Surface Waveguides

surface
waves on
metal-dielectric interfaces

Fig. 10.1.1 Plasmonic waveguide depicting TM modes in either a DMD or MDM configuration.
transverse attenuation coefficients α_{s}, α_{c} in the substrate and cladding have positive real parts, thus, the x-dependence of the fields is as follows for $x<-a$ and $x>a$:

$$
e^{-\alpha_{s}|x|} \text { for } x<-a \text { (substrate) and } e^{-\alpha_{c} x} \text { for } x>a \text { (cladding) }
$$

As in the asymmetric dielectric guide of the previous section,

$$
\begin{align*}
& \alpha_{s}^{2}=\beta^{2}-k_{0}^{2} \varepsilon_{s} \\
& \alpha_{c}^{2}=\beta^{2}-k_{0}^{2} \varepsilon_{C} \tag{10.1.1}
\end{align*}
$$

where $k_{0}=2 \pi / \lambda_{0}$ is the vacuum wavenumber and λ_{0} the vacuum wavelength, with operating frequency $f=c_{0} / \lambda_{0}$ in Hz. Acceptable solutions must have z-propagation wavenumber β with negative imaginary part, $\beta=\beta_{R}-j \beta_{I}, \beta_{I} \geq 0$, so that the wave attenuates exponentially as it propagates in the positive z-direction:

$$
e^{-j \beta z}=e^{-j\left(\beta_{R}-j \beta_{I}\right) z}=e^{-j \beta_{R} z} e^{-\beta_{I} z}
$$

A measure of the effective propagation distance is $L=\beta_{I}^{-1}$, or $L=\left(2 \beta_{I}\right)^{-1}$ if it is referred to power, and the attenuation is $20 \log _{10}(e) \beta_{I}=8.686 \beta_{I}$ in units of dB / m.

Within the film ε_{f}, the transverse cutoff wavenumber satisfies $k_{f}^{2}=k_{0}^{2} \varepsilon_{f}-\beta^{2}$. If the film is a metal with a dielectric constant ε_{f} with negative real part, then k_{f}^{2} will be essentially negative or k_{f} imaginary, and therefore, it makes sense to work with the "attenuation" coefficient defined by $\gamma=j k_{f}$, so that $\gamma^{2}=-k_{f}^{2}$,

$$
\begin{equation*}
\gamma^{2}=\beta^{2}-k_{0}^{2} \varepsilon_{f} \tag{10.1.2}
\end{equation*}
$$

Thus, within the film, instead of assuming an x-dependence that is a linear combination of oscillatory $\cos \left(k_{f} x\right)$ and $\sin \left(k_{f} x\right)$ terms, we may work with a linear combination of hyperbolic terms $\sinh (\gamma x)$ and $\cosh (\gamma x)$-referred to as plasmonic solutions.

Another way to justify the change in notation to $\gamma=j k_{f}$, is to note that because the metals are lossy, the fields cannot penetrate too deeply into the metal and will be essentially surface waves that are concentrated primarily at the metal-dielectric interfaces (i.e., at $x= \pm a$) and attenuating away from them. By contrast, in the dielectric
waveguide of the previous sections, the fields typically peak in the center of the film. In other words, in plasmonic waveguides most of the field energy is carried at or near the metal-dielectric interfaces instead of at the center of the film.

We will consider only TM plasmonic modes, although in more complicated media, such as magnetic materials and metamaterials, TE modes are also possible. The recent book [934] includes examples of all possible types of media and modes.

The TM modes are obtained by solving Eqs. (9.3.10) in each region and applying the boundary conditions. Thus, we must solve in each region:
$\left(\partial_{X}^{2}-\gamma^{2}\right) E_{z}=0, \quad E_{X}=-\frac{j \beta}{-\gamma^{2}} \partial_{X} E_{Z}, \quad H_{y}=\frac{1}{\eta_{T M}} E_{X}, \quad \eta_{T M}=\frac{\beta}{\omega \epsilon_{0} \varepsilon}, \quad \gamma^{2}=\beta^{2}-k_{0}^{2} \varepsilon$ or, more specifically,

$$
\begin{array}{llll}
\text { for }|x| \leq a, & \left(\partial_{x}^{2}-\gamma^{2}\right) E_{Z}=0, & \gamma^{2}=\beta^{2}-k_{0}^{2} \varepsilon_{f}, & \eta_{T M}=\beta /\left(\omega \epsilon_{0} \varepsilon_{f}\right) \\
\text { for } x \geq a, & \left(\partial_{x}^{2}-\alpha_{c}^{2}\right) E_{Z}=0, & \alpha_{c}^{2}=\beta^{2}-k_{0}^{2} \varepsilon_{c}, & \eta_{T M}=\beta /\left(\omega \epsilon_{0} \varepsilon_{c}\right) \\
\text { for } x \leq-a, & \left(\partial_{x}^{2}-\alpha_{s}^{2}\right) E_{Z}=0, & \alpha_{s}^{2}=\beta^{2}-k_{0}^{2} \varepsilon_{s}, & \eta_{T M}=\beta /\left(\omega \epsilon_{0} \varepsilon_{s}\right)
\end{array}
$$

The solutions for $E_{Z}(x)$ that automatically satisfy the tangential E-field boundary conditions at $x= \pm a$ can be expressed as follows, where E_{0} is a constant and ψ, a parameter to be determined:

$$
E_{Z}(x)=\left\{\begin{array}{cl}
E_{0} \sinh (\gamma x+\psi), & |x| \leq a \tag{10.1.3}\\
E_{0} \sinh (\gamma a+\psi) e^{-\alpha_{c}(x-a)}, & x \geq a \\
-E_{0} \sinh (\gamma a-\psi) e^{\alpha_{s}(x+a)}, & x \leq-a
\end{array}\right.
$$

The complete space-time dependence is $E_{Z}(x) e^{j \omega t-j \beta z}$. Eq. (10.1.3) results in the following transverse E-field:

$$
E_{X}(x)= \begin{cases}-\frac{j \beta}{-\gamma^{2}} \partial_{x} E_{Z}=E_{0} \frac{j \beta}{\gamma} \cosh (\gamma x+\psi), & |x| \leq a \tag{10.1.4}\\ -\frac{j \beta}{-\alpha_{c}^{2}} \partial_{x} E_{Z}=-E_{0} \frac{j \beta}{\alpha_{c}} \sinh (\gamma a+\psi) e^{-\alpha_{c}(x-a)}, & x \geq a \\ -\frac{j \beta}{-\alpha_{s}^{2}} \partial_{x} E_{Z}=-E_{0} \frac{j \beta}{\alpha_{s}} \sinh (\gamma a-\psi) e^{\alpha_{s}(x+a)}, & x \leq-a\end{cases}
$$

The corresponding transverse magnetic fields are then obtained from $H_{y}=E_{X} / \eta_{T M}$.

$$
H_{y}(x)= \begin{cases}j \omega \epsilon_{0} E_{0} \frac{\varepsilon_{f}}{\gamma} \cosh (\gamma x+\psi), & |x| \leq a \\ -j \omega \epsilon_{0} E_{0} \frac{\varepsilon_{c}}{\alpha_{c}} \sinh (\gamma a+\psi) e^{-\alpha_{c}(x-a)}, & x \geq a \\ -j \omega \epsilon_{0} E_{0} \frac{\varepsilon_{s}}{\alpha_{s}} \sinh (\gamma a-\psi) e^{\alpha_{s}(x+a)}, & x \leq-a\end{cases}
$$

which, using the continuity conditions (10.1.7), can also be written as,

$$
H_{y}(x)= \begin{cases}H_{0} \cosh (\gamma x+\psi), & |x| \leq a \tag{10.1.6}\\ H_{0} \cosh (\gamma a+\psi) e^{-\alpha_{c}(x-a)}, & x \geq a \\ H_{0} \cosh (\gamma a-\psi) e^{\alpha_{s}(x+a)}, & x \leq-a\end{cases}
$$

where $H_{0}=j \omega \epsilon_{0} E_{0} \varepsilon_{f} / \gamma$. The continuity of the tangential H-field of Eq. (10.1.5) at the interfaces is equivalent to the continuity of the normal D-field, that is, εE_{X}, resulting into the two conditions:

$$
\begin{align*}
& \frac{\varepsilon_{f}}{\gamma} \cosh (\gamma a+\psi)=-\frac{\varepsilon_{c}}{\alpha_{c}} \sinh (\gamma a+\psi) \\
& \frac{\varepsilon_{f}}{\gamma} \cosh (\gamma a-\psi)=-\frac{\varepsilon_{s}}{\alpha_{s}} \sinh (\gamma a-\psi)
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
& \tanh (\gamma a+\psi)=-\frac{p_{c} \alpha_{c}}{\gamma} \tag{10.1.7}\\
& \tanh (\gamma a-\psi)=-\frac{p_{s} \alpha_{s}}{\gamma}
\end{align*}
$$

where we defined as in Eq. (9.12.23):

$$
\begin{equation*}
p_{c}=\frac{\varepsilon_{f}}{\varepsilon_{C}}, \quad p_{s}=\frac{\varepsilon_{f}}{\varepsilon_{s}} \tag{10.1.8}
\end{equation*}
$$

The two conditions (10.1.7), together with,

$$
\begin{align*}
& \gamma^{2}=\beta^{2}-k_{0}^{2} \varepsilon_{f} \\
& \alpha_{c}^{2}=\beta^{2}-k_{0}^{2} \varepsilon_{c} \tag{10.1.9}\\
& \alpha_{s}^{2}=\beta^{2}-k_{0}^{2} \varepsilon_{s}
\end{align*}
$$

allow the determination of the parameters $\beta, \gamma, \alpha_{c}, \alpha_{s}$, and ψ. Eqs. (10.1.7) can also be written in the forms:

$$
\begin{equation*}
e^{2(\gamma a+\psi)}=\frac{\gamma-p_{c} \alpha_{c}}{\gamma+p_{c} \alpha_{c}}, \quad e^{2(\gamma a-\psi)}=\frac{\gamma-p_{s} \alpha_{s}}{\gamma+p_{s} \alpha_{s}} \tag{10.1.10}
\end{equation*}
$$

which immediately decouple into,

$$
\begin{align*}
e^{4 \gamma a} & =\frac{\left(\gamma-p_{c} \alpha_{c}\right)\left(\gamma-p_{s} \alpha_{s}\right)}{\left(\gamma+p_{c} \alpha_{c}\right)\left(\gamma+p_{s} \alpha_{s}\right)} \tag{10.1.11}\\
e^{4 \psi} & =\frac{\left(\gamma-p_{c} \alpha_{c}\right)\left(\gamma+p_{s} \alpha_{s}\right)}{\left(\gamma+p_{c} \alpha_{c}\right)\left(\gamma-p_{s} \alpha_{s}\right)} \tag{10.1.12}
\end{align*}
$$

and can also be written in the equivalent forms:

$$
\begin{align*}
& \tanh (2 \gamma a)=-\frac{\gamma\left(p_{c} \alpha_{c}+p_{s} \alpha_{s}\right)}{\gamma^{2}+p_{c} \alpha_{c} p_{s} \alpha_{s}} \tag{10.1.13}\\
& \tanh (2 \psi)=-\frac{\gamma\left(p_{c} \alpha_{c}-p_{s} \alpha_{s}\right)}{\gamma^{2}-p_{c} \alpha_{c} p_{s} \alpha_{s}} \tag{10.1.14}
\end{align*}
$$

The quantities $\beta, \gamma, \alpha_{c} . \alpha_{s}$ may be determined from Eqs. (10.1.9) and (10.1.11), or (10.1.13). Then, the parameter ψ can be calculated from Eq. (10.1.14). The quantity ψ is defined up to an integer multiple of $j \pi / 2$ because of the identity $\tanh (2 \psi \pm j m \pi)=$ $\tanh (2 \psi)$, and the integer m serves to label particular modes. For example, a possible way of introducing the integer m in the inverse of Eqs. (10.1.7) is:

$$
\begin{aligned}
& \gamma a+\psi=\operatorname{atanh}\left(-\frac{p_{c} \alpha_{c}}{\gamma}\right) \\
& \gamma a-\psi=\operatorname{atanh}\left(-\frac{p_{s} \alpha_{S}}{\gamma}\right)-j m \pi
\end{aligned}
$$

which result into:

$$
\begin{align*}
\gamma a & =\frac{1}{2} \operatorname{atanh}\left(-\frac{p_{c} \alpha_{c}}{\gamma}\right)+\frac{1}{2} \operatorname{atanh}\left(-\frac{p_{s} \alpha_{S}}{\gamma}\right)-\frac{1}{2} j m \pi \\
\psi & =\frac{1}{2} \operatorname{atanh}\left(-\frac{p_{c} \alpha_{c}}{\gamma}\right)-\frac{1}{2} \operatorname{atanh}\left(-\frac{p_{s} \alpha_{s}}{\gamma}\right)+\frac{1}{2} j m \pi \tag{10.1.15}
\end{align*}
$$

Eq. (10.1.13) has a very rich solution structure because, in general, the quantities $\beta, \gamma, \alpha_{c}, \alpha_{s}$ are complex-valued when the media are lossy. See, for example, Refs. [941$944,954,955]$ for a discussion of the variety of possible solutions.

The above choice of the m-terms was made so that the cases $m=0$ and $m=1$ will correspond to the TM_{0} and TM_{1} modes, respectively. Additional $j \pi / 2$ terms may arise depending on the values of the parameters. For example, if $\epsilon_{c}, \epsilon_{s}$ are real and negative and ϵ_{f} is positive as in an MDM case, and if $\left|p_{c}\right| \alpha_{c} / \gamma>1$ and $\left|p_{s}\right| \alpha_{s} / \gamma>1$, then using the identity,

$$
\operatorname{atanh}\left(\frac{1}{x}\right)=\operatorname{atanh}(x)+\operatorname{sign}(x) \frac{j \pi}{2}, \quad x \text { real, }|x|<1
$$

we may rewrite Eq. (10.1.15) in the form:

$$
\begin{align*}
\gamma a & =\frac{1}{2} \operatorname{atanh}\left(-\frac{\gamma}{p_{c} \alpha_{c}}\right)+\frac{1}{2} \operatorname{atanh}\left(-\frac{\gamma}{p_{s} \alpha_{s}}\right)-\frac{1}{2} j(m-1) \pi \\
\psi & =\frac{1}{2} \operatorname{atanh}\left(-\frac{\gamma}{p_{c} \alpha_{c}}\right)-\frac{1}{2} \operatorname{atanh}\left(-\frac{\gamma}{p_{s} \alpha_{s}}\right)+\frac{1}{2} j m \pi \tag{10.1.16}
\end{align*}
$$

Oscillatory Modes

In addition to the plasmonic waveguide modes, there may also be oscillatory modes. The plasmonic solutions have a value for γ that is predominantly real-valued, with the fields peaking at the metal-dielectric interfaces, whereas the oscillatory modes have a γ that is dominantly imaginary. In fact, replacing, $\gamma=j k_{f}$, in Eq. (10.1.13) and using the identity, $\tanh (j x)=j \tan (x)$, we obtain the characteristic equation for the oscillatory modes:

$$
\begin{equation*}
\tan \left(2 k_{f} a\right)=\frac{k_{f}\left(p_{c} \alpha_{c}+p_{s} \alpha_{s}\right)}{k_{f}^{2}-p_{c} \alpha_{c} p_{s} \alpha_{s}} \quad \text { (oscillatory modes) } \tag{10.1.17}
\end{equation*}
$$

where $k_{f}=\sqrt{k_{0}^{2} \varepsilon_{f}-\beta^{2}}$. In an MDM configuration, k_{f} is predominantly real, whereas in an DMD configuration that has $\operatorname{Re}\left(\varepsilon_{f}\right)<0, k_{f}$ will be predominantly imaginary, i.e., of the plasmonic type. Thus, Eq. (10.1.17) applies to the MDM case and admits both TE and TM type of solutions, with the TE ones obtained by replacing, $p_{c}=p_{s}=1$, as in Sec. 9.12. Setting $\psi=j \phi$, the two matching conditions (10.1.7) read now

$$
\begin{align*}
& \tan \left(k_{f} a+\phi\right)=\frac{p_{c} \alpha_{c}}{k_{f}} \\
& \tan \left(k_{f} a-\phi\right)=\frac{p_{s} \alpha_{s}}{k_{f}} \tag{10.1.18}
\end{align*}
$$

which can be inverted and solved in terms of the mode number m :

$$
\begin{align*}
k_{f} a & =\frac{1}{2} \operatorname{atan}\left(\frac{p_{c} \alpha_{c}}{k_{f}}\right)+\frac{1}{2} \operatorname{atan}\left(\frac{p_{s} \alpha_{s}}{k_{f}}\right)+\frac{1}{2} m \pi \\
\phi & =\frac{1}{2} \operatorname{atan}\left(\frac{p_{c} \alpha_{c}}{k_{f}}\right)-\frac{1}{2} \operatorname{atan}\left(\frac{p_{s} \alpha_{s}}{k_{f}}\right)+\frac{1}{2} m \pi \tag{10.1.19}
\end{align*}
$$

These apply to both the TE and TM cases. For the TM case of the MDM configuration, because p_{c}, p_{s} are dominantly negative-real, we may use the identity,

$$
\operatorname{atan}(x)=\frac{\pi}{2}+\operatorname{atan}\left(-\frac{1}{x}\right), \quad x>0
$$

applied, for example, with $x=-k_{f} / p_{c} \alpha_{c}$, to rewrite Eq. (10.1.19) in the form:

$$
\begin{align*}
k_{f} a & =\frac{1}{2} \operatorname{atan}\left(-\frac{k_{f}}{p_{c} \alpha_{c}}\right)+\frac{1}{2} \operatorname{atan}\left(-\frac{k_{f}}{p_{s} \alpha_{s}}\right)+\frac{1}{2}(m-1) \pi \\
\phi & =\frac{1}{2} \operatorname{atan}\left(-\frac{k_{f}}{p_{c} \alpha_{c}}\right)-\frac{1}{2} \operatorname{atan}\left(-\frac{k_{f}}{p_{s} \alpha_{s}}\right)+\frac{1}{2} m \pi \tag{10.1.20}
\end{align*}
$$

We will use this form to determine the cutoff waveguide thicknesses of certain modes. Replacing $\gamma=j k_{f}$ and $\psi=j \phi$ in Eq. (10.1.6), we also obtain the transverse magnetic field of the oscillatory TM modes:

$$
H_{y}(x)= \begin{cases}H_{0} \cos \left(k_{f} x+\phi\right), & |x| \leq a \tag{10.1.21}\\ H_{0} \cos \left(k_{f} a+\phi\right) e^{-\alpha_{c}(x-a)}, & x \geq a \\ H_{0} \cos \left(k_{f} a-\phi\right) e^{\alpha_{s}(x+a)}, & x \leq-a\end{cases}
$$

where $H_{0}=\omega \epsilon_{0} E_{0} \varepsilon_{f} / k_{f}$. In the examples below, we look at the special roles played by the TM_{0} plasmonic mode ($m=0$), and the TM_{1} plasmonic and oscillatory modes ($m=1$).

Relationship to Surface Plasmon Resonance

We note also that Eq. (10.1.11) is equivalent to the surface plasmon resonance condition discussed in Sec. 8.5. The reflection coefficient Γ of the Kretschmann-Raether configuration of Fig. 8.5.2 is given by Eq. (8.5.7),

$$
\Gamma=\frac{\rho_{a}+\rho_{b} e^{-2 j k_{z} d}}{1+\rho_{a} \rho_{b} e^{-2 j k_{z} d}}, \quad \rho_{a}=\frac{k_{z} \varepsilon_{a}-k_{z a} \varepsilon}{k_{z} \varepsilon_{a}+k_{z a} \varepsilon}, \quad \rho_{b}=\frac{k_{z b} \varepsilon-k_{z} \varepsilon_{b}}{k_{z b} \varepsilon+k_{z} \varepsilon_{b}}
$$

The surface plasmon resonance condition [608] corresponds to a pole of Γ, that is, the vanishing of the denominator, $1+\rho_{a} \rho_{b} e^{-2 j k_{z} d}=0$, which is indeed the same as Eq. (10.1.11). To see this, we map the notation of Sec. 8.5 to that of the present section:

$$
x \rightarrow z, z \rightarrow x, k_{z} \rightarrow-j \gamma, k_{z a} \rightarrow-j \alpha_{s}, k_{z b} \rightarrow-j \alpha_{c}, \varepsilon \rightarrow \varepsilon_{f}, \varepsilon_{a} \rightarrow \varepsilon_{s}, \varepsilon_{b} \rightarrow \varepsilon_{c}
$$

which imply,

$$
\rho_{a} \rightarrow \frac{\gamma-p_{s} \alpha_{s}}{\gamma+p_{s} \alpha_{s}}, \quad \rho_{b} \rightarrow-\frac{\gamma-p_{c} \alpha_{c}}{\gamma+p_{c} \alpha_{c}}
$$

$$
1+\rho_{a} \rho_{b} e^{-2 j k_{z} d}=0 \rightarrow 1-\left(\frac{\gamma-p_{s} \alpha_{s}}{\gamma+p_{s} \alpha_{s}}\right)\left(\frac{\gamma-p_{c} \alpha_{c}}{\gamma+p_{c} \alpha_{c}}\right) e^{-4 \gamma a}=0
$$

Symmetric Configuration

When the cladding and substrate media are the same, i.e., $\varepsilon_{c}=\varepsilon_{s}$, then $\alpha_{c}=\alpha_{s}$ and $p_{c}=p_{s}$, and the characteristic equations (10.1.7) simplify further. Indeed, we note from Eq. (10.1.14) that $e^{4 \psi}=1$, which implies the two basic cases $\psi=0$ and $\psi=j \pi / 2$. Noting the identity $\tanh (x \pm j \pi / 2)=\operatorname{coth}(x)$, the two characteristic equations (10.1.7) become a single one, given as follows for the two cases of ψ :

$$
\begin{array}{lll}
\text { (even) } & \psi=0, \quad e^{2 \gamma a}=+\frac{\gamma-p_{c} \alpha_{c}}{\gamma+p_{c} \alpha_{c}}, & \tanh (\gamma a)=-\frac{p_{c} \alpha_{c}}{\gamma} \\
\text { (odd) } & \psi=\frac{j \pi}{2}, \quad e^{2 \gamma a}=-\frac{\gamma-p_{c} \alpha_{c}}{\gamma+p_{c} \alpha_{c}}, & \operatorname{coth}(\gamma a)=-\frac{p_{c} \alpha_{c}}{\gamma} \tag{10.1.22}
\end{array}
$$

The labeling as even or odd (symmetric or antisymmetric) refers to the symmetry or antisymmetry of the transverse electric and magnetic fields $E_{x}(x)$ and $H_{y}(x)$ as functions of x within the film region. ${ }^{\dagger}$ Indeed, it is evident from Eq. (10.1.4) that if $\psi=0$, then $E_{X}(x)$ is proportional to $\cosh (\gamma x)$, an even function of x, and if $\psi=j \pi / 2$, then because of the identity $\cosh (x+j \pi / 2)=j \sinh (x)$, the field $E_{x}(x)$ will be proportional to $\sinh (\gamma x)$, an odd function of x.

The nomenclature carries over loosely to the asymmetric waveguide that has $\epsilon_{c} \neq \epsilon_{s}$, with the "symmetric/even" case corresponding to a value of ψ that is predominantly real, and the "antisymmetric/odd" one corresponding to a ψ whose imaginary part is near $j \pi / 2$. Examples of these are given below.

[^0]
Power Transfer

The z-component of the Poynting vector gives the power flow in the z-direction per unit $x y$ area. Since $E_{\chi}=\eta_{T M} H_{y}, \eta_{T M}=\beta /(\omega \epsilon)$, we obtain from Eq. (10.1.6),

$$
\mathcal{P}_{z}(x)=\frac{1}{2} \operatorname{Re}\left[E_{X}(x) H_{y}^{*}(x)\right]=\frac{1}{2} \operatorname{Re}\left(\eta_{T M}\right)\left|H_{y}(x)\right|^{2}
$$

and since $k_{0}=\omega / c_{0}$, we may write $\eta_{T M}$ in the form,

$$
\eta_{T M}=\frac{\beta}{\omega \epsilon}=\frac{\beta}{k_{0} c_{0} \epsilon_{0} \varepsilon}=\eta_{0} \frac{\beta}{k_{0} \varepsilon}, \quad \eta_{0}=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}
$$

The Poynting vector is then in the three regions,

$$
\mathcal{P}_{Z}(x)=\frac{1}{2} \eta_{0}\left|H_{0}\right|^{2} \begin{cases}\operatorname{Re}\left(\frac{\beta}{k_{0} \varepsilon_{f}}\right)|\cosh (\gamma x+\psi)|^{2}, & |x| \leq a \tag{10.1.23}\\ \operatorname{Re}\left(\frac{\beta}{k_{0} \varepsilon_{c}}\right)|\cosh (\gamma a+\psi)|^{2} e^{-2 \alpha_{c R}(x-a)}, & x \geq a \\ \operatorname{Re}\left(\frac{\beta}{k_{0} \varepsilon_{s}}\right)|\cosh (\gamma a-\psi)|^{2} e^{2 \alpha_{s R}(x+a)}, & x \leq-a\end{cases}
$$

where $\alpha_{c R}, \alpha_{s R}$ denote the real parts of α_{c}, α_{s}. Integrating (10.3.2) over an $x y$ area, $d S=d x \cdot(1 \mathrm{~m}$ along $y)$, we obtain the powers transmitted (per unit y-length) along the z-direction within each region. Dropping the overall unimportant factor $\eta_{0}\left|H_{0}\right|^{2} / 2$, and denoting the real and imaginary parts of γ, ψ by γ_{R}, ψ_{R} and γ_{I}, ψ_{I}, we have,

$$
\begin{align*}
& P_{f}=\operatorname{Re}\left(\frac{\beta}{k_{0} \varepsilon_{f}}\right)\left[\frac{\sinh \left(2 \gamma_{R} a\right) \cosh \left(2 \psi_{R}\right)}{2 \gamma_{R}}+\frac{\sin \left(2 \gamma_{I} a\right) \cos \left(2 \psi_{I}\right)}{2 \gamma_{I}}\right] \\
& P_{c}=\operatorname{Re}\left(\frac{\beta}{k_{0} \varepsilon_{c}}\right) \frac{|\cosh (\gamma a+\psi)|^{2}}{2 \alpha_{c R}} \tag{10.1.24}\\
& P_{s}=\operatorname{Re}\left(\frac{\beta}{k_{0} \varepsilon_{s}}\right) \frac{|\cosh (\gamma a-\psi)|^{2}}{2 \alpha_{s R}}
\end{align*}
$$

and the net power is,

$$
\begin{equation*}
P=P_{f}+P_{c}+P_{s} \tag{10.1.25}
\end{equation*}
$$

These expressions must be multiplied by $e^{-2 \beta_{I} Z}$, where $\beta=\beta_{R}-j \beta_{I}$, for the attenuation of power with propagation distance z. These also apply to the lossless case, where we must replace $\sin \left(2 \gamma_{I} a\right) /\left.\left(2 \gamma_{I}\right)\right|_{\gamma_{I}=0}=a$. Note that we may also write,

$$
|\cosh (\gamma a \pm \psi)|^{2}=\frac{1}{2}\left[\cosh \left(2 \gamma_{R} a \pm 2 \psi_{R}\right)+\cos \left(2 \gamma_{I} a \pm 2 \psi_{I}\right)\right]
$$

The MATLAB function, pwgpower, implements Eqs. (10.1.24) and (10.1.25):
[P, Pf, Pc, Ps] = pwgpower (a, ef,ec, es, be, m) ; \% transmitted power in plasmonic waveguide
where a and β are in units of k_{0}^{-1} and k_{0}, respectively, and $\mathrm{m}=0,1$, for TM_{0} or TM_{1} modes, where ψ is calculated from Eq. (10.1.15).

10.2 Single Metal-Dielectric Interface

The case of a single metal-dielectric interface can be thought of as the limit of a DMD configuration when the film thickness tends to infinity, $a \rightarrow \infty$. It is depicted in Fig. 10.2.1.

Fig. 10.2.1 Surface plasmon wave propagating along metal-dielectric interface.
Because γ has positive real part, the left-hand side of Eq. (10.1.11) tends to infinity as $a \rightarrow \infty$, and this requires the vanishing of the denominator of the right-hand side, that is, one of the conditions:

$$
\begin{equation*}
\gamma=-p_{c} \alpha_{c}, \quad \text { or, } \quad \gamma=-p_{s} \alpha_{s} \tag{10.2.1}
\end{equation*}
$$

Let us consider the first one. Because ε_{f} is a metal with a negative real part, the condition $\gamma=-p_{c} \alpha_{c}=-\varepsilon_{f} \alpha_{c} / \varepsilon_{c}$ is consistent with the requirement that both γ and α_{c} have positive real parts. Assuming that the interface is positioned at $x=0$, the longitudinal electric field will be for TM modes:

$$
E_{Z}(x)= \begin{cases}E_{0} e^{-\alpha_{c} x}, & x \geq 0 \tag{10.2.2}\\ E_{0} e^{\gamma x}=E_{0} e^{-\gamma|x|}, & x \leq 0\end{cases}
$$

with complete space-time dependence $E_{Z}(x) e^{j \omega t-j \beta z}$. The E_{χ} component will be:

$$
E_{X}(x)= \begin{cases}-\frac{j \beta}{-\alpha_{c}^{2}} \partial_{x} E_{Z}=-E_{0} \frac{j \beta}{\alpha_{c}} e^{-\alpha_{c} x}, & x \geq 0 \tag{10.2.3}\\ -\frac{j \beta}{-\gamma^{2}} \partial_{x} E_{z}=E_{0} \frac{j \beta}{\gamma} e^{\gamma x}, & x \leq 0\end{cases}
$$

The corresponding magnetic field is obtained from $H_{y}=E_{X} / \eta_{T M}$, where $\eta_{T M}=\beta /(\omega \epsilon)$,

$$
H_{y}(x)=\left\{\begin{array}{cc}
-j \omega \epsilon_{0} E_{0} \frac{\varepsilon_{c}}{\alpha_{c}} e^{-\alpha_{c} x}, & x \geq 0 \tag{10.2.4}\\
j \omega \epsilon_{0} E_{0} \frac{\varepsilon_{f}}{\gamma} e^{\gamma x}, & x \leq 0
\end{array}\right.
$$

The continuity of either $D_{x}=\epsilon E_{x}$, or H_{y} at $x=0$ gives the first condition in Eq. (10.2.1). These results are equivalent to those of Sec. 7.11. Indeed, the propagation wavenumber β, as well as γ, α_{c}, are obtained from:

$$
\begin{equation*}
\gamma=-\frac{\varepsilon_{f} \alpha_{c}}{\varepsilon_{c}} \Rightarrow \beta^{2}-k_{0}^{2} \varepsilon_{f}=\frac{\varepsilon_{f}^{2}}{\varepsilon_{c}^{2}}\left(\beta^{2}-k_{0}^{2} \varepsilon_{c}\right) \tag{10.2.5}
\end{equation*}
$$

or, solving for $\beta, \gamma, \alpha_{c}$,

$$
\begin{equation*}
\beta=k_{0} \sqrt{\frac{\varepsilon_{f} \varepsilon_{c}}{\varepsilon_{f}+\varepsilon_{c}}}, \quad \gamma=\frac{-k_{0} \varepsilon_{f}}{\sqrt{-\varepsilon_{f}-\varepsilon_{c}}}, \quad \alpha_{c}=\frac{k_{0} \varepsilon_{c}}{\sqrt{-\varepsilon_{f}-\varepsilon_{c}}} \tag{10.2.6}
\end{equation*}
$$

where the square root signs have been selected to satisfy the requirements that β have negative imaginary part and $\beta, \gamma, \alpha_{c}$, positive real parts. To see this in more detail, set $\varepsilon_{f}=-\varepsilon_{R}-j \varepsilon_{I}$, with $\varepsilon_{R}>0$, and assume $\varepsilon_{R}>\varepsilon_{c}$, as in Sec. 7.11. Then, a first-order calculation in ε_{I} yields the expressions:

$$
\begin{align*}
\beta & =k_{0} \sqrt{\frac{\varepsilon_{R} \varepsilon_{c}}{\varepsilon_{R}-\varepsilon_{c}}}\left[1-j \frac{\varepsilon_{c} \varepsilon_{I}}{2 \varepsilon_{R}\left(\varepsilon_{R}-\varepsilon_{c}\right)}\right] \\
\gamma & =\frac{k_{0} \varepsilon_{R}}{\sqrt{\varepsilon_{R}-\varepsilon_{c}}}\left[1+j \frac{\left(\varepsilon_{R}-2 \varepsilon_{c}\right) \varepsilon_{I}}{2 \varepsilon_{R}\left(\varepsilon_{R}-\varepsilon_{c}\right)}\right] \tag{10.2.7}\\
\alpha_{c} & =\frac{k_{0} \varepsilon_{c}}{\sqrt{\varepsilon_{R}-\varepsilon_{c}}}\left[1-j \frac{\varepsilon_{I}}{2\left(\varepsilon_{R}-\varepsilon_{c}\right)}\right]
\end{align*}
$$

Eq. (10.2.7) shows explicitly how the condition $\varepsilon_{R}>\varepsilon_{c}$ guarantees the existence of plasmonic waves with $\operatorname{Re}(\beta)>0$ and $\operatorname{Im}(\beta)<0$. We note also that $\operatorname{Re}(\gamma) / \operatorname{Re}\left(\alpha_{c}\right)=$ $\varepsilon_{R} / \varepsilon_{c}$, which is typically much greater than unity, $\varepsilon_{R} / \varepsilon_{c} \gg 1$. Therefore, the attenuation length within the metal is typically much shorter than that in the dielectric, i.e., $1 / \operatorname{Re}(\gamma) \ll 1 / \operatorname{Re}\left(\alpha_{c}\right)$. This is depicted in Figs. 10.2.1 and 10.2.2.

Example 10.2.1: Following Example 7.11.1, we use the value $\varepsilon_{f}=-16-0.5 j$ for silver at $\lambda_{0}=0.632 \mu \mathrm{~m}$, and air $\varepsilon_{c}=1$. Then, $k_{0}=2 \pi / \lambda_{0}=9.94 \mathrm{rad} / \mu \mathrm{m}$ and Eqs. (10.2.6) give the following values for the parameters $\beta, \gamma, \alpha_{c}$ and corresponding propagation and penetration distances:

$$
\begin{array}{ll}
\beta=10.2674-0.0107 \mathrm{j} \mathrm{rad} / \mu \mathrm{m}, & L_{z}=-\frac{1}{\operatorname{Im}(\beta)}=93.5969 \mu \mathrm{~m} \\
\gamma=41.0755+0.5989 j \mathrm{rad} / \mu \mathrm{m}, & L_{f}=\frac{1}{\operatorname{Re}(\gamma)}=0.0243 \mu \mathrm{~m} \\
\alpha_{c}=2.5659-0.0428 j \mathrm{rad} / \mu \mathrm{m}, & L_{c}=\frac{1}{\operatorname{Re}\left(\alpha_{c}\right)}=0.3897 \mu \mathrm{~m}
\end{array}
$$

Thus, the fields extend more into the dielectric than the metal, but at either side they are confined to distances that are less than their free-space wavelength. The transverse magnetic field $H_{y}(x)$, which is continuous at the interface, is shown in Fig. 10.2.2. It was plotted with the MATLAB code:

$$
\text { ec }=1 \text {; ef }=-16-0.5 * j ; 1 \mathrm{aO}=0.632 ; \text { k0 }=2 * \mathrm{pi} / 1 \mathrm{aa} 0 ;
$$

$$
b=k 0 * \operatorname{sqrt}(e f * e c /(e f+e c)) ;
$$

$$
\begin{aligned}
& \text { ga }=- \text { k0*ef/sqrt }(- \text { ef-ec }) ; \quad \% \text { or, ga }=\operatorname{sqrt}(b \wedge 2-k 0 \wedge 2 * e f) ; \\
& \text { ac }=\text { k0*ec/sqrt }(-e f-e c) ; \quad \% \text { or, ac }=\operatorname{sqrt}(b \wedge 2-\text { k0^2*ec }) ; \\
& x=1 \text { inspace }(-0.4,1,141) ; \\
& \text { Hy }=\operatorname{abs}(\exp (g a * x) . *(x<0)+\exp (- \text { ac*x }) . *(x>=0)) ; \\
& \text { plot }(x, H y) ;
\end{aligned}
$$

Fig. 10.2.2 Surface plasmon magnetic field profile.

10.3 Power Transfer, Energy \& Group Velocities

Replacing $\beta=\beta_{R}-j \beta_{I}, \varepsilon_{f}=-\varepsilon_{R}-j \varepsilon_{I}$, and $\alpha_{c}=\alpha_{R}-j \alpha_{I}, \gamma=\gamma_{R}+j \gamma_{I}$ into Eq. (10.2.7), we note also the following relationships, with the second following by equating real parts in Eq. (10.2.5):

$$
\begin{equation*}
2 \beta_{R} \beta_{I}=2 \alpha_{R} \alpha_{I}=\frac{k_{0}^{2} \varepsilon_{c}^{2} \varepsilon_{I}}{\left(\varepsilon_{R}-\varepsilon_{c}\right)^{2}+\varepsilon_{I}^{2}}, \quad \varepsilon_{c} \gamma_{R}=\varepsilon_{R} \alpha_{R}+\varepsilon_{I} \alpha_{I} \tag{10.3.1}
\end{equation*}
$$

and since $\varepsilon_{I} \geq 0$, Eq. (10.3.1) implies that $\beta_{R} \geq 0$ and $\alpha_{I} \geq 0$ since $\beta_{I} \geq 0$ and $\alpha_{R} \geq 0$.
The power flow along the propagation direction is described by the z-component of the Poynting vector. From Eqs. (10.2.3) and (10.2.4), we obtain,

$$
\mathcal{P}_{Z}(x)=\frac{1}{2} \operatorname{Re}\left[E_{X}(x) H_{y}^{*}(x)\right]=\frac{1}{2} \omega \epsilon_{0}\left|E_{0}\right|^{2} \begin{cases}\frac{\operatorname{Re}\left[\beta \varepsilon_{c}^{*}\right]}{\left|\alpha_{c}\right|^{2}} e^{-2 \alpha_{R} x}, & x \geq 0 \tag{10.3.2}\\ \frac{\operatorname{Re}\left[\beta \varepsilon_{f}^{*}\right]}{|\gamma|^{2}} e^{2 \gamma_{R} x}, & x \leq 0\end{cases}
$$

Integrating (10.3.2) over an $x y$ area, $d S=d x \cdot(1 \mathrm{~m}$ along $y)$, we obtain the net power transmitted (per unit y-length) along the z-direction:

$$
\begin{equation*}
P_{T}=\int_{-\infty}^{\infty} \mathcal{P}_{z} d x=\frac{1}{4} \omega \epsilon_{0}\left|E_{0}\right|^{2}\left[\frac{\beta_{R} \varepsilon_{c}}{\alpha_{R}\left|\alpha_{c}\right|^{2}}-\frac{\beta_{R} \varepsilon_{R}-\beta_{I} \varepsilon_{I}}{\gamma_{R}|\gamma|^{2}}\right] \tag{10.3.3}
\end{equation*}
$$

where the first term represents the power flow within the dielectric, and the second, the power flow within the metal. Since typically, $\beta_{R} \varepsilon_{R} \gg \beta_{I} \varepsilon_{I}$, the second term is negative, representing power flow along the negative Z direction within the metal. However, the sum of the two terms is positive, so that the net power flow is along the positive z direction. In fact, since also, $|\gamma| \gg\left|\alpha_{c}\right|$, the second term will be much smaller than the first one, which is to be expected since the fields tend to be attenuate more quickly within the metal than in the dielectric. Indeed, for the values given in Example 10.2.1, we find the terms in the brackets to be:

$$
\left[\frac{\beta_{R} \varepsilon_{C}}{\alpha_{R}\left|\alpha_{C}\right|^{2}}-\frac{\beta_{R} \varepsilon_{R}-\beta_{I} \varepsilon_{I}}{\gamma_{R}|\gamma|^{2}}\right]=0.6076-0.0024=0.6053
$$

Using the second of Eqs. (10.3.1), one can show that the term in brackets in (10.3.3) becomes

$$
\left[\frac{\beta_{R} \varepsilon_{\mathcal{C}}}{\alpha_{R}\left|\alpha_{c}\right|^{2}}-\frac{\beta_{R} \varepsilon_{R}-\beta_{I} \varepsilon_{I}}{\gamma_{R}|\gamma|^{2}}\right]=\frac{\beta_{R} \alpha_{R} \varepsilon_{R}\left(\varepsilon_{R}^{2}-\varepsilon_{c}^{2}+\varepsilon_{I}^{2}\right)+\beta_{R} \alpha_{I} \varepsilon_{I}\left(\varepsilon_{R}^{2}+\varepsilon_{I}^{2}\right)+\beta_{I} \alpha_{R} \varepsilon_{I} \varepsilon_{c}^{2}}{\alpha_{R} \gamma_{R} \varepsilon_{c}^{2}|\gamma|^{2}}
$$

which is positive since we assumed $\varepsilon_{R}>\varepsilon_{\mathcal{C}}$, and all other terms are non-negative. The power, of course, attenuates exponentially with distance z, and the expression (10.3.3) for P_{T} must be multiplied by the factor $e^{-2 \beta_{I} Z}$.

The positivity of P_{T} implies also the positivity of the energy velocity, $v_{\mathrm{en}}=P_{T} / W^{\prime}$, where W^{\prime} is the energy density per unit z-length (see Sec. 9.7), which is always positive. In the lossless case, we show below that the group velocity, $v_{g}=d \omega / d \beta$, is equal to the energy velocity, and hence ν_{g} will also be positive. This can also be seen from Fig. 7.11.2 depicting the $\omega-\beta$ dispersion relationship, which has a positive slope $d \omega / d \beta$.

However, when losses are taken into account, it can be shown [973], using for example the Drude model for the metal permittivity, that there are frequency regions in which the group velocity is negative. Similar situations arise in MDM and DMD configurations in which, depending on the media permittivities and layer thicknesses, there can exist modes that have negative group velocities-see, for example, Refs. [943] and [965-981]

Next, we determine the x-component of the Poynting vector, which describes power flow from the dielectric into the metal, and we show that the power entering the metal and the power flowing in the z-direction in the metal are completely dissipated into heat as ohmic and dielectric losses. We have,

$$
\mathcal{P}_{x}(x)=-\frac{1}{2} \operatorname{Re}\left[E_{Z}(x) H_{y}^{*}(x)\right]=\frac{1}{2} \omega \epsilon_{0}\left|E_{0}\right|^{2}\left\{\begin{align*}
-\operatorname{Im}\left(\frac{\varepsilon_{\mathcal{C}}}{\alpha_{c}}\right) e^{-2 \alpha_{R} x}, & x \geq 0 \tag{10.3.4}\\
\operatorname{Im}\left(\frac{\varepsilon_{f}}{\gamma}\right) e^{2 \gamma_{R} x}, & x \leq 0
\end{align*}\right.
$$

The power flow \mathcal{P}_{x} is continuous across the interface at $x=0$ because of the condition $\varepsilon_{\mathcal{C}} / \alpha_{C}=-\varepsilon_{f} / \gamma$. The negative sign on the dielectric side simply means that power flows towards the negative x direction into the metal. The z-dependence of \mathcal{P}_{x} is obtained by multiplying Eq. (10.3.4) by $e^{-2 \beta_{I} z}$.

To account for the power dissipation within the metal, we consider a rectangular volume of sides L, d, b along the z, x, y directions lying within the metal below the $y z$ interface plane, as shown below.

The net power entering and leaving the top and bottom sides is obtained by restoring the factor $e^{-2 \beta_{1} z}$ and integrating (10.3.4) over the $L \times b$ area and subtracting the values at $x=0$ and $x=-d$,

$$
\begin{equation*}
P_{x, \text { net }}=\frac{1}{2} \omega \epsilon_{0}\left|E_{0}\right|^{2} \operatorname{Im}\left(\frac{\varepsilon_{C}}{\alpha_{c}}\right) \frac{\left(1-e^{-2 \beta_{I} L}\right)}{2 \beta_{I}}\left(1-e^{-2 \gamma_{R} d}\right) b \tag{10.3.5}
\end{equation*}
$$

Similarly, the net power entering and leaving the left and right sides is obtained by integrating (10.3.2) over the area $d \times b$ and subtracting the values at $z=0$ and $z=L$,

$$
\begin{equation*}
P_{z, \text { net }}=-\frac{1}{2} \omega \epsilon_{0}\left|E_{0}\right|^{2} \frac{\operatorname{Re}\left[\beta \varepsilon_{f}^{*}\right]}{|\gamma|^{2}} \frac{\left(1-e^{-2 \gamma_{R} d}\right)}{2 \gamma_{R}}\left(1-e^{-2 \beta_{I} L}\right) b \tag{10.3.6}
\end{equation*}
$$

The sum of these two powers must equal the power loss within the volume $L \times d \times b$,

$$
P_{\text {loss }}=\frac{1}{2} \operatorname{Re}\left(j \omega \epsilon_{f}\right) \int_{V} \boldsymbol{E} \cdot E^{*} d V=\frac{1}{2} \epsilon_{0} \omega \varepsilon_{I} \int_{V}\left(\left|E_{X}\right|^{2}+\left|E_{Z}\right|^{2}\right) d V
$$

Restoring the factor $e^{-j \beta z}$ in E_{χ}, E_{Z}, we obtain from Eqs. (10.2.2) and (10.2.3):

$$
\begin{equation*}
P_{\text {loss }}=\frac{1}{2} \omega \epsilon_{0}\left|E_{0}\right|^{2} \varepsilon_{I}\left(1+\frac{|\beta|^{2}}{|\gamma|^{2}}\right) \frac{\left(1-e^{-2 \gamma_{R} d}\right)\left(1-e^{-2 \beta_{I} L}\right)}{2 \gamma_{R} \cdot 2 \beta_{I}} b \tag{10.3.7}
\end{equation*}
$$

Energy conservation requires that, $P_{\chi, \text { net }}+P_{z, \text { net }}=P_{\text {loss. }}$. Canceling some common factors, this condition is equivalent to,

$$
\begin{equation*}
2 \gamma_{R} \operatorname{Im}\left(\frac{\varepsilon_{c}}{\alpha_{c}}\right)-2 \beta_{I} \frac{\operatorname{Re}\left[\beta \varepsilon_{f}^{*}\right]}{|\gamma|^{2}}=\varepsilon_{I}\left(1+\frac{|\beta|^{2}}{|\gamma|^{2}}\right) \tag{10.3.8}
\end{equation*}
$$

The proof of this result is left for Problem 10.1, however, we note that this calculation is an example of the more general result stated in Problem 1.5. We note also that (10.3.8) is trivially satisfied in the lossless case that has $\beta_{I}=\alpha_{I}=\varepsilon_{I}=0$.

We conclude this section by showing the equality $v_{g}=v_{\mathrm{en}}$ in the lossless case and assuming an arbitrary frequency dependence of the (real-valued) metal permittivity.

We assume that $\varepsilon_{f}=-\varepsilon_{R}$ is a real negative function of frequency ω, ε_{c} is positive constant such that $\varepsilon_{R}>\varepsilon_{c}$, and both media are non-magnetic, $\mu=\mu_{0}$. Then, the
quantities $\beta, \alpha_{c}, \gamma$ are given by the real parts of Eqs. (10.2.7). Inserting these expressions into P_{T}, we find:

$$
\begin{equation*}
P_{T}=\frac{1}{4} \epsilon_{0}\left|E_{0}\right|^{2} \frac{c_{0}^{2}\left(\varepsilon_{R}+\varepsilon_{\mathcal{C}}\right)\left(\varepsilon_{R}-\varepsilon_{c}\right)^{2}}{\omega \varepsilon_{R}^{3 / 2} \varepsilon_{c}^{3 / 2}} \tag{10.3.9}
\end{equation*}
$$

For lossless non-magnetic media, the time-averaged energy density is given by

$$
w_{\mathrm{en}}=\frac{1}{4}(\omega \epsilon)^{\prime}|\boldsymbol{E}|^{2}+\frac{1}{4} \mu_{0}|\boldsymbol{H}|^{2}, \quad(\omega \epsilon)^{\prime} \equiv \frac{d(\omega \epsilon)}{d \omega}
$$

or,

$$
w_{\mathrm{en}}=\frac{1}{4}(\omega \epsilon)^{\prime}\left(\left|E_{X}\right|^{2}+\left|E_{Z}\right|^{2}\right)+\frac{1}{4} \mu_{0}\left|H_{y}\right|^{2}
$$

Using Eqs. (10.2.2)-(10.2.4), we obtain,

$$
w_{\mathrm{en}}=\frac{1}{4} \epsilon_{0}\left|E_{0}\right|^{2} \begin{cases}{\left[\varepsilon_{c}\left(1+\frac{\beta^{2}}{\alpha_{c}^{2}}\right)+\frac{k_{0}^{2} \varepsilon_{c}^{2}}{\alpha_{c}^{2}}\right] e^{-\alpha_{c} x},} & x \geq 0 \\ {\left[\left(\omega \varepsilon_{f}\right)^{\prime}\left(1+\frac{\beta^{2}}{\gamma^{2}}\right)+\frac{k_{0}^{2} \varepsilon_{f}^{2}}{\gamma^{2}}\right] e^{\gamma x},} & x \leq 0\end{cases}
$$

Integrating over x, we find the energy density per unit z-length and unit y-length:

$$
\begin{aligned}
W^{\prime} & =\int_{-\infty}^{\infty} w_{\mathrm{en}} d x= \\
& =\frac{1}{4} \epsilon_{0}\left|E_{0}\right|^{2}\left\{\left[\varepsilon_{C}\left(1+\frac{\beta^{2}}{\alpha_{c}^{2}}\right)+\frac{k_{0}^{2} \varepsilon_{c}^{2}}{\alpha_{C}^{2}}\right] \frac{1}{2 \alpha_{C}}+\left[\left(\omega \varepsilon_{f}\right)^{\prime}\left(1+\frac{\beta^{2}}{\gamma^{2}}\right)+\frac{k_{0}^{2} \varepsilon_{f}^{2}}{\gamma^{2}}\right] \frac{1}{2 \gamma}\right\}
\end{aligned}
$$

The derivative term $\left(\omega \varepsilon_{f}\right)^{\prime}$ can be replaced by

$$
\left(\omega \varepsilon_{f}\right)^{\prime}=-\left(\omega \varepsilon_{R}\right)^{\prime}=-\varepsilon_{R}-\omega \varepsilon_{R}^{\prime}, \quad \varepsilon_{R}^{\prime} \equiv \frac{d \varepsilon_{R}}{d \omega}
$$

By differentiating with respect to ω both sides of the equation,

$$
\beta^{2}=\frac{\omega^{2}}{c_{0}^{2}} \frac{\varepsilon_{R} \varepsilon_{C}}{\varepsilon_{R}-\varepsilon_{C}}
$$

we may relate the derivative ε_{R}^{\prime} to the derivative $\beta^{\prime}=d \beta / d \omega$, as follows:

$$
\begin{equation*}
\varepsilon_{R}^{\prime}=2\left(\frac{\beta}{\omega}-\beta^{\prime}\right) \frac{\varepsilon_{R}^{2} \omega^{2}}{\beta^{3} c_{0}^{2}} \tag{10.3.10}
\end{equation*}
$$

Substituting this into W^{\prime}, we find after some algebra,

$$
\begin{equation*}
W^{\prime}=\frac{1}{4} \epsilon_{0}\left|E_{0}\right|^{2} \frac{\beta^{\prime} c_{0}^{2}\left(\varepsilon_{R}+\varepsilon_{\mathcal{C}}\right)\left(\varepsilon_{R}-\varepsilon_{\mathcal{C}}\right)^{2}}{\omega \varepsilon_{R}^{3 / 2} \varepsilon_{\mathcal{C}}^{3 / 2}} \tag{10.3.11}
\end{equation*}
$$

This implies that the energy velocity will be equal to the group velocity:

$$
\nu_{\mathrm{en}}=\frac{P_{T}}{W^{\prime}}=\frac{1}{\beta^{\prime}}=\frac{d \omega}{d \beta}=v_{g}
$$

10.4 MDM Configuration - Lossless Case

An MDM waveguide is depicted in Fig. 10.4.1. To gain an understanding of the properties of the propagating modes, we will assume initially that all three media are lossless, with ε_{f} real positive, and $\varepsilon_{\mathcal{C}}, \varepsilon_{s}$ real negative, so that we can set $\varepsilon_{\mathcal{C}}=-\left|\varepsilon_{\mathcal{C}}\right|$ and $\varepsilon_{s}=-\left|\varepsilon_{s}\right|$. Without loss of generality, we will also assume that $\left|\varepsilon_{c}\right| \geq\left|\varepsilon_{s}\right|$. Following [943], we distinguish three cases:

$$
\begin{align*}
& \text { 1. }\left|\varepsilon_{s}\right| \leq \varepsilon_{f} \leq\left|\varepsilon_{c}\right| \\
& \text { 2. }\left|\varepsilon_{s}\right| \leq\left|\varepsilon_{c}\right| \leq \varepsilon_{f}\left|\leq 1 \leq\left|p_{s}\right|\right. \tag{10.4.1}\\
& \text { 3. } \quad \varepsilon_{f} \leq\left|\varepsilon_{s}\right| \leq\left|\varepsilon_{c}\right| \quad
\end{align*}>\left|p_{c}\right| \leq\left|p_{s}\right| \leq 1 \leq\left|p_{s}\right|
$$

where $p_{c}=\varepsilon_{f} / \varepsilon_{\mathcal{C}}$ and $p_{s}=\varepsilon_{f} / \varepsilon_{s}$. These cases define three regions labeled $1,2,3$, on the p_{c}, p_{s} parameter plane, as shown in Fig. 10.4.2. Regions $1^{\prime}, 2^{\prime}, 3^{\prime}$ are obtained by interchanging the roles of ε_{c} and ε_{s}. For typical metals like silver and gold at optical frequencies, the relevant region is 3 . For example, the permittivity of silver at $\lambda=650$ nm is $\varepsilon_{s}=-15.48-1.15 j$, while typically, ε_{f} is less than 5 .

Fig. 10.4.1 MDM plasmonic waveguide.

