
8
Multilayer Film Applications

8.1 Multilayer Dielectric Structures at Oblique Incidence

Using the matching and propagation matrices for transverse fields that we discussed
in Sec. 7.3, we derive here the layer recursions for multiple dielectric slabs at oblique
incidence.

Fig. 8.1.1 shows such a multilayer structure. The layer recursions relate the various
field quantities, such as the electric fields and the reflection responses, at the left of
each interface.

Fig. 8.1.1 Oblique incidence on multilayer dielectric structure.

We assume that there are no incident fields from the right side of the structure.
The reflection/refraction angles in each medium are related to each other by Snel’s law
applied to each of the M + 1 interfaces:

na sinθa = ni sinθi = nb sinθb , i = 1,2, . . . ,M (8.1.1)

It is convenient also to define by Eq. (7.3.8) the propagation phases or phase thick-
nesses for each of the M layers, that is, the quantities δi = kzili. Using kzi = k0ni cosθi,
where k0 is the free-space wavenumber, k0 = ω/c0 = 2πf/c0 = 2π/λ, we have for
i = 1,2, . . . ,M:
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δi = ω
c0

nili cosθi = 2π
λ

nili cosθi = 2π
λ

lini

√√√√1− n2
a sin2 θa
n2
i

(8.1.2)

where we used Eq. (8.1.1) to write cosθi =
√

1− sin2 θi =
√

1− n2
a sin2 θa/n2

i . The
transverse reflection coefficients at the M + 1 interfaces are defined as in Eq. (6.1.1):

ρTi = nT,i−1 − nTi
nT,i−1 + nTi

, i = 1,2, . . . ,M + 1 (8.1.3)

where we set nT0 = nTa, as in Sec. 6.1. and nT,M+1 = nTb. The transverse refractive
indices are defined in each medium by Eq. (7.2.13):

nTi =
⎧⎨
⎩

ni
cosθi

, TM polarization

ni cosθi , TE polarization
, i = a,1,2, . . . ,M, b (8.1.4)

To obtain the layer recursions for the electric fields, we apply the propagation matrix
(7.3.5) to the fields at the left of interface i + 1 and propagate them to the right of the
interface i, and then, apply a matching matrix (7.3.11) to pass to the left of that interface:

[
ETi+
ETi−

]
= 1

τTi

[
1 ρTi
ρTi 1

][
ejδi 0
0 e−jδi

][
ET,i+1,+
ET,i+1,−

]

Multiplying the matrix factors, we obtain:

[
ETi+
ETi−

]
= 1

τTi

[
ejδi ρTie−jδi

ρTiejδi e−jδi

][
ET,i+1,+
ET,i+1,−

]
, i =M,M − 1, . . . ,1 (8.1.5)

This is identical to Eqs. (6.1.2) with the substitutions kili → δi and ρi → ρTi. The
recursion is initialized at the left of the (M+1)st interface by performing an additional
matching to pass to the right of that interface:

[
ET,M+1,+
ET,M+1,−

]
= 1

τT,M+1

[
1 ρT,M+1

ρT,M+1 1

][
E′T.M+1,+

0

]
(8.1.6)

It follows now from Eq. (8.1.5) that the reflection responses, ΓTi = ETi−/ETi+, will
satisfy the identical recursions as Eq. (6.1.5):

ΓTi = ρTi + ΓT,i+1e−2jδi

1+ ρTiΓT,i+1e−2jδi
, i =M,M − 1, . . . ,1 (8.1.7)

and initialized at ΓT,M+1 = ρT,M+1. Similarly, we obtain the following recursions for
the total transverse electric and magnetic fields at each interface (they are continuous
across each interface):[

ETi
HTi

]
=

[
cosδi jηTi sinδi

jη−1
Ti sinδi cosδi

][
ET,i+1

HT,i+1

]
, i =M,M − 1, . . . ,1 (8.1.8)
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where ηTi are the transverse characteristic impedances defined by Eq. (7.2.12) and re-
lated to the refractive indices by ηTi = η0/nTi. The wave impedances, ZTi = ETi/HTi,
satisfy the following recursions initialized by ZT,M+1 = ηTb:

ZTi = ηTi
ZT,i+1 + jηTi tanδi
ηTi + jZT,i+1 tanδi

, i =M,M − 1, . . . ,1 (8.1.9)

The MATLAB function multidiel that was introduced in Sec. 6.1 can also be used
in the oblique case with two extra input arguments: the incidence angle from the left
and the polarization type, TE or TM. Its full usage is as follows:

[Gamma1,Z1] = multidiel(n,L,lambda,theta,pol); % multilayer dielectric structure

where theta is the angle θ = θa and pol is one of the strings ’te’ or ’tm’. If the angle
and polarization arguments are omitted, the function defaults to normal incidence for
which TE and TM are the same. The other parameters have the same meaning as in
Sec. 6.1.

In using this function, it is convenient to normalize the wavelength λ and the optical
lengths nili of the layers to some reference wavelength λ0. The frequency f will be
normalized to the corresponding reference frequency f0 = c0/λ0.

Defining the normalized thicknesses Li = nili/λ0, so that nili = Liλ0, and noting
that λ0/λ = f/f0, we may write the phase thicknesses (8.1.2) in the normalized form:

δi = 2π
λ0

λ
Li cosθi = 2π

f
f0
Li cosθi , i = 1,2, . . . ,M (8.1.10)

Typically, but not necessarily, the Li are chosen to be quarter-wavelength long at
λ0, that is, Li = 1/4. This way the same multilayer design can be applied equally well
at microwave or at optical frequencies. Once the wavelength scale λ0 is chosen, the
physical lengths of the layers li can be obtained from li = Liλ0/ni.

8.2 Lossy Multilayer Structures

The multidiel function can be revised to handle lossy media. The reflection response
of the multilayer structure is still computed from Eq. (8.1.7) but with some changes.
In Sec. 7.7 we discussed the general case when either one or both of the incident and
transmitted media are lossy.

In the notation of Fig. 8.1.1, we may assume that the incident medium na is lossless
and all the other ones, ni, i = 1,2, . . . ,M, b, are lossy (and nonmagnetic). To imple-
ment multidiel, one needs to know the real and imaginary parts of ni as functions
of frequency, that is, ni(ω)= nRi(ω)−jnIi(ω), or equivalently, the complex dielectric
constants of the lossy media:

εi(ω) = εRi(ω)−jεIi(ω) , i = 1,2, . . . ,M, b

ni(ω) =
√
εi(ω)
ε0

=
√
εRi(ω)−jεIi(ω)

ε0
= nRi(ω)−jnIi(ω)

(8.2.1)
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Snel’s law given in Eq. (8.1.1) remains valid, except now the angles θi and θb are
complex valued because ni, nb are. One can still define the transverse refractive indices
nTi through Eq. (8.1.4) using the complex-valued ni, and cosθi given by:

cosθi =
√

1− sin2 θi =
√√√√1− n2

a sin2 θa
n2
i

, i = a,1,2 . . . ,M, b (8.2.2)

The reflection coefficients defined in Eq. (8.1.3) are equivalent to those given in
Eq. (7.7.2) for the case of arbitrary incident and transmitted media.

The phase thicknesses δi now become complex-valued and are given by δi = kzili,
where kzi is computed as follows. From Snel’s law we have kxi = kxa =ω√μ0ε0na sinθa
= k0na sinθa, where k0 =ω√μ0ε0 =ω/c0 is the free-space wave number. Then,

kzi =
√
ω2μ0εi − k2

xi =
ω
c0

√
n2
i − n2

a sin2 θa , i = a,1, . . . ,M, b (8.2.3)

Thus, the complex phase thicknesses are given by:

δi = kzili = ωli
c0

√
n2
i − n2

a sin2 θa , i = 1,2, . . . ,M (8.2.4)

Writing c0 = f0λ0 for some reference frequency and wavelength, we may re-express
(8.2.4) in terms of the normalized frequency and normalized physical lengths:

δi = kzili = 2π
f
f0

li
λ0

√
n2
i − n2

a sin2 θa , i = 1,2, . . . ,M (8.2.5)

To summarize, given the complex ni(ω) as in Eq. (8.2.1) at each desired value of
ω, we calculate cosθi from Eq. (8.2.2), nTi and ρTi from Eqs. (8.1.4) and (8.1.3), and
thicknesses δi from Eq. (8.2.5). Then, we use (8.1.7) to calculate the reflection response.
The MATLAB function multidiel2 implements these steps, with usage:

[Gamma1,Z1] = multidiel2(n,l,f,theta,pol); % lossy multilayer structure

Once Γ1 is determined, one may calculate the power entering each layer as well as
the power lost within each layer. The time-averaged power per unit area entering the ith
layer is the z-component of the Poynting vector, which is given in terms of the transverse
E,H fields as follows:

Pi = 1

2
Re

(
ETiH∗

Ti
)
, i = 1,2, . . . ,M (8.2.6)

The power absorbed within the ith layer is equal to the difference of the power
entering the layer and the power leaving it:

Ploss
i = Pi −Pi+1 , i = 1,2, . . . ,M (8.2.7)

The transverse fields can be calculated by inverting the recursion (8.1.8), that is,
[
ET,i+1

HT,i+1

]
=

[
cosδi −jηTi sinδi

−jη−1
Ti sinδi cosδi

][
ETi
HTi

]
, i = 1,2, . . . ,M (8.2.8)
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The recursion is initialized with the fields ET1,HT1 at the first interface. These can
be calculated with the help of Γ1:

ET1 = ET1+ + ET1− = ET1+(1+ Γ1)

HT1 = 1

ηTa

(
ET1+ − ET1−

) = 1

ηTa
ET1+(1− Γ1)

(8.2.9)

where ηTa = η0/nTa. The field ET1+ is the transverse component of the incident field.
If we denote the total incident field by Ein, then ET1+ will be given by:

ET1+ =
⎧⎨
⎩Ein , TE case

Ein cosθa , TM case
(8.2.10)

The total incident power (along the direction of the incident wave vector), its z-
component, and the power entering the first layer will be given as follows (in both the
TE and TM cases):

Pin = 1

2ηa
|Ein|2 , Pin,z = Pin cosθa , P1 = Pin,z

(
1− |Γ1|2

)
(8.2.11)

where ηa = η0/na. Thus, one can start with Ein =
√

2ηaPin, if the incident power is
known.

8.3 Single Dielectric Slab

Many features of oblique incidence on multilayer slabs can be clarified by studying the
single-slab case, shown in Fig. 8.3.1. Assuming that the media to the left and right are
the same, na = nb, it follows that θb = θa and also that ρT1 = −ρT2. Moreover, Snel’s
law implies na sinθa = n1 sinθ1.

Fig. 8.3.1 Oblique incidence on single dielectric slab.

Because there are no incident fields from the right, the reflection response at the
left of interface-2 is: ΓT2 = ρT2 = −ρT1. It follows from Eq. (8.1.7) that the reflection
response at the left of interface-1 will be:
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ΓT1 = ρT1 + ρT2e−2jδ1

1+ ρT1ρT2e−2jδ1
= ρT1(1− e−2jδ1)

1− ρ2
T1e−2jδ1

(8.3.1)

These are analogous to Eqs. (5.4.6) and (5.5.4), i.e., the normal and oblique inci-
dence cases differ only in the definitions of the reflection coefficients. According to
Eq. (8.1.10), the phase thickness can be written in the following normalized form, where
L1 = n1l1/λ0:

δ1 = 2π
λ0

λ
L1 cosθ1 = 2π

f
f0
L1 cosθ1 = π

f
f1

(8.3.2)

f1 = f0

2L1 cosθ1
(8.3.3)

At frequencies that are integral multiples of f1, f = mf1, the reflection response
vanishes because 2δ1 = 2π(mf1)/f1 = 2πm and e−2jδ1 = 1. Similarly, at the half-
integral multiples, f = (m+ 0.5)f1, the response is maximum because e−2jδ1 = −1.

Because f1 depends inversely on cosθ1, then as the angle of incidence θa increases,
cosθ1 will decrease and f1 will shift towards higher frequencies. The maximum shift
will occur when θ1 reaches its maximum refraction value θ1c = asin(na/n1) (assuming
na < n1.)

Similar shifts occur for the 3-dB width of the reflection response notches. By the
same calculation that led to Eq. (5.5.9), we find for the 3-dB width with respect to the
variable δ1:

tan
(
Δδ1

2

)
= 1− ρ2

T1

1+ ρ2
T1

Setting Δδ1 = πΔf/f1, we solve for the 3-dB width in frequency:

Δf = 2f1

π
atan

(
1− ρ2

T1

1+ ρ2
T1

)
(8.3.4)

The left/right bandedge frequencies are f1 ± Δf/2. The dependence of Δf on the
incidence angle θa is more complicated here because ρT1 also depends on it.

In fact, as θa tends to its grazing value θa → 90o, the reflection coefficients for
either polarization have the limit |ρT1| → 1, resulting in zero bandwidth Δf . On the
other hand, at the Brewster angle, θaB = atan(n1/na), the TM reflection coefficient
vanishes, resulting in maximum bandwidth. Indeed, because atan(1)= π/4, we have
Δfmax = 2f1 atan(1)/π = f1/2.

Fig. 8.3.2 illustrates some of these properties. The refractive indices were na = nb =
1 and n1 = 1.5. The optical length of the slab was taken to be half-wavelength at the
reference wavelength λ0, so that n1l1 = 0.5λ0, or, L1 = 0.5.

The graphs show the TE and TM reflectances |ΓT1(f)|2 as functions of frequency
for the angles of incidence θ1 = 75o and θa = 85o. The normal incidence case is also
included for comparison.

The corresponding refracted angles were θ1 = asin
(
na asin(θa)/n1

) = 40.09o and
θ1 = 41.62o. Note that the maximum refracted angle is θ1c = 41.81o, and the Brewster
angle, θaB = 56.31o.
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Fig. 8.3.2 TE and TM reflectances of half-wavelength slab.

The notch frequencies were f1 = f0/(2L1 cosθ1)= 1.31f0 and f1 = 1.34f0 for the
angles θa = 75o and 85o. At normal incidence we have f1 = f0/(2L1)= f0, because
L1 = 0.5.

The graphs also show the 3-dB widths of the notches, calculated from Eq. (8.3.4).
The reflection responses were computed with the help of the function multidiel with
the typical MATLAB code:

na = 1; nb = 1;
n1 = 1.5; L1 = 0.5;

f = linspace(0,3,401);
theta = 75;

G0 = abs(multidiel([na,n1,nb], L1, 1./f)).^2;
Ge = abs(multidiel([na,n1,nb], L1, 1./f, theta, ’te’)).^2;
Gm = abs(multidiel([na,n1,nb], L1, 1./f, theta, ’tm’)).^2;

The shifting of the notch frequencies and the narrowing of the notch widths is evi-
dent from the graphs. Had we chosen θa = θaB = 56.31o, the TM response would have
been identically zero because of the factor ρT1 in Eq. (8.3.1).

The single-slab case is essentially a simplified version of a Fabry-Perot interferometer
[638], used as a spectrum analyzer. At multiples of f1, there are narrow transmittance
bands. Because f1 depends on f0/ cosθ1, the interferometer serves to separate different
frequencies f0 in the input by mapping them onto different angles θ1.

Next, we look at three further applications of the single-slab case: (a) frustrated total
internal reflection, (b) surface plasmon resonance, and (c) the perfect lens property of
negative-index media.

8.4 Frustrated Total Internal Reflection

As we discussed in Sec. 7.5, when a wave is incident at an angle greater than the total
internal reflection (TIR) angle from an optically denser medium na onto a rarer medium
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nb, with na > nb, then there is 100 percent reflection. The transmitted field into the
rarer medium nb is evanescent, decaying exponentially with distance.

However, if an object or another medium is brought near the interface from the
nb side, the evanescent field is “frustrated” and can couple into a propagating wave.
For example, if another semi-infinite medium na is brought close to the interface, then
the evanescent field can “tunnel” through to the other side, emerging as an attenuated
version of the incident wave. This effect is referred to as “frustrated” total internal
reflection.

