8

Multilayer Film Applications

8.1 Multilayer Dielectric Structures at Oblique Incidence

Using the matching and propagation matrices for transverse fields that we discussed
in Sec. 7.3, we derive here the layer recursions for multiple dielectric slabs at oblique
incidence.

Fig. 8.1.1 shows such a multilayer structure. The layer recursions relate the various
field quantities, such as the electric fields and the reflection responses, at the left of
each interface.
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Fig. 8.1.1 Oblique incidence on multilayer dielectric structure.

We assume that there are no incident fields from the right side of the structure.
The reflection/refraction angles in each medium are related to each other by Snel’s law
applied to each of the M + 1 interfaces:

Ngsin@, = njsin0; = npsinfy |, i=1,2,...,.M (8.1.1)

It is convenient also to define by Eq. (7.3.8) the propagation phases or phase thick-
nesses for each of the M layers, that is, the quantities ; = k;l;. Using k,; = kon; cos 0,
where kg is the free-space wavenumber, ko = w/cy = 21f/co = 21T/, we have for
i=1,2,...,M:
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where we used Eq. (8.1.1) to write cos §; = \/1 —sin®0; = \/1 — nZsin® 0,/n?. The
transverse reflection coefficients at the M + 1 interfaces are defined as in Eq. (6.1.1):

nri-1 — Nrj

, 1i=1,2,....,M+1 (8.1.3)
nr,i-1 + Nri

PrTi =

where we set nrg = Nrg, as in Sec. 6.1. and nry+1 = nrp. The transverse refractive
indices are defined in each medium by Eq. (7.2.13):

i , TM polarization .
nri =1 cos0; , i=a,1,2,...,M,b (8.1.4)

njcos 0;, TE polarization

To obtain the layer recursions for the electric fields, we apply the propagation matrix
(7.3.5) to the fields at the left of interface i + 1 and propagate them to the right of the
interface i, and then, apply a matching matrix (7.3.11) to pass to the left of that interface:

Erie | _ 1 | 1 pri o 0 ETji+1,+
Eri- Tri | Pri 1 0 e o ETjis1,-

Multiplying the matrix factors, we obtain:

ETis 1 eloi pTiei".‘S" E7is1+ ,
_ b N - L oMM -1,...,1 (815
[Eri— } Tri [PTieJ‘S’ e o Eriv1- (®:1:5)

This is identical to Egs. (6.1.2) with the substitutions k;lI; — &; and p; — pr;. The
recursion is initialized at the left of the (M + 1) st interface by performing an additional
matching to pass to the right of that interface:

Erpons | _ 1 1 prvi1 || Erasers 8.1.6)
Erpen,- TrM+1 | PT,M+1 1 0 o
It follows now from Eq. (8.1.5) that the reflection responses, I'rj = E1j—/ETi+, will
satisfy the identical recursions as Eq. (6.1.5):

pri+ I'riv1e %0 ;
Ipj= POTILE = G MM, 8.1.7
"7 14 prilrie 2% 81.7)

and initialized at I'rpm+1 = pr,m+1. Similarly, we obtain the following recursions for
the total transverse electric and magnetic fields at each interface (they are continuous
across each interface):

Eri | cosd;  jnrisind; || Erin .
|:HT1':| = |:Jnf} sin &; 08 5; Hrin |’ i=M,M-1,...,1 (8.1.8)
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where nr; are the transverse characteristic impedances defined by Eq. (7.2.12) and re-
lated to the refractive indices by n1; = no/nr;. The wave impedances, Z1; = E1i/Hrj,
satisfy the following recursions initialized by Z7 y4+1 = N1p:

Zr,i+1 +Jnritan ;

- , i=M,M-1,...,1 (8.1.9)
"Nri +JjZr,ie1 tan §;

Zri =Nt

The MATLAB function muTtidiel that was introduced in Sec. 6.1 can also be used
in the oblique case with two extra input arguments: the incidence angle from the left
and the polarization type, TE or TM. Its full usage is as follows:

[Gammal,Z1] = multidiel(n,L,lambda,theta,pol); 9% multilayer dielectric structure

where theta is the angle 6 = 0, and po1 is one of the strings *te’ or ’tm’. If the angle
and polarization arguments are omitted, the function defaults to normal incidence for
which TE and TM are the same. The other parameters have the same meaning as in
Sec. 6.1.

In using this function, it is convenient to normalize the wavelength A and the optical
lengths n;l; of the layers to some reference wavelength Ag. The frequency f will be
normalized to the corresponding reference frequency fy = co/Ao.

Defining the normalized thicknesses L; = n;l;j/Aq, so that n;l; = LjAg, and noting
that Ag/A = f/fo, we may write the phase thicknesses (8.1.2) in the normalized form:

f

A
6i=27TTOLicos(91-=2Tr—L,-c059,- s i=1,2,...,.M (8.1.10)
0

Typically, but not necessarily, the L; are chosen to be quarter-wavelength long at
Ao, that is, L; = 1/4. This way the same multilayer design can be applied equally well
at microwave or at optical frequencies. Once the wavelength scale A, is chosen, the
physical lengths of the layers I; can be obtained from I; = L;jAq/n;.

8.2 Lossy Multilayer Structures

The muTtidiel function can be revised to handle lossy media. The reflection response
of the multilayer structure is still computed from Eq. (8.1.7) but with some changes.
In Sec. 7.7 we discussed the general case when either one or both of the incident and
transmitted media are lossy.

In the notation of Fig. 8.1.1, we may assume that the incident medium n, is lossless
and all the other ones, n;, i = 1,2,...,M,b, are lossy (and nonmagnetic). To imple-
ment multidiel, one needs to know the real and imaginary parts of n; as functions
of frequency, that is, n; (w) = ng;(w) —jny; (w), or equivalently, the complex dielectric
constants of the lossy media:

€i(w) = eR,-(w)—jen(w), i=1,2,...,M,b

. ) e (8.2.1)
() :\/e,uu) z\/ERl(UU) jeri(w) s () itz ()

€o €o
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Snel’s law given in Eq. (8.1.1) remains valid, except now the angles 0; and 0} are
complex valued because nj, n, are. One can still define the transverse refractive indices
nr; through Eq. (8.1.4) using the complex-valued n;, and cos 6; given by:

2 qin?
cosO; =1 —sin20; = [1- a0 oo oMb 822)

n;

The reflection coefficients defined in Eq. (8.1.3) are equivalent to those given in
Eq. (7.7.2) for the case of arbitrary incident and transmitted media.

The phase thicknesses d; now become complex-valued and are given by 6; = ky;l;,
where k; is computed as follows. From Snel’s law we have kx; = kxq = . /Ho€oNg Sin 04
= kong sin 04, where ko = w./Ho€o = w/cy is the free-space wave number. Then,

ki = Jow?poe; — K2 = ng/n,? —ndsin®0,, i=al,...,M,b (8.2.3)
0

Thus, the complex phase thicknesses are given by:

5i = kyli = ‘?—I’}/n% —nisin20,, i=1,2,...,M (8.2.4)
0

Writing ¢y = foA( for some reference frequency and wavelength, we may re-express
(8.2.4) in terms of the normalized frequency and normalized physical lengths:

S = kyl; = 2Tl’££ n? —nisin’0,, i=1,2,....M (8.2.5)

fo Ao
To summarize, given the complex n; (w) as in Eq. (8.2.1) at each desired value of
w, we calculate cos 0; from Eq. (8.2.2), n; and pr; from Egs. (8.1.4) and (8.1.3), and
thicknesses §; from Eq. (8.2.5). Then, we use (8.1.7) to calculate the reflection response.
The MATLAB function multidiel2 implements these steps, with usage:

[Gammal,Z1] = multidiel2(n,T1,f,theta,pol); % lossy multilayer structure

Once I'} is determined, one may calculate the power entering each layer as well as
the power lost within each layer. The time-averaged power per unit area entering the ith
layer is the z-component of the Poynting vector, which is given in terms of the transverse
E, H fields as follows:

1
Pi=SRe(EnHf), i=12,.,M (8.2.6)

The power absorbed within the ith layer is equal to the difference of the power
entering the layer and the power leaving it:

’P}OSS=’P1'—1P1'+1: i=1,2,....M (8.2.7)

The transverse fields can be calculated by inverting the recursion (8.1.8), that is,

ETis1 cos 6 —Jjnrisind; || Er .
w1 | _ | coso L i=1,2,...M 8.2.8
|:HT,1'+1 ] [ —Jl’)TI-1 SlIl(Si Ccos 5,‘ Hrj ! ( )
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The recursion is initialized with the fields Er1, H71 at the first interface. These can
be calculated with the help of I'y:

Ery =Eri+ +Eri- = Eri (1 + 1)

1 (8.2.9)
Eri(1-17)

1
Hp = (Ei+ —Emi-) =
NTa NTa

where ntq = no/Nrta. The field ET,+ is the transverse component of the incident field.
If we denote the total incident field by Ej,, then E71, will be given by:

E 3 Ein, TE case (8.2.10)
T T A ELcos0,, TM case o

The total incident power (along the direction of the incident wave vector), its z-
component, and the power entering the first layer will be given as follows (in both the
TE and TM cases):

1
Pin = H\Einpy Pinz = Pincos 0y, Pi=Pin,(1-|I11?) (8.2.11)
a

where n, = no/ng. Thus, one can start with Ei, = /24Py, if the incident power is
known.

8.3 Single Dielectric Slab

Many features of oblique incidence on multilayer slabs can be clarified by studying the
single-slab case, shown in Fig. 8.3.1. Assuming that the media to the left and right are
the same, n, = ny, it follows that 8, = 6, and also that pr; = —p72. Moreover, Snel’s
law implies n, sin 0, = n sin 0.

= 1 —

ng| nj np

O

Ou 01

P P12

Fig. 8.3.1 Oblique incidence on single dielectric slab.

Because there are no incident fields from the right, the reflection response at the
left of interface-2 is: I'rp = pr2 = —pr1. It follows from Eq. (8.1.7) that the reflection
response at the left of interface-1 will be:
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+ proe 2 (1—e %)
[y = PTLEPT2 = P11 et (8.3.1)
L+ priprae 21— pjie 4%

These are analogous to Egs. (5.4.6) and (5.5.4), i.e., the normal and oblique inci-
dence cases differ only in the definitions of the reflection coefficients. According to
Eq. (8.1.10), the phase thickness can be written in the following normalized form, where
L1 = nlll/A()Z

01 :21T@L1C0591 ZZTTLL1COSQ1 :TrL (8.3.2)
A fo f1
_ fo
fi = 2L, cos 0, 8.3:3)

At frequencies that are integral multiples of 1, f = mf}, the reflection response
vanishes because 28, = 2w (mf,)/fi = 2mtm and e %91 = 1. Similarly, at the half-
integral multiples, f = (m + 0.5) 1, the response is maximum because e 0 = 1,

Because f] depends inversely on cos 01, then as the angle of incidence 6, increases,
cos 01 will decrease and f; will shift towards higher frequencies. The maximum shift
will occur when 6 reaches its maximum refraction value 6. = asin(n,/n;) (assuming
Ng < Ny.)

Similar shifts occur for the 3-dB width of the reflection response notches. By the
same calculation that led to Eq. (5.5.9), we find for the 3-dB width with respect to the
variable 01:

A 1-p§
tan (—1 ) = ple
2 L+ p7

Setting Ad; = Af/f1, we solve for the 3-dB width in frequency:

2
Af = 2—1’;1 atan (1&> (8.3.4)

The left/right bandedge frequencies are f; + Af/2. The dependence of Af on the
incidence angle 6, is more complicated here because pr; also depends on it.

In fact, as 0, tends to its grazing value 0, — 90°, the reflection coefficients for
either polarization have the limit |pr1| — 1, resulting in zero bandwidth Af. On the
other hand, at the Brewster angle, 0,3 = atan(n;/ng,), the TM reflection coefficient
vanishes, resulting in maximum bandwidth. Indeed, because atan(1)= 771/4, we have
Af max = 2f1atan(1) /11 = f1/2.

Fig. 8.3.2 illustrates some of these properties. The refractive indices were n, = n, =
1 and n; = 1.5. The optical length of the slab was taken to be half-wavelength at the
reference wavelength A, so that n;l; = 0.5A¢, or, L; = 0.5.

The graphs show the TE and TM reflectances |I'r1 (f) |? as functions of frequency
for the angles of incidence 0, = 75° and 0, = 85°. The normal incidence case is also
included for comparison.

The corresponding refracted angles were 0, = asin(n, asin(0,) /n;) = 40.09° and
01 = 41.62°. Note that the maximum refracted angle is 61, = 41.81°, and the Brewster
angle, 0,5 = 56.31°.
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Fig. 8.3.2 TE and TM reflectances of half-wavelength slab.

The notch frequencies were f; = fo/ (2L cos 01)= 1.31fp and f; = 1.34f, for the

angles 0, = 75° and 85°. At normal incidence we have f; = fo/(2L1)= fo, because

L, =0.5.
The graphs also show the 3-dB widths of the notches, calculated from Eq. (8.3.4).

The reflection responses were computed with the help of the function multidiel with
the typical MATLAB code:

na =1; nb
1.

1;
nl = 5; L1 =

ol

0.5;

f = Tinspace(0,3,401);
theta = 75;

GO = abs(multidiel([na,nl,nb], L1, 1./)).A2;
Ge = abs(multidiel([na,nl,nb], L1, 1./f, theta, ’te’)).A2;
Gm = abs(multidiel([na,nl,nb], L1, 1./f, theta, ’tm’)).A2;

The shifting of the notch frequencies and the narrowing of the notch widths is evi-
dent from the graphs. Had we chosen 0, = 0,5 = 56.31°, the TM response would have

been identically zero because of the factor pr; in Eq. (8.3.1).
The single-slab case is essentially a simplified version of a Fabry-Perot interferometer

[638], used as a spectrum analyzer. At multiples of fi, there are narrow transmittance
bands. Because f] depends on [/ cos 01, the interferometer serves to separate different

frequencies f in the input by mapping them onto different angles 0.
Next, we look at three further applications of the single-slab case: (a) frustrated total
internal reflection, (b) surface plasmon resonance, and (c) the perfect lens property of

negative-index media.

8.4 Frustrated Total Internal Reflection

As we discussed in Sec. 7.5, when a wave is incident at an angle greater than the total
internal reflection (TIR) angle from an optically denser medium n, onto a rarer medium
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np, with n; > np, then there is 100 percent reflection. The transmitted field into the
rarer medium ny, is evanescent, decaying exponentially with distance.

However, if an object or another medium is brought near the interface from the
nyp side, the evanescent field is “frustrated” and can couple into a propagating wave.
For example, if another semi-infinite medium n, is brought close to the interface, then
the evanescent field can “tunnel” through to the other side, emerging as an attenuated
version of the incident wave. This effect is referred to as “frustrated” total internal
reflection.

Fig. 8.4.1 shows how this may be realized with two 45° prisms separated by a small air
gap. With n, = 1.5 and np = 1, the TIR angle is 8, = asin(np/n,) = 41.8°, therefore,
0 = 45° > O.. The transmitted fields into the air gap reach the next prism with an
attenuated magnitude and get refracted into a propagating wave that emerges at the

same angle 0.

k
i 0.0,
prism &a fields decay
dT air gap &p ~——— exponentially
X prism 7 & across the gap

Fig. 8.4.1 Frustrated total internal reflection between two prisms separated by an air gap.

