗c a)

]
Im[γ2

c]

(10.16.7)

The power influx into the cylindrical volume of Fig. 10.16.2 consist of the follow-
ing parts: the power entering the volume at the cross-sectional area at z = 0, minus
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the power exiting the cross section at z = L, plus the power entering perpendicularly
through the cylindrical area. Thus, using Eq. (10.15.7), with Hφ = AjωεcJ1(γcρ)/γc,

Pin = −
∮
S
PPP · dS =

∫ a
0
Pz 2πρdρ

∣∣∣∣
z=L

z=0
−
∫ L

0
Pρ 2πadz

= 1

2

∫ a
0

Re
(
EρH∗φ

)
2πρdρ

∣∣∣∣
z=L

z=0
− 1

2

∫ L
0

Re
(
EzH∗φ

)
2πadz

= 1

2
|A|2(1− e−2βIL

) ∫ a
0

Re

[
jβ
γc
J1(γcρ)

−jωε∗c
γ∗c

J1(γ∗cρ)
]

2πρdρ+

+ 1

2
|A|2

∫ L
0

Re

[
J0(γca)

−jωε∗c
γ∗c

J1(γ∗c a)
]
· e−2βIz · 2πadz =

= 1

2
|A|2(1− e−2βIL

)ωRe
[
βε∗c

]
|γc|2

∫ a
0
J1(γcρ)J1(γ∗cρ)2πρdρ+

+ 1

2
|A|2(1− e−2βIL

)ω2πa
2βI

Im

[
J0(γca)

ε∗c
γ∗c
J1(γ∗c a)

]

where in the last term we used the identity Re[−jC]= Im[C]. Finally, using Eq. (10.16.6),
we obtain the net power flowing into the cylindrical volume:

Pin = 1

2
|A|2(1− e−2βIL

)ω2πa Re
[
βε∗c

]
|γc|2

Im
[
γcJ1(γca)J0(γ∗c a)

]
Im[γ2

c]
+

+ 1

2
|A|2(1− e−2βIL

)ω2πa
2βI

Im

[
J0(γca)

ε∗c
γ∗c
J1(γ∗c a)

] (10.16.8)

It is left as an exercise in Problem 10.7 to show the equality of the two expressions in
Eqs. (10.16.7) and (10.16.8). Canceling some common factors, this amounts to showing
the equality of the following two sides:

2βI Re
[
βε∗c

]
|γc|2

Im
[
γcJ1(γca)J0(γ∗c a)

]
Im[γ2

c]
+ Im

[
J0(γca)

ε∗c
γ∗c
J1(γ∗c a)

]
=

= εI
Im
[
γ∗c J0(γ∗c a)J1(γca)

]+ |β|2
|γc|2 Im

[
γcJ1(γca)J0(γ∗c a)

]
Im[γ2

c]

(10.16.9)

10.17 Connection to Zenneck Surface Wave

We mentioned earlier that the Zenneck surface wave is the planar limit of the Sommerfeld
wave. Indeed, in the limit of large radius, a→∞, the ratios of both the Hankel functions
and the Bessel functions in the characteristic equation (10.15.9) converge to+j, resulting
in the equation:

γ
εa
= γc
εc

(10.17.1)
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which is precisely the characteristic equation of the Zenneck case that we considered in
Sec. 7.10. Solving it for β gives rise to,

β = k0

√
εaεc
εa + εc , γ = k0

√
ε2
a

εa + εc , γc = k0

√
ε2
c

εa + εc (10.17.2)

For completeness, we give the form of the fields above and below the interface at x = 0,

x ≤ 0 x ≥ 0

Ez = E0ejγcx Ez = E0ejγx

Ex = E0
β
γc
ejγcx Ex = E0

β
γ
ejγx

Hy = E0
k0εc
η0γc

ejγcx Hy = E0
k0εa
η0γ

ejγx

(10.17.3)

where E0 is a constant. These agree with the results of Sec. 7.10 after remapping the
notation by the replacements, z→ −x, x→ z, kx → β, kz → γ, k′z → γc.

They can be derived more directly by solving the TM propagation problem in carte-
sian coordinates using Eqs. (9.3.10), and applying the boundary conditions at the planar
interface. They can also be derived as the large-radius limit of the wire solutions. To see
this, let us renormalize Eqs. (10.15.7) with respect to their values at the surface of the
conductor, i.e., by replacing A,B from the relationship, AJ0(γca)= BH(1)0 (γa)= E0,

0 ≤ ρ ≤ a a ≤ ρ <∞

Ez = E0
J0(γcρ)
J0(γca)

Ez = E0
H(1)0 (γρ)
H(1)0 (γa)

Eρ = E0
jβ
γc
J1(γcρ)
J0(γca)

Eρ = E0
jβ
γ
H(1)1 (γρ)
H(1)0 (γa)

Hφ = E0
jk0εc
η0γc

J1(γcρ)
J0(γca)

Hφ = E0
jk0εa
η0γ

H(1)1 (γρ)
H(1)0 (γa)

γc =
√
k2

0εc − β2 γ =
√
k2

0εa − β2

(10.17.4)

In this form, the boundary condition for Ez is automatically satisfied, whereas that
for Hφ leads directly to the characteristic equation (10.15.9). Since x is measured with
respect to the planar conductor surface, before we take the limit for large radius, let us
make the replacement, ρ = a+ x. Then, using the asymptotic expressions (10.15.6), we
obtain the following limits, as a→∞ with fixed x,

H(1)0 (γρ)
H(1)0 (γa)

≈
√
a
ρ
ejγ(ρ−a) =

√
a
a+ x e

jγx → ejγx

H(1)1 (γρ)
H(1)0 (γa)

≈
√
a
ρ
ejγ(ρ−a) e−jπ/2 = −j

√
a
a+ x e

jγx → −j ejγx
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from which the x > 0 expressions in Eq. (10.17.3) are obtained. The corresponding
asymptotic expressions for J0(u), J1(u) are given as follows [1790], assuming that u
has a large and negative imaginary part,

J0(u) =
√

2

πu
cos
(
u− π

4

) ≈
√

1

2πu
ej(u−π/4) , Im(u)< 0

J1(u) =
√

2

πu
cos
(
u− 3π

4

) ≈
√

1

2πu
ej(u−3π/4) , Im(u)< 0

(10.17.5)

and from these we obtain the limits, which give rise to the x < 0 expressions in (10.17.3),

J0(γcρ)
J0(γca)

≈
√
a
ρ
ejγc(ρ−a) =

√
a
a+ x e

jγcx → ejγcx

J1(γcρ)
J0(γca)

≈
√
a
ρ
ejγc(ρ−a) e−jπ/2 = −j

√
a
a+ x e

jγcx → −j ejγcx

Like the Sommerfeld wave, the Zenneck wave exhibits a strong skin effect within the
conductor, but weak bounding on the air side, and low attenuation in the direction of
propagation. For a good conductor, we have |εc| 
 εa, and we can approximate εc and
γc as in the wire case,

εc ≈ −j σωε0
, γc = k0

√
εc√

1+ εa
εc

≈ k0
√
εc ≈ 1− j

δ
, δ =

√
2

σμ0ω

Thus, the fields are attenuating rapidly, within a skin depth δ, inside the conductor,
ejγcx ≈ ejx/δex/δ = ejx/δe−|x|/δ, for x < 0, but not so rapidly outside since |γ| � k0.
Indeed, we have in terms of the dimensionless parameter σ/(ωε0)
 1, setting εa = 1,

γ = γcεa
εc

≈ k0
√
εc

εc
= k0√

εc
= γR + jγI , γR = γI = k0√

2σ
ωε0

� k0

similarly, the propagation constant β has a very small imaginary part,

β = βR − jβI = k0

√
εc

1+ εc = k0

√
1

1+ ε−1
c
≈ k0

(
1− 1

2εc

)
= k0 − jk0

ωε0

2σ

10.18 Skin Effect for Round Wire

The Sommerfeld wave provides a nice illustration of the skin effect in a round wire.
Within the wire, the total current density includes both the conduction and displacement
currents,

J = σE+ jωε0E = (σ + jωε0)E = jωεcE
For a good conductor, we typically ignore the displacement current, writing, J = σE.

For either J, the current density in the z-direction is proportional to Ez, and therefore,
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we have the same relationship as (10.15.20). Indeed, writing Ez(ρ)= AJ0(γcρ) from
Eq. (10.15.7), and setting, Jz = jωεcEz, we have,

Jz(ρ)
Jz(a)

= Ez(ρ)
Ez(a)

= J0(γcρ)
J0(γca)

, ρ ≤ a (10.18.1)

If we make the approximation γc ≈ k0
√
εc ≈ (1 − j)

√
σμ0ω/2 = (1 − j)/δ, then

the results are equivalent to those obtained by the standard textbook treatments of the
skin effect that (i) ignore the displacement current, (ii) assume no z-dependence, and
(iii) consider the fields only inside the wire. Here, the z-dependence comes from the
assumed factor e−jβz which could be set to unity for distances that are much less than
a wavelength, z� 1/k0 ≈ 1/β.