Fig. 8.4.1 shows how this may be realized with two 45o prisms separated by a small air
gap. With na = 1.5 and nb = 1, the TIR angle is θc = asin(nb/na)= 41.8o, therefore,
θ = 45o > θc. The transmitted fields into the air gap reach the next prism with an
attenuated magnitude and get refracted into a propagating wave that emerges at the
same angle θ.

Fig. 8.4.1 Frustrated total internal reflection between two prisms separated by an air gap.

Fig. 8.4.2 shows an equivalent problem of two identical semi-infinite media na, sep-
arated by a medium nb of length d. Let εa = n2

a, εb = n2
b be the relative dielectric

constants. The components of the wavevectors in media na and nb are:

kx = k0na sinθ , k0 = ω
c0

kza =
√
k2

0n
2
a − k2

x = k0na cosθ

kzb =
⎧⎪⎨
⎪⎩
k0

√
n2
b − n2

a sin2 θ , if θ ≤ θc

−jk0

√
n2
a sin2 θ− n2

b = −jαzb , if θ ≥ θc

(8.4.1)

where sinθc = nb/na. Because of Snel’s law, the kx component is preserved across the
interfaces. If θ > θc, then kzb is pure imaginary, that is, evanescent.
The transverse reflection and transmission responses are:

Γ = ρa + ρbe−2jkzbd

1+ ρaρbe−2jkzbd
= ρa(1− e−2jkzbd)

1− ρ2
ae−2jkzbd

T = τaτbe−jkzbd

1+ ρaρbe−2jkzbd
= (1− ρ2

a)e−jkzbd

1− ρ2
ae−2jkzbd

(8.4.2)
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Fig. 8.4.2 Frustrated total internal reflection.

where ρa, ρb are the transverse reflection coefficients at the a,b interfaces and τa =
1 + ρa and τb = 1 + ρb are the transmission coefficients, and we used the fact that
ρb = −ρa because the media to the left and right of the slab are the same. For the two
polarizations, ρa is given in terms of the above wavevector components as follows:

ρTE
a = kza − kzb

kza + kzb
, ρTM

a = kzbεa − kzaεb
kzbεa + kzaεb

(8.4.3)

For θ ≤ θc, the coefficients ρa are real-valued, and for θ ≥ θc, they are unimodular,
|ρa| = 1, given explicitly by

ρTE
a = na cosθ+ j

√
n2
a sin2 θ− n2

b

na cosθ− j
√
n2
a sin2 θ− n2

b

, ρTM
a = −jna

√
n2
a sin2 θ− n2

b − n2
b cosθ

−jna
√
n2
a sin2 θ− n2

b + n2
b cosθ

(8.4.4)

For all angles, it can be shown that 1− |Γ|2 = |T|2, which represents the amount of
power that enters perpendicularly into interface a and exits from interface b. For the
TIR case, Γ,T simplify into:

Γ = ρa(1− e−2αzbd)
1− ρ2

ae−2αzbd
, T = (1− ρ2

a)e−αzbd

1− ρ2
ae−2αzbd

, αzb = 2π
λ0

√
n2
a sin2 θ− n2

b (8.4.5)

where we defined the free-space wavelength through k0 = 2π/λ0. Setting ρa = ejφa ,
the magnitude responses are given by:

|Γ|2 = sinh2(αzbd)
sinh2(αzbd)+ sin2 φa

, |T|2 = sin2 φa

sinh2(αzbd)+ sin2 φa
(8.4.6)

For a prism with na = 1.5 and an air gap nb = 1, Fig. 8.4.3 shows a plot of Eqs. (8.4.5)
versus the distance d at the incidence angle θ = 45o. The reflectance becomes almost
100 percent for thickness of a few wavelengths.

Fig. 8.4.4 shows the reflectance versus angle over 0 ≤ θ ≤ 90o for the thicknesses
d = 0.4λ0 and d = 0.5λ0. The TM reflection response vanishes at the Brewster angle
θB = atan(nb/na)= 33.69o.
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Fig. 8.4.3 Reflectance and transmittance versus thickness d.

The case d = 0.5λ0 was chosen because the slab becomes a half-wavelength slab at
normal incidence, that is, kzbd = 2π/2 at θ = 0o, resulting in the vanishing of Γ as can
be seen from Eq. (8.4.2).

The half-wavelength condition, and the corresponding vanishing of Γ, can be re-
quired at any desired angle θ0 < θc, by demanding that kzbd = 2π/2 at that angle,
which fixes the separation d:

kzbd = π ⇒ 2πd
λ0

√
n2
b − n2

a sin2 θ0 = π ⇒ d = λ0

2
√
n2
b − n2

a sin2 θ0

Fig. 8.4.5 depicts the case θ0 = 20o, which fixes the separation to be d = 0.5825λ0.
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Fig. 8.4.4 Reflectance versus angle of incidence.

The fields within the air gap can be determined using the layer recursions (8.1.5).
Let Ea+ be the incident transverse field at the left side of the interface a, and E± the
transverse fields at the right side. Using Eq. (8.1.5) and (8.1.6), we find for the TIR case:

E+ = (1+ ρa)Ea+
1− ρ2

ae−2αzbd
, E− = −ρae−2αzbd(1+ ρa)Ea+

1− ρ2
ae−2αzbd

(8.4.7)
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Fig. 8.4.5 Reflectance vanishes at θ0 = 20o.

The transverse electric field within the air gap will be then ET(z)= E+e−αzbz+E−eαzbz,
and similarly for the magnetic field. Using (8.4.7) we find:

ET(z) =
[

1+ ρa
1− ρ2

ae−2αzbd

][
e−αzbz − ρae−2αzbdeαzbz

]
Ea+

HT(z) =
[

1− ρa
1− ρ2

ae−2αzbd

][
e−αzbz + ρae−2αzbdeαzbz

]Ea+
ηaT

(8.4.8)

where ηaT is the transverse impedance of medium na, that is, with ηa = η0/na:

ηaT =
⎧⎨
⎩ηa cosθa , TM, or parallel polarization

ηa/ cosθa , TE, or perpendicular polarization

It is straightforward to verify that the transfer of power across the gap is independent
of the distance z and given by

Pz(z)= 1

2
Re

[
ET(z)H∗

T(z)
] = (

1− |Γ|2) |Ea+|2
2ηaT

Frustrated total internal reflection has several applications [556–592], such as in-
ternal reflection spectroscopy, sensors, fingerprint identification, surface plasmon res-
onance, and high resolution microscopy. In many of these applications, the air gap is
replaced by another, possibly lossy, medium. The above formulation remains valid with
the replacement εb = n2

b → εb = εbr − jεbi, where the imaginary part εri characterizes
the losses.

8.5 Surface Plasmon Resonance

We saw in Sec. 7.11 that surface plasmons are TM waves that can exist at an interface
between air and metal, and that their wavenumber kx of propagation along the interface
is larger that its free-space value at the same frequency. Therefore, such plasmons
cannot couple directly to plane waves incident on the interface.
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However, if the incident TM plane wave is from a dielectric and from an angle that is
greater than the angle of total internal reflection, then the corresponding wavenumber
will be greater than its vacuum value and it could excite a plasmon wave along the
interface. Fig. 8.5.1 depicts two possible configurations of how this can be accomplished.

Fig. 8.5.1 Kretschmann-Raether and Otto configurations.

In the so-called Kretschmann-Raether configuration [595,598], a thin metal film of
thickness of a fraction of a wavelength is sandwiched between a prism and air and the
incident wave is from the prism side. In the Otto configuration [596], there is an air
gap between the prism and the metal. The two cases are similar, but we will consider in
greater detail the Kretschmann-Raether configuration, which is depicted in more detail
in Fig. 8.5.2.

Fig. 8.5.2 Surface plasmon resonance excitation by total internal reflection.

The relative dielectric constant εa and refractive index na of the prism are related
by εa = n2

a. The air side has εb = n2
b = 1, but any other lossless dielectric will do as

long as it satisfies nb < na. The TIR angle is sinθc = nb/na, and the angle of incidence
from the prism side is assumed to be θ ≥ θc so that†

kx = k0na sinθ ≥ k0nb , k0 = ω
c0

(8.5.1)

†The geometrical picture in Fig. 8.5.2 is not valid forθ ≥ θc because the wavevectors are complex-valued.
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Because of Snel’s law, the kx component of the wavevector along the interface is
preserved across the media. The z-components in the prism and air sides are given by:

kza =
√
k2

0n
2
a − k2

x = k0na cosθ

kzb = −jαzb = −j
√
k2
x − k2

0n
2
b = −jk0

√
n2
a sin2 θ− n2

b

(8.5.2)

where kzb is pure imaginary because of the TIR assumption. Therefore, the transmitted
wave into the εb medium attenuates exponentially like e−jkzbz = e−αzbz.

For the metal layer, we assume that its relative dielectric constant is ε = −εr − jεi,
with a negative real part (εr > 0) and a small negative imaginary part (0 < εi 	 εr) that
represents losses. Moreover, in order for a surface plasmon wave to be supported on
the ε–εb interface, we must further assume that εr > εb. The kz component within the
metal will be complex-valued with a dominant imaginary part:

kz = −j
√
k2
x − k2

0ε = −j
√
k2
x + k2

0(εr + jεi) = −jk0

√
n2
a sin2 θ+ εr + jεi (8.5.3)

If there is a surface plasmon wave on the ε–εb interface, then as we saw in Sec. 7.7,
it will be characterized by the specific values of kx, kz, kzb:

kx0 = βx0 − jαx0 = k0

√
εεb
ε+ εb

, kz0 = − k0ε√
ε+ εb

, kzb0 = k0εb√
ε+ εb

(8.5.4)

Using Eq. (7.11.10), we have approximately to lowest order in εi:

βx0 = k0

√
εrεb
εr − εb

, αx0 = k0

(
εrεb
εr − εb

)3/2 εi
2ε2

r
(8.5.5)

and similarly for kz0, which has a small real part and a dominant imaginary part:

kz0 = βz0 − jαz0 , αz0 = k0εr√
εr − εb

, βz0 = k0(εr − 2εb)εi
(εr − εb)3/2

(8.5.6)

If the incidence angle θ is such that kx is near the real-part of kx0, that is, kx =
k0na sinθ = βx0, then a resonance takes place exciting the surface plasmon wave. Be-
cause of the finite thickness d of the metal layer and the assumed losses εi, the actual
resonance condition is not kx = βx0, but is modified by a small shift: kx = βx0 + β̄x0, to
be determined shortly.

At the resonance angle there is a sharp drop of the reflection response measured
at the prism side. Let ρa, ρb denote the TM reflection coefficients at the εa–ε and ε–
εb interfaces, as shown in Fig. 8.5.2. The corresponding TM reflection response of the
structure will be given by:

Γ = ρa + ρbe−2jkzd

1+ ρaρbe−2jkzd
= ρa + ρbe−2αzde−2jβzd

1+ ρaρbe−2αzde−2jβzd
(8.5.7)

where d is the thickness of the metal layer and kz = βz− jαz is given by Eq. (8.5.3). The
TM reflection coefficients are given by:

ρa = kzεa − kzaε
kzεa + kzaε

, ρb = kzbε− kzεb
kzbε+ kzεb

(8.5.8)
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where kza, kzb are given by (8.5.2). Explicitly, we have for θ ≥ θc:

ρa = −
ε
√
k2

0εa − k2
x + jεa

√
k2
x − k2

0ε

ε
√
k2

0εa − k2
x − jεa

√
k2
x − k2

0ε
= −ε cosθ+ jna

√
εa sin2 θ− ε

ε cosθ− jna
√
εa sin2 θ− ε

ρb =
ε
√
k2
x − k2

0εb − εb
√
k2
x − k2

0ε

ε
√
k2
x − k2

0εb + εb
√
k2
x − k2

0ε
= ε

√
εa sin2 θ− εb − εb

√
εa sin2 θ− ε

ε
√
εa sin2 θ− εb + εb

√
εa sin2 θ− ε

(8.5.9)

We note that for the plasmon resonance to be excited through such a configuration,
the metal must be assumed to be slightly lossy, that is, εi 
= 0. If we assume that it
is lossless with a negative real part, ε = −εr , then, ρa becomes a unimodular complex
number, |ρa| = 1, for all angles θ, while ρb remains real-valued for θ ≥ θc, and also kz
is pure imaginary, βz = 0. Hence, it follows that:

|Γ|2 = |ρa|2 + 2 Re(ρa)ρbe−2αzd + ρ2
be−4αzd

1+ 2 Re(ρa)ρbe−2αzd + |ρa|2ρ2
be−4αzd

= 1

Thus, it remains flat for θ ≥ θc. For θ ≤ θc, ρa is still unimodular, and ρb also
becomes unimodular, |ρb| = 1. Setting ρa = ejφa and ρb = ejφb , we find for θ ≤ θc:

|Γ|2 =
∣∣∣∣∣ ejφa + ejφbe−2αzd

1+ ejφaejφbe−2αzd

∣∣∣∣∣
2

= 1+ 2 cos(φa −φb)e−2αzd + e−4αzd

1+ 2 cos(φa +φb)e−2αzd + e−4αzd
(8.5.10)

which remains almost flat, exhibiting a slight variation with the angle for θ ≤ θc.
As an example, consider a quartz prism with na = 1.5, coated with a silver film of

thickness of d = 50 nm, and air on the other side εb = 1. The relative refractive index
of the metal is taken to be ε = −16−0.5j at the free-space wavelength of λ0 = 632 nm.
The corresponding free-space wave number is k0 = 2π/λ0 = 9.94 rad/μm.

Fig. 8.5.3 shows the TM reflection response (8.5.7) versus angle. The TIR angle is
θc = asin(nb/na)= 41.81o. The plasmon resonance occurs at the angle θres = 43.58o.
The graph on the right shows an expanded view over the angle range 41o ≤ θ ≤ 45o.
Both angles θc and θres are indicated on the graphs as black dots.

The computation can be carried out with the help of the MATLAB function multi-
diel1.m , or alternatively multidiel.m , with the sample code:

na = 1.5; ea = na^2; % prism side

er = 16; ei = 0.5; ep = -er-j*ei; % silver layer

nb = 1; eb = nb^2; % air side

d = 50; la0 = 632; % in units of nanometers

th = linspace(0,89,8901); % incident angle in degrees

n1 = sqrte(ep); % evanescent SQRT, needed if εi = 0

L1 = n1*d/la0; % complex optical length in units of λ0

n = [na, n1, nb]; % input to multidiel1

for i=1:length(th), % TM reflectance

Ga(i) = abs(multidiel1(n, L1, 1, th(i), ’tm’)).^2; % at λ/λ0 = 1

end

plot(th,Ga);
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Fig. 8.5.3 Surface plasmon resonance.

Fig. 8.5.4 shows the reflection response when the metal is assumed to be lossless with
ε = −16, all the other parameters being the same. As expected, there is no resonance
and the reflectance stays flat for θ ≥ θc, with mild variation for θ < θc.
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Fig. 8.5.4 Absence of resonance when metal is assumed to be lossless.