Fig. 8.4.2 shows an equivalent problem of two identical semi-infinite media ng,, sep-

arated by a medium nj of length d. Let &, = nﬁ, Ep = nf) be the relative dielectric

constants. The components of the wavevectors in media n, and ny are:
w
Co
kza = \kina — k& = kong cos 0 8.4.1)
ko\ln; — nisin® 0, if 0<80,
kzb = . 3 ) .
—jkoy/nGsin® 0 — nj = —joxz, if 0= 0.
where sin 8. = np/n,. Because of Snel’s law, the ky component is preserved across the

interfaces. If @ > 0., then k,j, is pure imaginary, that is, evanescent.
The transverse reflection and transmission responses are:

_ Pa (1- eizijbd)
1-— pée*zﬂvhd

kx = kona sin@, k() =

_ Pat ppe T
1 + pappe2kad

. ) (8.4.2)
TaTbe_‘]kZbd _ (1 — pé)eﬁ]kzhd

1+ pappeknd

1-— p%e—zjkzbd
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Fig. 8.4.2 Frustrated total internal reflection.

where pg, pp are the transverse reflection coefficients at the a, b interfaces and 1T, =
1+ pg and T, = 1 + pp are the transmission coefficients, and we used the fact that
P = —pa because the media to the left and right of the slab are the same. For the two
polarizations, p, is given in terms of the above wavevector components as follows:

TE _ kza — kzp ™ _ kzpea — Kzagp

Pa = Kza +Kkzp’ a kzpea + Kkzasp

For 0 < 6O, the coefficients p, are real-valued, and for 6 > 6., they are unimodular,
|pal = 1, given explicitly by

(8.4.3)

Ng cos 0 + jy/n3 sin® 0 — nj —jnga\/n3 sin® 0 — ni — n cos 0
TE _ pM = (8.4.4)

a . . ’ . .
Ngcos 0 — j\jnj sin® 0 — nj —jng\Jn3 sin® 0 — nj, + nj cos 0

For all angles, it can be shown that 1 — |I'|?> = | T|?, which represents the amount of
power that enters perpendicularly into interface a and exits from interface b. For the
TIR case, I', T simplify into:

pPa(l— e—2nd)
Ir= T 9 o
1 - pae—zazbd

1—p2)e ad 2 [ oA 2
T= (I;)Zaﬁ , Ozp = )\—1(-)[ I’l(21 SiIl2 0 - nlz, (845)
— p& 2

where we defined the free-space wavelength through ko = 211/A. Setting p, = e/®a,
the magnitude responses are given by:

I = sinh? (& ,pd)

= |2 — Sinz (I)a
sinh? (xpd) + sin? ¢y’

s 4.
sinh? (zpd) + sin? ¢y (8.4.6)

For a prism with n,; = 1.5 and an air gap np = 1, Fig. 8.4.3 shows a plot of Egs. (8.4.5)
versus the distance d at the incidence angle 6 = 45°. The reflectance becomes almost
100 percent for thickness of a few wavelengths.

Fig. 8.4.4 shows the reflectance versus angle over 0 < @ < 90° for the thicknesses
d = 0.4Ap and d = 0.5Ag. The TM reflection response vanishes at the Brewster angle
Op = atan(np/ng) = 33.69°.
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Fig. 8.4.3 Reflectance and transmittance versus thickness d.

The case d = 0.5A( was chosen because the slab becomes a half-wavelength slab at
normal incidence, that is, k,,d = 277/2 at 6 = 0°, resulting in the vanishing of I as can

be seen from Eq. (8.4.2).

The half-wavelength condition, and the corresponding vanishing of I', can be re-
quired at any desired angle 6y < 6., by demanding that k,,d = 271/2 at that angle,

which fixes the separation d:

kzbd=7T =

21td
Alwni—n,%sinZQ()zrr > d=
0

Ao
2,/ni — n3sin® 0

Fig. 8.4.5 depicts the case 0y = 20°, which fixes the separation to be d = 0.5825A.
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Fig. 8.4.4 Reflectance versus angle of incidence.

The fields within the air gap can be determined using the layer recursions (8.1.5).

Let E,+ be the incident transverse field at the left side of the interface a, and E. the
transverse fields at the right side. Using Eq. (8.1.5) and (8.1.6), we find for the TIR case:

E, = (1 + pa)Ea+

_ —pae=2%9 (1 + pg)Egs
1= pée—thzbd ’

E_ = 1= ple 2 (8.4.7)
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Fig. 8.4.5 Reflectance vanishes at 0 = 20°.

The transverse electric field within the air gap will be then E7(z) = E e~ %% + E_e%zbZ,
and similarly for the magnetic field. Using (8.4.7) we find:

1+

Er(z) = [ 1-p2 ef);"‘ vd :| [em % — PaeizaZbde‘beZ]EaJr
— P& Z

1 E (8.4.8)

_ ~ Pa —a, —20pd pougyz) Lat

Hy(z) = [1—p5e*2azhd][e bz 4 pae bd o bz]naT

where ng,r is the transverse impedance of medium ng, that is, with n, = no/ng:

_ | nacos 04, TM, or parallel polarization
Nat = Na/ cos @4, TE, or perpendicular polarization

Itis straightforward to verify that the transfer of power across the gap is independent
of the distance z and given by

|Eq+|?

_1 % — (11T
Py(2)= ZRE[ET(Z)HT(Z)] =(1-1rP°) 2t

Frustrated total internal reflection has several applications [556-592], such as in-
ternal reflection spectroscopy, sensors, fingerprint identification, surface plasmon res-
onance, and high resolution microscopy. In many of these applications, the air gap is
replaced by another, possibly lossy, medium. The above formulation remains valid with
the replacement &, = ni — &p = Epr — JEbi, Where the imaginary part &,; characterizes

the losses.

8.5 Surface Plasmon Resonance

We saw in Sec. 7.11 that surface plasmons are TM waves that can exist at an interface
between air and metal, and that their wavenumber ky of propagation along the interface
is larger that its free-space value at the same frequency. Therefore, such plasmons
cannot couple directly to plane waves incident on the interface.
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However, if the incident TM plane wave is from a dielectric and from an angle that is
greater than the angle of total internal reflection, then the corresponding wavenumber
will be greater than its vacuum value and it could excite a plasmon wave along the
interface. Fig. 8.5.1 depicts two possible configurations of how this can be accomplished.

k| k|
&a W prism & M prism
€ bx metal & b plasmon 4y
&p Jex ;lasmon air € ks metal
Kretschmann-Raether Otto

Fig. 8.5.1 Kretschmann-Raether and Otto configurations.

In the so-called Kretschmann-Raether configuration [595,598], a thin metal film of
thickness of a fraction of a wavelength is sandwiched between a prism and air and the
incident wave is from the prism side. In the Otto configuration [596], there is an air
gap between the prism and the metal. The two cases are similar, but we will consider in
greater detail the Kretschmann-Raether configuration, which is depicted in more detail
in Fig. 8.5.2.
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Fig. 8.5.2 Surface plasmon resonance excitation by total internal reflection.

The relative dielectric constant €, and refractive index n, of the prism are related
by &; = ng. The air side has &, = nlz, = 1, but any other lossless dielectric will do as
long as it satisfies np < n,. The TIR angle is sin 8, = np/ng, and the angle of incidence
from the prism side is assumed to be @ > 0. so that’

ky = kongsin 0 > kony, ko = Cﬂ (8.5.1)
0

TThe geometrical picture in Fig. 8.5.2 is not valid for 0 > 0. because the wavevectors are complex-valued.
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Because of Snel’s law, the ky component of the wavevector along the interface is
preserved across the media. The z-components in the prism and air sides are given by:

kza = \k3n3 — k3 = kong cos 0

kzp = —jozp = —Jo k)2< — k(z)}’ll% = —jko\/m

where k), is pure imaginary because of the TIR assumption. Therefore, the transmitted
wave into the &, medium attenuates exponentially like e /k#Z = =&z,

For the metal layer, we assume that its relative dielectric constant is € = —¢&, — jé&,
with a negative real part (¢, > 0) and a small negative imaginary part (0 < &; < &,) that
represents losses. Moreover, in order for a surface plasmon wave to be supported on
the &-¢j, interface, we must further assume that &, > €. The k, component within the
metal will be complex-valued with a dominant imaginary part:

k, =~k — kg = —j\[K3 + K3 (er +j&i) = —jkoynisin? 0 + & + j&;  (8.5.3)

If there is a surface plasmon wave on the &-¢j interface, then as we saw in Sec. 7.7,
it will be characterized by the specific values of ky, k, k,p:

(8.5.2)

. £Ep koe ko&p
kxo = - =k K= ——7"— k = — 5.4
x0 = Bxo —J&xo0 = ko cre K0 trg 0 o T (8.5.4)

Using Eq. (7.11.10), we have approximately to lowest order in ¢;:

Erép
Er — &

Erép )3/2 &

Bxo = ko
X & — & 2e7

, Oxo =Ko ( (8.5.5)
b

and similarly for ko, which has a small real part and a dominant imaginary part:

. koe ko (&y — 2&p) &
kz0 = Bzo —Jj&Xz0, &z = L’ Bzo = ROSSr T SEb ISl

& — &b (& — &p)3/2 (8:5.0

If the incidence angle 0 is such that ky is near the real-part of kyg, that is, ky =
kong sin @ = By, then a resonance takes place exciting the surface plasmon wave. Be-
cause of the finite thickness d of the metal layer and the assumed losses &;, the actual
resonance condition is not ky = Bxo, but is modified by a small shift: ky = Bxo + Bxo, to
be determined shortly.

At the resonance angle there is a sharp drop of the reflection response measured
at the prism side. Let pg, pp denote the TM reflection coefficients at the &,-¢ and &-
&p interfaces, as shown in Fig. 8.5.2. The corresponding TM reflection response of the
structure will be given by:

+ ppe—2ik:d + ppe20zd p=2jBzd
_ Pa+tPp ~ Pa*tPp (8.5.7)

1+ pappe ke 1+ pappe2ede-2ibid

where d is the thickness of the metal layer and k, = 8, — j is given by Eq. (8.5.3). The
TM reflection coefficients are given by:

_ kz&gqa — kzac
kzeq + kzqe’

kzpe — kzep
b =
kype + kyep

(8.5.8)

a
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where k4, kzp are given by (8.5.2). Explicitly, we have for 6 > 0.:

s\/k%sa — k3 +jsa\/k§ —k3e £C0S 0 + jng\leqasin® 0 — ¢
Pa =~ 2 2 . > 2.
s\/kosa — ks _Jfa\/kx —k3e £C0s 0 — jng\easin® 0 — €

e\/k?( —kdep — eb\/ki — ke g\/sa sin® 0 — & — sb\/sa sin® 0 — ¢
2 2 2 2 - s 02 2.2
s\/kx —kgep + eb\/kx — ke e\/sa sin‘ 0 — & + sb\/sa sin“ 0 — ¢

We note that for the plasmon resonance to be excited through such a configuration,
the metal must be assumed to be slightly lossy, that is, & # 0. If we assume that it
is lossless with a negative real part, € = —¢&,, then, p, becomes a unimodular complex
number, |ps| = 1, for all angles 6, while p;, remains real-valued for 8 > 6., and also k,
is pure imaginary, 8, = 0. Hence, it follows that:

(8.5.9)

Pp =

- |pal® + 2Re(pg) ppe =224 + ppe—ioed
= i ZRe(pa)pbe_Zo(zd + |,Da|2p12,e_4‘xzd =
Thus, it remains flat for 0 > 6.. For 0 < 0., pg, is still unimodular, and pj also
becomes unimodular, |py| = 1. Setting p,; = e/%a and pp, = e/®, we find for 0 < 0,:

. . 2
eita 4 eibve=20zd |7 1 4 2cos(pg — Ppp)e 204 4 edd
1 + ejbagidve—20:d 1+ 2cos(¢pg + Pp)e20d + g—dozd

Ir|? = (8.5.10)
which remains almost flat, exhibiting a slight variation with the angle for 0 < 0..

As an example, consider a quartz prism with n,; = 1.5, coated with a silver film of
thickness of d = 50 nm, and air on the other side &, = 1. The relative refractive index
of the metal is taken to be € = —16 — 0.5j at the free-space wavelength of Ay = 632 nm.
The corresponding free-space wave number is kg = 277/Ag = 9.94 rad/um.

Fig. 8.5.3 shows the TM reflection response (8.5.7) versus angle. The TIR angle is
0. = asin(np/ng) = 41.81°. The plasmon resonance occurs at the angle 05 = 43.58°.
The graph on the right shows an expanded view over the angle range 41° < 0 < 45°.
Both angles 0. and 60,5 are indicated on the graphs as black dots.

The computation can be carried out with the help of the MATLAB function multi-
diell.m, or alternatively multidiel.m, with the sample code:

na = 1.5; ea = naA2; % prism side

er = 16; ei = 0.5; ep = -er-j*ei; % silver layer

nb = 1; eb = nbA2; % air side

d = 50; 1a0 = 632; % in units of nanometers
th = Tlinspace(0,89,8901); % incident angle in degrees

nl = sqrte(ep); % evanescent SORT, needed if & = 0
L1 = nl*d/T1a0; % complex optical length in units of Ao
%

n = [na, nl, nb]; input to multidiell

for i=1:Tength(th), % TM reflectance
Ga(i) = abs(multidiell(n, L1, 1, th(i), "tm’)).A2; % atA/Ag = 1
end

plot(th,Ga);
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surface plasmon resonance expanded view
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Fig. 8.5.3 Surface plasmon resonance.

Fig. 8.5.4 shows the reflection response when the metal is assumed to be lossless with
& = —16, all the other parameters being the same. As expected, there is no resonance
and the reflectance stays flat for 6 > 6., with mild variation for 6 < 0..

reflectance
!

...

1ri2

0 15 30 0 75 90

45 6
0 (degrees)
Fig. 8.5.4 Absence of resonance when metal is assumed to be lossless.

Let E4., E4- be the forward and backward transverse electric fields at the left side
of interface a. The fields at the right side of the interface can be obtained by inverting

the matching matrix:
E, _ 1 1 —Pa Eqy
E_ 1=pa| —Pa 1 Eq-

Eqs _ 1 1 pa E.
Eq- 1+pa| pPa 1 E_

Setting E;— = I'E4, with I" given by Eq. (8.5.7), we obtain:

o 1—pal’ _ (1 + pa)Eas
T 1-pa " 1+ pappekid

g —Patl . ppe”d( + pa)Eas
T l-pa T 1+ pappe kA
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The transverse electric and magnetic fields within the metal layer will be given by:

Er(z)=E,e® % + E %% Hp(z)= ni [E e /k? _ E_elks?]
T

Using the relationship n7/nar = (1 + pa) /(1 — pa), we have:

1+ pa ] ik, “2jk,d ik,
E = — JKzZ Jkzd pjk22|
(@) [1 + pappeaikd le pre [Eas ( )
8.5.11
1—pq ] _ik, —2jkzd ik, Eay
H = JKzZ JKz 2Z
@ [1 + pappe=2ikid le pre ]nar

where n,7 = ng cos 0 is the TM characteristic impedance of the prism. The power flow
within the metal strip is described by the z-component of the Poynting vector:

P(z)= %Re[ET(z)H? (z)] (8.5.12)

The power entering the conductor at interface a is:

Easl? 1 .
) = —Re[Er(2)H} (2)] (8.5.13)
2Nar

,Pin = (1 - |F|2
2 z=0

Fig. 8.5.5 shows a plot of the quantity 2 (z) / Pj, versus distance within the metal, 0 <
7z < d, at the resonant angle of incidence 6 = 0.¢s. Because the fields are evanescent in
the right medium ny, the power vanishes at interface b, that is, at z = d. The reflectance
at the resonance angle is |I'|> = 0.05, and therefore, the fraction of the incident power
that enters the metal layer and is absorbed by itis 1 — |I'|? = 0.95.

power flow versus distance

0 10 20 30 40 50
z (nm)

Fig. 8.5.5 Power flow within metal layer at the resonance angle 0.5 = 43.58°.