A typical plot of Eq. (10.18.1) is depicted in Fig. 10.15.3. The numerical issues re-
garding the evaluation of the ratio (10.18.1) were discussed in Example 10.15.2. Within
a very narrow layer of width of a few skin depths δ from the surface, ρ � a, the ratio
decays exponentially with distance,

∣∣ejγc(ρ−a)∣∣ = e−(a−ρ)/δ.
The total current I flowing in the z-direction is obtained by integrating Jz(ρ)=

jωεcEz(ρ)= jωεcAJ0(γcρ), over the cross-sectional area of the wire:

I =
∫ a

0
Jz(ρ)2πρdρ = 2πjωεc A

∫ a
0
ρJ0(γcρ)dρ = 2πaA

jωεc
γc

J1(γca) (10.18.2)

where we used the indefinite integral,
∫
uJ0(u)du = uJ1(u), and the fact that J1(0)= 0.

From Eq. (10.15.7), we recognize this as, I = 2πaHφ(a), which is a consequence of
Ampère’s law, obtained by integrating Hφ around the contour ρ = a. From the current
I, we may derive the internal impedance of the wire (per unit wire length):

Z = Ez(a)
I

= AJ0(γca)

2πaA
jωεc
γc

J1(γca)
= γcJ0(γca)

2πajωεc J1(γca)

and with the approximations, γc ≈ (1 − j)/δ = (1 − j)
√
σμ0ω/2, and, jωεc ≈ σ, we

obtain the standard textbook formula,

Z = γcJ0(γca)
2πaσ J1(γca)

(impedance of round wire) (10.18.3)

In the low-frequency limit, a/δ = a√σμ0ω/2 → 0, we may use the following second-
order Taylor expansion, valid for small u,

uJ0(u)
2J1(u)

= 1− u
2

8

to obtain,

Z = 1

πa2σ
γcaJ0(γca)

2J1(γca)
≈ 1

πa2σ

[
1− (γca)

2

8

]

or, because, γ2
c = (1− j)2/δ2 = (1− j)2ωμ0σ/2 = −jωμ0σ,

Zlow = 1

πa2σ
+ jω μ0

8π
(low-frequency wire impedance) (10.18.4)
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Comparing with Z = R+ jωL, we obtain the standard low-frequency DC resistance
and the internal self-inductance per unit length of the wire,

R = 1

πa2σ
, L = μ0

8π
(10.18.5)

On the other hand, for high frequencies, a/δ = a√σμ0ω/2 → ∞, we may replace
the Bessel function ratio by J0/J1 = j, and jγc = (1+ j)/δ, to get,

Zhigh = 1+ j
2πaδσ

(high-frequency wire impedance) (10.18.6)

Eq. (10.18.6) is originally due to Rayleigh [1293]. Recalling from Sec. 2.8 that the
surface resistance of a good conductor is Rs = 1/(σδ), we may rewrite (10.18.6) as,

Zhigh = 1+ j
2πaδσ

= (1+ j)Rs
2πa

(10.18.7)

The DC resistance per unit length of a wire of arbitrary cross-sectional area S is given
by R = 1/(Sσ) and is derived by assuming that the current density is uniform over the
area S. For the round wire, we have S = πa2. At high frequencies, the same formula
would imply from (10.18.6) that S = 2πaδ, that is, the current is effectively confined to
flow within a narrow ring of radius a and width δ, as shown in Fig. 10.18.1.

Fig. 10.18.1 Effective areas of current distribution at low and high frequencies.

We note in passing that the low frequency self-inductance L of Eq. (10.18.5) is usually
derived using energy considerations, by considering the magnetic energy enclosed in a
unit-length cylindrical volume of the conductor, and setting,

1

2
L I2 =

∫ a
0

1

2
μ0H2

φ2πρdρ

Since the current density is assumed to be uniform, the amount of current enclosed
within a radius ρ is given by Jzπρ2, with total current I = Jz πa2. Then, Ampère’s law
gives Jzπρ2 = 2πρHφ(ρ), resulting in, Hφ(ρ)= Jzρ/2 = Iρ/(2πa2). Inserting this
into the above energy relation we find,

1

2
L I2 = μ0I2

4πa4

∫ a
0
ρ3 dρ = 1

2

μ0

8π
I2 ⇒ L = μ0

8π

The same expression forHφ can also be obtained from (10.15.7) in the low-frequency
limit, γc → 0, by using the small argument expansion J1(γca)≈ γca/2.
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Finally, we comment on Ampère’s law applied to the outside of the wire. In Fig. 10.15.3,
the field Ez, outside the wire, is due to the displacement current only. If we apply
Ampère’s law to a contour of radius r, with r > a, the total enclosed current, Ir =
2πrHφ(r), would consist of both the conduction and the displacement currents. The
current density, Jz = jωεEz, is given as follows inside and outside the conductor, from
(10.15.7),

Jz(ρ)=
⎧⎨
⎩
jωεc AJ0(γcρ) , ρ ≤ a
jωε0 BH

(1)
0 (γρ) , ρ ≥ a

The total current crossing the area of radius r > a can be split into two parts:

Ir =
∫ r

0
Jz 2πρdρ =

∫ a
0
Jz 2πρdρ+

∫ r
a
Jz 2πρdρ

=
∫ a

0
AJ0(γcρ)2πρdρ+

∫ r
a
BH(1)0 (γρ)2πρdρ

= 2πaA
jωεc
γc

J1(γca)+
[

2πrB
jωε0

γ
H(1)1 (γr)−2πaB

jωε0

γ
H(1)1 (γa)

]

= 2πrB
jωε0

γ
H(1)1 (γr)= 2πrHφ(r)

where we used Eqs. (10.15.7), the boundary conditions (10.15.8), and the indefinite inte-
gral,

∫
uH(1)0 (u)du = uH(1)1 (u).

The skin effect is discussed in most textbooks. A few references are [1054–1058], in
which one can find additional ones, including historical references.

10.19 Goubau Line

The Goubau line, or Harms-Goubau line, refers to a TM surface wave propagating along
a dielectric coated conductor, depicted in Fig. 10.19.1. It was considered first by Harms
in 1907, and studied extensively in the 1950s by Goubau as an alternative to the Som-
merfeld line that provides better lateral confinement [984–999]. Interest in the Goubau
line has been renewed in the 2000s for use in THz applications [1000–1016].†

In the Sommerfeld wire, the finite conductivity of the conductor was essential in
order to render the lateral wavenumber complex-valued for lateral confinement. In the
Goubau line case, this is not necessary and we will initially assume that the conductor is
perfect and that the dielectric coating is lossless. Ohmic and dielectric losses can then
be taken into account approximately.

In Fig. 10.19.1, let a,b be the inner radius of the conductor and the outer radius
of the dielectric coating, so that the coating thickness is, d = b − a, and let εd be the
relative permittivity of the coating. Assuming cylindrical symmetry, the TM wave will

†Incidentally, our ECE Department at Rutgers awards yearly the “Georg Goubau Memorial Prize” to a
graduating senior for excellence in the study of Electromagnetics.
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Fig. 10.19.1 Goubau line, shown in cylindrical coordinates.

have field components Ez, Eρ,Hφ that satisfy Eq. (10.15.4),

1

ρ
∂
∂ρ

(
ρ
∂Ez
∂ρ

)
+ γ2Ez = 0 , γ2 = k2

0ε− β2

Eρ = − jβγ2

∂Ez
∂ρ

, Hφ = − jk0ε
η0γ2

∂Ez
∂ρ

(10.19.1)

with the assumed factor ejωt−jβz, and solution given as in Eq. (10.15.5),

Ez = C0(γρ) , Eρ = jβγ C1(γρ) , Hφ = jk0ε
η0γ

C1(γρ) (10.19.2)

whereCn(γρ), n = 0,1, are linear combinations of the Bessel functions Jn(γρ),Yn(γρ),
or, the Hankel functions, H(1,2)n (γρ).