Let Ea+, Ea− be the forward and backward transverse electric fields at the left side
of interface a. The fields at the right side of the interface can be obtained by inverting
the matching matrix:

[
Ea+
Ea−

]
= 1

1+ ρa

[
1 ρa
ρa 1

][
E+
E−

]
⇒

[
E+
E−

]
= 1

1− ρa

[
1 −ρa
−ρa 1

][
Ea+
Ea−

]

Setting Ea− = ΓEa+, with Γ given by Eq. (8.5.7), we obtain:

E+ = 1− ρaΓ
1− ρa

Ea+ = (1+ ρa)Ea+
1+ ρaρbe−2jkzd

E− = −ρa + Γ
1− ρa

Ea+ = ρbe−2jkzd(1+ ρa)Ea+
1+ ρaρbe−2jkzd
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The transverse electric and magnetic fields within the metal layer will be given by:

ET(z)= E+e−jkzz + E−ejkzz , HT(z)= 1

ηT

[
E+e−jkzz − E−ejkzz

]

Using the relationship ηT/ηaT = (1+ ρa)/(1− ρa), we have:

ET(z) =
[

1+ ρa
1+ ρaρbe−2jkzd

][
e−jkzz + ρbe−2jkzdejkzz

]
Ea+

HT(z) =
[

1− ρa
1+ ρaρbe−2jkzd

][
e−jkzz − ρbe−2jkzdejkzz

]Ea+
ηaT

(8.5.11)

where ηaT = ηa cosθ is the TM characteristic impedance of the prism. The power flow
within the metal strip is described by the z-component of the Poynting vector:

P(z)= 1

2
Re

[
ET(z)H∗

T(z)
]

(8.5.12)

The power entering the conductor at interface a is:

Pin =
(
1− |Γ|2) |Ea+|2

2ηaT
= 1

2
Re

[
ET(z)H∗

T(z)
]∣∣∣∣

z=0
(8.5.13)

Fig. 8.5.5 shows a plot of the quantityP(z)/Pin versus distance within the metal, 0 ≤
z ≤ d, at the resonant angle of incidence θ = θres. Because the fields are evanescent in
the right medium nb, the power vanishes at interface b, that is, at z = d. The reflectance
at the resonance angle is |Γ|2 = 0.05, and therefore, the fraction of the incident power
that enters the metal layer and is absorbed by it is 1− |Γ|2 = 0.95.
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Fig. 8.5.5 Power flow within metal layer at the resonance angle θres = 43.58o.

The angle width of the resonance of Fig. 8.5.3, measured at the 3-dB level |Γ|2 = 1/2,
is very narrow, Δθ = 0.282o. The width Δθ, as well as the resonance angle θres, and
the optimum metal film thickness d, can be estimated by the following approximate
procedure.

To understand the resonance property, we look at the behavior of Γ in the neigh-
borhood of the plasmon wavenumber kx = kx0 given by (8.5.4). At this value, the TM
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reflection coefficient at the ε–εb interface develops a pole, ρb = ∞, which is equivalent
to the condition kzb0ε+ kz0εb = 0, with kzb0, kz0 defined by Eq. (8.5.4).

In the neighborhood of this pole, kx � kx0, ρb will be given by ρb � K0/(kx − kx0),
where K0 is the residue of the pole. It can be determined by:

K0 = lim
kx→kx0

(kx − kx0)ρb = lim
kx→kx0

(kx − kx0)
kzbε− kzεb
kzbε+ kzεb

= kzbε− kzεb
d
dkx

(kzbε+ kzεb)

∣∣∣∣∣∣∣
kx=kx0

The derivative dkz/dkx can be determined by differentiating k2
z + k2

x = k2
0ε, that is,

kz dkz + kx dkx = 0, which gives dkz/dkx = −kx/kz, and similarly for dkzb/dkx. It
follows that:

K0 = kzb0ε− kz0εb

− kx0

kzb0
ε− kx0

kz0
εb

Inserting kx0, kz0, kzb0 from Eq. (8.5.4), we obtain:

K0 = k0

(
2

εb − ε

)(
εεb
ε+ εb

)3/2

(8.5.14)

The reflection response can then be approximated near kx � kx0 by

Γ �
ρa + K0

kx − kx0
e−2jkzd

1+ ρa
K0

kx − kx0
e−2jkzd

The quantities ρa and e−2jkzd can also be replaced by their values at kx0, kz0, kzb0,
thus obtaining:

Γ = ρa0
kx − kx0 + ρ−1

a0K0e−2jkz0d

kx − kx0 + ρa0K0e−2jkz0d
(8.5.15)

where

ρa0 = kz0εa − kza0ε
kz0εa + kza0ε

= εa +
√
ε(εa − εb)+εaεb

εa −
√
ε(εa − εb)+εaεb

which was obtained using kza0 =
√
k2

0εa − k2
x0 and Eqs. (8.5.4). Replacing ε = −εr − jεi,

we may also write:

ρa0 = εa + j
√
(εr + jεi)(εa − εb)−εaεb

εa − j
√
(εr + jεi)(εa − εb)−εaεb ≡ −b0 + ja0 (8.5.16)

which serves as the definition of b0, a0. We also write:

ρ−1
a0 =

εa − j
√
(εr + jεi)(εa − εb)−εaεb

εa + j
√
(εr + jεi)(εa − εb)−εaεb = −

b0 + ja0

b2
0 + a2

0
≡ −b1 − ja1 (8.5.17)

We define also the wavenumber shifts that appear in the denominator and numerator
of (8.5.15) as follows:

k̄x0 = −ρa0K0e−2jkz0d = (b0 − ja0)K0e−2jkz0d ≡ β̄x0 − jᾱx0

k̄x1 = −ρ−1
a0K0e−2jkz0d = (b1 + ja1)K0e−2jkz0d ≡ β̄x1 + jᾱx1

(8.5.18)
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Then, Eq. (8.5.15) becomes, replacing kx0 = βx0 − jαx0

Γ = ρa0
kx − kx0 − k̄x1

kx − kx0 − k̄x0
= ρa0

(kx − βx0 − β̄x1)+j(αx0 − ᾱx1)
(kx − βx0 − β̄x0)+j(αx0 + ᾱx0)

(8.5.19)

resulting in the reflectance:

|Γ|2 = |ρa0|2 (kx − βx0 − β̄x1)2+(αx0 − ᾱx1)2

(kx − βx0 − β̄x0)2+(αx0 + ᾱx0)2
(8.5.20)

The shifted resonance wavenumber is determined from the denominator of (8.5.19),
that is, kx,res = βx0+ β̄x0. The resonance angle is determined by the matching condition:

kx = k0na sinθres = kx,res = βx0 + β̄x0 (8.5.21)

The minimum value of |Γ|2 at resonance is obtained by setting kx = βx0 + β̄x0:

|Γ|2min = |ρa0|2 (β̄x0 − β̄x1)2+(αx0 − ᾱx1)2

(αx0 + ᾱx0)2
(8.5.22)

We will see below that β̄x0 and β̄x1 are approximately equal, and so are ᾱx0 and ᾱx1.
The optimum thickness for the metal layer is obtained by minimizing the numerator of
|Γ|2min by imposing the condition αx0 = ᾱx1. This condition can be solved for d.

The angle width is obtained by solving for the left and right bandedge wavenumbers,
say kx,±, from the 3-dB condition:

|Γ|2 = |ρa0|2 (kx − βx0 − β̄x1)2+(αx0 − ᾱx1)2

(kx − βx0 − β̄x0)2+(αx0 + ᾱx0)2
= 1

2
(8.5.23)

and then obtaining the left/right 3-dB angles by solving k0na sinθ± = kx,±.
Although Eqs. (8.5.16)–(8.5.23) can be easily implemented numerically, they are un-

necessarily complicated. A further simplification can be made by replacing the quanti-
ties K0, ρa0, and kz0 by their lossless values obtained by setting εi = 0. This makes ρa0

a unimodular complex number so that ρ−1
a0 = ρ∗a0. We have then the approximations:

K0 = k0

(
2

εr + εb

)(
εrεb
εr − εb

)3/2

ρa0 = εa + j
√
εr(εa − εb)−εaεb

εa − j
√
εr(εa − εb)−εaεb ≡ −b0 + ja0 , ρ−1

a0 = −b0 − ja0

kz0 = −jαz0 , αz0 = k0εr√
εr − εb

(8.5.24)

so that

b0 = εr(εa − εb)−εa(εa + εb)
(εa − εb)(εr + εb)

, a0 = 2εa
√
εr(εa − εb)−εaεb

(εa − εb)(εr + εb)
(8.5.25)

The wavenumber shifts (8.5.18) then become:

k̄x0 = (b0 − ja0)K0e−2αz0d = β̄x0 − jᾱx0

k̄x1 = (b0 + ja0)K0e−2αz0d = β̄x0 + jᾱx0 = k̄∗x0

(8.5.26)
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with
β̄x0 = b0K0e−2αz0d , ᾱx0 = a0K0e−2αz0d (8.5.27)

Then, the reflectance becomes in the neighborhood of the resonance:

|Γ|2 = (kx − βx0 − β̄x0)2+(αx0 − ᾱx0)2

(kx − βx0 − β̄x0)2+(αx0 + ᾱx0)2
(8.5.28)

with a minimum value:

|Γ|2min =
(αx0 − ᾱx0)2

(αx0 + ᾱx0)2
(8.5.29)

In this approximation, the resonance angle is determined from:

k0na sinθres = kres = βx0 + β̄x0 = k0

√
εrεb
εr − εb

+ b0K0e−2αz0d (8.5.30)

Since the second term on the right-hand side represents a small correction, a neces-
sary condition that such a resonance angle would exist is obtained by setting θres = 90o

and ignoring the second term:

na >
√

εrεb
εr − εb

≡ nmin
a (8.5.31)

For example, for the parameters of Fig. 8.5.3, the minimum acceptable refractive
index na would be nmin

a = 1.033. Thus, using a glass prism with na = 1.5 is more than
adequate. If the right medium is water instead of air with nb = 1.33, then nmin

a = 1.41,
which comes close to the prism choice. The 3-dB angles are obtained by solving

|Γ|2 = (kx − kres)2+(αx0 − ᾱx0)2

(kx − kres)2+(αx0 + ᾱx0)2
= 1

2

with solution kx,± = kres ±
√

6αx0ᾱx0 −α2
x0 − ᾱ2

x0 , or

k0na sinθ± = k0na sinθres ±
√

6αx0ᾱx0 −α2
x0 − ᾱ2

x0 (8.5.32)

The angle width shown on Fig. 8.5.3 was calculated by Δθ = θ+ −θ− using (8.5.32).
The optimum thickness dopt is obtained from the condition αx0 = ᾱx0, which drives
|Γ|2min to zero. This condition requires that αx0 = a0K0e−2αz0d, with solution:

dopt = 1

2αz0
ln

(
a0K0

αx0

)
= λ0

4π

√
εr − εb
εr

ln

(
4a0ε2

r
εi(εr + εb)

)
(8.5.33)

where we replaced αx0 from Eq. (8.5.5). For the same parameters of Fig. 8.5.3, we cal-
culate the optimum thickness to be dopt = 56.08 nm, resulting in the new resonance
angle of θres = 43.55o, and angle-width Δθ = 0.227o. Fig. 8.5.6 shows the reflectance
in this case. The above approximations for the angle-width are not perfect, but they are
adequate.

One of the current uses of surface plasmon resonance is the detection of the pres-
ence of chemical and biological agents. This application makes use of the fact that the
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Fig. 8.5.6 Surface plasmon resonance at the optimum thickness d = dopt.
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Fig. 8.5.7 Shift of the resonance angle with the refractive index nb.

resonance angle θres is very sensitive to the dielectric constant of the medium nb. For
example, Fig. 8.5.7 shows the shift in the resonance angle for the two cases nb = 1.05
and nb = 1.33 (water). Using the same data as Fig. 8.5.3, the corresponding angles and
widths were θres = 46.57o, Δθ = 0.349o and θres = 70o, Δθ = 1.531o, respectively.

A number of applications of surface plasmons were mentioned in Sec. 7.11, such as
nanophotonics and biosensors. The reader is referred to [593–631] for further reading.

8.6 Perfect Lens in Negative-Index Media

The perfect lens property of negative-index media was originally discussed by Veselago
[391], who showed that a slab with ε = −ε0 and μ = −μ0, and hence with refractive
index n = −1, can focus perfectly a point-source of light. More recently, Pendry [398]
showed that such a slab can also amplify the evanescent waves from an object, and
completely restore the object’s spatial frequencies on the other side of the slab. The
possibility of overcoming the diffraction limit and improving resolution with such a
lens has generated a huge interest in the literature [391–473].
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Fig. 8.6.1 shows the perfect lens property. Consider a ray emanating from an object
at distance z0 to the left of the slab (z = −z0). Assuming vacuum on either side of
the slab (na = nb = 1), Snel’s law, implies that the angle of incidence will be equal to
the angle of refraction, bending in the same direction of the normal as the incident ray.
Indeed, because na = 1 and n = −1, we have:

na sinθa = n sinθ ⇒ sinθa = − sinθ ⇒ θa = −θ

Fig. 8.6.1 Perfect lens property of a negative-index medium with n = −1

Moreover, η = √
μ/ε = √

μ0/ε0 = η0 and the slab is matched to the vacuum. There-
fore, there will be no reflected ray at the left and the right interfaces. Indeed, the TE and
TM reflection coefficients at the left interface vanish at any angle, for example, we have
for the TM case, noting that cosθ = cos(−θa)= cosθa:

ρTM = η cosθ− η0 cosθa
η cosθ+ η0 cosθa

= cosθ− cosθa
cosθ+ cosθa

= 0

Assuming that z0 < d, whered is the slab thickness, it can be seen from the geometry
of Fig. 8.6.1 that the refracted rays will refocus at the point z = z0 within the slab and
then continue on to the right interface and refocus again at a distance d− z0 from the
slab, that is, at coordinate z = 2d− z0.

Next, we examine the field solutions inside and outside the slab for propagating and
for evanescent waves. For the TM case, the electric field will have the following form
within the three regions of z ≤ 0, 0 ≤ z ≤ d, and z ≥ d:

E =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
E0

(
x̂− kx

kz
ẑ
)
e−jkzz + E0Γ

(
x̂+ kx

kz
ẑ
)
ejkzz

]
e−jkxx , for z ≤ 0

[
A+

(
x̂− kx

k′z
ẑ
)
e−jk

′
zz +A−

(
x̂+ kx

k′z
ẑ
)
ejk

′
zz
]
e−jkxx , for 0 ≤ z ≤ d

E0T
(

x̂− kx
kz

ẑ
)
e−jkz(z−d)e−jkxx , for z ≥ d

(8.6.1)

where Γ,T denote the overall transverse reflection and transmission coefficients, and
A+,A−, the transverse fields on the right-side of the left interface (i.e., at z = 0+). The
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corresponding magnetic field is:

H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ŷE0

(
ωε
kz

)[
e−jkzz − Γejkzz

]
e−jkxx , for z ≤ 0

ŷ
(
ωε′

k′z

)[
A+e−jk

′
zz −A−ejk

′
zz
]
e−jkxx , for 0 ≤ z ≤ d

ŷE0T
(
ωε
kz

)
e−jkz(z−d)e−jkxx , for z ≥ d

(8.6.2)

where kx is preserved across the interfaces, and kz, k′z must satisfy:

k2
x + k2

z =ω2μ0ε0 , k2
x + k′2z =ω2με (8.6.3)

Thus, kz = ±
√
ω2μ0ε0 − k2

x and k′z = ±
√
ω2με− k2

x. The choice of square root
signs is discussed below. To include evanescent waves, we will define kz by means of
the evanescent square root, setting k0 =ω√μ0ε0:

kz = sqrte
(
k2

0 − k2
x)=

⎧⎪⎨
⎪⎩
√
k2

0 − k2
x , if k2

x ≤ k2
0

−j
√
k2
x − k2

0 , if k2
x ≥ k2

0

(8.6.4)

We saw in Sec. 7.16 that for a single interface between a positive- and a negative-
index medium, and for propagating waves, we must have kz > 0 and k′z < 0 in order for
the power transmitted into the negative-index medium to flow away from the interface.
But in the case of a slab within which one could have both forward and backward waves,
the choice of the sign of k′z is not immediately obvious. In fact, it turns out that the
field solution remains invariant under the substitution k′z → −k′z, and therefore, one
could choose either sign for k′z. In particular, we could select it to be given also by its
evanescent square root, where n2 = εμ/ε0μ0:

k′z = sqrte
(
k2

0n2 − k2
x)=

⎧⎪⎨
⎪⎩
√
k2

0n2 − k2
x , if k2

x ≤ k2
0n2

−j
√
k2
x − k2

0n2 , if k2
x ≥ k2

0n2
(8.6.5)