The angle width of the resonance of Fig. 8.5.3, measured at the 3-dB level |I'|? = 1/2,
is very narrow, A0 = 0.282°. The width A0, as well as the resonance angle 0.5, and
the optimum metal film thickness d, can be estimated by the following approximate
procedure.

To understand the resonance property, we look at the behavior of I' in the neigh-
borhood of the plasmon wavenumber ky = kyo given by (8.5.4). At this value, the TM
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reflection coefficient at the e-¢p, interface develops a pole, pp = o, which is equivalent
to the condition k po& + ko&p = 0, with K30, ko defined by Eq. (8.5.4).

In the neighborhood of this pole, ky =~ kxo, pp will be given by p, ~ Ko/ (kx — kxo),
where K is the residue of the pole. It can be determined by:

kzbé—kzéb kzbf—szb

Ko= 1 ky — k =1 ky — k =
0 kxl'mx[)( X x0) Pb kxl—rilxo( X x0) ke + k€ d
dky

(kzpe + kz&p) kx=kxo

The derivative dk,/dky can be determined by differentiating k2 + k3 = k3e, that is,
k,dk, + kydkyx = 0, which gives dk,/dky = —kx/k;, and similarly for dk,,/dky. It

follows that:
Kzpo€ — kzo€p

_ ko, kx
kzbO kz()
Inserting Kxo, K20, Kzpo from Eq. (8.5.4), we obtain:

3/2
Ko =k0< 2 )( £y ) (8.5.14)
Ep — & E+ &p

Ky =
&p

The reflection response can then be approximated near ky ~ kyo by

Ko ,-2jkea
kx - kxO
Ko  ojka
1+pay—7 e I
a kx - kx()

Pa +

I ~

4 can also be replaced by their values at kxo, K0, K20,

The quantities p, and e %/kz
thus obtaining:
kx — kxo + PQ(}Koefzij‘)d

Ir= .
pao kx — kxo + paoKoe~2/kzd

(8.5.15)

where
_ kpo&a —kzaoe  €q ++/E(Eq — &) +Eqkp

Pao = =
kzo€a + kzao€ €4 —Je(€a — €p) +E€acp

which was obtained using ka0 = \/k3&a — k3, and Egs. (8.5.4). Replacing &€ = —¢&, — jé;,
we may also write:

Ea +J\(&r +J&i) (€q — €p) —Ea&p

= . = = —by + ja (8.5.16)
Pa0 = e~ j\(er + JED) (Ea — £b) —ats 0 Jdo
which serves as the definition of b, ag. We also write:
1 &a—JjV (& +jEi) (€q — €p) —€atp by +jao _ be i
= , : S =-b, —ja (8.5.17)
Pa Ea + J (& + jEi) (€a — €p) —€atp b§ + ap Lo

We define also the wavenumber shifts that appear in the denominator and numerator
of (8.5.15) as follows:

kxo = —paoKoe %24 = (b — jag)Koe ko = Byo — jxo
_ . . _ (8.5.18)
ki = —pagKoe 0% = (b1 + jay) Koe ¥4 = By + jéta
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Then, Eq. (8.5.15) becomes, replacing kxo = Bxo — J&Xxo

I'= pao kx — kxo — Ifxl — puo (kx — Bxo — @xl)"".].(axo - ‘i‘xl) (8.5.19)
kx — kxo — kxo (kx = Bxo — Bxo) +Jj (&xo + &xo)
resulting in the reflectance:
— —_B.1)2 & 2
‘Flz _ |pa0‘2 (kx BxO Bxl) +(0(x0 0()(1) (8.5.20)

(kx = Bxo — BXO)Z"‘(D(XO + &x0)?

The shifted resonance wavenumber is determined from the denominator of (8.5.19),
that is, Kxres = Bxo + Bxo- The resonance angle is determined by the matching condition:

kx = kong sin Ores = kx,res = Bxo + on (8.5.21)

The minimum value of |I'|? at resonance is obtained by setting kx = Bxo + Bxo:

0‘2 (BXO - Bx1)2+(0(x0 - &xl)z

- .5.22
(0(><()“‘(5(x0)Z (®:5 )

r |12nin = |pa
We will see below that on and BX1 are approximately equal, and so are &yo and &Xx;.
The optimum thickness for the metal layer is obtained by minimizing the numerator of
|I'|2,, by imposing the condition oty = ;. This condition can be solved for d.
The angle width is obtained by solving for the left and right bandedge wavenumbers,
say Ky,+, from the 3-dB condition:

_ _R 2 A 2
u-lz _ |Pa0|2 (kx = Bxo — Bx1)“+ (xXxo0 — &x1) _ 1 (8.5.23)

(kX_BXO_BXO)ZJ’_(O(XOJ’_&XO)Z 2
and then obtaining the left/right 3-dB angles by solving kong sin 0+ = kx +.

Although Egs. (8.5.16)-(8.5.23) can be easily implemented numerically, they are un-
necessarily complicated. A further simplification can be made by replacing the quanti-
ties Ko, pao, and ko by their lossless values obtained by setting &; = 0. This makes pg0
a unimodular complex number so that p,¢ = p¥,. We have then the approximations:

2 £, 3/2
K=o ) (555
& + &p & — &p

Eq + jVeEr(€q — &p) —Eakp

a0 = : = —by +jao, pas =—-bo—jao (8.5.24)
ga —JVer(a — €p) —€atp
kofy

kzO = _jO(zO, Xz0 = —F——
& — &p

so that

& (&g — €p) —Eq(Eq + €p)

_ 2&q\Er(&q — €p) —EqEp

by = B 8.5.25
0 (€a — &b) (&1 + &p) 07 (ea—p) (& + &p) ( )
The wavenumber shifts (8.5.18) then become:
kxo = (bo — jao)Koe %% = By — jéxo
(8.5.26)

kx = (bo +jao) Koe 2%24 = By + jaxo = K}
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with

BXO = hoKoeizazod, O_(x() = aoKoe’Z"‘Zod (8.5.27)
Then, the reflectance becomes in the neighborhood of the resonance:

(kx — Bxo — B:x0)2+(0(x0 - &XO)Z
(kx — Bxo — Bxo) %+ (xXxo + &x0)?

Ir|? = (8.5.28)

with a minimum value: )
(O(XO - O_(XO)

rpg. = -9 8.5.29

‘ |m1n ((XXO + O_(XO)Z ( )

In this approximation, the resonance angle is determined from:

kong 8in Ores = Kres = Bx() + BxO = ko % + bOKoeizazod (8.5.30)
A/ ;-

Since the second term on the right-hand side represents a small correction, a neces-
sary condition that such a resonance angle would exist is obtained by setting 6.5 = 90°
and ignoring the second term:

Er€ ;
ng > | —-2 = pmin (8.5.31)
& — &p
For example, for the parameters of Fig. 8.5.3, the minimum acceptable refractive
index n,; would be ngﬂn = 1.033. Thus, using a glass prism with n,; = 1.5 is more than
adequate. If the right medium is water instead of air with n, = 1.33, then nT" = 1.41,
which comes close to the prism choice. The 3-dB angles are obtained by solving
(kx*kres)er(O(xof0_(x0)2 1

I = 2 X2 2
(kx = Kres) 2+ (0Xxo + &xo) 2

with solution Ky .+ = Kpes = \/GO(xoé(xo — oy — &2, or

Konasin 0. = KoM sin Ores + /6000 &x0 — &% — & (8.5.32)

The angle width shown on Fig. 8.5.3 was calculated by A8 = 0, — 6 _ using (8.5.32).
The optimum thickness dp; is obtained from the condition xxg = &xo, which drives
\r |r2nin to zero. This condition requires that xyg = aoKope 24204 with solution:

- 2
1 ln<a°K0> Ao V& — & ln(s (4aosr )
i

250 oy /AT & &+ &)

dopt = (8.5.33)
where we replaced «xo from Eq. (8.5.5). For the same parameters of Fig. 8.5.3, we cal-
culate the optimum thickness to be dopr = 56.08 nm, resulting in the new resonance
angle of 0,5 = 43.55°, and angle-width A0 = 0.227°. Fig. 8.5.6 shows the reflectance
in this case. The above approximations for the angle-width are not perfect, but they are
adequate.

One of the current uses of surface plasmon resonance is the detection of the pres-
ence of chemical and biological agents. This application makes use of the fact that the
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surface plasmon resonance expanded view
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Fig. 8.5.6 Surface plasmon resonance at the optimum thickness d = dop:.
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Fig. 8.5.7 Shift of the resonance angle with the refractive index njy.

resonance angle 0, is very sensitive to the dielectric constant of the medium ny. For
example, Fig. 8.5.7 shows the shift in the resonance angle for the two cases n, = 1.05
and np = 1.33 (water). Using the same data as Fig. 8.5.3, the corresponding angles and
widths were 05 = 46.57°, AQ = 0.349° and Oes = 70°, AO = 1.531°, respectively.

A number of applications of surface plasmons were mentioned in Sec. 7.11, such as
nanophotonics and biosensors. The reader is referred to [593-631] for further reading.

8.6 Perfect Lens in Negative-Index Media

The perfect lens property of negative-index media was originally discussed by Veselago
[391], who showed that a slab with € = —€y and u = —pg, and hence with refractive
index n = —1, can focus perfectly a point-source of light. More recently, Pendry [398]
showed that such a slab can also amplify the evanescent waves from an object, and
completely restore the object’s spatial frequencies on the other side of the slab. The
possibility of overcoming the diffraction limit and improving resolution with such a
lens has generated a huge interest in the literature [391-473].
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Fig. 8.6.1 shows the perfect lens property. Consider a ray emanating from an object
at distance z, to the left of the slab (z = —z;). Assuming vacuum on either side of
the slab (n; = np = 1), Snel’s law, implies that the angle of incidence will be equal to
the angle of refraction, bending in the same direction of the normal as the incident ray.

Indeed, because n; = 1 and n = —1, we have:
ngsinf, =nsinf = sinf;=-sinf@ = 6O,=-0
XK
9a 9a
=) 0 Zy d 2d—ZO
ng=1 n=-1 np=1
z=0 z=d

Fig. 8.6.1 Perfect lens property of a negative-index medium with n = —1

Moreover, 1 = \/u/€ = \/tlo/ €9 = no and the slab is matched to the vacuum. There-
fore, there will be no reflected ray at the left and the right interfaces. Indeed, the TE and
TM reflection coefficients at the left interface vanish at any angle, for example, we have
for the TM case, noting that cos @ = cos(—60,) = cos O,4:

_ncos® —ngcosOy cosO —coslq

P ncos® +ngcosO@y cosO +cosOy

Assuming that zy < d, where d is the slab thickness, it can be seen from the geometry
of Fig. 8.6.1 that the refracted rays will refocus at the point z = zy within the slab and
then continue on to the right interface and refocus again at a distance d — z, from the
slab, that is, at coordinate z = 2d — Zzy.

Next, we examine the field solutions inside and outside the slab for propagating and
for evanescent waves. For the TM case, the electric field will have the following form
within the three regions of z < 0,0 <z <d,and z > d:

k

k—x i)ejkzz] e kX for z<0
A

E= [A+ (x - & z)e-fkéz +A_ (x + ]':—" z>eﬂ<22] e kX for 0<z<d (8.6.1)
VA

k ) )
EOT(X - ITX z)eﬂkz@*meﬂkx*, for z>d
zZ

where I', T denote the overall transverse reflection and transmission coefficients, and
AL, A_, the transverse fields on the right-side of the left interface (i.e., at z = 0+). The
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corresponding magnetic field is:

VEo (%) [ew/kez — [olkez ] o=Tknx | for z<0
zZ
_ . (W€ —jk,z Jjk,z 1 ,—Jjkxx
H=-7 o [AjeIkez — A_elKeZ]e=IkeX | for 0<z<d (8.6.2)
zZ
VE,T ((:—6) e Jkz(z=d) g—jkx | for z>d
z

where ky is preserved across the interfaces, and k, k;, must satisfy:

k2 + k2 = w?poeg, k2 +kJP = w?pe (8.6.3)

Thus, k; = ++Jw2up€o — k3 and k), = ++/w?ue — ki. The choice of square root

signs is discussed below. To include evanescent waves, we will define k, by means of
the evanescent square root, setting ko = w./Ho€o:

Jk3 = K3, if k2 <k?
K —k3, if k2= K

We saw in Sec. 7.16 that for a single interface between a positive- and a negative-
index medium, and for propagating waves, we must have k, > 0 and k, < 0 in order for
the power transmitted into the negative-index medium to flow away from the interface.
But in the case of a slab within which one could have both forward and backward waves,
the choice of the sign of k/, is not immediately obvious. In fact, it turns out that the
field solution remains invariant under the substitution k), — —k;,, and therefore, one
could choose either sign for k;,. In particular, we could select it to be given also by its
evanescent square root, where n? = eu/eopo:

\Jkén2 — k%, if k& < k3n?
—j\ ki —k3n2, if k2= k3n?

By matching the boundary conditions at the two interfaces z = 0 and z = d, the
parameters I', A., T are obtained from the usual transfer matrices (see Sec. 8.1):

Eo | _ 1 1 pm || As

Eol 1+pm| Pv 1 A_

Ay | elk:d 0 1 1 —pmm || EoT
A_ | 0 efjk'/ld 1—pm| —Pm™m 1 0

ke —k,e -1 : k;

_kekee Twd o oM K€ (8.6.7)
k7€ + ke Cvy+1 N kz€

where 7y is a normalized characteristic impedance. The solution of Egs. (8.6.6) is then,

k, = sqrte (k3 — k2) = (8.6.4)

k, = sqrte(k3n® — k2)= (8.6.5)

(8.6.6)

where,

PtMm

- pru(1 — e~ ki) _ (Cin— 1) (1 — e~2ikd)
1 — phye 2k (Crm + 1) 2= (Cpm — 1) 2e-2/ked
. o, (8.6.8)
7 U=phjed 4Crm

1-— pZTMe—zjk;d (T + 1)2eikzd — (Cppp— 1)2e-Jked
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Similarly, the coefficients A. are found to be:

1-— I 1
A+=ﬂ=*[l+CTM+(1_CTM)F]EO
1—pm 2
o (8.6.9)
A= pL = 7[1—§TM+ (1+CTM)F]E0

1—pm 2
The TE case is obtained from the TM case by a duality transformation, that is, by the
replacements, E -~ H, H—~ —E, € — u, € — p’,and pry — p1E, where

prE = ko' —ku _ Cre—1 Cre = h _ k.’
ko' +kzp CTr+1’° nte  Kzp

The invariance under the transformation k;, — —k’, follows from these solutions.
For example, noting that 1y — —Cry under this transformation, we have:

(Chy—1) (1 - &) _ @y - -e V)
(=T + 12— (=T — 1)2e¥Ked (L + 1)2— (L — 1) 2e-2ked

Similarly, we find T (—k})= T(k,) and A.(—k,)= Az (k,). These imply that the
field solutions remain invariant. For example, the electric field inside the slab will be:

r(-ky)= =I'(k})

E(z,-k}) = [A+(4<’Z) (&7 _kI: z)e-f<-’<’z>z +A_(-k) <f<+

Z

kx i)ej(—k’z)Z] 0Tk
kz

- [A+ (K.) (x - ’;— z)eﬂ‘kéz A (K) (x ; I’i— z>eﬂ<22] eIk = E(z,4K))
Z Z

Similarly, we have for the magnetic field inside the slab:

’ ~ UJG, 7 —ji(=k’ ’ i(—k’ —j
H(Z,—kz) =y (T('Z) [A+(—kz)e Jj(—=k})z _Ai(_kz)ej( kz)z]e Jjkxx
-y (—“I’f ) [AL (Ky)e 7% — A (K,) el ] ek = H(z, +k})
zZ
Next, we apply these results to the case y = —pup and € = —€p, having n = —1.