Fig. 10.4.2 Possible regions in MDM lossless case.
The characteristic equations (10.1.7), (10.1.11) and (10.1.13) can be written in the forms,

$$
\begin{align*}
\tanh (\gamma a+\psi) & =-\frac{p_{c} \alpha_{c}}{\gamma}=\frac{\left|p_{c}\right| \alpha_{c}}{\gamma} \tag{10.4.2}\\
\tanh (\gamma a-\psi) & =-\frac{p_{s} \alpha_{s}}{\gamma}=\frac{\left|p_{s}\right| \alpha_{s}}{\gamma} \\
e^{4 \gamma a}=\frac{\left(\gamma-p_{c} \alpha_{c}\right)\left(\gamma-p_{s} \alpha_{s}\right)}{\left(\gamma+p_{c} \alpha_{c}\right)\left(\gamma+p_{s} \alpha_{s}\right)} & =\frac{\left|p_{c}\right| \alpha_{c}+\gamma}{\left|p_{c}\right| \alpha_{c}-\gamma} \cdot \frac{\left|p_{s}\right| \alpha_{s}+\gamma}{\left|p_{s}\right| \alpha_{s}-\gamma} \tag{10.4.3}
\end{align*}
$$

$$
\begin{equation*}
\tanh (2 \gamma a)=-\frac{\gamma\left(p_{c} \alpha_{c}+p_{s} \alpha_{s}\right)}{\gamma^{2}+p_{c} \alpha_{c} p_{s} \alpha_{s}}=\frac{\gamma\left(\left|p_{c}\right| \alpha_{c}+\left|p_{s}\right| \alpha_{s}\right)}{\gamma^{2}+\left|p_{c}\right| \alpha_{c}\left|p_{s}\right| \alpha_{s}} \tag{10.4.4}
\end{equation*}
$$

We note also that Eqs. (10.1.9) can be written as,

$$
\begin{align*}
\gamma & =\sqrt{\beta^{2}-k_{0}^{2} \varepsilon_{f}} \\
\alpha_{C} & =\sqrt{\beta^{2}-k_{0}^{2} \varepsilon_{C}}=\sqrt{\gamma^{2}+k_{0}^{2}\left(\varepsilon_{f}+\left|\varepsilon_{C}\right|\right)} \tag{10.4.5}\\
\alpha_{s} & =\sqrt{\beta^{2}-k_{0}^{2} \varepsilon_{s}}=\sqrt{\gamma^{2}+k_{0}^{2}\left(\varepsilon_{f}+\left|\varepsilon_{S}\right|\right)}
\end{align*}
$$

Because we are looking for plasmonic solutions that have real and positive $\beta, \gamma, \alpha_{c}, \alpha_{s}$, it follows that β and γ must be restricted to the ranges $\beta \geq k_{0} \sqrt{\varepsilon_{f}}$ and $\gamma \geq 0$. Taking the limit of (10.4.4) as $\gamma \rightarrow 0$, and using the Taylor series approximation $\tanh (x) \simeq x$, valid for small x, we obtain the cutoff thickness of the dielectric layer,

$$
\tanh (2 \gamma a) \simeq 2 \gamma a=\frac{\gamma\left(\left|p_{c}\right| \alpha_{c}+\left|p_{s}\right| \alpha_{s}\right)}{\gamma^{2}+\left|p_{c}\right| \alpha_{\mathcal{C}}\left|p_{s}\right| \alpha_{s}} \quad \Rightarrow \quad 2 a=\frac{1}{\left|p_{\mathcal{C}}\right| \alpha_{c}}+\left.\frac{1}{\left|p_{s}\right| \alpha_{s}}\right|_{\gamma=0}
$$

$$
\begin{equation*}
2 k_{0} a_{\text {cutoff }}=\frac{\left|\varepsilon_{c}\right|}{\varepsilon_{f} \sqrt{\varepsilon_{f}+\left|\varepsilon_{c}\right|}}+\frac{\left|\varepsilon_{s}\right|}{\varepsilon_{f} \sqrt{\varepsilon_{f}+\left|\varepsilon_{s}\right|}} \tag{10.4.6}
\end{equation*}
$$

But the upper limit of β, and whether $a_{\text {cutoff }}$ is an upper or a lower cutoff, will depend on which region in Fig. 10.4.2 we are. A plot of β versus the film thickness a can be made by solving Eq. (10.4.4) and varying β over its allowed range,

$$
\begin{equation*}
a=\frac{1}{2 \gamma} \operatorname{atanh}\left(-\frac{\gamma\left(p_{c} \alpha_{c}+p_{s} \alpha_{s}\right)}{\gamma^{2}+p_{c} \alpha_{c} p_{s} \alpha_{s}}\right) \tag{10.4.7}
\end{equation*}
$$

Depending on the mode and region, a may be an increasing or a decreasing function of β. This can be determined from the derivative of a with respect to β, given by,

$$
\begin{equation*}
\frac{d a}{d \beta}=\frac{\beta}{\gamma} \frac{d a}{d \gamma}=\frac{\beta\left|p_{c}\right|\left(\varepsilon_{f}+\left|\varepsilon_{c}\right|\right)}{2 \gamma^{2} \alpha_{c}\left(p_{c}^{2} \alpha_{c}^{2}-\gamma^{2}\right)}+\frac{\beta\left|p_{s}\right|\left(\varepsilon_{f}+\left|\varepsilon_{s}\right|\right)}{2 \gamma^{2} \alpha_{s}\left(p_{s}^{2} \alpha_{s}^{2}-\gamma^{2}\right)}-\frac{\beta a}{\gamma^{2}} \tag{10.4.8}
\end{equation*}
$$

Region 1

Region-1 is defined by the conditions, $\left|\varepsilon_{s}\right| \leq \varepsilon_{f} \leq\left|\varepsilon_{c}\right|$, or, $\left|p_{c}\right| \leq 1 \leq\left|p_{s}\right|$. Because $\left|p_{s}\right| \geq 1$ and $\alpha_{s}>\gamma$, it follows that $\left|p_{s}\right| \alpha_{s} / \gamma \geq 1$. But this means that the equation, $\tanh (\gamma a-\psi)=\left|p_{s}\right| \alpha_{s} / \gamma \geq 1$, can be satisfied only if ψ has a $j \pi / 2$ imaginary part, that is, $\psi=\chi+j \pi / 2$, with real χ, so that

$$
\tanh (\gamma a-\psi)=\tanh \left(\gamma a-\chi-\frac{j \pi}{2}\right)=\operatorname{coth}(\gamma a-\chi)=\frac{\left|p_{s}\right| \alpha_{s}}{\gamma} \geq 1
$$

But then $\left|p_{c}\right| \alpha_{c} / \gamma$ is also forced to be greater than one because,

$$
\tanh (\gamma a+\psi)=\tanh \left(\gamma a+\chi+\frac{j \pi}{2}\right)=\operatorname{coth}(\gamma a+\chi)=\frac{\left|p_{c}\right| \alpha_{c}}{\gamma}
$$

Thus, with γ, χ real, we have $|\operatorname{coth}(\gamma a+\chi)| \geq 1$ so that $\left|p_{c}\right| \alpha_{c} / \gamma \geq 1$. The same conclusion is reached by inspecting Eq. (10.4.3), which requires both denominator factors to have the same sign since $e^{4 \gamma a}$ is real and positive. The condition $\left|p_{c}\right| \alpha_{c} / \gamma \geq 1$ imposes an upper limit on β, indeed, we have $\gamma^{2} \leq p_{c}^{2} \alpha_{c}^{2}$, or,

$$
\begin{gather*}
\beta^{2}-k_{0}^{2} \varepsilon_{f} \leq p_{c}^{2}\left(\beta^{2}+k_{0}^{2}\left|\varepsilon_{c}\right|\right) \Rightarrow \beta^{2} \leq k_{0}^{2} \frac{p_{c}^{2}\left|\varepsilon_{c}\right|+\varepsilon_{f}}{1-p_{c}^{2}}=k_{0}^{2} \frac{\left|\varepsilon_{c}\right| \varepsilon_{f}}{\left|\varepsilon_{c}\right|-\varepsilon_{f}}, \quad \text { or, } \\
\beta \leq \beta_{c, \infty} \equiv k_{0} \sqrt{\frac{\left|\varepsilon_{c}\right| \varepsilon_{f}}{\left|\varepsilon_{c}\right|-\varepsilon_{f}}}=k_{0} \sqrt{\frac{\varepsilon_{c} \varepsilon_{f}}{\varepsilon_{c}+\varepsilon_{f}}} \tag{10.4.9}
\end{gather*}
$$

The limit $\beta_{c, \infty}$ is recognized as the wavenumber of a surface plasmon at the $\varepsilon_{f}-\varepsilon_{c}$ dielectric-metal interface obtained in the limit of infinite thickness for ε_{f}, in fact, the interface condition $\gamma=\left|p_{c}\right| \alpha_{c}=-p_{c} \alpha_{c}$ is realized exactly at $\beta=\beta_{c, \infty}$. Thus, the allowed range of β is,

$$
\begin{equation*}
k_{0} \sqrt{\varepsilon_{f}} \leq \beta \leq \beta_{c, \infty} \quad(\text { region } 1) \tag{10.4.10}
\end{equation*}
$$

Moreover, for this range of β, the film thickness a is an increasing function of β, so that its range will be $a_{\text {cutoff }} \leq a<\infty$, therefore, $a_{\text {cutoff }}$ will be a lower cutoff. Next, we show that the corresponding field solution will be an antisymmetric-like TM_{1} mode. The characteristic equations,

$$
\operatorname{coth}(\gamma a+\chi)=\frac{\left|p_{c}\right| \alpha_{c}}{\gamma}, \quad \operatorname{coth}(\gamma a-\chi)=\frac{\left|p_{s}\right| \alpha_{s}}{\gamma}
$$

can be inverted,

$$
\begin{array}{ll}
\tanh (\gamma a+\chi)=\frac{\gamma}{\left|p_{c}\right| \alpha_{c}} \leq 1 \\
\tanh (\gamma a-\chi)=\frac{\gamma}{\left|p_{s}\right| \alpha_{s}} \leq 1
\end{array} \quad \Rightarrow \quad \gamma a+\chi=\operatorname{atanh}\left(\frac{\gamma}{\left|p_{c}\right| \alpha_{c}}\right)
$$

and separated,

$$
\begin{align*}
\gamma a & =\frac{1}{2} \operatorname{atanh}\left(\frac{\gamma}{\left|p_{c}\right| \alpha_{c}}\right)+\frac{1}{2} \operatorname{atanh}\left(\frac{\gamma}{\left|p_{s}\right| \alpha_{s}}\right) \tag{10.4.11}\\
\psi=x+\frac{j \pi}{2} & =\frac{1}{2} \operatorname{atanh}\left(\frac{\gamma}{\left|p_{c}\right| \alpha_{c}}\right)-\frac{1}{2} \operatorname{atanh}\left(\frac{\gamma}{\left|p_{s}\right| \alpha_{s}}\right)+\frac{j \pi}{2}
\end{align*}
$$

These have exactly the form of Eqs. (10.1.16) with $m=1$, so that we have a TM_{1} mode. The magnetic field is given by Eq. (10.1.6),

$$
H_{y}(x)= \begin{cases}H_{0} \cosh (\gamma x+\psi), & |x| \leq a \\ H_{0} \cosh (\gamma a+\psi) e^{-\alpha_{c}(x-a)}, & x \geq a \\ H_{0} \cosh (\gamma a-\psi) e^{\alpha_{s}(x+a)}, & x \leq-a\end{cases}
$$

where $H_{0}=j \omega \epsilon_{0} E_{0} \varepsilon_{f} / \gamma$. Using the identity $\cosh (x+j \pi / 2)=j \sinh (x)$, we see that within the dielectric film, H_{y} resembles an antisymmetric solution (provided χ is small),

$$
H_{y}(z)=H_{0} \cosh (\gamma x+\psi)=H_{0} \cosh (\gamma x+\chi+j \pi / 2)=j H_{0} \sinh (\gamma x+\chi)
$$

Given a film thickness a, the characteristic equation (10.4.4) can be solved by writing it in the following form,

$$
\gamma=-\frac{\gamma^{2}+p_{c} \alpha_{c} p_{s} \alpha_{s}}{p_{c} \alpha_{c}+p_{s} \alpha_{s}} \tanh (2 \gamma a)
$$

and replacing it by the iteration,

$$
\begin{equation*}
\gamma_{n+1}=-\frac{\gamma_{n}^{2}+p_{c} \alpha_{c n} p_{s} \alpha_{s n}}{p_{c} \alpha_{c n}+p_{s} \alpha_{s n}} \tanh \left(2 \gamma_{n} a\right), \quad n=0,1,2, \ldots \tag{10.4.13}
\end{equation*}
$$

and initialized at a value of β that lies somewhere in the interval $k_{0 \sqrt{\varepsilon_{f}}}<\beta \leq \beta_{c, \infty}$ (the value $\beta=k_{0} \sqrt{\varepsilon_{f}}$ should be not be used to initialize because it corresponds to $\gamma=0$ and the iteration will remain stuck at $\gamma=0$.)

The iteration can be stopped when a desired level of accuracy is reached, that is, when $\left|\gamma_{n+1}-\gamma_{n}\right| \leq t o l$, for some desired error tolerance, such as tol $=10^{-12}$. Alternative iterative methods for this type of problem can be found in [963].

Example 10.4.1: We choose a region-1 example from Ref. [943] to verify our approach. Consider the permittivity values:

$$
\varepsilon_{c}=-2.2^{2}=-4, \quad \varepsilon_{f}=1.5^{2}=2.25, \quad \varepsilon_{s}=-1.3^{2}=-1.69
$$

and the two normalized film thickness $k_{0} a=0.6$ and $k_{0} a=0.8$. The following MATLAB code illustrates the iteration (10.4.13), randomly initialized within the interval $k_{0 \sqrt{\varepsilon_{f}}}<$ $\beta \leq \beta_{c, \infty}$, and demonstrates the calculation and plotting of the magnetic field profile.
ec $=-2 \wedge 2 ;$ ef $=1.5 \wedge 2 ;$ es $=-1.3 \wedge 2 ;$
$\mathrm{k} 0=1 ;$
$\mathrm{k} 0=1 ;$
$\mathrm{a}=0.6 ;$
$\mathrm{a}=0.6$;
$\% \mathrm{a}=0.8$;
$p c=e f / e c ; p s=e f / e s ;$
b0 = sqrt(ef);
bcinf = sqrt(ef*ec/(ef+ec));
rng(101);
binit $=(b c i n f-b 0) *$ rand $(1)+b 0$;
ac $=$ sqrt (binit^2 - ec);
as = sqrt(binit^2 - es);
ga $=$ sqrt(binit^2 - ef);
tol $=1 \mathrm{e}-12 ; \mathrm{n}=0$;
\% region-1 has |ec|>ef>|es|
\% use normalized units $\mathrm{k} 0=1$
\% half-thickness of dielectric film
$\%$ uncomment for the case $\mathrm{k} 0 * \mathrm{a}=0.8$
$\%|\mathrm{pc}|=0.5625,|\mathrm{ps}|=1.3314,|\mathrm{pc}|<1<|\mathrm{ps}|$
$\% \mathrm{~b} 0=1.5$, lower limit of beta
$\%$ bcinf $=2.2678$, upper limit of beta
\% initialize random number generator \% binit = 1.8965, random initial value \% initialize ac,as,ga
\% tolerance and starting iteration index
while 1
ga_new $=-($ ga^2 $+\mathrm{pc} * \mathrm{ac} * \mathrm{ps} * \mathrm{as}) /(\mathrm{pc} * \mathrm{ac}+\mathrm{ps} * a s) * \tanh (2 * \mathrm{ga} * \mathrm{a} * \mathrm{k} 0)$;
if abs(ga_new-ga) < tol, break; end

> ga $=$ ga_new $;$
> be $=\operatorname{sqrt}($ ga $\wedge 2+e f) ;$
> as $=\operatorname{sqrt}($ be $\wedge 2-e s) ;$
> ac $=\operatorname{sqrt}($ be $\wedge 2-e c) ;$
> $n=$ n+1;
end
\% upon exit from loop, print the number of iterations and the effective index beta
n $\% \mathrm{n}=203$ when $\mathrm{k} 0 * \mathrm{a}=0.6$, and $\mathrm{n}=113$ when $\mathrm{k} 0 * \mathrm{a}=0.8$
$\%$ be $=1.9394$ when $k 0 * a=0.6$, and be $=2.2127$ when $k 0 * a=0.8$
psi $=\operatorname{atanh}(-\mathrm{ga} / \mathrm{pc} / \mathrm{ac}) / 2-\operatorname{atanh}(-\mathrm{ga} / \mathrm{ps} / \mathrm{as}) / 2+\mathrm{j} * \mathrm{pi} / 2 ; \quad \% \mathrm{psi}=0.3193+\mathrm{j}$ *pi/2
\% computational error of characteristic equation
$E=\operatorname{abs}(\tanh (2 * k 0 * a * g a)+g a *(p c * a c+p s * a s) /(g a \wedge 2+p c * a c * p s * a s)) \quad \% 6.95 e-13$
\% be $=\operatorname{pwga}(2 *$ pi,ef,ec,es,a,binit,1,tol); \% alternative calculation using PWGA
\% magnetic field profile
$x=1$ inspace $(-3,3,601) * a ; \quad \% x$ in units of a
Hy $=j * \cosh (g a * k 0 * a-p s i) \cdot * \exp (k 0 * a s *(x+a)) \cdot *(x<-a)+\ldots$
$j * \cosh (g a * k 0 * a+p s i) \cdot * \exp (-k 0 * a c *(x-a)) . *(x>a)+\ldots$
$j * \cosh (k 0 * g a * x+p s i) . *(a b s(x)<=a) ; \quad$ \% up to an overall constant
fill([-3, -1, -1, -3], [-4 -4, 1, 1], [0.9 0.9 0.9]); hold on
fill($[1,3,3,1],[-4-4,1,1],[0.90 .90 .9])$;
plot(x/a, real(Hy), 'linewidth', 2);
axis([-3, 3, -4, 1]);
x7abe1('\{\itx/a\}'); ylabe1('\{\itH_y\}(\{\itx\})');
title(['magnetic field profile, $\{\backslash i t k\} _0\{\backslash i t a\}=$ ', num2str(a)]);
line([-3,3],[0,0],'linestyle','--','linewidth', 0.5);
line([0,0],[-4,1],'linestyle','--','linewidth', 0.5)
text(-2.1,-2, '\epsilon_\{s\}');
text(-0.6,-2, '\epsilon_\{f\}');
text(1.9,-2, '\epsilon_\{c\}');
where the quantity, E , measures the computational error of the characteristic equation (10.4.4), and the final n is the number of iterations to converge. The computed values are shown in the comments of the above code segment and printed below.

$k_{0} a$	β / k_{0}	γ / k_{0}	α_{c} / k_{0}	α_{s} / k_{0}	ψ	n	E
0.6	1.9394	1.2294	2.7859	2.3348	$0.3193+j \pi / 2$	203	6.95×10^{-13}
0.8	2.2127	1.6266	2.9826	2.5663	$0.7834+j \pi / 2$	113	5.64×10^{-13}

The quantities $\beta, \gamma, \alpha_{c}, \alpha_{s}$ are in units of k_{0}. The magnetic field is shown in Fig. 10.4.3 for the cases $k_{0} a=0.6$ and $k_{0} a=0.8$. Because $H_{0}=j \omega \epsilon_{0} E_{0} \varepsilon_{f} / \gamma$, we have chosen the (completely arbitrary) constant $H_{0}=j$ for the magnetic field. Note that as the thickness increases, the magnetic field tends to be more concentrated on the $\varepsilon_{f}-\varepsilon_{c}$ dielectric-metal interface, because as we saw, the solution tends to the single-interface solution as $a \rightarrow$

Fig. 10.4.3 Magnetic field profiles, $H_{y}(x)$ versus x for antisymmetric-like TM_{1} mode.
∞. The $\varepsilon_{f}-\varepsilon_{s}$ interface cannot support a surface plasmon because it does not meet the necessary condition $\left|\varepsilon_{s}\right|>\varepsilon_{f}$, but the $\varepsilon_{f}-\varepsilon_{c}$ interface does because $\left|\varepsilon_{c}\right|>\varepsilon_{f}$.
Fig. 10.4.4 shows a plot of the effective index β / k_{0} versus the normalized thickness $k_{0} a$. The computed values of β for the two cases $k_{0}=0.6$ and $k_{0} a=0.8$ are shown on the graph, as is the lower cutoff thickness $k_{0} a_{\text {cutoff }}=0.5448$ computed from Eq. (10.4.6). It is evident from this graph that the thickness a is an increasing function of β.

Fig. 10.4.4 Effective index, β / k_{0}, versus normalized thickness, $k_{0} a$. Region 1.
The following MATLAB code was used to produce the graph.
ac = sqrt(ef-ec);
as $=\operatorname{sqrt}(e f-e s)$;
k0a_min $=-1 / 2 *(1 / \mathrm{pc} / \mathrm{ac}+1 / \mathrm{ps} / \mathrm{as})$
\% 0.5448 - lower cutoff
be $=1$ inspace(b0, $0.9985 *$ bcinf, 401);
\% plot almost up to bcinf
ga $=\operatorname{sqrt}(b e . \wedge 2-e f) ;$

> ac $=\operatorname{sqrt}(b e . \wedge 2-e c) ;$
> as $=\operatorname{sqrt}(b e . \wedge 2-e s) ;$
$\%$ solve $\tanh (2 * k 0 * a * g a)=-g a . *(p c * a c+p s * a s) . /(g a . \wedge 2+p c * p s * a c . * a s)$ for $k 0 * a$
k0a $=$ atanh (-ga.*(pc*ac+ps*as)./(ga.^2 + pc*ps*ac.*as))/2./ga;

$$
\begin{aligned}
& \text { plot(k0a,be); hold on \% be vs. k0a } \\
& \text { plot(k0*a1,be1, '.'); } \\
& \text { plot(k0*a2,be2,'.'); } \\
& \text { plot(k0a_min,b0,'o'); } \\
& \text { plot(k0a(end), bcinf,'s'); } \\
& \% \mathrm{k} 0 * \mathrm{a} 1=0.6 \text {, be1 }=1.9394 \text {, found above } \\
& \% \mathrm{k} 0 * \mathrm{a} 2=0.8 \text {, be2 }=2.2127 \text {, found above } \\
& \% \text { a cutoff corresponds to b0 } \\
& \% \text { add bcinf to the last value of k0a }
\end{aligned}
$$

axis([0,1.2,1.5,3]);
xlabel('normalized width, $\left.\{\backslash i t k\} _0\{\backslash i t a\} '\right)$;
ylabel('effective index, \beta / \{\itk\}_0');
Also, shown is the asymptotic value $\beta_{c, \infty}$, which was added to the last value of the $k_{0} a$ array as a reference, although it is actually realized at $k_{0} a=\infty$.

Region 2

Region-2 is defined by the conditions, $\left|\varepsilon_{s}\right| \leq\left|\varepsilon_{c}\right| \leq \varepsilon_{f}$, or, $1 \leq\left|p_{c}\right| \leq\left|p_{s}\right|$. Therefore, both $\left|p_{c}\right| \alpha_{c} / \gamma \geq 1$ and $\left|p_{S}\right| \alpha_{S} / \gamma \geq 1$ are automatically satisfied, and hence, there is no restriction on β other than $\beta \geq k_{0} \sqrt{\varepsilon_{f}}$. Thus its range is,

$$
\begin{equation*}
k_{0} \sqrt{\varepsilon_{f}} \leq \beta<\infty \quad \text { (region 2) } \tag{10.4.14}
\end{equation*}
$$

Moreover, for this range of β, the thickness a is a decreasing function of β, so that it varies over, $0 \leq a \leq a_{\text {cutoff }}$, and therefore, $a_{\text {cutoff }}$ is an upper cutoff. The characteristic equations and magnetic field, Eqs. (10.4.11) and (10.4.12), remain the same as in the region-1 case, so that again, we have an antisymmetric-like TM_{1} mode.

As $a \rightarrow 0$, we may derive a simplified approximation of the characteristic equation. Since β is large in that limit, it follows that $\gamma, \alpha_{c}, \alpha_{s}$ are all approximately equal to β, and we obtain, after canceling some common factors of β in the right-hand side,

$$
\begin{gather*}
e^{4 \gamma a}=\frac{\left|p_{c}\right| \alpha_{c}+\gamma}{\left|p_{c}\right| \alpha_{c}-\gamma} \cdot \frac{\left|p_{s}\right| \alpha_{s}+\gamma}{\left|p_{s}\right| \alpha_{s}-\gamma} \Rightarrow e^{4 \beta a}=\frac{\left|p_{c}\right|+1}{\left|p_{c}\right|-1} \cdot \frac{\left|p_{s}\right|+1}{\left|p_{s}\right|-1}, \quad \text { or, } \\
\beta \approx \frac{1}{4 a} \ln \left[\frac{\left|p_{c}\right|+1}{\left|p_{c}\right|-1} \cdot \frac{\left|p_{s}\right|+1}{\left|p_{s}\right|-1}\right], \quad a \rightarrow 0 \tag{10.4.15}
\end{gather*}
$$

For region 2, the characteristic equation (10.4.4) can be solved for any given value of $a<a_{\text {cutoff }}$ by rearranging it in the form,

$$
\gamma=\sqrt{-\gamma\left(p_{c} \alpha_{c}+p_{s} \alpha_{s}\right) \operatorname{coth}(2 \gamma a)-p_{c} \alpha_{c} p_{s} \alpha_{s}}
$$

and replacing it by the iteration, for $n=0,1,2, \ldots$, initialized just above $\beta=k_{0} \sqrt{\varepsilon_{f}}$,

$$
\begin{equation*}
\gamma_{n+1}=\sqrt{-\gamma_{n}\left(p_{c} \alpha_{c n}+p_{s} \alpha_{s n}\right) \operatorname{coth}\left(2 \gamma_{n} a\right)-p_{c} \alpha_{c n} p_{s} \alpha_{s n}} \tag{10.4.16}
\end{equation*}
$$

Example 10.4.2: Consider the following permittivity values from Ref. [943],

$$
\varepsilon_{c}=-1.4^{2}=-1.96, \quad \varepsilon_{f}=1.5^{2}=2.25, \quad \varepsilon_{s}=-1.3^{2}=-1.69
$$

and the two normalized film thickness $k_{0} a=0.3$ and $k_{0} a=0.1$. The cutoff thickness is $k_{0} a_{\text {cutoff }}=0.4015$, calculated from Eq. (10.4.6). Fig. 10.4 .5 shows the magnetic field profiles. Fig. 10.4.6 plots the effective index β / k_{0} versus film thickness a over the range $0 \leq a \leq a_{\text {cutoff }}$, and demonstrates that β is a decreasing function of a. Superimposed on that graph is the approximation of Eq. (10.4.15).

Fig. 10.4.5 Magnetic field profiles, $H_{y}(x)$ versus x for region 2.

The following MATLAB code illustrates the iteration (10.4.16). The code for generating Fig. 10.4.5 is not given-it is the same as that in Example 10.4.1.

$$
\text { ef }=1.5 \wedge 2 ; \text { ec }=-1.4 \wedge 2 \text {; es }=-1.3 \wedge 2 \text {; }
$$

k0 = 1;
$a=0.3$
$\%$ a $=0.1$;
$\mathrm{pc}=\mathrm{ef} / \mathrm{ec} ; \mathrm{ps}=\mathrm{ef} / \mathrm{es} ;$
b0 $=1.01 *$ sqrt(ef) ; $\quad \%$ could choose any b0 above b_min, e.g., b0 $=10 *$ sqrt (ef) ga $=\operatorname{sqrt}(b 0 \wedge 2-e f) ; \%$ initialize ga, $a c$, as
$s=\operatorname{sart}(b 0 \wedge 2-e s)$;
$a c=\operatorname{sqrt}(b 0 \wedge 2-e c)$;
tol $=1 \mathrm{e}-12$; $\mathrm{n}=1$;
while 1
ga_new = sqrt(-pc*ac.*as*ps - ga.*(pc*ac+ps*as).*coth(2*ga*a*k0));
if abs(ga_new-ga) < tol, break; end
ga = ga_new;
be $=\operatorname{sqrt}(g a \wedge 2+e f)$;
as = sqrt(be^2 - es);
ac = sqrt(be^2 - ec)
$\mathrm{n}=\mathrm{n}+1$;
end
psi $=\operatorname{atanh}(-g a *(p c * a c-p s * a s) /(g a \wedge 2-p c * a c * p s * a s)) / 2+j * p i / 2 ;$
\% computational error of characteristic equation
$E=\operatorname{abs}(\tanh (2 * k 0 * a * g a)+g a *(p c * a c+p s * a s) /(g a \wedge 2+p c * a c * p s * a s)) ;$
\% be = pwga(2*pi,ef,ec,es,a,b0,1,tol); \% alternative calculation using PWGA
where the quantity, E , measures the computational error of the characteristic equation, and the final n is the number of iterations to converge. The calculated values for the two thicknesses are as follows,

$k_{0} a$	β / k_{0}	γ / k_{0}	α_{c} / k_{0}	α_{s} / k_{0}	ψ	n	E
0.3	2.8886	2.4686	3.2100	3.1677	$0.0700+j \pi / 2$	99	1.78×10^{-13}
0.1	11.2518	11.1513	11.3385	11.3266	$0.1658+j \pi / 2$	205	6.01×10^{-14}

The following MATLAB code generates Fig. 10.4.6.
be0 $=\operatorname{sqrt}(e f) ;$
as $=$ sqrt (ef-es)
as $=$ sqrt(ef-es);
$\mathrm{ac}=\mathrm{sqrt}(\mathrm{ef}-\mathrm{ec})$;
k0a_c $=-1 / 2 *(1 / \mathrm{pc} / \mathrm{ac}+1 / \mathrm{ps} / \mathrm{as})$; $\%$ upper cutoff
be = 1inspace(be0, 30, 1001);
ga $=\operatorname{sqrt}(b e . \wedge 2-e f) ;$
$\mathrm{ac}=\operatorname{sqrt}(\mathrm{be} . \wedge 2-\mathrm{ec})$;
as $=$ sqrt(be.^2 - es);
k0a $=$ atanh (-ga.*(pc*ac+ps*as)./(ga.^2 + pc*ps*ac.*as))/2./ga;
bapp $=\log ((1-\mathrm{pc}) /(1+\mathrm{pc}) *(1-\mathrm{ps}) /(1+\mathrm{ps})) / 4 . / \mathrm{k} 0 \mathrm{a} ; \quad \%$ approximate solution figure; plot(k0a,be,'-', k0a,bapp,'--') \% graph annotations are omitted

Even though both surface plasmon conditions $\left|\varepsilon_{c}\right|>\varepsilon_{f}$ and $\left|\varepsilon_{s}\right|>\varepsilon_{f}$ are violated in region 2, and therefore, separate surface plasmons cannot exist at those interfaces, yet, the solution for finite thickness still exhibits peaks at the two interfaces.
\square

Region 3

In region-3, we have the conditions, $\varepsilon_{f} \leq\left|\varepsilon_{s}\right| \leq\left|\varepsilon_{\mathcal{C}}\right|$, or, $\left|p_{c}\right| \leq\left|p_{S}\right| \leq 1$. We will see that in this region, there are two types of plasmonic modes, a symmetric-like TM_{0} mode that has no cutoffs, and an antisymmetric-like TM_{1} mode with a lower cutoff. In addition, there are TE and TM oscillatory modes with certain lower cutoffs. In particular, the TM_{1} mode is special in the sense that its oscillatory version also has an upper cutoff beyond which the mode becomes plasmonic.

In the limit of infinite thickness, both the $\varepsilon_{f}-\varepsilon_{C}$ and $\varepsilon_{f}-\varepsilon_{s}$ interfaces can support surface plasmons with corresponding wavenumbers,

$$
\begin{equation*}
\beta_{c, \infty}=k_{0} \sqrt{\frac{\varepsilon_{c} \varepsilon_{f}}{\varepsilon_{c}+\varepsilon_{f}}}, \quad \beta_{s, \infty}=k_{0} \sqrt{\frac{\varepsilon_{s} \varepsilon_{f}}{\varepsilon_{S}+\varepsilon_{f}}} \tag{10.4.17}
\end{equation*}
$$

Fig. 10.4.6 Effective index, β / k_{0}, versus normalized thickness, $k_{0} a$. Region 2.

Because of the assumption, $\varepsilon_{f} \leq\left|\varepsilon_{s}\right| \leq\left|\varepsilon_{c}\right|$, it follows that $k_{0} \sqrt{\varepsilon_{f}}<\beta_{c, \infty} \leq \beta_{s, \infty}$. We note also the relationships,

$$
\begin{align*}
& p_{c}^{2} \alpha_{c}^{2}-\gamma^{2}=\left(1-p_{c}^{2}\right)\left(\beta_{c, \infty}^{2}-\beta^{2}\right) \\
& p_{s}^{2} \alpha_{s}^{2}-\gamma^{2}=\left(1-p_{s}^{2}\right)\left(\beta_{s, \infty}^{2}-\beta^{2}\right) \tag{10.4.18}
\end{align*}
$$

Because $\left|p_{c}\right| \leq\left|p_{s}\right| \leq 1$, it is possible for the ratios $\left|p_{c}\right| \alpha_{c} / \gamma$ and $\left|p_{s}\right| \alpha_{s} / \gamma$ to be either both greater than one, or both less than one, with the former case leading to the TM_{1} plasmonic mode, and the latter, to the TM_{0} mode. That both ratios must be simultaneously greater or less than one follows from Eq. (10.4.3), which requires that the denominator be a positive quantity. The corresponding ranges of β are easily determined from Eq. (10.4.18). If $\left|p_{c}\right| \alpha_{c} \geq \gamma$, then, $\beta \leq \beta_{c, \infty} \leq \beta_{s, \infty}$, and if, $\left|p_{s}\right| \alpha_{s} \leq \gamma$, then, $\beta \geq \beta_{s, \infty} \geq \beta_{c, \infty}$. Thus, the possible β ranges for the two plasmonic modes are,

$$
\begin{align*}
& \left|p_{c, s}\right| \alpha_{c, s} \leq \gamma \tag{10.4.19}\\
& \left|p_{c, s}\right| \alpha_{c, s} \geq \gamma
\end{align*} \Rightarrow \quad \begin{array}{ll}
\beta_{s, \infty} \leq \beta<\infty & \left(\mathrm{TM}_{0} \text { plasmonic mode }\right) \\
k_{0 \sqrt{\varepsilon_{f}} \leq \beta \leq \beta_{c, \infty}} & \left(\mathrm{TM}_{1} \text { plasmonic mode }\right)
\end{array}
$$

For the TM_{0} mode, the film width a is a decreasing function of β, and varies over $0 \leq a \leq \infty$, where $a=\infty$ at $\beta=\beta_{s, \infty}$. For the TM TM_{1} mode, the width a is an increasing function of β varying over the range, $a_{\text {cutoff }} \leq a \leq \infty$, with $a_{\text {cutoff }}$ realized at $\beta=k_{0} \sqrt{\varepsilon_{f}}$ and given by Eq. (10.4.6), with $a=\infty$ realized at $\beta=\beta_{c, \infty}$.

For the TM_{1} case, the characteristic equations are the same as in Eq. (10.4.11), while those for the TM_{0} mode can be obtained by inverting,

$$
\tanh (\gamma a+\psi)=\frac{\left|p_{c}\right| \alpha_{c}}{\gamma} \leq 1, \quad \tanh (\gamma a-\psi)=\frac{\left|p_{s}\right| \alpha_{s}}{\gamma} \leq 1
$$

These imply that ψ must be real, thus, inverting and separating, we have,

$$
\begin{align*}
\gamma a & =\frac{1}{2} \operatorname{atanh}\left(-\frac{p_{c} \alpha_{c}}{\gamma}\right)+\frac{1}{2} \operatorname{atanh}\left(-\frac{p_{s} \alpha_{s}}{\gamma}\right) \\
\psi & =\frac{1}{2} \operatorname{atanh}\left(-\frac{p_{c} \alpha_{c}}{\gamma}\right)-\frac{1}{2} \operatorname{atanh}\left(-\frac{p_{s} \alpha_{s}}{\gamma}\right) \tag{10.4.20}
\end{align*}
$$

which are recognized to have the form of Eqs. (10.1.15) with $m=0$, that is, a TM_{0} mode. The characteristic equation can be solved using the iteration (10.4.13) for the TM_{1} mode, and (10.4.16), for the TM_{0} mode.

Example 10.4.3: Fig. 10.4 .7 shows the dependence of β on the width a for the two modes, for the following permittivity and width parameters from [943],

$$
\varepsilon_{f}=1.5^{2}=2.25, \quad \varepsilon_{s}=-1.8^{2}=-3.24, \quad \varepsilon_{c}=-2^{2}=-4, \quad k_{0} a=0.8
$$

Fig. 10.4.7 Effective index, β / k_{0}, versus normalized thickness, $k_{0} a$.
The lower cutoff, $k_{0} a_{\text {cutoff }}=0.6628$, was computed from Eq. (10.4.6). Fig. 10.4.8 shows the magnetic field profiles of the two modes, with the TM_{0} one being symmetric-like,and the TM_{1}, antisymmetric-like. The computed values of $\beta, \gamma, \alpha_{c}, \alpha_{s}, \psi$ are in the two cases,

mode	β / k_{0}	γ / k_{0}	α_{c} / k_{0}	α_{s} / k_{0}	ψ	n	E
TM_{0}	2.7612	2.3182	3.4094	3.2961	-0.6751	427	4.68×10^{-13}
TM_{1}	2.0301	1.3680	2.8498	2.7132	$0.1741+j \pi / 2$	339	6.78×10^{-13}

Also shown are, n, E, the number of iterations to converge with a tolerance of $t o l=10^{-12}$, and the computational error of the characteristic equation defined as

$$
E=\left\lvert\, \tanh (2 \gamma a)+\frac{\gamma\left(p_{c} \alpha_{c}+p_{s} \alpha_{s}\right)}{\gamma^{2}+p_{c} \alpha_{c} p_{s} \alpha_{s}}\right.
$$

The MATLAB code for this example is given below, where one should comment/uncomment the appropriate lines to generate the TM_{0} and TM_{1} solutions.

```
ef = 1.5^2; ec = -2^2; es = - 1.8^2;
k0 = 1; a = 0.80;
pc = ef/ec; ps = ef/es;
ac = sqrt(ef-ec); as = sqrt(ef-es);
```

acutoff $=-(1 / \mathrm{ac} / \mathrm{pc}+1 / \mathrm{as} / \mathrm{ps}) / 2 ; \quad \%$ units of $\mathrm{k} 0=1$
binit = 1.1*sqrt(ef);
ga $=$ sqrt(binit^2-ef); as $=\operatorname{sqrt}(b i n i t \wedge 2-e s) ; ~ a c=s q r t(b i n i t \wedge 2-e c) ;$
tol $=1 \mathrm{e}-12 ; \mathrm{n}=1$;
while 1
ga_new $=\operatorname{sqrt}(-p c * a c * a s * p s-g a *(p c * a c+p s * a s) * \operatorname{coth}(2 * g a * a * k 0))$; \% TM0
$\%$ ga_new $=-(\mathrm{ga} \mathrm{\wedge} 2+\mathrm{pc*ac} * \mathrm{as*} * \mathrm{ps}) /(\mathrm{pc*ac}+\mathrm{ps} * a s) * \tanh (2 * \mathrm{ga*a} \mathrm{a} k 0) ; \quad \%$ TM1
if abs(ga_new-ga) < tol, break; end
ga = ga_new;
be $=\operatorname{sqrt}(g a \wedge 2+e f)$;
as = sqrt(be^2 - es);
$\mathrm{ac}=\operatorname{sqrt}(\mathrm{be} \wedge 2-\mathrm{ec})$;
$\mathrm{n}=\mathrm{n}+1$;
end
E $=$ abs(tanh (2*k0*a*ga) + ga*(pc*ac+ps*as)/(ga^2+pc*ac*ps*as));
$\mathrm{m}=0$; \% set $\mathrm{m}=0$ for TMO, $\mathrm{m}=1$ for TM1
psi $=\operatorname{atanh}(-p c * a c / g a) / 2-\operatorname{atanh}(-p s * a s / g a) / 2+j * m * p i / 2 ;$
$\%$ be $=\operatorname{pwga}(2 * \mathrm{pi}, \mathrm{ef}, \mathrm{ec}, \mathrm{es}, \mathrm{a}$, binit, $0, \mathrm{tol})$; \% alternative calculation using PWGA $\%$ be $=\operatorname{pwga}(2 * p i, e f, e c, e s, a, b i n i t, 1$, tol $)$;

And, for the magnetic field profiles, using the calculated values of $\gamma, \alpha_{c}, \alpha_{s}, \psi$ from above,

```
x = 1inspace(-3,3,601)*a;
```

$H y=j * \cosh (g a * k 0 * a-p s i) . * \exp (k 0 * a s *(x+a)) \cdot *(x<-a)+\ldots$ $j * \cosh (g a * k 0 * a+p s i) . * \exp (-k 0 * a c *(x-a)) . *(x>a)+\ldots$
$j * \cosh (k 0 * g a * x+p s i) . *(a b s(x)<=a)$;

$$
\begin{array}{ll}
\text { plot }(x / a, ~ i m a g(H y)) ; & \text { \% TM0 } \\
\text { \% plot(x/a, real(Hy)); } & \text { \% TM1 }
\end{array}
$$

The H-field constant was arbitrarily set to $H_{0}=j$. But then, in the TM_{0} case because ψ is real, H_{y} is effectively imaginary, whereas in the TM_{1} case, because ψ has a $j \pi / 2$ imaginary part, H_{y} becomes real. This explains the above plotting choices for H_{y}.
The calculation and plotting of the $\beta-a$ dispersion curves was done by the MATLAB code,

```
be0 = sqrt(ef);
bcinf = sqrt(ef*ec/(ef+ec));
bsinf = sqrt(ef*es/(ef+es));
```

be = linspace(1.001*bsinf, 40, 2001); \% TMO mode
ga $=\operatorname{sqrt}(b e . \wedge 2-e f) ; a c=\operatorname{sqrt}(b e . \wedge 2-e c) ; ~ a s=\operatorname{sqrt}(b e . \wedge 2-e s) ;$
k0a $=\operatorname{atanh}(-\mathrm{ga} . *(\mathrm{pc*ac}+\mathrm{ps} * a s) . /(\mathrm{ga} . \wedge 2+\mathrm{pc*ps} * \mathrm{ac} . * a s)) / 2 . / \mathrm{ga}$;

Fig. 10.4.8 Magnetic field profiles of TM_{0} and TM_{1} modes for $k_{0} a=0.80$. Region 3.
figure; plot(k0a,be); hold on
be = linspace(1.00001*be0, 0.995*bcinf, 2001); \% TM1 mode
$g a=\operatorname{sqrt}(b e . \wedge 2-e f) ; ~ a c=\operatorname{sqrt}(b e . \wedge 2-e c) ; ~ a s=\operatorname{sqrt}(b e . \wedge 2-e s) ;$
$k 0 a=\operatorname{atanh}(-g a . *(p c * a c+p s * a s) . /(g a . \wedge 2+p c * p s * a c . * a s)) / 2 . / g a ;$
plot(k0a,be, '--'); axis([0,1,0,4.5]);
For the TM_{0} mode, a range of values over $\beta_{s, \infty} \leq \beta<\infty$ was used to evaluate the corresponding thickness a, and a range over $k_{0} \sqrt{\varepsilon_{f}} \leq \beta \leq \beta_{c, \infty}$ was used for the TM_{1} mode. \square

10.5 Oscillatory Modes

In addition to the plasmonic modes, there are also oscillatory TE and TM modes characterized by an imaginary $\gamma=j k_{f}$, with $k_{f}=\sqrt{k_{0}^{2} \varepsilon_{f}-\beta^{2}}$. Because k_{f} is real, the wavenumber β is restricted to the values $\beta \leq k_{0} \sqrt{\varepsilon_{f}}$.

In the lossless asymmetric waveguide case of Sec. 9.12 , the positivity of the decay parameters α_{c}, α_{s}, imposed also a lower limit on β, see Eq. (9.12.3). However here, $\alpha_{c, s}=\sqrt{\beta^{2}-k_{0}^{2} \varepsilon_{c, s}}=\sqrt{\beta^{2}+k_{0}^{2}\left|\varepsilon_{c, s}\right|}$, and α_{c}, α_{s} remain positive even at $\beta=0$. Thus, the range of $\beta \mathrm{s}$ for all oscillatory modes is

$$
\begin{equation*}
0 \leq \beta \leq k_{0} \sqrt{\varepsilon_{f}} \quad \text { (oscillatory modes) } \tag{10.5.1}
\end{equation*}
$$

The TE_{m} modes are obtained by setting $p_{c}=p_{s}=1$ in the characteristic equations (10.1.19), for $m=0,1,2, \ldots$,

$$
\begin{align*}
k_{f} a & =\frac{1}{2} \operatorname{atan}\left(\frac{\alpha_{c}}{k_{f}}\right)+\frac{1}{2} \operatorname{atan}\left(\frac{\alpha_{s}}{k_{f}}\right)+\frac{1}{2} m \pi \tag{10.5.2}\\
\phi & =\frac{1}{2} \operatorname{atan}\left(\frac{\alpha_{c}}{k_{f}}\right)-\frac{1}{2} \operatorname{atan}\left(\frac{\alpha_{s}}{k_{f}}\right)+\frac{1}{2} m \pi \tag{m}
\end{align*}
$$

The TM_{m} modes are indexed by $m=1,2,3, \ldots$, and Eqs. (10.1.20) are more appropriate because p_{c}, p_{s} are negative,

$$
\begin{align*}
k_{f} a & =\frac{1}{2} \operatorname{atan}\left(-\frac{k_{f}}{p_{c} \alpha_{c}}\right)+\frac{1}{2} \operatorname{atan}\left(-\frac{k_{f}}{p_{s} \alpha_{s}}\right)+\frac{1}{2}(m-1) \pi \tag{10.5.3}\\
\phi & =\frac{1}{2} \operatorname{atan}\left(-\frac{k_{f}}{p_{c} \alpha_{c}}\right)-\frac{1}{2} \operatorname{atan}\left(-\frac{k_{f}}{p_{s} \alpha_{s}}\right)+\frac{1}{2} m \pi \tag{m}
\end{align*}
$$

All modes have a lower cutoff found by setting $\beta=0, k_{f}=k_{0 \sqrt{\varepsilon_{f}}}, \alpha_{c, s}=k_{0} \sqrt{-\varepsilon_{c, s}}$, in the characteristic equations (10.5.2) and (10.5.3), resulting basically in the same expression,
$2 k_{0} a_{\min }=\frac{1}{\sqrt{\varepsilon_{f}}}\left[\operatorname{atan}\left(\sqrt{\frac{-\varepsilon_{c}}{\varepsilon_{f}}}\right)+\operatorname{atan}\left(\sqrt{\frac{-\varepsilon_{s}}{\varepsilon_{f}}}\right)+m \pi\right]$
$2 k_{0} a_{\text {min }}=\frac{1}{\sqrt{\varepsilon_{f}}}\left[\operatorname{atan}\left(\sqrt{\frac{-\varepsilon_{c}}{\varepsilon_{f}}}\right)+\operatorname{atan}\left(\sqrt{\frac{-\varepsilon_{s}}{\varepsilon_{f}}}\right)+(m-1) \pi\right]$
$\left(\mathrm{TM}_{m}\right)$
For all, but the TM_{1} oscillatory mode, there is no upper cutoff thickness, that is, the upper limit $\beta=k_{0} \sqrt{\varepsilon_{f}}$ is reached at infinite width, $a \rightarrow \infty$. Indeed, using the property that $\operatorname{atan}(x) \rightarrow \pm \pi / 2-1 / x$ as $x \rightarrow \pm \infty$, we find from (10.1.19) that as $\beta \rightarrow k_{0} \sqrt{\varepsilon_{f}}$ and $a \rightarrow \infty$, then $k_{f} \rightarrow 0$ and $\alpha_{c, s} \rightarrow k_{0} \sqrt{\varepsilon_{f}-\varepsilon_{c, s}}$, and

$$
\begin{align*}
k_{f} a & \rightarrow \pm \frac{\pi}{4} \pm \frac{\pi}{4}-\frac{1}{2} k_{f}\left[\frac{1}{k_{0} p_{c} \sqrt{\varepsilon_{f}-\varepsilon_{c}}}+\frac{1}{k_{0} p_{s} \sqrt{\varepsilon_{f}-\varepsilon_{s}}}\right]+\frac{m \pi}{2}, \quad \text { or } \\
k_{f} & \approx \frac{(m \pm 1) \pi}{2\left(a-a_{c}\right)}, \quad a_{c}=-\frac{1}{2 k_{0}}\left[\frac{1}{p_{c} \sqrt{\varepsilon_{f}-\varepsilon_{c}}}+\frac{1}{p_{s} \sqrt{\varepsilon_{f}-\varepsilon_{s}}}\right] \tag{10.5.5}
\end{align*}
$$

where '+' corresponds to TE_{m} and '-' to TM_{m}. This leads to the approximation for β,

$$
\begin{equation*}
\beta=\sqrt{k_{0}^{2} \varepsilon_{f}-k_{f}^{2}} \approx k_{0} \sqrt{\varepsilon_{f}}-\frac{k_{f}^{2}}{2 k_{0} \sqrt{\varepsilon_{f}}}=k_{0} \sqrt{\varepsilon_{f}}-\frac{(m \pm 1)^{2} \pi^{2}}{8\left(a-a_{c}\right)^{2} k_{0 \sqrt{\varepsilon_{f}}}}, \quad a \rightarrow \infty \tag{10.5.6}
\end{equation*}
$$

The quantity a_{c} is recognized as $a_{\text {cutoff }}$ of Eq. (10.4.6) in the TM case, but in the TE case, a_{c} is negative and has no special meaning. For large a, one could simply replace $\left(a-a_{C}\right)^{2}$ by a^{2} in (10.5.6).

The TM_{1} oscillatory case is special because it also has an upper cutoff, which is the same as the lower cutoff of the TM_{1} plasmonic mode, that is, $a_{\text {cutoff }}$ of Eq. (10.4.6). Indeed, when $m=1$, a common factor of k_{f} can be canceled from both sides of Eq. (10.5.3) in the limit $k_{f} \rightarrow 0$, leading to the expression (10.4.6). Thus, the TM_{1} oscillatory mode exists only for thicknesses $a_{\min } \leq a \leq a_{\text {cutoff }}$ and for $0 \leq \beta \leq k_{0 \sqrt{\varepsilon_{f}}}$, and then it becomes plasmonic for $a_{\text {cutoff }} \leq a<\infty$ and $k_{0} \sqrt{\varepsilon_{f}} \leq \beta \leq \beta_{c, \infty}$.

Example 10.5.1: Fig. 10.5 .1 shows the dependence of β on the width a for the oscillatory modes $\mathrm{TM}_{1}, \mathrm{TM}_{2}, \mathrm{TM}_{3}, \mathrm{TE}_{0}, \mathrm{TE}_{1}, \mathrm{TE}_{2}$ for the same permittivity values as in Example 10.5.1.
The graphs were generated by calculating the values of a from Eqs. (10.5.2) and (10.5.3) over the range of values $0 \leq \beta \leq k_{0} \sqrt{\varepsilon_{f}}$. For example, the MATLAB code for calculating the $\mathrm{TM}_{1}, \mathrm{TE}_{0}, \mathrm{TM}_{2}$, and TE_{1} curves was,
ef $=1.5 \wedge 2 ;$ ec $=-2 \wedge 2 ;$ es $=-1.8 \wedge 2$;
pc = ef/ec; ps = ef/es;
be = 1inspace(0, 0.995*sqrt(ef), 201);
$\mathrm{kf}=\operatorname{sqrt}(\mathrm{ef}-\mathrm{be} . \wedge 2) ; \mathrm{ac}=\operatorname{sqrt}(\mathrm{be} . \wedge 2-\mathrm{ec}) ; \mathrm{as}=\operatorname{sqrt}(\mathrm{be} . \wedge 2-\mathrm{es})$
a_tm1 $=(\operatorname{atan}(-k f . / a c / p c)+\operatorname{atan}(-k f . / a s / p s)) . / k f / 2 ;$
a_tm2 $=(\operatorname{atan}(-k f . / a c / p c)+\operatorname{atan}(-k f . / a s / p s)+p i) . / k f / 2 ;$
a_te0 $=(\operatorname{atan}(\mathrm{ac} . / \mathrm{kf})+\operatorname{atan}(\mathrm{as} . / k f)) . / k f / 2$;
a_te1 $=(\operatorname{atan}(\mathrm{ac} . / k f)+\operatorname{atan}(\mathrm{as} . / k f)+\mathrm{pi}) . / k f / 2$;
plot(a_tm1, be, '-', a_te0, be, '--', a_tm2, be, '-', a_te1, be, '--'); xlim([0,5]);

Fig. 10.5.1 Oscillatory TE and TM modes, and the approximation of Eq. (10.5.6).

The lower cutoffs and the upper cutoff of the TM_{1} mode were,

$$
\begin{aligned}
k_{0} a_{\text {cutoff }} & =0.6628, & & \text { upper cutoff, } \mathrm{TM}_{1} \text { mode } \\
k_{0} a_{\min } & =0.6011, & & \text { lower cutoff, } \mathrm{TM}_{1}, \mathrm{TE}_{0} \text { modes } \\
k_{0} a_{\min } & =1.6483, & & \text { lower cutoff, } \mathrm{TM}_{2}, \mathrm{TE}_{1} \text { modes } \\
k_{0} a_{\min } & =2.6955, & & \text { lower cutoff, } \mathrm{TM}_{3}, \mathrm{TE}_{2} \text { modes }
\end{aligned}
$$

The graph on the right compares the large-a approximation of Eq. (10.5.6) with the exact solutions. The approximation is applicable to all but the TM_{1} mode.

Example 10.5.2: In this example we look at the TM_{0} plasmonic, and TM_{1} oscillatory and plasmonic modes. The permittivity parameters are as in Example 10.4.3. In that example, we determined the field profiles for $k_{0} a=0.8$, which lies in the plasmonic range for TM_{1} since $k_{0} a>k_{0} a_{\text {cutoff }}$. The allowed thickness range of the TM_{1} oscillatory mode was found in the previous example to be rather narrow, $k_{0}\left[a_{\min }, a_{\text {cutoff }}\right]=[0.6011,0.6628]$. Here, we determine β and the field profiles for an intermediate value of a, such as, $k_{0} a=0.63$, which lies in the oscillatory range for TM_{1}, while TM_{0} remains plasmonic. Fig. 10.5.2 displays the $\beta-a$ relationships.
We observe how the oscillatory TM_{1} mode switches to its plasmonic version at $a=a_{\text {cutoff }}$. The TM_{0} effective index and ψ parameter were $\beta / k_{0}=2.8685$ and $\psi=-0.4292$, and were

Fig. 10.5.2 Effective index of oscillatory and plasmonic modes.
computed by the same code as that in Example 10.4.3 with $k_{0} a=0.63$. The oscillatory TM_{1} index and phase factor were $\beta / k_{0}=1.1434$ and $\phi=1.6021$, and were computed by the following MATLAB code, including its magnetic field profile,

$$
\begin{aligned}
& \text { ef }=1.5 \wedge 2 ; \text { ec }=-2 \wedge 2 ; \text { es }=-1.8 \wedge 2 ; \quad \% \text { a }=0.63 \\
& \mathrm{k} 0=1 ; \mathrm{a}=0.63 ; \\
& \mathrm{pc}=\text { ef/ec; ps }=\text { ef/es; } \\
& \text { binit }=0.5 * \text { sqrt (ef); } \\
& \mathrm{kf}=\text { sqrt(ef-binit^2); as = sqrt(binit^2-es) ; ac = sqrt(binit^2-ec); }
\end{aligned}
$$

tol $=1 \mathrm{e}-12$; $\mathrm{n}=1$;
while 1
kf_new $=(\operatorname{atan}(-k f / a c / p c)+\operatorname{atan}(-k f / a s / p s)) / 2 / a ;$
if abs (kf_new-kf) < tol, break; end
kf = kf_new;
be $=\operatorname{sqrt}(e f-k f \wedge 2)$;
as $=$ sqrt(be^2 - es);
$\mathrm{ac}=\operatorname{sqrt}(\mathrm{be} \wedge 2-\mathrm{ec})$;
$\mathrm{n}=\mathrm{n}+1$;
end
$E=a b s(\tan (2 * k 0 * a * k f)-k f *(p c * a c+p s * a s) /(k f \wedge 2-p c * a c * p s * a s))$
phi $=(\operatorname{atan}(p c * a c / k f)$ - atan(ps*as/kf) + pi)/2
\% be = pwga(2*pi,ef,ec,es,a,binit,0,tol); \% alternative calculation using PWGA
\% be $=\operatorname{pwga}(2 * \mathrm{pi}, \mathrm{ef}, \mathrm{ec}, \mathrm{es}, \mathrm{a}, \mathrm{binit}, 1$, tol $)$;
$x=1$ inspace $(-3,3,601) * a$;
$H y=\cos (k f * k 0 * a-p h i) . * \exp (k 0 * a s *(x+a)) . *(x<-a)+\ldots$
$\cos (k f * k 0 * a+p h i) . * \exp \left(-k 0 * a c^{*}(x-a)\right) . *(x>a)+\ldots$
$\cos (k f * k 0 * x+p h i) . *(a b s(x)<=a)$;
plot(x / a, real(Hy))

Fig. 10.5.3 Magnetic field profiles of TM_{0} and oscillatory TM_{1} modes for $k_{0} a=0.63$.

The iterative method was the same as that discussed in Sec. 9.12 for the asymmetric dielectric waveguides. The number of iterations to converge and the computational error of the characteristic equation (10.1.17) were $n=267$ and $E=1.01 \times 10^{-11}$
The MATLAB code for calculating the $\beta-a$ dispersion curves for the TM_{1} oscillatory and plasmonic portions is the same as in Examples 10.4.3 and 10.5.1.
Figures 10.5.4, 10.5.5, and 10.5 .6 show the dispersion curves and magnetic field profiles for the cases $k_{0} a=0.8$ and $k_{0} a=0.63$ for a symmetric MDM configuration with permittivities $\varepsilon_{f}=1.5^{2}$ and $\varepsilon_{s}=\varepsilon_{c}=-2.2^{2}$. The magnetic field profiles are now either completely symmetric or antisymmetric. The dispersion curves have the same asymptotic limit for large a, that is, $\beta_{c, \infty}=\beta_{s, \infty}=2.2678 k_{0}$. The calculated (normalized by k_{0}) propagation wavenumbers were $\beta=2.4586$ and $\beta=1.8197$ for the TM_{0} and TM_{1} modes at $k_{0} a=0.80$, and $\beta=2.5951$ and $\beta=0.6448$ for the case $k_{0} a=0.63$.