Because the conductor was assumed to be perfect, and the dielectric, lossless, we
are looking for solutions that have a real-valued propagation wavenumber β. Let us

denote the lateral wavenumber within the dielectric coating by h =
√
k2

0εd − β2. It may
be assumed to be real-valued. But outside the coating, within the air, the wavenumber

γa =
√
k2

0εa − β2 must necessarily be pure imaginary in order to guarantee that the
fields decay rapidly at large radial distances. Setting for example, γa = jγ, with positive
γ, it follows from Eq. (10.15.6) that the Hankel functionsH(1)n (γaρ)will decay as follows
with increasing ρ→∞,

H(1)n (γaρ)= H(1)n (jγρ)≈
√

2

πjγρ
e−γρ e−j(2n+1)π/4 = 1

jn+1

√
2

πγρ
e−γρ (10.19.3)

Thus, γ2
a = −γ2 = k2

0εa −β2, or, γ =
√
β2 − k2

0εa. Since both γ and h are real-valued, it
follows that β must lie in the range,

k0
√
εa ≤ β ≤ k0

√
εd (10.19.4)

The Hankel functions for imaginary argument are related to the modified Bessel
functions of second kind, via the relationship [1790],

Kn(u)= π
2
jn+1H(1)n (ju) , u > 0 (10.19.5)
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which have the same asymptotic form as (10.19.3), for large positive u,

Kn(u)≈
√
π
2u
e−u (10.19.6)

Thus, on the air side (ρ > b), instead of working with H(1)n (jγρ), it proves simpler
to express the field solutions in terms of Kn(γρ). The Helmholtz equations (10.19.1)
remain the same with the replacement, γ2 → −γ2,

1

ρ
∂
∂ρ

(
ρ
∂Ez
∂ρ

)
− γ2Ez = 0 , γ2 = β2 − k2

0εa

Eρ = jβγ2

∂Ez
∂ρ

, Hφ = jk0εa
η0γ2

∂Ez
∂ρ

(10.19.7)

The solutions are found after using the relationship, ∂K0(γρ)/∂ρ = −γK1(γρ),

Ez = E1K0(γρ) , Eρ = −E1
jβ
γ
K1(γρ) , Hφ = −E1

jk0εa
η0γ

K1(γρ) (10.19.8)

where E1 is a constant. Within the dielectric coating, a ≤ ρ ≤ b, the solution will be
a linear combination of J0(hρ),Y0(hρ), say, Z0(hρ)= J0(hρ)−AY0(hρ), and will be
given by (10.19.2),

Ez = E0Z0(hρ) , Eρ = E0
jβ
h
Z1(hρ) , Hφ = E0

jk0εd
η0h

Z1(hρ) (10.19.9)

where E0 is a constant, and Z1(hρ)= J1(hρ)−AY1(hρ). To determine A, we demand
that Ez vanish on the surface of the perfect conductor, that is, at ρ = a,

Ez(a)= 0 ⇒ Z0(ha)= J0(ha)−AY0(ha)= 0 ⇒ A = J0(ha)
Y0(ha)

(10.19.10)

In summary, the field solutions are given as follows, in the coating and in the air,

a ≤ ρ ≤ b

Ez = E0Z0(hρ)

Eρ = E0
jβ
h
Z1(hρ)

Hφ = E0
jk0εd
η0h

Z1(hρ)

h =
√
k2

0εd − β2

b ≤ ρ <∞

Ez = E1K0(γρ)

Eρ = −E1
jβ
γ
K1(γρ)

Hφ = −E1
jk0εa
η0γ

K1(γρ)

γ =
√
β2 − k2

0εa

(10.19.11)

and Z0, Z1 are defined as the functions,

Z0(hρ) = J0(hρ)− J0(ha)
Y0(ha)

Y0(hρ)

Z1(hρ) = J1(hρ)− J0(ha)
Y0(ha)

Y1(hρ)
(10.19.12)
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The boundary condition at the conductor surface (ρ = a) is built into the solution.
The boundary conditions at the coating-air interface (ρ = b) are the continuity of the
tangential electric and magnetic fields, Ez,Hφ, resulting in the conditions:

E0Z0(hb) = E1K0(γb)

E0
jk0εd
η0h

Z1(hb) = −E1
jk0εa
η0γ

K1(γb)
(10.19.13)

Dividing the two sides, we obtain the characteristic equation that determines the prop-
agation wavenumber β,

h =
√
k2

0εd − β2

γ =
√
β2 − k2

0εa

h
εd
Z0(hb)
Z1(hb)

= − γ
εa
K0(γb)
K1(γb)

(10.19.14)

where we may set εa = 1 from now on. One way to solve this equation iteratively, is to
first cast it in the form,

γ
h
= − 1

εd
K1(γb)
K0(γb)

Z0(hb)
Z1(hb)

≡ F(β) (10.19.15)

and then solve the left-hand side for β,

γ
h
= F(β) ⇒ γ2

h2
= β2 − k2

0

k2
0εd − β2

= F2(β) , or,

β = k0

√
1+ εdF2(β)
1+ F2(β)

(10.19.16)

This can be turned in the following recursion, for n = 0,1,2, . . . ,

βn+1 = r k0

√
1+ εdF2(βn)
1+ F2(βn)

+ (1− r)βn (10.19.17)

where we introduced a relaxation parameter, 0 < r ≤ 1. The recursion can be initialized
somewhere within the β range (10.19.4), for example, β0 = 0.9k0

√
εd. The following

MATLAB function, goubau, in the EWA toolbox, implements this iteration:

[be,ga,h,N,E,pd] = goubau(a,b,ed,f,r,tol,be0)

[be,ga,h,N,E,pd] = goubau(a,b,ed,f,r,tol) (be0 = 0.999*k0*sqrt(ed))

[be,ga,h,N,E,pd] = goubau(a,b,ed,f,r) (tol = 1e-10)

% a,b = inner and outer radii [meters]

% ed = relative dielectric constant of coating (ed>1)

% f = vector of frequencies [Hz]

% r = relaxation parameter (0 < r <= 1)

% tol = computational tolerance, default tol = 1e-10

% be0 = initializing vector, size(f), default, be0 = 0.999*k0*sqrt(ed)

%

% be = propagation wavenumber [rads/m], size(f)

% ga = lateral decay constant [1/m], size(f)
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% h = lateral wavenumber in dielectric coating [rads/m], size(f)

% N = number of iterations to converge, scalar, represents all f

% E = computational error of characteristic equation, size(f)

% pd = proportion of transmitted power in dielectric coating

The iteration is stopped when two successive iterates are to within a prescribed
error tolerance, that is, |βn+1 − βn| ≤ tol, typically with, tol = 10−10, or smaller. The
output parameter pd represents the proportion of transmitted power residing within
the dielectric coating, and is a measure of confinement. Its calculation is explained
below. The computational error output E is the difference between the two sides of
Eq. (10.19.15) for the last computed iterates,

E =
∣∣∣∣γh − F(β)

∣∣∣∣
Goubau [985] and King and Wiltse [994] made certain approximations to the char-

acteristic equation to cast it in a more manageable form. Such approximations are not
necessary in the above iteration, which is implemented using MATLAB’s built-in Bessel
functions. The iteration is applicable over a wide range of frequencies, including THz.

Once the fields are determined for the ideal conductor and lossless dielectric case,
they can be used to calculate the attenuation coefficient α (in nepers/m) along the line,
following the procedures discussed in Sec. 9.2, that is,

α = P
′
loss

2PT
(10.19.18)

where P′loss is the power loss per unit conductor length, and PT, the transmitted power.
The power loss P′loss consists of a part due to the losses in the conductor, assuming

a large but finite conductivity σ, and a part due to the losses in the dielectric coating,
assuming a small (negative) imaginary part for the dielectric permittivity, εI. The two
parts are given by,

P′c =
∮
C

1

2
Rs|H tan|2 dl , Rs =

√
ωμ0

2σ

P′d =
1

2
ωεI

∫
S
|E|2 dS

(10.19.19)

where C is the periphery of the conductor, i.e., the circle of radius ρ = a, and H tan is
the tangential magnetic field on the surface, i.e.,Hφ(ρ) for ρ = a, and Rs is the surface
impedance of the conductor. For the dielectric, S is the cross-sectional annular area
defined by a ≤ ρ ≤ b. Thus, the total loss is given by,

P′loss = P′c + P′d =
1

2
Rs
∣∣Hφ(a)∣∣2(2πa)+1

2
ωεI

∫ b
a

[|Ez|2 + |Eρ|2]2πρdρ (10.19.20)

The transmitted power is obtained by integrating the z-component of the Poynting
vector on the cross-sectional areas of the coating and the air side,

PT =
∫ b
a

1

2
Re[EρH∗φ]2πρdρ+

∫∞
b

1

2
Re[EρH∗φ]2πρdρ (10.19.21)
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From the solutions (10.19.11), we obtain,

P′loss =
1

2
Rs(2πa)

k2
0ε

2
d |E0|2
η2

0 h2
Z2

1(ha)+

+ 1

2
|E0|2ωεI

[∫ b
a
Z2

0(hρ)2πρdρ+ β
2

h2

∫ b
a
Z2

1(hρ)2πρdρ
]