By matching the boundary conditions at the two interfaces z = 0 and z = d, the
parameters Γ,A±, T are obtained from the usual transfer matrices (see Sec. 8.1):[

E0

E0Γ

]
= 1

1+ ρTM

[
1 ρTM

ρTM 1

][
A+
A−

]

[
A+
A−

]
=

[
ejk′zd 0

0 e−jk′zd

]
1

1− ρTM

[
1 −ρTM

−ρTM 1

][
E0T

0

] (8.6.6)

where,

ρTM = k′zε− kzε′

k′zε+ kzε′
= ζTM − 1

ζTM + 1
, ζTM = η′TM

ηTM
= k′zε
kzε′

(8.6.7)

where ζTM is a normalized characteristic impedance. The solution of Eqs. (8.6.6) is then,

Γ = ρTM
(
1− e−2jk′zd

)
1− ρ2

TMe−2jk′zd
= (ζ2

TM − 1)(1− e−2jk′zd)
(ζTM + 1)2−(ζTM − 1)2e−2jk′zd

T =
(
1− ρ2

TM

)
e−jk′zd

1− ρ2
TMe−2jk′zd

= 4ζTM

(ζTM + 1)2ejk′zd − (ζTM − 1)2e−jk′zd

(8.6.8)
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Similarly, the coefficients A± are found to be:

A+ = 1− ρTMΓ
1− ρTM

= 1

2

[
1+ ζTM + (1− ζTM)Γ

]
E0

A− = −ρTM + Γ
1− ρTM

= 1

2

[
1− ζTM + (1+ ζTM)Γ

]
E0

(8.6.9)

The TE case is obtained from the TM case by a duality transformation, that is, by the
replacements, E → H, H → −E, ε→ μ, ε′ → μ′, and ρTM → ρTE, where

ρTE = kzμ′ − k′zμ
kzμ′ + k′zμ

= ζTE − 1

ζTE + 1
, ζTE = η′TE

ηTE
= kzμ′

k′zμ

The invariance under the transformation k′z → −k′z follows from these solutions.
For example, noting that ζTM → −ζTM under this transformation, we have:

Γ(−k′z)=
(ζ2

TM − 1)(1− e2jk′zd)
(−ζTM + 1)2−(−ζTM − 1)2e2jk′zd

= (ζ2
TM − 1)(1− e−2jk′zd)

(ζTM + 1)2−(ζTM − 1)2e−2jk′zd
= Γ(k′z)

Similarly, we find T(−k′z)= T(k′z) and A±(−k′z)= A∓(k′z). These imply that the
field solutions remain invariant. For example, the electric field inside the slab will be:

E(z,−k′z) =
[
A+(−k′z)

(
x̂− kx

−k′z ẑ
)
e−j(−k

′
z)z +A−(−k′z)

(
x̂+ kx

−k′z ẑ
)
ej(−k

′
z)z

]
e−jkxx

=
[
A+(k′z)

(
x̂− kx

k′z
ẑ
)
e−jk

′
zz +A−(k′z)

(
x̂+ kx

k′z
ẑ
)
ejk

′
zz
]
e−jkxx = E(z,+k′z)

Similarly, we have for the magnetic field inside the slab:

H(z,−k′z) = ŷ
(
ωε′

−k′z
)[

A+(−k′z)e−j(−k
′
z)z −A−(−k′z)ej(−k

′
z)z

]
e−jkxx

= ŷ
(
ωε′

k′z

)[
A+(k′z)e−jk

′
zz −A−(k′z)ejk

′
zz
]
e−jkxx = H(z,+k′z)

Next, we apply these results to the case μ = −μ0 and ε = −ε0, having n = −1.
It follows from Eq. (8.6.5) that k′z = ∓kz with kz given by (8.6.4). In this case, ζTM =
k′zε/kzε′ = −k′z/kz = ±1. Then, Eq. (8.6.8) implies that Γ = 0 for either choice of sign.
Similarly, we have T = ejkzd, again for either sign of ζTM:

T = ejkzd =
⎧⎨
⎩e

jkzd , if k2
x ≤ k2

0, kz =
√
k2

0 − k2
x

eαzd , if k2
x ≥ k2

0, kz = −j
√
k2
x − k2

0 ≡ −jαz
(8.6.10)

Thus, the negative-index medium amplifies the transmitted evanescent waves, which
was Pendry’s observation [398]. The two choices for k′z lead to the A± coefficients:

k′z = −kz ⇒ ζTM = +1 ⇒ A+ = E0 , A− = 0
k′z = +kz ⇒ ζTM = −1 ⇒ A+ = 0 , A− = E0

(8.6.11)

For either choice, the field solutions are the same. Indeed, inserting either set of
A+,A− into Eqs. (8.6.1) and (8.6.2), and using (8.6.10), we find:
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E =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E0

(
x̂− kx

kz
ẑ
)
e−jkzze−jkxx , for z ≤ 0

E0

(
x̂+ kx

kz
ẑ
)
ejkzze−jkxx , for 0 ≤ z ≤ d

E0

(
x̂− kx

kz
ẑ
)
e−jkz(z−2d)e−jkxx , for z ≥ d

(8.6.12)

and the corresponding magnetic field:

H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ŷE0

(
ωε0

kz

)
e−jkzze−jkxx , for z ≤ 0

ŷE0

(
ωε0

kz

)
ejkzze−jkxx , for 0 ≤ z ≤ d

ŷE0

(
ωε0

kz

)
e−jkz(z−2d)e−jkxx , for z ≥ d

(8.6.13)

The solution effectively corresponds to the choice k′z = −kz and is valid for both
propagating and evanescent waves with kz given by (8.6.4). In Eq. (8.6.12) the constant
E0 refers to the value of the transverse electric field at z = 0. Changing the reference
point to z = −z0 at the left of the slab as shown in Fig. 8.6.1, amounts to replacing
E0 → E0e−jkzz0 . Then, (8.6.12) reads:

E =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E0

(
x̂− kx

kz
ẑ
)
e−jkz(z+z0)e−jkxx , for − z0 ≤ z ≤ 0

E0

(
x̂+ kx

kz
ẑ
)
ejkz(z−z0)e−jkxx , for 0 ≤ z ≤ d

E0

(
x̂− kx

kz
ẑ
)
e−jkz(z−2d+z0)e−jkxx , for z ≥ d

(8.6.14)

Setting kz = −αz as in (8.6.4), we find the evanescent fields:

E =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E0

(
x̂− kx

−jαz
ẑ
)
e−αz(z+z0)e−jkxx , for − z0 ≤ z ≤ 0

E0

(
x̂+ kx

−jαz
ẑ
)
eαz(z−z0)e−jkxx , for 0 ≤ z ≤ d

E0

(
x̂− kx

−jαz
ẑ
)
e−αz(z−2d+z0)e−jkxx , for z ≥ d

(8.6.15)

The field is amplified inside the slab. The propagation factors along the z-direction
agree at the points z = −z0, z = z0, and z = 2d− z0,

e−jkz(z+z0)
∣∣∣∣
z=−z0

= ejkz(z−z0)
∣∣∣∣
z=z0

= e−jkz(z−2d+z0)
∣∣∣∣
z=2d−z0

= 1

e−αz(z+z0)
∣∣∣∣
z=−z0

= eαz(z−z0)
∣∣∣∣
z=z0

= e−αz(z−2d+z0)
∣∣∣∣
z=2d−z0

= 1

(8.6.16)
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which imply the complete restoration of the source at the focal points inside and to the
right of the slab:

Ex(x, z)
∣∣
z=−z0

= Ex(x, z)
∣∣
z=z0

= Ex(x, z)
∣∣
z=2d−z0

(8.6.17)

Fig. 8.6.2 shows a plot of the evanescent component Ex(z) of Eq. (8.6.15) versus distance
z inside and outside the slab.

Fig. 8.6.2 Evanesenct wave amplification inside a negative-index medium.

Using the plane-wave spectrum representation of Sec. 19.2, a more general (single-
frequency) solution can be built by superposition of the plane waves (8.6.14) and (8.6.15).
If the field at the image plane z = −z0 has the general representation:

E(x,−z0)= 1

2π

∫∞
−∞

E0(kx)
(

x̂− kx
kz

ẑ
)
e−jkxx dkx (8.6.18)

where the integral over kx includes both propagating and evanescent modes and kz is
given by (8.6.4), then, then field in the three regions to the left of, inside, and to the right
of the slab will have the form:

E(x, z)= 1

2π

∫∞
−∞

E0(kx)
(

x̂− kx
kz

ẑ
)
e−jkz(z+z0)e−jkxx dkx , for − z0 ≤ z ≤ 0

E(x, z)= 1

2π

∫∞
−∞

E0(kx)
(

x̂+ kx
kz

ẑ
)
ejkz(z−z0)e−jkxx dkx , for 0 ≤ z ≤ d

E(x, z)= 1

2π

∫∞
−∞

E0(kx)
(

x̂− kx
kz

ẑ
)
e−jkz(z−2d+z0)e−jkxx dkx , for z ≥ d

It is evident that Eq. (8.6.17) is still satisfied, showing the perfect reconstruction of
the object field at the two image planes.

The perfect lens property is highly sensitive to the deviations from the ideal values of
ε = −ε0 and μ = −μ0, and to the presence of losses. Fig. 8.6.3 plots the transmittance in
dB, that is, the quantity 10 log10 |Te−jkzd|2 versus kx, with T computed from Eq. (8.6.8)
for different values of ε, μ and for d = 0.2λ = 0.2(2π/k0). In the ideal case, because
of the result (8.6.10), we have |Te−jkzd| = 1 for both propagating and evanescent values
of kx, that is, the transmittance is flat (at 0 dB) for all kx.
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Fig. 8.6.3 Transmittance under non-ideal conditions (ε, μ are in units of ε0, μ0).

The left graph shows the effect of losses while keeping the real parts of ε, μ at the
ideal values −ε0,−μ0. In the presence of losses, the transmittance acts like a lowpass
filter in the spatial frequency kx.

The right graph shows the effect of the deviation of the real parts of ε, μ from the
ideal values. If the real parts deviate, even slightly, from −ε0,−μ0, the transmittance
develops resonance peaks, which are related to the excitation of surface plasmons at the
two interfaces of the slab [407,408]. The peaks are due to the poles of the denominator
of T in Eq. (8.6.8), that is, the roots of

1− ρ2
TMe−2jk′zd = 0 ⇒ e2jk′zd = ρ2

TM ⇒ ejk
′
zd = ±ρTM

For evanescent kx, we may replace kz = −jαz and k′z = −jα′z, where αz =
√
k2
x − k2

0

and α′z =
√
k2
x − k2

0n2, and obtain the conditions:

eα
′
zd = ±ρTM = ±α

′
zε0 −αzε

α′zε0 +αzε
(8.6.19)

These are equivalent to [407,408]:

tanh
(α′zd

2

)
= − αzε

α′zε0
, tanh

(α′zd
2

)
= −α

′
zε0

αzε
(8.6.20)

For kx � k0, we may replace αz = α′z � kx in (8.6.19) in order to get en estimate of
the resonant kx:

ekx,resd = ±ε0 − ε
ε0 + ε

⇒ eRe(kx,res)d =
∣∣∣∣ε0 − ε
ε0 + ε

∣∣∣∣ ⇒ Re(kx,res)= 1

d
ln

∣∣∣∣ε0 − ε
ε0 + ε

∣∣∣∣
(8.6.21)

and for the TE case, we must replace εs by μs. The value kx = Re(kx,res) represents
the highest achievable resolution by the slab, with the smallest resolvable transverse
distance being of the order of Δx = 1/Re(kx,res).

If ε is real-valued and near −ε0, then, kx,res is real and there will be an infinite res-
onance peak at kx = kx,res. This is seen in the above figure in the first two cases of
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ε/ε0 = μ/μ0 = −1.01 and ε/ε0 = μ/μ0 = −0.98 (the apparent finite height of these
two peaks is due to the finite grid of kx values in the graph.)

The last two cases have complex-valued ε, μ with a small imaginary part, with the
resulting peaks being finite. In all cases, the peak locations kx = Re(kx,res)—obtained by
solving Eqs. (8.6.20) numerically for kx,res—are indicated in the graphs by bullets placed
at the peak maxima. The numerical solutions were obtained by the following iterative
procedures, initialized at the approximate (complex-valued) solution of (8.6.21):

initialize: kx = 1

d
ln

(
ε0 − ε
ε0 + ε

)

for i = 1,2, . . . ,Niter, do:

α′z =
√
k2
x − k2

0n2

αz = −ε0

ε
α′z tanh

(α′zd
2

)

kx =
√
α2
z + k2

0

or,

kx = 1

d
ln

(
−ε0 − ε
ε0 + ε

)
, α′z =

√
k2
x − k2

0n2

for i = 1,2, . . . ,Niter, do:

αz =
√
k2
x − k2

0

α′z = −
ε
ε0

αz tanh
(α′zd

2

)

kx =
√
α′2z + k2

0n2

The number of iterations was typically Niter = 30. Both graphs of Fig. 8.6.3 also show
dips at kx = k0. These are due to the zeros of the transmittance T arising from the
numerator factor (1 − ρ2

TM) in (8.6.10). At kx = k0, we have αz = 0 and ρTM = 1,
causing a zero in T. In addition to the zero at kx = k0, it is possible to also have poles
in the vicinity of k0, as indicated by the peaks and bullets in the graph. Fig. 8.6.4 shows
an expanded view of the structure of T near k0, with the kx restricted in the narrow
interval: 0.99k0 ≤ kx ≤ 1.01k0.

0.99 1 1.01

−20

0

20

kx/k0

dB

Transmittance

Fig. 8.6.4 Expanded view of the zero/pole behavior in the vicinity of kx = k0.

For last two cases depicted on this graph that have |n2| = |εμ|/ε0μ0 � 1, an ap-

proximate calculation of the pole locations near k0 is as follows. Since αz =
√
k2
x − k2

0 is

small, andα′z =
√
α2
z + k0(1− n2), we have to first order inαz, α′z � k2

0

√
1− n2 ≡ α′z0,
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which is itself small. Then, we apply Eq. (8.6.21) to getαz and from it, the resonant kx,res:

αz = −ε0

ε
α′z0 tanh

(
α′z0d

2

)
⇒ kx,res =

√
α2
z + k2

0

8.7 Antireflection Coatings at Oblique Incidence

Antireflection coatings are typically designed for normal incidence and then used over
a limited range of oblique incidence, such as up to about 30o. As the angle of incidence
increases, the antireflection band shifts towards lower wavelengths or higher frequen-
cies. Any designed reflection zeros at normal incidence are no longer zeros at oblique
incidence.

If a particular angle of incidence is preferred, it is possible to design the antireflection
coating to match that angle. However, like the case of normal design, the effectiveness
of this method will be over an angular width of approximately 30o about the preferred
angle.

To appreciate the effects of oblique incidence, we look at the angular behavior of
our normal-incidence designs presented in Figs. 6.2.1 and 6.2.3.

The first example was a two-layer design with refractive indices na = 1 (air), n1 =
1.38 (magnesium fluoride), n2 = 2.45 (bismuth oxide), and nb = 1.5 (glass). The de-
signed normalized optical lengths of the layers were L1 = 0.3294 and L2 = 0.0453 at
λ0 = 550 nm.

Fig. 8.7.1 shows the TE and TM reflectances |ΓT1(λ)|2 as functions of λ, for the
incidence angles θ = 0o,20o,30o,40o.
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Fig. 8.7.1 Two-layer antireflection coating at oblique incidence.