Fig. 10.5.4 Effective index of oscillatory and plasmonic modes. Symmetric guide.

Fig. 10.5.5 Magnetic field profiles of TM_{0} and TM_{1} modes for $k_{0} a=0.80$. Symmetric guide.

Fig. 10.5.6 Magnetic field profiles of TM_{0} and TM_{1} modes for $k_{0} a=0.63$. Symmetric guide.

Complex Modes

It should be noted that complex-valued solutions for β (with negative imaginary part) also exist (and there is an infinity of them), even though we have assumed lossless media [952]. For example, for the symmetric configuration of Example 10.5 .2 at $k_{0} a=0.8$, the following are all solutions of the TM_{0} characteristic equation, $\gamma \tanh (\gamma a)+p_{c} \alpha_{c}=0$,

q	β / k_{0}	γ / k_{0}	α_{c} / k_{0}	E
0	2.4586	1.9480	3.1694	0.022×10^{-14}
1	$0.6391-3.5638 j$	$0.5902-3.8589 j$	$0.7645-2.9794 j$	0.076×10^{-14}
2	$0.7585-7.7008 j$	$0.7446-7.8442 j$	$0.7851-7.4393 j$	0.562×10^{-14}
3	$0.7790-11.6825 j$	$0.7727-11.7780 j$	$0.7906-11.5108 j$	0.289×10^{-14}
4	$0.7862-15.6351 j$	$0.7827-15.7067 j$	$0.7927-15.5069 j$	6.671×10^{-14}
5	$0.7896-19.5770 j$	$0.7873-19.6343 j$	$0.7938-19.4747 j$	1.212×10^{-14}

where $E=\left|\gamma \tanh (\gamma a)+p_{c} \alpha_{c}\right|$ is the computational error. They were computed with the help of the MATLAB function, pwg, discussed in the next section. The MATLAB code was as follows,

```
laO = 2*pi; k0 = 1; ef = 2.25; ec = -4; es = ec; a = 0.8; % units of k0=1
pc = ef/ec; ps = ef/es;
bcinf = sqrt(ec*ef/(ec+ef));
M = 5; q = (0:M)';
ga0 = 1/k0/a*atanh(-pc) - j*pi*q/a/k0; % justified in next section
be0 = sqrt(ga0.^2 + ef);
% vector of initial search points
be = pwg(la0,ef,ec,a,be0); % uses built-in FSOLVE to find the solutions
ga = sqrt(be.^2-ef);
ac = sqrt(be.^2 -ec);
E = abs(ga.*tanh(ga*a) + pc*ac);
```

The first one is the real-valued solution of Example 10.5.2. All of the complex ones do have positive real parts for γ, α_{c}. However, the imaginary parts of β, albeit negative, are very large and therefore, these modes are highly damped and cannot be considered as propagating. In fact, for the lossless case, such modes carry no net power in the propagation direction [952]-see Problem 10.4. For such modes, the power flowing forward in the dielectric film cancels the power flowing backward in the metal sides. Indeed, using the MATLAB function, pwgpower, or the results of Problem 10.4, the net power and the powers in each medium are as follows for the above example,

q	P	P_{f}	P_{c}	P_{s}
0	2.8401	4.0337	-0.59682	-0.59682
1	0	0.2586	-0.12928	-0.12928
2	0	0.3378	-0.16891	-0.16891
3	0	0.3531	-0.17654	-0.17654
4	0	0.3585	-0.17927	-0.17927
5	0	0.3611	-0.18055	-0.18055

where $P=P_{f}+P_{c}+P_{s}$. The units of P are arbitrary. The MATLAB code was,
[P,Pf,Pc,Ps] = pwgpower(k0*a,ef,ec,es,be,0);
where the input be is the vector of β / k_{0} calculated above. We discuss such anomalous modes further in Sec. 10.9.

10.6 MDM Configuration - Lossy Case

In the previous section, we ignored losses in the metal cladding and substrate of an MDM guide in order to simplify the problem and gain some insight into the possible types of propagating plasmonic modes-their essential feature being the subwavelength confinement of the fields in the transverse direction.

Here, we assume that the metals are lossy with permittivities that have both negative real and imaginary parts, $\varepsilon_{c}=\varepsilon_{c R}-j \varepsilon_{c I}$, where $\varepsilon_{c R}<0$ and $\varepsilon_{C I} \geq 0$, and similarly,
$\varepsilon_{s}=\varepsilon_{s R}-j \varepsilon_{s I}$, where $\varepsilon_{s R}<0$ and $\varepsilon_{S I} \geq 0$. The dielectric film will still be assumed to be lossless, $\varepsilon_{f}>0$. Moreover, as is typically the case in practice, we will assume that the real parts satisfy the region 3 conditions, $\varepsilon_{f} \leq\left|\varepsilon_{s R}\right| \leq\left|\varepsilon_{c R}\right|$, which imply the existence of single-interface surface plasmons at both interfaces in the case of infinite thickness.

The propagation parameters, $\beta, \gamma, \alpha_{c}, \alpha_{s}$, become complex-valued, and in particular, we require that α_{c}, α_{s} have positive real parts, and β, negative imaginary part, $\beta=$ $\beta_{R}-j \beta_{I}$, with $\beta_{I} \geq 0$, so that the wave attenuates as it propagates along the positive z-direction, that is, $e^{-j \beta Z}=e^{-j \beta_{R} Z} e^{-\beta_{1} Z}$, while it remains confined in the transverse direction, e.g., $e^{-\alpha_{c} x}=e^{-\alpha_{c R} x} e^{-j \alpha_{c l} x}$, for $x \geq a$. The field expressions and characteristic equations (10.1.3)-(10.1.16) remain valid.

Let us consider the symmetric case, $\varepsilon_{c}=\varepsilon_{s}$, whose characteristic equations for the symmetric TM_{0} mode and antisymmetric TM_{1} mode are ,

$$
\begin{equation*}
\tanh (\gamma a+\psi)=-\frac{p_{c} \alpha_{c}}{\gamma}, \quad \psi=\frac{j m \pi}{2}, \quad m=0,1 \tag{10.6.1}
\end{equation*}
$$

where $p_{c}=\varepsilon_{f} / \varepsilon_{c}$, and $\gamma=\sqrt{\beta^{2}-k_{0}^{2} \varepsilon_{f}}, \alpha_{c}=\sqrt{\beta^{2}-k_{0}^{2} \varepsilon_{c}}$. Equivalently,

$$
\begin{equation*}
e^{2 \gamma a+2 \psi}=\frac{\gamma-p_{c} \alpha_{c}}{\gamma+p_{c} \alpha_{c}}, \quad \psi=\frac{j m \pi}{2}, \quad m=0,1 \tag{10.6.2}
\end{equation*}
$$

In the limit of large separation, $a \rightarrow \infty$, both the TM_{0} and TM_{1} modes, tend to the single-interface surface plasmon solution. Indeed, because γ has a positive real part, we have $\tanh (\gamma a+\psi) \rightarrow 1$, and thus, $-p_{c} \alpha_{c}=\gamma$, which corresponds to,

$$
\begin{equation*}
\beta_{c, \infty}=k_{0} \sqrt{\frac{\varepsilon_{f} \varepsilon_{c}}{\varepsilon_{f}+\varepsilon_{c}}} \tag{10.6.3}
\end{equation*}
$$

A variety of approaches can be taken to solving the characteristic equation (10.6.1). We discuss three.

First, if the losses are small, $\varepsilon_{c I} \ll\left|\varepsilon_{c R}\right|$, the solutions for the TM_{0} and TM_{1} modes evolve smoothly from the corresponding ones of the lossless case, as we verify in the example below. The results of Problem 10.5 can be used to construct the lossy solutions from the lossless ones by a first-order approximation in the parameter $\varepsilon_{c l}$.

Second, Eq. (10.6.1) can be solved iteratively by turning it into the following iteration [963], initialized at $\beta=\beta_{c, \infty}$,

$$
\begin{equation*}
\gamma_{n+1}=-p_{c} \alpha_{c, n} \operatorname{coth}\left(\gamma_{n} a+\psi\right), \quad n=0,1,2, \ldots \tag{10.6.4}
\end{equation*}
$$

and stopping when two successive iterates get closer to each other than some specified error tolerance, $\left|\gamma_{n+1}-\gamma_{n}\right| \leq t o l$, such as $t o l=10^{-12}$.

Third, we have written a MATLAB function, pwg, which uses the built-in function, fsolve, to solve the system of two equations consisting of the real and imaginary parts of the characteristic equation,

$$
\begin{equation*}
E=\gamma \tanh (\gamma a+\psi)+p_{c} \alpha_{c}=0 \tag{10.6.5}
\end{equation*}
$$

in the two unknowns, the real and imaginary parts of β. It has usage:

$[b e, E]=\operatorname{pwg}(1 a 0, e f, e c, a, b e 0$, mode, to 1$) \quad$ \% plasmonic modes for symmetric guides

$1 \mathrm{a0}=$ operating wave1ength, $\mathrm{k} 0=2 * \mathrm{pi} / 1 \mathrm{aO}=$ free-space wavenumber
ef,ec $=$ permittivities of film and cladding/substrate
a $=$ half-width of film in same units as la0
be0 = starting search point in units of k0 - can be a vector of choices
mode $=0,1$ for TMO or TM1 mode, default mode=0
tol = computational error tolerance, default tol=1e-12
be = propagation wavenumber in units of k0 - same size as be0
$\mathrm{E}=$ value of the characteristic equation (10.6.5) - same size as be0
There is also a version, pwga, for asymmetric guides, with similar usage:

[be,E] = pwga(la0,ef,ec,es,a,be0,mode,tol) \% plasmonic modes for asymmetric guides

The iterative method generally works well for the primary TM_{0} and TM_{1} modes. However, it is not capable of finding the anomalous complex-mode solutions that are highly damped. Those can be found using pwg with properly choosing the initial search points, as we discuss later.

Example 10.6.1: This example, with parameters taken from [953], illustrates the three numerical approaches. Consider a symmetric silver-air-silver waveguide at an operating free-space wavelength of $\lambda_{0}=650 \mathrm{~nm}$ and permittivity of silver ${ }^{\dagger} \varepsilon_{c}=\varepsilon_{s}=-19.6224-0.443 \mathrm{j}$, and $\varepsilon_{f}=1$ for an air gap of width $2 a=100 \mathrm{~nm}$.
The following MATLAB code computes the propagation parameters $\beta, \gamma, \alpha_{c}$ for the symmetric TM_{0} mode ($\psi=0$) using the pwg function and the 1st-order approximation using Eq. (10.21.3) of Problem 10.5

1a0 $=650 ; \mathrm{k} 0=2 * \mathrm{pi} / 1 \mathrm{a} 0 ; \mathrm{a}=100 / 2$;
\% 1a0, a in nm
ef $=1$; ec $=-19.6224-0.443 *$ j; es $=$ ec;
$p c=e f / e c ; p s=e f / e s ;$
bcinf $=\operatorname{sqrt}(e c * e f /(e c+e f))$;
tol $=1 \mathrm{e}-12$;
mode $=0$;
be $=\operatorname{pwg}(7 \mathrm{la} 0, \mathrm{ef}, \mathrm{ec}, \mathrm{a}, \mathrm{bcinf}$, mode,tol);
ac = sqrt(be^2 - ec); as = ac;
ga $=\operatorname{sqrt}(b e \wedge 2-e f)$;
$\mathrm{E}=\mathrm{abs}(\mathrm{pc} * \mathrm{ac}+\mathrm{ga*} \tanh (\mathrm{ga} * \mathrm{k} 0 * \mathrm{a}))$;
[P,Pf, Pc, Ps] = pwgpower(k0*a,ef,ec,es,be, 0);
Powers = [P, Pf, Pc, Ps];
\% Powers $=[1.2175,1.2328,-0.0076,-0.0076]$
\% ---- 1st order calculation
ecr $=$ real (ec);
bcinr $=\operatorname{sqrt}(e c r * e f /(e c r+e f)) ;$
${ }^{\dagger}$ Our MATLAB function DRUDE, from Sec. 1.12, based on [163], gives $\varepsilon_{\mathcal{C}}=-15.4758-1.1513 j$.
pcr $=$ ef/ecr;
ber $=\operatorname{pwg}(1 a 0$, ef,ecr, a,bcinr, 0,to1); $\quad \%$ lossless solution
gr = sqrt(ber^2-ef); acr = sqrt(ber^2-ecr);
Dec $=$ imag(ec)*j;
\% correction to ec
$D g=p c r * g r *(a c r \wedge 2 / e c r+1 / 2) * d e c /(k 0 * a *(g r \wedge 2 * a c r) *(1-p c r \wedge 2 * a c r \wedge 2 / g r \wedge 2)-p c r *(e f-e c r)) ;$ Db $=\mathrm{gr} / \mathrm{ber*Dg}$;

be1 $=$ ber $+\mathrm{Db} ;$	\% approximate lossy solution
num2str([be;be1],'\%2.7f')	\% be $=1.2261233-0.0026097 \mathrm{i}$ $\%$ be1 $=1.2261699-0.0026106 i$

The numerical values are given in the comments. As expected, energy flow is negative in the metals and positive in the dielectric. We note that the 1st-order approximation is very good because $\varepsilon_{c I} \ll\left|\varepsilon_{c R}\right|$. The iterative version is implemented by the following code segment and results into the same solution to within the error tolerance tol.

```
binit = bcinf;
% initialize iteration
ga = sqrt(binit^2 - ef);
ac = sqrt(binit^2 - ec);
N=1; % number of iterations to converge
while 1 % forever while loop
    ga_new = -pc*ac*coth(ga*a*k0);
    if abs(ga_new-ga) < tol, break; end
    ga = ga_new;
    be = sqrt(ga^2 + ef);
    ac = sqrt(be^2 - ef)
    ac = sqrt(be^2 - ec);
    N=N+1;
end
N, be % N = 270, be = 1.2261233-0.0026097i
```

The iteration was initialized at $\beta=\beta_{c, \infty}$, but the algorithm is very insensitive to the initial choice, for example, it converges equally fast with $\beta=0$ or $\beta=10 \beta_{c, \infty}$.
The corresponding magnetic field profile $H_{y}(x)$ is plotted in Fig. 10.6.1. The following MATLAB code generates the graph (annotations are omitted.)
$x=1$ inspace $(-200,200,401) ; \quad \%$ units of $n m$
Hy $=\cosh (g a * k 0 * a) * \exp (-k 0 * a c *(a b s(x)-a)) . *(a b s(x)>a)+\cosh (k 0 * g a * x) . *(a b s(x)<=a) ;$
fill([-200, -50, -50, -200],[0, 0, 1.5, 1.5], [0.9 0.9 0.9]); hold on fill([50, 200, 200, 50],[0, 0, 1.5, 1.5], [0.9 0.9 0.9]);
plot(x, real(Hy), 'linewidth', 2);

Next, we calculate and plot the β - a dispersion relationship by solving for β over the range of thicknesses, $5 \leq 2 a \leq 3500 \mathrm{~nm}$. Fig. 10.6.2 plots the effective phase index $\operatorname{Re}(\beta) / k_{0}$ and propagation length $L=-[2 \operatorname{Im}(\beta)]^{-1}$ versus a, where L is plotted in units of $\mu \mathrm{m}$. The previously computed solution for $2 a=100 \mathrm{~nm}$ is also added to the graph. It is interesting

Fig. 10.6.1 Magnetic field profile of silver-air-silver guide ($\lambda_{0}=650 \mathrm{~nm}, 2 a=100 \mathrm{~nm}$).

Fig. 10.6.2 Effective index and propagation distance $\left(\lambda_{0}=650 \mathrm{~nm}\right)$.
to note that L exhibits a maximum before settling towards its asymptotic limit, with the maximum occurring approximately at [957],

$$
2 a_{\max } k_{0}=\pi \sqrt{\left|1+\operatorname{Re}\left(\varepsilon_{c}\right)\right|}
$$

The maximum was added in the graph. The following MATLAB code illustrates the computation using the pwg function as well as the iterative method (again, graph annotation details are omitted.)
$\begin{array}{ll}\mathrm{w} 1=2 * \mathrm{a} ; \mathrm{be}=\mathrm{be;} & \text { \% save previous results for } 2 \mathrm{a}=100 \\ \mathrm{~L} 1=-1 / 2 / \mathrm{imag}(\mathrm{be} 1) / \mathrm{k} 0 / 1000 ; & \text { \% propagation length in microns }\end{array}$
 Lmax $=-1 / 2 . / i \operatorname{mag}(b e m a x) / k 0 / 1000 ; \quad \% \operatorname{Lmax}=89.5901$ microns
$w=(5: 10: 3500) ; a=w / 2 ;$
\% vector of gap thicknesses win nm
for $i=1:$ length(w)
be(i) $=\operatorname{pwg}(7 a 0$, ef,ec, a(i), bcinf, 0, tol $)$; \% PWG method
\% la0,ef,ec,bcinf,tol, as above end
$\mathrm{L}=-1 / 2 . / \mathrm{imag}(\mathrm{be}) / \mathrm{k} 0 / 1000 ; \quad$ \% propagation length in micrometers
ac $=\operatorname{sqrt}(b e . \wedge 2-e c) ;$ ga $=\operatorname{sqrt}(b e . \wedge 2-e f) ;$
$\mathrm{E}=\operatorname{abs}\left(\mathrm{pc} * \mathrm{ac}+\mathrm{ga} . * \tanh \left(\mathrm{ga}. . \mathrm{a}^{*} \mathrm{k} 0\right)\right)$;
\% vector of computational errors
figure; plot(w,real(be),'-', w1,real(be1),'.'); \% plot effective index figure; $\operatorname{plot}(w, L, '-', w 1, L 1, ' . '$, wmax, Lmax, 'ro'); $\%$ plot propagation length
\%

```
for i=1:length(w)
    binit = bcinf
    ga = sqrt(binit^2 - ef);
    ac = sqrt(binit^2 - ec);
    N(i) = 1;
    while 1
        ga_new = -pc*ac*coth(ga*a(i)*k0);
        f abs(ga new-ga) < tol, break; end
        ga = ga_new;
        ait(i) = sqrt (ga^2 + ef)
        eit(7) = sqrt(ga^2 + ef)
        c = sqrt(beit(i)^2 - es)
        N(i) = N(i)+1;
end % end while-loop
```

 beta for \(i\)-th thickness
 ac $=\operatorname{sqrt}(b e i t . \wedge 2-e c) ; ~ g a=\operatorname{sqrt}(b e i t . \wedge 2-e f) ;$
Eit $=\operatorname{abs}(p c * a c+g a . * \tanh (g a . * a * k 0)) ; \quad \%$ vector of errors
norm(be-beit) \% compare PWG and iterative methods, ans $=2.5818 \mathrm{e}-12$

Fig. 10.6.3 plots the computational error $E=\left|\gamma \tanh (\gamma a)+p_{c} \alpha_{c}\right|$ versus thickness $w=2 a$, for both the PWG and the iterative methods, showing that it remains below the specified error tolerance of 10^{-12}. The figure also shows a plot versus w of the number of iterations N required for convergence of the iterative method, where N is saved during the iteration for each thickness.

10.7 Gap Surface Plasmons

The TM_{0} symmetric mode illustrated by the above example is the only mode that exists for the symmetric MDM guide for all values of the gap thickness $2 a$, and is known as a gap surface plasmon polariton (G-SPP) mode [981]. For small values of a, the propagation wavenumber β becomes very large. Indeed, assuming that $|\gamma a| \ll 1$ and using the approximation $\tanh (x) \approx x$, the characteristic equation (10.6.1) (with $\psi=0$) becomes,

$$
\begin{equation*}
\gamma a=-\frac{p_{c} \alpha_{c}}{\gamma} \Rightarrow \gamma^{2} a=-p_{c} \sqrt{\gamma^{2}+\left(\varepsilon_{f}-\varepsilon_{c}\right) k_{0}^{2}} \tag{10.7.1}
\end{equation*}
$$

Fig. 10.6.3 Computational error and number of iterations ($\lambda_{0}=0.650 \mathrm{~nm}, t o l=10^{-12}$).

This is a second-order algebraic equation in the variable γ^{2} with solution for γ^{2} and β,

$$
\begin{align*}
\gamma^{2} & =\frac{p_{c}^{2}}{2 a^{2}}+\sqrt{\frac{p_{c}^{4}}{4 a^{4}}+\frac{p_{c}^{2} k_{0}^{2}}{a^{2}}\left(\varepsilon_{f}-\varepsilon_{c}\right)} \\
\beta & =\sqrt{k_{0}^{2} \varepsilon_{f}+\gamma^{2}}=\sqrt{k_{0}^{2} \varepsilon_{f}+\frac{p_{c}^{2}}{2 a^{2}}+\sqrt{\frac{p_{c}^{4}}{4 a^{4}}+\frac{p_{c}^{2} k_{0}^{2}}{a^{2}}\left(\varepsilon_{f}-\varepsilon_{c}\right)}} \tag{10.7.2}
\end{align*}
$$

For very small a, the quartic term p_{c}^{4} / a^{4} wins inside the above square roots, so that $\gamma^{2} \approx p_{c}^{2} / a^{2}$. Its square root is taken with negative sign, $\gamma=-p_{c} / a$, in order to guarantee a positive real part for γ. This results in the simpler expression for $\beta \approx \gamma$,

$$
\begin{equation*}
\beta=-\frac{p_{c}}{a}, \quad \text { for } k_{0} a \ll 1 \tag{10.7.3}
\end{equation*}
$$

The same can also be derived from the characteristic equation (10.7.1) when γ is large,

$$
\gamma^{2} a=-p_{c} \sqrt{\gamma^{2}+\left(\varepsilon_{f}-\varepsilon_{c}\right) k_{0}^{2}} \approx-p_{c} \gamma \quad \Rightarrow \quad \gamma=-\frac{p_{c}}{a}
$$

On the other hand, if a is small but not too small so that the quartic term p_{c}^{4} / a^{4} can be ignored inside the square roots of Eq. (10.7.2), then we obtain another simple expression which works well [981] over a substantial range of a,

$$
\begin{align*}
\gamma^{2} & \approx \sqrt{\frac{p_{c}^{2} k_{0}^{2}}{a^{2}}\left(\varepsilon_{f}-\varepsilon_{c}\right)}=-\frac{p_{c} k_{0}}{a} \sqrt{\varepsilon_{f}-\varepsilon_{c}} \\
\beta & =k_{0} \sqrt{\varepsilon_{f}-\frac{p_{c}}{k_{0} a} \sqrt{\varepsilon_{f}-\varepsilon_{c}}} \tag{10.7.4}
\end{align*}
$$

TM M_{1} modes

We saw in Sec. 10.4 that, in the lossless case, region-3 supported antisymmetric TM_{1} plasmonic modes for $k_{0} \sqrt{\varepsilon_{f}} \leq \beta \leq \beta_{c, \infty}$, corresponding to the film's half-width range
$a_{\text {cutoff }} \leq a<\infty$, where for symmetric guides $\left(\varepsilon_{c}=\varepsilon_{s}\right)$, the cutoff thickness is given by Eq. (10.4.6) and is obtained by setting, $\beta=k_{0} \sqrt{\varepsilon_{f}}$, or $\gamma=0$, in the TM_{1} characteristic equation,

$$
\tanh (\gamma a)=-\left.\frac{\gamma}{p_{c} \alpha_{c}}\right|_{\gamma=0} \Rightarrow k_{0} a_{\mathrm{cutoff}}=-\frac{1}{p_{c} \sqrt{\varepsilon_{f}-\varepsilon_{\mathcal{C}}}}-\frac{\varepsilon_{c}}{\varepsilon_{f} \sqrt{\varepsilon_{f}-\varepsilon_{\mathcal{C}}}}
$$

In the lossy case, because ε_{c} and β are complex-valued, an approximate value for the cutoff with may be obtained by taking the real part of the above expression,

$$
\begin{equation*}
k_{0} a_{\text {cutoff }}=-\operatorname{Re}\left[\frac{1}{p_{c} \sqrt{\varepsilon_{f}-\varepsilon_{\mathcal{C}}}}\right] \tag{10.7.5}
\end{equation*}
$$

Example 10.7.1: Here, we look at the TM_{1} modes of Example 10.6.1 that had operating freespace wavelength of $\lambda_{0}=650 \mathrm{~nm}$ and permittivity of silver $\varepsilon_{c}=\varepsilon_{s}=-19.6224-0.443 \mathrm{j}$, and $\varepsilon_{f}=1$ for air. The cutoff width calculated from Eq. (10.7.5) is found to be

$$
w_{\text {cutoff }}=2 a_{\text {cutoff }}=894.0795 \mathrm{~nm}
$$

The TM_{1} modes were calculated over the thickness range, $w_{\text {cutoff }} \leq 2 a \leq 3500 \mathrm{~nm}$, and the TM_{0} modes over, $5 \leq 2 a \leq 3500 \mathrm{~nm}$. Fig. 10.7.1 shows the effective index $\operatorname{Re}(\beta) / k_{0}$ and propagation distance $L=-[2 \operatorname{Im}(\beta)]^{-1}$ in units of nm . The solutions for the specific value, $2 a=1000 \mathrm{~m}$, that lies above the cutoff, were also placed on the graphs. The following MATLAB code segment illustrates the computations.
$1 \mathrm{aO}=650 ; \mathrm{k} 0=2 * \mathrm{pi} / 1 \mathrm{a} 0 ;$ ef $=1$; ec $=-19.6224-0.443 * j$; es=ec;
pc = ef/ec; ps = ef/es;
bcinf = sqrt(ec*ef/(ec+ef));
tol $=1 \mathrm{e}-12$;
acut $=-$ real $(1 / \mathrm{pc} /$ sqrt $(e f-e c)) / k 0$;
wc = 2*acut;
$\mathrm{nc}=\operatorname{sqrt}(\mathrm{ef})$;
$w=5: 10: 3500 ; \quad$ \% thickness range for TMO
$\mathrm{w} 1=1.001 * \mathrm{wc}: 10: 3500 ; \quad$ \% thickness range for TM1
for $i=1$: length (w)
be0(i) $=\operatorname{pwg}(1 a 0, e f, e c, w(i) / 2, b c i n f, 0$, tol $) ; \quad \%$ TMO
end
for $\mathbf{i = 1}$: 1 ength (w1)
be1(i) $=\operatorname{pwg}(1 a 0, e f, e c, w 1(i) / 2, b c i n f, 1, t o 1) ;$
\% TM1 end
neff0 = real (be0); L0 = -1/2./imag(be0)/k0/1000; neff1 = real (be1); L1 = -1/2./imag(be1)/k0/1000;
w2=1000; a = w2/2;
be02 $=\operatorname{pwg}(1 a 0, e f, e c, a 2, b c i n f, 0$, tol $)$;
be12 = pwg(la0,ef,ec,a2,bcinf,1,tol);
\% TMO index \& distance
\% TM1 index \& distance
\% specific solutions
\% TMO
\% TM1
neff02 $=$ real(be02); L02 $=-1 / 2 /$ imag(be02) $/ \mathrm{k} 0 / 1000$; neff12 $=$ real (be12); L12 $=-1 / 2 / i \operatorname{mag}(b e 12) / k 0 / 1000$;
figure; plot(w, neff0,'-', w1,neff1,'r--', ...
[w2,w2],[neff02,neff12],'o', wc,nc,'s', 'markersize',9);
yaxis(1, 1.15, 1:0.05:1.15)
xaxis(0,3500, 0:500:3500);
figure; plot(w,L0,'-', w1,L1,’r--', [w2,w2],[L02,L12],’o', 'markersize’,9); yaxis ($0,100,0: 20: 100$);
xaxis(0,3500, 0:500:3500);

Fig. 10.7.1 Effective index and propagation distance for TM_{0} and TM_{1} plasmonic modes.
The symmetric TM_{0} and antisymmetric TM_{1} magnetic field profiles $H_{y}(x)$ for the case $2 a=1000 \mathrm{~nm}$ are shown in Fig. 10.7.2. They were computed and plotted by the following MATLAB code segment (annotations are omitted.)

Fig. 10.7.2 Transverse magnetic field profiles for TM_{0} and TM_{1} plasmonic modes.

```
ga = sqrt(be02^2 - ef); 
ac = sqrt(be02^2 - ec);
psi = 0;
Hy \(=\cosh (g a * k 0 * a+p s i) * \exp (-k 0 * a c *(x-a)) . *(x>a)+\ldots\)
``` \(\cosh (\mathrm{ga} * \mathrm{k} 0 * \mathrm{a}-\mathrm{psi}) * \exp \left(k 0 * a c^{*}(\mathrm{x}+\mathrm{a})\right) . *(\mathrm{x}<-\mathrm{a})+\ldots\) \(\cosh (k 0 * g a * x+p s i) . *(a b s(x)<=a)\);
figure; fill([-1500, -500, -500, -1500],[0, 0, 2, 2], [0.9 0.9 0.9]); hold on fill([500, 1500, 1500, 500],[0, 0, 2, 2], [0.9 0.9 0.9]);
plot(x,real(Hy), 'linewidth', 2);
\% plot TMO
xaxis(\(-1500,1500,-1500: 500: 1500\)); yaxis (\(0,2,0: 0.5: 2\));
\[
\begin{aligned}
& \text { ga }=\text { sqrt (be12^2 - ef); } \quad \% \text { transverse wavenumbers for TM1 } \\
& \mathrm{ac}=\operatorname{sqrt}(\mathrm{be} 12 \wedge 2-\mathrm{ec}) ; \quad \% \text { ga }=0.1251-0.0072 \mathrm{i} ; \mathrm{ac}=4.5432+0.0486 i \\
& \text { psi }=j \text { "pi/2; } \\
& \text { Hy }=\cosh (g a * k 0 * a+p s i) * \exp (-k 0 * a c *(x-a)) . *(x>a)+\ldots \quad \text { \% TM1 field } \\
& \text { cosh(ga*k0*a-psi)*exp(k0*ac*(x+a)).*(x <-a) +... } \\
& \text { cosh(k0*ga*x+psi).*(abs(x)<=a); }
\end{aligned}
\]
figure; fill([-1500, -500, -500, -1500],[-1, -1, 1, 1], [0.9 0.9 0.9]); hold on fill([500, 1500, 1500, 500],[-1, -1, 1, 1], [0.9 0.9 0.9]);
plot(x,imag(Hy), 'linewidth',2);
\% plot TM1
xaxis(-1500, 1500, -1500:500:1500); yaxis(-1,1, -1:0.5:1)

We note that because of the rather large thickness of 1000 nm , the \(\mathrm{TM}_{0}\) field resembles two separate single-interface surface plasmons at the two silver-air interfaces

\subsection*{10.8 PEC Limit}

Plasmonic waveguides operate near the visible and infrared spectrum and excel at guiding light at decent propagation distances, while being laterally confined at subwavelength distances.

At the microwave regime, MDM waveguides behave very much like ordinary parallelplate TEM transmission lines, or like parallel-plate waveguides supporting TM and TE modes. The connection to the plasmonic case can be seen in the perfect-electric conductor (PEC) limit [961]. We recall from Chapter 1 that the effective dielectric constant of a conductor is related to its conductivity \(\sigma(\omega)\) by
\[
\begin{equation*}
\varepsilon_{c}=1-j \frac{\sigma(\omega)}{\epsilon_{0} \omega} \tag{10.8.1}
\end{equation*}
\]

The PEC limit assumes that the metals are perfect conductors \((\sigma \rightarrow \infty)\), so that \(\varepsilon_{\mathcal{C}} \rightarrow \infty\), and therefore, \(p_{\mathcal{C}}=\varepsilon_{f} / \varepsilon_{\mathcal{C}} \rightarrow 0\). In this limit, the characteristic equation (10.6.1) of a symmetric MDM guide becomes for the even and odd TM modes,
\[
\tanh (\gamma a+\psi)=-\frac{p_{c} \alpha_{c}}{\gamma} \rightarrow \frac{\varepsilon_{f} k_{0} \sqrt{-\varepsilon_{c}}}{\varepsilon_{c} \gamma} \rightarrow 0, \quad \psi=\frac{j m \pi}{2}, \quad m=0,1
\]
\(x=1\) inspace \((-1500,1500,601)\);
where we replaced \(\alpha_{c}=\sqrt{\beta^{2}-k_{0}^{2} \varepsilon_{c}} \rightarrow k_{0} \sqrt{-\varepsilon_{c}}\). This condition then requires that \(\gamma a+\psi=j \pi q\), with integer \(q\), resulting in the quantized values of \(\gamma\),
\[
\begin{equation*}
\gamma=j k_{c}, \quad k_{c}=\frac{\pi(2 q+m)}{2 a}, \quad q=0,1,2, \ldots, \quad m=0,1 \tag{10.8.2}
\end{equation*}
\]

The quantities \(k_{c}\) are recognized as the cutoff wavenumbers of the TM modes of a parallel-plate waveguide with perfectly conducting walls. The corresponding dispersion relationship is obtained from \(\beta=\sqrt{\gamma^{2}+k_{0}^{2} \varepsilon_{f}}=\sqrt{k_{0}^{2} \varepsilon_{f}-k_{c}^{2}}\), and requires that the guide be operated above cutoff, \(k_{0} \sqrt{\varepsilon_{f}} \geq k_{c}\).

The case \(q=m=0\), or, \(\gamma=0\), is special and corresponds to the parallel-plate TEM transmission line discussed in the next chapter. The TEM property follows from Eq. (10.1.3), which shows that \(E_{z}=0\) in this case. Moreover, \(E_{x}, H_{y}\) become constants, independent of \(x\), and \(E_{x} / H_{y}=\eta_{0}\).

TE modes, which generally do not exist in the plasmonic case, correspond to setting \(p_{c}=1\) in the characteristic equation (10.6.1), which would have the PEC limit,
\[
\tanh (\gamma a \pm \psi)=-\frac{\alpha_{c}}{\gamma} \rightarrow \frac{k_{0} \sqrt{-\varepsilon_{c}}}{\gamma} \rightarrow \infty, \quad \psi=\frac{j m \pi}{2}, \quad m=0,1
\]

This condition gives the quantized values for \(\gamma\) and TE cutoff wavenumbers:
\[
\begin{equation*}
\gamma=j k_{c}, \quad k_{c}=\frac{\pi(2 q+m+1)}{2 a}, \quad q=0,1,2, \ldots, \quad m=0,1 \tag{10.8.3}
\end{equation*}
\]

We note that \(\gamma=0\) is not possible for TE modes.
Example 10.8.1: The following graphs show the magnetic field profiles for a fictitious symmetric MDM guide with \(\lambda_{0}=650 \mathrm{~nm}, \varepsilon_{f}=1\), with film width of 100 nm , and the successive values of \(\varepsilon_{c}\) having increasingly larger imaginary parts:
\[
\begin{aligned}
& \varepsilon_{c}=-20-10 j \\
& \varepsilon_{c}=-20-100 j \\
& \varepsilon_{c}=-20-1000 j
\end{aligned}
\]

The MATLAB code is the same as in Example 10.6.1. We observe how the magnetic field tends to the TEM limit, becoming progressively constant, and more quickly decaying in the metal. The computed values for \(\beta, \gamma, \alpha_{c}\) were,
\begin{tabular}{c|c|r}
\(\beta / k_{0}\) & \(\gamma / k_{0}\) & \multicolumn{1}{|c}{\(\alpha_{c} / k_{0}\)} \\
\hline \(1.20520-0.04899 j\) & \(0.67656-0.08727 j\) & \(4.74695+1.04087 j\) \\
\(1.07807-0.06220 j\) & \(0.42772-0.15677 j\) & \(7.84987+6.36099 j\) \\
\(1.02333-0.02255 j\) & \(0.23702-0.09736 j\) & \(22.59670+22.12610 j\)
\end{tabular}

\subsection*{10.9 Anomalous Complex Modes}

As we mentioned at the end of Sec. 10.5, there exist complex-modes even in the lossless case, that are anomalous in the sense that they are stable and laterally confined, having propagation wavenumber, \(\beta=\beta_{R}-j \beta_{I}\), with \(\beta_{I}>0\), but with \(\beta_{I}\) so large that they cannot be considered as propagating, nor are they necessarily evanescent, which would have \(\beta_{R}=0\) and \(\beta_{I}>0\), although such evanescent modes do exist.

The mode spectrum of MDM guides for the lossless and lossy cases has been studied in various references such as [952-955,965].

Consider a symmetric configuration \(\left(\varepsilon_{c}=\varepsilon_{s}\right)\), whose even and odd TM modes must satisfy the characteristic equation (10.6.1),
\[
\begin{equation*}
\tanh (\gamma a \pm \psi)=-\frac{p_{c} \alpha_{c}}{\gamma}, \quad \psi=\frac{j m \pi}{2}, \quad m=0,1 \tag{10.9.1}
\end{equation*}
\]

Because we are looking for anomalous modes that have large values of \(\beta\), or, \(\gamma=\) \(\sqrt{\beta^{2}+k_{0}^{2} \varepsilon_{f}}\), we have, \(\alpha_{c}=\sqrt{\gamma^{2}+k_{0}^{2}\left(\varepsilon_{f}-\varepsilon_{c}\right)} \approx \gamma\). It follows that the right-hand-side of Eq. (10.9.1) tends to a constant,
\[
\tanh (\gamma a \pm \psi) \approx-p_{c}, \quad \text { for }|\beta| \gg k_{0}
\]

But this equation does not uniquely define \(\gamma\), since,
\[
\tanh (\gamma a \pm \psi)=\tanh (\gamma a \pm \psi \pm j \pi q)=-p_{c}
\]
for any integer \(q\). Replacing \(\psi=j m \pi / 2\), for \(m=0,1\), and inverting, we obtain an infinite family of possible solutions, which will have large \(|\gamma|\) for large values of \(q\),
\[
\begin{equation*}
\gamma=\frac{1}{a} \operatorname{atanh}\left(-p_{c}\right) \pm \frac{j \pi(2 q+m)}{2 a}, \quad m=0,1, \quad q=0,1,2, \ldots \tag{10.9.2}
\end{equation*}
\]

This is similar to Eq. (10.8.2). By using these approximate \(\gamma s\) as the initial search points of the function, pwg, we may derive the exact values of the anomalous modes.

To clarify the role of the \(\pm \operatorname{sign}\) choices, we note that in the lossless case (real \(\varepsilon_{c}, \varepsilon_{f}\)), because the characteristic equation has real parameters then if \(\beta\) is a solution, so will be the complex conjugate, \(\beta^{*}\). Moreover, since the dependence on \(\beta\) comes through \(\beta^{2}\), it follows that given a solution \(\beta\), all four choices, \(\pm \beta, \pm \beta^{*}\), would also be solutions. However, if \(\beta=\beta_{R}-j \beta_{I}\) with \(\beta_{I} \geq 0\), then the only other physically acceptable choice would be, \(-\beta^{*}=-\beta_{R}-j \beta_{I}\), that also has negative imaginary part. Thus, in the lossless case the anomalous complex modes come in pairs, \(\left\{\beta,-\beta^{*}\right\}\), or, \(\pm \beta_{R}-j \beta_{I}\) [952]. The \(\pm\) signs in Eq. (10.9.2) typically correspond to such pair \(\beta,-\beta^{*}\). In the lossy case, however, this conjugate symmetry is broken, making the two values in the pair \(\beta,-\beta^{*}\) slightly different.

Example 10.9.1: Consider again the silver-air-silver guide of Example 10.6.1 with free-space wavelength of \(\lambda_{0}=650 \mathrm{~nm}\), silver permittivity, \(\varepsilon_{c}=\varepsilon_{s}=-19.6224-0.443 j\), and \(\varepsilon_{f}=1\) for an air gap of width \(2 a=100 \mathrm{~nm}\).
The following table shows the solutions for the even modes (\(m=0\)), for \(q=0,1,2,3\) and the two \(\pm \operatorname{sign}\) choices. The computational error vector, \(E=\gamma \tanh (\gamma a+\psi)+p_{c} \alpha_{c}\), has
norm \(\|E\|=4.3687 \times 10^{-14}\). The second table shows the odd solutions \((m=1)\). Its error norm was \(\|E\|=9.1312 \times 10^{-14}\).
The \(q=0\) even solution is the fundamental G-SPP mode that we considered in Example 10.6.1. For the rest of the even cases and all the odd ones, we observe that all solutions are acceptable, in the sense that they have \(\beta_{I}=-\operatorname{Im}(\beta)>0\), and \(\operatorname{Re}\left(\alpha_{c}\right)>0\), however, they cannot be considered as propagating because of their large value of \(\beta_{I}\). We note also that they have a \(\gamma\) that is predominantly imaginary, so that those modes may be viewed as oscillatory as opposed to plasmonic.
\begin{tabular}{l|c|r|c|c}
\(q\) & & \multicolumn{1}{|c|}{\(\beta / k_{0}\) (even modes) } & \multicolumn{1}{|c|}{\(\gamma / k_{0}\)} & \(\alpha_{c} / k_{0}\) \\
\hline 0 & & \(1.226123-0.002610 j\) & \(0.709501-0.004510 j\) & \(4.596523+0.047492 j\) \\
1 & - & \(0.076360-6.424289 j\) & \(0.075451-6.501643 j\) & \(0.057829-4.652592 j\) \\
1 & + & \(-0.076321-6.419272 j\) & \(0.075411+6.496685 j\) & \(0.153066+4.647824 j\) \\
2 & - & \(0.099118-12.963768 j\) & \(0.098824-13.002278 j\) & \(0.087286-12.183377 j\) \\
2 & + & \(-0.099113-12.958989 j\) & \(0.098819+12.997513 j\) & \(0.123651+12.178607 j\) \\
3 & - & \(0.102709-19.476698 j\) & \(0.102573-19.502352 j\) & \(0.093794-18.966223 j\) \\
3 & + & \(-0.102707-19.471926 j\) & \(0.102572+19.497586 j\) & \(0.117154+18.961452 j\)
\end{tabular}
\begin{tabular}{l|c|r|c|c}
\(q\) & & \multicolumn{1}{|c|}{\(\beta / k_{0}\) (odd modes) } & \(\gamma / k_{0}\) & \(\alpha_{c} / k_{0}\) \\
\hline 0 & & \(0.000249-2.976418 j\) & \(0.000236-3.139915 j\) & \(3.281442+0.067275 j\) \\
1 & - & \(0.093819-9.700739 j\) & \(0.093325-9.752140 j\) & \(0.079792-8.630150 j\) \\
1 & + & \(-0.093808-9.695937 j\) & \(0.093313+9.747364 j\) & \(0.131131+8.625381 j\) \\
2 & - & \(0.101461-16.221536 j\) & \(0.101269-16.252329 j\) & \(0.091276-15.604931 j\) \\
2 & + & \(-0.101459-16.216762 j\) & \(0.101267+16.247564 j\) & \(0.119668+15.600160 j\) \\
3 & - & \(0.103452-22.730378 j\) & \(0.103352-22.752364 j\) & \(0.095539-22.294531 j\) \\
3 & + & \(-0.103451-22.725607 j\) & \(0.103351+22.747597 j\) & \(0.115411+22.289760 j\)
\end{tabular}

The tables were produced by the following MATLAB code:

> 1a0 \(=650 ; \mathrm{k} 0=2 * \mathrm{pi} / 1 \mathrm{a} 0 ; \mathrm{a}=100 / 2 ;\)
> \(\mathrm{ef}=1 ;\) ec \(=-19.6224-0.443 * \mathrm{j} ;\)
> \(\mathrm{pc}=\) ef/ec; to \(=1 \mathrm{e}-12 ;\)
\(q=(0: 3)\) '; m=0;
\% la0,a in nm
\(\%\) set ec \(=-16.6224\) for lossless case
\% set \(m=0,1\) for even or odd modes
ga1 \(=1 / k 0 / a * \operatorname{atanh}(-p c)-j * p i / 2 / a / k 0 *(m+2 * q) ;\)
ga2 \(=1 / k 0 / a * \operatorname{atanh}(-p c)+j * p i / 2 / a / k 0 *(m+2 * q)\);
gin = [ga1.’; ga2.']; gin = gin(:);
\(q=\left[q^{\prime} ; q^{\prime}\right] ; q=q(:)\);
\(\mathrm{q}=\left[\mathrm{q} ; \mathrm{q} ; \mathrm{q}^{2}=\mathrm{q}\right.\)
\(\mathrm{gin}(1)=[] ; \mathrm{q}(1)=[]\);
bin \(=\operatorname{sqrt}(\) gin.^2 \(+e f) ;\)
be \(=\operatorname{pwg}(7 \mathrm{la} 0, \mathrm{ef}, \mathrm{ec}, \mathrm{a}, \mathrm{bin}, \mathrm{m}, \mathrm{tol})\);
ga \(=\operatorname{sqrt}(b e . \wedge 2-e f) ; ~ a c=\operatorname{sqrt}(b e . \wedge 2-e c) ;\)
\(\mathrm{E}=\operatorname{norm}(\mathrm{pc} * \mathrm{ac}+\mathrm{ga} . * \tanh (\mathrm{ga*k} 0 * a+j * m * \mathrm{pi} / 2))\) num2str([be, ga, ac],'\%12.6f')
\% list them as -/+ pairs \% eliminate duplicate \(\mathrm{q}=0\) case
\% initial search vector
\% solution vector for beta
\% gamma and alpha_c vectors
\% computational error norm
\% table

We note also that the \(\pm\) pairs for the same value of \(q\) are very close to each other. If we execute the same code for the lossless case (\(\varepsilon_{C}=-19.6224\)), we will find that the pairs are numerically equal, that is, \(\pm \beta_{R}-j \beta_{I}\).

Example 10.9.2: This example is from [955], and we have also added the odd modes. A symmetric silver-air-silver MDM waveguide at free-space wavelength \(\lambda_{0}=1550 \mathrm{~nm}\), has film width \(2 a=\lambda_{0} / 4\), film permittivity \(\varepsilon_{f}=1\), and silver permittivity \(\varepsilon_{c}=-143.497-9.517 j\), or, \(\varepsilon_{c}=-143.417\) in the lossless limit. \({ }^{\dagger}\)
\(1 \mathrm{a} 0=1550 ; \mathrm{k} 0=2 * \mathrm{pi} / 1 \mathrm{a} 0 ; \mathrm{a}=1 \mathrm{a} 0 / 8\)
\(\mathrm{ef}=1 ; \mathrm{ec}=-143.497-\mathrm{j} * 9.517 * 0 ;\)
\(\% \mathrm{ec}=-143.497-\mathrm{j} * 9.517\) in lossy case
\(\mathrm{pc}=\mathrm{ef} / \mathrm{ec}\);
tol \(=1 \mathrm{e}-12\);
\(q=(0: 4), \quad m=0 ;\)
\% even modes TMO, TM2, TM4, TM6, TM8
gin \(=1 / k 0 / a * a \tanh (-p c)-j * p i / 2 / a / k 0 *(m+2 * q)\);
bin \(=\) sqrt (gin.^2 + ef);
be_even \(=\operatorname{pwg}(7 a 0, e f, e c, a, b i n, m, t o 1) ; \quad \%\) even mode solutions
\(\mathrm{m}=1\);
\% odd modes TM1, TM3, TM5, TM7, TM9
gin \(=1 / k 0 / a * a t a n h(-p c)-j * p i / 2 / a / k 0 *(m+2 * q)\);
bin \(=\operatorname{sqrt}(\) gin.^2 \(+e f)\);
be_odd \(=\) pwg(la0,ef,ec,a,bin,m,tol); \(\%\) odd mode solutions
be = [be_even, be_odd].'; be = be(:);
\% list modes sequentially
ga \(=\operatorname{sqrt}(b e . \wedge 2-e f) ; ~ a c=\operatorname{sqrt}(b e . \wedge 2-e c) ;\)
num2str([be, ga, ac], '\%11.5f')
\% table
\(M=\operatorname{repmat}([0 ; 1]\), length \((q), 1) ;\)
\(E=\operatorname{norm}(p c * a c+g a . * \tanh (g a * a * k 0+j * M * p i / 2)) \quad \%\) error norm of all modes
The calculated error norms for the lossless and lossy cases were \(\|E\|=5.3579 \times 10^{-14}\) and \(2.6947 \times 10^{-14}\), respectively. The following two tables list the solutions for the two cases.
\begin{tabular}{|c|c|c|c|}
\hline mode & \(\beta / k_{0}\) (lossless case) & \(\gamma / k_{0}\) & \(\alpha_{c} / k_{0}\) \\
\hline 0 & 1.05313 & 0.33027 & 12.02523 \\
\hline 1 & -1.66934j & -1.94594j & 11.86214 \\
\hline 2 & -3.84683j & -3.97468j & 11.34456 \\
\hline 3 & -5.90040j & 5.98454j & 10.42508 \\
\hline 4 & -7.92720j & 7.99003j & 8.98089 \\
\hline 5 & -9.94391j & 9.99407j & 6.67949 \\
\hline 6 & -11.95773j & -11.99947j & 0.71391 \\
\hline 7 & 0.00456-13.96424j & 0.00455-14.00000j & 0.00887-7.17656j \\
\hline 8 & 0.00587-15.96872j & 0.00586-16.00000j & 0.00887-10.55950j \\
\hline 9 & 0.00661-17.97220j & 0.00660-18.00000j & 0.00887-13.39787j \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\dagger}\) Note that our DRUDE function gives here \(\varepsilon_{\mathcal{C}}=-103.332-8.130 j\).
}
\begin{tabular}{c|r|r|r}
mode & \multicolumn{1}{|c|}{\(\beta / k_{0}\) (lossy case) } & \multicolumn{1}{|c}{\(\gamma / k_{0}\)} & \(\alpha_{c} / k_{0}\) \\
\hline 0 & \(1.05304-0.00176 j\) & \(0.33004-0.00563 j\) & \(12.03172+0.39534 j\) \\
1 & \(0.00210-1.66945 j\) & \(0.00180-1.94603 j\) & \(11.86889+0.40063 j\) \\
2 & \(0.00077-3.84686 j\) & \(0.00075-3.97471 j\) & \(11.35228+0.41891 j\) \\
3 & \(0.00035-5.90041 j\) & \(0.00035-5.98455 j\) & \(10.43503+0.45581 j\) \\
4 & \(0.00008-7.92719 j\) & \(0.00008-7.99001 j\) & \(8.99646+0.52886 j\) \\
5 & \(-0.00023-9.94387 j\) & \(0.00023+9.99402 j\) & \(6.71706+0.70877 j\) \\
6 & \(-0.00146-11.95650 j\) & \(0.00145+11.99824 j\) & \(2.24792+2.12461 j\) \\
7 & \(-0.00453-13.96352 j\) & \(0.00452+13.99928 j\) & \(0.66911+7.20628 j\) \\
8 & \(-0.00583-15.96808 j\) & \(0.00582+15.99936 j\) & \(0.45906+10.56850 j\) \\
9 & \(-0.00658-17.97159 j\) & \(0.00657+17.99939 j\) & \(0.36388+13.40199 j\)
\end{tabular}

The listed mode numbers were the quantities, \(2 q+m\), for \(q=0,1,2,3,4, m=0,1\). The \(q=0\) mode is the fundamental G-SPP mode. For the lossless case, modes 1-6 are evanescent in the sense that they have \(\beta_{R}=0\) and \(\beta_{I}=-\operatorname{Im}(\beta)>0\), but they are laterally confined because \(\alpha_{c}\) is positive-real. These modes carry no power in any of the three media, because the media were assumed to be lossless, so that the factors that appear in the expressions Eq. (10.1.24) for the transmitted powers are, \(\operatorname{Re}(\beta / \varepsilon)=\operatorname{Re}(\beta) / \varepsilon=0\). The numerical values for the even modes given in [955] differ slightly from ours, but that is probably due to using different calculation procedures.

In this section, we have discussed only the modes of the discrete spectrum. Modes belonging to the continuous spectrum are not laterally confined. If \(\beta=\beta_{R}-j \beta_{I}\), then, the lateral decay parameter is,
\[
\alpha_{c}=\sqrt{\beta^{2}-k_{0}^{2} \varepsilon_{c}}=\sqrt{\beta_{R}^{2}-\beta_{I}^{2}-2 j \beta_{R} \beta_{I}-k_{0}^{2} \varepsilon_{c}}
\]

Continuous modes would have an imaginary \(\alpha_{c}\), or, \(\alpha_{c}^{2}<0\). For the lossless case \(\left(\varepsilon_{C}=-\left|\varepsilon_{\mathcal{C}}\right|\right)\), this would require that
\[
\alpha_{c}^{2}=\beta_{R}^{2}-\beta_{I}^{2}+k_{0}^{2}\left|\varepsilon_{C}\right|-2 j \beta_{R} \beta_{I}<0 \Rightarrow\left\{\begin{array}{l}
\beta_{R} \beta_{I}=0 \\
\beta_{R}^{2}-\beta_{I}^{2}+k_{0}^{2}\left|\varepsilon_{C}\right|<0
\end{array}\right.
\]

The two conditions can only be satisfied with \(\beta_{R}=0\) and \(\beta_{I}^{2}>k_{0}^{2}\left|\varepsilon_{\mathcal{C}}\right|\), or, \(\beta_{I}>\) \(k_{0} \sqrt{\left|\varepsilon_{\mathcal{C}}\right|}\). Such modes have been discussed in [952,955]. and are unbounded laterally, but decay along the propagation direction as \(e^{-\beta_{I} Z}\).

\subsection*{10.10 DMD Configuration - Lossless Case}

A DMD plasmonic waveguide consists of a metal film \(\varepsilon_{f}\), surrounded by two possibly different dielectrics \(\varepsilon_{c}, \varepsilon_{s}\), as shown in Fig. 10.10.1. It is operated at optical or infrared frequencies where the metal has permittivity with negative real part, \(\varepsilon_{f}=-\varepsilon_{R}-j \varepsilon_{I}\), \(\varepsilon_{R}>0\) and \(\varepsilon_{I} \geq 0\). The dielectrics may be assumed to be lossless. Moreover, without loss of generality, we will assume that \(\varepsilon_{C} \geq \varepsilon_{s}>0\).

The field and characteristic equations were given by Eqs. (10.1.4)-(10.1.16). The various solution modes have been discussed extensively in the literature, see for example, [939-945] and the reviews [962,981].

Fig. 10.10.1 DMD plasmonic waveguide.