PT = 1

2

k0εdβ |E0|2
η0 h2

∫ b
a
Z2

1(hρ)2πρdρ+ 1

2

k0εaβ |E1|2
η0 γ2

∫∞
b
K2

1(γρ)2πρdρ

Let us define the following normalized integrals that can be derived with the help of
related integrals in [1790], and after using the condition Z0(ha)= 0,

U ≡ 1

Z2
1(ha)

2

a2

∫ b
a
Z2

1(hρ)ρdρ =
b2

a2
· Z

2
1(hb)−Z0(hb)Z2(hb)

Z2
1(ha)

− 1

V ≡ 1

Z2
1(ha)

2

a2

∫ b
a
Z2

0(hρ)ρdρ =
b2

a2
· Z

2
1(hb)+Z2

0(hb)
Z2

1(ha)
− 1

W ≡ Z
2
1(hb)
Z2

1(ha)
1

K2
1(γb)

2

a2

∫∞
b
K2

1(γρ)ρdρ =

= Z
2
1(hb)
Z2

1(ha)
· b

2

a2
· K0(γb)K2(γb)−K2

1(γb)
K2

1(γb)

(10.19.22)

where the subscript 2 refers to the Bessel functions of order two. Using the relationships
(10.19.13) and (10.19.14), and setting εa = 1, we may express P′loss and PT in terms of
the quantities U,V,W,

P′loss = |E0|2πa2 k
2
0ε

2
d Z

2
1(ha)

η2
0 h2

[
Rs
a
+ η0 tanθ

2k0εd

(
β2U + h2V

)]

PT = 1

2
|E0|2πa2 βk0ε2

d Z
2
1(ha)

η0 h2

[
1

εd
U +W

] (10.19.23)

where we introduced the loss-tangent for the dielectric, εI = εd tanθ. Dividing, we
obtain the total attenuation coefficient, with the Rs term representing the conductor
losses, and the tanθ term, the dielectric ones,

α = P
′
loss

2PT
= k0

βη0
·
Rs
a
+ η0 tanθ

2k0εd

(
β2U + h2V

)
1

εd
U +W

(10.19.24)

Eq. (10.19.24) is equivalent† to the results of [996]. By taking appropriate limits as
d/a = (b− a)/a→ 0, we may obtain the approximation given by King-Wiltse [994],

αapp = k0

2βη0
·
Rs
a
+ η0 tanθ

k0εd
d
a
β2

1

εd
d
a
+ 1

2γb

(10.19.25)

†after using the Bessel function identities [1790], C0(u)+C2(u)= 2

u
C1(u), K0(u)−K2(u)= 2

u
K1(u).
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where, to the same order of approximation, we can replace,
d
a
= b− a

a
≈ ln

(
b
a

)
.

It follows also from Eq. (10.19.23) that the proportion of the transmitted power
within the dielectric (one of the outputs of the function goubau) is given by,

pd =
1

εd
U

1

εd
U +W

= proportion of power in dielectric coating (10.19.26)

The following MATLAB function, goubatt, implements Eqs. (10.19.24) and (10.19.25):

[atot,ac,ad,app,pd] = goubatt(a,b,ed,f,be,sigma,tand)

% a,b = inner and outer radii [meters]

% ed = relative dielectric constant of coating (ed>1)

% f = vector of frequencies [Hz]

% be = propagation wavenumber [rads/m], size(f), obtained from GOUBAU

% sigma = conductivity of inner conductor [siemens/m]

% tand = loss tangent of dielectric coating

%

% atot = total attenuation coefficient [nepers/m], size(f), atot = ac + ad

% ac = attenuation due to conductor [nepers/m], size(f)

% ad = attenuation due to dielectric [nepers/m], size(f)

% app = total attenuation coefficient [nepers/m], King-Wiltse-Goubau approx

% pd = proportion of transmitted power in dielectric coating

%

% conversions: dB/m = 8.68589 * atot = 20*log10(exp(1)) * atot

% dB/100ft = 8.68589 * 30.48 * atot

The Goubau TM mode discussed in this section is the lowest mode propagating along
a dielectric-coated metal wire. Higher modes exist and their cutoff frequencies have been
discussed in [995,998]. The cutoff condition occurs when the lateral wavenumber γ in
air becomes zero and the wave is no longer bound to the vicinity of the wire, becoming
a leaky mode. Since γ2 + h2 = k2

0(εd − 1), it follows that when γ = 0, then h takes
the value, h0 = k0

√
εd − 1. The characteristic equation (10.19.14) then implies that

Z0(h0b)= 0, or, equivalently [998],

Z0(h0b)= J0(h0b)−AY0(h0b)= J0(h0b)− J0(h0a)
Y0(h0a)

Y0(h0b)= 0 , or,

J0(h0b)Y0(h0a)−J0(h0a)Y0(h0b)= 0 , h0 = k0

√
εd − 1 (10.19.27)

For given dimensions a,b, this determines the maximum operating frequency of the
lowest TM mode, or, conversely, given a frequency f and inner radius a, it determines
the largest radius b such that operation is restricted to the lowest mode. The MATLAB
function, gcut, constructs this function, which may then be passed into fzero, to de-
termine the cutoff frequency or cutoff radius b, or, into the function plot as an aid for
choosing the initial search points for fzero,

G = gcut(a,b,ed,f) % Goubau line cutoff

516 10. Surface Waveguides

% a,b = inner, outer radii [meters]
% ed = relative permittivity
% f = frequency [Hz]
%
% constructs the function:
% G = J0(h0*b).*Y0(h0*a) - J0(h0*a).*Y0(h0*b);
% vectorized either in b, or, in f
%
% to be used with FZERO to find cutoff frequency or cutoff radius b:
%
% fc = fzero(@(f) gcut(a,b,ed,f), f0); % search near f0
% bc = fzero(@(b) gcut(a,b,ed,f), b0); % search near b0
%
% a convenient initial search point is the lowest cutoff
% of the planar version: f0*d0 = c0/sqrt(ed-1)/2, b0 = a+d0
%
% the function can also be used to plot G vs. f or vs.b

Example 10.19.1: In order to get an idea of what the fields look like inside and outside the
dielectric, consider an unrealistic example that has too large radii, a = 0.9 cm, b = 1
cm, to be of practical importance in THz applications. The dielectric permittivity is taken
to be εd = 2.54 (e.g., polystyrene rexolite), and the frequency, f = 100 GHz. Fig. 10.19.2
shows the longitudinal electric and magnetic fields, Ez(ρ),Hφ(ρ) as functions of the radial
distance ρ. Note that Ez vanishes at ρ = a, and both are normalized to unity at ρ = b.
The following MATLAB code generates the graph of Ez:
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Fig. 10.19.2 Tangential electric and magnetic fields.

ed = 2.54;
a = 0.9e-2; b = 1.0e-2; % meters
f = 100e9; % 100 GHz
rel = 0.5; % relaxation parameter

[be,ga,h,N,E,pd] = goubau(a,b,ed,f,rel); % uses default tol=1e-10

A = besselj(0,h*a)/bessely(0,h*a);
Z0 = @(r) besselj(0,h*r) - A*bessely(0,h*r);
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Ezd = @(r) abs(Z0(r)/Z0(b)); % Ez in dielectric
Eza = @(r) abs(besselk(0,ga*r)/besselk(0,ga*b)); % Ez in air

r20 = fzero(@(r) Eza(r)-1/10, b) * 100; % 20-dB radius in cm

r = linspace(a, 1.4*b, 400); % plot range, a <= rho <= 1.4*b

Ez = Ezd(r).*(r<b) + Eza(r).*(r>=b);

figure; fill([0.9,0.9,1,1],[-0.1,1,1,-0.1], [0.9 0.9 0.9]); hold;
plot(r*100,Ez,’b-’, ’linewidth’,2);
plot(r20,1/10,’r.’, ’markersize’,22);
xlabel(’\rho (cm)’); ylabel(’|{\itE_z}(\rho)|’)

We observe how the electric field is concentrated in the vicinity of the dielectric surface
at ρ = b. The percentage of the transmitted power residing in the dielectric coating is
100pd = 64.63%. A measure of the localization of the wave near the surface is the 20-dB
radius defined as that distance ρ at which the Ez field in the air has dropped to one-tenth
its value at the surface (i.e. by 20 dB). It is obtained by solving for ρ the equation,

∣∣∣∣Ez(ρ)Ez(b)

∣∣∣∣ =
∣∣∣∣∣K0(γρ)
K0(γb)

∣∣∣∣∣ = 1

10
(10.19.28)

We find, ρ = 1.1451 cm, that is, only 1.45 mm from the dielectric surface. The 20-dB
radial distance for the magnetic field is found in a similar fashion by solving the following
equation, whose solution is ρ = 1.1449 cm,∣∣∣∣∣Hφ(ρ)Hφ(b)

∣∣∣∣∣ =
∣∣∣∣∣K1(γρ)
K1(γb)

∣∣∣∣∣ = 1

10
(10.19.29)

The computed wavenumbers were, [β,γ, h]= [26.0121, 15.4070, 20.9542] cm−1, the
number of iterations of the iterative algorithm was N = 12, and the computational error,
E = 1.11×10−15, with an assumed tolerance of, tol = 10−10. ��

Example 10.19.2: This example is from King-Wiltse [994]. Consider a copper wire of radius, a =
0.995 cm, coated with a polystyrene dielectric of permittivity, εd = 2.54, and thickness,
d = b− a = 0.005 cm, so that the outer radius is, b = a+ d = 1 cm. The conductivity of
copper is σ = 5.75×107 siemens/m. The frequency is varied over, 10 ≤ f ≤ 1000 GHz.