We note the shifting of the responses towards lower wavelengths. The responses
are fairly acceptable up to about 20o–30o. The typical MATLAB code used to generate
these graphs was:

n = [1, 1.38, 2.45, 1.5]; L = [0.3294, 0.0453];
la0 = 550; la = linspace(400,700,101); pol=’te’;
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G0 = abs(multidiel(n, L, la/la0)).^2 * 100;
G20 = abs(multidiel(n, L, la/la0, 20, pol)).^2 * 100;
G30 = abs(multidiel(n, L, la/la0, 30, pol)).^2 * 100;
G40 = abs(multidiel(n, L, la/la0, 40, pol)).^2 * 100;

plot(la, [G0; G20; G30; G40]);

As we mentioned above, the design can be matched at a particular angle of incidence.
As an example, we choose θa = 30o and redesign the two-layer structure.

The design equations are still (6.2.2) and (6.2.1), but with the replacement of ni,
ρi by their transverse values nTi, ρTi, and the replacement of k1l1, k2l2 by the phase
thicknesses at λ = λ0, that is, δ1 = 2πL1 cosθ1 and δ2 = 2πL2 cosθ2. Moreover, we
must choose to match the design either for TE or TM polarization.

Fig. 8.7.2 illustrates such a design. The upper left graph shows the TE reflectance
matched at 30o. The designed optical thicknesses are in this case, L1 = 0.3509 and
L2 = 0.0528. The upper right graph shows the corresponding TM reflectance, which
cannot be matched simultaneously with the TE case.

The lower graphs show the same design, but now the TM reflectance is matched at
30o. The designed lengths were L1 = 0.3554 and L2 = 0.0386.
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Fig. 8.7.2 Two-layer antireflection coating matched at 30 degrees.
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The design steps are as follows. First, we calculate the refraction angles in all media
from Eq. (8.1.1), θi = asin(na sinθa/ni), for i = a,1,2, b. Then, assuming TE polariza-
tion, we calculate the TE refractive indices for all media nTi = ni cosθi, i = a,1,2, b.

Then, we calculate the transverse reflection coefficients ρTi from Eq. (8.1.3) and use
them to solve Eq. (6.2.2) and (6.2.1) for the phase thicknesses δ1, δ2. Finally, we calcu-
late the normalized optical lengths from Li = δi/(2π cosθi), i = 1,2. The following
MATLAB code illustrates these steps:

n = [1, 1.38, 2.45, 1.5]; na = 1;
tha = 30; thi = asin(na*sin(pi*tha/180)./n);

nt = n.*cos(thi); % for TM use nt = n./cos(thi)
r = n2r(nt);

c = sqrt((r(1)^2*(1-r(2)*r(3))^2 - (r(2)-r(3))^2)/(4*r(2)*r(3)*(1-r(1)^2)));
de2 = acos(c);
G2 = (r(2)+r(3)*exp(-2*j*de2))/(1 + r(2)*r(3)*exp(-2*j*de2));
de1 = (angle(G2) - pi - angle(r(1)))/2;
if de1 <0, de1 = de1 + 2*pi; end

L = [de1,de2]/2/pi;
L = L./cos(thi(2:3));

la0 = 550; la = linspace(400,700,401);

G30 = abs(multidiel(n, L, la/la0, 30, ’te’)).^2 * 100;
G20 = abs(multidiel(n, L, la/la0, 20, ’te’)).^2 * 100;
G40 = abs(multidiel(n, L, la/la0, 40, ’te’)).^2 * 100;
G0 = abs(multidiel(n, L, la/la0)).^2 * 100;

plot(la, [G30; G20; G40; G0]);

Our second example in Fig. 6.2.3 was a quarter-half-quarter 3-layer design with re-
fractive indices n1 = 1 (air), n1 = 1.38 (magnesium fluoride), n2 = 2.2 (zirconium oxide),
n3 = 1.63 (cerium fluoride), and nb = 1.5 (glass). The optical lengths of the layers were
L1 = L3 = 0.25 and L2 = 0.5.

Fig. 8.7.3 shows the TE and TM reflectances |ΓT1(λ)|2 as functions of λ, for the
incidence angles θ = 0o,20o,30o,40o.

The responses are fairly acceptable up to about 20o–30o, but are shifted towards
lower wavelengths. The typical MATLAB code used to generate these graphs was:

n = [1, 1.38, 2.2, 1.63, 1.5]; L = [0.25, 0.50, 0.25];

la0 = 550; la = linspace(400,700,401);

G0 = abs(multidiel(n, L, la/la0)).^2 * 100;
G20 = abs(multidiel(n, L, la/la0, 20, ’te’)).^2 * 100;
G30 = abs(multidiel(n, L, la/la0, 30, ’te’)).^2 * 100;
G40 = abs(multidiel(n, L, la/la0, 40, ’te’)).^2 * 100;

plot(la, [G0; G20; G30; G40]);
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Fig. 8.7.3 Three-layer antireflection coating at oblique incidence.

8.8 Omnidirectional Dielectric Mirrors

Until recently, it was generally thought that it was impossible to have an omnidirectional
dielectric mirror, that is, a mirror that is perfectly reflecting at all angles of incidence
and for both TE and TM polarizations. However, such mirrors are possible and have
recently been manufactured [777,778] and the conditions for their existence clarified
[777–781].

We consider the same dielectric mirror structure of Sec. 6.3, consisting of alternating
layers of high and low index. Fig. 8.8.1 shows such a structure under oblique incidence.
There are N bilayers and a total of M = 2N + 1 single layers, starting and ending with
a high-index layer.

Fig. 8.8.1 Dielectric mirror at oblique incidence.

The incidence angles on each interface are related by Snel’s law:

na sinθa = nH sinθH = nL sinθL = nb sinθb (8.8.1)

The phase thicknesses within the high- and low-index layers are in normalized form:
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δH = 2π
f
f0
LH cosθH , δL = 2π

f
f0
LL cosθL (8.8.2)

where LH = nHlH/λ0, LL = nLlL/λ0 are the optical thicknesses normalized to some λ0,

and f0 = c0/λ0. Note also, cosθi =
√

1− n2
a sin2 θa/n2

i , i = H,L.
A necessary (but not sufficient) condition for omnidirectional reflectivity for both

polarizations is that the maximum angle of refraction θH,max inside the first layer be
less than the Brewster angle θB of the second interface, that is, the high-low interface,
so that the Brewster angle can never be accessed by a wave incident on the first interface.
If this condition is not satisfied, a TM wave would not be reflected at the second and all
subsequent interfaces and will transmit through the structure.

Because sinθH,max = na/nH and tanθB = nL/nH, or, sinθB = nL/
√
n2
H + n2

L, the
condition θH,max < θB, or the equivalent condition sinθH,max < sinθB, can be written

as na/nH < nL/
√
n2
H + n2

L, or

na <
nHnL√
n2
H + n2

L

(8.8.3)

We note that the exact opposite of this condition is required in the design of multi-
layer Brewster polarizing beam splitters, discussed in the next section.

In addition to condition (8.8.3), in order to achieve omnidirectional reflectivity we
must require that the high-reflectance bands have a common overlapping region for all
incidence angles and for both polarizations.

To determine these bands, we note that the entire discussion of Sec. 6.3 carries
through unchanged, provided we use the transverse reflection coefficients and trans-
verse refractive indices. For example, the transverse version of the bilayer transition
matrix of Eq. (6.3.5) will be:

FT = 1

1− ρ2
T

[
ej(δH+δL) − ρ2

Tej(δH−δL) −2jρTe−jδH sinδL
2jρTejδH sinδL e−j(δH+δL) − ρ2

Te−j(δH−δL)

]
(8.8.4)

where ρT = (nHT − nLT)/(nHT + nLT) and:

nHT =
⎧⎨
⎩

nH
cosθH
nH cosθH

nLT =
⎧⎨
⎩

nL
cosθL
nL cosθL

(TM polarization)

(TE polarization)
(8.8.5)

Explicitly, we have for the two polarizations:

ρTM = nH cosθL − nL cosθH
nH cosθL + nL cosθH

, ρTE = nH cosθH − nL cosθL
nH cosθH + nL cosθL

(8.8.6)

The trace of FT is as in Eq. (6.3.13):

a = cos(δH + δL)−ρ2
T cos(δH − δL)

1− ρ2
T

(8.8.7)
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The eigenvalues of the matrixFT areλ± = e±jKl, whereK = acos(a)/l and l = lH+lL.
The condition a = −1 determines the bandedge frequencies of the high-reflectance
bands. As in Eq. (6.3.16), this condition is equivalent to:

cos2(δH + δL
2

) = ρ2
T cos2(δH − δL

2

)
(8.8.8)

Defining the quantities L± = LH cosθH ± LL cosθL and the normalized frequency
F = f/f0, we may write:

δH ± δL
2

= π
f
f0
(LH cosθH ± LL cosθL)= πFL± (8.8.9)

Then, taking square roots of Eq. (8.8.8), we have:

cos(πFL+)= ±|ρT| cos(πFL−)

The plus sign gives the left bandedge, F1 = f1/f0, and the minus sign, the right
bandedge, F2 = f2/f0. Thus, F1, F2 are the solutions of the equations:

cos(πF1L+) = |ρT| cos(πF1L−)

cos(πF2L+) = −|ρT| cos(πF2L−)
(8.8.10)

The bandwidth and center frequency of the reflecting band are:

Δf
f0
= ΔF = F2 − F1 ,

fc
f0
= Fc = F1 + F2

2
(8.8.11)

The corresponding bandwidth in wavelengths is defined in terms of the left and right
bandedge wavelengths:

λ1 = λ0

F2
= c0

f2
, λ2 = λ0

F1
= c0

f1
, Δλ = λ2 − λ1 (8.8.12)

An approximate solution of Eq. (8.8.10) can be obtained by setting L− = 0 in the
right-hand sides of Eq. (8.8.10):

cos(πF1L+)= |ρT| , cos(πF2L+)= −|ρT| (8.8.13)

with solutions:

F1 = acos(|ρT|)
πL+

, F2 = acos(−|ρT|)
πL+

(8.8.14)

Using the trigonometric identities acos(±|ρT|)= π/2 ∓ asin(|ρT|), we obtain the
bandwidth and center frequency:

Δf = f2 − f1 = 2f0 asin(|ρT|)
πL+

, fc = f1 + f2

2
= f0

2L+
(8.8.15)
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It follows that the center wavelength will be λc = c0/fc = 2L+λ0 or,

λc = 2L+λ0 = 2(lHnH cosθH + lLnL cosθL) (8.8.16)

At normal incidence, we have λc = 2(lHnH+ lLnL). For quarter-wavelength designs
at λ0 at normal incidence, we have L+ = 1/4+ 1/4 = 1/2, so that λc = λ0.

The accuracy of the approximate solution (8.8.14) depends on the ratio d = L−/L+.
Even if at normal incidence the layers were quarter-wavelength with LH = LL = 0.25,
the equality of LH and LL will no longer be true at other angles of incidence. In fact, the
quantity d is an increasing function of θa. For larger values of d, the exact solution of
(8.8.10) can be obtained by the following iteration:

initialize with F1 = F2 = 0,
for i = 0,1, . . . ,Niter, do:

F1 = 1

πL+
acos

(|ρT| cos(πF1L−)
)

F2 = 1

πL+
acos

(−|ρT| cos(πF2L−)
)

(8.8.17)

Evidently, the i = 0 iteration gives the zeroth-order solution (8.8.14). The iteration
converges extremely fast, requiring only 3–4 iterations Niter. The MATLAB function
omniband implements this algorithm. It has usage:

[F1,F2] = omniband(na,nH,nL,LH,LL,theta,pol,Niter) % bandedge frequencies

[F1,F2] = omniband(na,nH,nL,LH,LL,theta,pol) % equivalent to Niter = 0

where theta is the incidence angle in degrees, pol is one of the strings ’te’ or ’tm’ for
TE or TM polarization, and Niter is the desired number of iterations. If this argument
is omitted, only the i = 0 iteration is carried out.

It is straightforward but tedious to verify the following facts about the above solu-
tions. First, f1, f2 are increasing functions of θa for both TE and TM polarizations. Thus,
the center frequency of the band fc = (f1+f2)/2 shifts towards higher frequencies with
increasing angle θa. The corresponding wavelength intervals will shift towards lower
wavelengths.

Second, the bandwidth Δf = f2 − f1 is an increasing function of θa for TE, and a
decreasing one for TM polarization. Thus, as θa increases, the reflecting band for TE
expands and that of TM shrinks, while their (slightly different) centers fc shift upwards.

In order to achieve omnidirectional reflectivity, the TE and TM bands must have a
common overlapping intersection for all angles of incidence. Because the TM band is
always narrower than the TE band, it will determine the final common omnidirectional
band.

The worst case of overlap is for the TM band at 90o angle of incidence, which must
overlap with the TM/TE band at 0o. The left bandedge of this TM band, f1,TM(90o), must
be less than the right bandedge of the 0o band, f2(0o). This is a sufficient condition for
omnidirectional reflectivity.

Thus, the minimum band shared by all angles of incidence and both polarizations
will be [f1,TM(90o), f2(0o)], having width:
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Δfmin = f2(0o)−f1,TM(90o) (minimum omnidirectional bandwidth) (8.8.18)

In a more restricted sense, the common reflecting band for both polarizations and
for angles up to a given θa will be [f1,TM(θa), f2,TM(0o)] and the corresponding band-
width:

Δf(θa)= f2(0o)−f1,TM(θa) (8.8.19)

In addition to computing the bandwidths of either the TM or the TE bands at any
angle of incidence, the function omniband can also compute the above common band-
widths. If the parameter pol is equal to ’tem’, then F1, F2 are those of Eqs. (8.8.18) and
(8.8.19). Its extended usage is as follows:

[F1,F2] = omniband(na,nH,nL,LH,LL,theta,’tem’) % Eq. (8.8.19)

[F1,F2] = omniband(na,nH,nL,LH,LL,90,’tem’) % Eq. (8.8.18)

[F1,F2] = omniband(na,nH,nL,LH,LL) % Eq. (8.8.18)

Next, we discuss some simulation examples that will help clarify the above remarks.

Example 8.8.1: The first example is the angular dependence of Example 6.3.2. In order to flatten
out and sharpen the edges of the reflecting bands, we useN = 30 bilayers. Fig. 8.8.2 shows
the TE and TM reflectances |ΓT1(λ)|2 as functions of the free-space wavelength λ, for the
two angles of incidence θa = 45o and 80o.

Fig. 8.8.3 depicts the reflectances as functions of frequency f . The refractive indices were
na = 1, nH = 2.32, nL = 1.38, nb = 1.52, and the bilayers were quarter-wavelength
LH = LL = 0.25 at the normalization wavelength λ0 = 500 nm.

The necessary condition (8.8.3) is satisfied and we find for the maximum angle of refraction
and the Brewster angle: θH,max = 25.53o and θB = 30.75o Thus, we have θH,max < θB.
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Fig. 8.8.2 TM and TE reflectances for nH = 2.32, nL = 1.38.

On each graph, we have indicated the corresponding bandwidth intervals calculated with
omniband. The indicated intervals are for 0o incidence, for TE and TM, and for the common
band Eq. (8.8.19) at θa. We observe the shifting of the bands towards higher frequencies,
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Fig. 8.8.3 TM and TE frequency responses for nH = 2.32, nL = 1.38.

or lower wavelengths, and the shrinking of the TM and expanding of the TE bands, and the
shrinking of the common band.

At 45o, there is still sufficient overlap, but at 80o, the TM band has shifted almost to the
end of the 0o band, resulting in an extremely narrow common band.