As in the MDM case, we begin our discussion by first considering the lossless case, \(\varepsilon_{I}=0\), so that we may write, \(\varepsilon_{f}=-\left|\varepsilon_{f}\right|\). Since \(\varepsilon_{\mathcal{C}} \geq \varepsilon_{s}\), the quantities, \(p_{c}=\varepsilon_{f} / \varepsilon_{c}\), \(p_{s}=\varepsilon_{f} / \varepsilon_{S}\), satisfy the inequality \(\left|p_{C}\right| \leq\left|p_{s}\right|\). We note the following relationships,
\[
\begin{align*}
& \gamma=\sqrt{\beta^{2}-k_{0}^{2} \varepsilon_{f}}=\sqrt{\beta^{2}+k_{0}^{2}\left|\varepsilon_{f}\right|} \\
& \alpha_{c}=\sqrt{\beta^{2}-k_{0}^{2} \varepsilon_{C}} \tag{10.10.1}\\
& \alpha_{s}=\sqrt{\beta^{2}-k_{0}^{2} \varepsilon_{s}}
\end{align*}
\]
which imply that, \(\alpha_{c} \leq \alpha_{s}<\gamma .^{\dagger}\) Note also,
\[
\begin{align*}
& p_{c}^{2} \alpha_{c}^{2}-\gamma^{2}=\left(p_{c}^{2}-1\right)\left(\beta^{2}-\beta_{c, \infty}^{2}\right) \\
& p_{s}^{2} \alpha_{s}^{2}-\gamma^{2}=\left(p_{s}^{2}-1\right)\left(\beta^{2}-\beta_{s, \infty}^{2}\right) \tag{10.10.2}
\end{align*}
\]
\[
\begin{equation*}
\beta_{s, \infty}^{2}-k_{0}^{2} \varepsilon_{C}=k_{0}^{2}\left|\varepsilon_{f}\right|\left[\frac{1}{\left|p_{s}\right|-1}-\frac{1}{\left|p_{c}\right|}\right] \tag{10.10.3}
\end{equation*}
\]
where \(\beta_{c, \infty}, \beta_{s, \infty}\) are the would-be plasmonic wavenumbers of the single \(f-c\) and \(f-s\) metal-dielectric interfaces,
\[
\begin{equation*}
\beta_{c, \infty}^{2}=\frac{k_{0}^{2} \varepsilon_{c} \varepsilon_{f}}{\varepsilon_{c}+\varepsilon_{f}}=\frac{k_{0}^{2}\left|\varepsilon_{f}\right|}{\left|p_{c}\right|-1}, \quad \beta_{s, \infty}^{2}=\frac{k_{0}^{2} \varepsilon_{s} \varepsilon_{f}}{\varepsilon_{s}+\varepsilon_{f}}=\frac{k_{0}^{2}\left|\varepsilon_{f}\right|}{\left|p_{s}\right|-1} \tag{10.10.4}
\end{equation*}
\]

Clearly, for the single interfaces to support surface plasmons, we must have \(\left|p_{c}\right|>1\) and \(\left|p_{s}\right|>1\). The characteristic equations (10.1.10) can be written in the forms:
\[
\begin{equation*}
e^{2 \gamma a+2 \psi}=\frac{\gamma+\left|p_{c}\right| \alpha_{c}}{\gamma-\left|p_{c}\right| \alpha_{c}}, \quad e^{2 \gamma a-2 \psi}=\frac{\gamma+\left|p_{s}\right| \alpha_{s}}{\gamma-\left|p_{S}\right| \alpha_{s}} \tag{10.10.5}
\end{equation*}
\]
\(e^{4 \gamma a}=\frac{\gamma+\left|p_{c}\right| \alpha_{c}}{\gamma-\left|p_{c}\right| \alpha_{c}} \cdot \frac{\gamma+\left|p_{s}\right| \alpha_{s}}{\gamma-\left|p_{s}\right| \alpha_{s}} \quad \Rightarrow \quad \tanh (2 \gamma a)=\frac{\gamma\left(\left|p_{c}\right| \alpha_{c}+\left|p_{s}\right| \alpha_{s}\right)}{\gamma^{2}+\left|p_{c}\right| \alpha_{c}\left|p_{s}\right| \alpha_{s}}\)
We are looking for plasmonic solutions that have real and positive \(\beta, \alpha_{c}, \alpha_{s}, \gamma\) parameters. There exist, of course, complex-mode solutions as in the MDM case, which can be derived by taking the large- \(\gamma\) limit of Eq. (10.10.6), that is, up to any integer \(q\),
\(e^{4 \gamma a}=e^{4 \gamma a-2 \pi j a}=\frac{1+\left|p_{c}\right|}{1-\left|p_{c}\right|} \cdot \frac{1+\left|p_{s}\right|}{1-\left|p_{s}\right|} \quad \Rightarrow \quad \gamma=\frac{1}{4 a} \ln \left[\frac{1+\left|p_{c}\right|}{1-\left|p_{c}\right|} \cdot \frac{1+\left|p_{s}\right|}{1-\left|p_{s}\right|}\right]+\frac{j \pi a}{2 a}\)

\footnotetext{
\({ }^{\dagger}\) In the MDM lossless case, we had the complementary inequality, \(\alpha_{\mathcal{C}} \geq \alpha_{S}>\gamma\).
}

For all plasmonic solutions with positive real \(\beta\), it is evident from (10.10.1) that the lateral confinement conditions \(\alpha_{c} \geq 0\) and \(\alpha_{s} \geq 0\) require that \(\beta \geq k_{0} \sqrt{\varepsilon_{\mathcal{C}}}\) and \(\beta \geq k_{0} \sqrt{\varepsilon_{s}}\), which, because \(\varepsilon_{c} \geq \varepsilon_{s}\), reduce into one,
\[
\beta \geq k_{0} \sqrt{\varepsilon_{c}}
\]
(10.10.7)

For such solutions, because \(\gamma\) is real, it follows from (10.10.6) that in order for the quantity \(e^{4 \gamma a}\) to be positive, the quantities, \(\left(\gamma-\left|p_{c}\right| \alpha_{c}\right)\) and \(\left(\gamma-\left|p_{s}\right| \alpha_{c}\right)\), must either be both positive or both negative. If they are both positive, then, it follows from Eq. (10.10.5) that \(\psi\) must be real, so the solution is a \(\mathrm{TM}_{0}\) even-like mode, and when they are both negative, then, \(\psi\) must have a \(j \pi / 2\) imaginary part, so that the solution is a \(\mathrm{TM}_{1}\) odd-like mode. We summarize,
\[
\begin{array}{lll}
\gamma-\left|p_{c, s}\right| \alpha_{c, s}>0, & \operatorname{Im}[\psi]=0, & \left(\mathrm{TM}_{0} \text { mode }\right) \\
\gamma-\left|p_{c, s}\right| \alpha_{c, s}<0, & \operatorname{Im}[\psi]=\frac{j \pi}{2}, & \left(\mathrm{TM}_{1} \text { mode }\right) \tag{10.10.8}
\end{array}
\]

Thus, \(\psi\) is calculated from Eq. (10.1.7), with \(m=0\), 1 , for \(\mathrm{TM}_{0}\) or \(\mathrm{TM}_{1}\),
\[
\begin{equation*}
\psi=\frac{1}{2} \operatorname{atanh}\left(-\frac{p_{c} \alpha_{c}}{\gamma}\right)-\frac{1}{2} \operatorname{atanh}\left(-\frac{p_{s} \alpha_{s}}{\gamma}\right)+\frac{1}{2} j m \pi \tag{10.10.9}
\end{equation*}
\]

Finally, we recall that the magnetic field is given by,
\[
H_{y}(x)= \begin{cases}H_{0} \cosh (\gamma x+\psi), & |x| \leq a \tag{10.10.10}\\ H_{0} \cosh (\gamma a+\psi) e^{-\alpha_{c}(x-a)}, & x \geq a \\ H_{0} \cosh (\gamma a-\psi) e^{\alpha_{s}(x+a)}, & x \leq-a\end{cases}
\]

The possible plasmonic solutions can be understood with the aid of the following diagram that divides the \(p_{c}-p_{s}\) plane into five regions [943], as defined below, \({ }^{\dagger}\)

0. \(\quad\left|p_{c}\right| \leq 1 \leq\left|p_{s}\right|, \quad\left|p_{s}\right|>\left|p_{c}\right|+1\)
1. \(\left|p_{c}\right| \leq 1 \leq\left|p_{s}\right|, \quad\left|p_{s}\right| \leq\left|p_{c}\right|+1\)
2. \(1 \leq\left|p_{c}\right| \leq\left|p_{s}\right|, \quad\left|p_{s}\right|>\left|p_{c}\right|+1\)
3. \(1 \leq\left|p_{c}\right| \leq\left|p_{s}\right|, \quad\left|p_{s}\right| \leq\left|p_{c}\right|+1\)
4. \(\left|p_{C}\right| \leq\left|p_{S}\right| \leq 1\)

The regions below the diagonal are obtained by switching the roles of \(\varepsilon_{c}, \varepsilon_{s}\). The one of most practical interest is region-3, because most metals (like gold and silver) have

\footnotetext{
\({ }^{\dagger}\) Because we are working with the variables \(p_{c}, p_{s}\), our geometry of the regions differs from that of [943], but the results are equivalent.
}
\(\left|\varepsilon_{f}\right|>\varepsilon_{c} \geq \varepsilon_{S}\), at optical frequencies and using typical dielectrics with a small difference, \(\varepsilon_{C}-\varepsilon_{s}\) Next, we determine the nature of solutions in each region, but summarize the results here,

0 . no solution exists
1. \(\mathrm{TM}_{0}\) mode with lower cutoff, \(\quad k_{0} \sqrt{\varepsilon_{\mathcal{C}}} \leq \beta<\beta_{s, \infty}, \quad a_{\text {cutoff }} \leq a<\infty\)
2. \(\mathrm{TM}_{1}\) mode with no cutoff, \(\quad \beta>\beta_{c, \infty}, \quad 0<a<\infty\)
3. \(\mathrm{TM}_{0}\) mode with lower cutoff, \(\quad k_{0} \sqrt{\varepsilon_{\mathcal{C}}} \leq \beta<\beta_{s, \infty}, \quad a_{\text {cutoff }} \leq a<\infty\) \(\mathrm{TM}_{1}\) mode with no cutoff, \(\quad \beta>\beta_{c, \infty}, \quad 0<a<\infty\)
4. \(\quad \mathrm{TM}_{0}\) mode with upper cutoff, \(\quad \beta_{\max } \leq \beta<\infty, \quad a_{\max } \geq a>0\) \(\mathrm{TM}_{0}\) mode with lower cutoff, \(\quad k_{0} \sqrt{\varepsilon_{\mathcal{C}}} \leq \beta \leq \beta_{\max }, \quad a_{\text {cutoff }} \leq a \leq a_{\max }\)

\section*{Region - 0}

Because \(\left|p_{\mathcal{C}}\right| \leq 1\) and \(\alpha_{c}<\gamma\), we have \(\left(\left|p_{c}\right| \alpha_{c}-\gamma\right)<0\), so necessarily we must also have, \(\left(\left|p_{s}\right| \alpha_{s}-\gamma\right)<0\). It follows that the first of Eqs. (10.10.2) is automatically satisfied because \(\beta_{c, \infty}^{2}<0\) and \(p_{c}^{2}<1\). But, because \(\beta_{s, \infty}^{2}>0\), the second constraint in (10.10.2) requires that \(\beta<\beta_{s, \infty}\). On the other hand, in region-0, Eq. (10.10.3) implies that \(\beta_{s, \infty}<\) \(k_{0} \sqrt{\varepsilon_{f}}\), and combining the two inequalities, \(\beta<\beta_{s, \infty}<k_{0} \sqrt{\varepsilon_{f}}\). Thus, it is not possible to fulfill condition (10.10.7) and, therefore, no solutions exist in this region.

\section*{Region - 1}

The only difference with region-0 is that now Eq. (10.10.3) implies that \(\beta_{s, \infty}>k_{0} \sqrt{\varepsilon_{C}}\), and therefore, there can exist a solution with \(\beta\) spanning the range,
\[
k_{0} \sqrt{\varepsilon_{\mathcal{C}}} \leq \beta \leq \beta_{s, \infty}
\]
(10.10.11)

The upper limit, \(\beta=\beta_{s, \infty}\), is reached in the limit of infinite thickness \(a \rightarrow \infty\). The lower limit implies a lower cutoff thickness obtained from Eq. (10.10.6) by setting

\[
\begin{array}{r}
\tanh \left(2 k_{0} a_{\text {cutoff }} \sqrt{\varepsilon_{C}+\left|\varepsilon_{f}\right|}\right)=\frac{\left|p_{s}\right| \sqrt{\varepsilon_{\mathcal{C}}-\varepsilon_{s}}}{\sqrt{\varepsilon_{\mathcal{C}}+\left|\varepsilon_{f}\right|}}=\frac{\left|\varepsilon_{f}\right| \sqrt{\varepsilon_{\mathcal{C}}-\varepsilon_{s}}}{\varepsilon_{s} \sqrt{\varepsilon_{C}+\left|\varepsilon_{f}\right|}} \\
2 k_{0} a_{\text {cutoff }}=\frac{1}{\sqrt{\varepsilon_{\mathcal{C}}+\left|\varepsilon_{f}\right|}} \operatorname{atanh}\left[\frac{\left|\varepsilon_{f}\right| \sqrt{\varepsilon_{c}-\varepsilon_{s}}}{\varepsilon_{s} \sqrt{\varepsilon_{\mathcal{C}}+\left|\varepsilon_{f}\right|}}\right], \quad \beta_{\text {cutoff }}=k_{0} \sqrt{\varepsilon_{C}} \tag{10.10.12}
\end{array}
\]

The argument of the arc-tanh function must be less than unity, but this follows from the condition \(\beta_{s, \infty}>k_{0} \sqrt{\varepsilon_{c}}\), which implies the allowed range for \(\varepsilon_{c}\), or for \(\varepsilon_{s}\), [941,942],
\[
\begin{equation*}
\varepsilon_{s} \leq \varepsilon_{c} \leq \frac{\left|\varepsilon_{f}\right| \varepsilon_{s}}{\left|\varepsilon_{f}\right|-\varepsilon_{s}} \quad \Leftrightarrow \quad \frac{\left|\varepsilon_{f}\right| \varepsilon_{c}}{\left|\varepsilon_{f}\right|+\varepsilon_{C}} \leq \varepsilon_{s} \leq \varepsilon_{C} \tag{10.10.13}
\end{equation*}
\]

To decide whether this solution is even-like or odd-like, we look at Eqs. (10.10.5). Because both denominators are positive, then \(e^{2 \gamma a \pm 2 \psi}\) will be positive and greater than
unity, so that \(\psi\) must be real. Therefore, this mode is \(\mathrm{TM}_{0}\) even-like. As the film thickness increases, it resembles more and more a single surface plasmon at the \(f-s\) interface, while the \(f-c\) interface does not support a surface plasmon because \(\beta_{c, \infty}^{2}<0\).
Example 10.10.1: We consider an example from [943] in order to compare our results. It has parameters, \(\varepsilon_{c}=2.2^{2}, \varepsilon_{s}=1.7^{2}, \varepsilon_{f}=-2^{2}\), and half-width, \(k_{0} a=0.3\). It belongs to region1 because \(\left|p_{c}\right|=0.8264,\left|p_{s}\right|=0.3841\), and \(\left|p_{s}\right|-\left|p_{c}\right|=0.5576<1\). The left graph in Fig. 10.10.2 shows the transverse magnetic field \(H_{y}(x)\). The calculated mode parameters were,
\begin{tabular}{c|c|c|c|c|c|c}
\(k_{0} a\) & \(\beta / k_{0}\) & \(\gamma / k_{0}\) & \(\alpha_{c} / k_{0}\) & \(\alpha_{s} / k_{0}\) & \(\psi\) & \(E\) \\
\hline 0.3 & 2.9165 & 3.5364 & 1.9147 & 2.3699 & -0.5794 & \(1.1102 \times 10^{-16}\) \\
\hline
\end{tabular}
where \(E\) is the computational error for the characteristic equation (10.10.6), \({ }^{\dagger}\)
\[
E=\left|\tanh (2 \gamma a)-\frac{\gamma\left(\left|p_{c}\right| \alpha_{c}+\left|p_{s}\right| \alpha_{s}\right)}{\gamma^{2}+\left|p_{c}\right| \alpha_{c}\left|p_{s}\right| \alpha_{s}}\right|
\]

The solution was obtained with the help of the MATLAB function, pwga,
\[
\begin{aligned}
& \mathrm{k} 0=1 ; 1 \mathrm{a} 0=2 * \mathrm{pi} / \mathrm{k} 0 ; \text { a }=0.3 ; \\
& \mathrm{ec}=2.2 \wedge 2 ; \text { es }=1.7 \wedge 2 ; \text { ef }=-4 ; \\
& \mathrm{pc}=\mathrm{ef} / \mathrm{ec} ; \mathrm{ps}=\mathrm{ef} / \mathrm{es} ; \\
& \text { to } 1=1 \mathrm{e}-12 ; \\
& \text { bsinf }=\operatorname{sqrt}(\mathrm{ef*es} /(\mathrm{ef}+\mathrm{es}))
\end{aligned}
\]
[be,E] = pwga(la0,ef,ec,es, a, bsinf, 0, tol); \% TMO mode
ga \(=\operatorname{sqrt}(b e \wedge 2-e f) ; ~ a s=\operatorname{sqrt}(b e \wedge 2-e s) ; ~ a c=\operatorname{sqrt}(b e \wedge 2-e c) ;\)

Fig. 10.10.2 DMD region \(1, \mathrm{TM}_{0}\) mode.
It can also be computed recursively by transforming the characteristic equation into the iteration:
\[
\gamma=-\frac{\gamma^{2}+p_{c} \alpha_{c} p_{s} \alpha_{s}}{p_{c} \alpha_{c}+p_{s} \alpha_{s}} \tanh (2 \gamma a) \Rightarrow \gamma_{n+1}=-\frac{\gamma_{n}^{2}+p_{c} \alpha_{c n} p_{s} \alpha_{s n}}{p_{c} \alpha_{c n}+p_{s} \alpha_{s n}} \tanh \left(2 \gamma_{n} a\right)
\]

\footnotetext{
\({ }^{\dagger}\) The achieved \(E\) is actually half of MATLAB's machine epsilon, eps \(=2.2204 \mathrm{e}-16\).
}

The magnetic field was computed and plotted by the code,
```

psi = atanh(-pc*ac/ga)/2- atanh(-ps*as/ga)/2

```
\(x=1\) inspace \((-3,3,601) * a ;\)
Hy \(=\cosh (g a * a-p s i) \cdot * \exp (a s *(x+a)) \cdot *(x<-a)+\ldots\)
 \(\cosh (g a * a+p s i) \cdot * \exp (-a c *(x-a)) \cdot *(x>a)+\ldots\)
 \(\cosh (g a * x+p s i) . *(a b s(x)<=a) ;\)
fill([-1, 1, 1, -1], [-2 -2, 4, 4], [0.9, 0.9, 0.9]);
hold on
plot(x/a, real(Hy), 'linewidth',2);

The right graph in Fig. 10.10.1 shows the \(\beta-a\) dispersion relationship, with the half-width varying over \(a_{\text {cutoff }} \leq a<\infty\), as \(\beta\) varies over \(k_{0} \sqrt{\varepsilon_{\mathcal{C}}} \leq \beta<\beta_{s, \infty}\). The calculated values were,
\[
k_{0} a_{\text {cutoff }}=0.1304, \quad \sqrt{\varepsilon_{c}}=2.2, \quad \beta_{s, \infty}=3.2271
\]
and the graph was generated by the following code, where for plotting convenience, we evaluated the solution only up to \(k_{0} a_{\max }=0.5\) where \(\beta\) has effectively converged to \(\beta_{s, \infty}\),
```

acut = 1/2/sqrt(ec-ef) * atanh(-ef*sqrt(ec-es)/es/sqrt(ec-ef));
amax = 0.5;

```
\(\mathrm{a}=\) linspace(1.01*acut, amax, 101); \% span interval a_cut \(<\mathrm{a}<\operatorname{amax}\)
for \(i=1\) : length (a)
be(i) = pwga(la0,ef,ec,es, a(i), bsinf, 0, tol); end
be = abs(real(be));
\% make sure beta is positive real
plot(a,be, acut,sqrt(ec),'s', amax,bsinf,'o’);
hold on
plot(a1,be1,'.')
\(\%\) here, \(a 1=0.3\), be1 \(=2.9165\)
x7im([0,0.5]); ylim([1,9])

\section*{Region-2}

Here, it follows from Eqs. (10.10.3) and (10.10.4) that, \(0<\beta_{s, \infty}<k_{0} \sqrt{\varepsilon_{c}}<\beta_{c, \infty}\). This excludes a solution that would have, \(\left|p_{s}\right| \alpha_{s}-\gamma<0\), because it would require from Eqs. (10.10.2) that \(\beta<\beta_{s, \infty}\) and therefore, it could not satisfy (10.10.7). On the other hand, a solution exists that satisfies, \(\left|p_{c, s}\right| \alpha_{c, s}-\gamma>0\), which requires from (10.10.2) that \(\beta \geq \beta_{c, \infty}\) and \(\beta \geq \beta_{s, \infty}\), the latter being satisfied a fortiori from the former.

Thus, such solution will have range \(\beta \geq \beta_{c, \infty}\), with \(\beta=\beta_{c, \infty}\) achieved at infinite thickness \(a \rightarrow \infty\), and at the other end, \(\beta \rightarrow \infty\) as the thickness tends to zero, \(a \rightarrow 0\). Interestingly, although the \(s-f\) interface can support a surface plasmon, it is not the limit of one of the modes.

Because \(\left|p_{c, s}\right| \alpha_{c, s}-\gamma>0\), it follows from Eqs. (10.10.5) that the left-hand sides \(e^{2 \gamma a \pm 2 \psi}\) will be negative, and that can only happen if \(\psi\) has a \(j \pi / 2\) imaginary part.

Therefore, this solution is a \(\mathrm{TM}_{1}\) odd-like mode, with \(\psi\) given by (10.1.16),
\[
\begin{equation*}
\psi=\frac{1}{2} \operatorname{atanh}\left(-\frac{p_{c} \alpha_{c}}{\gamma}\right)-\frac{1}{2} \operatorname{atanh}\left(-\frac{p_{s} \alpha_{s}}{\gamma}\right)+\frac{1}{2} j \pi \tag{10.10.14}
\end{equation*}
\]

Example 10.10.2: This example is from [943]. It has parameters, \(\varepsilon_{c}=1.9^{2}, \varepsilon_{s}=1.3^{2}, \varepsilon_{f}=-2^{2}\), and half-width, \(k_{0} a=0.15\). It belongs to region-2 because \(\left|p_{c}\right|=1.1080,\left|p_{s}\right|=2.3669\), and \(\left|p_{s}\right|-\left|p_{C}\right|=1.2588>1\). The left graph in Fig. 10.10.3 shows the transverse magnetic field \(H_{y}(x)\). The calculated mode parameters were,
\begin{tabular}{c|c|c|c|c|c|c}
\(k_{0} a\) & \(\beta / k_{0}\) & \(\gamma / k_{0}\) & \(\alpha_{c} / k_{0}\) & \(\alpha_{s} / k_{0}\) & \(\psi\) & \(E\) \\
\hline 0.15 & 7.8273 & 8.0788 & 7.5932 & 7.7186 & \(0.7368+j \pi / 2\) & \(1.1102 \times 10^{-16}\) \\
\hline
\end{tabular}
where \(E\) is the computational error for the characteristic equation (10.10.6),
\[
E=\left\lvert\, \tanh (2 \gamma a)-\frac{\gamma\left(\left|p_{c}\right| \alpha_{c}+\left|p_{s}\right| \alpha_{s}\right)}{\gamma^{2}+\left|p_{c}\right| \alpha_{c}\left|p_{s}\right| \alpha_{s}}\right.
\]

The solution was obtained with the help of the MATLAB function, pwga,
```

k0 = 1; 1a0 = 2*pi/k0; a = 0.15;
ec = 1.9^2; es = 1.3^2; ef = -2^2;
pc = ef/ec; ps = ef/es;
tol = 1e-12;
bcinf = sqrt(ef*ec/(ef+ec));

```
[be, E] = pwga(la0,ef,ec,es, a, bcinf, 1, tol); \% run with mode=1 ga \(=\operatorname{sqrt}(b e \wedge 2-e f) ;\) as \(=\operatorname{sqrt}(b e \wedge 2-e s) ; ~ a c=\operatorname{sqrt}(b e \wedge 2-e c) ;\)

It can also be computed recursively by transforming the characteristic equation into the iteration:
\[
\begin{aligned}
\gamma & =\sqrt{-p_{c} \alpha_{c} p_{s} \alpha_{s}-\gamma\left(p_{c} \alpha_{c}+p_{s} \alpha_{s}\right) \operatorname{coth}(2 \gamma a)} \\
\gamma_{n+1} & =\sqrt{-p_{c} \alpha_{c n} p_{s} \alpha_{s n}-\gamma\left(p_{c} \alpha_{c n}+p_{s} \alpha_{s n}\right) \operatorname{coth}\left(2 \gamma_{n} a\right)}
\end{aligned}
\]

The magnetic field was computed and plotted by the code,
\[
\text { psi }=\operatorname{atanh}(-p c * a c / g a) / 2-\operatorname{atanh}(-p s * a s / g a) / 2+j * p i / 2
\]
\(x=1 i n s p a c e(-3,3,601) * a ;\)
\(H y=\cosh (g a * a-p s i) \cdot * \exp (a s *(x+a)) . *(x<-a)+\ldots\) \(\cosh (g a * a+p s i) . * \exp (-a c *(x-a)) . *(x>a)+\ldots\) \(\cosh (g a * x+p s i) . *(a b s(x)<=a) ;\)
fill(\([-1,1,1,-1],[-2-2,4,4],[0.9,0.9,0.9])\);
hold on
plot(x/a, imag(Hy), 'linewidth',2); \% because \(\cosh (g a * x+p s i)=\) imaginary
The right graph in Fig. 10.10.2 shows the \(\beta-a\) dispersion relationship, with the half-width varying over \(0<a<\infty\), as \(\beta\) varies over \(\infty>\beta>\beta_{c, \infty}\), with \(\beta_{c, \infty} / k_{0}=6.0849\). The graph was generated by the following code, where for plotting convenience, the solution was evaluated only over the interval \(a_{\min } \leq a \leq a_{\max }\), with \(k_{0} a_{\min }=0.1\) and \(k_{0} a_{\max }=0.5\).

Fig. 10.10.3 DMD region-2, \(\mathrm{TM}_{1}\) mode.
\[
\operatorname{amin}=0.1 ; \operatorname{amax}=0.5 ;
\]
a = linspace(amin, amax, 101);
for \(i=1: 1\) length(a),
[be(i), \(\operatorname{Err}(i)]=\operatorname{pwga}(1 a 0, e f, e c, e s, a(i), b c i n f, 1\), tol);
end
be \(=\operatorname{abs}(r e a l(b e)) ; \quad \%\) make sure beta is positive real
plot(a,be, amax,bcinf, 'o', 'markersize', 8);
hold on
plot(a1,be1,'.', 'markersize',20); \(\%\) here a1 \(=0.15\), be1 \(=7.8273\)
x7im([0,0.5]) ; ylim([1,9])

\section*{Region - 3}

In this case, it follows from Eqs. (10.10.3) and (10.10.4) that, \(k_{0} \sqrt{\varepsilon_{\mathcal{C}}}<\beta_{s, \infty}<\beta_{c, \infty}\) Therefore, the solution that had been excluded in region-2, that would have, \(\left|p_{s}\right| \alpha_{s}-\) \(\gamma<0\), is now allowed and will have a range, \(k_{0} \sqrt{\overline{\varepsilon_{C}}} \leq \beta<\beta_{s, \infty}\). Moreover, because \(\left|p_{c, s}\right| \alpha_{c, s}-\gamma<0\), then Eq. (10.10.5) implies that \(\psi\) must be real-valued, and hence, this is a \(\mathrm{TM}_{0}\) even-like mode. Setting \(\beta=k_{0} \sqrt{\varepsilon_{c}}\), defines a lower cutoff thickness, given exactly by Eq. (10.10.12).

Similarly, the solution that satisfies, \(\left|p_{c, s}\right| \alpha_{c, s}-\gamma>0\), also exists, and as in region-2, it will have range, \(\beta_{c, \infty}<\beta<\infty\), and will be a TM \({ }_{1}\) odd-like mode. To summarize, there are two types of solutions:
\[
\begin{array}{lr}
\mathrm{TM}_{1} \text { with no cutoff, } & 0<a<\infty, \\
\mathrm{TM}_{0} \text { with lower cutoff, } & a_{c, \infty}<\beta<\infty \\
\text { cutoff } & <a<\infty,
\end{array} k_{0} \sqrt{\varepsilon_{c}}<\beta<\beta_{s, \infty}
\]

Example 10.10.3: This example is also from [943] and has parameters, \(\varepsilon_{c}=1.9^{2}, \varepsilon_{s}=1.8^{2}\), \(\varepsilon_{f}=-2^{2}, k_{0} a=0.3\). It belongs to region-3 because \(\left|p_{c}\right|=1.1080,\left|p_{s}\right|=1.2346\), \(\left|p_{s}\right|-\left|p_{c}\right|=0.1265<1\). The calculated asymptotic values for the \(\mathrm{TM}_{0}\) and \(\mathrm{TM}_{1}\) modes
are, \(\beta_{s, \infty} / k_{0}=4.1295, \beta_{c, \infty} / k_{0}=6.0849\), and the lower cutoff, \(k_{0} a_{\text {cutoff }}=0.0506\). The calculated wavenumbers are,
\begin{tabular}{c|c|c|c|c|c|c}
mode & \(\beta / k_{0}\) & \(\gamma / k_{0}\) & \(\alpha_{c} / k_{0}\) & \(\alpha_{s} / k_{0}\) & \(\psi\) & \(E\) \\
\hline \(\mathrm{TM}_{0}\) & 3.1487 & 3.7302 & 2.5109 & 2.5835 & -0.1556 & \(1.1102 \times 10^{-16}\) \\
\hline \(\mathrm{TM}_{1}\) & 6.4132 & 6.7178 & 6.1253 & 6.1554 & \(0.6215+j \pi / 2\) & \(1.1102 \times 10^{-16}\)
\end{tabular}

The MATLAB code is identical to that of Example 10.10.1 for the \(\mathrm{TM}_{0}\) mode, and to that of Example 10.10.2 for the \(\mathrm{TM}_{1}\) mode. The following recursions can also be used for the calculation,
\[
\begin{array}{ll}
\mathrm{TM}_{0}: & \gamma_{n+1}=-\frac{\gamma_{n}^{2}+p_{c} \alpha_{c n} p_{s} \alpha_{s n}}{p_{c} \alpha_{c n}+p_{s} \alpha_{s n}} \tanh \left(2 \gamma_{n} a\right) \\
\mathrm{TM}_{1}: & \gamma_{n+1}=\sqrt{-p_{c} \alpha_{c n} p_{s} \alpha_{s n}-\gamma\left(p_{c} \alpha_{c n}+p_{s} \alpha_{s n}\right) \operatorname{coth}\left(2 \gamma_{n} a\right)}
\end{array}
\]

Fig. 10.10.4 DMD region-3, \(\mathrm{TM}_{0}\) and \(\mathrm{TM}_{1}\) modes.
Fig. 10.10.4 shows the magnetic field profiles and the \(\beta-a\) relationships, displaying also the cutoff point, the specific solutions for \(k_{0} a=0.3\), and the asymptotic values.

Region-3 is the most relevant case in practice, and in fact, as we shall see in Sec. 10.11, the \(\mathrm{TM}_{0}\) mode becomes in the lossy case the so-called long-range surface plasmon polariton (LR-SPP) mode that has received a lot of attention in the literature [962,981].

\section*{Region-4}

In region-4, because \(\left|p_{c}\right| \leq\left|p_{s}\right| \leq 1\), neither metal-dielectric interface can support a separate surface plasmon because both \(\beta_{s, \infty}^{2}, \beta_{c, \infty}^{2}\) are negative. Nevertheless, for sufficiently narrow widths, there is a solution. Because \(\alpha_{c} \leq \alpha_{s} \leq \gamma\), it follows that \(\left|p_{c, s}\right| \alpha_{c, s}-\gamma<0\), and therefore from Eq. (10.10.8), the solution will be a \(\mathrm{TM}_{0}\) mode.

Eqs. (10.10.2) and (10.10.3) are automatically satisfied and impose no further restrictions on the range of \(\beta\). Thus, \(\beta\) ranges over, \(k_{0} \sqrt{\varepsilon_{c}} \leq \beta<\infty\). Over this range, we may think of Eq. (10.10.6) as defining the width \(a\) as a function of \(\beta\), indeed,
\[
\begin{equation*}
a=\frac{1}{4 \gamma} \ln \left[\frac{\left(\gamma+\left|p_{c}\right| \alpha_{c}\right)\left(\gamma+\left|p_{s}\right| \alpha_{s}\right)}{\left(\gamma-\left|p_{c}\right| \alpha_{c}\right)\left(\gamma-\left|p_{s}\right| \alpha_{s}\right)}\right] \equiv F(\beta) \tag{10.10.15}
\end{equation*}
\]

This function has the property that, starting at \(\beta=k_{0} \sqrt{\varepsilon_{c}}\) with \(a=a_{\text {cutoff }}\) of Eq. (10.10.12), it first increases up to a maximum value, say, \(a_{\max }\) at some \(\beta=\beta_{\max }\), and then decreases to zero for \(\beta>\beta_{\max }\). Therefore, we may distinguish two solution branches:
\[
\begin{array}{llrl}
\text { (lower branch), } & k_{0} \sqrt{\varepsilon_{c}} \leq \beta \leq \beta_{\max }, & a_{\text {cutoff }} \leq a \leq a_{\max } \tag{10.10.16}\\
\text { (upper branch) }, & \beta_{\max } \leq \beta<\infty, & a_{\max } \geq a>0
\end{array}
\]

The maximum point, \(\beta_{\max }, a_{\max }\), can easily be determined using MATLAB's builtin function, fminbnd. Once \(\beta_{\max }\) is known, the two solutions can be found using the function, pwga, by initializing it above and below \(\beta_{\max }\).

Example 10.10.4: This example, from [943], is defined by the parameters, \(\varepsilon_{c}=2.2^{2}, \varepsilon_{s}=2.1^{2}\) \(\varepsilon_{f}=-2^{2}, k_{0} a=0.15\), and has \(\left|p_{c}\right|=0.8264,\left|p_{s}\right|=0.9070\), and \(k_{0} a_{\text {cutoff }}=0.0341\), and imaginary \(\beta_{s, \infty} / k_{0}=6.5593 j, \beta_{c, \infty} / k_{0}=4.8008 j\).
The maximum point is, \(\beta_{\max } / k_{0}=4.2090\) and \(k_{0} a_{\max }=0.1759\), and was calculated by the following MATLAB code, which defines the function \(F(\beta)\) and passes its negative into the fminbnd function, with a search interval \(\left[\sqrt{\varepsilon_{c}}, \infty\right)\), where \(\infty\) is numerically replaced by the inverse of the machine epsilon,
\[
\begin{aligned}
& \mathrm{k} 0=1 ; 1 \mathrm{a} 0=2 * \mathrm{pi} / \mathrm{k} 0 ; \mathrm{a}=0.15 ; \\
& \mathrm{ec}=2.2 \wedge 2 ; \text { es }=2.1 \wedge 2 ; \text { ef }=-2 \wedge 2 ; \\
& \mathrm{pc}=\mathrm{ef} / \mathrm{ec} ; \mathrm{ps}=\text { ef } / \mathrm{es} ;
\end{aligned}
\]
```

ga = @(b) sqrt(b.^2 - ef); % auxiliary functions
ac = @(b) sqrt(b.^2 - ec);
as = @(b) sqrt(b.^2 - es);
F = @(b) 1/4./ga(b) .* log((ga(b)-pc*ac(b)).*(ga(b)-ps*as(b))./...
(ga(b)+pc*ac(b))./(ga(b)+ps*as(b)));
bmax = fminbnd(@(b) -F(b), sqrt(ec), 1/eps);
amax = F(bmax);

```

With \(\beta_{\max }\) at hand, we search above and below it for the \(\mathrm{TM}_{0}\) solutions corresponding to the value \(k_{0} a=0.15\). This is implemented by the code segment,
tol \(=1 \mathrm{e}-12\);
[be1,E1] = pwga(la0,ef,ec,es, a, bmax/2, 0, tol); \% lower
be1 = abs(real(be1));
ga1 \(=\) sqrt(be1^2-ef); as1 \(=\operatorname{sqrt}(b e 1 \wedge 2-e s) ; ~ a c 1=\operatorname{sqrt}(b e 1 \wedge 2-e c) ;\)
[be2,E2] = pwga(7a0,ef,ec,es, a, bmax*2, 0, tol); \% upper
be2 \(=\operatorname{abs}(r e a 1(b e 2))\);
ga2 \(=\) sqrt(be2^2-ef); as2 \(=\) sqrt(be2^2-es); ac2 \(=\operatorname{sqrt}(b e 2 \wedge 2-e c) ;\)
[Ptot,Pf,Pc,Ps] = pwgpower(a,ef,ec,es,[be1; be2], 0); \% transmitted powers
The computed values were,
\begin{tabular}{c|c|c|c|c|c|c}
mode & \(\beta / k_{0}\) & \(\gamma / k_{0}\) & \(\alpha_{c} / k_{0}\) & \(\alpha_{S} / k_{0}\) & \(\psi\) & \(E\) \\
\hline lower & 2.9271 & 3.5452 & 1.9309 & 2.5835 & -0.0469 & \(1.1102 \times 10^{-16}\) \\
\hline upper & 6.9626 & 7.2441 & 6.6059 & 6.6383 & -0.1053 & \(7.6494 \times 10^{-14}\)
\end{tabular}

Using the function, pwgpower, the above code segment also calculates the transmitted powers within each medium, as well as the total power for the two solutions,
\begin{tabular}{c|c|c|c|c}
mode & \(P_{\text {tot }}\) & \(P_{f}\) & \(P_{\mathcal{C}}\) & \(P_{S}\) \\
\hline lower & 0.1780 & -0.2420 & 0.1964 & 0.2236 \\
\hline upper & -0.1570 & -0.7937 & 0.2520 & 0.3847
\end{tabular}

As noted in [943], the total power is negative for the upper mode, implying that it has negative group velocity. See Refs. [965-980] for more on the issue of backward waves and negative group velocity in plasmonic waveguides.
Fig. 10.10.5 shows the corresponding magnetic field profiles computed from Eq. (10.10.10), as well as the \(\beta-a\) dispersion relationship, with the above computed points included.

Fig. 10.10.5 DMD region-4, upper and lower \(\mathrm{TM}_{0}\) modes.

\subsection*{10.11 DMD Configuration - Lossy Case}

We assume now that the metal film is lossy, \(\varepsilon_{f}=-\varepsilon_{R}-j \varepsilon_{I}\), with \(\varepsilon_{R}>0\) and \(\varepsilon_{I}>0\). The dielectric claddings will be assumed to be lossless with \(\varepsilon_{C} \geq \varepsilon_{s}>0\). We will also assume that \(\varepsilon_{R}>\varepsilon_{C} \geq \varepsilon_{s}\), which is satisfied by typical metals and typical dielectrics in the optical and infrared regimes.

The presence of losses causes \(\beta\) to develop a negative imaginary part, \(\beta=\beta_{R}-j \beta_{I}\), with the wave attenuating like, \(e^{-j \beta z}=e^{-j \beta_{R} z} e^{-\beta_{I} z}\), as it propagates in the positive \(z^{-}\) direction. The effective index, propagation length, and propagation loss in \(\mathrm{dB} / \mathrm{m}\) are defined by (\(\beta_{I}\) is in units of nepers \(/ \mathrm{m}\)),
\[
\begin{equation*}
n_{\mathrm{eff}}=\frac{\operatorname{Re}(\beta)}{k_{0}}=\frac{\beta_{R}}{k_{0}}, \quad L=-\frac{1}{2 \operatorname{Im}(\beta)}=\frac{1}{2 \beta_{I}}, \quad \mathrm{~dB}=20 \log _{10}(e) \beta_{I} \tag{10.11.1}
\end{equation*}
\]

We will discuss the impact of losses, as well as the impact of asymmetry \(\left(\varepsilon_{C} \neq \varepsilon_{S}\right)\), on the two basic plasmonic modes, the even-like \(\mathrm{TM}_{0}\) and the odd-like \(\mathrm{TM}_{1}\) modes.

These modes have drastically different behavior as the film thickness is varied, with the \(\mathrm{TM}_{0}\) mode having an increasing propagation length as the film width decreases, while
the \(\mathrm{TM}_{1}\) mode has a decreasing propagation length. Because of this property, the \(\mathrm{TM}_{0}\) and \(\mathrm{TM}_{1}\) modes are called the long-range (LRSP) and short-range (SRSP) surface plasmon modes. Equivalently, the propagation losses, quantified by the value of \(\beta_{I}\), tend to zero for the LRSP mode, and to infinity for SRSP, as the film width tends to zero for symmetric guides (for asymmetric ones, there is a lower cutoff width).

A tradeoff to the LRSP property, however, is that as the film width becomes smaller and the propagation length longer, the guided wave becomes less confined laterally, penetrating more deeply into the dielectric claddings. We discuss this below.

The properties of long-range surface plasmons in DMD waveguides have been reviewed by Berini [962] with an extensive bibliography, including the impact of asymmetry. Another review is [981] and earlier [957]. Some of the earliest references on long-range surface plasmons are [937-942], on which we have based some of our computational examples.

\subsection*{10.12 Symmetric DMD Waveguides}

We begin with the symmetric case (\(\varepsilon_{c}=\varepsilon_{s}\)) for which the \(\mathrm{TM}_{0}\) and \(\mathrm{TM}_{1}\) modes are exactly even or odd. The characteristic equations (10.1.22) can be written in the equivalent forms:
\[
\begin{align*}
\frac{\gamma-p_{c} \alpha_{c}}{\gamma+p_{c} \alpha_{c}} & =e^{2 \gamma a+2 \psi}=\left\{\begin{array}{cll}
e^{2 \gamma a}, & \psi=0, & \mathrm{TM}_{0} \text { mode, even, } \\
-e^{2 \gamma a}, & \psi=\frac{j \pi}{2}, & \text { (LRSP) } \\
\mathrm{TM}_{1} \text { mode, odd, } & \text { (SRSP) }
\end{array}\right. \tag{10.12.1}\\
\frac{p_{c} \alpha_{c}}{\gamma} & =-\tanh (\gamma a+\psi)=\left\{\begin{array}{lll}
-\tanh (\gamma a), & \psi=0, & (\text { LRSP }) \\
-\operatorname{coth}(\gamma a), & \psi=\frac{j \pi}{2}, & \text { (SRSP) }
\end{array}\right. \tag{10.12.2}
\end{align*}
\]

The even or odd labeling refers to the transverse magnetic field,
\[
H_{y}(x)= \begin{cases}H_{0} \cosh (\gamma x+\psi), & |x| \leq a \tag{10.12.3}\\ H_{0} \cosh (\gamma a+\psi) e^{-\alpha_{c}(x-a)}, & x \geq a \\ H_{0} \cosh (\gamma a-\psi) e^{\alpha_{c}(x+a)}, & x \leq-a\end{cases}
\]

The reduced losses for the LRSP case can be intuitively understood by noting that the ohmic losses are due to the longitudinal electric field \(E_{Z}(x)\), which has the opposite symmetry than \(H_{y}(x)\), and it is odd for the LRSP mode, thus, having a zero crossing within the metal film reducing its strength.

A very efficient way of solving the characteristic equations (10.12.2) is by turning them into the following iterative algorithm, which converges extremely fast, requiring very few iterations, like 5-6,
\[
\alpha_{c}=-\frac{1}{p_{c}} \gamma \tanh (\gamma a+\psi) \Rightarrow\left\{\begin{array}{l}
\gamma_{n}=\sqrt{\alpha_{c, n}^{2}+k_{0}^{2}\left(\varepsilon_{c}-\varepsilon_{f}\right)} \tag{10.12.4}\\
\alpha_{c, n+1}=-\frac{1}{p_{c}} \gamma_{n} \tanh \left(\gamma_{n} a+\psi\right)
\end{array}\right.
\]

The iteration can be initialized at \(\alpha_{c, 0}=0\). In fact, just one step of the iteration provides an excellent approximation [981] and results in a simple closed-form expression. Indeed, from \(\alpha_{c, 0}=0\), we have, \(\gamma_{0}=\sqrt{\alpha_{c, 0}^{2}+k_{0}^{2}\left(\varepsilon_{C}-\varepsilon_{f}\right)}=k_{0} \sqrt{\varepsilon_{C}-\varepsilon_{f}}\), and the next \(\alpha_{c}\) and corresponding \(\beta\) are,
\[
\begin{aligned}
\alpha_{c 1} & =-\frac{1}{p_{c}} \gamma_{0} \tanh \left(\gamma_{0} a+\psi\right) \\
\beta & =\sqrt{k_{0}^{2} \varepsilon_{c}+\alpha_{c 1}^{2}}=k_{0} \sqrt{\varepsilon_{c}+\frac{\varepsilon_{c}^{2}}{\varepsilon_{f}^{2}}\left(\varepsilon_{c}-\varepsilon_{f}\right) \tanh ^{2}\left(k_{0} a \sqrt{\varepsilon_{c}-\varepsilon_{f}}+\psi\right)}
\end{aligned}
\]
or, specifically, in the LRSP and SRSP cases, \((\psi=0, \psi=j \pi / 2)\),
\[
\begin{align*}
& \beta=k_{0} \sqrt{\varepsilon_{\mathcal{C}}+\frac{\varepsilon_{c}^{2}}{\varepsilon_{f}^{2}}\left(\varepsilon_{\mathcal{C}}-\varepsilon_{f}\right) \tanh ^{2}\left(k_{0} a \sqrt{\varepsilon_{C}-\varepsilon_{f}}\right)} \tag{10.12.5}\\
& \beta=k_{0} \sqrt{\varepsilon_{\mathcal{C}}+\frac{\varepsilon_{c}^{2}}{\varepsilon_{f}^{2}}\left(\varepsilon_{\mathcal{C}}-\varepsilon_{f}\right) \operatorname{coth}^{2}\left(k_{0} a \sqrt{\varepsilon_{\mathcal{C}}-\varepsilon_{f}}\right)}
\end{align*}
\]
(LRSP)

The following MATLAB function, dmds, implements the iteration (10.12.4), with the iteration stopping when two successive values of \(\alpha_{c}\) become closer to each other than a specified error tolerance, such as, \(t o l=10^{-12}\). It has usage,
\[
[b e, E, N]=\operatorname{dmds}(7 a 0, e f, e c, a, \text { mode }, \text { tol }, \mathrm{be} 0) ; \quad \% \text { symmetric DMD guide - iterative solution }
\]
la0 \(=\) operating wavelength, \(\mathrm{k} 0=2 * \mathrm{pi} / 1 \mathrm{aO}=\) free-space wavenumber
ef,ec = permittivities of film and cladding/substrate
a \(=\) vector of half-widths of film, in same units as la0
mode \(=0,1\) for TMO or TM1 mode
tol = computational error tolerance, default tol \(=1 \mathrm{e}-12\)
be0 = starting search point in units of \(k 0\) - default be0 \(=\) sqrt(ec)
be = vector of propagation wavenumbers in units of \(k 0\) - size(a)
\(\mathrm{E}=\) vector of computational errors of characteristic equation \(-\operatorname{size}(\mathrm{a})\)
\(N=\) number of iterations to converge to within tol
In the limit of small thickness \(a\), Eqs. (10.12.5) simplify further by making the small- \(x\) approximation, \(\tanh (x) \approx x\),
\[
\begin{align*}
& \beta=k_{0} \sqrt{\varepsilon_{\mathcal{C}}+\frac{\varepsilon_{c}^{2}}{\varepsilon_{f}^{2}}\left(\varepsilon_{\mathcal{C}}-\varepsilon_{f}\right)^{2}\left(k_{0} a\right)^{2}} \tag{LRSP}\\
& \beta=k_{0} \sqrt{\varepsilon_{\mathcal{C}}+\frac{\varepsilon_{C}^{2}}{\varepsilon_{f}^{2}\left(k_{0} a\right)^{2}}} \tag{SRSP}
\end{align*}
\]

These can also be obtained by applying the same approximation, directly to the characteristic equations (10.12.2), that is,
\[
\gamma a \approx-\frac{p_{c} \alpha_{c}}{\gamma} \quad(\mathrm{LRSP}) \quad \text { and } \quad \frac{1}{\gamma a} \approx-\frac{p_{c} \alpha_{c}}{\gamma} \quad(\mathrm{SRSP}), \quad \text { or, }
\]
\[
\gamma^{2} a=-p_{c} \alpha_{c} \quad(\mathrm{LRSP}) \quad \text { and } \quad \alpha_{c}=-\frac{1}{p_{c} a} \quad(\mathrm{SRSP})
\]

For the SRSP case, substituting \(\alpha_{c}\) into \(\beta=\sqrt{k_{0}^{2} \varepsilon_{C}+\alpha_{c}^{2}}\) leads to Eq. (10.12.6). For the LRSP case, an additional step is required by writing,
\[
-p_{c} \alpha_{c}=\gamma^{2} a=\left[\alpha_{c}^{2}+k_{0}^{2}\left(\varepsilon_{c}-\varepsilon_{f}\right)\right] a
\]
and noting that this implies that \(\alpha_{c}\) is already small and order- \(a\), and therefore, the second-order term \(\alpha_{c}^{2}\) can be ignored on the right side, so that, \(-p_{c} \alpha_{c}=k_{0}^{2}\left(\varepsilon_{c}-\varepsilon_{f}\right) a\),
\[
\begin{equation*}
\alpha_{c}=-\frac{1}{p_{c}} k_{0}^{2}\left(\varepsilon_{C}-\varepsilon_{f}\right) a=k_{0} \frac{\varepsilon_{C}\left(\varepsilon_{f}-\varepsilon_{c}\right)}{\varepsilon_{f}}\left(k_{0} a\right) \tag{10.12.7}
\end{equation*}
\]
resulting in Eq. (10.12.6). Making the further approximation, \(\sqrt{1+x} \approx 1+x / 2\), we obtain the more explicit relationships for the real and imaginary parts of \(\beta\) in the LRSP case,
\[
\begin{equation*}
\beta=k_{0} \sqrt{\left.\varepsilon_{c}+\frac{\varepsilon_{c}^{2}}{\varepsilon_{f}^{2}}\left(\varepsilon_{c}-\varepsilon_{f}\right)^{2}\left(k_{0} a\right)^{2}\right)} \approx k_{0} \sqrt{\varepsilon_{C}}\left[1+\frac{\varepsilon_{c}\left(\varepsilon_{c}-\varepsilon_{f}\right)^{2}}{2 \varepsilon_{f}^{2}}\left(k_{0} a\right)^{2}\right] \tag{10.12.8}
\end{equation*}
\]

Setting \(\beta=\beta_{R}-j \beta_{I}\) and \(\varepsilon_{f}=-\varepsilon_{R}-j \varepsilon_{I}\), and noting that,
\[
\begin{aligned}
\frac{\left(\varepsilon_{\mathcal{C}}-\varepsilon_{f}\right)^{2}}{\varepsilon_{f}^{2}} & =\frac{\varepsilon_{f}^{* 2}\left(\varepsilon_{c}-\varepsilon_{f}\right)^{2}}{\left|\varepsilon_{f}\right|^{4}}=\frac{\left(\left|\varepsilon_{f}\right|^{2}-\varepsilon_{c} \varepsilon_{f}^{*}\right)^{2}}{\left|\varepsilon_{f}\right|^{4}}=\frac{\left(\left|\varepsilon_{f}\right|^{2}+\varepsilon_{c} \varepsilon_{R}-j \varepsilon_{c} \varepsilon_{I}\right)^{2}}{\left|\varepsilon_{f}\right|^{4}} \\
& =\frac{\left(\left|\varepsilon_{f}\right|^{2}+\varepsilon_{C} \varepsilon_{R}\right)^{2}-\varepsilon_{c}^{2} \varepsilon_{I}^{2}-2 j \varepsilon_{c} \varepsilon_{I}\left(\left|\varepsilon_{f}\right|^{2}+\varepsilon_{\mathcal{C}} \varepsilon_{R}\right)}{\left|\varepsilon_{f}\right|^{4}}
\end{aligned}
\]
where \(\left|\varepsilon_{f}\right|^{2}=\varepsilon_{R}^{2}+\varepsilon_{I}^{2}\), we obtain the real and imaginary parts of \(\beta\) [942],
\[
\begin{align*}
& \beta_{R}=k_{0} \sqrt{\varepsilon_{c}}\left[1+\frac{\left(\left|\varepsilon_{f}\right|^{2}+\varepsilon_{c} \varepsilon_{R}\right)^{2}-\varepsilon_{C}^{2} \varepsilon_{I}^{2}}{2\left|\varepsilon_{f}\right|^{4}} \varepsilon_{c}\left(k_{0} a\right)^{2}\right] \tag{LRSP}\\
& \beta_{I}=k_{0} \sqrt{\varepsilon_{C}} \frac{\varepsilon_{c}^{2} \varepsilon_{I}\left(\left|\varepsilon_{f}\right|^{2}+\varepsilon_{c} \varepsilon_{R}\right)}{\left|\varepsilon_{f}\right|^{4}}\left(k_{0} a\right)^{2} \tag{10.12.9}
\end{align*}
\]

The long-range property follows from the fact that \(\beta_{I}\) tends to zero for small \(a\). This remarkable property comes with the tradeoff that as \(a\) decreases and the range increases, the wave becomes less confined laterally. This follows from Eq. (10.12.7) which shows that the lateral decay constant \(\alpha_{c}\) also goes to zero with \(a\). Its real and imaginary parts can be given explicitly by,
\[
\begin{equation*}
\alpha_{c}=k_{0} \frac{\varepsilon_{c}\left(\left|\varepsilon_{f}\right|^{2}-\varepsilon_{c} \varepsilon_{f}^{*}\right)}{\left|\varepsilon_{f}\right|^{2}}\left(k_{0} a\right)=k_{0} \frac{\varepsilon_{C}\left(\left|\varepsilon_{f}\right|^{2}+\varepsilon_{\mathcal{C}} \varepsilon_{R}-j \varepsilon_{c} \varepsilon_{I}\right)}{\left|\varepsilon_{f}\right|^{2}}\left(k_{0} a\right) \tag{10.12.10}
\end{equation*}
\]

The factor, \(\left|\varepsilon_{f}\right|^{2}+\varepsilon_{c} \varepsilon_{R}\), is positive since we assumed \(\varepsilon_{R}>0\), therefore, both \(\beta_{I}\) and the real-part of \(\alpha_{c}\) are non-negative, as required for stability and lateral confinement.

For the short-range mode, both \(\beta_{I}\) and the real part of \(\alpha_{c}\) increase like \(1 / a\), resulting in shorter propagation distances, but more confinement. These follow from the approximation (10.12.6), as \(a \rightarrow 0\),
\[
\begin{equation*}
\beta \approx \alpha_{c}=-\frac{\varepsilon_{C}}{\varepsilon_{f} a}=k_{0} \frac{\varepsilon_{c}\left(\varepsilon_{R}-j \varepsilon_{I}\right)}{\left|\varepsilon_{f}\right|^{2}\left(k_{0} a\right)} \quad \text { (SRSP) } \tag{10.12.11}
\end{equation*}
\]

Example 10.12.1: This example is from [981] and demonstrates the primary features of the LRSP and SRSP modes. The operating wavelength is 775 nm , the metal film is gold with \(\varepsilon_{f}=-23.5-1.69 j,{ }^{\dagger}\) surrounded by air, \(\varepsilon_{c}=\varepsilon_{s}=1\), and the film thickness \(2 a\) is varied over the range \(1 \leq 2 a \leq 210 \mathrm{~nm}\). Fig. 10.12.1 shows the effective index \(n_{\text {eff }}=\beta_{R} / k_{0}\) as a function of \(a\) for both the LR and SP modes, as well as the propagation length \(L=1 /\left(2 \beta_{I}\right)\) in units of \(\mu \mathrm{m}\).