It follows from Eq. (8.6.5) that k;, = ¥k, with k, given by (8.6.4). In this case, Ty =
k,e/k,€" = —k},/k, = +1. Then, Eq. (8.6.8) implies that I = 0 for either choice of sign.
Similarly, we have T = e/kz4 again for either sign of Cpy:

wa |4 i kg <kg, ks = m
T=eld=q" o ) O (8.6.10)
ez y if k>2< = ko, kz = —J\/kxj = —joy,

Thus, the negative-index medium amplifies the transmitted evanescent waves, which
was Pendry’s observation [398]. The two choices for k}, lead to the A coefficients:

k,=-k, = Cmu=+1 = A =E, A_=0

K, =+k, = Tm=-1 = A,=0, A =E (8.6.11)

For either choice, the field solutions are the same. Indeed, inserting either set of
A, A_ into Egs. (8.6.1) and (8.6.2), and using (8.6.10), we find:
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k ) .
Eo ()2 - k—x Z)e’szze’J"X", for z<0
z
E=1 FE, (x + %z) elkazoikxx | for 0<z=<d (8.6.12)
zZ

k . . )
Eo ()2 - k—x i)e’sz(z’m)e’kax, for z=d
VA

and the corresponding magnetic field:

Vv Eo (%) e Ikaz g=jkix | for z=<0
z
€ ) )
H= VEo (%) elkzzg-jkx for 0<z<d (8.6.13)
z
v Eo (a:o) ek (z=2d) p=jkxx | for z>d
VA

The solution effectively corresponds to the choice k;, = —k, and is valid for both
propagating and evanescent waves with k, given by (8.6.4). In Eq. (8.6.12) the constant
Ej refers to the value of the transverse electric field at z = 0. Changing the reference
point to z = —Zzp at the left of the slab as shown in Fig. 8.6.1, amounts to replacing
Eo — Ege Jkz20_ Then, (8.6.12) reads:

. kx ; ;
Eo (x - k—x z)e’f"é (z+20) g =JkxX for —zp<z<0
Z

E= E0<§( + % z)dkz (z=20) g=JkxX | for 0<z=<d (8.6.14)
VA

ke ) .
Eo (x - k—x z)e’sz(z’z"”“)e’JkX", for z>d
z

Setting k, = —x, as in (8.6.4), we find the evanescent fields:

Eo (x - Ifx i)e“"z(Z”O)e‘ﬂ“", for —zp<z=<0
—JXz
5 k 5 &, (z—20) ,—JjkxXx
E=1 Eg| X+ ——"— 7 |eX#720) gmJKxX for 0<z=<d (8.6.15)
—J&z
E0<§(— 'f" z)e*%‘Z*Zdﬂo)eﬂkM, for z>d
—J&z

The field is amplified inside the slab. The propagation factors along the z-direction
agree at the points z = —zg, z = Zg, and z = 2d — zo,

o Jkz(z+20) — olkz(z=20)

Z==Z0

— e—jkz(z—2d+z(7)

Z=Zy

z=2d-zy
(8.6.16)
&z (z-20)

e—(xz(erzO) _ e—az(z—2d+zo)

=e

z=—20 z=2z z=2d-2zg
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which imply the complete restoration of the source at the focal points inside and to the
right of the slab:

Ex(X%,2) | ;o 5y = Ex(X,2) | =5, = Ex(X,2) | ;00 5, (8.6.17)

Fig. 8.6.2 shows a plot of the evanescent component Ey (z) of Eq. (8.6.15) versus distance
z inside and outside the slab.

Ex(2) Ex(2) Ex(2)

Y
N

“Zo 0 2y d 2d—z,

ng=1 n=-1 np=1

Fig. 8.6.2 Evanesenct wave amplification inside a negative-index medium.

Using the plane-wave spectrum representation of Sec. 19.2, a more general (single-
frequency) solution can be built by superposition of the plane waves (8.6.14) and (8.6.15).
If the field at the image plane z = —z has the general representation:

E(x,-z0) = =S J Eo (ky) (x _ ke z) e kX gk, (8.6.18)
2T ) k

VA
where the integral over ky includes both propagating and evanescent modes and k is

given by (8.6.4), then, then field in the three regions to the left of, inside, and to the right
of the slab will have the form:

E(x,z)= i J Eo (ky) (x - ’;—* z) e ke (z420) g=JkxX g | for —zp<z<0
e 5
1(” o Kx S\ ik (2=20) o—jkex
E(x,z)=§ Eo (ky) x+k—z elkz o) eI dky for 0<z=<d
e 5

E(x,z)= i Jio Eo(kyx) (f(— ’;—X

2) e Jke(z=2d+z0) p-jkex gk for z>d
zZ

It is evident that Eq. (8.6.17) is still satisfied, showing the perfect reconstruction of
the object field at the two image planes.

The perfect lens property is highly sensitive to the deviations from the ideal values of
€ = —€pand yu = — o, and to the presence of losses. Fig. 8.6.3 plots the transmittance in
dB, that is, the quantity 101og;, |Te/%+4|2 versus k, with T computed from Eq. (8.6.8)
for different values of €, 4 and for d = 0.2A = 0.2(271/kg). In the ideal case, because
of the result (8.6.10), we have | Te k24| = 1 for both propagating and evanescent values
of ky, that is, the transmittance is flat (at O dB) for all ky.
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Transmittance Transmittance

40 — e=u=-1-0.001; | |

-~ g=p=-1-0010
£=p=-1-0.100/

20

m
< 0 i =
_20 T _90 — &=y =-1.01-0.000j
--- &=y =-0.98-0.000]
- - g=p=-1.05-0.001/
s £==-0.90 -0.001;
—40 N —40 " . J\\
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
kylkg kel kg

Fig. 8.6.3 Transmittance under non-ideal conditions (€, y are in units of €, to).

The left graph shows the effect of losses while keeping the real parts of €, u at the
ideal values —€g, —p. In the presence of losses, the transmittance acts like a lowpass
filter in the spatial frequency ky.

The right graph shows the effect of the deviation of the real parts of €, u from the
ideal values. If the real parts deviate, even slightly, from —€g, — L, the transmittance
develops resonance peaks, which are related to the excitation of surface plasmons at the
two interfaces of the slab [407,408]. The peaks are due to the poles of the denominator
of T in Eq. (8.6.8), that is, the roots of

1-phye PKd =0 = el =pf = = appy

For evanescent ky, we may replace k, = —jx, and kj, = —ja/, where &, = \/k3 — k3
and o, = 4/k% — k3n2, and obtain the conditions:

!
ad _ o,€0 — K€

=+ =+— 8.6.19
e Pt™ o€ T OE ( )
These are equivalent to [407,408]:
tanh(“zd) -8 tanh(“zd) = % (8.6.20)
2 Xz€p 2 Xz€

For kyx > ko, we may replace &, = &, =~ ky in (8.6.19) in order to get en estimate of
the resonant ky:

€)— € €0 — € 1 €)— €
eknresd — 4 =0 = eRe(ures)d — ' == ’ =  Re(kyres)= - In ‘ . '
€0+ € €y + € d €0+ €

(8.6.21)

and for the TE case, we must replace €s by us. The value ky = Re(Kkyres) Tepresents
the highest achievable resolution by the slab, with the smallest resolvable transverse
distance being of the order of Ax = 1/Re (Kyres)-

If € is real-valued and near —¢y, then, Ky res is real and there will be an infinite res-
onance peak at kx = Kxres. This is seen in the above figure in the first two cases of
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€/eg = p/po = —1.01 and €/€g = p/po = —0.98 (the apparent finite height of these
two peaks is due to the finite grid of ky values in the graph.)

The last two cases have complex-valued €, 4 with a small imaginary part, with the
resulting peaks being finite. In all cases, the peak locations ky = Re (kx res) —0Obtained by
solving Egs. (8.6.20) numerically for ky res—are indicated in the graphs by bullets placed
at the peak maxima. The numerical solutions were obtained by the following iterative
procedures, initialized at the approximate (complex-valued) solution of (8.6.21):

R 1 €)— € 1 €)— € , ;
initialize: kx:aln<€2+€) kx=aln(—€2?>, o, = k% — k3n?

fori=1,2,..., Nitr, do: fori=1,2,..., Nijter, do:

o, = ki ~ Kgn? o, | -k

€ o.,d , € o,d
az=—?0aztanh( £ ) azzf—txztanh< ; )

2 €o

kx = o2 + k3 ky = \J&? + kin?
The number of iterations was typically Nj.r = 30. Both graphs of Fig. 8.6.3 also show
dips at kx = ko. These are due to the zeros of the transmittance T arising from the
numerator factor (1 — pZTM) in (8.6.10). At ky = ko, we have «; = 0 and pry = 1,
causing a zero in T. In addition to the zero at ky = kg, it is possible to also have poles
in the vicinity of kg, as indicated by the peaks and bullets in the graph. Fig. 8.6.4 shows
an expanded view of the structure of T near ko, with the ky restricted in the narrow
interval: 0.99k( < kx < 1.01k,.

Transmittance

20

0.99 1.01

1
k./kg
Fig. 8.6.4 Expanded view of the zero/pole behavior in the vicinity of ky = kq.

For last two cases depicted on this graph that have |n?| = |eu|/€ouo < 1, an ap-
proximate calculation of the pole locations near Ky is as follows. Since &, = 1/kz — k% is

small, and o), = \/&2 + ko (1 — n2), we have to first order in &, &}, = k3/1 — n2 = «,
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which is itself small. Then, we apply Eq. (8.6.21) to get &, and from it, the resonant Ky res:

2 2
kx,res =4\ &z + k()

’
€ o0d
O(Z:*?O(Z()tal’]h( g )

8.7 Antireflection Coatings at Oblique Incidence

Antireflection coatings are typically designed for normal incidence and then used over
a limited range of oblique incidence, such as up to about 30°. As the angle of incidence
increases, the antireflection band shifts towards lower wavelengths or higher frequen-
cies. Any designed reflection zeros at normal incidence are no longer zeros at oblique
incidence.

If a particular angle of incidence is preferred, it is possible to design the antireflection
coating to match that angle. However, like the case of normal design, the effectiveness
of this method will be over an angular width of approximately 30° about the preferred
angle.

To appreciate the effects of oblique incidence, we look at the angular behavior of
our normal-incidence designs presented in Figs. 6.2.1 and 6.2.3.

The first example was a two-layer design with refractive indices n, = 1 (air), n; =
1.38 (magnesium fluoride), n, = 2.45 (bismuth oxide), and n, = 1.5 (glass). The de-
signed normalized optical lengths of the layers were L; = 0.3294 and L, = 0.0453 at
Ap = 550 nm.

Fig. 8.7.1 shows the TE and TM reflectances |I't; (A)|? as functions of A, for the
incidence angles 0 = 0°,20°,30°,40°.

TE polarization TM polarization

| Iy (M) 12 (percent)
| Ty (M) 12 (percent)

2 0
550 600 650 700 400 450 500 550 600 650 700
A (nm) A (nm)

Fig. 8.7.1 Two-layer antireflection coating at oblique incidence.

We note the shifting of the responses towards lower wavelengths. The responses
are fairly acceptable up to about 20°-30°. The typical MATLAB code used to generate
these graphs was:

[1, 1.38, 2.45, 1.5]; L = [0.3294, 0.0453];

n =
1a0 550; la = Tinspace(400,700,101); pol="te’;
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GO
G20
G30

abs(multidiel(n,

L, Ta/1a0)).A2 * 100;

abs(multidiel(n, L, 1a/1a0, 20, pol)).A2 * 100;

abs(multidiel(n, L, 1a/1a0, 30, pol)).A2 *

100;

G40 = abs(multidiel(n, L, 1a/1a0, 40, pol)).A2 * 100;

plot(la, [GO; G20; G30;

G401);
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As we mentioned above, the design can be matched at a particular angle of incidence.
As an example, we choose 6, = 30° and redesign the two-layer structure.
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The design steps are as follows. First, we calculate the refraction angles in all media
from Eq. (8.1.1), 0; = asin(n, sin@,/n;), for i = a, 1,2, b. Then, assuming TE polariza-
tion, we calculate the TE refractive indices for all media ny; = n;cos9;,i = a,1,2,b.

Then, we calculate the transverse reflection coefficients pr; from Eq. (8.1.3) and use
them to solve Eq. (6.2.2) and (6.2.1) for the phase thicknesses &1, 0. Finally, we calcu-
late the normalized optical lengths from L; = 6;/ (21 cos 0;), i = 1,2. The following
MATLAB code illustrates these steps:

The design equations are still (6.2.2) and (6.2.1), but with the replacement of n;,
p; by their transverse values nr;, pri, and the replacement of kI, k»I> by the phase
thicknesses at A = Ay, thatis, 67 = 21rL; cos 071 and &> = 27TL> cos 0>. Moreover, we
must choose to match the design either for TE or TM polarization.

Fig. 8.7.2 illustrates such a design. The upper left graph shows the TE reflectance
matched at 30°. The designed optical thicknesses are in this case, L; = 0.3509 and
L, = 0.0528. The upper right graph shows the corresponding TM reflectance, which
cannot be matched simultaneously with the TE case.

The lower graphs show the same design, but now the TM reflectance is matched at
30°. The designed lengths were L, = 0.3554 and L, = 0.0386.

TE matched at 30° TM unmatched at 30°

n=[1, 1.38, 2.45, 1.5]; na = 1;
tha = 30; thi = asin(na*sin(pi*tha/180)./n);

nt = n.*cos(thi);
r = n2r(nt);

% for TM use nt = n./cos(thi)

¢ = sqrt((r(1A2*(1-r(2)*r(3))A2 - (r(2)-r(3))A2)/(4*r2)*r(3)*(1-r(1)A2)));
de2 = acos(c);

G2 = (r)+r(3)*exp(-2*j*de2)) /(1 + r(2)*r(3)*exp(-2*j*de2));

del = (angle(G2) - pi - angle(r(1)))/2;

if del <0, del = del + 2*pi; end

L = [del,de2]/2/pi;

L = L./cos(thi(2:3));

71a0 = 550; la = linspace(400,700,401);

G30 = abs(multidiel(n, L, Ta/Ta0, 30, ’'te’)).A2 * 100;
G20 = abs(multidiel(n, L, 1a/1a0, 20, ’te’)).A2 * 100;
G40 = abs(multidiel(n, L, 1a/1a0, 40, ’te’)).A2 * 100;
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Fig. 8.7.2 Two-layer antireflection coating matched at 30 degrees.