The MATLAB code segment below, calculates the propagation wavenumber β, as well as
the phase and group velocities, vph = ω/β, vg = dω/dβ. The graphs are shown in Figs.
10.19.3 and 10.19.4.

c0 = 299792458; % NIST value, m/sec, speed of light

ff = logspace(1,3,201); % log-spacing in GHz, 10^1 <= ff <= 10^3
f = 1e9*ff; % Hz
w = 2*pi*f;

ed = 2.54; % polystyrene
sig = 5.75e7; % copper conductivity
a = 0.995e-2; % meters
b = 1.000e-2; % d = b-a = 0.005e-2
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tol = 1e-10; rel = 0.3; % tolerance and relaxation parameters

[be,ga,h,N,E] = goubau(a,b,ed,f,rel,tol); % coated

figure; semilogx(ff,be/1000,’b-’) % beta in rads/mm

vph = w./be; % phase velocity
figure; semilogx(ff, vph/c0, ’b-’)

vg = diff(w)./diff(be); % group velocity
figure; semilogx(ff(1:end-1), vg/c0, ’b-’)

For comparison, the uncoated Sommerfeld wire of the same radius, b = 1 cm, is calcu-
lated by the following code. In addition, the corresponding 20-dB radii of the coated and
uncoated cases are computed and plotted in Fig. 10.19.5, in which the right graph shows
an expanded view of the frequency subrange, 500 ≤ f ≤ 1000 GHz.

[bu,gau] = sommer(b,f,sig); % uncoated case, Sommerfeld wire

for i=1:length(f), % 20-dB radii
Ezc = @(r) abs(besselk(0,ga(i)*r)/besselk(0,ga(i)*b));
Ezu = @(r) abs(besselh(0,1,gau(i)*r)/besselh(0,1,gau(i)*a));

rc(i) = fzero(@(r) Ezc(r)-1/10, b) * 1000; % coated
ru(i) = fzero(@(r) Ezu(r)-1/10, b) * 1000; % uncoated

end

figure; loglog(ff,rc,’b-’, ff,ru,’r--’); % coated and uncoated 20-dB radii

ffs = ff(ff>100); rcs = rc(ff>100); % 500 <= f <= 1000 GHz sub-range

figure; plot(ffs, rcs, ’b-’); % plot over sub-range
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Fig. 10.19.3 Propagation wavenumber, β.

Fig. 10.19.6 shows the attenuation coefficients for the coated and uncoated cases, com-
puted and plotted by the following MATLAB code. The King-Wiltse approximation was
restricted to the range f > 100 GHz in order to more closely compare our results to those
of [994]. The right graph shows separately the attenuations due to the conductor and the
dielectric losses. The loss tangent for the dielectric was taken to be tanθ = 0.001.
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Fig. 10.19.4 Phase and group velocities in units of c0.
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Fig. 10.19.5 Lateral 20-dB radii.

tanth = 1e-3;

[atot,ac,ad,app] = goubatt(a,b,ed,f,be,sig,tanth);

db100ft = 8.68589*30.48*atot; % convert to dB/100ft
dbc = 8.68589*30.48*ac;
dbd = 8.68589*30.48*ad;
dbapp = 8.68589*30.48*app;
f1 = ff(ff>=100);
db1 = dbapp(ff>=100); % restrict King-Wiltse to f>100 GHz

dBu = -8.68589*30.48*imag(bu); % uncoated case

figure; loglog(ff,db100ft,’b-’, ff,dBu,’r--’, f1,db1,’k:’); % coated
figure; loglog(ff,dbc,’b-’, ff,dbd,’r--’, ff,db100ft,’k:’); % uncoated

We observe that the coated case has substantially narrower lateral confinement, as quan-
tified by the 20dB radii, than the uncoated case, but at the expense of much larger attenu-
ation. However, in THz applications, lateral confinement is more important than attenua-
tion, because the relevant propagation distances are short, i.e., centimeters. ��
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Fig. 10.19.6 Attenuation coefficient.

Example 10.19.3: Here, we explore the properties of the Goubau line over the THz frequency
range, 0.1 ≤ f ≤ 10 THz. Our choice of parameters a,b, εd, and results are similar to
those of Refs. [1014,1027]. We choose a = 100 μm, and two values of the permittivity of
the dielectric coating, εd = 2.54, corresponding to a polymer, and a higher value, εd = 9.
For each εd, we compare two coating thicknesses d1, d2, one thin and one larger near the
cutoff thickness determined by (10.19.27),

d1 = b1 − a = 10 μm , for εd = 2.54 and εd = 9

d2 = b2 − a = 100 μm , for εd = 2.54
d2 = b2 − a = 50 μm , for εd = 9

For the computation of the attenuations, we will assume a copper inner conductor of
conductivity σ = 5.8×107 siemens/m, and a loss tangent of tanθ = 0.001 for both types
of dielectric coatings.

Figs. 10.19.7 and (10.19.8) show the computed propagation wavenumber β, and the corre-
sponding phase velocity vph =ω/β.
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Fig. 10.19.7 Propagation wavenumber.
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Fig. 10.19.8 Phase velocity.

We note that β ≈ k0 for low frequencies, switching gradually to β ≈ k0
√
εd at higher

frequencies. This can be seen more clearly from the phase velocities, switching from near
c0 to near c0/

√
εd. Over the relatively flat parts of the phase velocity, the group velocity will

also be flat and equal to the phase velocity, implying that there will be very little dispersion.
The flat parts are wider for the thicker coatings and cover the 1–10 THz range. Indeed,
from the definitions of the group and phase velocities, one can show the relationship,

vph = ωβ , vg = dωdβ ⇒ vg = vph

1− βv′ph
(10.19.30)

where v′ph = dvph/dω, so that if vph is constant over a band of ωs, then so is vg. The
MATLAB code for computing β and generating Figs. 10.19.7 and (10.19.8) is as follows,

c0 = 299792458; % NIST value, m/sec, speed of light

ff = logspace(-1,1,100); % log-spaced in THz, 0.1 <= ff <= 10
f = 1e12*ff; w = 2*pi*f; % f in Hz

a = 100e-6; % 100 microns
ed = 2.54;
% ed = 9; % uncomment this line for ed = 9

rel = 0.001; % relaxation parameter

d1 = 10e-6; % coating thickness
if ed==2.54, d2 = 100e-6; end
if ed==9.00, d2 = 50e-6; end

b1 = a+d1;
[be1,ga1,h1,N1,E1,Pd1] = goubau(a,b1,ed,f,rel); % uses tol=1e-10

b2 = a+d2;
[be2,ga2,h2,N2,E2,Pd2] = goubau(a,b2,ed,f,rel);

figure; loglog(ff,be1./1000,’b-’, ff,be2./1000,’r--’); % rads/mm

v1 = w./be1/c0; v2 = w./be2/c0; % phase velocities
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figure; semilogx(ff, v1, ’b-’, ff, v2, ’r--’);

The percentage of power in the dielectric coating is shown in Fig. 10.19.9. We note that
for the thicker coating almost 100% of transmitted power is contained in the coating, over
the 0.5-10 THz range. The graphs were generated by the code,

figure; semilogx(ff, 100*Pd1,’b-’, ff, 100*Pd2,’r--’);
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Fig. 10.19.9 Percentage of power in dielectric coating.