Fig. 10.12.1 Effective index and propagation length of long and short-range modes.
The graphs were generated with the help of the function, dmds, by the MATLAB code,
\[
\begin{array}{ll}
\mathrm{w}=1: 210 ; \mathrm{a}=\mathrm{w} / 2 ; & \text { \% film thicknesses } \\
\mathrm{tol}=1 \mathrm{e}-12 ; & \text { \% error tolerance }
\end{array}
\]
\[
\begin{array}{ll}
\text { for } i=1: 1 \text { length }(w) & \\
\quad[\text { be0(i), E0(i), NO(i)] }=\operatorname{dmds}(7 a 0, e f, e c, a(i), 0, \text { to } 1) ; & \% \text { LRSP } \\
\quad[b e 1(i), E 1(i), N 1(i)]=\operatorname{dmds}(7 a 0, e f, e c, a(i), 1, \text { tol }) ; & \% \text { SRSP }
\end{array}
\]
end
\% [be0, E0, N0] = dmds(la0,ef,ec,a, 0, tol); \% vectorized computation
neff0 \(=\) real (be0); L0 \(=-1 / 2 / \mathrm{k0} 0 /\) imag(be0) \(/ 1000 ; \quad \%\) LRPP neff1 \(=\) real(be1); L1 \(=-1 / 2 / k 0 . /\) imag(be1)/1000; \(\quad \%\) SRSP

\footnotetext{
\({ }^{\dagger}\) at 775 nm , the DRUDE function produces, \(\varepsilon_{f}=-18.57-2.008 j\).
}
\[
\begin{aligned}
& \text { 1a0 }=775 ; \text { k0 }=2 * p i / 1 a 0 ; \text { ec }=1 \text {; ef }=-23.6-1.69 * j \text {; } \\
& \mathrm{pc}=\mathrm{ef} / \mathrm{ec} \text {; } \\
& \text { bcinf }=\operatorname{sqrt}(e f * e c /(e f+e c)) ; \quad \% \text { asymptotic value } \\
& \text { ninf = real(bcinf); } \\
& \text { Linf }=-1 / 2 / k 0 . / i m a g(b c i n f) / 1000 ; \quad \% \text { units of microns }
\end{aligned}
\]
figure; plot(w,neff0,'_', w, neff1,'--', w(end), ninf,'s'); \(\quad \%\) eff. index
figure; semilogy(w,L0,'-', w,L1,'--', w(end),Linf,'s'); \(\%\) propag. length
g0 \(=\operatorname{sqrt}(e c-e f) ;\)
be0a \(=\operatorname{sqrt}(e c+g 0 \wedge 2 / p c \wedge 2 * \tanh (g 0 * k 0 * a) \cdot \wedge 2)\);
\% approximation
be1a \(=\operatorname{sqrt}(e c+g 0 \wedge 2 / p c \wedge 2 * \operatorname{coth}(g 0 * k 0 * a) \cdot \wedge 2)\);
diff0 = norm(be0 - beOa);
diff1 \(=\) norm(be1 - be1a);
\% diff0 \(=4.7377 \mathrm{e}-04\)
\(\%\) diff1 \(=0.0076\)

Because of the symmetric geometry, LRSP and SRSP both converge to the same asymptotic value for large \(a\),
\(\frac{\beta_{c, \infty}}{k_{0}}=\sqrt{\frac{\varepsilon_{c} \varepsilon_{f}}{\varepsilon_{c}+\varepsilon_{f}}}=1.0218-0.0016 j, \quad n_{\mathrm{eff}}=\frac{\beta_{R}}{k_{0}}=1.0218, \quad L=\frac{1}{2 \beta_{I}}=38.3023 \mu \mathrm{~m}\)
The code also computes the approximate solutions using Eq. (10.12.5), but does not plot them, because they are visually indistinguishable from the exact ones. As a measure of the approximation accuracy, the norms of the difference between the vector of the exact \(\beta \mathrm{s}\) and the approximate ones, \(\left\|\beta-\beta_{\text {approx }}\right\|\), was computed for the two cases - the values are shown in the comments. Fig. 10.12.2 shows the computational errors as defined in the function dmds,
\[
\begin{array}{ll}
E=\left|p_{c} \alpha_{c}+\gamma \tanh (\gamma a)\right| & (\text { LRSP }) \\
E=\left|p_{c} \alpha_{c}+\gamma \operatorname{coth}(\gamma a)\right| & (\text { SRSP })
\end{array}
\]

Fig. 10.12.2 Computational error.
The error values are small but not quite as small as the specified tolerance, \(t o l=10^{-12}\), because tol measures the closeness of two successive iterates of \(\alpha_{c}\), not the value of the error \(E\). The norms of the error vectors were \(\|E\|=8.0235 \times 10^{-11}\) and \(\|E\|=2.0993 \times 10^{-10}\).

The function dmds also calculates the number of iterations required to converge to within the specified error tolerance. The number of iterations for each thickness are plotted in Fig. 10.12.3. One observes how quick the iterative method is.
Example 10.12.2: This example, also from [981], illustrates the more realistic case of a gold film at the operating wavelength of 1550 nm , with permittivity, \(\varepsilon_{f}=-131.9475-12.65 \mathrm{j},{ }^{\dagger}\)

\footnotetext{
\({ }^{\dagger} \varepsilon_{f}\) is from Palik [162], but the DRUDE function gives, \(\varepsilon_{f}=-103.3325-8.1301 j\).
}

Fig. 10.12.3 Number of iterations to converge.
surrounded by the often-used benzocyclobutene (BCB) polymer dielectric, with \(\varepsilon_{c}=\varepsilon_{s}=\) \(1.535^{2}\). The film thickness is varied over the range \(10 \leq 2 a \leq 110 \mathrm{~nm}\). The MATLAB code is identical to that of the previous example, with the change in first two lines,
\[
\begin{aligned}
& \text { 1a0 }=1550 ; \mathrm{k} 0=2 * \mathrm{pi} / 1 \mathrm{ao} 0 \\
& \mathrm{ec}=1.535 \wedge 2 ; \text { ef }=-131.9475-12.65 \mathrm{j}
\end{aligned}
\]

Fig. 10.12.4 shows the effective index and the propagation loss measured in \(\mathrm{dB} / \mathrm{mm}\), and computed by the formula, \(\mathrm{dB}=20 \log _{10}(e) \beta_{I}=8.68589 \beta_{I}\). The approximations (10.12.5) are still visually indistinguishable from the exact values, and are not plotted, nor are the number of iterations which are of the order of 4-5.

Fig. 10.12.4 Effective index and propagation length of long and short-range modes
Fig. 10.12.5 shows the computational error for the LRSP and SRSP modes, and on the right, the lateral penetration depth into the two dielectric sides defined by \(L_{c}=1 / \operatorname{Re}\left(\alpha_{c}\right)\). We observe the basic tradeoff of DMD guides that even though the gold film has thickness of nanometers, and the propagation loss is fairly small, the fields are not very well confined laterally, penetrating at hundreds of micro-meters into the dielectrics. In this regard, MDM guides provide perhaps a better solution that results in much better lateral confinement, at the expense of shorter propagation distances.

Fig. 10.12.5 Computational error.

Example 10.12.3: To illustrate the basic tradeoff between propagation distance and lateral confinement, we compare three waveguides, all operating at 1550 nm wavelength: (a) the LRSP mode of the DMD guide of the previous example with a 20 nm gold film embedded in BCB polymer, (b) the complementary MDM waveguide with a 50 nm BCB film and gold claddings, and (c) a surface plasmon on a single BCB-gold interface. For each case, we calculate \(\beta, \alpha_{c}\), and the propagation attenuation in \(\mathrm{dB} / \mathrm{mm}, \mathrm{dB}=8.686 \beta_{I}\), the propagation distance, \(L=\left(2 \beta_{I}\right)^{-1}\), and the lateral penetration depth into the dielectric side, \(L_{\mathcal{C}}=\) \(1 / \operatorname{Re}\left(\alpha_{c}\right)\). The following table shows the results.
\begin{tabular}{c|c|r|r|r|r}
guide & \(\beta / k_{0}\) & \multicolumn{1}{|c|}{\(\alpha_{c} / k_{0}\)} & \(\mathrm{~dB} / \mathrm{mm}\) & \multicolumn{1}{c}{\((\mu \mathrm{m})\)} & \(L_{c}(\mu \mathrm{~m})\) \\
\hline \hline DMD & \(1.537673-0.000042 j\) & \(0.090632-0.000721 j\) & 1.50 & 2904.47 & 2.72 \\
\hline single & \(1.548762-0.001337 j\) & \(0.206246-0.010042 j\) & 47.09 & 92.23 & 1.20 \\
\hline MDM & \(2.102705-0.024595 j\) & \(11.690006+0.536637 j\) & 865.97 & 5.02 & 0.02
\end{tabular}

They were computed by the following MATLAB code,
\(1 \mathrm{a} 0=1550 ; \mathrm{k} 0=2 * \mathrm{pi} / \mathrm{la} 0 ;\)
\(\mathrm{a} 1=20 / 2 ; \mathrm{a} 3=50 / 2 ;\)
a1 \(=20 / 2 ; \quad \mathrm{a3}=50 / 2\);
ec \(=1.535 \wedge 2 ;\) ef \(=-131.9475-12.65 j\);
Ec = [ec; ec; ef];
deb \(=20 * 1 o g 10(\exp (1))\);
tol \(=1 \mathrm{e}-12\);
be1 = dmds(1a0,ef,ec,a1,0,to1);
be2 \(=\operatorname{sqrt}(\mathrm{ef*ec} /(\mathrm{ef}+\mathrm{ec}))\);
be3 \(=\operatorname{pwg}(1 \mathrm{a} 0, \mathrm{ec}, \mathrm{ef}, \mathrm{a} 3, \mathrm{be} 2,0\), tol \()\);
be = [be1; be2; be3];
ac \(=\operatorname{sqrt}(b e . \wedge 2-E c) ;\)
dBmm = - imag(be) * k0 * deb * 1e6; \(\mathrm{L}=-1 / 2 / \mathrm{k0} 0 / \mathrm{imag}(\mathrm{be}) / 1000\); Lc = 1/k0./real (ac)/1000;
\% DMD and MDM half-widths
\% BCB and gold
\% interchange ec,ef for MDM \% conversion factor to dB \% error tolerance
\% DMD, 20 nm
\% single interface
\% MDM, 50 nm , interchange ec,ef
\% propagation wavenumbers
\% lateral wavenumbers
\% propagation loss in \(\mathrm{dB} / \mathrm{mm}\)
\% propagation length in microns
\% 1ateral depth in microns
num2str([be, ac],'\%10.6f')
num2str([dBmm,L,Lc], '\%10.2f') \% table

They are listed in order increasing propagation loss or decreasing propagation distance, and decreasing lateral confinement or increasing lateral penetration.

Example 10.12.4: One of the earliest investigations of LRSP and SRSP modes in symmetric DMD guides was Kovacs [937]. The metal film was indium (In) at \(\lambda_{0}=450 \mathrm{~nm}\) wavelength, with permittivity \(\varepsilon_{f}=-20.358-6.019 j\), symmetrically surrounded by magnesium fluoride \(\left(\mathrm{MgF}_{2}\right)\) dielectric with \(\varepsilon_{c}=\varepsilon_{s}=1.382^{2}=1.9099\).
Kovacs computed the propagation parameters for both the LRSP and SRSP modes at three film thicknesses, \(w=[10,30,50] \mathrm{nm}\), and noted their basic trends, namely, that the propagation length increases (decreases) for the LRSP (SRSP) mode as \(w\) gets smaller, and that both LRSP and SRSP tend to the same value (i.e., \(\beta_{c, \infty}\)) as \(w\) increases. The following MATLAB code reproduces the results of [937],

1a0 \(=450 ; k 0=2 * p i / 1 a 0 ;\) ef=-20.358-6.019j; es=1.382^2;
tol \(=1 \mathrm{e}-12\);
\(w=[10 ; 30 ; 50]\);
[beO,E0,NO] = dmds(la0,ef,ec,w/2,0,tol);
\% LRSP
ga0 \(=\operatorname{sqrt}(b e 0 . \wedge 2-\) ef);
ac0 = sqrt(be0.^2 - ec);
L0 = -1/2/k0./imag(be0)/1000;
\(\mathrm{Lc} 0=1 . / \mathrm{rea} 1(\mathrm{ac} 0) / \mathrm{k} 0\);
\% EO = computational error
\% NO = number of iterations
num \(2 \operatorname{str}([w, ~ r e a 1(b e 0), ~ i m a g(b e 0), ~ L 0, ~ L c 0], ’ \% 11.5 f ') ~ \% ~ m a k e ~ t a b 7 e ~\)
[be1,E1,N1] = dmds(la0,ef,ec,w/2,1,tol);
\% SRSP
ga1 \(=\) sqrt(be1.^2 - ef);
ac1 = sqrt(be1.^2 - ec);
L1 \(=-1 / 2 / k 0 . / i m a g(b e 1) / 1000 ;\)
Lc1 = 1./real (ac1)/k0;
num2str([w, rea1(be1), imag(be1), L1, Lc1],'\%11.5f')
bcinf \(=\) sqrt (ec*ef/(ectef)): \(\quad\) w inf
gcinf \(=\) sqrt (bcinf^2 - ef);
\(\operatorname{acinf}=\operatorname{sqrt}(b \inf \wedge 2-e c)\)
Linf \(=-1 / 2 / k 0 . / i m a g(b c i n f) / 1000 ;\)
Lcinf \(=1 . /\) real (acinf)/k0;
num2str([rea1(bcinf), imag(bcinf), Linf, Lcinf],'\%11.5f')
The computed values of \(\beta=\beta_{R}-j \beta_{I}\), propagation length, \(L=1 /\left(2 \beta_{I}\right)\), and lateral penetration depth into the dielectric, \(L_{C}=1 / \operatorname{Re}\left(\alpha_{c}\right)\), are given below.
\begin{tabular}{c|c|c|c}
& LRSP & & \\
\hline\(w(\mathrm{~nm})\) & \(\beta / k_{0}\) & \(L(\mu \mathrm{~m})\) & \(L_{c}(\mathrm{~nm})\) \\
\hline 10 & \(1.38905-0.00047 j\) & 76.88 & 512.00 \\
20 & \(1.42100-0.00658 j\) & 5.44 & 215.87 \\
50 & \(1.43873-0.01443 j\) & 2.48 & 177.69 \\
\(\infty\) & \(1.44535-0.02017 j\) & 1.76 & 167.26 \\
& \multicolumn{3}{|c}{ SRSP } \\
& \(\beta / k_{0}\) & \(L(\mu \mathrm{~m})\) & \(L_{c}(\mathrm{~nm})\) \\
\hline\(w(\mathrm{~nm})\) & \(1.86878-0.25421 j\) & 0.14 & 55.68 \\
\hline 10 & \(1.48238-0.04757 j\) & 0.75 & 130.38 \\
20 & \(1.45247-0.02707 j\) & 1.32 & 157.60 \\
50 & \(1.44535-0.02017 j\) & 1.76 & 167.26 \\
\(\infty\) & &
\end{tabular}
where \(\beta=\beta_{c, \infty}=\sqrt{\varepsilon_{c} \varepsilon_{f} /\left(\varepsilon_{c}+\varepsilon_{f}\right)}\) at \(w=\infty\). The norm of the computational error (for the three thicknesses) and the number of iterations to converge were \(\left\|E_{0}\right\|=1.5035 \times 10^{-14}\), \(N_{0}=7\) for the LRSP case, and \(\left\|E_{1}\right\|=4.9127 \times 10^{-15}, N_{1}=7\) for SRSP.

\subsection*{10.13 Asymmetric DMD Waveguides}

The main result for asymmetric guides is that, just like the lossless case, the asymmetry introduces a lower cutoff thickness for the \(\mathrm{TM}_{0}\), LRSP, mode, and that the propagation length increases dramatically as the thickness approaches the cutoff from above, but at the expense of becoming less confined laterally. For a given film thickness, there is a critical value of the permittivity \(\varepsilon_{\mathcal{C}}\) that achieves much larger propagation lengths as compared to the symmetric case \(\left(\varepsilon_{c}=\varepsilon_{s}\right)\) of the same thickness. Of course, one could also lower the thickness of the symmetric case to increase the propagation length, as we saw in the previous section.

To simplify the discussion, we will assume that the metal, \(\varepsilon_{f}=-\varepsilon_{R}-j \varepsilon_{I}\), where \(\varepsilon_{R}>0, \varepsilon_{I} \geq 0\), and lossless dielectrics, \(\varepsilon_{C}, \varepsilon_{S}>0\), satisfy the condition \(\varepsilon_{R}>\varepsilon_{\mathcal{C}} \geq \varepsilon_{S}\), as well as the region- 3 condition of the lossless case, that is,
\[
\begin{equation*}
\frac{\varepsilon_{R}}{\varepsilon_{s}} \leq \frac{\varepsilon_{R}}{\varepsilon_{c}}+1 \tag{10.13.1}
\end{equation*}
\]
which implies the following range restrictions on \(\varepsilon_{S}, \varepsilon_{C}\), also given in Eq. (10.10.13),
\[
\begin{equation*}
\varepsilon_{s} \leq \varepsilon_{C} \leq \frac{\varepsilon_{R} \varepsilon_{S}}{\varepsilon_{R}-\varepsilon_{S}} \Leftrightarrow \frac{\varepsilon_{R} \varepsilon_{\mathcal{C}}}{\varepsilon_{R}+\varepsilon_{\mathcal{C}}} \leq \varepsilon_{s} \leq \varepsilon_{\mathcal{C}} \tag{10.13.2}
\end{equation*}
\]

We recall from the region-3 discussion that in the lossless case \(\left(\varepsilon_{f}=-\varepsilon_{R}\right)\), the quantity \(\beta_{S, \infty}\) is equal to \(\varepsilon_{R} \varepsilon_{S} /\left(\varepsilon_{R}-\varepsilon_{S}\right)\), and that Eq. (10.13.2) implies the existence of two modes: a \(\mathrm{TM}_{0}\) mode with range, \(k_{0} \sqrt{\varepsilon_{C}} \leq \beta<\beta_{s, \infty}\), with a lower thickness cutoff, \(a_{\text {cutoff }} \leq a<\infty\), and a TM 1 mode with range, \(\beta \geq \beta_{c, \infty}\), and no cutoff. The cutoff width
is realized at \(\beta=k_{0} \sqrt{\varepsilon_{c}}\) and is given by Eq. (10.10.12),
\[
\begin{equation*}
2 k_{0} a_{\text {cutoff }}=\frac{1}{\sqrt{\varepsilon_{\mathcal{C}}+\left|\varepsilon_{f}\right|}} \operatorname{atanh}\left[\frac{\left|\varepsilon_{f}\right| \sqrt{\varepsilon_{\mathcal{C}}-\varepsilon_{s}}}{\varepsilon_{s} \sqrt{\varepsilon_{\mathcal{C}}+\left|\varepsilon_{f}\right|}}\right], \quad \beta_{\text {cutoff }}=k_{0} \sqrt{\varepsilon_{\mathcal{C}}} \tag{10.13.3}
\end{equation*}
\]

For a small difference, \(0 \leq\left(\varepsilon_{C}-\varepsilon_{S}\right) \ll \varepsilon_{C}\), \(\varepsilon_{S}\), we obtain a simpler expression, using the approximation \(\operatorname{atanh}(x) \approx x\),
\[
\begin{equation*}
2 k_{0} a_{\text {cutoff }}=\frac{\left|\varepsilon_{f}\right| \sqrt{\varepsilon_{c}-\varepsilon_{s}}}{\varepsilon_{S}\left|\varepsilon_{f}-\varepsilon_{c}\right|} \tag{10.13.4}
\end{equation*}
\]

We will see below that this approximation is also valid in the lossy case with \(\varepsilon_{f}\) being replaced by its complex-valued version, \(\varepsilon_{f}=-\varepsilon_{R}-j \varepsilon_{I}\).

In the lossy case, because \(\beta\) is complex, \(\beta=\beta_{R}-j \beta_{I}\), one can no longer set \(\beta=\) \(k_{0} \sqrt{\varepsilon_{c}}\) in the characteristic equation to find the cutoff width. Instead, because the cutoff corresponds to infinite propagation length, one sets \(\beta_{I}=0\), or, \(\beta=\beta_{R}\), to obtain a system of two equations (the real and imaginary parts of the characteristic equation) in the two unknowns, \(a_{\text {cutoff }}, \beta_{R}\),
\[
\begin{equation*}
\tanh \left(2 \gamma a_{\text {cutoff }}\right)=-\frac{\gamma\left(p_{c} \alpha_{c}+p_{s} \alpha_{s}\right)}{\gamma^{2}+p_{c} \alpha_{c} p_{s} \alpha_{s}} \tag{10.13.5}
\end{equation*}
\]
\[
\begin{aligned}
& \gamma=\sqrt{\beta_{R}^{2}+k_{0}^{2}\left(\varepsilon_{R}+j \varepsilon_{I}\right)} \\
& \alpha_{c}=\sqrt{\beta_{R}^{2}-k_{0}^{2} \varepsilon_{C}} \\
& \alpha_{s}=\sqrt{\beta_{R}^{2}-k_{0}^{2} \varepsilon_{s}}
\end{aligned}
\]

These can be solved numerically. However, a simple estimate can be obtained by simply setting \(\beta_{R}=k_{0} \sqrt{\varepsilon_{C}}\) and taking the complex absolute value of the solution, \({ }^{\dagger}\)
\[
\begin{equation*}
w_{\text {cut }}=2 a_{\text {cutoff }} \approx \frac{1}{k_{0}}\left|\frac{1}{\sqrt{\varepsilon_{C}-\varepsilon_{f}}} \operatorname{atanh}\left(\frac{-\varepsilon_{f} \sqrt{\varepsilon_{c}-\varepsilon_{s}}}{\varepsilon_{s} \sqrt{\varepsilon_{C}-\varepsilon_{f}}}\right)\right| \tag{10.13.6}
\end{equation*}
\]

This provides a better estimate than Eq. (10.13.4), which is valid for thin films. The MATLAB function, dmdcut, implements Eq. (10.13.6),
\[
\text { wcut }=\operatorname{dmdcut}(7 \mathrm{a} 0, \mathrm{ef}, \mathrm{ec}, \mathrm{es}) ; \quad \% \text { cutoff film width (vectorized in ec) }- \text { same units as } \lambda_{0}
\]

Next, we discuss the numerical solution of the characteristic equation (10.1.13) for an asymmetric DMD guide of a given film width \(2 a\),
\[
\begin{equation*}
\tanh (2 \gamma a)=-\frac{\gamma\left(p_{c} \alpha_{c}+p_{s} \alpha_{s}\right)}{\gamma^{2}+p_{c} \alpha_{c} p_{s} \alpha_{s}} \tag{10.13.7}
\end{equation*}
\]

Once this is solved, one can calculate the \(\psi\) parameter from Eq. (10.1.15), by setting \(m=0\), or \(m=1\), for the LRSP or SRSP modes,
\[
\begin{equation*}
\psi=\frac{1}{2} \operatorname{atanh}\left(-\frac{p_{c} \alpha_{c}}{\gamma}\right)-\frac{1}{2} \operatorname{atanh}\left(-\frac{p_{s} \alpha_{s}}{\gamma}\right)+\frac{1}{2} j m \pi \tag{10.13.8}
\end{equation*}
\]
\(\dagger\) Alternatively, one can simply set \(\varepsilon_{f}=-\varepsilon_{R}\) in Eq. (10.13.6), which would lead back to (10.13.3), see for
example [940]. example [940].
and determine the transverse magnetic field,
\[
H_{y}(x)= \begin{cases}H_{0} \cosh (\gamma x+\psi), & |x| \leq a \tag{10.13.9}\\ H_{0} \cosh (\gamma a+\psi) e^{-\alpha_{c}(x-a)}, & x \geq a \\ H_{0} \cosh (\gamma a-\psi) e^{\alpha_{s}(x+a)}, & x \leq-a\end{cases}
\]

Eq. (10.13.7) can be solved efficiently using the following iteration proposed in [963],
\[
\begin{align*}
& \text { for } n=0,1,2, \ldots, \text { do: } \\
& \qquad \begin{array}{l}
\hat{A}=-\gamma_{n} \operatorname{coth}\left(2 \gamma_{n} a\right) \pm \sqrt{B_{n}^{2}+\gamma_{n}^{2}\left(\operatorname{coth}^{2}\left(2 \gamma_{n} a\right)-1\right)} \\
\hat{B}=\sqrt{\gamma_{n}^{2}+2 \gamma_{n} \hat{A} \operatorname{coth}\left(2 \gamma_{n} a\right)+\hat{A}^{2}} \\
\alpha_{c}=\frac{1}{p_{c}}(\hat{A}+\hat{B}) \\
\gamma_{n+1}=\sqrt{\alpha_{c}^{2}+k_{0}^{2}\left(\varepsilon_{C}-\varepsilon_{f}\right)} \\
\alpha_{s}=\sqrt{\gamma_{n+1}^{2}+k_{0}^{2}\left(\varepsilon_{f}-\varepsilon_{s}\right)} \\
B_{n+1}=\frac{1}{2}\left(p_{c} \alpha_{c}-p_{s} \alpha_{s}\right)
\end{array}
\end{align*}
\]
where \(\pm\) correspond to the \(\mathrm{TM}_{0}\) and \(\mathrm{TM}_{1}\) modes, respectively. The iteration may be initialized at \(\beta=k_{0} \sqrt{\varepsilon_{c}}\). For a symmetric guide, we have \(B=0\) and the iteration reduces to that of Eq. (10.12.4). This follows from the hyperbolic trigonometric identity,
\[
-\cosh (2 x) \pm \sqrt{\operatorname{coth}^{2}(2 x)-1}=-\operatorname{coth}(2 x) \pm \frac{1}{\sinh (2 x)}= \begin{cases}-\tanh (x), & +\operatorname{sign} \\ -\operatorname{coth}(x), & -\operatorname{sign}\end{cases}
\]

The iteration (10.13.10) can be justified by defining the following quantities \(A, B\),
\[
\begin{aligned}
& A=\frac{1}{2}\left(p_{c} \alpha_{c}+p_{s} \alpha_{s}\right) \\
& B=\frac{1}{2}\left(p_{c} \alpha_{c}-p_{s} \alpha_{s}\right)
\end{aligned} \quad \Rightarrow \quad \alpha_{c}=\frac{1}{p_{c}}(A+B)
\]
and rewriting the characteristic equation in the form,
\[
\tanh (2 \gamma a)=-\frac{\gamma\left(p_{c} \alpha_{c}+p_{s} \alpha_{s}\right)}{\gamma^{2}+p_{c} \alpha_{c} p_{s} \alpha_{s}}=-\frac{2 \gamma A}{\gamma^{2}+A^{2}-B^{2}}
\]
and then, solving it for \(A\) in terms of \(B\), or, for \(B\) in terms of \(A\),
\[
\begin{align*}
& A=-\gamma \operatorname{coth}(2 \gamma a) \pm \sqrt{B^{2}+\gamma^{2}\left(\operatorname{coth}^{2}(2 \gamma a)-1\right)} \\
& B=\sqrt{\gamma^{2}+2 \gamma A \operatorname{coth}(2 \gamma a)+A^{2}} \tag{10.13.11}
\end{align*}
\]

The following MATLAB function, dmda, implements the iteration (10.13.10), with the iteration stopping when two successive values of \(\gamma_{n}\) become closer to each other than a specified error tolerance, such as, tol \(=10^{-12}\), that is, \(\left|\gamma_{n+1}-\gamma_{n}\right|<t o l\). The function accepts a vector of widths \(a\), and calculates the corresponding vector of wavenumbers \(\beta\). It has usage,
\[
[b e, E, N]=\operatorname{dmda}(1 a 0, e f, e c, e s, a, \text { mode,tol }, \text { be0 } 0 \text {; }
\]
\% asymmetric DMD guide - iterative solution
1a0 = operating wavelength, k0 = 2*pi/la0 = free-space wavenumber
ef,ec,es \(=\) permittivities of metal film, dielectric cladding and substrate
a \(\quad=\) vector of half-widths of film in the same units as 1a0
mode \(\quad=0,1\) for TMO or TM1 mode
to \(1=\) computational error tolerance, default tol=1e-12
be0 \(\quad=\) starting search point in units of \(k 0-\) default be \(0=\operatorname{sqrt}(e c)\)
be = vector of propagation constants in units of k0 - size(a)
\(\mathrm{E}=\) vector of computational errors of the characteristic equation - size(a)
\(N\) = number of iterations to convergence, until norm(ga_new - ga) < tol
with the computational error defined as,
\[
\begin{equation*}
E=\left|\tanh (2 \gamma a)+\frac{\gamma\left(p_{c} \alpha_{c}+p_{s} \alpha_{s}\right)}{\gamma^{2}+p_{c} \alpha_{c} p_{s} \alpha_{s}}\right| \tag{10.13.12}
\end{equation*}
\]

As discussed in [611], the existence of the cutoff for the LRSP mode, and the properties of the solutions near it, can be demonstrated by deriving an approximate analytical solution of the characteristic equation in the case of thin films and small permittivity difference \(\left(\varepsilon_{c}-\varepsilon_{S}\right)\). To simplify the algebra, we will work with units of \(k_{0}=1\), and restore \(k_{0}\) at the end. Denoting the normalized width by \(w=2 k_{0} a\), the characteristic equation reads
\[
\begin{equation*}
\tanh (\gamma w)=-\frac{\gamma\left(p_{c} \alpha_{c}+p_{s} \alpha_{s}\right)}{\gamma^{2}+p_{c} \alpha_{c} p_{s} \alpha_{s}} \tag{10.13.13}
\end{equation*}
\]
\[
\begin{aligned}
& \gamma=\sqrt{\beta^{2}-\varepsilon_{f}}=\sqrt{\beta^{2}+\varepsilon_{R}+j \varepsilon_{I}} \\
& \alpha_{c}=\sqrt{\beta^{2}-\varepsilon_{C}} \\
& \alpha_{s}=\sqrt{\beta^{2}-\varepsilon_{S}}
\end{aligned}
\]

Because we are interested in the LRSP mode near cutoff, we will study the solution near \(\beta \approx \sqrt{\varepsilon_{c}}\), or, equivalently, when \(\alpha_{c}\) is small. Because, \(\alpha_{s}=\sqrt{\alpha_{c}^{2}+\varepsilon_{C}-\varepsilon_{s} \text {, if we }}\) assume that \(\left(\varepsilon_{C}-\varepsilon_{s}\right) \ll 1\), then, \(\alpha_{s}\) will also be small. On the other hand, \(\gamma\) is not small because \(\gamma=\sqrt{\alpha_{c}^{2}+\varepsilon_{c}-\varepsilon_{f}}\), and \(\left|\varepsilon_{f}\right|\) is typically much larger than \(\varepsilon_{c}\). If we now assume that the normalized width \(w=2 k_{0} a\) is small, \(w \ll 1\), or, more accurately, \(|\gamma w| \ll 1\), we may use the approximation, \(\tanh (x) \approx x\), to simplify the characteristic equation,
\[
\tanh (\gamma w) \approx \gamma w=-\frac{\gamma\left(p_{c} \alpha_{c}+p_{s} \alpha_{s}\right)}{\gamma^{2}+p_{c} \alpha_{c} p_{s} \alpha_{s}} \quad \Rightarrow \quad w=-\frac{p_{c} \alpha_{c}+p_{s} \alpha_{s}}{\gamma^{2}+p_{c} \alpha_{c} p_{s} \alpha_{s}}
\]

Under our assumptions, \(\gamma^{2}\) is much larger than the product \(\alpha_{C} \alpha_{s}\), and we obtain the further simplification,
\[
\begin{aligned}
& w=-\frac{p_{c} \alpha_{c}+p_{s} \alpha_{s}}{\gamma^{2}} \\
& p_{c} \alpha_{c}+p_{s} \alpha_{s}=-\gamma^{2} w \\
& \frac{\alpha_{s}}{\varepsilon_{s}}+\frac{\alpha_{c}}{\varepsilon_{c}}=-\frac{\gamma^{2} w}{\varepsilon_{f}}
\end{aligned}
\]
or,
\[
\begin{aligned}
& \frac{\alpha_{s}}{\varepsilon_{s}}=-\frac{\alpha_{c}}{\varepsilon_{c}}-\frac{\gamma^{2} w}{\varepsilon_{f}}=-\frac{\alpha_{c}}{\varepsilon_{c}}-\frac{\left(\alpha_{c}^{2}+\varepsilon_{c}-\varepsilon_{f}\right) w}{\varepsilon_{f}} \\
& \frac{\alpha_{s}^{2}}{\varepsilon_{s}^{2}}=\left(\frac{\alpha_{c}}{\varepsilon_{c}}+\frac{\gamma^{2} w}{\varepsilon_{f}}\right)^{2}=\frac{\alpha_{c}^{2}}{\varepsilon_{c}^{2}}+\frac{2 \alpha_{c} \gamma^{2} w}{\varepsilon_{c} \varepsilon_{f}}+\frac{\gamma^{4} w^{2}}{\varepsilon_{f}^{2}} \\
& \frac{\alpha_{c}^{2}+\varepsilon_{c}-\varepsilon_{S}}{\varepsilon_{S}^{2}}=\frac{\alpha_{c}^{2}}{\varepsilon_{c}^{2}}+\frac{2 \alpha_{c}\left(\alpha_{c}^{2}+\varepsilon_{c}-\varepsilon_{f}\right) w}{\varepsilon_{c} \varepsilon_{f}}+\frac{\left(\alpha_{c}^{2}+\varepsilon_{c}-\varepsilon_{f}\right)^{2} w^{2}}{\varepsilon_{f}^{2}}
\end{aligned}
\]

Ignoring all terms that involve \(\alpha_{c}^{2}\), these reduce further to,
\[
\begin{align*}
\frac{\alpha_{s}}{\varepsilon_{s}} & =-\frac{\alpha_{c}}{\varepsilon_{c}}+\frac{\left(\varepsilon_{f}-\varepsilon_{c}\right) w}{\varepsilon_{f}} \\
\frac{\varepsilon_{c}-\varepsilon_{s}}{\varepsilon_{S}^{2}} & =-\frac{2 \alpha_{c}\left(\varepsilon_{f}-\varepsilon_{c}\right) w}{\varepsilon_{c} \varepsilon_{f}}+\frac{\left(\varepsilon_{f}-\varepsilon_{c}\right)^{2} w^{2}}{\varepsilon_{f}^{2}} \tag{10.13.14}
\end{align*}
\]

Let us define the quantities,
\[
\begin{gather*}
A=\frac{\varepsilon_{f}-\varepsilon_{c}}{\varepsilon_{f}}=\frac{\left(\varepsilon_{f}-\varepsilon_{c}\right) \varepsilon_{f}^{*}}{\left|\varepsilon_{f}\right|^{2}}=\frac{\left|\varepsilon_{f}\right|^{2}-\varepsilon_{c} \varepsilon_{f}^{*}}{\left|\varepsilon_{f}\right|^{2}}=\frac{\left|\varepsilon_{f}\right|^{2}+\varepsilon_{c} \varepsilon_{R}-j \varepsilon_{c} \varepsilon_{I}}{\left|\varepsilon_{f}\right|^{2}} \tag{10.13.15}\\
w_{c}^{2}=\frac{\varepsilon_{c}-\varepsilon_{s}}{\varepsilon_{S}^{2}|A|^{2}}=\frac{\left(\varepsilon_{c}-\varepsilon_{s}\right)\left|\varepsilon_{f}\right|^{2}}{\varepsilon_{S}^{2}\left|\varepsilon_{f}-\varepsilon_{c}\right|^{2}} \Rightarrow \quad w_{c}=\frac{\sqrt{\varepsilon_{c}-\varepsilon_{s}}\left|\varepsilon_{f}\right|}{\varepsilon_{s}\left|\varepsilon_{f}-\varepsilon_{c}\right|} \tag{10.13.16}
\end{gather*}
\]

Setting \(w_{\mathcal{C}}=2 k_{0} a_{\text {cutoff }}\), we see that Eq. (10.13.16) is the same as (10.13.4). Noting that, \(\left(\varepsilon_{c}-\varepsilon_{s}\right) / \varepsilon_{s}^{2}=|A|^{2} w_{c}^{2}=A A^{*} w_{c}^{2}\), and canceling a common factor of \(A\) from the second of Eqs. (10.13.14), we may rewrite them in the form,
\[
\begin{align*}
\frac{\alpha_{s}}{\varepsilon_{s}} & =-\frac{\alpha_{c}}{\varepsilon_{c}}+A w \\
A^{*} w_{c}^{2} & =-\frac{2 \alpha_{c} w}{\varepsilon_{c}}+A w^{2} \tag{10.13.17}
\end{align*}
\]
and solve them for \(\alpha_{c}, \alpha_{s}\),
\[
\begin{align*}
& \frac{\alpha_{c}}{\varepsilon_{c}}=\frac{1}{2 w}\left(A w^{2}-A^{*} w_{c}^{2}\right) \\
& \frac{\alpha_{s}}{\varepsilon_{s}}=\frac{1}{2 w}\left(A w^{2}+A^{*} w_{c}^{2}\right) \tag{10.13.18}
\end{align*}
\]
and after separating their real and imaginary parts, \(\alpha_{c}=\alpha_{c R}-j \alpha_{c I}, \alpha_{s}=\alpha_{s R}-j \alpha_{s I}\),
\[
\begin{array}{llrl}
\frac{\alpha_{c R}}{\varepsilon_{c}} & =\frac{A_{R}}{2 w}\left(w^{2}-w_{c}^{2}\right), & \frac{\alpha_{c I}}{\varepsilon_{c}} & =\frac{A_{I}}{2 w}\left(w^{2}+w_{c}^{2}\right) \\
\frac{\alpha_{s R}}{\varepsilon_{s}} & =\frac{A_{R}}{2 w}\left(w^{2}+w_{c}^{2}\right), & \frac{\alpha_{s I}}{\varepsilon_{c}} & =\frac{A_{I}}{2 w}\left(w^{2}-w_{c}^{2}\right) \tag{10.13.19}
\end{array}
\]
where \(A_{R}\) and \(A_{I}\) are the real and imaginary parts of \(A\), defined from Eq. (10.13.15) by,
\[
\begin{equation*}
A=A_{R}-j A_{I}, \quad A_{R}=\frac{\left|\varepsilon_{f}\right|^{2}+\varepsilon_{c} \varepsilon_{R}}{\left|\varepsilon_{f}\right|^{2}}=1+\frac{\varepsilon_{\mathcal{C}} \varepsilon_{R}}{\left|\varepsilon_{f}\right|^{2}}, \quad A_{I}=\frac{\varepsilon_{C} \varepsilon_{I}}{\left|\varepsilon_{f}\right|^{2}} \tag{10.13.20}
\end{equation*}
\]

Using these results, we can now obtain an approximation to the propagation wave number \(\beta=\beta_{R}-j \beta_{I}\),
\(\beta=\sqrt{\varepsilon_{c}+\alpha_{c}^{2}}=\sqrt{\varepsilon_{c}} \sqrt{1+\frac{\alpha_{c}^{2}}{\varepsilon_{c}}} \approx \sqrt{\varepsilon_{\mathcal{C}}}\left(1+\frac{\alpha_{c}^{2}}{2 \varepsilon_{c}}\right)=\sqrt{\varepsilon_{c}}\left(1+\frac{\varepsilon_{\mathcal{C}}}{2} \frac{\alpha_{c R}^{2}-\alpha_{c I}^{2}-2 j \alpha_{c R} \alpha_{c I}}{\varepsilon_{c}^{2}}\right)\)
Using Eqs. (10.13.19), the real and imaginary parts are, after restoring the factor \(k_{0}\),
\[
\begin{equation*}
\beta_{R}=k_{0} \sqrt{\varepsilon_{\mathcal{C}}}\left[1+\frac{\varepsilon_{c}}{2} \frac{A_{R}^{2}\left(w^{2}-w_{c}^{2}\right)^{2}-A_{I}^{2}\left(w^{2}+w_{c}^{2}\right)^{2}}{4 w^{2}}\right] \tag{10.13.21}
\end{equation*}
\]
\[
\beta_{I}=k_{0} \sqrt{\varepsilon_{\mathcal{C}}} \varepsilon_{C} \frac{A_{R} A_{I}\left(w^{4}-w_{\mathcal{C}}^{4}\right)}{4 w^{2}}
\]
where, \(w=2 k_{0} a\), and, \(w_{c}=2 k_{0} a_{\text {cutoff }}\). For a symmetric guide \(\left(\varepsilon_{c}=\varepsilon_{S}\right)\), we have \(w_{\mathcal{C}}=0\), and Eqs. (10.13.21) reduce to (10.12.9).

Although the approximations (10.13.19) and (10.13.21) are valid for small \(w\) and small \(w_{c}\), they capture the essential properties near cutoff. Above cutoff, both \(\beta_{I}\) and \(\alpha_{c R}\) are positive as they should be for a proper solution (\(\alpha_{S R}\) is positive, too). As cutoff is approached from above, \(\beta_{I}\) tends to zero resulting in infinite propagation length, but at the same time the lateral confinement decreases since \(\alpha_{c R}\) also tends to zero. Below cutoff, both \(\alpha_{c R}\) and \(\beta_{I}\) become negative, resulting in unbounded waves. We note also that at cutoff, \(w=w_{c}\), the real part \(\beta_{R}\) is somewhat less than \(k_{0} \sqrt{\varepsilon_{c}}\), as has been observed in [941].

Example 10.13.1: The nomenclature "long-range mode" originates with Sarid [939]. Here, we reproduce the results of that reference. The DMD guide, operated at \(\lambda_{0}=632.8 \mathrm{~nm}\), consists of a 20 -nm silver film of permittivity, \(\varepsilon_{f}=(0.0657-4 j)^{2}=-15.9957-0.5256 j\), surrounded by dielectrics \(\varepsilon_{s}=1.5^{2}=2.25\) and \(\varepsilon_{c}=1.55^{2}=2.4025\).
The cutoff thickness calculated from Eq. (10.13.6) is \(w_{\text {cutoff }}=2 a_{\text {cutoff }}=18.0929 \mathrm{~nm}\). Therefore, the chosen thickness of 20 nm , lies close to the cutoff, and we expect long propagation lengths for the LRSP mode, and poor lateral confinement. Indeed, the calcu-
lated propagation parameters are given below and agree closely with those of [939],
\begin{tabular}{c|c|c}
& LRSP & SRSP \\
\hline\(\beta / k_{0}\) & \(1.550707-0.000164 j\) & \(2.184165-0.035423 j\) \\
\(\gamma / k_{0}\) & \(4.290002+0.061199 j\) & \(4.557045+0.040691 j\) \\
\(\alpha_{c} / k_{0}\) & \(0.047132-0.005394 j\) & \(1.539269-0.050264 j\) \\
\(\alpha_{s} / k_{0}\) & \(0.393310-0.000646 j\) & \(1.587985-0.048722 j\) \\
\(\psi\) & \(-0.3525-0.0131 j\) & \(0.0249+1.5716 j\) \\
error, \(E\) & \(1.0745 \times 10^{-10}\) & \(1.2194 \times 10^{-14}\) \\
iterations, \(N\) & 34 & 5 \\
\(L=1 /\left(2 \beta_{I}\right)\) & \(307.15 \mu \mathrm{~m}\) & \(1.42 \mu \mathrm{~m}\) \\
\(L_{c}=1 / \alpha_{c R}\) & 2136.82 nm & 65.43 nm \\
\(L_{S}=1 / \alpha_{S R}\) & 256.07 nm & 63.42 nm
\end{tabular}

We note the large value of \(L\) for the LRSP case, but also its large lateral penetration depth \(L_{c}\) (relative to the film width). By contrast, the propagation lengths of the single-interface plasmons at the \(s-f\) and \(c-f\) interfaces are much shorter:
\[
\begin{array}{ll}
\frac{\beta_{c, \infty}}{k_{0}}=\sqrt{\frac{\varepsilon_{c} \varepsilon_{f}}{\varepsilon_{c}+\varepsilon_{f}}}=1.681224-0.004876 j, \quad L=-\frac{1}{\operatorname{Im}\left(\beta_{c, \infty}\right)}=10.33 \mu \mathrm{~m} \\
\frac{\beta_{s, \infty}}{k_{0}}=\sqrt{\frac{\varepsilon_{s} \varepsilon_{f}}{\varepsilon_{s}+\varepsilon_{f}}}=1.617955-0.004346 j, \quad L=-\frac{1}{\operatorname{Im}\left(\beta_{s, \infty}\right)}=11.59 \mu \mathrm{~m}
\end{array}
\]

Fig. 10.13.1 Magnetic field profiles, \(2 a=20 \mathrm{~nm}\) film.
The corresponding magnetic field profiles, shown in Fig. 10.13.1, demonstrate the asymmetry as well as the poor lateral binding of the LRSP mode. The above were generated by the following MATLAB code.
\[
\begin{aligned}
& 1 \mathrm{aO} 0=632.8 ; \mathrm{k} 0=2 * \mathrm{pi} / 1 \mathrm{a} 0 ; \mathrm{a}=20 / 2 ; \\
& \text { es }=1.5 \wedge 2 ; \text { ec }=1.55 \wedge 2 ; \text { ef }=(0.0657-4 * \mathrm{j}) \wedge 2 \text {; } \\
& \text { to } 1=1 \mathrm{e}-12 ;
\end{aligned}
\]
[be0, EO,NO] = dmda(la0,ef,ec,es, a, 0, tol);
\% 1a0,a in units of nm
\% error tolerance
\% LRSP
```

ga0 = sqrt(be0^2 - ef);
ac0 = sqrt(be0^2 - ec);
as0 = sqrt(be0^2 - es)

```
[be1, E1,N1] = dmda(la0,ef,ec,es,a,1,tol);
ga1 = sqrt(be1^2 - ef);
ac1 \(=\operatorname{sqrt}(b e 1 \wedge 2-e c) ;\)
as1 \(=\) sqrt(be1^2 - es);
num2str([[be0;ga0;ac0;as0], [be1;ga1;ac1;as1]],'\%12.6f') \% make table
\begin{tabular}{|c|c|}
\hline L0 = -1/2/k0/imag(be0)/1000; & \% units of microns \\
\hline L1 = -1/2/k0/imag(be1)/1000; & \\
\hline Lc0 = 1/real (ac0)/k0; Ls0 = 1/real (as0)/k0; & \% units of nm \\
\hline Lc1 = 1/real (ac1)/k0; Ls1 = 1/real (as1)/k0 & \\
\hline
\end{tabular} Lc1 \(=1 /\) real (ac1) \(/ k 0 ;\) Ls1 \(=1 /\) real (as1) \(/\) k0
\% units of nm
pc = ef/ec; ps = ef/es;
psi0 \(=\operatorname{atanh}(-p c * a c 0 / g a 0) / 2-\operatorname{atanh}(-p s * a s 0 / g a 0) / 2\); psi1 = atanh (-pc*ac1/ga1)/2 - atanh(-ps*as1/ga1)/2 + j*pi/2;
\% units of half-width a
HyO \(=\cosh (g a 0 * a * k 0-p s i 0) . * \exp (a s 0 *(x+a) * k 0) . *(x<-a)+\ldots\) \(\cosh (g a 0 * a * k 0+p s i 0) . * \exp (-a c 0 *(x-a) * k 0) . *(x>a)+\ldots\) \(\cosh (\mathrm{ga} 0 * \mathrm{x} * \mathrm{k} 0+\mathrm{psi} 0) . *(\operatorname{abs}(\mathrm{x})<=\mathrm{a})\);

Hy1 \(=\cosh (g a 1 * a * k 0-p s i 1) . * \exp (a s 1 *(x+a) * k 0) . *(x<-a)+\ldots\) \(\cosh (g a 1 * a * k 0+p s i 1) . * \exp (-a c 1 *(x-a) * k 0) . *(x>a)+\ldots\) \(\cosh \left(\mathrm{ga1} * \mathrm{x}^{*} \mathrm{k} 0+\mathrm{psi1}\right) . *(\operatorname{abs}(\mathrm{x})<=\mathrm{a})\);

\section*{figure;}
fill([-1 \(111-1],[0.60 .6,1.6,1.6],[0.90 .90 .9])\); hold on plot(x/a, abs(HyO));
figure;
fill([-1 11 -1],[0 0, 0.6, 0.6], [0.9 0.9 0.9]); hold on plot(x/a, abs(Hy1));

The effect of asymmetry can also be seen by the distribution of power within the media,
\begin{tabular}{l|r|c|r|c}
& \multicolumn{1}{|c|}{\(P\)} & \(P_{f}\) & \multicolumn{1}{c|}{\(P_{c}\)} & \(P_{s}\) \\
\hline LRSP & 360.81 & -1 & 296.26 & 65.55 \\
SRSP & 66.87 & -1 & 37.34 & 30.53
\end{tabular}

They were computed with the pwgpower MATLAB function and normalized to unity within the metal,
\([P, P f, P c, P s]=\) pwgpower(a*k0,ef,ec,es,be0,0); P0 = [P,Pf,Pc,Ps]/-Pf;
[P,Pf,Pc,Ps] = pwgpower(a*k0,ef,ec,es,be1,1); P1 = [P,Pf,Pc,Ps]/-Pf;

For the LRSP case, most of the power is pushed into the \(\varepsilon_{c}\) dielectric and out of the metal, thus, having lower power losses, and longer propagation distances.

The estimated cutoff widths calculated from Eqs. (10.13.4) and (10.13.6) are \(w_{c}=15.1993\) and \(w_{c}=18.0929 \mathrm{~nm}\), respectively. If we use the latter value, \(w_{\mathcal{C}}=18.0929\), we can compare the approximation (10.13.21) to the exact solution,
\begin{tabular}{c|c|c}
& exact LRSP & approximate \\
\hline\(\beta / k_{0}\) & \(1.550707-0.000164 j\) & \(1.550799-0.000069 j\) \\
\(\gamma / k_{0}\) & \(4.290002+0.061199 j\) & \(4.290036+0.061233 j\) \\
\(\alpha_{c} / k_{0}\) & \(0.047132-0.005394 j\) & \(0.049831-0.002139 j\) \\
\(\alpha_{S} / k_{0}\) & \(0.393310-0.000646 j\) & \(0.393673-0.000271 j\)
\end{tabular}

The approximation is fairly good even though \(\varepsilon_{c}-\varepsilon_{s}\) is not that small. The following MATLAB code was used for this calculation,
\[
A=(e f-e c) / e f ; A R=\operatorname{real}(A) ; A I=-i m a g(A) ;
\]
wc_app = sqrt(ec-es) / es / abs(A);
\[
w c=a b s(1 / s q r t(e c-e f) * a t a n h(-e f * s q r t(e c-e s) / e s / s q r t(e c-e f))) ;
\]
\[
\mathrm{w}=2 * \mathrm{a} * \mathrm{kO} \text {; }
\]
wc_app_nm = wc_app/k0 \% cutoff in units of nm
\(\mathrm{wc} _\mathrm{nm}=\mathrm{wc} / \mathrm{k} 0\)
\(\begin{aligned} b e R=\operatorname{sqrt}(e c) *(1+e c / 2 * & (A R \wedge 2 *(w \wedge 2-w c \wedge 2) \wedge 2-\ldots \\ & A I \wedge 2 *(w \wedge 2+w c \wedge 2) \wedge 2) / 4 / w \wedge 2) ;\end{aligned}\)
beI \(=\operatorname{sqrt}(e c) * e c * A R * A I *(w \wedge 4-w c \wedge 4) / 4 / w \wedge 2\);
be = beR-j*beI;
ga \(=\operatorname{sqrt}(b e \wedge 2-e f) ; a c=\operatorname{sqrt}(b e \wedge 2-e c) ; ~ a s=\operatorname{sqrt}(b e \wedge 2-e s) ;\)
num2str([[be0;ga0;ac0;as0], [be;ga;ac;as]],'\%12.6f') \% make table

Finally, Fig. 10.13.2 shows the LRSP and SRSP propagation wavenumbers as functions of the film width \(2 a\), starting at cutoff, \(2 a_{\text {cutoff }}=18.0929 \mathrm{~nm}\). For large \(a\), the LRSP \(\beta\) tends to the single-interface \(\beta_{s, \infty}\) of the \(s-f\) interface, while the SRSP tends to \(\beta_{c, \infty}\). Superimposed on the graph of the imaginary part, is the approximation (10.13.21) evaluated from just below cutoff for plotting purposes.
The graphs were generated by the following MATLAB code,
w = 1inspace(1.01*wcut,100, 1000);
[be0,EO,NO] = dmda(la0,ef,ec,es, w/2, 0,tol); \% LRSP [be1,E1,N1] = dmda(la0,ef,ec,es, w/2, 1,tol);
\% SRSP
wa \(=1\) inspace(0.8*wcut, 100,1001);
\% start a bit below wcut
beR \(=\operatorname{sqrt}(e c) *(1+e c / 2 *(A R \wedge 2 *(w a . \wedge 2-w c u t \wedge 2) \cdot \wedge 2-\ldots\)
AI^2*(wa.^2 + wcut^2).^2)/4./wa.^2 * k0^2);
beI \(=\operatorname{sqrt}(e c) *\) ec \(* A R * A I *(w a . \wedge 4-w c u t \wedge 4) / 4 . / w a . \wedge 2 *\) k0^2;
figure; plot(w,real(be0),'-', w, real(be1),'--');
figure; semilogy(w,-imag(be0),'-', w,-imag(be1),'-.', wa, abs(beI),'r--')

Fig. 10.13.2 Real and imaginary parts of wavenumber \(\beta\).

The computational errors, as measured by the norms of the error vectors \(E_{0}\) and \(E_{1}\), were \(\left\|E_{0}\right\|=3.1757 \times 10^{-10}\) and \(\left\|E_{1}\right\|=2.0696 \times 10^{-14}\), while the number of iterations to converge (for the entire vector of widths) were \(N_{0}=38\) and \(N_{1}=10\).
Example 10.13.2: To see how the approximation (10.13.21) improves for smaller permittivity difference \(\left(\varepsilon_{c}-\varepsilon_{s}\right)\), we consider the same example, but change the permittivity \(\varepsilon_{c}\) to the hypothetical value, \(\varepsilon_{c}=1.51^{2}=2.2801\), with all other parameters kept the same. Figs. 10.13 .3 and 10.13 .4 show the magnetic field profiles of the LRSP and SRSP modes, and the dependence of \(\beta\) on the film width.
The estimated cutoff width calculated from Eqs. (10.13.4) and (10.13.6) is \(w_{\mathcal{C}}=6.7978 \mathrm{~nm}\) and \(w_{c}=6.9964 \mathrm{~nm}\), respectively. Using the latter value, we can compare the approximation (10.13.21) to the exact solution,
\begin{tabular}{c|c|c}
& exact LRSP & approximate \\
\hline\(\beta / k_{0}\) & \(1.524661-0.000226 j\) & \(1.527059-0.000179 j\) \\
\(\gamma / k_{0}\) & \(4.280658+0.061312 j\) & \(4.281513+0.061316 j\) \\
\(\alpha_{c} / k_{0}\) & \(0.210935-0.001635 j\) & \(0.227622-0.001199 j\) \\
\(\alpha_{s} / k_{0}\) & \(0.273116-0.001263 j\) & \(0.286201-0.000954 j\)
\end{tabular}

Example 10.13.3: Another early reference on LRSP modes in asymmetric DMD guides is Wendler \& Haupt [940], who considered the dependence of the propagation length as a function of the permittivity difference \(\left(\varepsilon_{c}-\varepsilon_{s}\right)\). Here, we reproduce their results. The DMD guide consists of a silver film with permittivity \(\varepsilon_{f}=-18-0.47 j\) at \(\lambda_{0}=632.8 \mathrm{~nm} .{ }^{\dagger}\) The substrate is fused silica with \(\varepsilon_{s}=2.1211\), and the cover's permittivity will be varied over the range \(1.9 \leq \varepsilon_{c} \leq 2.35\).
The function dmdcut determines the cutoff width given the values of \(\varepsilon_{c}, \varepsilon_{s}\). It can also be used to find the value of \(\varepsilon_{c}\) that would make a given width \(w=2 a\) equal to the cutoff width. This can be done by solving for \(\varepsilon_{c}\) the equation,
\[
\begin{equation*}
\operatorname{dmdcut}\left(\lambda_{0}, \varepsilon_{f}, \varepsilon_{c}, \varepsilon_{S}\right)=w \tag{10.13.22}
\end{equation*}
\]

\footnotetext{
\({ }^{\dagger}\) In the previous example, we used, \(\varepsilon_{f}=-15.9957-0.5256 j\), our DRUDE function gives, \(\varepsilon_{f}=-14.4824-\) 1.0946j, and the value interpolated from Palik [162] at \(\lambda_{0}=632.8 \mathrm{~nm}\) is, \(\varepsilon_{f}=-15.8742-1.0728 j\).
}

Fig. 10.13.3 Magnetic field profiles, \(2 a=20 \mathrm{~nm}\) film.

Fig. 10.13.4 Real and imaginary parts of wavenumber \(\beta\).