The arrows labeled fc0 and fc represent the (TM) band center frequencies at 0o and 45o or
80o. The calculated bandedges corresponding to 90o incidence were λ1 = λ0/F2,TM(0o)=
429.73 nm and λ2 = λ0/F1,TM(90o)= 432.16 nm, with bandwidth Δλ = λ2 − λ1 = 2.43
nm. Thus, this structure does exhibit omnidirectional reflectivity, albeit over a very narrow
band. The MATLAB code used to generate these graphs was:

na = 1; nb = 1.52; nH = 2.32; nL = 1.38;
LH = 0.25; LL = 0.25;

la0 = 500;
la = linspace(300,800,501);

th = 45; N = 30;
n = [na, nH, repmat([nL,nH], 1, N), nb];
L = [LH, repmat([LL,LH], 1, N)];
Ge = 100*abs(multidiel(n,L,la/la0, th, ’te’)).^2;
Gm = 100*abs(multidiel(n,L,la/la0, th, ’tm’)).^2;
G0 = 100*abs(multidiel(n,L,la/la0)).^2;

plot(la,Gm, la,Ge, la,G0);

[F10,F20] = omniband(na,nH,nL,LH,LL, 0, ’te’);
[F1e,F2e] = omniband(na,nH,nL,LH,LL, th,’te’);
[F1m,F2m] = omniband(na,nH,nL,LH,LL, th,’tm’);
[F1,F2] = omniband(na,nH,nL,LH,LL, th,’tem’);

Because the reflectivity bands shrink with decreasing ratio nH/nL, if we were to slightly
decrease nH , then the TM band could be made to shift beyond the end of the 0o band and
there would be no common overlapping reflecting band for all angles. We can observe this
behavior in Fig. 8.8.4, which has nH = 2, with all the other parameters kept the same.
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Fig. 8.8.4 TM and TE reflectances for nH = 2, nL = 1.38.

At 45o there is a common overlap, but at 80o, the TM band has already moved beyond the 0o

band, while the TE band still overlaps with the latter. This example has no omnidirectional
reflectivity, although the necessary condition (8.8.3) is still satisfied with θH,max = 30o and
θB = 34.61o.

On the other hand, if we were to increase nH , all the bands will widen, and so will the
final common band, resulting in an omnidirectional mirror of wider bandwidth. Fig. 8.8.5
shows the case of nH = 3, exhibiting a substantial overlap and omnidirectional behavior.
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Fig. 8.8.5 TM and TE reflectances for nH = 3, nL = 1.38.

The minimum band (8.8.18) was [F1, F2]= [1.0465,1.2412] corresponding to the wave-
length bandedges λ1 = λ0/F2 = 402.84 nm and λ2 = λ0/F1 = 477.79 nm with a width of
Δλ = λ2 −λ1 = 74.95 nm, a substantial difference from that of Fig. 8.8.2. The bandedges
were computed with Nit = 0 in Eq. (8.8.17); with Nit = 3, we obtain the more accurate
values: [F1, F2]= [1.0505,1.2412].

To illustrate the dependence of the TE and TM bandwidths on the incident angle θa, we
have calculated and plotted the normalized bandedge frequencies F1(θa), F2(θa) for the
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range of angles 0 ≤ θa ≤ 90o for both polarizations. The left graph of Fig. 8.8.6 shows the
case nH = 3, nL = 1.38, and the right graph, the case nH = 2, nL = 1.38.
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Fig. 8.8.6 TM/TE bandgaps versus angle for nH = 3, nL = 1.38 and nH = 2, nL = 1.38.

We note that the TE band widens with increasing angle, whereas the TM band narrows. At
the same time, the band centers move toward higher frequencies. In the left graph, there
is a common band shared by both polarizations and all angles, that is, the band defined
by F2(0o), and F1,TM(90o). For the right graph, the bandedge F1,TM(θa) increases beyond
F2(0o) for angles θa greater than about 61.8o, and therefore, there is no omnidirectional
band. The calculations of F1(θa), F2(θa) were done with omniband with Niter = 3. ��

Example 8.8.2: In Fig. 8.8.7, we study the effect of changing the optical lengths of the bilayers
from quarter-wavelength to LH = 0.3 and LL = 0.1. The main result is to narrow the
bands. This example, also illustrates the use of the iteration (8.8.17). The approximate
solution (8.8.15) and exact solutions for the 80o bandedge frequencies are obtained from
the two MATLAB calls:

[F1,F2] = omniband(na,nH,nL,LH,LL,80,’tem’,0);
[F1,F2] = omniband(na,nH,nL,LH,LL,80,’tem’,3);

with results [F1, F2]= [1.0933,1.3891] and [F1, F2]= [1.1315,1.3266], respectively.
Three iterations produce an excellent approximation to the exact solution. ��

Example 8.8.3: Here, we revisit Example 6.3.3, whose parameters correspond to the recently
constructed omnidirectional infrared mirror [777]. Fig. 8.8.8 shows the reflectances as
functions of wavelength and frequency at θa = 45o and 80o for both TE and TM polar-
izations. At both angles of incidence there is a wide overlap, essentially over the desired
10–15 μm band.

The structure consisted of nine alternating layers of Tellurium (nH = 4.6) and Polystyrene
(nL = 1.6) on a NaCl substrate (nb = 1.48.) The physical lengths were lH = 0.8 and lL = 1.6
μm. The normalizing wavelength was λ0 = 12.5 μm. The optical thicknesses in units of
λ0 were LH = 0.2944 and LL = 0.2112.

The bandedges at 0o were [F1, F2]= [0.6764,1.2875] with center frequency Fc0 = 0.9819,
corresponding to wavelength λc0 = λ0/Fc0 = 12.73 μm. Similarly, at 45o, the band centers
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Fig. 8.8.7 Unequal length layers LH = 0.30, LL = 0.15.

for TE and TM polarizations were Fc,TE = 1.0272 and Fc,TM = 1.0313, resulting in the
wavelengths λc,TE = 12.17 and λc,TM = 12.12 μm (shown on the graphs are the TE centers
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Fig. 8.8.8 Nine-layer Te/PS omnidirectional mirror over the infrared.
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only.)

The final bandedges of the common reflecting band computed from Eq. (8.8.18) were
[F1, F2]= [0.8207,1.2875], resulting in the wavelength bandedges λ1 = λ0/F2 = 9.71
and λ2 = λ0/F1 = 14.95 μm, with a width of Δλ = λ2 − λ1 = 5.24 μm and band center
(λ1 +λ2)/2 = 12.33 μm (the approximation (8.8.15) gives 5.67 and 12.4 μm.) The graphs
were generated by the following MATLAB code:

la0 = 12.5; la = linspace(5,25,401);
na = 1; nb = 1.48; nH = 4.6; nL = 1.6;
lH = 0.8; lL = 1.65; LH = nH*lH/la0; LL = nL*lL/la0;

th = 45;
N = 4;
n = [na, nH, repmat([nL,nH], 1, N), nb];
L = [LH, repmat([LL,LH], 1, N)];
Ge = 100*abs(multidiel(n,L,la/la0, th, ’te’)).^2;
Gm = 100*abs(multidiel(n,L,la/la0, th, ’tm’)).^2;
G0 = 100*abs(multidiel(n,L,la/la0)).^2;

plot(la,Gm, la,Ge, la,G0);

Ni = 5;
[F10,F20] = omniband(na,nH,nL,LH,LL, 0, ’te’, Ni); % band at 0o

[F1e,F2e] = omniband(na,nH,nL,LH,LL, th,’te’, Ni); % TE band

[F1m,F2m] = omniband(na,nH,nL,LH,LL, th,’tm’, Ni); % TM band

[F1,F2] = omniband(na,nH,nL,LH,LL, th,’tem’,Ni); % Eq. (8.8.19)

[F1,F2] = omniband(na,nH,nL,LH,LL, 90,’tem’,Ni); % Eq. (8.8.18)

Finally, Fig. 8.8.9 shows the same example with the number of bilayers doubled to N = 8.
The mirror bands are flatter and sharper, but the widths are the same. ��
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Fig. 8.8.9 Omnidirectional mirror with N = 8.

Example 8.8.4: The last example has parameters corresponding to the recently constructed
omnidirectional reflector over the visible range [778]. The refractive indices were na = 1,
nH = 2.6 (ZnSe), nL = 1.34 (Na3AlF6 cryolite), and nb = 1.5 (glass substrate.) The layer
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lengths were lH = lL = 90 nm. There were N = 9 bilayers or 2N + 1 = 19 layers, starting
and ending with nH .

With these values, the maximum angle of refraction is θH,max = 22.27o and is less than the
Brewster angle θB = 27.27o.

The normalizing wavelength was taken to beλ0 = 620 nm. Then, the corresponding optical
lengths were LL = nLlL/λ0 = 0.1945 and LH = nHlH/λ0 = 0.3774. The overall minimum
omnidirectional band is [λ1, λ2]= [605.42, 646.88] nm. It was computed by the MATLAB
call to omniband with Ni = 5 iterations:

[F1,F2] = omniband(na,nH,nL,LH,LL,90,’tem’,Ni);
la1 = la0/F2; la2 = la0/F1;

(The values of λ1, λ2 do not depend on the choice of λ0.) Fig. 8.8.10 shows the reflectance
at 45o and 80o. The upper panel of graphs has N = 9 bilayers as in [778]. The lower panel
has N = 18 bilayers or 38 layers, and has more well-defined band gaps. The two arrows in
the figures correspond to the values of λ1, λ2 of the minimum omnidirectional band. ��
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Fig. 8.8.10 Omnidirectional mirror over visible band.
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8.9 Polarizing Beam Splitters

The objective of an omnidirectional mirror is to achieve high reflectivity for both polar-
izations. However, in polarizers, we are interested in separating the TE and TM polariza-
tions. This can be accomplished with a periodic bilayer structure of the type shown in
Fig. 8.8.1, which is highly reflecting only for TE and highly transmitting for TM polariza-
tions. This is the principle of the so-called MacNeille polarizers [640,644,647,666,669,684–
690].

If the angle of incidence θa is chosen such that the angle of refraction in the first
high-index layer is equal to the Brewster angle of the high-low interface, then the TM
component will not be reflected at the bilayer interfaces and will transmit through. The
design condition is θH = θB, or sinθH = sinθB, which gives:

na sinθa = nH sinθH = nH sinθB = nHnL√
n2
H + n2

L

(8.9.1)

This condition can be solved either for the angleθa or for the indexna of the incident
medium:

sinθa = nHnL
na

√
n2
H + n2

L

or, na = nHnL
sinθa

√
n2
H + n2

L

(8.9.2)

In either case, the feasibility of this approach requires the opposite of the condition
(8.8.3), that is,

na >
nHnL√
n2
H + n2

L

(8.9.3)

If the angle θa is set equal to the convenient value of 45o, then, condition Eq. (8.9.2)
fixes the value of the refractive index na to be given by:

na =
√

2nHnL√
n2
H + n2

L

(8.9.4)

Fig. 8.9.1 depicts such a multilayer structure sandwiched between two glass prisms
with 45o angles. The thin films are deposited along the hypotenuse of each prism and
the prisms are then cemented together. The incident, reflected, and transmitted beams
are perpendicular to the prism sides.

Not many combinations of available materials satisfy condition (8.9.4). One possible
solution is Banning’s [647] with nH = 2.3 (zinc sulfide), nL = 1.25 (cryolite), and na =
1.5532. Another solution is given in Clapham, et al, [669], with nH = 2.04 (zirconium
oxide), nL = 1.385 (magnesium fluoride), and na = 1.6205 (a form of dense flint glass.)

Fig. 8.9.2 shows the TE and TM reflectances of the case nH = 2.3 and nL = 1.25. The
incident and output media had na = nb = 1.5532. The maximum reflectivity for the TE
component is 99.99%, while that of the TM component is 3% (note the different vertical
scales in the two graphs.)
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Fig. 8.9.1 Polarizing beam splitter.

The number of bilayers was N = 5 and the center frequency of the TE band was
chosen to correspond to a wavelength of λc = 500 nm. To achieve this, the normal-
izing wavelength was required to be λ0 = 718.38 nm. The layer lengths were quarter-
wavelengths at λ0. The TE bandwidth calculated with omniband is also shown.

The Brewster angles inside the high- and low-index layers are θH = 28.52o and
θL = 61.48o. As expected, they satisfy θH + θL = 90o.
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Fig. 8.9.2 Polarizer with nH = 2.3 and nL = 1.25.

Fig. 8.9.3 shows the second case having nH = 2.04, nL = 1.385, na = nb = 1.6205.
The normalizing wavelength was λ0 = 716.27 nm in order to give λc = 500 nm. This
case achieves a maximum TE reflectivity of 99.89% and TM reflectivity of only 0.53%.
The typical MATLAB code generating these examples was:

nH = 2.3; nL = 1.25;
LH = 0.25; LL = 0.25;

na = nH*nL/sqrt(nH^2+nL^2)/sin(pi/4); nb=na;

[f1e,f2e] = omniband(na,nH,nL,LH,LL,th,’te’,5);

346 8. Multilayer Film Applications

300 400 500 600 700 800
0

20

40

60

80

100

|
Γ T

E
(λ

)|
2  

 (
pe

rc
en

t)

λ (nm)

TE Reflectance

λc

300 400 500 600 700 800
0

1

2

3

4

|
Γ T

M
(λ

)|
2  

 (
pe

rc
en

t)

λ (nm)

TM Reflectance

Fig. 8.9.3 Polarizer with nH = 2.04 and nL = 1.385.

lac = 500;
la0 = lac*(f1e+f2e)/2; because λc = λ0/Fc

la = linspace(300,800,301);

N = 5;
n = [na, nH, repmat([nL,nH], 1, N), nb];
L = [LH, repmat([LL,LH], 1, N)];
Ge = 100*abs(multidiel(n,L,la/la0, th, ’te’)).^2;
Gm = 100*abs(multidiel(n,L,la/la0, th, ’tm’)).^2;

plot(la,Ge);

8.10 Reflection and Refraction in Birefringent Media

Uniform plane wave propagation in biaxial media was discussed in Sec. 4.6. We found
that there is an effective refractive index N such that k = Nk0 = Nω/c0. The index N,
given by Eq. (4.6.8), depends on the polarization of the fields and the direction of the
wave vector. The expressions for the TE and TM fields were given in Eqs. (4.6.18) and
(4.6.27).

Here, we discuss how such fields get reflected and refracted at planar interfaces
between biaxial media. Further discussion can be found in [638,57] and [698–719].

Fig. 7.1.1 depicts the TM and TE cases, with the understanding that the left and
right biaxial media are described by the triplets of principal indices n = [n1, n2, n3]
and n′ = [n′1, n′2, n′3], and that the E-fields are not perpendicular to the corresponding
wave vectors in the TM case. The principal indices are aligned along the xyz axes, the
xy-plane is the interface plane, and the xz-plane is the plane of incidence.

The boundary conditions require the matching of the electric field components that
are tangential to the interface, that is, the components Ex in the TM case or Ey in TE.
It proves convenient, therefore, to re-express Eq. (4.6.27) directly in terms of the Ex
component and Eq. (4.6.18) in terms of Ey.