The attenuations in dB/cm were computed by the following code and plotted in Fig. 10.19.10.
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Fig. 10.19.10 Attenuation coefficient in dB/cm.

sigma = 5.8e7; % copper conductivity
tand = 1e-3; % loss tangent

at1 = goubatt(a,b1,ed,f,be1,sigma,tand);
at2 = goubatt(a,b2,ed,f,be2,sigma,tand);

dbcm = 20*log10(exp(1))/100; % convert to dB/cm
figure; loglog(ff, at1*dbcm,’b-’, ff, at2*dbcm,’r--’)
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The attenuations are high, but still acceptable for propagation over short distances of the
order of centimeters. The above frequency plots do not necessarily imply single-mode
operation, because frequency range my exceed the cutoff frequencies of the lowest TM
mode. The calculated cutoff frequencies with the help of the function, gcut, are as follows,

εd = 2.54 εd = 9

thickness d1 fc = 12.0776 THz fc = 5.2990 THz

thickness d2 fc = 1.2008 THz fc = 1.0577 THz

Single-mode operation is below these frequencies. They were computed by the following
MATLAB code in which Eq. (10.20.6) was used as the initial search point for fzero,

b1 = a + d1;
f10 = c0/2/sqrt(ed-1)/d1;
fc1 = fzero(@(f) gcut(a,b1,ed,f), f10)

b2 = a + d2;
f20 = c0/2/sqrt(ed-1)/d2;
fc2 = fzero(@(f) gcut(a,b2,ed,f), f20)

For the remainder of this example, let us fix the frequency to f = 1012 Hz, or, 1 THz. Figures
10.19.11 and 10.19.12 show the dependence of the wavenumber β and phase velocity vph

on the coating thickness. As the thickness increases, and more of the wave resides in the
coating, the phase velocity tends to that of the dielectric, i.e., c0/

√
εd.
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Fig. 10.19.11 Propagation wavenumbers vs. thickness at 1 THz.

The MATLAB code for generating these graphs is as follows. The power residing in the
coating and the attenuations are also computed and plotted in Figs. 10.19.14 and 10.19.13.
The function goubau is vectorized in the frequency variable f , but not in the thickness b.
Therefore, the solution for each thickness must be determined with a loop,

ff0 = 1; f0 = 1e12*ff0; w = 2*pi*f0;
sigma = 5.8e7; tand = 1e-3;

if ed==2.54, dd = linspace(1,120,120); end % dd in microns
if ed==9.00, dd = linspace(1,50,50); end
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Fig. 10.19.12 Phase velocity vs. thickness at 1 THz.

d = dd*1e-6; b = a+d; % d,b in meters

for i=1:length(d)
[be(i),~,~,~,~,Pd(i)] = goubau(a,b(i),ed,f0,rel);
[atot(i),ac(i),ad(i)] = goubatt(a,b(i),ed,f0,be(i),sigma,tand);

end

v = w./be/c0; % v in units of c0
cm = 20*log10(exp(1))/100; % conversion to dB/cm

figure; plot(dd, be/1000, ’b-’) % be in units of rads/mm
figure; plot(dd, v, ’b-’)
figure; plot(dd,100*Pd,’r-’)
figure; plot(dd,atot*cm,’b-’, dd,ac*cm,’g--’, dd,ad*cm,’r--’)
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Fig. 10.19.13 Power in dielectric vs. thickness at 1 THz.

The thickness range for each εd was determined by finding the maximum thickness from
the cutoff condition (10.19.27). For the given a, f , the MATLAB function gcut can be used
to find the cutoff width, as well as to plot the cutoff function (10.19.31) versus b, as shown
in Fig. 10.19.15,
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Fig. 10.19.14 Attenuation vs. thickness at 1 THz.
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Fig. 10.19.15 Cutoff thickness at 1 THz.

G(b)= J0(h0b)Y0(h0a)−J0(h0a)Y0(h0b) (10.19.31)

The computed values of the cutoff thicknesses were dc = 52.88 μm for εd = 2.54, and
dc = 119.88 μm for εd = 9. The MATLAB code is given below,

f0 = 1e12; a=100e-6;

d0 = c0/2/sqrt(ed-1)/f0; % see Eq. (10.20.6)
b0 = a+d0; % initial search point for fzero

dc = fzero(@(b) gcut(a,b,ed,f0), b0) - a; % cutoff thickness

dd = linspace(0,200,201); d = dd * 1e-6; % dd in microns, d in meters
b = a + d;
figure; plot(dd,gcut(a,b,ed,f0),’b-’, dc*1e6, 0, ’r.’);

In conclusion, for THz applications, one can find a range of parameters a,b, εd of the
Goubau line that allows single-mode operation, high lateral confinement, acceptable atten-
uation, and low dispersion. ��
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10.20 Planar Limit of the Goubau Line

The planar limit of the Goubau line, shown below, consists of a planar conductor with
a thin dielectric coating of thickness, say, d. It may be thought of as the limit of the
Goubau line as the radii a,b tend to infinity, such that the difference, d = b−a, remains
finite. It was originally studied by Attwood [988] as a simplified version of the Goubau
line. The conductor is assumed to be perfect and the dielectric, lossless.

To see how this evolves from the Goubau solution, let us rewrite Eq. (10.19.11) in a
normalized way by making the substitutions for the constants E0, E1,

E0 → E0

Z0(hb)
, E1 → E0

K0(γb)

a ≤ ρ ≤ b

Ez = E0
Z0(hρ)
Z0(hb)

Eρ = E0
jβ
h
Z1(hρ)
Z0(hb)

Hφ = E0
jk0εd
η0h

Z1(hρ)
Z0(hb)

h =
√
k2

0εd − β2

b ≤ ρ <∞

Ez = E0
K0(γρ)
K0(γb)

Eρ = −E0
jβ
γ
K1(γρ)
K0(γb)

Hφ = −E0
jk0εa
η0γ

K1(γρ)
K0(γb)

γ =
√
β2 − k2

0εa

(10.20.1)

The boundary condition at ρ = b is automatically satisfied for Ez, whereas that for
Hφ is equivalent to the characteristic equation (10.19.14). Following the same limiting
procedure as in Sec. 10.17, we set, ρ = a+ x, and, b = a+ d, and take the limit a → ∞
with x, d kept fixed. In this limit, we may replace the Bessel functions by their asymptotic
forms [1790], for n = 0,1,

Jn(u) =
√

2

πu
cos

(
u− π

4
− nπ

2

)

Yn(u) =
√

2

πu
sin
(
u− π

4
− nπ

2

)

Kn(u) =
√
π
2u
e−u

(10.20.2)

Using (10.20.2) and some trigonometric identities, we find the following asymptotic
forms, and limits as a→∞,
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Z0(hρ)
Z0(hb)

=
√
b
ρ
· sin

(
h(ρ− a))

sin
(
h(b− a)) =

√
a+ d
a+ x ·

sin(hx)
sin(hd)

→ sin(hx)
sin(hd)

Z1(hρ)
Z0(hb)

= −
√
b
ρ
· cos

(
h(ρ− a))

sin
(
h(b− a)) = −

√
a+ d
a+ x ·

cos(hx)
sin(hd)

→ −cos(hx)
sin(hd)

K0(γρ)
K0(γb)

= K1(γρ)
K0(γb)

=
√
b
ρ
· e−γ(ρ−b) =

√
a+ d
a+ x · e

−γ(x−d) → e−γ(x−d)

(10.20.3)

For example, we have for n = 0,1,

Zn(hρ) = Jn(hρ)− J0(ha)
Y0(ha)

Y0(hρ)

=
√

2

πhρ

[
cos
(
hρ− π

4
− nπ

2

)
− cos(ha−π/4)

sin(ha−π/4) sin
(
hρ− π

4
− nπ

2

)]

=
√

2

πhρ
· − sin

(
h(ρ− a)−nπ/2)

sin(ha−π/4)
The characteristic equation (10.19.14) simplifies as follows, at ρ = b, or, x = d,

h
εd
Z0(hb)
Z1(hb)

= − γ
εa
K0(γb)
K1(γb)

⇒ − h
εd

sin(hd)
cos(hd)

= − γ
εa
, or,

h
εd

tan(hd)= γ
εa

(10.20.4)

As shown by King-Wiltse [994], this simplified form of the characteristic equation
can be used as a substitute of (10.19.14) at higher frequencies, near THz. Similarly, the
field solutions (10.20.1) become,

0 ≤ x ≤ d d ≤ x <∞

Ez = E0
sin(hx)
sin(hd)

Ez = E0e−γ(x−d)

Ex = −E0
jβ
h

cos(hx)
sin(hd)

Ex = −E0
jβ
γ
e−γ(x−d)

Hy = −E0
jk0εd
η0h

cos(hx)
sin(hd)

Hy = −E0
jk0εa
η0γ

e−γ(x−d)

h =
√
k2

0εd − β2 γ =
√
β2 − k2

0εa

(10.20.5)

where they must be multiplied by ejωt−jβz. The tangential component Ez vanishes on
the (assumed perfect) conductor at x = 0, and it matches the air side at x = d. The
matching of Hy at x = d is equivalent to Eq. (10.20.4).