GO = abs(multidiel(n, L, 1a/1a0)).A2 * 100;

plot(la, [G30; G20; G40; GO1);

Our second example in Fig. 6.2.3 was a quarter-half-quarter 3-layer design with re-
fractive indices n; = 1 (air), n; = 1.38 (magnesium fluoride), n, = 2.2 (zirconium oxide),
n3 = 1.63 (cerium fluoride), and n, = 1.5 (glass). The optical lengths of the layers were
L1 = L3 = 0.25 and Lz =0.5.

Fig. 8.7.3 shows the TE and TM reflectances |I'r1(A)|? as functions of A, for the
incidence angles 6 = 0°,20°,30°,40°.

The responses are fairly acceptable up to about 20°-30°, but are shifted towards
lower wavelengths. The typical MATLAB code used to generate these graphs was:

n=1[1, 1.38, 2.2, 1.63, 1.5]; L = [0.25, 0.50, 0.25];

1a0 = 550; la = Tinspace(400,700,401);

GO = abs(multidiel(n, L, 1a/1a0)).A2 * 100;
G20 = abs(multidiel(n, L, 1a/1a0, 20, ’te’)).A2 * 100;
G30 = abs(multidiel(n, L, T1a/1a0, 30, ’te’)).A2 * 100;

G40 = abs(multidiel(n, L, Ta/1a0, 40, ’te’)).A2 * 100;

plot(la, [GO; G20; G30; G401);
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TE polarization TM polarization

w
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-

Fig. 8.7.3 Three-layer antireflection coating at oblique incidence.

8.8 Omnidirectional Dielectric Mirrors

Until recently, it was generally thought that it was impossible to have an omnidirectional
dielectric mirror, that is, a mirror that is perfectly reflecting at all angles of incidence
and for both TE and TM polarizations. However, such mirrors are possible and have
recently been manufactured [777,778] and the conditions for their existence clarified
[777-781].

We consider the same dielectric mirror structure of Sec. 6.3, consisting of alternating
layers of high and low index. Fig. 8.8.1 shows such a structure under oblique incidence.
There are N bilayers and a total of M = 2N + 1 single layers, starting and ending with
a high-index layer.
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oy = 2Tr£LHcos¢9H,

fo

oL = 2Tr£LLcoseL

fo

(8.8.2)

where Ly = ngly /Ao, Ly = nplp /A are the optical thicknesses normalized to some A,
and fy = co/A¢. Note also, cos 0; = /1 — nisin® 0,/n?,i=H,L.

A necessary (but not sufficient) condition for omnidirectional reflectivity for both
polarizations is that the maximum angle of refraction 6 max inside the first layer be
less than the Brewster angle 0p of the second interface, that is, the high-low interface,
so that the Brewster angle can never be accessed by a wave incident on the first interface.
If this condition is not satisfied, a TM wave would not be reflected at the second and all
subsequent interfaces and will transmit through the structure.

Because sin Oy max = Nq/Ny and tan @p = ny/ny, or, sin@p = ny//n% + n?, the
condition O max < Op, or the equivalent condition sin O max < sin Op, can be written

as Ng/ny < np/\n¥ +n?, or

ngny
né +n?

We note that the exact opposite of this condition is required in the design of multi-
layer Brewster polarizing beam splitters, discussed in the next section.

In addition to condition (8.8.3), in order to achieve omnidirectional reflectivity we
must require that the high-reflectance bands have a common overlapping region for all
incidence angles and for both polarizations.

To determine these bands, we note that the entire discussion of Sec. 6.3 carries
through unchanged, provided we use the transverse reflection coefficients and trans-
verse refractive indices. For example, the transverse version of the bilayer transition
matrix of Eq. (6.3.5) will be:

Ng < (8.8.3)

b Iy —— 1
ng ny np ny np ny ny ny np
X
z Ob
o/ 1 on 0, On 0, On 0, On
0p
Pri Pr| -Pr Pr| -Pr Pr| -Pr Pt
1 2
Fig. 8.8.1 Dielectric mirror at oblique incidence.
The incidence angles on each interface are related by Snel’s law:
Ngsin0, = ngsinO@y = ny sin@; = ny sin Oy, (8.8.1)

The phase thicknesses within the high- and low-index layers are in normalized form:

1 ej(5H+6L) _ p%,ej((stéL) 72jpTe*j6H Sin6L
Fr=1"p2 2jpreldn sin sy oI (Bu+61) _ 2 o=i(Bu=61) (8.8.4)
where pr = (ngr — nrr)/ (ngr + nrr) and:
N L (TM polarization)
nyr =4 cosfy nir =4 cos0p o (8.8.5)
N cos O ng cos 0y (TE polarization)
Explicitly, we have for the two polarizations:
ny cos 0 — ny cos O ny cos Oy — ny cos 01
Pt™M = , = (8.8.6)
ny cos 0p + ny cos Oy ny cos Oy + ny cos 01
The trace of Fr is as in Eq. (6.3.13):
_ cos(5H+5L)—p2Tcos(6H—5L) (8.8.7)
1-p7 o
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The eigenvalues of the matrix Fr are A = e*/Kl where K = acos(a)/landl = Iy +I;.
The condition a = —1 determines the bandedge frequencies of the high-reflectance
bands. As in Eq. (6.3.16), this condition is equivalent to:

6H+6L) _ %COSZ(éH_(SL)

2
cos? ( 5 p 5 (8.8.8)

Defining the quantities L. = Ly cos Oy + Li cos 01 and the normalized frequency
F = f/fo, we may write:

@ - TrfL (Lyrcos Og = Ly cos 0;) = T0FL. (8.8.9)
0

Then, taking square roots of Eq. (8.8.8), we have:

cos(mFL,)= +|pr|cos(mtFL_)

The plus sign gives the left bandedge, Fi, = f1/fo, and the minus sign, the right
bandedge, F» = f>/fo. Thus, Fy, F, are the solutions of the equations:

cos(mmF Ly ) = |pr|cos(mmFL_)

(8.8.10)
cos(mF,L,) = —|pr|cos(mmF,L_)
The bandwidth and center frequency of the reflecting band are:
Al pp—p,—p, le_p _BirE (8.8.11)
fo fo 2

The corresponding bandwidth in wavelengths is defined in terms of the left and right
bandedge wavelengths:

A() Co 2\() Co
Ay =200 A, =20 %0
""F T f "R h
An approximate solution of Eq. (8.8.10) can be obtained by setting L_ = 0 in the
right-hand sides of Eq. (8.8.10):

A=A — Ay (8.8.12)

cos(F1Ly)= |prl, cos(mF2Ly)= ~|pr| (8.8.13)
with solutions:
F, < 2coslprD . acos(=lprl) (8.8.14)
TrL+ 7TL+

Using the trigonometric identities acos(+|pr|)= 1/2 ¥ asin(|pr|), we obtain the
bandwidth and center frequency:

2foasinlprl) o _fitfe_ fo

Af = fo— fr = = 8.1
f=r-h o c > oL, (8.8.15)
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It follows that the center wavelength will be A; = co/fc = 2L+ A or,

)\c = 2L+A0 = Z(IHI’IH COoSs QH + ILVIL Cos 9]_) (8.8.16)

At normal incidence, we have A, = 2 (Ignhg + Iy ny). For quarter-wavelength designs
at Ao at normal incidence, we have L. = 1/4 + 1/4 = 1/2, so that A, = Ag.

The accuracy of the approximate solution (8.8.14) depends on the ratiod = L_ /L.
Even if at normal incidence the layers were quarter-wavelength with Ly = Lp = 0.25,
the equality of Ly and L will no longer be true at other angles of incidence. In fact, the
quantity d is an increasing function of 6,. For larger values of d, the exact solution of
(8.8.10) can be obtained by the following iteration:

initialize with F; = F» = 0,
fori=0,1,..., Niter, do:

1
F., =
'L

acos(|pr|cos(TTF1L-)) (8.8.17)

+

acos(—|pr|cos(mmF,L_))

1
F> =
2T mL

+

Evidently, the i = 0 iteration gives the zeroth-order solution (8.8.14). The iteration
converges extremely fast, requiring only 3-4 iterations Nji. The MATLAB function
omniband implements this algorithm. It has usage:

[F1,F2]
[F1,F2]

omniband(na,nH,nL,LH,LL,theta,pol,Niter)
omniband(na,nH,nL,LH,LL, theta,pol)

% bandedge frequencies

% equivalent to Niter = 0

where theta is the incidence angle in degrees, poT is one of the strings ’te’ or ’tm’ for
TE or TM polarization, and Niter is the desired number of iterations. If this argument
is omitted, only the i = 0 iteration is carried out.

It is straightforward but tedious to verify the following facts about the above solu-
tions. First, f1, f» are increasing functions of 6, for both TE and TM polarizations. Thus,
the center frequency of the band f. = (f1 +f2) /2 shifts towards higher frequencies with
increasing angle 0,. The corresponding wavelength intervals will shift towards lower
wavelengths.

Second, the bandwidth Af = f> — fi is an increasing function of 8, for TE, and a
decreasing one for TM polarization. Thus, as 6, increases, the reflecting band for TE
expands and that of TM shrinks, while their (slightly different) centers f. shift upwards.

In order to achieve omnidirectional reflectivity, the TE and TM bands must have a
common overlapping intersection for all angles of incidence. Because the TM band is
always narrower than the TE band, it will determine the final common omnidirectional
band.

The worst case of overlap is for the TM band at 90° angle of incidence, which must
overlap with the TM/TE band at 0°. The left bandedge of this TM band, f1,7» (90°), must
be less than the right bandedge of the 0° band, f> (0°). This is a sufficient condition for
omnidirectional reflectivity.

Thus, the minimum band shared by all angles of incidence and both polarizations
will be [f1,7a (90°), f2(0°) ], having width:
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Afmin = [2(0°) =f1,7m (90°)

(minimum omnidirectional bandwidth) (8.8.18)

In a more restricted sense, the common reflecting band for both polarizations and
for angles up to a given 0, will be [f1,7m (04), f2,7m (0°) ] and the corresponding band-
width:

Af(0q)= f2(0°) —f1,7m (Ba) (8.8.19)

In addition to computing the bandwidths of either the TM or the TE bands at any
angle of incidence, the function omniband can also compute the above common band-
widths. If the parameter po1 is equal to *tem’, then Fy, F» are those of Egs. (8.8.18) and
(8.8.19). Its extended usage is as follows:

[F1,F2] omniband(na,nH,nL,LH,LL, theta,’ tem’)
[F1,F2] = omniband(na,nH,nL,LH,LL,90,  tem’)
[F1,F2] omniband(na,nH,nL,LH,LL)

% Eq. (8.8.19)
% Eq. (8.8.18)
% Eq. (8.8.18)

Next, we discuss some simulation examples that will help clarify the above remarks.

Example 8.8.1: The first example is the angular dependence of Example 6.3.2. In order to flatten

I Tp; (W12 (percent)

out and sharpen the edges of the reflecting bands, we use N = 30 bilayers. Fig. 8.8.2 shows
the TE and TM reflectances |I'r; (A) |2 as functions of the free-space wavelength A, for the
two angles of incidence 0, = 45° and 80°.

Fig. 8.8.3 depicts the reflectances as functions of frequency f. The refractive indices were
ng = 1, ng = 2.32, np = 1.38, np = 1.52, and the bilayers were quarter-wavelength
Ly = L = 0.25 at the normalization wavelength Ay = 500 nm.

The necessary condition (8.8.3) is satisfied and we find for the maximum angle of refraction
and the Brewster angle: 0y max = 25.53° and 0 = 30.75° Thus, we have Oy max < O3.
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100f - -3 100 ===~ .
! - hn
R .
‘ : 2 TR
e S 8 A A e O,
E— ' 3 T RN RN
il 2 T T N
ity ) P
Wi 2 Pty
Wiy E s Pog i g ot
b o ‘:':-: IR
. 3 Higg v v
N A < 40t
e RN )
g b S
TR [ — o - — ™
LB B ] 20
e o ||| I RL N T TE L S TE
{ LEIH1aY o N \ o
‘ K VARVAAV ' AR e
.’900 400 500 600 700 800 5?00 500 600 700 800
A (nm A (nm)

Fig. 8.8.2 TM and TE reflectances for ny = 2.32, ny = 1.38.

On each graph, we have indicated the corresponding bandwidth intervals calculated with
omniband. The indicated intervals are for 0° incidence, for TE and TM, and for the common
band Eq. (8.8.19) at 0,. We observe the shifting of the bands towards higher frequencies,
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Fig. 8.8.3 TM and TE frequency responses for ny = 2.32, ny = 1.38.

or lower wavelengths, and the shrinking of the TM and expanding of the TE bands, and the
shrinking of the common band.

At 45°, there is still sufficient overlap, but at 80°, the TM band has shifted almost to the
end of the 0° band, resulting in an extremely narrow common band.

The arrows labeled f¢y and f. represent the (TM) band center frequencies at 0° and 45° or
80°. The calculated bandedges corresponding to 90° incidence were Ay = Ag/Fp,7ap (0°) =
429.73 nm and Ay = Ag/Fy,rm (90°) = 432.16 nm, with bandwidth AA = A, — A; = 2.43
nm. Thus, this structure does exhibit omnidirectional reflectivity, albeit over a very narrow
band. The MATLAB code used to generate these graphs was:

na 1; nb = 1.52; nH = 2.32; nL = 1.38;
LH = 0.25; LL = 0.25;

1a0 = 500;
la = linspace(300,800,501);

th = 45; N = 30;

n = [na, nH, repmat([nL,nH], 1, N), nb];

L = [LH, repmat([LL,LH], 1, N)I;

Ge = 100*abs(multidiel(n,L,1a/Ta0, th, ’'te’)).A2;
Gm = 100*abs(multidiel(n,L,Ta/Ta0, th, 'tm’)).A2;
GO = 100*abs(multidiel(n,L,Ta/1a0)).A2;

plot(la,Gm, Ta,Ge, 1a,G0);

[F10,F20] = omniband(na,nH,nL,LH,LL, 0, ’te’);
[Fle,F2e] = omniband(na,nH,nL,LH,LL, th,’te’);
[F1m,F2m] = omniband(na,nH,nL,LH,LL, th,’tm’);
[F1,F2] = omniband(na,nH,nL,LH,LL, th,’tem’);

Because the reflectivity bands shrink with decreasing ratio ny/ny, if we were to slightly
decrease nyy, then the TM band could be made to shift beyond the end of the 0° band and
there would be no common overlapping reflecting band for all angles. We can observe this
behavior in Fig. 8.8.4, which has ny = 2, with all the other parameters kept the same.
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Fig. 8.8.4 TM and TE reflectances for ny = 2, ny = 1.38.

At 45° there is a common overlap, but at 80°, the TM band has already moved beyond the 0°
band, while the TE band still overlaps with the latter. This example has no omnidirectional
reflectivity, although the necessary condition (8.8.3) is still satisfied with 0y max = 30° and
Op = 34.61°.

On the other hand, if we were to increase ngy, all the bands will widen, and so will the
final common band, resulting in an omnidirectional mirror of wider bandwidth. Fig. 8.8.5
shows the case of ny = 3, exhibiting a substantial overlap and omnidirectional behavior.

Frequency Response at 45° Frequency Response at 80°

Fig. 8.8.5 TM and TE reflectances for ny = 3, ny = 1.38.

The minimum band (8.8.18) was [Fy,F»>]= [1.0465,1.2412] corresponding to the wave-
length bandedges A; = Ag/F> = 402.84 nm and A, = Ag/F; = 477.79 nm with a width of
AN = Ay — Ay = 74.95 nm, a substantial difference from that of Fig. 8.8.2. The bandedges
were computed with Ny = 0 in Eq. (8.8.17); with Nj = 3, we obtain the more accurate
values: [Fy,F»]= [1.0505,1.2412].