It can be implemented easily in MATLAB, for example, using the fzero function, with \(\varepsilon_{s}\) as the initial search point,
ec = fzero(@(e) dmdcut(la0,ef,e,es)-w, es)

Fig. 10.13.5 shows the propagation lengths (in cm) for the LRSP mode, for three different film thicknesses, \(w=2 a=[10,17,30] \mathrm{nm}\), as a function of the variable \(\varepsilon_{c}\). For each case, as \(\varepsilon_{\mathcal{C}}\) comes close to its critical value calculated from Eq. (10.13.22) that renders \(w\) equal to the cutoff width, the propagation length tends to infinity. To prevent clutter, the graph has been plotted twice, with the one on the right showing the vertical lines at the calculated critical values of \(\varepsilon_{c}\),
\[
\varepsilon_{\mathcal{C}, \mathrm{cut}}=[1.9432,2.0177,2.0744,2.1702,2.2364,2.3362]
\]
where the left three values correspond to the part of the graph to the left of the dividing line \(\varepsilon_{c}=\varepsilon_{s}\). The functions dmda and dmdcut assume that \(\varepsilon_{c} \geq \varepsilon_{s}\). The cases \(\varepsilon_{c}<\varepsilon_{s}\)

Fig. 10.13.5 Propagation length \(L\) vs. permittivity \(\varepsilon_{c}\).
can be handled by interchanging the roles of \(\varepsilon_{c}, \varepsilon_{s}\). The following MATLAB code segment generates the right graph,
\begin{tabular}{ll}
la0 \(=632.8 ;\) k0 \(=2 *\) pi/la0; & \(\%\) la0 in nm \\
ef \(=-18-0.47 \mathrm{j} ;\) es \(=2.1211 ;\) & \\
tol \(=1 \mathrm{e}-12 ;\) & \\
ec = linspace (1.9, 2.35, 2000); & \(\% 1.9<=\) ec <= 2.35
\end{tabular}
\(w=[10,17,30]\);
\[
\begin{aligned}
& \text { for } i=1 \text { : } 7 \text { ength }(e c) \text {, } \\
& \text { eci }=\max (e c(i), e s) ; \text { esi }=\min (e c(i), e s) ; \quad \% \text { interchange es,ec when ec<es } \\
& \text { be = dmda(la0,ef,eci,esi, w/2, 0, tol); } \\
& L(i,:)=-1 / 2 / k 0 . / i m a g(b e) / 1 e 7 \text {; }
\end{aligned}
\]
end
\(L(L<0)=N a N ; \quad\) ignore all negative \(L\) 's that lie beyond the ec-cutoffs
semilogy(ec, L(:,1), '-', ec, L(:,2), '--', ec,L(:,3),’-.');
line([es,es],[10^-3, 10^3],'linesty7e',':'); \% es=ec dividing line
for \(i=1\) : length (w) \% ec cutoff lines
eccut (i) = fzero(@(e) dmdcut(la0,ef,e,es) - w(i), es);
escut \((i)=\) fzero(@(e) dmdcut(la0,ef,es,e) - w(i), es) ;
line([eccut (i), eccut (i)],[10^-3,10^3],'linestyle',',',', color','r')
line([escut(i), escut(i)],[10^-3,10^3],'1inestyle',',',', color',', r') end

Fig. 10.13.6 shows the propagation lengths as functions of film thickness, with \(\varepsilon_{s}=2.1121\) and five values of \(\varepsilon_{c}\),
\[
\varepsilon_{\mathcal{C}}=[2.1211,2.1256,2.1700,2.2200,2.3000]
\]

The graphs were generated by the MATLAB code,

Fig. 10.13.6 Propagation length \(L\) vs. film width.
\[
\begin{aligned}
& \text { es = 2.1211; } \\
& \text { ec }=[2.1211,2.1256,2.1700,2.2200,2.3000] \text {; } \\
& \text { to } 1=1 \mathrm{e}-12 \text {; } \\
& \text { wcut }=\text { dmdcut(1a0,ef,ec,es); } \quad \% \text { dmdcut is vectorized in ec } \\
& \text { style = \{'-', 'r--', ':', '-.', 'b--'\}; } \\
& \text { for } i=1: 1 \text { ength(ec), } \\
& w=1 i n s p a c e(w c u t(i), 50,2001) ; \quad \% \text { compute for } w>=\text { wcut only } \\
& \text { if } i==1 \\
& \text { be = dmds(la0,ef,es, w/2, 0, tol); \% use dmds when ec=es } \\
& \text { else } \\
& \text { be }=\text { dmda(la0,ef,ec(i),es, w/2, 0, tol). } \\
& \text { end } \\
& \mathrm{L}=1 / 2 / \mathrm{k} 0 . / \mathrm{abs}(\mathrm{imag}(\mathrm{be})) \text { * } 1 \mathrm{e}-7 \text {; } \\
& \text { \% units of cm } \\
& \text { semilogy (w, L, style\{i\}); } \\
& \text { line([wcut(i),wcut(i)],[10^-3,10^3],'linestyle',':', 'color','r'); } \\
& \text { end }
\end{aligned}
\]

The cutoff widths corresponding to the five \(\varepsilon_{c}\) values, calculated from Eq. (10.13.6), are,
\[
w_{\mathrm{cut}}=2 a_{\mathrm{cut}}=[0,2.8644,9.9815,15.2990,24.3452](\mathrm{nm})
\]
and have been placed on the right graph, which is the same as the left one. As the width comes close to one of the cutoff widths, the propagation length becomes very large. \(\quad \square\)

\subsection*{10.14 Note on Computations}

The characteristic equations of plasmonic waveguides are generally difficult to solve accurately because of the complex-valued nature of the permittivity parameters. We
have been unable to come up with a single algorithm that works robustly for both MDM and DMD waveguides over a wide range of material parameters. Instead, we have presented a variety of solution approaches, which could be viewed as tools to be tried. Our PWG and PWGA functions may work, but one must choose a starting point that is near the true solution. The iterative methods that we discussed work under many circumstances, but not always. We tried to give sufficient code examples to clarify these methods. The plasmonic waveguide literature is somewhat lacking of published numerical examples that could be used as benchmarks, with some notable exceptions [937,939,940,953,955,956,963].

\subsection*{10.15 Sommerfeld Wire}

The problem of a TM surface wave propagating along a cylindrical conductor was solved by Sommerfeld in 1899. He showed that the finite conductivity of the conductor was essential in localizing the wave near the surface of the conductor, while exhibiting very low attenuation along its length [982,983,1293]. The planar version of this problem is the Zenneck surface wave that we discussed in Sec. 7.10.

The lateral localization is not particularly good but can be improved by adding a dielectric coating on the surface of the conductor as considered first by Harms and studied later in detail by Goubau [984-999]-a configuration generally referred to as a Goubau line, or a Harms-Goubau line. We discuss this further in Sec. 10.19.

Even though the attenuation along the conductor is very low, these early waveguiding systems, envisioning propagation at long distances of tens of meters or even kilometers, did not catch on for use at RF, primarily because of the poor lateral localization, which could be disturbed by nearby objects, imperfections or bends along the line.

With the rapid development of terahertz applications in the past two decades, interest in the Sommerfeld and Goubau lines has been revived for use at THz frequencies, providing a viable means of waveguiding at relatively short distances (e.g., centimeters), with low attenuation and high degree of confinement. We discuss the interplay of frequency, conductor radius, and dielectric coating in Sec. 10.19.

The THz band typically spans the range of \([0.1,10] \mathrm{THz}\), or, \([0.03,3]\) millimeter, and lies between the microwave and infrared/optical bands. There are a large number of THz applications in astrophysics, remote sensing, plasma diagnostics, spectroscopy in chemistry and biology, gas identification, complex molecular dynamics, DNA signature detection, communications, medical imaging, and imaging for homeland security, drug enforcement, pharmaceuticals, biosensing, and non-destructive testing in manufacturing for quality and process control.

For example, Wien's radiation law relating black body temperature and the frequency of the maximum of the Planck spectrum is, \(f=58.7891 T\), where \(f\) is in GHz and \(T\) in degrees Kelvin. Thus, the Big Bang cosmic microwave background at 2.725 K peaks at \(f=160.2 \mathrm{GHz}\), which lies at the low end of the THz band; similarly, interstellar gas clouds at temperatures of 30 K correspond to \(f=1.76 \mathrm{THz} .{ }^{\dagger}\)

Interest in THz imaging for homeland security arises because several everyday materials, such as clothing, paper, plastics, wood, and ceramics are transparent to THz

\footnotetext{
\({ }^{\dagger}\) Some historical references on the CMB, and its data fitting, may be found in [129-137].
}
waves. Medical imaging at THz is also a very promising area because THz radiation does not have the same harmful effects as X-rays.

Several reviews and applications of THz technology may be found in the following (very incomplete list of) references [1017-1053].

The Sommerfeld wire is an infinitely long cylindrical conductor of radius \(a\) and finite conductivity \(\sigma\), immersed in air, as shown in Fig. 10.15.1. The permittivities of air and conductor are taken to be \(\epsilon_{a}=\epsilon_{0}\) and
\[
\begin{equation*}
j \omega \epsilon_{c}=j \omega \epsilon_{0}+\sigma \Rightarrow \epsilon_{c}=\epsilon_{0}-j \frac{\sigma}{\omega} \tag{10.15.1}
\end{equation*}
\]
with relative permittivities,
\[
\begin{equation*}
\varepsilon_{c}=\frac{\epsilon_{\mathcal{C}}}{\epsilon_{0}}=1-j \frac{\sigma}{\omega \epsilon_{0}}, \quad \varepsilon_{a}=\frac{\epsilon_{a}}{\epsilon_{0}}=1 \tag{10.15.2}
\end{equation*}
\]

The conductivity \(\sigma\) is assumed to be a constant in frequency, but it can also be taken to be frequency-dependent, as given for example by Drude's law (see Sec. 1.12),
\[
\begin{equation*}
\sigma=\frac{\sigma_{\mathrm{dc}}}{1+j \omega \tau}, \quad \tau=\text { collisional time }, \quad \sigma_{\mathrm{dc}}=\text { conductivity at } \mathrm{DC} \tag{10.15.3}
\end{equation*}
\]

Fig. 10.15.1 Sommerfeld wire, shown in cylindrical coordinates.
Using cylindrical coordinates and assuming, with Sommerfeld, a TM wave with cylindrical symmetry, it follows from Eqs. (9.1.23) and (9.1.24) by setting \(\partial_{\phi}=0\) and \(H_{Z}=0\) that only the field components \(E_{z}, E_{\rho}, H_{\phi}\) will be non-zero and will be functions only of the radial distance \(\rho\), satisfying the equations:
\[
\begin{align*}
& \frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial E_{Z}}{\partial \rho}\right)+\gamma^{2} E_{Z}=0, \quad \gamma^{2}=\omega^{2} \mu \epsilon-\beta^{2} \\
& E_{\rho}=-\frac{j \beta}{\gamma^{2}} \frac{\partial E_{Z}}{\partial \rho}, \quad H_{\phi}=\frac{1}{\eta_{T M}} E_{\rho}=-\frac{j \omega \epsilon}{\gamma^{2}} \frac{\partial E_{Z}}{\partial \rho} \tag{10.15.4}
\end{align*}
\]
where we assumed the usual \(t, z\) dependence, \(e^{j \omega t-j \beta z}\), and replaced \(\eta_{T M}=\beta / \omega \epsilon\). Eqs. (10.15.4) must be solved in each region (inside and outside the conductor) using the appropriate values of \(\epsilon\), and hence \(\gamma\). The \(E\) and \(H\) tangential fields must be matched at the surface of the conductor (i.e., at \(\rho=a\)).

The most general solution of the above cylindrical Helmholtz equation for \(E_{Z}\) is a linear combination of the \(0^{\text {th }}\) order Bessel functions of first and second kinds, \(J_{0}(\gamma \rho)\)
and \(Y_{0}(\gamma \rho)\), or of the Hankel functions, \(H_{0}^{(1,2)}(\gamma \rho)=J_{0}(\gamma \rho) \pm j Y_{0}(\gamma \rho) .{ }^{\dagger}\) Let us denote any of these functions, or linear combinations thereof, by \(C_{0}(\gamma \rho)\), and note that they satisfy the property \(\partial C_{0}(\gamma \rho) / \partial \rho=-\gamma C_{1}(\gamma \rho)\), that is, the corresponding \(1^{\text {st }}\) order Bessel function. Then, the solutions of Eq. (10.15.4) can be written in general as,
\[
\begin{equation*}
E_{Z}=C_{0}(\gamma \rho), \quad E_{\rho}=\frac{j \beta}{\gamma} C_{1}(\gamma \rho), \quad H_{\phi}=\frac{j k_{0} \varepsilon}{\eta_{0} \gamma} C_{1}(\gamma \rho) \tag{10.15.5}
\end{equation*}
\]
where \(\gamma^{2}=\omega^{2} \mu_{0} \epsilon-\beta^{2}=k_{0}^{2} \varepsilon-\beta^{2}\), and \(k_{0}=\omega \sqrt{\mu_{0} \epsilon_{0}}, \eta_{0}=\sqrt{\mu_{0} / \epsilon_{0}}\) are the vacuum wavenumber and impedance, and \(\varepsilon=\epsilon / \epsilon_{0}\), and we assumed non-magnetic media. Note the equivalent expression for \(k_{0} \varepsilon / \eta_{0}=\omega \sqrt{\mu \epsilon_{0}} \varepsilon / \sqrt{\mu_{0} / \epsilon_{0}}=\omega \epsilon_{0} \varepsilon=\omega \epsilon\).

Within the conductor \((\rho \leq a)\), only the function \(J_{0}\) is acceptable because \(Y_{0}(u)\) diverges for \(u=0\). Outside the conductor (\(\rho \geq a\)), because the fields must decay to zero for large radial distances \((\rho \rightarrow \infty)\), the Hankel functions are the appropriate choice. In particular, we have the following asymptotic expansions for large \(u=u_{R}+j u_{I}\),
\[
\begin{align*}
& H_{0}^{(1,2)}(u) \simeq \sqrt{\frac{2}{\pi u}} e^{ \pm j(u-\pi / 4)}=\sqrt{\frac{2}{\pi\left(u_{R}+j u_{I}\right)}} e^{ \pm j\left(u_{R}-\pi / 4\right)} e^{\mp u_{I}} \\
& H_{1}^{(1,2)}(u) \simeq \sqrt{\frac{2}{\pi u}} e^{ \pm j(u-3 \pi / 4)}=\sqrt{\frac{2}{\pi\left(u_{R}+j u_{I}\right)}} e^{ \pm j\left(u_{R}-3 \pi / 4\right)} e^{\mp u_{I}} \tag{10.15.6}
\end{align*}
\]
thus, \(H_{0}^{(1)}(u)\), (resp. \(\left.H_{0}^{(2)}(u)\right)\), is decaying somewhat faster than exponentially in \(u_{I}\), provided \(u_{I}>0\), (resp. \(u_{I}<0\)). With these choices, the fields inside and outside the conductor are as follows, with \(A, B\) to be determined:
\[
\begin{align*}
& 0 \leq \rho \leq a \tag{10.15.7}\\
& E_{z}=A J_{0}\left(\gamma_{c} \rho\right) \\
& E_{\rho}=A \frac{j \beta}{\gamma_{c}} J_{1}\left(\gamma_{c} \rho\right) \\
& H_{\phi}=A \frac{j k_{0} \varepsilon_{c}}{\eta_{0} \gamma_{c}} J_{1}\left(\gamma_{c} \rho\right) \\
& \gamma_{c}=\sqrt{k_{0}^{2} \varepsilon_{c}-\beta^{2}}
\end{align*}
\]
\[
\begin{gathered}
a \leq \rho<\infty \\
E_{Z}=B H_{0}^{(1)}(\gamma \rho) \\
E_{\rho}=B \frac{j \beta}{\gamma} H_{1}^{(1)}(\gamma \rho) \\
H_{\phi}=B \frac{j k_{0} \varepsilon_{a}}{\eta_{0} \gamma} H_{1}^{(1)}(\gamma \rho) \\
\gamma=\sqrt{k_{0}^{2} \varepsilon_{a}-\beta^{2}}
\end{gathered}
\]

These expressions must be multiplied by the common factor \(e^{j \omega t-j \beta z}\). It will turn out that \(\gamma\) has positive imaginary part, thus, justifying the choice of \(H_{1}^{(1)}(u)\) instead of \(H_{1}^{(2)}(u)\). The matching of the tangential fields, \(E_{z}\) and \(H_{\phi}\) on the surface of the conductor, at \(\rho=a\), yields the two conditions:
\[
\begin{align*}
A J_{0}\left(\gamma_{c} a\right) & =B H_{0}^{(1)}(\gamma a) \\
A \frac{j k_{0} \varepsilon_{c}}{\eta_{0} \gamma_{c}} J_{1}\left(\gamma_{c} a\right) & =B \frac{j k_{0} \varepsilon_{a}}{\eta_{0} \gamma} H_{1}^{(1)}(\gamma a) \tag{10.15.8}
\end{align*}
\]

\footnotetext{
\({ }^{\dagger}\) For definitions and properties of Bessel functions, see [1790] or [1822], which are available online.
}

We note that the matching of the normal \(D\)-field, \(D_{\rho}=\epsilon E_{\rho}=\epsilon \eta_{T M} H_{\phi}=H_{\phi} \beta / \omega\), is equivalent to the matching of \(H_{\phi}\). Dividing the two sides of Eqs. (10.15.8) results in the following characteristic equation from which the wavenumber \(\beta\) may be determined:
\[
\begin{align*}
\gamma & =\sqrt{k_{0}^{2} \varepsilon_{a}-\beta^{2}} \tag{10.15.9}\\
\gamma_{c} & =\sqrt{k_{0}^{2} \varepsilon_{c}-\beta^{2}}
\end{align*} \quad \frac{\gamma}{\varepsilon_{a}} \frac{H_{0}^{(1)}(\gamma a)}{H_{1}^{(1)}(\gamma a)}=\frac{\gamma_{c}}{\varepsilon_{c}} \frac{J_{0}\left(\gamma_{c} a\right)}{J_{1}\left(\gamma_{c} a\right)}
\]

For all good conductors, such as copper, aluminum, and gold, and for frequencies up to and including the THz band, the permittivity \(\varepsilon_{\mathcal{C}}\) can be approximated accurately by its imaginary part, which is much larger than unity:
\[
\begin{equation*}
\varepsilon_{c}=1-j \frac{\sigma}{\omega \epsilon_{0}} \approx-j \frac{\sigma}{\omega \epsilon_{0}}=e^{-j \pi / 2} \frac{\sigma}{\omega \epsilon_{0}} \tag{10.15.10}
\end{equation*}
\]

For example, we have for copper, \(\sigma=5.75 \times 10^{7}\) siemens \(/ \mathrm{m}\), and with \(f\) in units of THz:
\[
\varepsilon_{c}=1-j \frac{\sigma}{\omega \epsilon_{0}}=1-j \frac{1.03 \times 10^{6}}{f}
\]
so for all \(f\) up to 10 THz , the imaginary part is at least 5 orders of magnitude greater than the real part, e.g., at \(f=10 \mathrm{THz}\), we have \(\varepsilon_{\mathcal{C}}=1-j 1.03 \times 10^{5}\). The same approximation is also valid if one uses the Drude model for \(\sigma\) of Eq. (10.15.3) up to the THz range. Because the wavenumber \(\beta\) is of the order of \(k_{0}\), it follows that the lateral wavenumber \(\gamma_{c}\) within the conductor will also be very large and can be approximated by
\[
\begin{equation*}
\gamma_{c}=\sqrt{k_{0}^{2} \varepsilon_{C}-\beta^{2}} \approx k_{0} \sqrt{\varepsilon_{c}}=k_{0} e^{-j \pi / 4} \sqrt{\frac{\sigma}{\omega \epsilon_{0}}} \tag{10.15.11}
\end{equation*}
\]
for example, for copper at 1 GHz , we find \(\gamma_{c}=(1-j) 4.7645 \times 10^{5}\) per meter, and at \(10 \mathrm{THz}, \gamma_{c}=(1-j) 4.7645 \times 10^{7}\). For typical conductor radii of millimeters, it follows that the quantity \(\gamma_{c} a\) will be very large, e.g., for \(a=1 \mathrm{~mm}\), we have
\[
\begin{array}{ll}
\gamma_{c} a=(1-j) 4.7645 \times 10^{2}, & \text { at } 1 \mathrm{GHz} \\
\gamma_{c} a=(1-j) 4.7645 \times 10^{4}, & \text { at } 10 \mathrm{THz}
\end{array}
\]

For such large complex arguments, the ratio \(J_{0}\left(\gamma_{c} a\right) / J_{1}\left(\gamma_{c} a\right)\) may be replaced by \(J_{0}\left(\gamma_{c} a\right) / J_{1}\left(\gamma_{c} a\right) \approx j\). Indeed, using the asymptotic expansions [1790], valid for large complex argument \(u\),
\[
J_{0}(u) \approx \sqrt{\frac{2}{\pi u}} \cos \left(u-\frac{\pi}{4}\right), \quad J_{1}(u) \approx \sqrt{\frac{2}{\pi u}} \cos \left(u-\frac{3 \pi}{4}\right)
\]
we find after setting \(u=u_{R}+j u_{I}\) and using some trigonometric identities:
\[
\frac{J_{0}(u)}{J_{1}(u)}=\frac{\cos \left(u-\frac{\pi}{4}\right)}{\cos \left(u-\frac{3 \pi}{4}\right)}=-j \frac{\cos \left(u_{R}-\frac{\pi}{4}\right) \cosh \left(u_{I}\right)-j \sin \left(u_{R}-\frac{\pi}{4}\right) \sinh \left(u_{I}\right)}{\cos \left(u_{R}-\frac{\pi}{4}\right) \sinh \left(u_{I}\right)-j \sin \left(u_{R}-\frac{\pi}{4}\right) \cosh \left(u_{I}\right)} \rightarrow-j s
\]
in the limit \(\left|u_{I}\right| \rightarrow \infty\), where \(s=\operatorname{sign}\left(u_{I}\right)\). Thus, the ratio is \(+j\) for large \(u\) with negative imaginary part, like \(\gamma_{c}\). A more accurate approximation, which we employ in our
numerical solution of the characteristic equation (10.15.9), follows from the asymptotic expansions in [1790]:
\[
\begin{equation*}
\frac{J_{0}(u)}{J_{1}(u)} \approx-j s \frac{P_{0}(u)-j s Q_{0}(u)}{\left.P_{1}(u)-j s Q_{1}(u)\right)} \tag{10.15.12}
\end{equation*}
\]
where again, \(s=\operatorname{sign}(\operatorname{Im}(u))\), and we defined the polynomials in \(1 / u\) :
\[
\begin{array}{ll}
P_{0}(u)=1-\frac{9}{2(8 u)^{2}}+\frac{3675}{8(8 u)^{4}}, & Q_{0}(u)=-\frac{1}{8 u}+\frac{75}{2(8 u)^{3}} \\
P_{1}(u)=1+\frac{15}{2(8 u)^{2}}-\frac{4725}{8(8 u)^{4}}, & Q_{1}(u)=\frac{3}{8 u}-\frac{105}{2(8 u)^{3}}
\end{array}
\]

The approximation (10.15.12) can be used whenever \(|\operatorname{Im}(u)|>700\). For \(|\operatorname{Im}(u)| \leq\) 700 , the built-in MATLAB function besse 1 j gives accurate results. The MATLAB function, J01, in the EWA-toolbox, implements the evaluation of the ratio \(J_{0}(u) / J_{1}(u)\) for any value of \(u\) using this improved approximation. It has usage:
\[
\mathrm{y}=\mathrm{J} 01(\mathrm{u}) ; \quad \% \text { evaluates the ratio } J_{0}(u) / J_{1}(u) \text {, vectorized in } u
\]

To solve the characteristic equation (10.15.9), Sommerfeld made two approximations: first, he replaced the Bessel function ratio by \(J_{0}\left(\gamma_{c} a\right) / J_{1}\left(\gamma_{c} a\right) \approx j\), and \(\gamma_{c}\) by \(\gamma_{c}=k_{0} \sqrt{\varepsilon_{c}}\), and second, he assumed that the quantity \(\gamma a\) is small and used the following approximations [1790] for the Hankel functions, valid for small argument \(u \rightarrow 0\) :
\[
\begin{array}{ll}
J_{0}(u) \approx 1, \quad Y_{0}(u) \approx \frac{2}{\pi} \ln \left(\frac{e^{C} u}{2}\right), & H_{0}^{(1)}(u)=J_{0}(u)+j Y_{0}(u) \approx \frac{2 j}{\pi} \ln \left(\frac{e^{C} u}{2 j}\right) \\
J_{1}(u) \approx \frac{u}{2}, \quad Y_{1}(u) \approx-\frac{2}{\pi u}, & H_{1}^{(1)}(u)=J_{1}(u)+j Y_{1}(u) \approx-\frac{2 j}{\pi u}
\end{array}
\]
and for the ratio:
\[
\begin{equation*}
\frac{H_{0}^{(1)}(u)}{H_{1}^{(1)}(u)} \approx-u \ln \left(\frac{e^{C} u}{2 j}\right) \tag{10.15.14}
\end{equation*}
\]
where \(C\) is the Euler-Mascheroni constant, \(C=0.577215 \ldots\), so that \(e^{C}=1.78107\). With these simplifications, Eq. (10.15.9) reduces to:
\[
\begin{equation*}
-\gamma^{2} a \ln \left(\frac{e^{C} \gamma a}{2 j}\right)=\frac{j \varepsilon_{a} k_{0}}{\sqrt{\varepsilon_{c}}} \Rightarrow \quad \gamma^{2}=-\frac{\frac{j \varepsilon_{a} k_{0}}{a \sqrt{\varepsilon_{c}}}}{\ln \left(\frac{e^{C} \gamma a}{2 j}\right)} \tag{10.15.15}
\end{equation*}
\]
which Sommerfeld then proceeded to solve iteratively, for \(n=0,1,2, \ldots\),
\[
\begin{equation*}
\gamma_{n+1}^{2}=-\frac{\frac{j \varepsilon_{a} k_{0}}{a \sqrt{\varepsilon_{\mathcal{C}}}}}{\ln \left(\frac{e^{C} \gamma_{n} a}{2 j}\right)} \tag{10.15.16}
\end{equation*}
\]

Sommerfeld iteration
\[
\text { initialized at } \gamma_{0}^{2}=-\frac{j \varepsilon_{a} k_{0}}{a \sqrt{\varepsilon_{c}}}
\]

The approximation and iteration works well for frequencies in the GHz range. But, as discussed by King and Wiltse [994], in the THz range the quantity \(\gamma a\) is no longer small enough to justify the approximation. Our approach to solving Eq. (10.15.9) is to rewrite it in the following form:
\[
\begin{equation*}
\gamma=\frac{H_{1}^{(1)}(\gamma a)}{H_{0}^{(1)}(\gamma a)} \frac{\varepsilon_{a} \gamma_{c}}{\varepsilon_{c}} \frac{J_{0}\left(\gamma_{c} a\right)}{J_{1}\left(\gamma_{c} a\right)} \tag{10.15.17}
\end{equation*}
\]

Noting that \(\gamma_{c}^{2}-\gamma^{2}=k_{0}^{2}\left(\varepsilon_{c}-\varepsilon_{a}\right)\), or, \(\gamma_{c}=\sqrt{k_{0}^{2}\left(\varepsilon_{c}-\varepsilon_{a}\right)+\gamma^{2}}\), Eq. (10.15.17) can then be turned into the following iteration, for \(n=0,1,2, \ldots\),
\[
\begin{align*}
\gamma_{c} & =\sqrt{k_{0}^{2}\left(\varepsilon_{c}-\varepsilon_{a}\right)+\gamma_{n}^{2}} \\
\gamma_{n+1} & =\frac{H_{1}^{(1)}\left(\gamma_{n} a\right)}{H_{0}^{(1)}\left(\gamma_{n} a\right)} \frac{\varepsilon_{a} \gamma_{c}}{\varepsilon_{c}} \frac{J_{0}\left(\gamma_{c} a\right)}{J_{1}\left(\gamma_{c} a\right)} \tag{10.15.18}
\end{align*}
\]

It can be initialized at \(\beta_{0}=0.9 k_{0}, \gamma_{0}=\sqrt{k_{0}^{2} \varepsilon_{a}-\beta_{0}^{2}}\), or something similar. The iteration does not require any approximations beyond the use of our function J 01 for the ratio of the Bessel functions. It uses the built-in MATLAB function besse 1 h for the evaluation of the Hankel functions. The following MATLAB function, sommer, in the EWA toolbox, implements the iteration (10.15.18):
```

[be,ga,gc, E,N] = sommer(a,f,sigma,tol,be0); \% Sommerfeld wire
$[b e, g a, g c, E, N]=\operatorname{sommer}(a, f$, sigma,tol); $\quad \%(b e 0=0.9 * k 0)$
[be,ga,gc, E,N] = sommer(a,f,sigma);
\% (tol = 1e-10)

```

\section*{\% a = wire radius in meters}
\% f = vector of frequencies in Hz
\% sigma = wire conductivity in siemens/m, scalar or same size as f
\(\%\) tol \(=\) computational tolerance, default, tol \(=1 \mathrm{e}-10\)
\(\%\) be0 = initializing vector, size(f), default, be0 = 0.9*k0 \%
\% be = vector of propagation wavenumbers, (rads/m), same size as \(f\)
\(\%\) ga = lateral wavenumber in air, (\(1 / \mathrm{m}\)), size(f)
\(\% \mathrm{gc}=1\) lateral wavenumber in conductor, (\(1 / \mathrm{m}\)), size(f)
\% \(\mathrm{E}=\) computational error of characteristic equation, size(f)
\% \(\mathrm{N}=\) number of iterations to converge, scalar, represents all f's
To clarify the construction of the function, we list below the essential part of the code:

```

be0 = 0.9*k0;
ga = sqrt(k0.^2 - be0.^2);
N=1;
while 1 % loop forever
gc = sqrt(ga.^2 + k0.^2.*(ec-1))
gnew = besse1h(1,1,ga*a)./besse1h(0,1,ga*a).*J01(gc*a).*gc./ec;
if norm(ga-gnew)<tol, break; end
N = N+1;
ga = gnew;
end
ga = gnew; % converged values
gc = sqrt(ga.^2 + k0.^2.*(ec-1));
be = sqrt(k0.^2 - ga.^2);
E = abs(ga.*besselh(0,1,ga*a)./besselh(1,1,ga*a) - gc.*J01(gc*a)./ec);

```
\(\qquad\)

We note that the computational error is defined from the last computed \(\gamma\) as follows. Setting \(\gamma_{c}=\sqrt{k_{0}^{2}\left(\varepsilon_{c}-\varepsilon_{a}\right)+\gamma^{2}}\),
\[
\begin{equation*}
E=\left|\frac{\gamma}{\varepsilon_{a}} \frac{H_{0}^{(1)}(\gamma a)}{H_{1}^{(1)}(\gamma a)}-\frac{\gamma_{c}}{\varepsilon_{c}} \frac{J_{0}\left(\gamma_{c} a\right)}{J_{1}\left(\gamma_{c} a\right)}\right| \tag{10.15.19}
\end{equation*}
\]
where \(E\) is a vector when \(f\) is a vector of frequencies.
Example 10.15.1: We consider the two examples discussed by Sommerfeld in Ref. [983]. The first one is a copper wire with conductivity \(\sigma=5.75 \times 10^{7}\) siemens \(/ \mathrm{m}\), and radius of 1 mm , at a frequency of 1 GHz . We iterated (10.15.16) five times, with the MATLAB code:
```

ep0 = 8.854187817e-12;
c0 = 299792458;
f = 1e9;
w = 2*pi*f;
lol
sigma = 5.75e7;
ec =1 + sigma/j./w/ep0;
C = 0.577215664901533;
% farad/m,
% m/sec
% 1 GHz
% rads/sec
% k0 = 20.958450, rads/m
% siemens/m
% 1 mm
% Euler constant
g0 = sqrt(-j*k0/a./sqrt(ec)); % initialize
ga = g0; G=[ga]; % save iterates in G
K=5;
for i=1:K
ga = g0./sqrt(log(exp(C)*ga*a/2/j));
G = [G;ga];
end
num2str(G,' %1.6f') % print tab7e of iterates

```
generating the iterates:
\[
\begin{aligned}
& \gamma_{0}=0.745951-0.308983 j \\
& \gamma_{1}=0.147818+0.255109 j \\
& \gamma_{2}=0.115696+0.255973 j \\
& \gamma_{3}=0.113805+0.256030 j \\
& \gamma_{4}=0.113692+0.256039 j \\
& \gamma_{5}=0.113685+0.256040 j
\end{aligned}
\]

It is evident that after the third iteration, \(\gamma\) has effectively converged. Following Sommerfeld, we use the third iterate, \(\gamma=\gamma_{3}=0.113805+0.256030 j\), to calculate \(\beta\) :
\[
\beta=\sqrt{k_{0}^{2}-\gamma^{2}}=20.959705-0.001390 j \quad \Rightarrow \quad \frac{\beta-k_{0}}{k_{0}}=(5.9874-6.6330 j) \cdot 10^{-5}
\]
which agrees with Sommerfeld's rounded result of \(\left(\beta-k_{0}\right) / k_{0}=(6.0-6.6 j) \cdot 10^{-5}\). We see also that the phase velocity is essentially that of \(c_{0}, \nu_{\mathrm{ph}}=\omega / \operatorname{Re}(\beta)=0.999940 c_{0}\).
The attenuation constant \(\beta_{I}=-\operatorname{Im}(\beta)\) can be expressed in \(\mathrm{dB} / \mathrm{m}\) by \(8.686 \beta_{I}=0.0121\) \(\mathrm{dB} / \mathrm{m}\), which is very low and corresponds to an effective propagation length of \(1 / \beta_{I}=\) 719.34 meters along the wire. On the other hand, the lateral attenuation in air is effectively measured by \(1 / \operatorname{Im}(\gamma)=3.91\) meters, which is unacceptably large. The calculation using our function sommer is implemented by the MATLAB command:
\([b e, g a, g c, E, N]=\operatorname{sommer}(a, f, \operatorname{sigma}) ;\)
and produces comparable results:
\[
\begin{aligned}
& \beta=\beta_{R}-j \beta_{I}=20.959706-0.001390 j \text { rads } / \mathrm{m} \Rightarrow \frac{\beta-k_{0}}{k_{0}}=(5.9907-6.6333 j) \cdot 10^{-5} \\
& \gamma=0.113788+0.256080 j \\
& \gamma_{c}=(4.7645-4.7645 j) \cdot 10^{5} \Rightarrow \gamma_{c}-k_{0} \sqrt{\varepsilon_{C}}=-(2.3054+2.3048 j) \cdot 10^{-4} \\
& E=1.94 \times 10^{-13} \\
& N=186
\end{aligned}
\]

Sommerfeld's second example is a platinum wire of radius of \(a=2 \mu \mathrm{~m}\) and conductivity one eighth that of copper, \(\sigma=(5.75 / 8) \cdot 10^{7}\) siemens \(/ \mathrm{m}\), at a vacuum wavelength of \(\lambda_{0}=1\) meter, or frequency \(f=\mathcal{c}_{0} / \lambda_{0}\). With these changes in parameters, the results from the function sommer are:
\[
\begin{aligned}
& \beta=\beta_{R}-j \beta_{I}=8.4603-6.2561 j \text { rads } / \mathrm{m} \\
& \gamma=7.5210+7.0374 j \quad \Rightarrow \quad \operatorname{Im}(\gamma)^{-1}=0.1421 \text { meters } \\
& \gamma_{c}=(1-j) \cdot 9.2231 \cdot 10^{4} \quad \Rightarrow \quad \gamma_{c} a=(1-j) \cdot 0.1845 \\
& E=1.95 \times 10^{-14}, \quad N=278 \\
& 8.686 \beta_{I}=54.34 \mathrm{~dB} / \mathrm{m}, \quad \beta_{I}^{-1}=0.1598 \text { meters } \\
& v_{\mathrm{ph}}=\frac{\omega}{\beta_{R}}=0.7427 c_{0}
\end{aligned}
\]

This solution agrees with Sommerfeld's, \(\beta=8.5-6.5 j\), which he obtained using a modified form of his iteration that does not assume large values of \(\gamma_{c} a\) and does not replace the ratio of Bessel functions by \(J_{0}\left(\gamma_{c} a\right) / J_{1}\left(\gamma_{c} a\right) \approx j\), but still using the small-argument expansions of the Hankel functions.

Example 10.15.2: Here, we repeat the calculations of the previous example (for the copper wire) using the same MATLAB code with \(f=10 \mathrm{THz}\). The results from the function sommer are:
\(\beta=\beta_{R}-j \beta_{I}=2.0959 \cdot 10^{5}-1.9187 j\) rads \(/ \mathrm{m} \quad \Rightarrow \quad \frac{\beta-k_{0}}{k_{0}}=(3.2780-9.1549 j) \cdot 10^{-6}\)
\(\gamma=(5.3212+7.5573 j) \cdot 10^{2} \Rightarrow \quad \operatorname{Im}(\gamma)^{-1}=0.0013\) meters
\(\gamma_{c}=(4.7645-4.7645 j) \cdot 10^{7} \Rightarrow \gamma_{c}-k_{0} \sqrt{\varepsilon_{c}}=-(2.3049+2.3048 j) \cdot 10^{2}\)
\(E=1.73 \times 10^{-11}, \quad N=26\)
\(8.686 \beta_{I}=16.67 \mathrm{~dB} / \mathrm{m}, \quad \beta_{I}^{-1}=0.5212\) meters
where \(k_{0}=2.0958 \times 10^{5} \mathrm{rads} / \mathrm{m}\). The Sommerfeld iteration does converge, but to the wrong limit, \(\left(\beta-k_{0}\right) / k_{0}=(-2.9511-6.2879 j) \cdot 10^{-6}\). We note that the lateral decay length in air is now only, \(\operatorname{Im}(\gamma)^{-1}=1.3\) millimeters, and although the attenuation of 16.67 \(\mathrm{dB} / \mathrm{m}\), or, \(0.1667 \mathrm{~dB} / \mathrm{cm}\), is much larger than in the previous case, it is still acceptable for propagation lengths of the order of cm .

Fig. 10.15.2 Longitudinal electric field profiles, outside and inside the conductor.
Fig. 10.15.2 shows the profile of the electric field \(\left|E_{Z}(\rho)\right|\) outside and inside the conductor, normalized to unity at the surface. This normalization fixes the values of the coefficients \(A, B\) in Eq. (10.15.8) so that \(A J_{0}\left(\gamma_{c} a\right)=B H_{0}^{(1)}(\gamma a)=1\). Thus, the field \(E_{Z}(\rho)\) is,
\[
E_{Z}(\rho)= \begin{cases}\frac{J_{0}\left(\gamma_{c} \rho\right)}{J_{0}\left(\gamma_{c} a\right)}, & \rho \leq a \\ \frac{H_{0}^{(1)}(\gamma \rho)}{H_{0}^{(1)}(\gamma a)}, & \rho \geq a\end{cases}
\]
(10.15.20)

The field outside the conductor is easily computed and plotted, in the left graph, with the help of the MATLAB function:
\(E z=@(r)\) abs(besselh \((0,1, g a * r) / \operatorname{besselh}(0,1, g a * a)) ;\)

The graph also superimposes the asymptotic form of the Hankel function from Eq. (10.15.6), that is, for \(\rho \gg a, E_{Z}(\rho)\) can be approximated by,
\[
E_{Z}(\rho) \approx \frac{1}{H_{0}^{(1)}(\gamma a)} \sqrt{\frac{2}{\pi \gamma \rho}} e^{j(\gamma \rho-\pi / 4)}
\]

Moreover, the \(20-\mathrm{dB}\) point is also included on the graph. It can be determined by using the built-in function fzero to solve the equation \(\left|E_{Z}(\rho)\right|^{2}=10^{-2}\), which gives \(\rho=3.3 \mathrm{~mm}\). The MATLAB code is as follows and uses the previously constructed function Ez (\(r\)):
r_dB = fzero(@(r) Ez(r)-1/10, a);
with initial search point near \(\rho=a\). The calculation of the field inside the conductor is, on the other hand, very difficult numerically, because the quantity \(\gamma_{c} a=(4.7645-\) \(4.7645 j) \cdot 10^{4}\) is very large, and MATLAB returns the value \(J_{0}\left(\gamma_{c} a\right)=\infty\). Within a narrow layer near the surface, \(\rho \geqq a\), we can use the large-argument asymptotic expansion of \(J_{0}(u)\) from [1790] to approximate the ratio \(J_{0}\left(\gamma_{c} \rho\right) / J_{0}\left(\gamma_{c} a\right)\) in terms of the polynomials defined in Eq. (10.15.13):
\[
\begin{equation*}
\frac{J_{0}\left(\gamma_{c} \rho\right)}{J_{0}\left(\gamma_{c} a\right)} \approx \frac{P_{0}\left(\gamma_{c} \rho\right)+j Q_{0}\left(\gamma_{c} \rho\right)}{P_{0}\left(\gamma_{c} a\right)+j Q_{0}\left(\gamma_{c} a\right)} \sqrt{\frac{a}{\rho}} e^{j \gamma_{c}(\rho-a)} \text { for } \rho \geqq a \tag{10.15.21}
\end{equation*}
\]

Within this narrow layer, the ratio of the polynomials is effectively equal to unity, as is the ratio \(\sqrt{a / \rho}\), thus the entire expression is given by the exponential \(e^{j \gamma_{c}(\rho-a)}\). We note the rapid exponential decay, \(\left|e^{j \gamma_{c}(\rho-a)}\right|=e^{-\alpha_{c}(a-\rho)}\), where \(\alpha_{c}=-\operatorname{Im}\left(\gamma_{c}\right)\) is very large and positive. The graph on the right was obtained by applying Eq. (10.15.21) over the narrow range, \(0.999 a \leq \rho \leq a\).
The rapid attenuation is essentially a manifestation of the skin effect, indeed, \(\alpha_{c}\) is related to the skin depth of a good conductor \(\alpha_{c}=1 / \delta=\sqrt{\sigma \omega \mu_{0} / 2}\), as discussed in Sec. 2.8. This follows by approximating \(\gamma_{c}\) by
\[
\gamma_{c} \approx k_{0} \sqrt{\varepsilon_{c}}=\omega \sqrt{\mu_{0} \epsilon_{0}} \sqrt{1-j \frac{\sigma}{\omega \epsilon_{0}}} \approx \omega \sqrt{\mu_{0} \epsilon_{0}} \sqrt{-j \frac{\sigma}{\omega \epsilon_{0}}}=(1-j) \sqrt{\frac{\sigma \omega \mu_{0}}{2}}=\frac{1-j}{\delta}
\]

To better visualize the fields inside and outside the conductor on the same plotting scale, we consider a different example that has, \(f=1 \mathrm{THz}\) and \(a=1 \mu \mathrm{~m}\), and the same \(\sigma=\) \(5.75 \times 10^{7}\). In this case, the solution obtained from the function sommer has parameters:
\[
\begin{aligned}
& \gamma a=0.0008+0.0016 j \\
& \gamma_{c} a=15.0665-15.0665 j
\end{aligned}
\]

Fig. 10.15.3 shows the field profile \(\left|E_{Z}(\rho)\right|\) evaluated using Eq. (10.15.20), plotted on a log\(\log\) scale and on an absolute scale. Since \(J_{0}(0)=1\), the value of the field at the center of the conductor \((\rho=0)\) is small but non-zero, \(\left|E_{Z}(0)\right|=1 /\left|J_{0}\left(\gamma_{c} a\right)\right|=3.2979 \times 10^{-6}\). \(\square\)

Example 10.15.3: Here, we compare three cases of a copper wire with conductivity, \(\sigma=5.75 \times 10^{7}\) siemens \(/ \mathrm{m}\), and radii, \(a=0.01 \mathrm{~mm}, a=0.1 \mathrm{~mm}\), and \(a=1 \mathrm{~mm}\), and study the dependence of the Sommerfeld wave on frequency over the range \(10 \mathrm{GHz} \leq f \leq 10 \mathrm{THz}\). The solutions are obtained in the three cases by the MATLAB code:

Fig. 10.15.3 Longitudinal electric field profiles.
\begin{tabular}{ll}
\(c 0=299792458 ;\) & \(\% \mathrm{~m} / \mathrm{sec}\) \\
sigma \(=5.75 \mathrm{e} 7 ;\) & \(\%\) siemens \(/ \mathrm{m}\)
\end{tabular}
\(\mathrm{ff}=\) logspace \((-2,1,300) ; \mathrm{f}=1 \mathrm{e} 12 * \mathrm{ff} ; \mathrm{w}=2 * \mathrm{pi} * \mathrm{f} ; \quad \% \mathrm{THz}\)
a1 \(=1 \mathrm{e}-5\); [be1,ga1,gc1,E1,N1] = sommer(a1,f,sigma); \% case 1 a2 = 1e-4; [be2,ga2,gc2,E2,N2] = sommer(a2,f,sigma); \% case 2 a3 \(=1 \mathrm{e}-3\); \([\) be3,ga3,gc3,E3,N3] \(=\operatorname{sommer}(\mathrm{a} 3, \mathrm{f}\), sigma);

The number of iterations to converge and the norms of the computational errors were:
\[
N_{1}=239, \quad N_{2}=198, \quad N_{3}=159
\]
\[
\left\|E_{1}\right\|=1.1130 \times 10^{-12}, \quad\left\|E_{2}\right\|=0.9234 \times 10^{-12}, \quad\left\|E_{3}\right\|=1.2927 \times 10^{-12}
\]

Fig. 10.15.4 shows on the left the attenuation in dB per cm , given by, \(\mathrm{dB}=0.08686 \cdot \beta_{I}\), defined in terms of the negative imaginary part of \(\beta=\beta_{R}-j \beta_{I}\). The right graph shows the effective lateral radius of the field outside the conductor, defined as the distance where the field \(E_{Z}\) has dropped to \(1 / 10\) its value at the surface, or, 20 dB down. It is obtained as the solution in \(\rho\) of the equation,
\[
\begin{equation*}
\left|E_{Z}(\rho)\right|=\left|\frac{H_{0}^{(1)}(\gamma \rho)}{H_{0}^{(1)}(\gamma a)}\right|=\frac{1}{10} \tag{10.15.22}
\end{equation*}
\]
which is solved using the built-in function fzero. The attenuations and \(20-\mathrm{dB}\) distances were computed and plotted by the following MATLAB code:
\[
\begin{array}{ll}
\mathrm{db}=20 * 1 \log 10(\exp (1)) ; & \% 8.6859 \mathrm{~dB} / \text { neper } \\
\mathrm{dB} 1=-\mathrm{db} * \mathrm{imag}(\mathrm{be} 1) / 100 ; & \% \text { attenuations in dB/cm }
\end{array}
\]
\(\mathrm{dB2}=-\mathrm{db}\) * imag(be2) / 100;
\(\mathrm{dB} 3=-\mathrm{db} * \operatorname{imag}(\mathrm{be} 3) / 100\);
figure; \(\log \log \left(f f, d B 1,{ }^{\prime} b-', f f, d B 2, ' r--, f f, d B 3, ' k: '\right)\)
for \(i=1\) : length (\(f\))
Ez1 = @(r) abs(besseTh(0,1,ga1(i)*r) /besselh(0,1,ga1(i)*al)) Ez2 = @(r) abs(besseTh(0,1,ga2(i)*r) / besseTh(0,1,ga2(i)*a2)); Ez3 \(=@(r)\) abs(besselh(0,1,ga3(i)*r) / besselh(0,1,ga3(i)*a3));
r1(i) = fzero(@(r) Ez1(r)-1/10, a1)*1000; r2(i) = fzero(@(r) Ez2(r)-1/10, a2)*1000; \(r 3(i)=\) fzero(@(r) Ez3(r)-1/10, a3)*1000;
end
figure; \(\log \log (f f, r 1, ’ b-', f f, r 2, ' r--', f f, r 3, ' k: ’)\)

Fig. 10.15.4 Attenuations and \(20-\mathrm{dB}\) lateral distances vs. frequency.

Fig. 10.15.5 Phase velocities vs. frequency.

Within the \(1-10 \mathrm{THz}\) range, the attenuations remain fairly small for propagating at distances of cm , while the lateral footprint of the wave is of the order of 1 cm or smaller. Finally, Fig. 10.15.5 plots the phase velocities \(\nu_{\mathrm{ph}}=\omega / \beta_{R}\) versus frequency, showing some dispersion, but not much, in the THz range.

\subsection*{10.16 Power Transfer and Power Loss}

The power transmitted along the wire in the positive \(z\)-direction is attenuating with the factor \(\left|e^{-j \beta z}\right|^{2}=e^{-2 \beta_{I} z}\). The part that flows along the wire on the air side is the useful amount of power that gets transmitted. The part that flows inside the conductor, together with the amount of power that flows into the wire across its cylindrical surface, is entirely dissipated into Ohmic losses, as we verify below. The time-averaged Poynting vector has two components, one along \(z\), and one along the radial direction inwards:
\[
\boldsymbol{P}=\frac{1}{2} \operatorname{Re}\left(\boldsymbol{E} \times \boldsymbol{H}^{*}\right)=\frac{1}{2} \operatorname{Re}\left(\left(\hat{\mathbf{z}} E_{z}+\hat{\boldsymbol{\rho}} E_{\rho}\right) \times\left(\hat{\boldsymbol{\phi}} H_{\phi}^{*}\right)\right)=\hat{\mathbf{z}} \frac{1}{2} \operatorname{Re}\left(E_{\rho} H_{\phi}^{*}\right)-\hat{\boldsymbol{\rho}} \frac{1}{2} \operatorname{Re}\left(E_{Z} H_{\phi}^{*}\right)
\]

The total power transmitted is obtained by integrating \(\mathcal{P}_{z}\) over the cross-sectional area outside the wire, i.e, over \(a \leq \rho<\infty\) :
\[
P_{T}=\int_{a}^{\infty} \mathcal{P}_{z} 2 \pi \rho d \rho=\int_{a}^{\infty} \frac{1}{2} \operatorname{Re}\left(E_{\rho} H_{\phi}^{*}\right) 2 \pi \rho d \rho
\]

Similarly, the amount of power flowing through an annular area, \(a \leq \rho \leq r\), is given by,
\[
P_{T}(r)=\int_{a}^{r} \frac{1}{2} \operatorname{Re}\left(E_{\rho} H_{\phi}^{*}\right) 2 \pi \rho d \rho=\frac{1}{2}|B|^{2} \frac{\beta_{R} k_{0} \varepsilon_{a}}{\eta_{0}|\gamma|^{2}} \int_{a}^{r}\left|H_{1}^{(1)}(\gamma \rho)\right|^{2} 2 \pi \rho d \rho
\]
where we used Eq. (10.15.7), and we must multiply this expression by the attenuation factor \(e^{-2 \beta_{I} z}\). Thus, the total transmitted power is \(P_{T}=\left.P_{T}(r)\right|_{r=\infty}\). Using the indefinite integral [1790],
\[
\begin{equation*}
\int H_{1}^{(1)}(\gamma \rho) H_{1}^{(1)}\left(\gamma^{*} \rho\right) 2 \pi \rho d \rho=-2 \pi \rho \frac{\operatorname{Im}\left[\gamma H_{0}^{(1)}(\gamma \rho) H_{1}^{(1)}\left(\gamma^{*} \rho\right)\right]}{\operatorname{Im}\left[\gamma^{2}\right]} \tag{10.16.1}
\end{equation*}
\]
we obtain,
\(P_{T}(r)=\frac{1}{2}|B|^{2} \frac{\beta_{R} k_{0} \varepsilon_{a} 2 \pi}{\eta_{0}|\gamma|^{2}} \frac{a \operatorname{Im}\left[\gamma H_{0}^{(1)}(\gamma a) H_{1}^{(1)}\left(\gamma^{*} a\right)\right]-r \operatorname{Im}\left[\gamma H_{0}^{(1)}(\gamma r) H_{1}^{(1)}\left(\gamma^{*} r\right)\right]}{\operatorname{Im}\left[\gamma^{2}\right]}\)
Since the Hankel functions attenuate like \(\rho^{-1 / 2} e^{-\rho \operatorname{Im}(\gamma)}\) for large \(\rho\), it follows that the total transmitted power will be given by,
\[
\begin{equation*}
P_{T}=\frac{1}{2}|B|^{2} \frac{\beta_{R} k_{0} \varepsilon_{a}}{\eta_{0}|\gamma|^{2}}\left[2 \pi a \frac{\operatorname{Im}\left[\gamma H_{0}^{(1)}(\gamma a) H_{1}^{(1)}\left(\gamma^{*} a\right)\right]}{\operatorname{Im}\left[\gamma^{2}\right]}\right] \tag{10.16.2}
\end{equation*}
\]

Dividing \(P_{T}(r)\) by \(P_{T}\), we obtain the fraction of the total power contained in the annular region, \(a \leq \rho \leq r\), see also [985,994]:
\[
\begin{equation*}
\frac{P_{T}(r)}{P_{T}}=1-\frac{\operatorname{Im}\left[\gamma r H_{0}^{(1)}(\gamma r) H_{1}^{(1)}\left(\gamma^{*} r\right)\right]}{\operatorname{Im}\left[\gamma a H_{0}^{(1)}(\gamma a) H_{1}^{(1)}\left(\gamma^{*} a\right)\right]} \tag{10.16.3}
\end{equation*}
\]

Example 10.16.1: For the copper wire of Example 10.15.2, Fig. 10.16 .1 shows a plot of \(P_{T}(r) / P_{T}\), which also includes the radius at which the power ratio is \(95 \%\), found to be, \(r=2.85 \mathrm{~mm}\), by solving the equation \(P_{T}(r) / P_{T}=0.95\) with respect to \(r\). Assuming the same parameter values as in Example 10.15.2, the following MATLAB code generates the graph,
\(P=@(r) 1-i \operatorname{mag}(g a * r . * \operatorname{besselh}(0,1, g a * r) . * \operatorname{conj}(b e s s e l h(1,1, g a * r))) / \ldots\) imag(ga*a*besselh(0,1,ga*a).*conj(besselh(1,1,ga*a)));
\[
r 0=\text { fzero } @(r) P(r)-0.95,2 * a) \% \text { search near } 2 * a
\]
p1ot(r/a,100*P(r),'b-', r0/a,100*P(r0),'r.'); hold on; fill([0,1,1,0],[0,0,105,105], [0.9 0.9 0.9]);

The \(95 \%\) power radius and the \(20-\mathrm{dB}\) radius discussed earlier are just alternative ways of defining a measure for the lateral extent of the wave.

Fig. 10.16.1 Transmitted power vs. radial distance.

Next, we discuss power losses. In a lossy medium with complex-permittivity \(\epsilon_{\mathcal{C}}=\) \(\epsilon_{R}-j \epsilon_{I}\), the energy flux into a volume within the medium is dissipated completely into Ohmic losses. This is justified by the following result, first considered in Problem 1.5, that follows from Maxwell's equations:
\[
\begin{equation*}
P_{\mathrm{in}} \equiv-\oint_{S} \frac{1}{2} \operatorname{Re}\left[\boldsymbol{E} \times \boldsymbol{H}^{*}\right] \cdot d \boldsymbol{S}=\int_{V} \frac{1}{2} \operatorname{Re}\left[\boldsymbol{E} \cdot \boldsymbol{J}_{\mathrm{tot}}^{*}\right] d V \equiv P_{\mathrm{loss}} \tag{10.16.4}
\end{equation*}
\]
where \(J_{\text {tot }}=\boldsymbol{J}+j \omega \boldsymbol{D}\) is the effective current density in the medium that accounts for a conduction and a displacement current. For our wire, we may assume \(\boldsymbol{J}=\sigma \boldsymbol{E}\) and \(\boldsymbol{D}=\) \(\epsilon_{0} \boldsymbol{E}\) so that \(J_{\text {tot }}\) is given by the effective permittivity defined through, \(j \omega \epsilon_{c}=\sigma+j \omega \epsilon_{0}\),
\[
J_{\mathrm{tot}}=J+j \omega \boldsymbol{D}=\sigma \boldsymbol{E}+j \omega \epsilon_{0} \boldsymbol{E}=j \omega \epsilon_{c} \boldsymbol{E}
\]

Noting that \(\operatorname{Re}\left(j \omega \epsilon_{c}\right)=\operatorname{Re}\left(j \omega\left(\epsilon_{R}-j \epsilon_{I}\right)\right)=\omega \epsilon_{I}\), we may rewrite (10.16.4) as follows,
\[
\begin{equation*}
P_{\text {in }} \equiv-\frac{1}{2} \oint_{S} \operatorname{Re}\left[\boldsymbol{E} \times \boldsymbol{H}^{*}\right] \cdot d \boldsymbol{S}=\frac{1}{2} \omega \epsilon_{I} \int_{V} \boldsymbol{E} \cdot \boldsymbol{E}^{*} d V \equiv P_{\mathrm{loss}} \tag{10.16.5}
\end{equation*}
\]

For our wire, \(\omega \epsilon_{I}=\sigma\), but in general, if the dielectric displacement current term had a complex permittivity, e.g., \(\boldsymbol{D}=\epsilon_{d} \boldsymbol{E}=\left(\epsilon_{d R}-j \epsilon_{d I}\right) \boldsymbol{E}\), then it would also contribute to the effective \(\epsilon_{I}\), that is, \(\omega \epsilon_{I}=\sigma+\omega \epsilon_{d I}\).