8.10. Reflection and Refraction in Birefringent Media 347

For the TM case, we write E = x̂Ex + ẑEz = Ex(x̂− ẑ tan θ̄), for the electric field of
the left-incident field, where we used Ez = −Ex tan θ̄. Similarly, for the magnetic field
we have from Eq. (4.6.26):

H = N
η0

ŷ(Ex cosθ− Ez sinθ)= N
η0

ŷEx cosθ
(

1− Ez
Ex

tanθ
)

= N
η0

ŷEx cosθ
(

1+ n2
1

n2
3

tan2 θ
)
= N
η0

ŷEx cosθ
(
n2

3 cos2 θ+ n2
1 sin2 θ

n2
3 cos2 θ

)

= N
η0

ŷEx cosθ
(

n2
3n

2
1

N2n2
3 cos2 θ

)
= Ex
η0

n2
1

N cosθ
ŷ

where we replaced Ez/Ex = − tan θ̄ = −(n2
1/n

2
3)tanθ and used Eq. (4.7.10). Thus,

E(r) = Ex

(
x̂− ẑ

n2
1

n2
3

tanθ
)
e−j k·r

H(r) = Ex
η0

n2
1

N cosθ
ŷe−j k·r = Ex

ηTM
ŷe−j k·r

(TM) (8.10.1)

Similarly, we may rewrite the TE case of Eq. (4.6.18) in the form:

E(r) = Eyŷe−j k·r

H(r) = Ey
η0

n2 cosθ(−x̂+ ẑ tanθ)e−j k·r = Ey
ηTE

(−x̂+ ẑ tanθ)e−j k·r (TE) (8.10.2)

The propagation phase factors are:

e−j k·r = e−jk0xN sinθ−jk0zN cosθ (TM and TE propagation factors) (8.10.3)

Unlike the isotropic case, the phase factors are different in the TM and TE cases
because the value of N is different, as given by Eq. (4.6.8), or,

N =

⎧⎪⎪⎨
⎪⎪⎩

n1n3√
n2

1 sin2 θ+ n2
3 cos2 θ

, (TM or p-polarization)

n2, (TE or s-polarization)

(8.10.4)

In Eqs. (8.10.1) and (8.10.2), the effective transverse impedances are defined by ηTM =
Ex/Hy and ηTE = −Ey/Hx, and are given as follows:

ηTM = η0
N cosθ
n2

1
, ηTE = η0

n2 cosθ
(transverse impedances) (8.10.5)

Defining the TM and TE effective transverse refractive indices through ηTM = η0/nTM

and ηTE = η0/nTE, we have:
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nTM = n2
1

N cosθ
= n1n3√

n2
3 −N2 sin2 θ

nTE = n2 cosθ

(transverse refractive indices) (8.10.6)

where we used Eq. (4.6.23) for the TM case, that is,

N cosθ = n1

n3

√
n2

3 −N2 sin2 θ (8.10.7)

In the isotropic case, N = n1 = n2 = n3 = n, Eqs. (8.10.6) reduce to Eq. (7.2.13).
Next, we discuss the TM and TE reflection and refraction problems of Fig. 7.1.1.

Assuming that the interface is at z = 0, the equality of the total tangential electric
fields (Ex component for TM and Ey for TE), implies as in Sec. 7.1 that the propagation
phase factors must match at all values of x:

e−jkx+x = e−jkx−x = e−jk
′
x+x = e−jk

′
x−x

which requires that kx+ = kx− = k′x+ = k′x−, or, because kx = k sinθ = Nk0 sinθ:

N sinθ+ = N sinθ− = N′ sinθ′+ = N′ sinθ′−

This implies Snel’s law of reflection, that is, θ+ = θ− ≡ θ and θ′+ = θ′− ≡ θ′, and
Snel’s law of refraction,

N sinθ = N′ sinθ′ (Snel’s law for birefringent media) (8.10.8)

Thus, Snel’s law is essentially the same as in the isotropic case, provided one uses the
effective refractive index N. Because N depends on the polarization, there will be two
different refraction angles† for the same angle of incidence. In particular, Eq. (8.10.8)
can be written explicitly in the two polarization cases:

n1n3 sinθ√
n2

1 sin2 θ+ n2
3 cos2 θ

= n′1n′3 sinθ′√
n′21 sin2 θ′ + n′23 cos2 θ′

(TM) (8.10.9a)

n2 sinθ = n′2 sinθ′ (TE) (8.10.9b)

Both expressions reduce to Eq. (7.1.6) in the isotropic case. The explicit solutions of
Eq. (8.10.9a) for sinθ′ and sinθ are:

sinθ′ = n1n3n′3 sinθ√[
n′21 n′23 (n2

1 − n2
3)−n2

1n
2
3(n

′2
1 − n′23 )

]
sin2 θ+ n′21 n′23 n2

3

sinθ = n′1n′3n3 sinθ′√[
n2

1n
2
3(n

′2
1 − n′23 )−n′21 n′23 (n2

1 − n2
3)
]

sin2 θ′ + n2
1n

2
3n
′2
3

(8.10.10)

†Hence, the name birefringent.
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The MATLAB function snel, solves Eqs. (8.10.9) for θ′ given the angle of incidence
θ and the polarization type. It works for any type of medium, isotropic, uniaxial, or
biaxial. It has usage:

thb = snel(na,nb,tha,pol); % refraction angle from Snel’s law

The refractive index inputs na, nb may be entered as 1-, 2-, or 3-dimensional column
or row vectors, for example, na = [na] (isotropic), na = [nao, nae] (uniaxial), or na =
[na1, na2, na3] (biaxial).

Next, we discuss the propagation and matching of the transverse fields. All the
results of Sec. 7.3 translate verbatim to the birefringent case, provided one uses the
proper transverse refractive indices according to Eq. (8.10.6).

In particular, the propagation equations (7.3.5)–(7.3.7) for the transverse fields, for
the transverse reflection coefficients ΓT, and for the transverse wave impedances ZT,
remain unchanged.

The phase thickness δz for propagating along z by a distance l also remains the same
as Eq. (7.3.8), except that the index N must be used in the optical length, and therefore,
δz depends on the polarization:

δz = kzl = kl cosθ = Nk0l cosθ = 2π
λ

lN cosθ (8.10.11)

Using Eq. (8.10.7), we have explicitly:

δz = 2π
λ

l
n1

n3

√
n2

3 −N2 sin2 θ , (TM) (8.10.12a)

δz = 2π
λ

ln2 cosθ , (TE) (8.10.12b)

The transverse matching matrix (7.3.11) and Fresnel reflection coefficients (7.3.12)
remain the same. Explicitly, we have in the TM and TE cases:

ρTM = nTM − n′TM

nTM + n′TM
=

n2
1

N cosθ
− n′21
N′ cosθ′

n2
1

N cosθ
+ n′21
N′ cosθ′

ρTE = nTE − n′TE

nTE + n′TE
= n2 cosθ− n′2 cosθ′

n2 cosθ+ n′2 cosθ′

(8.10.13)

Using Eq. (8.10.6) and the TM and TE Snel’s laws, Eqs. (8.10.9), we may rewrite the
reflection coefficients in terms of the angle θ only:

ρTM =
n1n3

√
n′23 −N2 sin2 θ− n′1n′3

√
n2

3 −N2 sin2 θ

n1n3

√
n′23 −N2 sin2 θ+ n′1n′3

√
n2

3 −N2 sin2 θ

ρTE =
n2 cosθ−

√
n′22 − n2

2 sin2 θ

n2 cosθ+
√
n′22 − n2

2 sin2 θ

(8.10.14)
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The quantity N2 sin2 θ can be expressed directly in terms of θ and the refractive
indices of the incident medium. Using Eq. (8.10.4), we have:

N2 sin2 θ = n2
1n

2
3 sin2 θ

n2
1 sin2 θ+ n2

3 cos2 θ
(8.10.15)

The TE reflection coefficient behaves like the TE isotropic case. The TM coefficient
exhibits a much more complicated behavior. If n1 = n′1 but n3 
= n′3, it behaves like the
TM isotropic case. If n3 = n′3 but n1 
= n′1, the square-root factors cancel and it becomes
independent of θ:

ρTM = n1 − n′1
n1 + n′1

(8.10.16)

Another interesting case is when both media are uniaxial and n′3 = n1 and n′1 = n3,
that is, the refractive index vectors are n = [n1, n1, n3] and n′ = [n3, n3, n1]. It is
straightforward to show in this case that ρTM = ρTE at all angles of incidence. Multilayer
films made from alternating such materials exhibit similar TM and TE optical properties
[698].

The MATLAB function fresnel can evaluate Eqs. (8.10.14) at any range of incident
angles θ. The function determines internally whether the media are isotropic, uniaxial,
or biaxial.

8.11 Brewster and Critical Angles in Birefringent Media

The maximum angle of refraction, critical angle of incidence, and Brewster angle, have
their counterparts in birefringent media.

It is straightforward to verify that θ′ is an increasing function of θ in Eq. (8.10.9).
The maximum angle of refraction θ′c is obtained by setting θ = 90o in Eq. (8.10.9).

For the TE case, we obtain sinθ′c = n2/n′2. As in the isotropic case of Eq. (7.5.2), this
requires that n2 < n′2, that is, the incident medium is less dense than the transmitted
medium, with respect to the index n2. For the TM case, we obtain from Eq. (8.10.9a):

sinθ′c =
n3n′3√

n2
3n
′2
3 + n′21 (n′23 − n2

3)
(maximum TM refraction angle) (8.11.1)

This requires that n3 < n′3. On the other hand, if n3 > n′3, we obtain the critical
angle of incidence θc that corresponds to θ′ = 90o in Eq. (8.10.10):

sinθc = n3n′3√
n2

3n
′2
3 + n2

1(n
2
3 − n′23 )

(critical TM angle) (8.11.2)

whereas for the TE case, we have sinθc = n′2/n2, which requires n2 > n′2.
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In the isotropic case, a Brewster angle always exists at which the TM reflection coeffi-
cient vanishes, ρTM = 0. In the birefringent case, the Brewster angle does not necessarily
exist, as is the case of Eq. (8.10.16), and it can also have the value zero, or even be imag-
inary.

The Brewster angle condition ρTM = 0 is equivalent to the equality of the transverse
refractive indices nTM = n′TM. Using Eq. (8.10.6), we obtain:

nTM = n′TM ⇒ n1n3√
n2

3 −N2 sin2 θ
= n′1n′3√

n′23 −N2 sin2 θ
(8.11.3)

where N2 sin2 θ is given by Eq. (8.10.15). Solving for θ, we obtain the expression for the
Brewster angle from the left medium:

tanθB = n3n′3
n2

1

√√√√n2
1 − n′21

n2
3 − n′23

(Brewster angle) (8.11.4)

Working instead with N′ sinθ′ = N sinθ, we obtain the Brewster angle from the
right medium, interchanging the roles of the primed and unprimed quantities:

tanθ′B =
n3n′3
n′21

√√√√n2
1 − n′21

n2
3 − n′23

(Brewster angle) (8.11.5)

Eqs. (8.11.4) and (8.11.5) reduce to Eqs. (7.6.2) and (7.6.3) in the isotropic case. It is
evident from Eq. (8.11.4) that θB is a real angle only if the quantity under the square
root is non-negative, that is, only if n1 > n′1 and n3 > n′3, or if n1 < n′1 and n3 < n′3.
Otherwise, θB is imaginary. In the special case, n1 = n′1 but n3 
= n′3, the Brewster
angle vanishes. If n3 = n′3, the Brewster angle does not exist, since then ρTM is given by
Eq. (8.10.16) and cannot vanish.

The MATLAB function brewster computes the Brewster angle θB, as well as the
critical angles θc and θ′c. For birefringent media the critical angles depend on the pola-
rization. Its usage is as follows:

[thB,thc] = brewster(na,nb) % isotropic case

[thB,thcTE,thcTM] = brewster(na,nb) % birefringent case

In multilayer systems, it is convenient to know if the Brewster angle of an internal
interface is accessible from the incident medium. Using Snel’s law we have in this case
Na sinθa = N sinθ, where θa is the incident angle and Na the effective index of the
incident medium. It is simpler, then, to solve Eq. (8.11.3) directly for θa:

N2
a sinθ2

a = N2 sin2 θB = n2
3n
′2
3 (n

2
1 − n′21 )

n2
1n

2
3 − n′23 n′21

(8.11.6)

Example 8.11.1: To illustrate the variety of possible Brewster angle values, we consider the
following birefringent cases:
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(a) n = [1.63,1.63,1.5], n′ = [1.63,1.63,1.63]
(b) n = [1.54,1.54,1.63], n′ = [1.5,1.5,1.5]
(c) n = [1.8,1.8,1.5], n′ = [1.5,1.5,1.5]
(d) n = [1.8,1.8,1.5], n′ = [1.56,1.56,1.56]

These cases were discussed in [698]. The corresponding materials are: (a) birefringent
polyester and isotropic polyester, (b) syndiotactic polystyrene and polymethylmethacrylate
(PMMA), (c) birefringent polyester and PMMA, and (d) birefringent polyester and isotropic
polyester.

Because n1 = n′1 in case (a), the Brewster angle will be zero, θB = 0o. In case (b), we
calculate θB = 29.4o. Because n2 > n′2 and n3 > n′3, there will be both TE and TM critical
angles of reflection: θc,TE = 76.9o and θc,TM = 68.1o.

In case (c), the Brewster angle does not exist because n3 = n′3, and in fact, the TM reflection
coefficient is independent of the incident angle as in Eq. (8.10.16). The corresponding
critical angles of reflection are: θc,TE = 56.4o and θc,TM = 90o.

Finally, in case (d), because n2 > n′2 but n3 < n′3, the Brewster angle will be imaginary,
and there will be a TE critical angle of reflection and a TM maximum angle of refraction:
θc,TE = 60.1o and θ′c,TM = 74.1o.

Fig. 8.11.1 shows the TM and TE reflection coefficients |ρTM(θ)| of Eq. (8.10.14) versus θ
in the range 0 ≤ θ ≤ 90o.
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Fig. 8.11.1 TM and TE birefringent Fresnel reflection coefficients versus incident angle.

The TE coefficient in case (a) is not plotted because it is identically zero. In order to expand
the vertical scales, Fig. 8.11.2 shows the TM reflectances normalized by their values at
θ = 0o, that is, it plots the quantities |ρTM(θ)/ρTM(0o)|2. Because in case (a) ρTM(0o)= 0,
we have plotted instead the scaled-up quantity |100ρTM(θ)|2.

The typical MATLAB code used to compute the critical angles and generate these graphs
was:

th = linspace(0,90,361); % θ at 1/4o intervals

na = [1.63,1.63,1.5]; nb = [1.63,1.63,1.63]; % note the variety of
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Fig. 8.11.2 TM reflectances normalized at normal incidence.

[rte1,rtm1] = fresnel(na,nb,th); % equivalent ways of
[thb1,thcTE1,thcTM1] = brewster(na,nb); % entering na and nb

na = [1.54,1.63];
nb = [1.5, 1.5]; % FRESNEL and BREWSTER
[rte2,rtm2] = fresnel(na,nb,th); % internally extend
[thb2,thcTE2,thcTM2] = brewster(na,nb); % na,nb into 3-d arrays

na = [1.8, 1.5]; % same as na=[1.8,1.8,1.5]
nb = 1.5; % and nb=[1.5,1.5,1.5]
[rte3,rtm3] = fresnel(na,nb,th);
[thb3,thcTE3,thcTM3] = brewster(na,nb); % in this case, θB = []

na = [1.8,1.5];
nb = 1.56;
[rte4,rtm4] = fresnel(na,nb,th);
[thb4,thcTE4,thcTM4] = brewster(na,nb);

plot(th, abs([rtm1; rtm2; rtm3; rtm4]));

We note four striking properties of the birefringent cases that have no counterparts
for isotropic materials: (i) The Brewster angle can be zero, (ii) the Brewster angle may not
exist, (iii) the Brewster angle may be imaginary with the TE and TM reflection coefficients
both increasing monotonically with the incident angle, and (iv) there may be total internal
reflection in one polarization but not in the other.

8.12 Multilayer Birefringent Structures

With some redefinitions, all the results of Sec. 8.1 on multilayer dielectric structures
translate essentially unchanged to the birefringent case.

We assume the sameM-layer configuration shown in Fig. 8.1.1, where now each layer
is a biaxial material. The orthogonal optic axes of all the layers are assumed to be aligned
with the xyz film axes. The xz-plane is the plane of incidence, the layer interfaces are
parallel to the xy-plane, and the layers are arranged along the z-axis.
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The ith layer is described by the triplet of refractive indices ni = [ni1, ni2, ni3],
i = 1,2, . . . ,M. The incident and exit media a,b may also be birefringent with na =
[na1, na2, na3] and nb = [nb1, nb2, nb3], although in our examples, we will assume that
they are isotropic.