As in the case of the Goubau line, the cutoff condition is γ = 0, which implies
through (10.20.4) that tan(h0d)= 0, h0 = k0

√
εd − 1. The lowest cutoff corresponds to

h0d = π, or, expressed as a frequency-thickness relation,
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f d = c0

2
√
εd − 1

(10.20.6)

The characteristic equation (10.20.4) can be solved recursively using the same itera-
tive procedure as for the Goubau line, that is, by writing it in the following form,

γ
h
= 1

εd
tan(hd)≡ F(β)

with εa = 1, and solving the left-hand side for β,

β = k0

√
1+ εdF2(β)
1+ F2(β)

(10.20.7)

and turning it into the recursion, for n = 0,1,2, . . . ,

βn+1 = r k0

√
1+ εdF2(βn)
1+ F2(βn)

+ (1− r)βn (10.20.8)

where r is a relaxation parameter, 0 < r ≤ 1. The following MATLAB function, attw,
implements this iteration:

[be,g,h,N,E,pd] = attw(d,ed,f,r,tol,be0) % Attwood surface waveguide

[be,g,h,N,E,pd] = attw(d,ed,f,r,tol) (be0 = 0.999*k0*sqrt(ed))

[be,g,h,N,E,pd] = attw(d,ed,f,r) (tol = 1e-10)

% d = coating thickness [meters]

% ed = relative dielectric constant of coating (ed>1)

% f = vector of frequencies [Hz]

% r = relaxation parameter (0 < r <= 1)

% tol = computational tolerance, default tol = 1e-10

% be0 = initializing vector, size(f), default be0 = 0.999*k0*sqrt(ed)

%

% be = propagation wavenumber [rads/m], size(f)

% ga = lateral decay constant [1/m], size(f)

% h = lateral wavenumber in dielectric coating [rads/m], size(f)

% N = number of iterations to converge (for all f)

% E = computational error of characteristic equation, size(f)

% pd = proportion of transmitted power in dielectric coating

The attenuation coefficient may be computed by,

α = P
′
loss

2PT
(10.20.9)

where P′loss is the power loss per unit conductor length, and PT, the transmitted power.
The two parts of P′loss due to the losses in the conductor and to the losses in the

dielectric coating are given as follows, relative to a finite strip in the y-direction of
width, Δy = 1 meter,

P′loss = P′c + P′d =
1

2
Rs
∣∣Hy∣∣2

∣∣∣
x=0

+ 1

2
ωεI

∫ d
0

[|Ez|2 + |Ex|2]dx (10.20.10)



10.20. Planar Limit of the Goubau Line 529

where, in terms of the loss-tangent of the dielectric, εI = ε0εI = ε0εd tanθ. The trans-
mitted power is obtained by integrating the z-component of the Poynting vector on a
dx ·Δy cross-sectional area of the coating and the air side,

PT =
∫ d

0

1

2
Re[ExH∗y ]dx+

∫∞
d

1

2
Re[ExH∗y ]dx (10.20.11)

Using the solutions (10.20.5), the indicated integrals can be done easily, resulting in,

P′loss =
|E0|2k2

0ε
2
d

2η2
0 h2 sin2(hd)

{
Rs + η0 tanθ

2k0εd

(
β2
[
d+ sin(2hd)

2h

]
+ h2

[
d− sin(2hd)

2h

])}

PT = |E0|2βk0ε2
d

4η0 h2 sin2(hd)

{
1

εd

[
d+ sin(2hd)

2h

]
+ cos2(hd)

γ

}

where we used Eq. (10.20.4) and set εa = 1. Dividing, we obtain the total attenuation
coefficient, with the Rs term representing the conductor losses, and the tanθ term, the
dielectric ones,

α = k0

βη0
·
Rs + η0 tanθ

2k0εd

(
β2
[
d+ sin(2hd)

2h

]
+ h2

[
(d− sin(2hd)

2h

])
1

εd

[
d+ sin(2hd)

2h

]
+ cos2(hd)

γ

(10.20.12)

It also follows from the expression for PT that the proportion of the transmitted
power within the dielectric is given by,

pd =
1

εd

[
d+ sin(2hd)

2h

]
1

εd

[
d+ sin(2hd)

2h

]
+ cos2(hd)

γ

= power in dielectric (10.20.13)

The following MATLAB function, attwatt, implements Eqs. (10.20.12) and (10.20.13):

[atot,ac,ad,pd] = attwatt(d,ed,f,be,sigma,tand)

% d = coating thickness [meters]

% ed = relative dielectric constant of coating (ed>1)

% f = vector of frequencies [Hz]

% be = propagation wavenumber [rads/m], same size as f, obtained from GOUBAU

% sigma = conductivity of inner conductor [siemens/m]

% tand = loss tangent of dielectric coating, scalar, or, size(f)

%

% atot = total attenuation coefficient [nepers/m], size(f)

% ac = attenuation due to conductor [nepers/m], size(f)

% ad = attenuation due to dielectric [nepers/m], size(f)

% pd = proportion of transmitted power in dielectric coating

%

% conversions: dB/m = 8.68589 * atot = 20*log10(exp(1)) * atot

% dB/100ft = 8.68589 * 30.48 * atot

530 10. Surface Waveguides

Example 10.20.1: This example is from [988] and demonstrates that the planar version behaves
very similarly to the Goubau line with respect to the dependence of the wavenumber β and
attenuation α on frequency and coating thickness.

Consider a copper planar conductor with conductivity σ = 5.8×107 siemens/m, covered
with a dielectric coating of permittivity εd = 4. Three coating thicknesses are compared,
d1 = 1 mm, d2 = 5 mm, and d3 = 10 mm, over the frequency range, 0.3 ≤ f ≤ 30 GHz.
Figs. 10.20.1 and 10.20.2 show the propagation and lateral wavenumbers β,γ, as well as
the phase velocities, vph = ω/β, and percentage of power in the dielectric for the three
thicknesses.
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Fig. 10.20.1 Propagation and lateral wavenumbers, β,γ, vs. frequency.
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Fig. 10.20.2 Phase velocities and power in dielectric.

As in the Goubau line case, the wavenumber β switches gradually from near β = k0 to near
β = k0

√
εd. As the coating thickness and frequency increase, the power confinement in the

coating increases, while the field strength outside the coating decreases with distance, as
measured by the value of the decay constant γ−1. The following MATLAB code generates
the graphs,

c0 = 299792458;
ed = 4;



10.20. Planar Limit of the Goubau Line 531

d1 = 1e-3; d2 = 5e-3; d3 = 10e-3; % meters

ff = 3*logspace(-1,1,100); % 0.3 <= ff <= 30 GHz
f = ff * 1e9; % Hz

rel = 0.01; % relaxation parameter

[be1,ga1,h1,N1,E1,pd1] = attw(d1,ed,f,rel);
[be2,ga2,h2,N2,E2,pd2] = attw(d2,ed,f,rel);
[be3,ga3,h3,N3,E3,pd3] = attw(d3,ed,f,rel);

v1 = w./be1/c0; v2 = w./be2/c0; v3 = w./be3/c0;

figure; loglog(ff,be1,’b-’, ff,be2,’r--’, ff,be3, ’k:’)
figure; loglog(ff,ga1,’b-’, ff,ga2,’r--’, ff,ga3, ’k:’)
figure; semilogx(ff,v1,’b-’, ff,v2,’r--’,ff,v3,’b:’)
figure; semilogx(ff,100*pd1,’b-’, ff,100*pd2,’r--’, ff,100*pd3,’k:’);

The attenuations in the conductor and the dielectric are shown in Fig. 10.20.3. The loss
tangent in the dielectric was assumed in [988] to arise from a very small conductivity, i.e.,

tanθ = σd
ωεd

= σd
ωε0 εd

, σd = 6.6667×10−4 siemens/m
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Fig. 10.20.3 Attenuations in conductor and dielectric coating.