We will verify Eq. (10.16.5) explicitly for a length- \(L\) segment of the wire, as shown in Fig. 10.16.2. Using the solution (10.15.7), the power loss will arise from both components \(E_{Z}, E_{\rho}\). Because of the cylindrical symmetry, the volume element will be \(d V=\) \(2 \pi \rho d \rho d z\), with the \(z\)-dependence given by \(e^{-2 \beta_{I} Z}\). Then, we find for \(P_{\text {loss }}\),
\[
\begin{aligned}
P_{\text {loss }} & =\frac{1}{2} \omega \epsilon_{I} \int_{V}\left[\left|E_{Z}\right|^{2}+\left|E_{\rho}\right|^{2}\right] d V \\
& =\frac{1}{2}|A|^{2} \omega \epsilon_{I} \int_{0}^{L} \int_{0}^{a}\left[\left|J_{0}\left(\gamma_{c} \rho\right)\right|^{2}+\frac{|\beta|^{2}}{\left|\gamma_{C}\right|^{2}}\left|J_{1}\left(\gamma_{c} \rho\right)\right|^{2}\right] \cdot e^{-2 \beta_{I} z} \cdot 2 \pi \rho d \rho d z \\
& =\frac{1}{2}|A|^{2} \omega \epsilon_{I}\left(\frac{1-e^{-2 \beta_{I} L}}{2 \beta_{I}}\right) \int_{0}^{a}\left[\left|J_{0}\left(\gamma_{c} \rho\right)\right|^{2}+\frac{|\beta|^{2}}{\left|\gamma_{C}\right|^{2}}\left|J_{1}\left(\gamma_{c} \rho\right)\right|^{2}\right] 2 \pi \rho d \rho
\end{aligned}
\]

Fig. 10.16.2 Length- \(L\) section of Sommerfeld wire.
where we performed the \(z\) integration to get,
\[
\int_{0}^{L} e^{-2 \beta_{I} z} d z=\frac{1-e^{-2 \beta_{I} L}}{2 \beta_{I}}
\]

The Bessel function integrals can be done explicitly [1790]:
\[
\begin{align*}
& \int_{0}^{a}\left|J_{0}\left(\gamma_{c} \rho\right)\right|^{2} 2 \pi \rho d \rho=2 \pi a \frac{\operatorname{Im}\left[\gamma_{c}^{*} J_{0}\left(\gamma_{c}^{*} a\right) J_{1}\left(\gamma_{c} a\right)\right]}{\operatorname{Im}\left[\gamma_{c}^{2}\right]} \tag{10.16.6}\\
& \int_{0}^{a}\left|J_{1}\left(\gamma_{c} \rho\right)\right|^{2} 2 \pi \rho d \rho=2 \pi a \frac{\operatorname{Im}\left[\gamma_{c} J_{1}\left(\gamma_{c} a\right) J_{0}\left(\gamma_{c}^{*} a\right)\right]}{\operatorname{Im}\left[\gamma_{c}^{2}\right]}
\end{align*}
\]

It follows that \(P_{\text {loss }}\) will be,
\[
\begin{align*}
P_{\text {loss }} & =\frac{1}{2}|A|^{2}\left(1-e^{-2 \beta_{I} L}\right) \frac{\omega 2 \pi a \epsilon_{I}}{2 \beta_{I}} \cdot \\
& \cdot \frac{\operatorname{Im}\left[\gamma_{c}^{*} J_{0}\left(\gamma_{c}^{*} a\right) J_{1}\left(\gamma_{c} a\right)\right]+\frac{|\beta|^{2}}{\left|\gamma_{c}\right|^{2}} \operatorname{Im}\left[\gamma_{c} J_{1}\left(\gamma_{c} a\right) J_{0}\left(\gamma_{c}^{*} a\right)\right]}{\operatorname{Im}\left[\gamma_{c}^{2}\right]} \tag{10.16.7}
\end{align*}
\]

The power influx into the cylindrical volume of Fig. 10.16.2 consist of the following parts: the power entering the volume at the cross-sectional area at \(Z=0\), minus
the power exiting the cross section at \(z=L\), plus the power entering perpendicularly through the cylindrical area. Thus, using Eq. (10.15.7), with \(H_{\phi}=A j \omega \epsilon_{\mathcal{C}} J_{1}\left(\gamma_{c} \rho\right) / \gamma_{\mathcal{C}}\),
\[
\begin{aligned}
& P_{\text {in }}=-\oint_{S} \boldsymbol{P} \cdot d \boldsymbol{S}=\left.\int_{0}^{a} \mathcal{P}_{z} 2 \pi \rho d \rho\right|_{z=0} ^{z=L}-\int_{0}^{L} \mathcal{P}_{\rho} 2 \pi a d z \\
& =\left.\frac{1}{2} \int_{0}^{a} \operatorname{Re}\left(E_{\rho} H_{\phi}^{*}\right) 2 \pi \rho d \rho\right|_{z=0} ^{z=L}-\frac{1}{2} \int_{0}^{L} \operatorname{Re}\left(E_{z} H_{\phi}^{*}\right) 2 \pi a d z \\
& =\frac{1}{2}|A|^{2}\left(1-e^{-2 \beta_{I} L}\right) \int_{0}^{a} \operatorname{Re}\left[\frac{j \beta}{\gamma_{c}} J_{1}\left(\gamma_{c} \rho\right) \frac{-j \omega \epsilon_{c}^{*}}{\gamma_{c}^{*}} J_{1}\left(\gamma_{c}^{*} \rho\right)\right] 2 \pi \rho d \rho+ \\
& +\frac{1}{2}|A|^{2} \int_{0}^{L} \operatorname{Re}\left[J_{0}\left(\gamma_{c} a\right) \frac{-j \omega \epsilon_{c}^{*}}{\gamma_{c}^{*}} J_{1}\left(\gamma_{c}^{*} a\right)\right] \cdot e^{-2 \beta_{I} z} \cdot 2 \pi a d z= \\
& =\frac{1}{2}|A|^{2}\left(1-e^{-2 \beta_{I} L}\right) \frac{\omega \operatorname{Re}\left[\beta \epsilon_{c}^{*}\right]}{\left|\gamma_{c}\right|^{2}} \int_{0}^{a} J_{1}\left(\gamma_{c} \rho\right) J_{1}\left(\gamma_{c}^{*} \rho\right) 2 \pi \rho d \rho+ \\
& +\frac{1}{2}|A|^{2}\left(1-e^{-2 \beta_{I} L}\right) \frac{\omega 2 \pi a}{2 \beta_{I}} \operatorname{Im}\left[J_{0}\left(\gamma_{c} a\right) \frac{\epsilon_{c}^{*}}{\gamma_{c}^{*}} J_{1}\left(\gamma_{c}^{*} a\right)\right]
\end{aligned}
\]
where in the last term we used the identity \(\operatorname{Re}[-j C]=\operatorname{Im}[C]\). Finally, using Eq. (10.16.6), we obtain the net power flowing into the cylindrical volume:
\[
\begin{align*}
P_{\text {in }} & =\frac{1}{2}|A|^{2}\left(1-e^{-2 \beta_{I} L}\right) \frac{\omega 2 \pi a \operatorname{Re}\left[\beta \epsilon_{c}^{*}\right]}{\left|\gamma_{c}\right|^{2}} \frac{\operatorname{Im}\left[\gamma_{c} J_{1}\left(\gamma_{c} a\right) J_{0}\left(\gamma_{c}^{*} a\right)\right]}{\operatorname{Im}\left[\gamma_{c}^{2}\right]}+ \\
& +\frac{1}{2}|A|^{2}\left(1-e^{-2 \beta_{I} L}\right) \frac{\omega 2 \pi a}{2 \beta_{I}} \operatorname{Im}\left[J_{0}\left(\gamma_{c} a\right) \frac{\epsilon_{c}^{*}}{\gamma_{c}^{*}} J_{1}\left(\gamma_{c}^{*} a\right)\right] \tag{10.16.8}
\end{align*}
\]

It is left as an exercise in Problem 10.7 to show the equality of the two expressions in Eqs. (10.16.7) and (10.16.8). Canceling some common factors, this amounts to showing the equality of the following two sides:
\[
\begin{align*}
& \frac{2 \beta_{I} \operatorname{Re}\left[\beta \epsilon_{c}^{*}\right]}{\left|\gamma_{c}\right|^{2}} \frac{\operatorname{Im}\left[\gamma_{c} J_{1}\left(\gamma_{c} a\right) J_{0}\left(\gamma_{c}^{*} a\right)\right]}{\operatorname{Im}\left[\gamma_{c}^{2}\right]}+\operatorname{Im}\left[J_{0}\left(\gamma_{c} a\right) \frac{\epsilon_{c}^{*}}{\gamma_{c}^{*}} J_{1}\left(\gamma_{c}^{*} a\right)\right]= \\
& \quad=\epsilon_{I} \frac{\operatorname{Im}\left[\gamma_{c}^{*} J_{0}\left(\gamma_{c}^{*} a\right) J_{1}\left(\gamma_{c} a\right)\right]+\frac{|\beta|^{2}}{\left|\gamma_{c}\right|^{2}} \operatorname{Im}\left[\gamma_{c} J_{1}\left(\gamma_{c} a\right) J_{0}\left(\gamma_{c}^{*} a\right)\right]}{\operatorname{Im}\left[\gamma_{c}^{2}\right]} \tag{10.16.9}
\end{align*}
\]

\subsection*{10.17 Connection to Zenneck Surface Wave}

We mentioned earlier that the Zenneck surface wave is the planar limit of the Sommerfeld wave. Indeed, in the limit of large radius, \(a \rightarrow \infty\), the ratios of both the Hankel functions and the Bessel functions in the characteristic equation (10.15.9) converge to \(+j\), resulting in the equation:
\[
\begin{equation*}
\frac{\gamma}{\varepsilon_{a}}=\frac{\gamma_{c}}{\varepsilon_{c}} \tag{10.17.1}
\end{equation*}
\]
which is precisely the characteristic equation of the Zenneck case that we considered in Sec. 7.10. Solving it for \(\beta\) gives rise to,
\[
\begin{equation*}
\beta=k_{0} \sqrt{\frac{\varepsilon_{a} \varepsilon_{c}}{\varepsilon_{a}+\varepsilon_{c}}}, \quad \gamma=k_{0} \sqrt{\frac{\varepsilon_{a}^{2}}{\varepsilon_{a}+\varepsilon_{c}}}, \quad \gamma_{c}=k_{0} \sqrt{\frac{\varepsilon_{c}^{2}}{\varepsilon_{a}+\varepsilon_{c}}} \tag{10.17.2}
\end{equation*}
\]

For completeness, we give the form of the fields above and below the interface at \(x=0\),
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{air \(\varepsilon_{a}\)} & \(x \leq 0\) & \(x \geq 0\) \\
\hline & \multirow[t]{2}{*}{\[
E_{z}=E_{0} e^{j \gamma_{c} x}
\]} & \multirow[t]{2}{*}{\(E_{Z}=E_{0} e^{j \gamma x}\)} \\
\hline conductor \(\varepsilon_{C}\) & & \\
\hline \[
{ }^{x} z
\] & \(E_{X}=E_{0} \frac{\beta}{\gamma_{c}} e^{j \gamma_{c} x}\) & \(E_{\chi}=E_{0} \frac{\beta}{\gamma} e^{j \gamma x}\) \\
\hline & \(H_{y}=E_{0} \frac{k_{0} \varepsilon_{c}}{\eta_{0} \gamma_{c}} e^{j \gamma_{c} x}\) & \(H_{y}=E_{0} \frac{k_{0} \varepsilon_{a}}{\eta_{0} \gamma} e^{j \gamma x}\) \\
\hline
\end{tabular}
where \(E_{0}\) is a constant. These agree with the results of Sec. 7.10 after remapping the notation by the replacements, \(z \rightarrow-x, x \rightarrow z, k_{x} \rightarrow \beta, k_{z} \rightarrow \gamma, k_{z}^{\prime} \rightarrow \gamma_{c}\).

They can be derived more directly by solving the TM propagation problem in cartesian coordinates using Eqs. (9.3.10), and applying the boundary conditions at the planar interface. They can also be derived as the large-radius limit of the wire solutions. To see this, let us renormalize Eqs. (10.15.7) with respect to their values at the surface of the conductor, i.e., by replacing \(A, B\) from the relationship, \(A J_{0}\left(\gamma_{c} a\right)=B H_{0}^{(1)}(\gamma a)=E_{0}\),
\[
\begin{array}{|l|l|}
\hline 0 \leq \rho \leq a & a \leq \rho<\infty \tag{10.17.4}\\
\hline E_{Z}=E_{0} \frac{J_{0}\left(\gamma_{c} \rho\right)}{J_{0}\left(\gamma_{c} a\right)} & E_{Z}=E_{0} \frac{H_{0}^{(1)}(\gamma \rho)}{H_{0}^{(1)}(\gamma a)} \\
E_{\rho}=E_{0} \frac{j \beta}{\gamma_{c}} \frac{J_{1}\left(\gamma_{c} \rho\right)}{J_{0}\left(\gamma_{c} a\right)} & E_{\rho}=E_{0} \frac{j \beta}{\gamma} \frac{H_{1}^{(1)}(\gamma \rho)}{H_{0}^{(1)}(\gamma a)} \\
H_{\phi}=E_{0} \frac{j k_{0} \varepsilon_{c}}{\eta_{0} \gamma_{c}} \frac{J_{1}\left(\gamma_{c} \rho\right)}{J_{0}\left(\gamma_{c} a\right)} & H_{\phi}=E_{0} \frac{j k_{0} \varepsilon_{a}}{\eta_{0} \gamma} \frac{H_{1}^{(1)}(\gamma \rho)}{H_{0}^{(1)}(\gamma a)} \\
\gamma_{c}=\sqrt{k_{0}^{2} \varepsilon_{c}-\beta^{2}} & \gamma=\sqrt{k_{0}^{2} \varepsilon_{a}-\beta^{2}} \\
\hline
\end{array}
\]

In this form, the boundary condition for \(E_{Z}\) is automatically satisfied, whereas that for \(H_{\phi}\) leads directly to the characteristic equation (10.15.9). Since \(x\) is measured with respect to the planar conductor surface, before we take the limit for large radius, let us make the replacement, \(\rho=a+x\). Then, using the asymptotic expressions (10.15.6), we obtain the following limits, as \(a \rightarrow \infty\) with fixed \(x\),
\[
\begin{aligned}
& \frac{H_{0}^{(1)}(\gamma \rho)}{H_{0}^{(1)}(\gamma a)} \approx \sqrt{\frac{a}{\rho}} e^{j \gamma(\rho-a)}=\sqrt{\frac{a}{a+x}} e^{j \gamma x} \rightarrow e^{j \gamma x} \\
& \frac{H_{1}^{(1)}(\gamma \rho)}{H_{0}^{(1)}(\gamma a)} \approx \sqrt{\frac{a}{\rho}} e^{j \gamma(\rho-a)} e^{-j \pi / 2}=-j \sqrt{\frac{a}{a+x}} e^{j \gamma x} \rightarrow-j e^{j \gamma x}
\end{aligned}
\]
from which the \(x>0\) expressions in Eq. (10.17.3) are obtained. The corresponding asymptotic expressions for \(J_{0}(u), J_{1}(u)\) are given as follows [1790], assuming that \(u\) has a large and negative imaginary part,
\[
\begin{align*}
& J_{0}(u)=\sqrt{\frac{2}{\pi u}} \cos \left(u-\frac{\pi}{4}\right) \approx \sqrt{\frac{1}{2 \pi u}} e^{j(u-\pi / 4)}, \quad \operatorname{Im}(u)<0 \\
& J_{1}(u)=\sqrt{\frac{2}{\pi u}} \cos \left(u-\frac{3 \pi}{4}\right) \approx \sqrt{\frac{1}{2 \pi u}} e^{j(u-3 \pi / 4)}, \quad \operatorname{Im}(u)<0 \tag{10.17.5}
\end{align*}
\]
and from these we obtain the limits, which give rise to the \(x<0\) expressions in (10.17.3),
\[
\begin{aligned}
& \frac{J_{0}\left(\gamma_{c} \rho\right)}{J_{0}\left(\gamma_{c} a\right)} \approx \sqrt{\frac{a}{\rho}} e^{j \gamma_{c}(\rho-a)}=\sqrt{\frac{a}{a+x}} e^{j \gamma_{c} x} \rightarrow e^{j \gamma_{c} x} \\
& \frac{J_{1}\left(\gamma_{c} \rho\right)}{J_{0}\left(\gamma_{c} a\right)} \approx \sqrt{\frac{a}{\rho}} e^{j \gamma_{c}(\rho-a)} e^{-j \pi / 2}=-j \sqrt{\frac{a}{a+x}} e^{j \gamma_{c} x} \rightarrow-j e^{j \gamma_{c} x}
\end{aligned}
\]

Like the Sommerfeld wave, the Zenneck wave exhibits a strong skin effect within the conductor, but weak bounding on the air side, and low attenuation in the direction of propagation. For a good conductor, we have \(\left|\varepsilon_{c}\right| \gg \varepsilon_{a}\), and we can approximate \(\varepsilon_{c}\) and \(\gamma_{c}\) as in the wire case,
\[
\varepsilon_{c} \approx-j \frac{\sigma}{\omega \epsilon_{0}}, \quad \gamma_{c}=\frac{k_{0} \sqrt{\varepsilon_{c}}}{\sqrt{1+\frac{\varepsilon_{a}}{\varepsilon_{c}}}} \approx k_{0} \sqrt{\varepsilon_{c}} \approx \frac{1-j}{\delta}, \quad \delta=\sqrt{\frac{2}{\sigma \mu_{0} \omega}}
\]

Thus, the fields are attenuating rapidly, within a skin depth \(\delta\), inside the conductor, \(e^{j \gamma_{c} x} \approx e^{j x / \delta} e^{x / \delta}=e^{j x / \delta} e^{-|x| / \delta}\), for \(x<0\), but not so rapidly outside since \(|\gamma| \ll k_{0}\). Indeed, we have in terms of the dimensionless parameter \(\sigma /\left(\omega \epsilon_{0}\right) \gg 1\), setting \(\varepsilon_{a}=1\),
\[
\gamma=\frac{\gamma_{C} \varepsilon_{a}}{\varepsilon_{C}} \approx \frac{k_{0} \sqrt{\varepsilon_{C}}}{\varepsilon_{C}}=\frac{k_{0}}{\sqrt{\varepsilon_{\mathcal{C}}}}=\gamma_{R}+j \gamma_{I}, \quad \gamma_{R}=\gamma_{I}=\frac{k_{0}}{\sqrt{\frac{2 \sigma}{\omega \epsilon_{0}}}} \ll k_{0}
\]
similarly, the propagation constant \(\beta\) has a very small imaginary part,
\[
\beta=\beta_{R}-j \beta_{I}=k_{0} \sqrt{\frac{\varepsilon_{\mathcal{C}}}{1+\varepsilon_{C}}}=k_{0} \sqrt{\frac{1}{1+\varepsilon_{C}^{-1}}} \approx k_{0}\left(1-\frac{1}{2 \varepsilon_{\mathcal{C}}}\right)=k_{0}-j k_{0} \frac{\omega \epsilon_{0}}{2 \sigma}
\]

\subsection*{10.18 Skin Effect for Round Wire}

The Sommerfeld wave provides a nice illustration of the skin effect in a round wire. Within the wire, the total current density includes both the conduction and displacement currents,
\[
\boldsymbol{J}=\sigma \boldsymbol{E}+j \omega \epsilon_{0} \boldsymbol{E}=\left(\sigma+j \omega \epsilon_{0}\right) \boldsymbol{E}=j \omega \epsilon_{c} \boldsymbol{E}
\]

For a good conductor, we typically ignore the displacement current, writing, \(\boldsymbol{J}=\sigma \boldsymbol{E}\). For either \(J\), the current density in the \(Z\)-direction is proportional to \(E_{Z}\), and therefore,
we have the same relationship as (10.15.20). Indeed, writing \(E_{Z}(\rho)=A J_{0}\left(\gamma_{c} \rho\right)\) from Eq. (10.15.7), and setting, \(J_{Z}=j \omega \epsilon_{C} E_{Z}\), we have,
\[
\begin{equation*}
\frac{J_{Z}(\rho)}{J_{Z}(a)}=\frac{E_{Z}(\rho)}{E_{Z}(a)}=\frac{J_{0}\left(\gamma_{c} \rho\right)}{J_{0}\left(\gamma_{c} a\right)}, \quad \rho \leq a \tag{10.18.1}
\end{equation*}
\]

If we make the approximation \(\gamma_{c} \approx k_{0} \sqrt{\varepsilon_{c}} \approx(1-j) \sqrt{\sigma \mu_{0} \omega / 2}=(1-j) / \delta\), then the results are equivalent to those obtained by the standard textbook treatments of the skin effect that (i) ignore the displacement current, (ii) assume no \(z\)-dependence, and (iii) consider the fields only inside the wire. Here, the \(z\)-dependence comes from the assumed factor \(e^{-j \beta z}\) which could be set to unity for distances that are much less than a wavelength, \(z \ll 1 / k_{0} \approx 1 / \beta\).

A typical plot of Eq. (10.18.1) is depicted in Fig. 10.15.3. The numerical issues regarding the evaluation of the ratio (10.18.1) were discussed in Example 10.15.2. Within a very narrow layer of width of a few skin depths \(\delta\) from the surface, \(\rho \lesssim a\), the ratio decays exponentially with distance, \(\left|e^{j \gamma_{c}(\rho-a)}\right|=e^{-(a-\rho) / \delta}\).

The total current \(I\) flowing in the \(z\)-direction is obtained by integrating \(J_{Z}(\rho)=\) \(j \omega \epsilon_{\mathcal{C}} E_{Z}(\rho)=j \omega \epsilon_{\mathcal{C}} A J_{0}\left(\gamma_{c} \rho\right)\), over the cross-sectional area of the wire:
\[
\begin{equation*}
I=\int_{0}^{a} J_{Z}(\rho) 2 \pi \rho d \rho=2 \pi j \omega \epsilon_{c} A \int_{0}^{a} \rho J_{0}\left(\gamma_{c} \rho\right) d \rho=2 \pi a A \frac{j \omega \epsilon_{c}}{\gamma_{c}} J_{1}\left(\gamma_{c} a\right) \tag{10.18.2}
\end{equation*}
\]
where we used the indefinite integral, \(\int u J_{0}(u) d u=u J_{1}(u)\), and the fact that \(J_{1}(0)=0\). From Eq. (10.15.7), we recognize this as, \(I=2 \pi a H_{\phi}(a)\), which is a consequence of Ampère's law, obtained by integrating \(H_{\phi}\) around the contour \(\rho=a\). From the current \(I\), we may derive the internal impedance of the wire (per unit wire length):
\[
Z=\frac{E_{Z}(a)}{I}=\frac{A J_{0}\left(\gamma_{c} a\right)}{2 \pi a A \frac{j \omega \epsilon_{c}}{\gamma_{c}} J_{1}\left(\gamma_{c} a\right)}=\frac{\gamma_{c} J_{0}\left(\gamma_{c} a\right)}{2 \pi a j \omega \epsilon_{c} J_{1}\left(\gamma_{c} a\right)}
\]
and with the approximations, \(\gamma_{c} \approx(1-j) / \delta=(1-j) \sqrt{\sigma \mu_{0} \omega / 2}\), and, \(j \omega \epsilon_{c} \approx \sigma\), we obtain the standard textbook formula,
\[
\begin{equation*}
Z=\frac{\gamma_{c} J_{0}\left(\gamma_{c} a\right)}{2 \pi a \sigma J_{1}\left(\gamma_{c} a\right)} \quad \text { (impedance of round wire) } \tag{10.18.3}
\end{equation*}
\]

In the low-frequency limit, \(a / \delta=a \sqrt{\sigma \mu_{0} \omega / 2} \rightarrow 0\), we may use the following secondorder Taylor expansion, valid for small \(u\),
\[
\frac{u J_{0}(u)}{2 J_{1}(u)}=1-\frac{u^{2}}{8}
\]
to obtain,
\[
Z=\frac{1}{\pi a^{2} \sigma} \frac{\gamma_{c} a J_{0}\left(\gamma_{c} a\right)}{2 J_{1}\left(\gamma_{c} a\right)} \approx \frac{1}{\pi a^{2} \sigma}\left[1-\frac{\left(\gamma_{c} a\right)^{2}}{8}\right]
\]
or, because, \(\gamma_{c}^{2}=(1-j)^{2} / \delta^{2}=(1-j)^{2} \omega \mu_{0} \sigma / 2=-j \omega \mu_{0} \sigma\),
\[
\begin{equation*}
Z_{\text {low }}=\frac{1}{\pi a^{2} \sigma}+j \omega \frac{\mu_{0}}{8 \pi} \quad \text { (low-frequency wire impedance) } \tag{10.18.4}
\end{equation*}
\]

Comparing with \(Z=R+j \omega L\), we obtain the standard low-frequency DC resistance and the internal self-inductance per unit length of the wire,
\[
\begin{equation*}
R=\frac{1}{\pi a^{2} \sigma}, \quad L=\frac{\mu_{0}}{8 \pi} \tag{10.18.5}
\end{equation*}
\]

On the other hand, for high frequencies, \(a / \delta=a \sqrt{\sigma \mu_{0} \omega / 2} \rightarrow \infty\), we may replace the Bessel function ratio by \(J_{0} / J_{1}=j\), and \(j \gamma_{c}=(1+j) / \delta\), to get,
\[
\begin{equation*}
Z_{\text {high }}=\frac{1+j}{2 \pi a \delta \sigma} \quad \text { (high-frequency wire impedance) } \tag{10.18.6}
\end{equation*}
\]

Eq. (10.18.6) is originally due to Rayleigh [1293]. Recalling from Sec. 2.8 that the surface resistance of a good conductor is \(R_{S}=1 /(\sigma \delta)\), we may rewrite (10.18.6) as,
\[
\begin{equation*}
Z_{\mathrm{high}}=\frac{1+j}{2 \pi a \delta \sigma}=\frac{(1+j) R_{S}}{2 \pi a} \tag{10.18.7}
\end{equation*}
\]

The DC resistance per unit length of a wire of arbitrary cross-sectional area \(S\) is given by \(R=1 /(S \sigma)\) and is derived by assuming that the current density is uniform over the area \(S\). For the round wire, we have \(S=\pi a^{2}\). At high frequencies, the same formula would imply from (10.18.6) that \(S=2 \pi a \delta\), that is, the current is effectively confined to flow within a narrow ring of radius \(a\) and width \(\delta\), as shown in Fig. 10.18.1.

low frequency

high frequency

Fig. 10.18.1 Effective areas of current distribution at low and high frequencies.
We note in passing that the low frequency self-inductance \(L\) of Eq. (10.18.5) is usually derived using energy considerations, by considering the magnetic energy enclosed in a unit-length cylindrical volume of the conductor, and setting,
\[
\frac{1}{2} L I^{2}=\int_{0}^{a} \frac{1}{2} \mu_{0} H_{\phi}^{2} 2 \pi \rho d \rho
\]

Since the current density is assumed to be uniform, the amount of current enclosed within a radius \(\rho\) is given by \(J_{z} \pi \rho^{2}\), with total current \(I=J_{z} \pi a^{2}\). Then, Ampère's law gives \(J_{z} \pi \rho^{2}=2 \pi \rho H_{\phi}(\rho)\), resulting in, \(H_{\phi}(\rho)=J_{z} \rho / 2=I \rho /\left(2 \pi a^{2}\right)\). Inserting this into the above energy relation we find,
\[
\frac{1}{2} L I^{2}=\frac{\mu_{0} I^{2}}{4 \pi a^{4}} \int_{0}^{a} \rho^{3} d \rho=\frac{1}{2} \frac{\mu_{0}}{8 \pi} I^{2} \Rightarrow L=\frac{\mu_{0}}{8 \pi}
\]

The same expression for \(H_{\phi}\) can also be obtained from (10.15.7) in the low-frequency limit, \(\gamma_{c} \rightarrow 0\), by using the small argument expansion \(J_{1}\left(\gamma_{c} a\right) \approx \gamma_{c} a / 2\).

Finally, we comment on Ampère's law applied to the outside of the wire. In Fig. 10.15.3, the field \(E_{Z}\), outside the wire, is due to the displacement current only. If we apply Ampère's law to a contour of radius \(r\), with \(r>a\), the total enclosed current, \(I_{r}=\) \(2 \pi r H_{\phi}(r)\), would consist of both the conduction and the displacement currents. The current density, \(J_{Z}=j \omega \epsilon E_{Z}\), is given as follows inside and outside the conductor, from (10.15.7),
\[
J_{Z}(\rho)= \begin{cases}j \omega \epsilon_{\mathcal{C}} A J_{0}\left(\gamma_{c} \rho\right), & \rho \leq a \\ j \omega \epsilon_{0} B H_{0}^{(1)}(\gamma \rho), & \rho \geq a\end{cases}
\]

The total current crossing the area of radius \(r>a\) can be split into two parts:
\[
\begin{aligned}
I_{r} & =\int_{0}^{r} J_{z} 2 \pi \rho d \rho=\int_{0}^{a} J_{z} 2 \pi \rho d \rho+\int_{a}^{r} J_{z} 2 \pi \rho d \rho \\
& =\int_{0}^{a} A J_{0}\left(\gamma_{c} \rho\right) 2 \pi \rho d \rho+\int_{a}^{r} B H_{0}^{(1)}(\gamma \rho) 2 \pi \rho d \rho \\
& =2 \pi a A \frac{j \omega \epsilon_{c}}{\gamma_{c}} J_{1}\left(\gamma_{c} a\right)+\left[2 \pi r B \frac{j \omega \epsilon_{0}}{\gamma} H_{1}^{(1)}(\gamma r)-2 \pi a B \frac{j \omega \epsilon_{0}}{\gamma} H_{1}^{(1)}(\gamma a)\right] \\
& =2 \pi r B \frac{j \omega \epsilon_{0}}{\gamma} H_{1}^{(1)}(\gamma r)=2 \pi r H_{\phi}(r)
\end{aligned}
\]
where we used Eqs. (10.15.7), the boundary conditions (10.15.8), and the indefinite integral, \(\int u H_{0}^{(1)}(u) d u=u H_{1}^{(1)}(u)\).

The skin effect is discussed in most textbooks. A few references are [1054-1058], in which one can find additional ones, including historical references.

\subsection*{10.19 Goubau Line}

The Goubau line, or Harms-Goubau line, refers to a TM surface wave propagating along a dielectric coated conductor, depicted in Fig. 10.19.1. It was considered first by Harms in 1907, and studied extensively in the 1950s by Goubau as an alternative to the Sommerfeld line that provides better lateral confinement [984-999]. Interest in the Goubau line has been renewed in the 2000s for use in THz applications [1000-1016]. \({ }^{\dagger}\)

In the Sommerfeld wire, the finite conductivity of the conductor was essential in order to render the lateral wavenumber complex-valued for lateral confinement. In the Goubau line case, this is not necessary and we will initially assume that the conductor is perfect and that the dielectric coating is lossless. Ohmic and dielectric losses can then be taken into account approximately.

In Fig. 10.19.1, let \(a, b\) be the inner radius of the conductor and the outer radius of the dielectric coating, so that the coating thickness is, \(d=b-a\), and let \(\varepsilon_{d}\) be the relative permittivity of the coating. Assuming cylindrical symmetry, the TM wave will

\footnotetext{
\({ }^{\dagger}\) Incidentally, our ECE Department at Rutgers awards yearly the "Georg Goubau Memorial Prize" to a graduating senior for excellence in the study of Electromagnetics.
}

Fig. 10.19.1 Goubau line, shown in cylindrical coordinates.
have field components \(E_{Z}, E_{\rho}, H_{\phi}\) that satisfy Eq. (10.15.4),
\[
\begin{align*}
& \frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial E_{Z}}{\partial \rho}\right)+\gamma^{2} E_{Z}=0, \quad \gamma^{2}=k_{0}^{2} \varepsilon-\beta^{2} \\
& E_{\rho}=-\frac{j \beta}{\gamma^{2}} \frac{\partial E_{Z}}{\partial \rho}, \quad H_{\phi}=-\frac{j k_{0} \varepsilon}{\eta_{0} \gamma^{2}} \frac{\partial E_{Z}}{\partial \rho} \tag{10.19.1}
\end{align*}
\]
with the assumed factor \(e^{j \omega t-j \beta z}\), and solution given as in Eq. (10.15.5),
\[
\begin{equation*}
E_{Z}=C_{0}(\gamma \rho), \quad E_{\rho}=\frac{j \beta}{\gamma} C_{1}(\gamma \rho), \quad H_{\phi}=\frac{j k_{0} \varepsilon}{\eta_{0} \gamma} C_{1}(\gamma \rho) \tag{10.19.2}
\end{equation*}
\]
where \(C_{n}(\gamma \rho), n=0,1\), are linear combinations of the Bessel functions \(J_{n}(\gamma \rho), Y_{n}(\gamma \rho)\), or, the Hankel functions, \(H_{n}^{(1,2)}(\gamma \rho)\).

Because the conductor was assumed to be perfect, and the dielectric, lossless, we are looking for solutions that have a real-valued propagation wavenumber \(\beta\). Let us denote the lateral wavenumber within the dielectric coating by \(h=\sqrt{k_{0}^{2} \varepsilon_{d}-\beta^{2}}\). It may be assumed to be real-valued. But outside the coating, within the air, the wavenumber \(\gamma_{a}=\sqrt{k_{0}^{2} \varepsilon_{a}-\beta^{2}}\) must necessarily be pure imaginary in order to guarantee that the fields decay rapidly at large radial distances. Setting for example, \(\gamma_{a}=j \gamma\), with positive \(\gamma\), it follows from Eq. (10.15.6) that the Hankel functions \(H_{n}^{(1)}\left(\gamma_{a} \rho\right)\) will decay as follows with increasing \(\rho \rightarrow \infty\),
\[
\begin{equation*}
H_{n}^{(1)}\left(\gamma_{a} \rho\right)=H_{n}^{(1)}(j \gamma \rho) \approx \sqrt{\frac{2}{\pi j \gamma \rho}} e^{-\gamma \rho} e^{-j(2 n+1) \pi / 4}=\frac{1}{j^{n+1}} \sqrt{\frac{2}{\pi \gamma \rho}} e^{-\gamma \rho} \tag{10.19.3}
\end{equation*}
\]

Thus, \(\gamma_{a}^{2}=-\gamma^{2}=k_{0}^{2} \varepsilon_{a}-\beta^{2}\), or, \(\gamma=\sqrt{\beta^{2}-k_{0}^{2} \varepsilon_{a}}\). Since both \(\gamma\) and \(h\) are real-valued, it follows that \(\beta\) must lie in the range,
\[
\begin{equation*}
k_{0} \sqrt{\varepsilon_{a}} \leq \beta \leq k_{0} \sqrt{\varepsilon_{d}} \tag{10.19.4}
\end{equation*}
\]

The Hankel functions for imaginary argument are related to the modified Bessel functions of second kind, via the relationship [1790],
\[
\begin{equation*}
K_{n}(u)=\frac{\pi}{2} j^{n+1} H_{n}^{(1)}(j u), \quad u>0 \tag{10.19.5}
\end{equation*}
\]
which have the same asymptotic form as (10.19.3), for large positive \(u\),
\[
\begin{equation*}
K_{n}(u) \approx \sqrt{\frac{\pi}{2 u}} e^{-u} \tag{10.19.6}
\end{equation*}
\]

Thus, on the air side \((\rho>b)\), instead of working with \(H_{n}^{(1)}\) (jぬ \(\left.\rho\right)\), it proves simpler to express the field solutions in terms of \(K_{n}(\gamma \rho)\). The Helmholtz equations (10.19.1) remain the same with the replacement, \(\gamma^{2} \rightarrow-\gamma^{2}\),
\[
\begin{align*}
& \frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial E_{Z}}{\partial \rho}\right)-\gamma^{2} E_{Z}=0, \quad \gamma^{2}=\beta^{2}-k_{0}^{2} \varepsilon_{a} \tag{10.19.7}\\
& E_{\rho}=\frac{j \beta}{\gamma^{2}} \frac{\partial E_{Z}}{\partial \rho}, \quad H_{\phi}=\frac{j k_{0} \varepsilon_{a}}{\eta_{0} \gamma^{2}} \frac{\partial E_{Z}}{\partial \rho}
\end{align*}
\]

The solutions are found after using the relationship, \(\partial K_{0}(\gamma \rho) / \partial \rho=-\gamma K_{1}(\gamma \rho)\),
\[
\begin{equation*}
E_{Z}=E_{1} K_{0}(\gamma \rho), \quad E_{\rho}=-E_{1} \frac{j \beta}{\gamma} K_{1}(\gamma \rho), \quad H_{\phi}=-E_{1} \frac{j k_{0} \varepsilon_{a}}{\eta_{0} \gamma} K_{1}(\gamma \rho) \tag{10.19.8}
\end{equation*}
\]
where \(E_{1}\) is a constant. Within the dielectric coating, \(a \leq \rho \leq b\), the solution will be a linear combination of \(J_{0}(h \rho), Y_{0}(h \rho)\), say, \(Z_{0}(h \rho)=J_{0}(h \rho)-A Y_{0}(h \rho)\), and will be given by (10.19.2),
\[
\begin{equation*}
E_{Z}=E_{0} Z_{0}(h \rho), \quad E_{\rho}=E_{0} \frac{j \beta}{h} Z_{1}(h \rho), \quad H_{\phi}=E_{0} \frac{j k_{0} \varepsilon_{d}}{\eta_{0} h} Z_{1}(h \rho) \tag{10.19.9}
\end{equation*}
\]
where \(E_{0}\) is a constant, and \(Z_{1}(h \rho)=J_{1}(h \rho)-A Y_{1}(h \rho)\). To determine \(A\), we demand that \(E_{Z}\) vanish on the surface of the perfect conductor, that is, at \(\rho=a\),
\[
\begin{equation*}
E_{Z}(a)=0 \quad \Rightarrow \quad Z_{0}(h a)=J_{0}(h a)-A Y_{0}(h a)=0 \quad \Rightarrow \quad A=\frac{J_{0}(h a)}{Y_{0}(h a)} \tag{10.19.10}
\end{equation*}
\]

In summary, the field solutions are given as follows, in the coating and in the air,
\[
\begin{array}{|l}
\begin{array}{l}
a \leq \rho \leq b \\
E_{Z}=E_{0} Z_{0}(h \rho) \\
E_{\rho}=E_{0} \frac{j \beta}{h} Z_{1}(h \rho) \\
H_{\phi}=E_{0} \frac{j k_{0} \varepsilon_{d}}{\eta_{0} h} Z_{1}(h \rho) \\
h=\sqrt{k_{0}^{2} \varepsilon_{d}-\beta^{2}}
\end{array} \tag{10.19.11}\\
E_{\rho}=-E_{1} \frac{j \beta}{\gamma} K_{1}(\gamma \rho) \\
H_{\phi}=-E_{1} \frac{j k_{0} \varepsilon_{a}}{\eta_{0} \gamma} K_{1}(\gamma \rho) \\
\gamma=\sqrt{\beta^{2}-k_{0}^{2} \varepsilon_{a}} \\
\hline
\end{array}
\]
and \(Z_{0}, Z_{1}\) are defined as the functions,
\[
\begin{aligned}
& Z_{0}(h \rho)=J_{0}(h \rho)-\frac{J_{0}(h a)}{Y_{0}(h a)} Y_{0}(h \rho) \\
& Z_{1}(h \rho)=J_{1}(h \rho)-\frac{J_{0}(h a)}{Y_{0}(h a)} Y_{1}(h \rho)
\end{aligned}
\]

The boundary condition at the conductor surface \((\rho=a)\) is built into the solution. The boundary conditions at the coating-air interface (\(\rho=b\)) are the continuity of the tangential electric and magnetic fields, \(E_{Z}, H_{\phi}\), resulting in the conditions:
\[
\begin{align*}
E_{0} Z_{0}(h b) & =E_{1} K_{0}(\gamma b) \\
E_{0} \frac{j k_{0} \varepsilon_{d}}{\eta_{0} h} Z_{1}(h b) & =-E_{1} \frac{j k_{0} \varepsilon_{a}}{\eta_{0} \gamma} K_{1}(\gamma b) \tag{10.19.13}
\end{align*}
\]

Dividing the two sides, we obtain the characteristic equation that determines the propagation wavenumber \(\beta\),
\[
\begin{align*}
& h=\sqrt{k_{0}^{2} \varepsilon_{d}-\beta^{2}} \tag{10.19.14}\\
& \gamma=\sqrt{\beta^{2}-k_{0}^{2} \varepsilon_{a}}
\end{align*} \quad\left[\frac{h}{\varepsilon_{d}} \frac{Z_{0}(h b)}{Z_{1}(h b)}=-\frac{\gamma}{\varepsilon_{a}} \frac{K_{0}(\gamma b)}{K_{1}(\gamma b)}\right.
\]
where we may set \(\varepsilon_{a}=1\) from now on. One way to solve this equation iteratively, is to first cast it in the form,
\[
\begin{equation*}
\frac{\gamma}{h}=-\frac{1}{\varepsilon_{d}} \frac{K_{1}(\gamma b)}{K_{0}(\gamma b)} \frac{Z_{0}(h b)}{Z_{1}(h b)} \equiv F(\beta) \tag{10.19.15}
\end{equation*}
\]
and then solve the left-hand side for \(\beta\),
\[
\begin{gather*}
\frac{\gamma}{h}=F(\beta) \Rightarrow \frac{\gamma^{2}}{h^{2}}=\frac{\beta^{2}-k_{0}^{2}}{k_{0}^{2} \varepsilon_{d}-\beta^{2}}=F^{2}(\beta), \quad \text { or, } \\
\beta=k_{0} \sqrt{\frac{1+\varepsilon_{d} F^{2}(\beta)}{1+F^{2}(\beta)}} \tag{10.19.16}
\end{gather*}
\]

This can be turned in the following recursion, for \(n=0,1,2, \ldots\),
\[
\begin{equation*}
\beta_{n+1}=r k_{0} \sqrt{\frac{1+\varepsilon_{d} F^{2}\left(\beta_{n}\right)}{1+F^{2}\left(\beta_{n}\right)}}+(1-r) \beta_{n} \tag{10.19.17}
\end{equation*}
\]
where we introduced a relaxation parameter, \(0<r \leq 1\). The recursion can be initialized somewhere within the \(\beta\) range (10.19.4), for example, \(\beta_{0}=0.9 k_{0} \sqrt{\varepsilon_{d}}\). The following MATLAB function, goubau, in the EWA toolbox, implements this iteration:
\begin{tabular}{rll|}
\hline\([b e, g a, h, N, E, p d]=\operatorname{goubau}(a, b, e d, f, r, t o 1, b e 0)\) & \\
{\([b e, g a, h, N, E, p d]=\operatorname{goubau}(a, b, e d, f, r, t o 1)\)} & \((b e 0=0.999 * k 0 * \operatorname{sqrt}(e d))\) \\
{\([b e, g a, h, N, E, p d]=\operatorname{goubau}(a, b, e d, f, r)\)} & \((t o 1=1 e-10)\)
\end{tabular}
\(\% \mathrm{a}, \mathrm{b}=\) inner and outer radii [meters]
\% ed = relative dielectric constant of coating (ed>1)
\(\% \mathrm{f}=\) vector of frequencies [Hz]
\(\% r=r e l a x a t i o n ~ p a r a m e t e r ~(0<r<=1)\)
\(\%\) tol \(=\) computational tolerance, default tol \(=1 \mathrm{e}-10\)
\(\%\) be0 = initializing vector, size(f), default, be0 \(=0.999 * k 0 * s q r t(e d)\)
\%
\% be = propagation wavenumber [rads/m], size(f)
\(\%\) ga \(=\) lateral decay constant \([1 / \mathrm{m}]\), size(f)
\(\% \mathrm{~h}=\) lateral wavenumber in dielectric coating [rads/m], size(f)
\% \(\mathrm{N}=\) number of iterations to converge, scalar, represents all f
\% E = computational error of characteristic equation, size(f)
\(\% \mathrm{pd}=\) proportion of transmitted power in dielectric coating
The iteration is stopped when two successive iterates are to within a prescribed error tolerance, that is, \(\left|\beta_{n+1}-\beta_{n}\right| \leq\) tol, typically with, tol \(=10^{-10}\), or smaller. The output parameter \(p_{d}\) represents the proportion of transmitted power residing within the dielectric coating, and is a measure of confinement. Its calculation is explained below. The computational error output \(E\) is the difference between the two sides of Eq. (10.19.15) for the last computed iterates,
\[
E=\left|\frac{\gamma}{h}-F(\beta)\right|
\]

Goubau [985] and King and Wiltse [994] made certain approximations to the characteristic equation to cast it in a more manageable form. Such approximations are not necessary in the above iteration, which is implemented using MATLAB's built-in Bessel functions. The iteration is applicable over a wide range of frequencies, including THz.

Once the fields are determined for the ideal conductor and lossless dielectric case, they can be used to calculate the attenuation coefficient \(\alpha\) (in nepers \(/ \mathrm{m}\)) along the line, following the procedures discussed in Sec. 9.2, that is,
\[
\begin{equation*}
\alpha=\frac{P_{\mathrm{loss}}^{\prime}}{2 P_{T}} \tag{10.19.18}
\end{equation*}
\]
where \(P_{\text {loss }}^{\prime}\) is the power loss per unit conductor length, and \(P_{T}\), the transmitted power.
The power loss \(P_{\text {loss }}^{\prime}\) consists of a part due to the losses in the conductor, assuming a large but finite conductivity \(\sigma\), and a part due to the losses in the dielectric coating, assuming a small (negative) imaginary part for the dielectric permittivity, \(\epsilon_{I}\). The two parts are given by,
\[
\begin{align*}
& P_{c}^{\prime}=\oint_{C} \frac{1}{2} R_{S}\left|\boldsymbol{H}_{\mathrm{tan}}\right|^{2} d l, \quad R_{S}=\sqrt{\frac{\omega \mu_{0}}{2 \sigma}} \tag{10.19.19}\\
& P_{d}^{\prime}=\frac{1}{2} \omega \epsilon_{I} \int_{S}|\boldsymbol{E}|^{2} d S
\end{align*}
\]
where \(C\) is the periphery of the conductor, i.e., the circle of radius \(\rho=a\), and \(\boldsymbol{H}_{\mathrm{tan}}\) is the tangential magnetic field on the surface, i.e., \(H_{\phi}(\rho)\) for \(\rho=a\), and \(R_{S}\) is the surface impedance of the conductor. For the dielectric, \(S\) is the cross-sectional annular area defined by \(a \leq \rho \leq b\). Thus, the total loss is given by,
\(P_{\text {loss }}^{\prime}=P_{c}^{\prime}+P_{d}^{\prime}=\frac{1}{2} R_{S}\left|H_{\phi}(a)\right|^{2}(2 \pi a)+\frac{1}{2} \omega \epsilon_{I} \int_{a}^{b}\left[\left|E_{z}\right|^{2}+\left|E_{\rho}\right|^{2}\right] 2 \pi \rho d \rho\) (10.19.20)
The transmitted power is obtained by integrating the \(z\)-component of the Poynting vector on the cross-sectional areas of the coating and the air side,
\[
\begin{equation*}
P_{T}=\int_{a}^{b} \frac{1}{2} \operatorname{Re}\left[E_{\rho} H_{\phi}^{*}\right] 2 \pi \rho d \rho+\int_{b}^{\infty} \frac{1}{2} \operatorname{Re}\left[E_{\rho} H_{\phi}^{*}\right] 2 \pi \rho d \rho \tag{10.19.21}
\end{equation*}
\]

From the solutions (10.19.11), we obtain,
\[
\begin{aligned}
P_{\text {loss }}^{\prime} & =\frac{1}{2} R_{S}(2 \pi a) \frac{k_{0}^{2} \varepsilon_{d}^{2}\left|E_{0}\right|^{2}}{\eta_{0}^{2} h^{2}} Z_{1}^{2}(h a)+ \\
& +\frac{1}{2}\left|E_{0}\right|^{2} \omega \epsilon_{I}\left[\int_{a}^{b} Z_{0}^{2}(h \rho) 2 \pi \rho d \rho+\frac{\beta^{2}}{h^{2}} \int_{a}^{b} Z_{1}^{2}(h \rho) 2 \pi \rho d \rho\right] \\
P_{T} & =\frac{1}{2} \frac{k_{0} \varepsilon_{d} \beta\left|E_{0}\right|^{2}}{\eta_{0} h^{2}} \int_{a}^{b} Z_{1}^{2}(h \rho) 2 \pi \rho d \rho+\frac{1}{2} \frac{k_{0} \varepsilon_{a} \beta\left|E_{1}\right|^{2}}{\eta_{0} \gamma^{2}} \int_{b}^{\infty} K_{1}^{2}(\gamma \rho) 2 \pi \rho d \rho
\end{aligned}
\]

Let us define the following normalized integrals that can be derived with the help of related integrals in [1790], and after using the condition \(Z_{0}(h a)=0\),
\[
\begin{align*}
& U \equiv \frac{1}{Z_{1}^{2}(h a)} \frac{2}{a^{2}} \int_{a}^{b} Z_{1}^{2}(h \rho) \rho d \rho=\frac{b^{2}}{a^{2}} \cdot \frac{Z_{1}^{2}(h b)-Z_{0}(h b) Z_{2}(h b)}{Z_{1}^{2}(h a)}-1 \\
& V \equiv \frac{1}{Z_{1}^{2}(h a)} \frac{2}{a^{2}} \int_{a}^{b} Z_{0}^{2}(h \rho) \rho d \rho=\frac{b^{2}}{a^{2}} \cdot \frac{Z_{1}^{2}(h b)+Z_{0}^{2}(h b)}{Z_{1}^{2}(h a)}-1 \\
& W \equiv \frac{Z_{1}^{2}(h b)}{Z_{1}^{2}(h a)} \frac{1}{K_{1}^{2}(\gamma b)} \frac{2}{a^{2}} \int_{b}^{\infty} K_{1}^{2}(\gamma \rho) \rho d \rho= \tag{10.19.22}\\
& \quad=\frac{Z_{1}^{2}(h b)}{Z_{1}^{2}(h a)} \cdot \frac{b^{2}}{a^{2}} \cdot \frac{K_{0}(\gamma b) K_{2}(\gamma b)-K_{1}^{2}(\gamma b)}{K_{1}^{2}(\gamma b)}
\end{align*}
\]
where the subscript 2 refers to the Bessel functions of order two. Using the relationships (10.19.13) and (10.19.14), and setting \(\varepsilon_{a}=1\), we may express \(P_{\text {loss }}^{\prime}\) and \(P_{T}\) in terms of the quantities \(U, V, W\),
\[
\begin{align*}
P_{\text {loss }}^{\prime} & =\left|E_{0}\right|^{2} \pi a^{2} \frac{k_{0}^{2} \varepsilon_{d}^{2} Z_{1}^{2}(h a)}{\eta_{0}^{2} h^{2}}\left[\frac{R_{s}}{a}+\frac{\eta_{0} \tan \theta}{2 k_{0} \varepsilon_{d}}\left(\beta^{2} U+h^{2} V\right)\right] \tag{10.19.23}\\
P_{T} & =\frac{1}{2}\left|E_{0}\right|^{2} \pi a^{2} \frac{\beta k_{0} \varepsilon_{d}^{2} Z_{1}^{2}(h a)}{\eta_{0} h^{2}}\left[\frac{1}{\varepsilon_{d}} U+W\right]
\end{align*}
\]
where we introduced the loss-tangent for the dielectric, \(\epsilon_{I}=\epsilon_{d} \tan \theta\). Dividing, we obtain the total attenuation coefficient, with the \(R_{S}\) term representing the conductor losses, and the \(\tan \theta\) term, the dielectric ones,
\[
\begin{equation*}
\alpha=\frac{P_{\text {loss }}^{\prime}}{2 P_{T}}=\frac{k_{0}}{\beta \eta_{0}} \cdot \frac{\frac{R_{s}}{a}+\frac{\eta_{0} \tan \theta}{2 k_{0} \varepsilon_{d}}\left(\beta^{2} U+h^{2} V\right)}{\frac{1}{\varepsilon_{d}} U+W} \tag{10.19.24}
\end{equation*}
\]

Eq. (10.19.24) is equivalent \({ }^{\dagger}\) to the results of [996]. By taking appropriate limits as \(d / a=(b-a) / a \rightarrow 0\), we may obtain the approximation given by King-Wiltse [994],
\[
\begin{equation*}
\alpha_{\mathrm{app}}=\frac{k_{0}}{2 \beta \eta_{0}} \cdot \frac{\frac{R_{S}}{a}+\frac{\eta_{0} \tan \theta}{k_{0} \varepsilon_{d}} \frac{d}{a} \beta^{2}}{\frac{1}{\varepsilon_{d}} \frac{d}{a}+\frac{1}{2 \gamma b}} \tag{10.19.25}
\end{equation*}
\]
\({ }^{\dagger}\) after using the Bessel function identities [1790], \(C_{0}(u)+C_{2}(u)=\frac{2}{u} C_{1}(u), K_{0}(u)-K_{2}(u)=\frac{2}{u} K_{1}(u)\).
where, to the same order of approximation, we can replace, \(\frac{d}{a}=\frac{b-a}{a} \approx \ln \left(\frac{b}{a}\right)\).
It follows also from Eq. (10.19.23) that the proportion of the transmitted power within the dielectric (one of the outputs of the function goubau) is given by,
\[
\begin{equation*}
p_{d}=\frac{\frac{1}{\varepsilon_{d}} U}{\frac{1}{\varepsilon_{d}} U+W}=\text { proportion of power in dielectric coating } \tag{10.19.26}
\end{equation*}
\]

The following MATLAB function, goubatt, implements Eqs. (10.19.24) and (10.19.25):
```

[atot,ac,ad,app,pd] = goubatt(a,b,ed,f,be,sigma,tand)
% a,b = inner and outer radii [meters]
% ed = relative dielectric constant of coating (ed>1)
% f = vector of frequencies [Hz]
% be = propagation wavenumber [rads/m], size(f), obtained from GOUBAU
% sigma = conductivity of inner conductor [siemens/m]
% tand = loss tangent of dielectric coating
%
% atot = total attenuation coefficient [nepers/m], size(f), atot = ac + ad
% ac = attenuation due to conductor [nepers/m], size(f)
% ad = attenuation due to dielectric [nepers/m], size(f)
% app = total attenuation coefficient [nepers/m], King-Wiltse-Goubau approx
% pd = proportion of transmitted power in dielectric coating
%
% conversions: dB/m = 8.68589 * atot = 20*1og10(exp(1)) * atot
% dB/100ft = 8.68589 * 30.48 * atot

```

The Goubau TM mode discussed in this section is the lowest mode propagating along a dielectric-coated metal wire. Higher modes exist and their cutoff frequencies have been discussed in \([995,998]\). The cutoff condition occurs when the lateral wavenumber \(\gamma\) in air becomes zero and the wave is no longer bound to the vicinity of the wire, becoming a leaky mode. Since \(\gamma^{2}+h^{2}=k_{0}^{2}\left(\varepsilon_{d}-1\right)\), it follows that when \(\gamma=0\), then \(h\) takes the value, \(h_{0}=k_{0} \sqrt{\varepsilon_{d}-1}\). The characteristic equation (10.19.14) then implies that \(Z_{0}\left(h_{0} b\right)=0\), or, equivalently [998],
\[
Z_{0}\left(h_{0} b\right)=J_{0}\left(h_{0} b\right)-A Y_{0}\left(h_{0} b\right)=J_{0}\left(h_{0} b\right)-\frac{J_{0}\left(h_{0} a\right)}{Y_{0}\left(h_{0} a\right)} Y_{0}\left(h_{0} b\right)=0, \quad \text { or, }
\]
\[
\begin{equation*}
J_{0}\left(h_{0} b\right) Y_{0}\left(h_{0} a\right)-J_{0}\left(h_{0} a\right) Y_{0}\left(h_{0} b\right)=0, \quad h_{0}=k_{0} \sqrt{\varepsilon_{d}-1} \tag{10.19.27}
\end{equation*}
\]

For given dimensions \(a, b\), this determines the maximum operating frequency of the lowest TM mode, or, conversely, given a frequency \(f\) and inner radius \(a\), it determines the largest radius \(b\) such that operation is restricted to the lowest mode. The MATLAB function, gcut, constructs this function, which may then be passed into fzero, to determine the cutoff frequency or cutoff radius \(b\), or, into the function plot as an aid for choosing the initial search points for fzero,
\(G=\operatorname{gcut}(a, b, e d, f)\)
\% Goubau line cutoff
a,b = inner, outer radii [meters]
\% ed = relative permittivity
\% f = frequency [Hz
\% constructs the function
\(G=J 0(h 0 * b) . * Y 0(h 0 * a)-J 0(h 0 * a) . * Y O(h 0 * b) ;\)
\% vectorized either in b, or, in f
\%
\% to be used with FZERO to find cutoff frequency or cutoff radius b:
\(\mathrm{fc}=\mathrm{fzero(@(f)} \operatorname{gcut}(\mathrm{a}, \mathrm{b}, \mathrm{ed}, \mathrm{f}), \mathrm{f0})\); \(\%\) search near f0
bc = fzero(@(b) gcut (a,b,ed,f), b0); \% search near b0
\% a convenient initial search point is the lowest cutoff
\(\%\) of the planar version: \(f 0 * d 0=c 0 /\) sqrt \((e d-1) / 2, b 0=a+d 0\)
\%
\% the function can also be used to plot G vs. f or vs.b