The reflection/refraction angles in each layer depend on the assumed polarization
and are related to each other by the birefringent version of Snel’s law, Eq. (8.10.8):

Na sinθa = Ni sinθi = Nb sinθb , i = 1,2 . . . ,M (8.12.1)

where Na,Ni,Nb are the effective refractive indices given by Eq. (8.10.4). The phase
thickness of the ith layer depends on the polarization:

δi = 2π
λ

liNi cosθi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
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2π
λ
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a sin2 θa
n2
i2

, (TE)

(8.12.2)

where we used Eq. (8.10.7) and Snel’s law to write in the TM and TE cases:

Ni cosθi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
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To use a unified notation for the TM and TE cases, we define the layer optical lengths
at normal-incidence, normalized by a fixed free-space wavelength λ0:

Li =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

lini1
λ0

, (TM)

lini2
λ0

, (TE)
, i = 1,2, . . . ,M (8.12.3)

We define also the cosine coefficients ci, which represent cosθi in the TE birefringent
case and in the TM isotropic case:

ci =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
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, i = 1,2, . . . ,M (8.12.4)

At normal incidence the cosine factors are unity, ci = 1. With these definitions,
Eq. (8.12.2) can be written compactly in the form:

δi = 2π
λ0

λ
Lici = 2π

f
f0
Lici , i = 1,2, . . . ,M (8.12.5)
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where λ is the operating free-space wavelength and f = c0/λ, f0 = c0/λ0. This is
the birefringent version of Eq. (8.1.10). A typical design might use quarter-wave layers,
Li = 1/4, at λ0 and at normal incidence.

The reflection coefficients ρTi at the interfaces are given by Eq. (8.1.3), but now the
transverse refractive indices are defined by the birefringent version of Eq. (8.1.4):

nTi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n2
i1

Ni cosθi
= ni1ni3√

n2
i3 −N2

a sin2 θa
, (TM)

ni2 cosθi =
√
n2
i2 −N2

a sin2 θa , (TE)

, i = a,1,2, . . . ,M, b (8.12.6)

With the above redefinitions, the propagation and matching equations (8.1.5)–(8.1.9)
remain unchanged. The MATLAB function multidiel can also be used in the birefrin-
gent case to compute the frequency reflection response of a multilayer structure. Its
usage is still:

[Gamma1,Z1] = multidiel(n,L,lambda,theta,pol); % birefringent multilayer structure

where the input n is a 1×(M + 2) vector of refractive indices in the isotropic case, or a
3×(M + 2) matrix, where each column represents the triplet of birefringent indices of
each medium. For uniaxial materials, n may be entered as a 2×(M + 2) matrix.

8.13 Giant Birefringent Optics

The results of Sec. 8.8 can be applied almost verbatim to the birefringent case. In
Fig. 8.8.1, we assume that the high and low alternating layers are birefringent, described
by the triplet indices nH = [nH1, nH2, nH3] and nL = [nL1, nL2, nL3]. The entry and exit
media may also be assumed to be birefringent. Then, Snel’s laws give:

Na sinθa = NH sinθH = NL sinθL = Nb sinθb (8.13.1)

The phase thicknesses δH and δL within the high and low index layers are:

δH = 2π
f
f0
LHcH , δL = 2π

f
f0
LLcL (8.13.2)

where LH, cH and LL, cL are defined by Eqs. (8.12.3) and (8.12.4) for i = H,L. The
effective transverse refractive indices within the high and low index layers are given by
Eq. (8.12.6), again with i = H,L.

The alternating reflection coefficient ρT between the high/low interfaces is given by
Eq. (8.10.14), with the quantity N2 sin2 θ replaced by N2

a sin2 θa by Snel’s law:
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(8.13.3)

The multilayer structure will exhibit reflection bands whose bandedges can be cal-
culated from Eqs. (8.8.7)–(8.8.17), with the redefinition L± = LHcH±LLcL. The MATLAB
function omniband2 calculates the bandedges. It has usage:

[F1,F2] = omniband2(na,nH,nL,LH,LL,th,pol,N);

where pol is one of the strings ’te’ or ’tm’ for TE or TM polarization, and na, nH, nL
are 1-d, 2-d, or 3-d row or column vectors of birefringent refractive indices.

Next, we discuss some mirror design examples from [698] that illustrate some prop-
erties that are specific to birefringent media. The resulting optical effects in such mirror
structures are referred to as giant birefringent optics (GBO) in [698,1853].

Example 8.13.1: We consider a GBO mirror consisting of 50-bilayers of high and low index
quarter-wave layers with refractive indices nH = [1.8,1.8,1.5], nL = [1.5,1.5,1.5] (bire-
fringent polyester and isotropic PMMA.) The surrounding media are air, na = nb = 1.

The layers are quarter wavelength at the normalization wavelength λ0 = 700 nm at normal
incidence, so that for both polarizations we take LH = LL = 1/4.

Because the high/low index layers are matched along the z-direction, nH3 = nL3, the TM
reflection coefficient at the high/low interface will be constant, independent of the incident
angle θa, as in Eq. (8.10.16). However, some dependence on θa is introduced through the
cosine factors cH, cL of Eq. (8.13.2).

The left graph of Fig. 8.13.1 shows the reflectance |ΓT(λ)|2 as a function of λ for an
angle of incidence θa = 60o. The TM and TE bandedge wavelengths were calculated from
omniband2 to be: [λ1, λ2]= [540.24,606.71] and [λ1, λ2]= [548.55,644.37] nm.

The typical MATLAB code used to generate the left graph and the bandedge wavelengths
was as follows:

LH = 0.25; LL = 0.25;

na = [1; 1; 1];
nH = [1.8; 1.8; 1.5];
nL = [1.5; 1.5; 1.5];
nb = [1; 1; 1];

la0 = 700;
la = linspace(400,1000,601);

th = 60; % angle of incidence

N = 50; % number of bilayers
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Fig. 8.13.1 Reflectance of birefringent mirror.

n = [na, repmat([nH,nL], 1, N), nb]; % 3×(2N + 2) matrix

L = [repmat([LH,LL], 1, N)];

Ge = 100*abs(multidiel(n, L, la/la0, th, ’te’)).^2;
Gm = 100*abs(multidiel(n, L, la/la0, th, ’tm’)).^2;
G0 = 100*abs(multidiel(n, L, la/la0)).^2;

plot(la,Gm,’-’, la,Ge,’--’, la,G0,’:’);

[F1,F2]=omniband2(na,nH,nL,LH,LL,th,’tm’,3);
la1 = la0/F2; la2 = la0/F1; % TM bandedge wavelengths

The right graph shows the reflectance with a 25% thickness gradient (the layer thicknesses
LH,LL decrease linearly from quarter-wavelength to 25% less than that at the end.) This
can be implemented in MATLAB by defining the thickness vector L by:

L = [repmat([LH,LL], 1, N)];
L = L .* (1 - linspace(0, 0.25, 2*N)); % 25% thickness gradient

The thickness gradient increases the effective bandwidth of the reflecting bands [696].
However, the bandwidth calculation can no longer be done with omniband2. The band
centers can be shifted to higher wavelengths by choosing λ0 higher. The reflecting bands
can be made flatter by increasing the number of bilayers. ��

Example 8.13.2: In this example, we design a 30-bilayer GBO mirror with nH = [1.8,1.8,1.5]
and nL = [1.5,1.5,1.8], so that nH1 = nH2 = nL3 and nH3 = nL1 = nL2. As we discussed
in Sec. 8.10, it follows from Eq. (8.10.14) that ρTM = ρTE for all angles of incidence.

As in Ref. [698], the media a,b are taken to be isotropic with na = nb = 1.4. The
normalization wavelength at which the high and low index layers are quarter-wavelength
is λ0 = 700 nm.

The left graph of Fig. 8.13.2 shows the reflectance for a 45o angle of incidence. Because
ρTM = ρTE, the reflection bands for the TM and TE cases are essentially the same.

The right graph depicts the asymptotic (for large number of bilayers) bandedges of the
reflecting band versus incident angle. They were computed with omniband2. Unlike the
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Fig. 8.13.2 Birefringent mirror with identical TM and TE reflection bands.

isotropic case, the TM and TE bands are exactly identical. This is a consequence of the
following relationships between the cosine factors in this example: cH,TM = cL,TE and
cH,TE = cL,TM. Then, because we assume quarter-wave layers in both the TE and TM cases,
LH = LL = 1/4, we will have:

L+,TM = LH,TMcH,TM + LL,TMcL,TM == 1

4
(cH,TM + cL,TM)= 1

4
(cL,TE + cH,TE)= L+,TE

L−,TM = LH,TMcH,TM − LL,TMcL,TM == 1

4
(cH,TM − cL,TM)= 1

4
(cL,TE − cH,TE)= −L+,TE

Because the computational algorithm (8.8.17) for the bandwidth does not depend on the
sign of L−, it follows that Eq. (8.8.17) will have the same solution for the TM and TE cases.
The typical MATLAB code for this example was:

LH = 0.25; LL = 0.25;

na = [1.4; 1.4; 1.4];
nb = [1.4; 1.4; 1.4];
nH = [1.8; 1.8; 1.5];
nL = [1.5; 1.5; 1.8];

la0 = 700;
la = linspace(400,1000,601);

tha = 45;

N = 30;
n = [na, repmat([nH,nL], 1, N), nb];
L = [repmat([LH,LL], 1, N)];

Ge = 100*abs(multidiel(n, L, la/la0, tha, ’te’)).^2;
Gm = 100*abs(multidiel(n, L, la/la0, tha, ’tm’)).^2;
G0 = 100*abs(multidiel(n, L, la/la0)).^2;

plot(la,Gm,’-’, la,Ge,’--’, la,G0,’:’);
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In Fig. 8.13.3, the low-index material is changed slightly to nL = [1.5,1.5,1.9]. The main
behavior of the structure remains the same, except now the TM and TE bands are slightly
different.
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Fig. 8.13.3 Birefringent mirror with slightly different TM and TE reflection bands.

The MATLAB code used to compute the right graph was:

theta = linspace(0,90,361); % incident angles

F1e = []; F2e = [];
F1m = []; F2m = [];

Ni = 3; % refinement iterations

for i=1:length(theta),
[f1e,f2e] = omniband2(na,nH,nL,LH,LL,theta(i),’te’,Ni);
[f1m,f2m] = omniband2(na,nH,nL,LH,LL,theta(i),’tm’,Ni);
F1e = [F1e,f1e]; F2e = [F2e,f2e];
F1m = [F1m,f1m]; F2m = [F2m,f2m]; % frequency bandedges

end

la1e = la0 ./ F2e; la2e = la0 ./ F1e; % wavelength bandedges

la1m = la0 ./ F2m; la2m = la0 ./ F1m;

plot(theta,la1m,’-’, theta,la2m,’-’, theta,la1e,’--’, theta,la2e,’--’);

As the incident angle increases, not only does the TM band widen but it also becomes wider
than the TE band—exactly the opposite behavior from the isotropic case. ��

Example 8.13.3: GBO Reflective Polarizer. By choosing biaxial high/low layers whose refractive
indices are mismatched only in the x or the y direction, one can design a mirror structure
that reflects only the TM or only the TE polarization.

Fig. 8.13.4 shows the reflectance of an 80-bilayer mirror with nH = [1.86,1.57,1.57] for
the left graph, and nH = [1.57,1.86,1.57] for the right one. In both graphs, the low index
material is the same, with nL = [1.57,1.57,1.57].

The angle of incidence was θa = 0o. The typical MATLAB code was:
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Fig. 8.13.4 TM and TE mirror polarizers.

LH = 0.25; LL = 0.25;

na = [1; 1; 1];
nb = [1; 1; 1];
nH = [1.86; 1.57; 1.57];
nL = [1.57; 1.57; 1.57];

la0 = 700;
la = linspace(400,1000,601);

N = 80;
n = [na, repmat([nH,nL], 1, N), nb];
L = [repmat([LH,LL], 1, N)];
L = L .* linspace(1,0.75,2*N); % 25% thickness gradient

Ge = 100*abs(multidiel(n, L, la/la0, 0, ’te’)).^2;
Gm = 100*abs(multidiel(n, L, la/la0, 0, ’tm’)).^2;

plot(la,Gm,’-’, la,Ge,’--’);

A 25% thickness gradient was assumed in both cases. In the first case, the x-direction
indices are different and the structure will act as a mirror for the TM polarization. The TE
polarization will be reflected only by the air-high interface.

In the second case, the materials are matched in their y-direction indices and therefore,
the structure becomes a mirror for the TE polarization, assuming as always that the plane
of incidence is still the xz plane. ��

Giant birefringent optics is a new paradigm in the design of multilayer mirrors and
polarizers [698], offering increased flexibility in the control of reflected light. The re-
cently manufactured multilayer optical film by 3M Corp. [1853] consists of hundreds to
thousands of birefringent polymer layers with individual thicknesses of the order of a
wavelength and total thickness of a sheet of paper. The optical working range of such
films are between 400–2500 nm.

Applications include the design of efficient waveguides for transporting visible light
over long distances and piping sunlight into interior rooms, reflective polarizers for
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improving liquid crystal displays, and other products, such as various optoelectronic
components, cosmetics, and ”hot” and ”cold” mirrors for architectural and automotive
windows.

8.14 Problems

8.1 Prove the reflectance and transmittance formulas (8.4.6) in FTIR.

8.2 Computer Experiment—FTIR. Reproduce the results and graphs of Figures 8.4.3–8.4.5.

8.3 Computer Experiment—Surface Plasmon Resonance. Reproduce the results and graphs of
Figures 8.5.3–8.5.7.

8.4 Working with the electric and magnetic fields across an negative-index slab given by Eqs. (8.6.1)
and (8.6.2), derive the reflection and transmission responses of the slab given in (8.6.8).

8.5 Computer Experiment—Perfect Lens. Study the sensitivity of the perfect lens property to the
deviations from the ideal values of ε = −ε0 and μ = −μ0, and to the presence of losses by
reproducing the results and graphs of Figures 8.6.3 and 8.6.4. You will need to implement
the computational algorithm listed on page 329.

8.6 Computer Experiment—Antireflection Coatings. Reproduce the results and graphs of Figures
8.7.1–8.7.3.

8.7 Computer Experiment—Omnidirectional Dielectric Mirrors. Reproduce the results and graphs
of Figures 8.8.2–8.8.10.

8.8 Derive the generalized Snel’s laws given in Eq. (8.10.10). Moreover, derive the Brewster angle
expressions given in Eqs. (8.11.4) and (8.11.5).

8.9 Computer Experiment—Brewster angles. Study the variety of possible Brewster angles and
reproduce the results and graphs of Example 8.11.1.

8.10 Computer Experiment—Multilayer Birefringent Structures. Reproduce the results and graphs
of Figures 8.13.1–8.13.2.

9
Waveguides

Waveguides are used to transfer electromagnetic power efficiently from one point in
space to another. Some common guiding structures are shown in the figure below.
These include the typical coaxial cable, the two-wire and mictrostrip transmission lines,
hollow conducting waveguides, and optical fibers.

In practice, the choice of structure is dictated by: (a) the desired operating frequency
band, (b) the amount of power to be transferred, and (c) the amount of transmission
losses that can be tolerated.

Fig. 9.0.1 Typical waveguiding structures.

Coaxial cables are widely used to connect RF components. Their operation is practi-
cal for frequencies below 3 GHz. Above that the losses are too excessive. For example,
the attenuation might be 3 dB per 100 m at 100 MHz, but 10 dB/100 m at 1 GHz, and
50 dB/100 m at 10 GHz. Their power rating is typically of the order of one kilowatt at
100 MHz, but only 200 W at 2 GHz, being limited primarily because of the heating of
the coaxial conductors and of the dielectric between the conductors (dielectric voltage
breakdown is usually a secondary factor.) However, special short-length coaxial cables
do exist that operate in the 40 GHz range.

Another issue is the single-mode operation of the line. At higher frequencies, in order
to prevent higher modes from being launched, the diameters of the coaxial conductors
must be reduced, diminishing the amount of power that can be transmitted.

Two-wire lines are not used at microwave frequencies because they are not shielded
and can radiate. One typical use is for connecting indoor antennas to TV sets. Microstrip
lines are used widely in microwave integrated circuits.