The MATLAB code generating the graphs was,

ep0 = 8.854187817e-12; % NIST value, vacuum permittivity
sigma = 5.8e7; % copper conductor
sigd = 6.6667e-4; % dielectric

w = 2*pi*f;
tand = sigd./w/ep0/ed;

[at1,ac1,ad1] = attwatt(d1,ed,f,be1,sigma,tand);
[at2,ac2,ad2] = attwatt(d2,ed,f,be2,sigma,tand);
[at3,ac3,ad3] = attwatt(d3,ed,f,be3,sigma,tand);

db = 8.68589; % convert to dB/m
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figure; loglog(ff,db*ac1,’b-’, ff,db*ac2,’r--’, ff,db*ac3,’k:’);
figure; loglog(ff,db*ad1,’b-’, ff,db*ad2,’r--’, ff,db*ad3,’k:’);

As expected, the attenuation in the dielectric increases with thickness and frequency. ��

10.21 Problems

10.1 Prove Eq. (10.3.8). To do so, introduce the following polar forms,

−εf = εR + jεI = |εf |ejθ , −εf − εc = εR − εc + jεI = |εf + εc|ejφ

Then, using Eqs. (10.2.6) and some trig identities, show that Eq. (10.3.8) reduces to the equiv-
alent condition,

|εf |
(
sinθ+ sin(φ− θ))+ εc(sinθ− sinφ)= εI

(
1+ εc

|εf |

)

Then, verify this condition by first proving the relationships,

sin(φ− θ)= εc εI
|εf | · |εf + εc| , sinθ = εI

|εf | , sinφ = εI
|εf + εc|

10.2 Prove Eqs. (10.3.9)–(10.3.11) and thereby prove the equality vg = ven for the lossless case of
surface plasmons along a single metal-dielectric interface.

10.3 Using some hyperbolic trigonometric identities, show that Eq. (10.1.6) for the transverse
magnetic field in a plasmonic waveguide can be written in the following equivalent forms,
which are commonly found in the literature,

Hy(x)= H1 ·

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cosh
(
γ(x− a))− pcαc

γ
sinh

(
γ(x− a)) , |x| ≤ a

e−αc(x−a) , x ≥ a
[
cosh(2γa)+pcαc

γ
sinh(2γa)

]
eαs(x+a) , x ≤ −a

(10.21.1)

and

Hy(x)= H2 ·

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cosh
(
γ(x+ a))+ psαs

γ
sinh

(
γ(x+ a)) , |x| ≤ a

[
cosh(2γa)+psαs

γ
sinh(2γa)

]
e−αc(x−a) , x ≥ a

eαs(x+a) , x ≤ −a

(10.21.2)

and show that the new constants H1,H2 are related to H0 of Eq. (10.1.6) by

H1 = H0 cosh(γa+ψ) , H2 = H0 cosh(γa−ψ)

10.4 Consider a symmetric MDM plasmonic waveguide with film width 2a and permittivities εf
and εc = εs, and assume lossless media so that εf is real positive and εc, real negative. We
saw at the end of Sec. 10.4 that complex modes can exist in the lossless case that are highly
damped and carry no net power in the propagation direction. Consider a TM0 complex mode
with β = βR − jβI , γ = γR + jγI , and αc = αR + jαI , satisfying the characteristic equation,
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tanh(γa)= −pcαc/γ, pc = εf/εc. The magnetic field is given by Eq. (10.1.5) with ψ = 0.
By integrating the z-component of the Poynting vector over the transverse x-direction, show
that up to an overall positive constant, the powers flowing within the dielectric film and
metal sides are given by

Pf = βRεf

[
sinh(2γRa)

2γR
+ sin(2γIa)

2γI

]
, 2Pc = βRεc

[
cosh(2γRa)+ cos(2γIa)

2αR

]

Using the characteristic equation, prove that Pf = −2Pc, so that the net power is zero,
P = Pf + 2Pc = 0. Hint: Prove and use the following two results, αRαI = γRγI , and

tanh
(
(γR + jγI)a

) = sinh(2γRa)+j sin(2γIa)
cosh(2γRa)+ cos(2γIa)

10.5 Consider a symmetric MDM plasmonic waveguide with film width 2a and permittivities εf
for the dielectric film and εc = εs for the metal sides. Let β,γ,αc be the propagation
parameters for the corresponding symmetric solution satisfying the characteristic equation,
γ tanh(γa)= −pcαc, where pc = εf/εc. Show that if εc is changed by a small amount Δεc,
that is, εc → εc +Δεc, then the propagation wavenumber changes from β to β+Δβ, where

Δβ = γ
β
·Δγ , Δγ =

k0pc
(
γ
k0

)( α2
c

k2
0εc

+ 1

2

)

(k0a)
(
γ2αc
k3

0

)(
1− p

2
cα2

c
γ2

)
− pc(εf − εc)

·Δεc (10.21.3)

10.6 Computer Experiment: Anomalous Complex Modes. This problem is based on [952]. Consider
an MDM guide that has εc = εs = −10, εf = 1, and film width 2a = λ0/4. It corresponds to
a lossless case, and therefore the modes will come in pairs, ±βR − jβI , and (except for the
even q = 0 mode) carry no net power. The following two tables show the computed even
and odd modes, where the index q and the ± signs refer to Eq. (10.9.2), and even and odd
correspond to the indexm = 0,1 in Eq. (10.9.2).

q β/k0 (even modes) γ/k0 αc/k0

0 1.21340 0.68728j 3.38709

1 − 0.07361− 3.87013j 0.07127− 3.99720j 0.12755− 2.23356j
1 + −0.07361− 3.87013j 0.07127+ 3.99720j 0.12755+ 2.23356j
2 − 0.11711− 7.93691j 0.11620− 7.99965j 0.12768− 7.27992j
2 + −0.11711− 7.93691j 0.11620+ 7.99965j 0.12768+ 7.27992j
3 − 0.12317− 11.95816j 0.12274− 11.99990j 0.12772− 11.53251j
3 + −0.12317− 11.95816j 0.12274+ 11.99990j 0.12772+ 11.53251j

q β/k0 (odd modes) γ/k0 αc/k0

0 −1.50304j 1.80531j 2.78224

1 − 0.10788− 5.91526j 0.10637− 5.99917j 0.12764− 4.99950j
1 + −0.10788− 5.91526j 0.10637+ 5.99917j 0.12764+ 4.99950j
2 − 0.12109− 9.94970j 0.12048− 9.99982j 0.12771− 9.43388j
2 + −0.12109− 9.94970j 0.12048+ 9.99982j 0.12771+ 9.43388j
3 − 0.12441− 13.96418j 0.12409− 13.99993j 0.12773− 13.60144j
3 + −0.12441− 13.96418j 0.12409+ 13.99993j 0.12773+ 13.60144j

a. Following Example 10.9.1, write MATLAB code that verifies the entries in the above
tables. In addition, calculate the corresponding error norms of the two tables.
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b. For all cases, calculate the net power for each mode, as well as the amount of power
and its direction flowing in the metal and the dielectric media. Note that the q = 0
even mode is the fundamental G-SPP mode. The q = 0 odd mode is truly evanescent in
the sense that it has βR = 0 and βI = − Im(β)> 0, and it is laterally confined since αc
is positive real. This mode carries no power in any of the three media—explain why.

10.7 Verify the equality Eq. (10.16.9). As a preliminary step, use the definition, γ2
c = k2

0εc − β2 =
k2

0(εR − jεI)−(βR − jβI)2, to show the following relationship,

2βI Re
[
βε∗c ]−|β|2εI = εc Im[γ2

c]+εI γ2
c

10.8 The Zenneck surface wave was discussed in Sec. 10.17 with field solutions given by Eqs. (10.17.3).
Consider a rectangular volume, LxLyLz, within the conductor whose top side coincides with
the interface with the air side, as shown below.

You may assume Ly = 1 meter. Following a similar discussion as that carried out for the
Sommerfeld wire, show that the power flowing into this volume from all sides is given by,

Pin =ω 1

2
ε0|E0|2

(
1− e−2βILz

)(
1− e−2αcLx

)[ Re[γcε∗c ]
2βI · |γc|2 +

Re[βε∗c ]
2αc · |γc|2

]

where αc = − Im(γc)> 0. Similarly, show that the power dissipated into Ohmic losses
within the LxLyLz volume is given by,

Ploss =ω 1

2
ε0|E0|2

(
1− e−2βILz

)(
1− e−2αcLx

)[ εI|β|2 + εI|γc|2
2βI · 2αc · |γc|2

]

where εI = − Im(εc). Finally, using the relationship γ2
c = k2

0εc − β2, show that Pin = Ploss.

10.9 The planar limit of the Goubau line discussed in Sec. 10.20 is obtained in the limit a,b→∞,
such that the thickness, d = b − a, is kept constant. Show that the attenuation coefficient
(10.20.12) of the planar case is obtained as the limit of the Goubau line attenuation (10.19.24).
To do so, use the asymptotic forms (10.20.2) inside the integrands of Eqs. (10.19.22) to show
the following limiting forms for the U,V,W,

U ≈ 1

a
·
[
d+ sin(2hd)

2h

]
, V ≈ 1

a
·
[
d− sin(2hd)

2h

]
, W ≈ b

a2
· cos2(hd)

γ

Then, use these into (10.19.24) and apply the planar limit.