To illustrate the dependence of the TE and TM bandwidths on the incident angle 6,, we
have calculated and plotted the normalized bandedge frequencies Fy (0,), F2(0,) for the
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range of angles 0 < 0, < 90° for both polarizations. The left graph of Fig. 8.8.6 shows the
case nyg = 3, ny = 1.38, and the right graph, the case ny = 2, ny = 1.38.

TE and TM bandwidths TE and TM bandwidths

M band
TE band

0 . . . . . . . . 0
0 100 20 30 40 50 60 70 80 90 0 10 20 30
6, (degrees)

40 50 60 70 80 90
6, (degrees)

Fig. 8.8.6 TM/TE bandgaps versus angle for ny = 3, ny = 1.38 and ny = 2, ny = 1.38.

We note that the TE band widens with increasing angle, whereas the TM band narrows. At
the same time, the band centers move toward higher frequencies. In the left graph, there
is a common band shared by both polarizations and all angles, that is, the band defined
by F»(0°), and F; v (90°). For the right graph, the bandedge F 1ty (04) increases beyond
F,(0°) for angles 0, greater than about 61.8°, and therefore, there is no omnidirectional
band. The calculations of F (0,), F» (0,) were done with omniband with Ny, = 3. |

Example 8.8.2: In Fig. 8.8.7, we study the effect of changing the optical lengths of the bilayers

from quarter-wavelength to Ly = 0.3 and L; = 0.1. The main result is to narrow the
bands. This example, also illustrates the use of the iteration (8.8.17). The approximate
solution (8.8.15) and exact solutions for the 80° bandedge frequencies are obtained from
the two MATLARB calls:

[F1,F2] = omniband(na,nH,nL,LH,LL,80, tem’,0);
[F1,F2] omniband(na,nH,nL,LH,LL,80, tem’,3);

with results [Fy,F,]= [1.0933,1.3891] and [F,F>]= [1.1315,1.3266], respectively.
Three iterations produce an excellent approximation to the exact solution. m]

Example 8.8.3: Here, we revisit Example 6.3.3, whose parameters correspond to the recently

constructed omnidirectional infrared mirror [777]. Fig. 8.8.8 shows the reflectances as
functions of wavelength and frequency at 8, = 45° and 80° for both TE and TM polar-
izations. At both angles of incidence there is a wide overlap, essentially over the desired
10-15 pum band.

The structure consisted of nine alternating layers of Tellurium (ny = 4.6) and Polystyrene
(ny = 1.6) on a NaCl substrate (n, = 1.48.) The physical lengths were Iy = 0.8 and I} = 1.6
um. The normalizing wavelength was Ay = 12.5 um. The optical thicknesses in units of
Ag were Ly = 0.2944 and Ly = 0.2112.

The bandedges at 0° were [F1, F»]= [0.6764, 1.2875] with center frequency Fqy = 0.9819,
corresponding to wavelength Ao = Ag/F¢o = 12.73 pum. Similarly, at 45°, the band centers
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Fig. 8.8.7 Unequal length layers Ly = 0.30, Ly = 0.15.

for TE and TM polarizations were F¢ g

1.0272 and F.rm = 1.0313, resulting in the

wavelengths A¢ g = 12.17 and A¢ry = 12.12 um (shown on the graphs are the TE centers
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Fig. 8.8.8 Nine-layer Te/PS omnidirectional mirror over the infrared.
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only.)
The final bandedges of the common reflecting band computed from Eq. (8.8.18) were
[Fy,F>]= [0.8207,1.2875], resulting in the wavelength bandedges A; = A¢/F> = 9.71
and A, = Ag/F; = 14.95 pum, with a width of AA = A, — A; = 5.24 um and band center
(A1 +Ap)/2 =12.33 um (the approximation (8.8.15) gives 5.67 and 12.4 um.) The graphs
were generated by the following MATLAB code:
1a0 = 12.5; T1a = linspace(5,25,401);
na=1; nb =1.48; nH = 4.6; nL = 1.6;
TH = 0.8; 1L = 1.65; LH = nH*1H/1a0; LL = nL*1L/1a0;
th = 45;
N = 4;
= [na, nH, repmat([nL,nH], 1, N), nb];
L = [LH, repmat([LL,LH], 1, N)1;
Ge = 100*abs(multidiel(n,L,Ta/1a0, th, ’'te’)).A2;
Gm = 100*abs(multidiel(n,L,Ta/1a0, th, ’tm’)).A2;
GO = 100*abs(multidiel(n,L,1a/7a0)).A2;
plot(la,Gm, la,Ge, 1a,G0);
Ni = 5;
[F10,F20] = omniband(na,nH,nL,LH,LL, O, ’te’, Ni); % band at 0°
[Fle,F2e] = omniband(na,nH,nL,LH,LL, th,’te’, Ni); % TE band
[F1m,F2m] = omniband(na,nH,nL,LH,LL, th,’tm’, Ni); % TM band
[F1,F2] = omniband(na,nH,nL,LH,LL, th,’tem’,Ni); % Eq. (8.8.19)
[F1,F2] = omniband(na,nH,nL,LH,LL, 90, tem’ ,Ni); % Eq. (8.8.18)
Finally, Fig. 8.8.9 shows the same example with the number of bilayers doubled to N = 8.
The mirror bands are flatter and sharper, but the widths are the same. [}
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Fig. 8.8.9 Omnidirectional mirror with N = 8.

Example 8.8.4: The last example has parameters corresponding to the recently constructed
omnidirectional reflector over the visible range [778]. The refractive indices were n, = 1,

= 2.6 (ZnSe), n; =

1.34 (Na3AlFg cryolite), and n, =

1.5 (glass substrate.) The layer
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lengths were Iy = I; = 90 nm. There were N = 9 bilayers or 2N + 1 = 19 layers, starting
and ending with ny.

With these values, the maximum angle of refraction is 0y max = 22.27° and is less than the
Brewster angle O = 27.27°.

The normalizing wavelength was taken to be Ay = 620 nm. Then, the corresponding optical
lengths were L; = npl;p/Ag = 0.1945 and Ly = nyly /Ao = 0.3774. The overall minimum
omnidirectional band is [A;,A»]= [605.42, 646.88] nm. It was computed by the MATLAB
call to omniband with N; = 5 iterations:

[F1,F2] = omniband(na,nH,nL,LH,LL,90,  tem’ ,Ni);
lal = Ta0/F2; 1a2 = 1a0/F1;

(The values of A1, A, do not depend on the choice of Ag.) Fig. 8.8.10 shows the reflectance
at 45° and 80°. The upper panel of graphs has N = 9 bilayers as in [778]. The lower panel
has N = 18 bilayers or 38 layers, and has more well-defined band gaps. The two arrows in
the figures correspond to the values of A1, A, of the minimum omnidirectional band. O

Reflectance at 45°

Reflectance at 80°

I I (M) 12 (percent)

4(1;00 500 600 700 800 900
A (nm)

Reflectance at 80°

| Ipy (M) 12 (percent)

oy
|
I AT H
i, e REH
.
A A A ) Ve
\WY 7 v M W

A { }

0 - :
400 500 600 700 800 900 400 500 600 700 800 900
A (nm) A (nm)

Fig. 8.8.10 Omnidirectional mirror over visible band.
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8.9 Polarizing Beam Splitters

The objective of an omnidirectional mirror is to achieve high reflectivity for both polar-
izations. However, in polarizers, we are interested in separating the TE and TM polariza-
tions. This can be accomplished with a periodic bilayer structure of the type shown in
Fig. 8.8.1, which is highly reflecting only for TE and highly transmitting for TM polariza-
tions. This is the principle of the so-called MacNeille polarizers [640,644,647,666,669,684-
690].

If the angle of incidence 0, is chosen such that the angle of refraction in the first
high-index layer is equal to the Brewster angle of the high-low interface, then the TM
component will not be reflected at the bilayer interfaces and will transmit through. The
design condition is Oy = Op, or sin Oy = sin 8, which gives:

nyng
\né +n?

This condition can be solved either for the angle 6, or for the index n, of the incident
medium:

Ngsin0,; = ngsin Oy = nysin 0 = (8.9.1)

ngng nyng
——— | or, |Ng=— ———
Na\n% + n? sin @4 n% + n?

In either case, the feasibility of this approach requires the opposite of the condition
(8.8.3), that is,

sinf, = (8.9.2)

ngng
\Jn% +n?

If the angle 0, is set equal to the convenient value of 45°, then, condition Eq. (8.9.2)
fixes the value of the refractive index n, to be given by:

Ng > (8.9.3)

_ \2ngng
Jné +n?

Fig. 8.9.1 depicts such a multilayer structure sandwiched between two glass prisms
with 45° angles. The thin films are deposited along the hypotenuse of each prism and
the prisms are then cemented together. The incident, reflected, and transmitted beams
are perpendicular to the prism sides.

Not many combinations of available materials satisfy condition (8.9.4). One possible
solution is Banning’s [647] with ny = 2.3 (zinc sulfide), n; = 1.25 (cryolite), and n, =
1.5532. Another solution is given in Clapham, et al, [669], with ny = 2.04 (zirconium
oxide), n; = 1.385 (magnesium fluoride), and n,; = 1.6205 (a form of dense flint glass.)

Fig. 8.9.2 shows the TE and TM reflectances of the case ng = 2.3 and n; = 1.25. The
incident and output media had n, = np = 1.5532. The maximum reflectivity for the TE
component is 99.99%, while that of the TM component is 3% (note the different vertical
scales in the two graphs.)

Ng (8.9.4)
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Fig. 8.9.1 Polarizing beam splitter.

The number of bilayers was N = 5 and the center frequency of the TE band was
chosen to correspond to a wavelength of A = 500 nm. To achieve this, the normal-
izing wavelength was required to be Ay = 718.38 nm. The layer lengths were quarter-
wavelengths at Ay. The TE bandwidth calculated with omniband is also shown.

The Brewster angles inside the high- and low-index layers are Oy = 28.52° and
01 = 61.48°. As expected, they satisfy 0y + 01 = 90°.

TE Reflectance TM Reflectance
. . . 4 : .

100F r
3 34l
E o 5
o o
- ~
g 2
E 6ot R
™ « 2
= =
< yof S
= =

20

A
gOO 400 500 600 gOO 400 500 600 700 800
A (nm) A (nm)

Fig. 8.9.2 Polarizer with ny = 2.3 and n; = 1.25.

Fig. 8.9.3 shows the second case having ny = 2.04, n; = 1.385, ng = np = 1.6205.
The normalizing wavelength was Ag = 716.27 nm in order to give A, = 500 nm. This
case achieves a maximum TE reflectivity of 99.89% and TM reflectivity of only 0.53%.
The typical MATLAB code generating these examples was:

nH

; nL = 1.25;
LH L

2.3;
0.25; LL = 0.25;

na = nH*nL/sqrt(nHA2+nLA2)/sin(pi/4); nb=na;

[fle,f2e] = omniband(na,nH,nL,LH,LL,th,’te’,5);
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Fig. 8.9.3 Polarizer with ny = 2.04 and n; = 1.385.

lac
1a0

500;
Tac*(fle+f2e)/2;

because A¢ = Ag/Fc
Ta = Tinspace(300,800,301);

N =75;
n [na, nH, repmat([nL,nH], 1, N), nb];

L = [LH, repmat([LL,LH], 1, N)I;
Ge = 100*abs(multidiel(n,L,1a/Ta0, th, ’'te’)).A2;
Gm = 100*abs(multidiel(n,L,Ta/1a0, th, ’tm’)).A2;

plot(la,Ge);

8.10 Reflection and Refraction in Birefringent Media

Uniform plane wave propagation in biaxial media was discussed in Sec. 4.6. We found
that there is an effective refractive index N such that k = Nky = Nw/cy. The index N,
given by Eq. (4.6.8), depends on the polarization of the fields and the direction of the
wave vector. The expressions for the TE and TM fields were given in Eqgs. (4.6.18) and
(4.6.27).

Here, we discuss how such fields get reflected and refracted at planar interfaces
between biaxial media. Further discussion can be found in [638,57] and [698-719].

Fig. 7.1.1 depicts the TM and TE cases, with the understanding that the left and
right biaxial media are described by the triplets of principal indices n = [ny, ny, n3]
and n’ = [n],n), n4], and that the E-fields are not perpendicular to the corresponding
wave vectors in the TM case. The principal indices are aligned along the xyz axes, the
xy-plane is the interface plane, and the xz-plane is the plane of incidence.

The boundary conditions require the matching of the electric field components that
are tangential to the interface, that is, the components Ey in the TM case or E) in TE.
It proves convenient, therefore, to re-express Eq. (4.6.27) directly in terms of the Ey
component and Eq. (4.6.18) in terms of E),.
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For the TM case, we write E = XEyx + ZE, = Ex (f(_— 7 tan 0), for the electric field of
the left-incident field, where we used E; = —Ey tan 6. Similarly, for the magnetic field
we have from Eq. (4.6.26):

H= E}A’(EXCOSQ —E,sin0)= E}?Excose (1 - &tan9>
No No E

X

N n3 N n3 cos? 0 + n3 sin? 0
=~ VyFEycosO |1+ —2tan?0 | = —VEccos0 |2 !
no X ( n3 no X n cos? 0

N nini Ex n?
- ' %VE 0 3701 _ =X 1 I
o Y XS <N2n§c0520> no Ncos6

where we replaced E,/Ey = —tan @ = — (n?/n%)tan 6 and used Eq. (4.7.10). Thus,

n? ;
E(r) = Ex (f(— Z n—% tan@) e Jkr
’ (TM) (8.10.1)

2
Ex _nj Goikr _ Ex ye kv

H —.
i no N cos 0 nm

Similarly, we may rewrite the TE case of Eq. (4.6.18) in the form:

E(r) = Eyye/kr

E . E _ (TE) (8.10.2)
Hn = '71 nycos 0 (—X + 2tan0)e k" = rTy (—%x+ztan0)e kT
0 TE

The propagation phase factors are:

e~ Tk T = o=JkoxNsin0—jkozN cos 0 (TM and TE propagation factors) (8.10.3)

Unlike the isotropic case, the phase factors are different in the TM and TE cases
because the value of N is different, as given by Eq. (4.6.8), or,

nin
173 , (TM or p-polarization)

N = \/n% sin’ @ + n3 cos? 0 (8.10.4)
no, (TE or s-polarization)

InEgs. (8.10.1) and (8.10.2), the effective transverse impedances are defined by ny =
Ex/H), and n = —E),/Hy, and are given as follows:

N 0
ntv = No COQS , NT1E= Mo (transverse impedances) (8.10.5)
ni n, cos 0

Defining the TM and TE effective transverse refractive indices through n = no/nmy
and nrg = No/NtE, we have:
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" n3 nin;
™ = =
N cos 0 2 .2
ns — N2sin® 6

N1E = Np oS O

(transverse refractive indices) (8.10.6)

where we used Eq. (4.6.23) for the TM case, that is,

Ncos0 = %w/ng — N2sin 0 (8.10.7)

3

In the isotropic case, N = n; = n, = n3 = n, Eqgs. (8.10.6) reduce to Eq. (7.2.13).
Next, we discuss the TM and TE reflection and refraction problems of Fig. 7.1.1.