Example 10.19.1: In order to get an idea of what the fields look like inside and outside the dielectric, consider an unrealistic example that has too large radii, \(a=0.9 \mathrm{~cm}, b=1\) cm , to be of practical importance in THz applications. The dielectric permittivity is taken to be \(\varepsilon_{d}=2.54\) (e.g., polystyrene rexolite), and the frequency, \(f=100 \mathrm{GHz}\). Fig. 10.19.2 shows the longitudinal electric and magnetic fields, \(E_{Z}(\rho), H_{\phi}(\rho)\) as functions of the radial distance \(\rho\). Note that \(E_{z}\) vanishes at \(\rho=a\), and both are normalized to unity at \(\rho=b\). The following MATLAB code generates the graph of \(E_{z}\) :

Fig. 10.19.2 Tangential electric and magnetic fields.
ed \(=2.54\);
\(\mathrm{a}=0.9 \mathrm{e}-2 ; \mathrm{b}=1.0 \mathrm{e}-2 ; \quad \%\) meters
\(\mathrm{f}=100 \mathrm{e} 9\); \(\quad \% 100 \mathrm{GHz}\)
rel = 0.5; \(\quad \%\) relaxation parameter
[be,ga,h,N,E,pd] = goubau(a,b,ed,f,re1); \% uses default tol=1e-10
\(A=\operatorname{besselj}(0, h * a) / b e s s e l y(0, h * a)\);
\(z 0=@(r)\) besselj \((0, h * r)-A *\) bessely \((0, h * r)\);

Ezd \(=a(r)\) abs \((Z O(r) / Z O(b))\);
Eza \(=@(r)\) abs (besselk \((0, g a * r) / b e s s e 1 k(0, g a * b))\);
\% Ez in dielectric
r20 = fzero(@(r) Eza(r)-1/10, b) * 100;
\% Ez in air
\% \(20-\mathrm{dB}\) radius in cm
\(r=1 i n s p a c e(a, 1.4 * b, 400) ; \quad \%\) plot range, \(a<=r h o<=1.4 * b\)
\(E z=\operatorname{Ezd}(r) . *(r<b)+E z a(r) . *(r>=b) ;\)
figure; fill([0.9,0.9,1,1],[-0.1,1,1,-0.1], [0.9 0.9 0.9]); hold;
plot(r*100,Ez,'b-', 'linewidth',2);
plot(r20,1/10,'r.', 'markersize',22);
xlabel('\rho (cm)'); y 7 abel('|\{\itE_z\} (\(\backslash\) rho) |')
We observe how the electric field is concentrated in the vicinity of the dielectric surface at \(\rho=b\). The percentage of the transmitted power residing in the dielectric coating is \(100 p_{d}=64.63 \%\). A measure of the localization of the wave near the surface is the \(20-\mathrm{dB}\) radius defined as that distance \(\rho\) at which the \(E_{Z}\) field in the air has dropped to one-tenth its value at the surface (i.e. by 20 dB). It is obtained by solving for \(\rho\) the equation,
\[
\begin{equation*}
\left|\frac{E_{Z}(\rho)}{E_{Z}(b)}\right|=\left|\frac{K_{0}(\gamma \rho)}{K_{0}(\gamma b)}\right|=\frac{1}{10} \tag{10.19.28}
\end{equation*}
\]

We find, \(\rho=1.1451 \mathrm{~cm}\), that is, only 1.45 mm from the dielectric surface. The \(20-\mathrm{dB}\) radial distance for the magnetic field is found in a similar fashion by solving the following equation, whose solution is \(\rho=1.1449 \mathrm{~cm}\),
\[
\left|\frac{H_{\phi}(\rho)}{H_{\phi}(b)}\right|=\left|\frac{K_{1}(\gamma \rho)}{K_{1}(\gamma b)}\right|=\frac{1}{10}
\]
(10.19.29)

The computed wavenumbers were, \([\beta, \gamma, h]=[26.0121,15.4070,20.9542] \mathrm{cm}^{-1}\), the number of iterations of the iterative algorithm was \(N=12\), and the computational error, \(E=1.11 \times 10^{-15}\), with an assumed tolerance of, \(t o l=10^{-10}\).
\(\square\)
Example 10.19.2: This example is from King-Wiltse [994]. Consider a copper wire of radius, \(a=\) 0.995 cm , coated with a polystyrene dielectric of permittivity, \(\varepsilon_{d}=2.54\), and thickness, \(d=b-a=0.005 \mathrm{~cm}\), so that the outer radius is, \(b=a+d=1 \mathrm{~cm}\). The conductivity of copper is \(\sigma=5.75 \times 10^{7}\) siemens \(/ \mathrm{m}\). The frequency is varied over, \(10 \leq f \leq 1000 \mathrm{GHz}\).
The MATLAB code segment below, calculates the propagation wavenumber \(\beta\), as well as the phase and group velocities, \(v_{\mathrm{ph}}=\omega / \beta, v_{g}=d \omega / d \beta\). The graphs are shown in Figs. 10.19.3 and 10.19.4.
\begin{tabular}{ll}
\(c 0=299792458 ;\) & \% NIST value, m/sec, speed of light \\
ff = logspace (1,3,201); & \% log-spacing in GHz, 10^1 <= ff <= 10^3 \\
\(f=1 \mathrm{e} 9 * \mathrm{ff} ;\) & \(\% \mathrm{~Hz}\) \\
\(\mathrm{w}=2 * \mathrm{pi*f} ;\) &
\end{tabular}
\(f=1 e 9 * f f ;\)
\(w=2 * p i * f ;\) \% Hz
\[
\begin{array}{ll}
\mathrm{ed}=2.54 ; & \text { \% polystyrene } \\
\text { sig }=5.75 \mathrm{e} 7 ; & \text { \% copper conductivity } \\
\mathrm{a}=0.995 \mathrm{e}-2 ; & \% \text { meters } \\
\mathrm{b}=1.000 \mathrm{e}-2 ; & \% \mathrm{~d}=\mathrm{b}-\mathrm{a}=0.005 \mathrm{e}-2
\end{array}
\]
tol \(=1 \mathrm{e}-10 ;\) rel \(=0.3 ; \quad \%\) tolerance and relaxation parameters
\begin{tabular}{|c|c|}
\hline [be,ga, \(\mathrm{h}, \mathrm{N}, \mathrm{E}]=\) goubau(a,b,ed, f, rel , tol) ; & \% coated \\
\hline figure; semilogx(ff,be/1000, 'b-') & \% beta in rads/mm \\
\hline vph = w./be; & \% phase velocity \\
\hline \multicolumn{2}{|l|}{figure; semilogx(ff, vph/c0, 'b-')} \\
\hline \(\mathrm{vg}=\operatorname{diff}(\mathrm{w}) . / \mathrm{diff}(\mathrm{be})\); & \% group velocity \\
\hline figure; semilogx(ff(1:end-1), vg/c0, 'b-') & \\
\hline
\end{tabular}

For comparison, the uncoated Sommerfeld wire of the same radius, \(b=1 \mathrm{~cm}\), is calculated by the following code. In addition, the corresponding \(20-\mathrm{dB}\) radii of the coated and uncoated cases are computed and plotted in Fig. 10.19.5, in which the right graph shows an expanded view of the frequency subrange, \(500 \leq f \leq 1000 \mathrm{GHz}\).
for \(i=1\) : length (\(f\)),
Ezc \(=@(r)\) abs(besselk(0,ga(i)*r)/besselk(0,ga(i)*b));
Ezu \(=@(r)\) abs (besselh \((0,1\), gau(i)*r)/besselh \((0,1\), gau (i)*a));
\[
\begin{aligned}
& r c(i)=\text { fzero(} @(r) \operatorname{Ezc}(r)-1 / 10, \text { b) } * 1000 ; \quad \% \text { coated } \\
& \text { ru(i) = fzero(@(r) Ezu(r)-1/10, b) * 1000; } \\
& \text { \% uncoated }
\end{aligned}
\] end
figure; \(\log \log (f f, r c, ' b-', f f, r u, ' r--') ; ~ \% ~ c o a t e d ~ a n d ~ u n c o a t e d ~ 20-d B ~ r a d i i ~\) \(\mathrm{ffs}=\mathrm{ff}(\mathrm{ff}>100) ; \mathrm{rcs}=\mathrm{rc}(\mathrm{ff}>100) ; \quad \% 500<=\mathrm{f}<=1000 \mathrm{GHz}\) sub-range figure; plot(ffs, rcs, 'b-'); \% plot over sub-range

Fig. 10.19.3 Propagation wavenumber, \(\beta\).
Fig. 10.19.6 shows the attenuation coefficients for the coated and uncoated cases, computed and plotted by the following MATLAB code. The King-Wiltse approximation was restricted to the range \(f>100 \mathrm{GHz}\) in order to more closely compare our results to those of [994]. The right graph shows separately the attenuations due to the conductor and the dielectric losses. The loss tangent for the dielectric was taken to be \(\tan \theta=0.001\).

Fig. 10.19.4 Phase and group velocities in units of \(c_{0}\).

Fig. 10.19.5 Lateral 20-dB radii
tanth \(=1 \mathrm{e}-3\);
[atot, ac, ad, app] = goubatt(a,b,ed,f,be,sig,tanth);
\(\mathrm{db} 100 \mathrm{ft}=8.68589 * 30.48 *\) atot
\% convert to \(\mathrm{dB} / 100 \mathrm{ft}\)
\(\mathrm{dbc}=8.68589 * 30.48 * \mathrm{ac} ;\)
\(\mathrm{dbd}=8.68589 * 30.48 * \mathrm{ad}\)
dbapp \(=8.68589 * 30.48 * \mathrm{app}\);
f1 = ff(ff>=100);
db1 \(=\) dbapp \((f f>=100)\);
\% restrict King-Wiltse to f>100 GHz
dBu \(=-8.68589 * 30.48 *\) imag (bu) ; \(\%\) uncoated case
figure; loglog(ff,db100ft,’b-', ff,dBu,’r--', f1,db1,'k:’); \% coated figure; \(\log \log (f f, d b c, ' b-', f f, d b d, ' r--', f f, d b 100 f t, ' k: ’) ; ~ \% ~ u n c o a t e d ~\)

We observe that the coated case has substantially narrower lateral confinement, as quantified by the 20 dB radii, than the uncoated case, but at the expense of much larger attenuation. However, in THz applications, lateral confinement is more important than attenuation, because the relevant propagation distances are short, i.e., centimeters.

Fig. 10.19.6 Attenuation coefficient.

Example 10.19.3: Here, we explore the properties of the Goubau line over the THz frequency range, \(0.1 \leq f \leq 10 \mathrm{THz}\). Our choice of parameters \(a, b, \varepsilon_{d}\), and results are similar to those of Refs. [1014,1027]. We choose \(a=100 \mu \mathrm{~m}\), and two values of the permittivity of the dielectric coating, \(\varepsilon_{d}=2.54\), corresponding to a polymer, and a higher value, \(\varepsilon_{d}=9\). For each \(\varepsilon_{d}\), we compare two coating thicknesses \(d_{1}, d_{2}\), one thin and one larger near the cutoff thickness determined by (10.19.27),
\[
\begin{array}{ll}
d_{1}=b_{1}-a=10 \mu \mathrm{~m}, & \text { for } \varepsilon_{d}=2.54 \text { and } \varepsilon_{d}=9 \\
d_{2}=b_{2}-a=100 \mu \mathrm{~m}, & \text { for } \varepsilon_{d}=2.54 \\
d_{2}=b_{2}-a=50 \mu \mathrm{~m}, & \text { for } \varepsilon_{d}=9
\end{array}
\]

For the computation of the attenuations, we will assume a copper inner conductor of conductivity \(\sigma=5.8 \times 10^{7}\) siemens \(/ \mathrm{m}\), and a loss tangent of \(\tan \theta=0.001\) for both types of dielectric coatings.
Figs. 10.19 .7 and (10.19.8) show the computed propagation wavenumber \(\beta\), and the corresponding phase velocity \(\nu_{\mathrm{ph}}=\omega / \beta\).

Fig. 10.19.7 Propagation wavenumber.

Fig. 10.19.8 Phase velocity.

We note that \(\beta \approx k_{0}\) for low frequencies, switching gradually to \(\beta \approx k_{0} \sqrt{\varepsilon_{d}}\) at higher frequencies. This can be seen more clearly from the phase velocities, switching from near \(\mathcal{C}_{0}\) to near \(\mathcal{C}_{0} / \sqrt{\varepsilon_{d}}\). Over the relatively flat parts of the phase velocity, the group velocity will also be flat and equal to the phase velocity, implying that there will be very little dispersion. The flat parts are wider for the thicker coatings and cover the \(1-10 \mathrm{THz}\) range. Indeed, from the definitions of the group and phase velocities, one can show the relationship
\[
\begin{equation*}
v_{\mathrm{ph}}=\frac{\omega}{\beta}, \quad v_{g}=\frac{d \omega}{d \beta} \quad \Rightarrow \quad v_{g}=\frac{v_{\mathrm{ph}}}{1-\beta v_{\mathrm{ph}}^{\prime}} \tag{10.19.30}
\end{equation*}
\]
where \(v_{\mathrm{ph}}^{\prime}=d v_{\mathrm{ph}} / d \omega\), so that if \(\nu_{\mathrm{ph}}\) is constant over a band of \(\omega \mathrm{s}\), then so is \(v_{g}\). The MATLAB code for computing \(\beta\) and generating Figs. 10.19 .7 and (10.19.8) is as follows,
\begin{tabular}{|c|c|}
\hline c0 \(=299792458\); & \% NIST value, m/sec, speed of light \\
\hline ff = logspace (\(-1,1,100\)) & \% log-spaced in THz, \(0.1<=\mathrm{ff}\) <= 10 \\
\hline \(\mathrm{f}=1 \mathrm{e} 12 * \mathrm{ff} ; \mathrm{w}=2 * \mathrm{pi} \% \mathrm{f}\); & \% f in Hz \\
\hline \(\mathrm{a}=100 \mathrm{e}-6\); & \% 100 microns \\
\hline ed = 2.54; & \\
\hline \% ed = 9; & \% uncomment this line for ed \(=9\) \\
\hline re1 \(=0.001\); & \% relaxation parameter \\
\hline
\end{tabular}
d1 \(=10 \mathrm{e}-6\)
\% coating thickness
if \(d==2.54\), d2 \(=100 \mathrm{e}-6\); end
if ed==9.00, d2 = 50e-6; end
b1 = a+d1;
[be1,ga1,h1,N1,E1,Pd1] = goubau(a,b1,ed,f,re1); \% uses tol=1e-10
b2 = a+d2;
[be2,ga2,h2,N2,E2,Pd2] = goubau(a,b2,ed,f,re1);
figure; loglog(ff,be1./1000,'b-', ff,be2./1000,'r--'); \% rads/mm
\(\qquad\)
figure; semilogx(ff, v1, 'b-', ff, v2, 'r--');

The percentage of power in the dielectric coating is shown in Fig. 10.19.9. We note that for the thicker coating almost \(100 \%\) of transmitted power is contained in the coating, over the \(0.5-10 \mathrm{THz}\) range. The graphs were generated by the code,
figure; semilogx(ff, \(100 * P d 1, ' b-', f f, 100 * P d 2, ' r--')\);

Fig. 10.19.9 Percentage of power in dielectric coating.

The attenuations in \(\mathrm{dB} / \mathrm{cm}\) were computed by the following code and plotted in Fig. 10.19.10.

Fig. 10.19.10 Attenuation coefficient in \(\mathrm{dB} / \mathrm{cm}\).
\begin{tabular}{ll}
sigma \(=5.8 \mathrm{e} 7 ;\) & \% copper conductivity \\
tand \(=1 \mathrm{e}-3 ;\) & \(\%\) loss tangent
\end{tabular}
at1 = goubatt(a,b1,ed,f,be1,sigma,tand);
at2 \(=\) goubatt(a,b2,ed,f,be2,sigma,tand);
\(\mathrm{dbcm}=20 * \log 10(\exp (1)) / 100\);
figure; loglog(ff, at1*dbcm,'b-', ff, at2*dbcm,'r--')

The attenuations are high, but still acceptable for propagation over short distances of the order of centimeters. The above frequency plots do not necessarily imply single-mode operation, because frequency range my exceed the cutoff frequencies of the lowest TM mode. The calculated cutoff frequencies with the help of the function, gcut, are as follows,
\[
\begin{array}{l|l|l}
& \varepsilon_{d}=2.54 & \varepsilon_{d}=9 \\
\hline \text { thickness } d_{1} & f_{c}=12.0776 \mathrm{THz} & f_{c}=5.2990 \mathrm{THz} \\
\hline \text { thickness } d_{2} & f_{c}=1.2008 \mathrm{THz} & f_{c}=1.0577 \mathrm{THz}
\end{array}
\]

Single-mode operation is below these frequencies. They were computed by the following MATLAB code in which Eq. (10.20.6) was used as the initial search point for fzero,
\[
\begin{aligned}
& \mathrm{b} 1=\mathrm{a}+\mathrm{d} 1 ; \\
& \mathrm{f} 10=\mathrm{c} 0 / 2 / \mathrm{sqrt}(\mathrm{ed}-1) / \mathrm{d} 1 ; \\
& \mathrm{fc} 1=\mathrm{fzero}(@(\mathrm{f}) \operatorname{gcut}(\mathrm{a}, \mathrm{~b} 1, \mathrm{ed}, \mathrm{f}), \mathrm{f} 10) \\
& \mathrm{b} 2=\mathrm{a}+\mathrm{d} 2 ; \\
& \mathrm{f} 20=\mathrm{c} 0 / 2 / \mathrm{sqrt}(\mathrm{ed}-1) / \mathrm{d} 2 ; \\
& \mathrm{fc} 2=\mathrm{fzero}(@(\mathrm{f}) \operatorname{gcut}(\mathrm{a}, \mathrm{~b} 2, \mathrm{ed}, \mathrm{f}), \mathrm{f} 20)
\end{aligned}
\]

For the remainder of this example, let us fix the frequency to \(f=10^{12} \mathrm{~Hz}\), or, 1 THz . Figures 10.19.11 and 10.19 .12 show the dependence of the wavenumber \(\beta\) and phase velocity \(v_{\mathrm{ph}}\) on the coating thickness. As the thickness increases, and more of the wave resides in the coating, the phase velocity tends to that of the dielectric, i.e., \(\mathcal{c}_{0} / \sqrt{\varepsilon_{d}}\).

Fig. 10.19.11 Propagation wavenumbers vs. thickness at 1 THz .

The MATLAB code for generating these graphs is as follows. The power residing in the coating and the attenuations are also computed and plotted in Figs. 10.19.14 and 10.19.13. The function goubau is vectorized in the frequency variable \(f\), but not in the thickness \(b\). Therefore, the solution for each thickness must be determined with a loop,
```

ff0 = 1; f0 = 1e12*ff0; w = 2*pi*f0;
sigma = 5.8e7; tand = 1e-3;
if ed==2.54, dd = linspace(1,120,120); end % dd in microns
if ed==9.00, dd = linspace(1,50,50); end

```


Fig. 10.19.12 Phase velocity vs. thickness at 1 THz.
\[
d=d d * 1 e-6 ; b=a+d ;
\]
\% d,b in meters
for \(i=1\) : length (d)
[be(i),~,~,~,~,Pd(i)] = goubau(a,b(i),ed,f0,re1);
[atot(i),ac(i),ad(i)] = goubatt(a,b(i),ed,f0,be(i),sigma,tand); end
\[
\text { v = w./be/c0; } \quad \% \text { v in units of c0 }
\]
\(\mathrm{cm}=20 * \log 10(\exp (1)) / 100\)
figure; plot(dd, be/1000, 'b-') \% conversion to \(\mathrm{dB} / \mathrm{cm}\)
figure; plot(dd, v, 'b-')
figure; plot(dd,100*Pd,'r-')
figure; plot(dd,atot*cm,'b-', dd,ac*cm,'g--', dd,ad*cm,'r--')

Fig. 10.19.13 Power in dielectric vs. thickness at 1 THz .
The thickness range for each \(\varepsilon_{d}\) was determined by finding the maximum thickness from the cutoff condition (10.19.27). For the given \(a, f\), the MATLAB function gcut can be used to find the cutoff width, as well as to plot the cutoff function (10.19.31) versus \(b\), as shown in Fig. 10.19.15

Fig. 10.19.14 Attenuation vs. thickness at 1 THz .

Fig. 10.19.15 Cutoff thickness at 1 THz .
\(G(b)=J_{0}\left(h_{0} b\right) Y_{0}\left(h_{0} a\right)-J_{0}\left(h_{0} a\right) Y_{0}\left(h_{0} b\right)\)
The computed values of the cutoff thicknesses were \(d_{c}=52.88 \mu \mathrm{~m}\) for \(\varepsilon_{d}=2.54\), and \(d_{c}=119.88 \mu \mathrm{~m}\) for \(\varepsilon_{d}=9\). The MATLAB code is given below,
\[
\begin{aligned}
& \mathrm{f} 0=1 \mathrm{e} 12 ; \mathrm{a}=100 \mathrm{e}-6 \text {; } \\
& \mathrm{d} 0=\mathrm{c} 0 / 2 / \mathrm{sqrt}(\mathrm{ed}-1) / \mathrm{f0} \text {; } \\
& \text { b0 = a+d0; } \\
& \text { \% see Eq. (10.20.6) } \\
& \text { dc = fzero(@(b) gcut(a,b,ed,f0), b0) - a; \% cutoff thickness } \\
& \text { dd }=1 \text { inspace }(0,200,201) ; \mathrm{d}=\mathrm{dd} * 1 \mathrm{e}-6 ; \quad \% \text { dd in microns, } \mathrm{d} \text { in meters } \\
& \text { b = a + d; } \\
& \text { figure; plot(dd,gcut(a,b,ed,f0),'b-', dc*1e6, 0, 'r.'); }
\end{aligned}
\]

In conclusion, for THz applications, one can find a range of parameters \(a, b, \varepsilon_{d}\) of the Goubau line that allows single-mode operation, high lateral confinement, acceptable attenuation, and low dispersion.

\subsection*{10.20 Planar Limit of the Goubau Line}

The planar limit of the Goubau line, shown below, consists of a planar conductor with a thin dielectric coating of thickness, say, \(d\). It may be thought of as the limit of the Goubau line as the radii \(a, b\) tend to infinity, such that the difference, \(d=b-a\), remains finite. It was originally studied by Attwood [988] as a simplified version of the Goubau line. The conductor is assumed to be perfect and the dielectric, lossless.

To see how this evolves from the Goubau solution, let us rewrite Eq. (10.19.11) in a normalized way by making the substitutions for the constants \(E_{0}, E_{1}\),
\[
E_{0} \rightarrow \frac{E_{0}}{Z_{0}(h b)}, \quad E_{1} \rightarrow \frac{E_{0}}{K_{0}(\gamma b)}
\]
\[
\begin{array}{|c}
a \leq \rho \leq b \tag{10.20.1}\\
E_{Z}=E_{0} \frac{Z_{0}(h \rho)}{Z_{0}(h b)} \\
E_{\rho}=E_{0} \frac{j \beta}{h} \frac{Z_{1}(h \rho)}{Z_{0}(h b)} \\
H_{\phi}=E_{0} \frac{j k_{0} \varepsilon_{d}}{\eta_{0} h} \frac{Z_{1}(h \rho)}{Z_{0}(h b)} \\
h=\sqrt{k_{0}^{2} \varepsilon_{d}-\beta^{2}}
\end{array} \quad \begin{array}{|c}
E_{Z}=E_{0} \frac{K_{0}(\gamma \rho)}{K_{0}(\gamma b)} \\
E_{\rho}=-E_{0} \frac{j \beta}{\gamma} \frac{K_{1}(\gamma \rho)}{K_{0}(\gamma b)} \\
H_{\phi}=-E_{0} \frac{j k_{0} \varepsilon_{a}}{\eta_{0} \gamma} \frac{K_{1}(\gamma \rho)}{K_{0}(\gamma b)} \\
\gamma=\sqrt{\beta^{2}-k_{0}^{2} \varepsilon_{a}} \\
\hline
\end{array}
\]

The boundary condition at \(\rho=b\) is automatically satisfied for \(E_{z}\), whereas that for \(H_{\phi}\) is equivalent to the characteristic equation (10.19.14). Following the same limiting procedure as in Sec. 10.17, we set, \(\rho=a+x\), and, \(b=a+d\), and take the limit \(a \rightarrow \infty\) with \(x, d\) kept fixed. In this limit, we may replace the Bessel functions by their asymptotic forms [1790], for \(n=0,1\),
\[
\begin{align*}
J_{n}(u) & =\sqrt{\frac{2}{\pi u}} \cos \left(u-\frac{\pi}{4}-\frac{n \pi}{2}\right) \\
Y_{n}(u) & =\sqrt{\frac{2}{\pi u}} \sin \left(u-\frac{\pi}{4}-\frac{n \pi}{2}\right) \tag{10.20.2}\\
K_{n}(u) & =\sqrt{\frac{\pi}{2 u}} e^{-u}
\end{align*}
\]

Using (10.20.2) and some trigonometric identities, we find the following asymptotic forms, and limits as \(a \rightarrow \infty\),
\[
\begin{align*}
& \frac{Z_{0}(h \rho)}{Z_{0}(h b)}=\sqrt{\frac{b}{\rho}} \cdot \frac{\sin (h(\rho-a))}{\sin (h(b-a))}=\sqrt{\frac{a+d}{a+x}} \cdot \frac{\sin (h x)}{\sin (h d)} \rightarrow \frac{\sin (h x)}{\sin (h d)} \\
& \frac{Z_{1}(h \rho)}{Z_{0}(h b)}=-\sqrt{\frac{b}{\rho}} \cdot \frac{\cos (h(\rho-a))}{\sin (h(b-a))}=-\sqrt{\frac{a+d}{a+x}} \cdot \frac{\cos (h x)}{\sin (h d)} \rightarrow-\frac{\cos (h x)}{\sin (h d)} \tag{10.20.3}\\
& \frac{K_{0}(\gamma \rho)}{K_{0}(\gamma b)}=\frac{K_{1}(\gamma \rho)}{K_{0}(\gamma b)}=\sqrt{\frac{b}{\rho}} \cdot e^{-\gamma(\rho-b)}=\sqrt{\frac{a+d}{a+x}} \cdot e^{-\gamma(x-d)} \rightarrow e^{-\gamma(x-d)}
\end{align*}
\]

For example, we have for \(n=0,1\),
\[
\begin{aligned}
Z_{n}(h \rho) & =J_{n}(h \rho)-\frac{J_{0}(h a)}{Y_{0}(h a)} Y_{0}(h \rho) \\
& =\sqrt{\frac{2}{\pi h \rho}}\left[\cos \left(h \rho-\frac{\pi}{4}-\frac{n \pi}{2}\right)-\frac{\cos (h a-\pi / 4)}{\sin (h a-\pi / 4)} \sin \left(h \rho-\frac{\pi}{4}-\frac{n \pi}{2}\right)\right] \\
& =\sqrt{\frac{2}{\pi h \rho}} \cdot \frac{-\sin (h(\rho-a)-n \pi / 2)}{\sin (h a-\pi / 4)}
\end{aligned}
\]

The characteristic equation (10.19.14) simplifies as follows, at \(\rho=b\), or, \(x=d\),
\[
\frac{h}{\varepsilon_{d}} \frac{Z_{0}(h b)}{Z_{1}(h b)}=-\frac{\gamma}{\varepsilon_{a}} \frac{K_{0}(\gamma b)}{K_{1}(\gamma b)} \Rightarrow-\frac{h}{\varepsilon_{d}} \frac{\sin (h d)}{\cos (h d)}=-\frac{\gamma}{\varepsilon_{a}}, \quad \text { or, }
\]
\[
\frac{h}{\varepsilon_{d}} \tan (h d)=\frac{\gamma}{\varepsilon_{a}}
\]
(10.20.4)

As shown by King-Wiltse [994], this simplified form of the characteristic equation can be used as a substitute of \((10.19 .14)\) at higher frequencies, near THz. Similarly, the field solutions (10.20.1) become,
\[
\begin{array}{|l|l|}
\hline 0 \leq x \leq d & d \leq x<\infty \tag{10.20.5}\\
\hline E_{z}=E_{0} \frac{\sin (h x)}{\sin (h d)} & E_{z}=E_{0} e^{-\gamma(x-d)} \\
E_{x}=-E_{0} \frac{j \beta}{h} \frac{\cos (h x)}{\sin (h d)} & E_{x}=-E_{0} \frac{j \beta}{\gamma} e^{-\gamma(x-d)} \\
H_{y}=-E_{0} \frac{j k_{0} \varepsilon_{d}}{\eta_{0} h} \frac{\cos (h x)}{\sin (h d)} & H_{y}=-E_{0} \frac{j k_{0} \varepsilon_{a}}{\eta_{0} \gamma} e^{-\gamma(x-d)} \\
h=\sqrt{k_{0}^{2} \varepsilon_{d}-\beta^{2}} & \gamma=\sqrt{\beta^{2}-k_{0}^{2} \varepsilon_{a}} \\
\hline
\end{array}
\]
where they must be multiplied by \(e^{j \omega t-j \beta z}\). The tangential component \(E_{Z}\) vanishes on the (assumed perfect) conductor at \(x=0\), and it matches the air side at \(x=d\). The matching of \(H_{y}\) at \(x=d\) is equivalent to Eq. (10.20.4).

As in the case of the Goubau line, the cutoff condition is \(\gamma=0\), which implies through (10.20.4) that \(\tan \left(h_{0} d\right)=0, h_{0}=k_{0} \sqrt{\varepsilon_{d}-1}\). The lowest cutoff corresponds to \(h_{0} d=\pi\), or, expressed as a frequency-thickness relation,
\[
f d=\frac{c_{0}}{2 \sqrt{\varepsilon_{d}-1}}
\]
(10.20.6)

The characteristic equation (10.20.4) can be solved recursively using the same iterative procedure as for the Goubau line, that is, by writing it in the following form,
\[
\frac{\gamma}{h}=\frac{1}{\varepsilon_{d}} \tan (h d) \equiv F(\beta)
\]
with \(\varepsilon_{a}=1\), and solving the left-hand side for \(\beta\),
\[
\begin{equation*}
\beta=k_{0} \sqrt{\frac{1+\varepsilon_{d} F^{2}(\beta)}{1+F^{2}(\beta)}} \tag{10.20.7}
\end{equation*}
\]
and turning it into the recursion, for \(n=0,1,2, \ldots\),
\[
\begin{equation*}
\beta_{n+1}=r k_{0} \sqrt{\frac{1+\varepsilon_{d} F^{2}\left(\beta_{n}\right)}{1+F^{2}\left(\beta_{n}\right)}}+(1-r) \beta_{n} \tag{10.20.8}
\end{equation*}
\]
where \(r\) is a relaxation parameter, \(0<r \leq 1\). The following MATLAB function, attw, implements this iteration:
```

[be,g,h,N,E,pd] = attw(d,ed,f,r,tol,be0)
[be,g,h,N,E,pd] = attw(d,ed,f,r,tol)
[be,g,h,N,E,pd] = attw(d,ed,f,r)
% Attwood surface waveguide
(be0 = 0.999*k0*sqrt(ed))
d = coating thickness [meters]
% ed = relative dielectric constant of coating (ed>1)
% f = vector of frequencies [Hz]
% r = relaxation parameter ( }0<r<=1
% tol = computational tolerance, default tol = 1e-10
% be0 = initializing vector, size(f), default be0 = 0.999*k0*sqrt(ed)
%
% be = propagation wavenumber [rads/m], size(f)
% ga = lateral decay constant [1/m], size(f)
% h = lateral wavenumber in dielectric coating [rads/m], size(f)
% N = number of iterations to converge (for all f)
% E = computational error of characteristic equation, size(f)
% pd = proportion of transmitted power in dielectric coating

```

The attenuation coefficient may be computed by,
\[
\begin{equation*}
\alpha=\frac{P_{\text {loss }}^{\prime}}{2 P_{T}} \tag{10.20.9}
\end{equation*}
\]
where \(P_{\text {loss }}^{\prime}\) is the power loss per unit conductor length, and \(P_{T}\), the transmitted power.
The two parts of \(P_{\text {loss }}^{\prime}\) due to the losses in the conductor and to the losses in the dielectric coating are given as follows, relative to a finite strip in the \(y\)-direction of width, \(\Delta y=1\) meter,
\[
\begin{equation*}
P_{\mathrm{loss}}^{\prime}=P_{c}^{\prime}+P_{d}^{\prime}=\left.\frac{1}{2} R_{s}\left|H_{y}\right|^{2}\right|_{x=0}+\frac{1}{2} \omega \epsilon_{I} \int_{0}^{d}\left[\left|E_{Z}\right|^{2}+\left|E_{X}\right|^{2}\right] d x \tag{10.20.10}
\end{equation*}
\]
where, in terms of the loss-tangent of the dielectric, \(\epsilon_{I}=\epsilon_{0} \varepsilon_{I}=\epsilon_{0} \varepsilon_{d} \tan \theta\). The transmitted power is obtained by integrating the \(z\)-component of the Poynting vector on a \(d x \cdot \Delta y\) cross-sectional area of the coating and the air side,
\[
\begin{equation*}
P_{T}=\int_{0}^{d} \frac{1}{2} \operatorname{Re}\left[E_{x} H_{y}^{*}\right] d x+\int_{d}^{\infty} \frac{1}{2} \operatorname{Re}\left[E_{x} H_{y}^{*}\right] d x \tag{10.20.11}
\end{equation*}
\]

Using the solutions (10.20.5), the indicated integrals can be done easily, resulting in,
\[
\begin{aligned}
P_{\text {loss }}^{\prime} & =\frac{\left|E_{0}\right|^{2} k_{0}^{2} \varepsilon_{d}^{2}}{2 \eta_{0}^{2} h^{2} \sin ^{2}(h d)}\left\{R_{s}+\frac{\eta_{0} \tan \theta}{2 k_{0} \varepsilon_{d}}\left(\beta^{2}\left[d+\frac{\sin (2 h d)}{2 h}\right]+h^{2}\left[d-\frac{\sin (2 h d)}{2 h}\right]\right)\right\} \\
P_{T} & =\frac{\left|E_{0}\right|^{2} \beta k_{0} \varepsilon_{d}^{2}}{4 \eta_{0} h^{2} \sin ^{2}(h d)}\left\{\frac{1}{\varepsilon_{d}}\left[d+\frac{\sin (2 h d)}{2 h}\right]+\frac{\cos ^{2}(h d)}{\gamma}\right\}
\end{aligned}
\]
where we used Eq. (10.20.4) and set \(\varepsilon_{a}=1\). Dividing, we obtain the total attenuation coefficient, with the \(R_{s}\) term representing the conductor losses, and the \(\tan \theta\) term, the dielectric ones,
\[
\begin{equation*}
\alpha=\frac{k_{0}}{\beta \eta_{0}} \cdot \frac{R_{s}+\frac{\eta_{0} \tan \theta}{2 k_{0} \varepsilon_{d}}\left(\beta^{2}\left[d+\frac{\sin (2 h d)}{2 h}\right]+h^{2}\left[\left(d-\frac{\sin (2 h d)}{2 h}\right]\right)\right.}{\frac{1}{\varepsilon_{d}}\left[d+\frac{\sin (2 h d)}{2 h}\right]+\frac{\cos ^{2}(h d)}{\gamma}} \tag{10.20.12}
\end{equation*}
\]

It also follows from the expression for \(P_{T}\) that the proportion of the transmitted power within the dielectric is given by,
\[
\begin{equation*}
p_{d}=\frac{\frac{1}{\varepsilon_{d}}\left[d+\frac{\sin (2 h d)}{2 h}\right]}{\frac{1}{\varepsilon_{d}}\left[d+\frac{\sin (2 h d)}{2 h}\right]+\frac{\cos ^{2}(h d)}{\gamma}}=\text { power in dielectric } \tag{10.20.13}
\end{equation*}
\]

The following MATLAB function, attwatt, implements Eqs. (10.20.12) and (10.20.13):
```

[atot,ac,ad,pd] = attwatt(d,ed,f,be,sigma,tand)
% d = coating thickness [meters]
% ed = relative dielectric constant of coating (ed>1)
% f = vector of frequencies [Hz]
% be = propagation wavenumber [rads/m], same size as f, obtained from GOUBAU
% sigma = conductivity of inner conductor [siemens/m
% tand = loss tangent of dielectric coating, scalar, or, size(f)
%
% atot = total attenuation coefficient [nepers/m], size(f)
% ac = attenuation due to conductor [nepers/m], size(f)
% ad = attenuation due to dielectric [nepers/m], size(f)
% pd = proportion of transmitted power in dielectric coating
% conversions: dB/m = 8.68589 * atot = 20*log10(exp(1)) * atot
dB/100ft = 8.68589 * 30.48 * atot

```

Example 10.20.1: This example is from [988] and demonstrates that the planar version behaves very similarly to the Goubau line with respect to the dependence of the wavenumber \(\beta\) and attenuation \(\alpha\) on frequency and coating thickness.
Consider a copper planar conductor with conductivity \(\sigma=5.8 \times 10^{7}\) siemens \(/ \mathrm{m}\), covered with a dielectric coating of permittivity \(\varepsilon_{d}=4\). Three coating thicknesses are compared, \(d_{1}=1 \mathrm{~mm}, d_{2}=5 \mathrm{~mm}\), and \(d_{3}=10 \mathrm{~mm}\), over the frequency range, \(0.3 \leq f \leq 30 \mathrm{GHz}\). Figs. 10.20 .1 and 10.20 .2 show the propagation and lateral wavenumbers \(\beta, \gamma\), as well as the phase velocities, \(v_{\mathrm{ph}}=\omega / \beta\), and percentage of power in the dielectric for the three thicknesses.

Fig. 10.20.1 Propagation and lateral wavenumbers, \(\beta, \gamma\), vs. frequency.

Fig. 10.20.2 Phase velocities and power in dielectric

As in the Goubau line case, the wavenumber \(\beta\) switches gradually from near \(\beta=k_{0}\) to near \(\beta=k_{0} \sqrt{\varepsilon_{d}}\). As the coating thickness and frequency increase, the power confinement in the coating increases, while the field strength outside the coating decreases with distance, as measured by the value of the decay constant \(\gamma^{-1}\). The following MATLAB code generates the graphs,
\[
\begin{aligned}
& c 0=299792458 ; \\
& \text { ed }=4 ;
\end{aligned}
\]
\(\mathrm{d} 1=1 \mathrm{e}-3 ; \mathrm{d} 2=5 \mathrm{e}-3 ; \mathrm{d} 3=10 \mathrm{e}-3 ; \quad \%\) meters
\(\mathrm{ff}=3^{*}\) logspace \((-1,1,100)\);
\(\% 0.3<=\mathrm{ff}<=30 \mathrm{GHz}\)
f = ff * 1e9;
\% Hz
re1 = 0.01;
\% relaxation parameter
[be1,ga1,h1,N1,E1,pd1] = attw(d1,ed,f,re1);
\([\) be2, ga2, h2, N2, E2, pd2] \(=\operatorname{attw}(d 2, e d, f, r e 1)\);
\([\mathrm{be} 3, \mathrm{ga} 3, \mathrm{~h} 3, \mathrm{~N} 3, \mathrm{E} 3, \mathrm{pd} 3]=\operatorname{attw}(\mathrm{d} 3, \mathrm{ed}, \mathrm{f}, \mathrm{re} 1)\);
\(v 1=w . / b e 1 / c 0 ; ~ v 2=w . / b e 2 / c 0 ; ~ v 3=w . / b e 3 / c 0\);
figure; \(\log \log (f f, b e 1, ' b-', f f, b e 2, ' r--', f f, b e 3, ~ ' k: ’)\)
figure; \(\log \log (f f, g a 1, ' b-', f f, g a 2, ' r--', f f, g a 3, ' k: ')\)
figure; semilogx(ff,v1,'b-', ff,v2,'r--',ff,v3,'b:')
figure; semilogx(ff, 100*pd1,'b-', ff, 100*pd2,'r--', ff, 100*pd3,'k:');
The attenuations in the conductor and the dielectric are shown in Fig. 10.20.3. The loss tangent in the dielectric was assumed in [988] to arise from a very small conductivity, i.e.,
\[
\tan \theta=\frac{\sigma_{d}}{\omega \epsilon_{d}}=\frac{\sigma_{d}}{\omega \epsilon_{0} \varepsilon_{d}}, \quad \sigma_{d}=6.6667 \times 10^{-4} \text { siemens } / \mathrm{m}
\]

Fig. 10.20.3 Attenuations in conductor and dielectric coating.
The MATLAB code generating the graphs was,
ep0 \(=8.854187817 \mathrm{e}-12\);
sigma \(=5.8 \mathrm{e} 7\);
sigd \(=6.6667 \mathrm{e}-4\);
\% NIST value, vacuum permittivity
\% copper conductor
\% dielectric
\(\mathrm{w}=2 * \mathrm{pi} * \mathrm{f}\);
tand \(=\) sigd./w/ep0/ed;
[at1,ac1,ad1] = attwatt(d1,ed,f,be1,sigma,tand);
\([a t 2, a c 2, a d 2]=\operatorname{attwatt}(d 2\), ed,f,be2, sigma,tand) ;
[at3,ac3,ad3] = attwatt(d3,ed,f,be3, sigma,tand);

\section*{\(\mathrm{db}=8.68589\); \(\%\) convert to \(\mathrm{dB} / \mathrm{m}\)}
figure; \(\log \log (f f, d b * a c 1, ' b-', f f, d b * a c 2, ' r--,, f f, d b * a c 3, ' k: ’) ;\)
figure; loglog(ff,db*ad1,'b-', ff,db*ad2,'r--', ff,db*ad3,'k:’);
As expected, the attenuation in the dielectric increases with thickness and frequency.

\subsection*{10.21 Problems}
10.1 Prove Eq. (10.3.8). To do so, introduce the following polar forms,
\[
-\varepsilon_{f}=\varepsilon_{R}+j \varepsilon_{I}=\left|\varepsilon_{f}\right| e^{j \theta}, \quad-\varepsilon_{f}-\varepsilon_{c}=\varepsilon_{R}-\varepsilon_{c}+j \varepsilon_{I}=\left|\varepsilon_{f}+\varepsilon_{c}\right| e^{j \phi}
\]

Then, using Eqs. (10.2.6) and some trig identities, show that Eq. (10.3.8) reduces to the equivalent condition,
\[
\left|\varepsilon_{f}\right|(\sin \theta+\sin (\phi-\theta))+\varepsilon_{c}(\sin \theta-\sin \phi)=\varepsilon_{I}\left(1+\frac{\varepsilon_{c}}{\left|\varepsilon_{f}\right|}\right)
\]

Then, verify this condition by first proving the relationships,
\[
\sin (\phi-\theta)=\frac{\varepsilon_{c} \varepsilon_{I}}{\left|\varepsilon_{f}\right| \cdot\left|\varepsilon_{f}+\varepsilon_{c}\right|}, \quad \sin \theta=\frac{\varepsilon_{I}}{\left|\varepsilon_{f}\right|}, \quad \sin \phi=\frac{\varepsilon_{I}}{\left|\varepsilon_{f}+\varepsilon_{c}\right|}
\]
10.2 Prove Eqs. (10.3.9)-(10.3.11) and thereby prove the equality \(v_{g}=v_{\text {en }}\) for the lossless case of surface plasmons along a single metal-dielectric interface.
10.3 Using some hyperbolic trigonometric identities, show that Eq. (10.1.6) for the transverse magnetic field in a plasmonic waveguide can be written in the following equivalent forms which are commonly found in the literature,
\[
H_{y}(x)=H_{1} \cdot \begin{cases}\cosh (\gamma(x-a))-\frac{p_{c} \alpha_{c}}{\gamma} \sinh (\gamma(x-a)), & |x| \leq a \tag{10.21.1}\\ e^{-\alpha_{c}(x-a)}, & x \geq a \\ {\left[\cosh (2 \gamma a)+\frac{p_{c} \alpha_{c}}{\gamma} \sinh (2 \gamma a)\right] e^{\alpha_{s}(x+a)},} & x \leq-a\end{cases}
\]
and
\[
H_{y}(x)=H_{2} \cdot \begin{cases}\cosh (\gamma(x+a))+\frac{p_{s} \alpha_{s}}{\gamma} \sinh (\gamma(x+a)), & |x| \leq a \tag{10.21.2}\\ {\left[\cosh (2 \gamma a)+\frac{p_{s} \alpha_{s}}{\gamma} \sinh (2 \gamma a)\right] e^{-\alpha_{c}(x-a)},} & x \geq a \\ e^{\alpha_{s}(x+a)}, & x \leq-a\end{cases}
\]
and show that the new constants \(H_{1}, H_{2}\) are related to \(H_{0}\) of Eq. (10.1.6) by
\[
H_{1}=H_{0} \cosh (\gamma a+\psi), \quad H_{2}=H_{0} \cosh (\gamma a-\psi)
\]
10.4 Consider a symmetric MDM plasmonic waveguide with film width \(2 a\) and permittivities \(\varepsilon_{f}\) and \(\varepsilon_{c}=\varepsilon_{s}\), and assume lossless media so that \(\varepsilon_{f}\) is real positive and \(\varepsilon_{c}\), real negative. We saw at the end of Sec. 10.4 that complex modes can exist in the lossless case that are highly damped and carry no net power in the propagation direction. Consider a \(\mathrm{TM}_{0}\) complex mode with \(\beta=\beta_{R}-j \beta_{I}, \gamma=\gamma_{R}+j \gamma_{I}\), and \(\alpha_{c}=\alpha_{R}+j \alpha_{I}\), satisfying the characteristic equation,
\(\tanh (\gamma a)=-p_{c} \alpha_{c} / \gamma, p_{c}=\varepsilon_{f} / \varepsilon_{c}\). The magnetic field is given by Eq. (10.1.5) with \(\psi=0\). By integrating the \(z\)-component of the Poynting vector over the transverse \(x\)-direction, show that up to an overall positive constant, the powers flowing within the dielectric film and metal sides are given by
\[
P_{f}=\frac{\beta_{R}}{\varepsilon_{f}}\left[\frac{\sinh \left(2 \gamma_{R} a\right)}{2 \gamma_{R}}+\frac{\sin \left(2 \gamma_{I} a\right)}{2 \gamma_{I}}\right], \quad 2 P_{c}=\frac{\beta_{R}}{\varepsilon_{C}}\left[\frac{\cosh \left(2 \gamma_{R} a\right)+\cos \left(2 \gamma_{I} a\right)}{2 \alpha_{R}}\right]
\]

Using the characteristic equation, prove that \(P_{f}=-2 P_{c}\), so that the net power is zero, \(P=P_{f}+2 P_{c}=0\). Hint: Prove and use the following two results, \(\alpha_{R} \alpha_{I}=\gamma_{R} \gamma_{I}\), and
\[
\tanh \left(\left(\gamma_{R}+j \gamma_{I}\right) a\right)=\frac{\sinh \left(2 \gamma_{R} a\right)+j \sin \left(2 \gamma_{I} a\right)}{\cosh \left(2 \gamma_{R} a\right)+\cos \left(2 \gamma_{I} a\right)}
\]
10.5 Consider a symmetric MDM plasmonic waveguide with film width \(2 a\) and permittivities \(\varepsilon_{f}\) for the dielectric film and \(\varepsilon_{c}=\varepsilon_{s}\) for the metal sides. Let \(\beta, \gamma, \alpha_{c}\) be the propagation parameters for the corresponding symmetric solution satisfying the characteristic equation, \(\gamma \tanh (\gamma a)=-p_{c} \alpha_{c}\), where \(p_{c}=\varepsilon_{f} / \varepsilon_{c}\). Show that if \(\varepsilon_{c}\) is changed by a small amount \(\Delta \varepsilon_{c}\), that is, \(\varepsilon_{c} \rightarrow \varepsilon_{c}+\Delta \varepsilon_{c}\), then the propagation wavenumber changes from \(\beta\) to \(\beta+\Delta \beta\), where
\[
\begin{equation*}
\Delta \beta=\frac{\gamma}{\beta} \cdot \Delta \gamma, \quad \Delta \gamma=\frac{k_{0} p_{c}\left(\frac{\gamma}{k_{0}}\right)\left(\frac{\alpha_{c}^{2}}{k_{0}^{2} \varepsilon_{c}}+\frac{1}{2}\right)}{\left(k_{0} a\right)\left(\frac{\gamma^{2} \alpha_{c}}{k_{0}^{3}}\right)\left(1-\frac{p_{c}^{2} \alpha_{c}^{2}}{\gamma^{2}}\right)-p_{c}\left(\varepsilon_{f}-\varepsilon_{c}\right)} \cdot \Delta \varepsilon_{c} \tag{10.21.3}
\end{equation*}
\]
10.6 Computer Experiment: Anomalous Complex Modes. This problem is based on [952]. Consider an MDM guide that has \(\varepsilon_{c}=\varepsilon_{s}=-10, \varepsilon_{f}=1\), and film width \(2 a=\lambda_{0} / 4\). It corresponds to a lossless case, and therefore the modes will come in pairs, \(\pm \beta_{R}-j \beta_{I}\), and (except for the even \(q=0\) mode) carry no net power. The following two tables show the computed even and odd modes, where the index \(q\) and the \(\pm\) signs refer to Eq. (10.9.2), and even and odd correspond to the index \(m=0,1\) in Eq. (10.9.2).
\begin{tabular}{|c|c|c|c|c|}
\hline 9 & & \(\beta / k_{0}\) (even modes) & \(\gamma / k_{0}\) & \(\alpha_{c} / k_{0}\) \\
\hline 0 & & 1.21340 & 0.68728j & 3.38709 \\
\hline 1 & - & 0.07361 - 3.87013j & 0.07127-3.99720j & 0.12755-2.23356j \\
\hline 1 & + & -0.07361-3.87013j & \(0.07127+3.99720 j\) & \(0.12755+2.23356 j\) \\
\hline 2 & - & 0.11711-7.93691j & 0.11620-7.99965j & 0.12768-7.27992j \\
\hline 2 & + & -0.11711-7.93691j & \(0.11620+7.99965 j\) & \(0.12768+7.27992 j\) \\
\hline 3 & - & 0.12317-11.95816j & 0.12274-11.99990j & \(0.12772-11.53251 j\) \\
\hline 3 & \(+\) & -0.12317-11.95816j & \(0.12274+11.99990 j\) & \(0.12772+11.53251 j\) \\
\hline 9 & & \(\beta / k_{0}\) (odd modes) & \(\gamma / k_{0}\) & \(\alpha_{c} / k_{0}\) \\
\hline 0 & & -1.50304j & 1.80531j & 2.78224 \\
\hline 1 & - & 0.10788-5.91526j & 0.10637-5.99917j & 0.12764-4.99950j \\
\hline 1 & + & -0.10788-5.91526j & \(0.10637+5.99917 j\) & \(0.12764+4.99950 j\) \\
\hline 2 & - & 0.12109-9.94970j & 0.12048-9.99982j & 0.12771-9.43388j \\
\hline 2 & + & -0.12109-9.94970j & \(0.12048+9.99982 j\) & \(0.12771+9.43388 j\) \\
\hline 3 & - & 0.12441-13.96418j & 0.12409-13.99993j & 0.12773-13.60144j \\
\hline 3 & + & -0.12441-13.96418j & \(0.12409+13.99993 j\) & \(0.12773+13.60144 j\) \\
\hline
\end{tabular}
a. Following Example 10.9.1, write MATLAB code that verifies the entries in the above tables. In addition, calculate the corresponding error norms of the two tables.
b. For all cases, calculate the net power for each mode, as well as the amount of power and its direction flowing in the metal and the dielectric media. Note that the \(q=0\) even mode is the fundamental G-SPP mode. The \(q=0\) odd mode is truly evanescent in the sense that it has \(\beta_{R}=0\) and \(\beta_{I}=-\operatorname{Im}(\beta)>0\), and it is laterally confined since \(\alpha_{C}\) is positive real. This mode carries no power in any of the three media-explain why.
10.7 Verify the equality Eq. (10.16.9). As a preliminary step, use the definition, \(\gamma_{c}^{2}=k_{0}^{2} \varepsilon_{c}-\beta^{2}=\) \(k_{0}^{2}\left(\varepsilon_{R}-j \varepsilon_{I}\right)-\left(\beta_{R}-j \beta_{I}\right)^{2}\), to show the following relationship,
\[
2 \beta_{I} \operatorname{Re}\left[\beta \varepsilon_{c}^{*}\right]-|\beta|^{2} \varepsilon_{I}=\varepsilon_{c} \operatorname{Im}\left[\gamma_{c}^{2}\right]+\varepsilon_{I} \gamma_{c}^{2}
\]
10.8 The Zenneck surface wave was discussed in Sec. 10.17 with field solutions given by Eqs. (10.17.3). Consider a rectangular volume, \(L_{x} L_{y} L_{z}\), within the conductor whose top side coincides with the interface with the air side, as shown below.

You may assume \(L_{y}=1\) meter. Following a similar discussion as that carried out for the Sommerfeld wire, show that the power flowing into this volume from all sides is given by,
\[
\mathcal{P}_{\text {in }}=\omega \frac{1}{2} \epsilon_{0}\left|E_{0}\right|^{2}\left(1-e^{-2 \beta_{I} L_{z}}\right)\left(1-e^{-2 \alpha_{c} L_{x}}\right)\left[\frac{\operatorname{Re}\left[\gamma_{c} \varepsilon_{c}^{*}\right]}{2 \beta_{I} \cdot\left|\gamma_{c}\right|^{2}}+\frac{\operatorname{Re}\left[\beta \varepsilon_{c}^{*}\right]}{2 \alpha_{c} \cdot\left|\gamma_{c}\right|^{2}}\right]
\]
where \(\alpha_{c}=-\operatorname{Im}\left(\gamma_{c}\right)>0\). Similarly, show that the power dissipated into Ohmic losses within the \(L_{x} L_{y} L_{z}\) volume is given by,
\[
\mathcal{P}_{\text {loss }}=\omega \frac{1}{2} \epsilon_{0}\left|E_{0}\right|^{2}\left(1-e^{-2 \beta_{I} L_{z}}\right)\left(1-e^{-2 \alpha_{c} L_{x}}\right)\left[\frac{\varepsilon_{I}|\beta|^{2}+\varepsilon_{I}\left|\gamma_{c}\right|^{2}}{2 \beta_{I} \cdot 2 \alpha_{c} \cdot\left|\gamma_{c}\right|^{2}}\right]
\]
where \(\varepsilon_{I}=-\operatorname{Im}\left(\varepsilon_{c}\right)\). Finally, using the relationship \(\gamma_{c}^{2}=k_{0}^{2} \varepsilon_{c}-\beta^{2}\), show that \(\mathcal{P}_{\text {in }}=\mathcal{P}_{\text {loss }}\).
10.9 The planar limit of the Goubau line discussed in Sec. 10.20 is obtained in the limit \(a, b \rightarrow \infty\), such that the thickness, \(d=b-a\), is kept constant. Show that the attenuation coefficient (10.20.12) of the planar case is obtained as the limit of the Goubau line attenuation (10.19.24) To do so, use the asymptotic forms (10.20.2) inside the integrands of Eqs. (10.19.22) to show the following limiting forms for the \(U, V, W\),
\[
U \approx \frac{1}{a} \cdot\left[d+\frac{\sin (2 h d)}{2 h}\right], \quad V \approx \frac{1}{a} \cdot\left[d-\frac{\sin (2 h d)}{2 h}\right], \quad W \approx \frac{b}{a^{2}} \cdot \frac{\cos ^{2}(h d)}{\gamma}
\]

Then, use these into (10.19.24) and apply the planar limit.```

[^0]: ${ }^{\dagger}$ In the literature, sometimes the labeling is reversed, referring instead to the symmetry or antisymmetry of the longitudinal field $E_{Z}(x)$ which is the opposite of that of $E_{X}(x)$.