Assuming that the interface is at z = 0, the equality of the total tangential electric
fields (Ex component for TM and E), for TE), implies as in Sec. 7.1 that the propagation
phase factors must match at all values of x:

e—ijx — e—jkx,x — e—jk;+x — e—jk;,x
which requires that kx+ = kx— = k;, = kj_, or, because kx = ksin 8 = Nk sin 0:
Nsin0; =Nsin0_ = N'sin0’. = N'sin0"

This implies Snel’s law of reflection, thatis, 0, = 0_ = 0 and 0’, = 0" = 0’, and
Snel’s law of refraction,

Nsin® = N'sin0’ (Snel’s law for birefringent media) (8.10.8)

Thus, Snel’s law is essentially the same as in the isotropic case, provided one uses the
effective refractive index N. Because N depends on the polarization, there will be two
different refraction anglesT for the same angle of incidence. In particular, Eq. (8.10.8)
can be written explicitly in the two polarization cases:

ninszsin 0 nyn;sin 0’

\/lﬁ sin’ @ + n3 cos? 0 \/n’12 sin’ 0’ + n¥ cos? 0’

(TM) (8.10.9a)

N, sin @ = n) sin 0’ (TE) (8.10.9b)

Both expressions reduce to Eq. (7.1.6) in the isotropic case. The explicit solutions of
Eq. (8.10.9a) for sin 0" and sin O are:

nynznj sin 0

sin0’ =

\/[nizngz(rﬁ —n3)-ntn3 (n? - n{?) ] sin 0 + n?n¥n3
(8.10.10)
4 ’ : 4
nyn;n;sin 6

sin @ =

\/[n%n%(n’l2 —n¥)-nni? (n? — nj)]sin® 0’ + n¥n3n}?

THence, the name birefringent.
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The MATLAB function snel, solves Egs. (8.10.9) for 8" given the angle of incidence
0 and the polarization type. It works for any type of medium, isotropic, uniaxial, or
biaxial. It has usage:

thb = snel(na,nb,tha,pol);

% refraction angle from Snel’s law

The refractive index inputs na, nb may be entered as 1-, 2-, or 3-dimensional column
or row vectors, for example, n, = [n,] (isotropic), ng, = [Ngp, Nge] (uniaxial), or n,; =
[Na1, a2, N3] (biaxial).

Next, we discuss the propagation and matching of the transverse fields. All the
results of Sec. 7.3 translate verbatim to the birefringent case, provided one uses the
proper transverse refractive indices according to Eq. (8.10.6).

In particular, the propagation equations (7.3.5)-(7.3.7) for the transverse fields, for
the transverse reflection coefficients I'r, and for the transverse wave impedances Z7,
remain unchanged.

The phase thickness &, for propagating along z by a distance [ also remains the same
as Eq. (7.3.8), except that the index N must be used in the optical length, and therefore,
0, depends on the polarization:

5, = k1 = klcos 0 = Nkol cos 0 — 27" IN cos 0 8.10.11)

Using Eq. (8.10.7), we have explicitly:

5, = 27" m \/m, (TM) (8.10.12a)

ns

2717 In, cos 0, (TE) (8.10.12b)

The transverse matching matrix (7.3.11) and Fresnel reflection coefficients (7.3.12)
remain the same. Explicitly, we have in the TM and TE cases:

6,

nt ny?
, _
_hNmvm—Npy — Ncos® N’ cosb’
Pt™ = = 2 2
Nrm + Ny ni n ny 8.10.13
Ncos@® N’cos0’ (8.10.13)
p Nrg— N N2c08 0 — ncos O’
TE = =
g+ Npp  N2c08 60 + N cos 0

Using Eq. (8.10.6) and the TM and TE Snel’s laws, Egs. (8.10.9), we may rewrite the
reflection coefficients in terms of the angle 0 only:

nm:;\/n'gz — N2sin? 0 - n’ln’3\/n§ — N2sin® 0

nlng\/n§2 — N2sin® 0 + n’lng\/ng — N2sin® 0

Ny cos 0 — Aln%? — n3 sin® 0
PTE = - -
Ny cos 0 +ln%? — n3sin? 0

Ptm =

(8.10.14)
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The quantity N?sin® @ can be expressed directly in terms of 0 and the refractive
indices of the incident medium. Using Eq. (8.10.4), we have:

2,2 2
N?sin® 0 = nin; sin 0
2 i 29 2 29
ni sin® 0 + nj3 cos

(8.10.15)

The TE reflection coefficient behaves like the TE isotropic case. The TM coefficient
exhibits a much more complicated behavior. If n; = nj but n3 # nj, it behaves like the
TM isotropic case. If n3 = nj but n; # nj, the square-root factors cancel and it becomes
independent of 0:

n; — nj
= .10.1
P1™ —— (8.10.16)

Another interesting case is when both media are uniaxial and n; = n; and n; = ns,
that is, the refractive index vectors are n = [n;,n;,n3] and n’ = [n3,n3, ny]. Itis
straightforward to show in this case that pp = prg at all angles of incidence. Multilayer
films made from alternating such materials exhibit similar TM and TE optical properties
[698].

The MATLAB function fresnel can evaluate Egs. (8.10.14) at any range of incident
angles 0. The function determines internally whether the media are isotropic, uniaxial,
or biaxial.

8.11 Brewster and Critical Angles in Birefringent Media

The maximum angle of refraction, critical angle of incidence, and Brewster angle, have
their counterparts in birefringent media.

It is straightforward to verify that 6’ is an increasing function of @ in Eq. (8.10.9).
The maximum angle of refraction 6 is obtained by setting 6 = 90° in Eq. (8.10.9).

For the TE case, we obtain sin 0. = ny/nj. As in the isotropic case of Eq. (7.5.2), this
requires that n, < nj, that is, the incident medium is less dense than the transmitted
medium, with respect to the index n,. For the TM case, we obtain from Eq. (8.10.9a):

nsn;

sin 9; = (maximum TM refraction angle) (8.11.1)

\/n§n§2 +n2(n - nd)

This requires that n3 < n'3. On the other hand, if n3 > n'3, we obtain the critical
angle of incidence 0. that corresponds to 0" = 90° in Eq. (8.10.10):

nsnj

sinf. = (critical TM angle) (8.11.2)

\/ngngz +n3(n} — n?

whereas for the TE case, we have sin 6, = n;/n;, which requires n, > nj.
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In the isotropic case, a Brewster angle always exists at which the TM reflection coeffi-
cient vanishes, pry = 0. In the birefringent case, the Brewster angle does not necessarily
exist, as is the case of Eq. (8.10.16), and it can also have the value zero, or even be imag-
inary.

The Brewster angle condition pyy = 0 is equivalent to the equality of the transverse
refractive indices nmy = n7,,. Using Eq. (8.10.6), we obtain:

, nn nyn;
Mo =My = Ll E—_ 13 (8.11.3)
\/n§ — N2sin® 0 \/ngz—NZ sin’ @

where N2 sin? @ is given by Eq. (8.10.15). Solving for 6, we obtain the expression for the
Brewster angle from the left medium:

e e
nzn, |n°-n
tanOp = — - |1 (Brewster angle) (8.11.4)
ny nz —nj

Working instead with N’'sin @’ = N sin 6, we obtain the Brewster angle from the
right medium, interchanging the roles of the primed and unprimed quantities:

ni —np?
n3 - ny

r

nsn
tan 0y = ,23
ny

(Brewster angle) (8.11.5)

Egs. (8.11.4) and (8.11.5) reduce to Egs. (7.6.2) and (7.6.3) in the isotropic case. It is
evident from Eq. (8.11.4) that O3 is a real angle only if the quantity under the square
root is non-negative, that is, only if n; > n} and n3 > nj, or if n; < nj and n3 < nj.
Otherwise, Op is imaginary. In the special case, n; = nj but n3 # n'3, the Brewster
angle vanishes. If n; = n’3, the Brewster angle does not exist, since then py is given by
Eq. (8.10.16) and cannot vanish.

The MATLAB function brewster computes the Brewster angle 0p, as well as the
critical angles 0. and 0. For birefringent media the critical angles depend on the pola-

rization. Its usage is as follows:

% isotropic case
% birefringent case

[thB, thc] brewster(na,nb)
[thB, thcTE, thcTM] = brewster(na,nb)

In multilayer systems, it is convenient to know if the Brewster angle of an internal
interface is accessible from the incident medium. Using Snel’s law we have in this case
Ngsin@,; = Nsin 0, where 0, is the incident angle and N, the effective index of the
incident medium. It is simpler, then, to solve Eq. (8.11.3) directly for 0,:

M (8.11.6)

N2sin@% = N?sin? 0p = —525———
nins — ny ny

Example 8.11.1: To illustrate the variety of possible Brewster angle values, we consider the
following birefringent cases:
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n' = [1.63,1.63,1.63]
n =[1.5,1.5,1.5]
n =[15,1.5,1.5]
n' = [1.56,1.56,1.56]

(@) n=[1.63,1.63,1.5],
() n=[1.54,1.54,1.63],
(¢) n=1[1.8,1.8,1.5],
(d n=[1.8,1.8,1.5],

These cases were discussed in [698]. The corresponding materials are: (a) birefringent
polyester and isotropic polyester, (b) syndiotactic polystyrene and polymethylmethacrylate
(PMMA), (c) birefringent polyester and PMMA, and (d) birefringent polyester and isotropic
polyester.

Because n, = nﬁ in case (a), the Brewster angle will be zero, 8 = 0°. In case (b), we
calculate O = 29.4°. Because ny > n, and n3 > nj, there will be both TE and TM critical

angles of reflection: 0. 7 = 76.9° and 0,1y = 68.1°.

In case (c), the Brewster angle does not exist because n3 = n’, and in fact, the TM reflection
coefficient is independent of the incident angle as in Eq. (8.10.16). The corresponding
critical angles of reflection are: 0.z = 56.4° and 0. = 90°.

Finally, in case (d), because ny > nj but n3 < nj, the Brewster angle will be imaginary,
and there will be a TE critical angle of reflection and a TM maximum angle of refraction:
GC,TE = 60.1° and 9’C,TM = 74.1°.

Fig. 8.11.1 shows the TM and TE reflection coefficients |pry(6)] of Eq. (8.10.14) versus 6
in the range 0 < 6 < 90°.

TM Reflection Coefficients TE Reflection Coefficients

1 L ]
; :
) , !
0.8 0.8 © : !
== (D | !
B oy 1 1
S 06 S 06 : !
§ g i !
< & ; "
04 0.4 ; ;
; |
02 0.2 T K
0 y y QE======= ceeepmem— === )
0 15 30 0 75 90 0 15 30 45 60 75 90
0 (degrees)

5 6
6 (degrees)
Fig. 8.11.1 TM and TE birefringent Fresnel reflection coefficients versus incident angle.

The TE coefficient in case (a) is not plotted because it is identically zero. In order to expand
the vertical scales, Fig. 8.11.2 shows the TM reflectances normalized by their values at
0 = 0°, that is, it plots the quantities |pr(0) /pm(0°) |2. Because in case (a) pa(0°) = 0,
we have plotted instead the scaled-up quantity [100p7y(0) |2.

The typical MATLAB code used to compute the critical angles and generate these graphs
was:

th = linspace(0,90,361); % 0 at 1/4° intervals

na = [1.63,1.63,1.5]; nb = [1.63,1.63,1.63]; % note the variety of
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Fig. 8.11.2 TM reflectances normalized at normal incidence.

[rtel,rtml] = fresnel(na,nb,th); % equivalent ways of
% entering na and nb

[thbl, thcTE1l, thcTM1] = brewster(na,nb);

% FRESNEL and BREWSTER
% internally extend
% na,nb into 3-d arrays

na = [1.54,1.63];

nb = [1.5, 1.5];

[rte2,rtm2] = fresnel(na,nb,th);
[thb2,thcTE2,thcTM2] = brewster(na,nb);
na = [1.8, 1.5]; % same as na=[1.8,1.8,1.5]
nb = 1.5; % and nb=[1.5,1.5,1.5]
[rte3,rtm3] = fresnel(na,nb,th);
[thb3,thcTE3,thcTM3] = brewster(na,nb); % in this case, 0p =[]
na [1.8,1.5];

nb = 1.56;
[rte4,rtm4] = fresnel(na,nb,th);

[thb4,thcTE4,thcTM4] = brewster(na,nb);

plot(th, abs([rtml; rtm2; rtm3; rtm4]));

We note four striking properties of the birefringent cases that have no counterparts
for isotropic materials: (i) The Brewster angle can be zero, (ii) the Brewster angle may not
exist, (iii) the Brewster angle may be imaginary with the TE and TM reflection coefficients
both increasing monotonically with the incident angle, and (iv) there may be total internal

reflection in one polarization but not in the other.

8.12 Multilayer Birefringent Structures

With some redefinitions, all the results of Sec. 8.1 on multilayer dielectric structures

translate essentially unchanged to the birefringent case.

We assume the same M-layer configuration shown in Fig. 8.1.1, where now each layer
is a biaxial material. The orthogonal optic axes of all the layers are assumed to be aligned
with the xyz film axes. The xz-plane is the plane of incidence, the layer interfaces are

parallel to the xy-plane, and the layers are arranged along the z-axis.
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The ith layer is described by the triplet of refractive indices n; = [nji, nj2, nj3],
i=1,2,...,M. The incident and exit media a,b may also be birefringent with n, =
[na1, na2, ng3] and ny = [Ny, Np2, Np3], although in our examples, we will assume that
they are isotropic.

The reflection/refraction angles in each layer depend on the assumed polarization
and are related to each other by the birefringent version of Snel’s law, Eq. (8.10.8):

(8.12.1)

NgsinO, = Njsin0; = Npsin0y |, i=1,2...,M

where N, Nj, N} are the effective refractive indices given by Eq. (8.10.4). The phase
thickness of the ith layer depends on the polarization:

2 cinl
2Ty 1 - Nad0a oy,
21 A \ i3
o;i = b IiNjcos 0; = (8.12.2)
2 «inl
Zj I,-n,-g 1- 4Nﬂ sm 941 y (TE)
A 2
\ Nip

where we used Eq. (8.10.7) and Snel’s law to write in the TM and TE cases:

N?sin? 0; N2sin? 0,
= 1 - et

Nin [ 5 2 w2
I n,-3—N,-sm 9i=n,-1 1—T 5
i3

ni3 Ni3

Njcos0; =
2
2sin” 04
2
an

[ . N,
Nij» COSQ,‘ = Njp/1 — Sll’l2 91' =nNjp |1 - ——5——

To use a unified notation for the TM and TE cases, we define the layer optical lengths
at normal-incidence, normalized by a fixed free-space wavelength Ag:

li;\’lil, (T™)
Li= Ino ,  i=1,2,...,.M (8.12.3)

irli2

Ao’ (TE)

We define also the cosine coefficients c¢;, which represent cos 0; in the TE birefringent

case and in the TM isotropic case:

N2 sin® 0
1— %, (TM)
\ iz )
ci = i=1,2,....,.M (8.12.4)
) N2 sin® 04

— e a

\ ng

At normal incidence the cosine factors are unity, ¢;
Eg. (8.12.2) can be written compactly in the form:

(TE)

= 1. With these definitions,

A
6i:27TTOLiCi=21Tf£L,-C,' . i=1,2,...,M (8.12.5)
0
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where A is the operating free-space wavelength and f = co/A, fo = co/A¢. This is
the birefringent version of Eq. (8.1.10). A typical design might use quarter-wave layers,
L; = 1/4, at Ay and at normal incidence.

The reflection coefficients pr; at the interfaces are given by Eq. (8.1.3), but now the
transverse refractive indices are defined by the birefringent version of Eq. (8.1.4):

Vll-zl _ ni1Nj3 (TM)

np = NicosOi - n2 — NZsin® 0, . i=a1,2,....M,b (8.12.6)
\Jn% — N3sin®0,, (TE)

With the above redefinitions, the propagation and matching equations (8.1.5)-(8.1.9)
remain unchanged. The MATLAB function multidiel can also be used in the birefrin-
gent case to compute the frequency reflection response of a multilayer structure. Its
usage is still:

Ni» cos O

[Gammal,Z1] = multidiel(n,L,lambda,theta,pol); % birefringent multilayer structure

where the input nis a 1x (M + 2) vector of refractive indices in the isotropic case, or a
3X (M + 2) matrix, where each column represents the triplet of birefringent indices of
each medium. For uniaxial materials, n may be entered as a 2x (M + 2) matrix.

8.13 Giant Birefringent Optics

The results of Sec. 8.8 can be applied almost verbatim to the birefringent case. In
Fig. 8.8.1, we assume that the high and low alternating layers are birefringent, described
by the triplet indices ny = [ng1, g2, N3] andng = [Ny, o, nr3]. The entry and exit
media may also be assumed to be birefringent. Then, Snel’s laws give:

NgsinO, = NysinOy = Npsin0; = Ny sin 0, (8.13.1)

The phase thicknesses 6y and ¢ within the high and low index layers are:

6H =2T(LLHCH, 6L =27T£LLCL (8.13.2)
fo fo
where Ly,cy and Ly, c; are defined by Egs. (8.12.3) and (8.12.4) for i = H,L. The
effective transverse refractive indices within the high and low index layers are given by
Eq. (8.12.6), again withi = H, L.
The alternating reflection coefficient pr between the high/low interfaces is given by
Eq. (8.10.14), with the quantity N2 sin® 0 replaced by N2 sin? 0, by Snel’s law:
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NE1NE3AN7 3 — N2 sin® 0, — npinps\n; — Nasin® 0,

pM = 2 2 «in? 2 2 ain?
NH1NE3\NT3 — Nasin® 8g + npinpsyngs — Nasin® 0,4
\/nf{z — N2sin® 0, — \/niz — NZsin® 0,

PTE = -
\/ni,2 — N2sin? 0, + \/nfz — NZsin? 0,

(8.13.3)

The multilayer structure will exhibit reflection bands whose bandedges can be cal-
culated from Egs. (8.8.7)-(8.8.17), with the redefinition L. = Lycy + Lycy. The MATLAB
function omniband2 calculates the bandedges. It has usage:

[F1,F2] = omniband2(na,nH,nL,LH,LL,th,poT1,N);

where pol is one of the strings *te’ or tm’ for TE or TM polarization, and na, nH, nL
are 1-d, 2-d, or 3-d row or column vectors of birefringent refractive indices.

Next, we discuss some mirror design examples from [698] that illustrate some prop-
erties that are specific to birefringent media. The resulting optical effects in such mirror
structures are referred to as giant birefringent optics (GBO) in [698,1853].

Example 8.13.1: We consider a GBO mirror consisting of 50-bilayers of high and low index
quarter-wave layers with refractive indices ny = [1.8,1.8,1.5], n, = [1.5,1.5,1.5] (bire-
fringent polyester and isotropic PMMA.) The surrounding media are air, n, = n, = 1.

The layers are quarter wavelength at the normalization wavelength Ay = 700 nm at normal
incidence, so that for both polarizations we take Ly = L = 1/4.

Because the high/low index layers are matched along the z-direction, nys; = nrs, the TM
reflection coefficient at the high/low interface will be constant, independent of the incident
angle 0,4, as in Eq. (8.10.16). However, some dependence on 0, is introduced through the
cosine factors cy, c; of Eq. (8.13.2).

The left graph of Fig. 8.13.1 shows the reflectance |I't(A)|? as a function of A for an
angle of incidence 0, = 60°. The TM and TE bandedge wavelengths were calculated from
omniband?2 to be: [Ay,A»]= [540.24,606.71] and [A,,A,]= [548.55,644.37] nm.

The typical MATLAB code used to generate the left graph and the bandedge wavelengths
was as follows:

LH = 0.25; LL = 0.25;

na = [1; 1; 11;

nH = [1.8; 1.8; 1.5];
nL = [1.5; 1.5; 1.5];
nb = [1; 1; 11;

1a0 = 700;

la = linspace(400,1000,601);
th = 60; % angle of incidence

N = 50; % number of bilayers
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Fig. 8.13.1 Reflectance of birefringent mirror.

n

[na, repmat([nH,nL], 1, N), nb]; % 3% (2N + 2) matrix

L = [repmat([LH,LL], 1, N)I;
Ge = 100*abs(multidiel(n, L, la/Ta0, th, ’te’)).A2;
Gm = 100*abs(multidiel(n, L, 1a/1a0, th, "tm’)).A2;

GO = 100*abs(multidiel(n, L, Ta/Ta0)).A2;
plot(1la,Gm,’-’, la,Ge,’--", 1a,G0,’:");

[F1,F2]=omniband2(na,nH,nL,LH,LL,th, tm’,3);
lal = 1a0/F2; 1a2 = 1a0/F1; % TM bandedge wavelengths

The right graph shows the reflectance with a 25% thickness gradient (the layer thicknesses
Ly, Ly decrease linearly from quarter-wavelength to 25% less than that at the end.) This
can be implemented in MATLAB by defining the thickness vector L by:

-
I

= [repmat([LH,LL], 1, N)I;

L=1L.* (1 - Tinspace(0, 0.25, 2*N)); % 25% thickness gradient

The thickness gradient increases the effective bandwidth of the reflecting bands [696].
However, the bandwidth calculation can no longer be done with omniband2. The band
centers can be shifted to higher wavelengths by choosing A higher. The reflecting bands
can be made flatter by increasing the number of bilayers. m]

Example 8.13.2: In this example, we design a 30-bilayer GBO mirror with ny = [1.8,1.8,1.5]

and n; = [1.5,1.5,1.8], so that nyg; = ng> = ny3 and nyz = Ny = Nro. As we discussed
in Sec. 8.10, it follows from Eq. (8.10.14) that pry = p1¢ for all angles of incidence.

As in Ref. [698], the media a,b are taken to be isotropic with n, = n, = 1.4. The
normalization wavelength at which the high and low index layers are quarter-wavelength
is Ag = 700 nm.

The left graph of Fig. 8.13.2 shows the reflectance for a 45° angle of incidence. Because
P1v = Pr1E, the reflection bands for the TM and TE cases are essentially the same.

The right graph depicts the asymptotic (for large number of bilayers) bandedges of the
reflecting band versus incident angle. They were computed with omniband2. Unlike the
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Fig. 8.13.2 Birefringent mirror with identical TM and TE reflection bands.

isotropic case, the TM and TE bands are exactly identical. This is a consequence of the
following relationships between the cosine factors in this example: ¢y, = ¢r,7¢ and
cu,1e = Cr,7m- Then, because we assume quarter-wave layers in both the TE and TM cases,
Ly = L = 1/4, we will have:

1 1
L. v = LuvCr,om + L, mmCr,im == 2 (crH, M + CLiTM) = 2 (cr,1e + CH,1E) = L+ 1E
1 1
L_ v = LyvCu,m — Li,mvCr,mn == 2 (cu, v — CLiv) = 2 (crre— Ch1e)= =Ly 1z

Because the computational algorithm (8.8.17) for the bandwidth does not depend on the
sign of L_, it follows that Eq. (8.8.17) will have the same solution for the TM and TE cases.
The typical MATLAB code for this example was:

LH = 0.25; LL = 0.25;

na = [1.4; 1.4; 1.4];
nb = [1.4; 1.4; 1.4];
nH = [1.8; 1.8; 1.5];
nL = [1.5; 1.5; 1.8];
1a0 = 700;

la = linspace(400,1000,601);
tha = 45;
N = 30;

n = [na, repmat([nH,nL], 1, N), nb];
L = [repmat([LH,LL], 1, ND];

Ge 100*abs(multidiel(n, L, Ta/1a0, tha,
Gm = 100*abs(multidiel(n, L, 1a/1a0, tha,
GO = 100*abs(multidiel(n, L, T1a/1a0)).A2;

“te’)).A2;
Ttm’)) . A2;

plot(la,Cm,’-’, T1a,Ge,’--", 1a,G0,’:’);
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In Fig. 8.13.3, the low-index material is changed slightly to n; = [1.5,1.5,1.9]. The main
behavior of the structure remains the same, except now the TM and TE bands are slightly
different.

Reflectance at 0° and 45°

TM and TE bandwidths

ol ; oy . R
400 500 600 700 800 900 1000 0 10 20 30 50 60 70 80 90
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Fig. 8.13.3 Birefringent mirror with slightly different TM and TE reflection bands.
The MATLAB code used to compute the right graph was:

theta = linspace(0,90,361); % incident angles

Fle = [1; F2e = [1;
Fim = []; F2m = [];

% refinement iterations

for i=1:length(theta),
[fle,f2e] = omniband2(na,nH,nL,LH,LL,theta(i), te’,Ni);
[flm,f2m] = omniband2(na,nH,nL,LH,LL,theta(i), tm’,Ni);
Fle = [Fle,fle]; F2e = [F2e,f2e];
Flm = [Flm,f1m]; F2m = [F2m,f2m];
end

% frequency bandedges

lale = 1a0 ./ F2e; la2e = 1a0 ./ Fle;
Talm 1a0 ./ F2m; 1a2m = 1a0 ./ Fim;

% wavelength bandedges

plot(theta,lalm,’-’, theta,la2m,’-’, theta,lale,’--’, theta,la2e,’--");

As the incident angle increases, not only does the TM band widen but it also becomes wider
than the TE band—exactly the opposite behavior from the isotropic case. m]

Example 8.13.3: GBO Reflective Polarizer. By choosing biaxial high/low layers whose refractive

indices are mismatched only in the x or the y direction, one can design a mirror structure
that reflects only the TM or only the TE polarization.

Fig. 8.13.4 shows the reflectance of an 80-bilayer mirror with ny = [1.86,1.57,1.57] for
the left graph, and ny; = [1.57,1.86, 1.57] for the right one. In both graphs, the low index
material is the same, withn; = [1.57,1.57,1.57].

The angle of incidence was 6, = 0°. The typical MATLAB code was:
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| Tp(W) 12 (percent)

8. Multilayer Film Applications
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Fig. 8.13.4 TM and TE mirror polarizers.
LH = 0.25; LL = 0.25;

na = [1; 1; 1];

nb = [1; 1; 11;

nH = [1.86; 1.57; 1.57];
nL = [1.57; 1.57; 1.57];
1a0 = 700;

la = linspace(400,1000,601);

= 80;

[na, repmat([nH,nL], 1, N), nb];
[repmat([LH,LL], 1, ND1;

=L .* linspace(1,0.75,2%N);

rr S Z
I

% 25% thickness gradient

Ge = 100*abs(multidiel(n, L, T1a/Ta0, 0, 'te’)).A2;
Gm = 100*abs(multidiel(n, L, 1a/1a0, 0, "tm’)).A2;

plot(la,Gm,’-", 1a,Ge,’--");

A 25% thickness gradient was assumed in both cases. In the first case, the x-direction
indices are different and the structure will act as a mirror for the TM polarization. The TE
polarization will be reflected only by the air-high interface.

In the second case, the materials are matched in their y-direction indices and therefore,
the structure becomes a mirror for the TE polarization, assuming as always that the plane
of incidence is still the xz plane. |

Giant birefringent optics is a new paradigm in the design of multilayer mirrors and

polarizers [698], offering increased flexibility in the control of reflected light. The re-
cently manufactured multilayer optical film by 3M Corp. [1853] consists of hundreds to
thousands of birefringent polymer layers with individual thicknesses of the order of a
wavelength and total thickness of a sheet of paper. The optical working range of such
films are between 400-2500 nm.

Applications include the design of efficient waveguides for transporting visible light
over long distances and piping sunlight into interior rooms, reflective polarizers for



8.14. Problems 361

improving liquid crystal displays, and other products, such as various optoelectronic
components, cosmetics, and "hot” and ”“cold” mirrors for architectural and automotive
windows.

8.14 Problems

8.1 Prove the reflectance and transmittance formulas (8.4.6) in FTIR.
8.2 Computer Experiment—FTIR. Reproduce the results and graphs of Figures 8.4.3-8.4.5.

8.3 Computer Experiment—Surface Plasmon Resonance. Reproduce the results and graphs of
Figures 8.5.3-8.5.7.

8.4 Working with the electric and magnetic fields across an negative-index slab given by Egs. (8.6.1)

and (8.6.2), derive the reflection and transmission responses of the slab given in (8.6.8).

8.5 Computer Experiment—Perfect Lens. Study the sensitivity of the perfect lens property to the
deviations from the ideal values of € = —€p and y = — g, and to the presence of losses by
reproducing the results and graphs of Figures 8.6.3 and 8.6.4. You will need to implement
the computational algorithm listed on page 329.

8.6 Computer Experiment—Antireflection Coatings. Reproduce the results and graphs of Figures
8.7.1-8.7.3.

8.7 Computer Experiment—Omnidirectional Dielectric Mirrors. Reproduce the results and graphs
of Figures 8.8.2-8.8.10.

8.8 Derive the generalized Snel’s laws given in Eq. (8.10.10). Moreover, derive the Brewster angle
expressions given in Egs. (8.11.4) and (8.11.5).

8.9 Computer Experiment—Brewster angles. Study the variety of possible Brewster angles and
reproduce the results and graphs of Example 8.11.1.

8.10 Computer Experiment—Multilayer Birefringent Structures. Reproduce the results and graphs
of Figures 8.13.1-8.13.2.

9

Waveguides

Waveguides are used to transfer electromagnetic power efficiently from one point in
space to another. Some common guiding structures are shown in the figure below.
These include the typical coaxial cable, the two-wire and mictrostrip transmission lines,
hollow conducting waveguides, and optical fibers.

In practice, the choice of structure is dictated by: (a) the desired operating frequency
band, (b) the amount of power to be transferred, and (c) the amount of transmission
losses that can be tolerated.

y
X
z %
two-wire dielectric

m1crpstr1p rectangular waveguide
line waveguide

. . line
coaxial line

Fig. 9.0.1 Typical waveguiding structures.

Coaxial cables are widely used to connect RF components. Their operation is practi-
cal for frequencies below 3 GHz. Above that the losses are too excessive. For example,
the attenuation might be 3 dB per 100 m at 100 MHz, but 10 dB/100 m at 1 GHz, and
50 dB/100 m at 10 GHz. Their power rating is typically of the order of one kilowatt at
100 MHz, but only 200 W at 2 GHz, being limited primarily because of the heating of
the coaxial conductors and of the dielectric between the conductors (dielectric voltage
breakdown is usually a secondary factor.) However, special short-length coaxial cables
do exist that operate in the 40 GHz range.

Anotherissue is the single-mode operation of the line. At higher frequencies, in order
to prevent higher modes from being launched, the diameters of the coaxial conductors
must be reduced, diminishing the amount of power that can be transmitted.

Two-wire lines are not used at microwave frequencies because they are not shielded
and can radiate. One typical use is for connecting indoor antennas to TV sets. Microstrip
lines are used widely in microwave integrated circuits.



