
2
Uniform Plane Waves

2.1 Uniform Plane Waves in Lossless Media

The simplest electromagnetic waves are uniform plane waves propagating along some
fixed direction, say the z-direction, in a lossless medium {ε, μ}.

The assumption of uniformity means that the fields have no dependence on the
transverse coordinates x, y and are functions only of z, t. Thus, we look for solutions
of Maxwell’s equations of the form: E(x, y, z, t)= E(z, t) and H(x, y, z, t)= H(z, t).

Because there is no dependence on x, y, we set the partial derivatives† ∂x = 0 and
∂y = 0. Then, the gradient, divergence, and curl operations take the simplified forms:

∇∇∇ = ẑ
∂
∂z
, ∇∇∇ · E = ∂Ez

∂z
, ∇∇∇× E = ẑ× ∂E

∂z
= −x̂

∂Ey
∂z

+ ŷ
∂Ex
∂z

Assuming that D = εE and B = μH , the source-free Maxwell’s equations become:

∇∇∇× E = −μ ∂H

∂t

∇∇∇×H = ε ∂E

∂t

∇∇∇ · E = 0

∇∇∇ ·H = 0

⇒

ẑ× ∂E

∂z
= −μ ∂H

∂t

ẑ× ∂H

∂z
= ε ∂E

∂t
∂Ez
∂z

= 0

∂Hz
∂z

= 0

(2.1.1)

An immediate consequence of uniformity is that E and H do not have components
along the z-direction, that is, Ez = Hz = 0. Taking the dot-product of Ampère’s law
with the unit vector ẑ, and using the identity ẑ · (ẑ× A)= 0, we have:

ẑ ·
(

ẑ× ∂H

∂z

)
= ε ẑ · ∂E

∂t
= 0 ⇒ ∂Ez

∂t
= 0

†The shorthand notation ∂x stands for
∂
∂x

.
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Because also ∂zEz = 0, it follows that Ez must be a constant, independent of z, t.
Excluding static solutions, we may take this constant to be zero. Similarly, we have
Hz = 0. Thus, the fields have components only along the x, y directions:

E(z, t) = x̂Ex(z, t)+ŷEy(z, t)

H(z, t) = x̂Hx(z, t)+ŷHy(z, t)
(transverse fields) (2.1.2)

These fields must satisfy Faraday’s and Ampère’s laws in Eqs. (2.1.1). We rewrite
these equations in a more convenient form by replacing ε and μ by:

ε = 1

ηc
, μ = η

c
, where c = 1√με , η =

√
μ
ε

(2.1.3)

Thus, c, η are the speed of light and characteristic impedance of the propagation
medium. Then, the first two of Eqs. (2.1.1) may be written in the equivalent forms:

ẑ× ∂E

∂z
= −1

c
η
∂H

∂t

η ẑ× ∂H

∂z
= 1

c
∂E

∂t

(2.1.4)

The first may be solved for ∂zE by crossing it with ẑ. Using the BAC-CAB rule, and
noting that E has no z-component, we have:(

ẑ× ∂E

∂z

)
× ẑ = ∂E

∂z
(ẑ · ẑ)−ẑ

(
ẑ · ∂E

∂z

)
= ∂E

∂z
where we used ẑ · ∂zE = ∂zEz = 0 and ẑ · ẑ = 1. It follows that Eqs. (2.1.4) may be
replaced by the equivalent system:

∂E

∂z
= −1

c
∂
∂t
(ηH× ẑ)

∂
∂z
(ηH× ẑ)= −1

c
∂E

∂t

(2.1.5)

Now all the terms have the same dimension. Eqs. (2.1.5) imply that both E and H
satisfy the one-dimensional wave equation. Indeed, differentiating the first equation
with respect to z and using the second, we have:

∂2E

∂z2
= −1

c
∂
∂t

∂
∂z
(ηH× ẑ)= 1

c2

∂2E

∂t2
or,

(
∂2

∂z2
− 1

c2

∂2

∂t2

)
E(z, t)= 0 (wave equation) (2.1.6)

and similarly for H. Rather than solving the wave equation, we prefer to work directly
with the coupled system (2.1.5). The system can be decoupled by introducing the so-
called forward and backward electric fields defined as the linear combinations:

E+ = 1

2
(E+ ηH× ẑ)

E− = 1

2
(E− ηH× ẑ)

(forward and backward fields) (2.1.7)
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Component-wise, these are:

Ex± = 1

2
(Ex ± ηHy) , Ey± = 1

2
(Ey ∓ ηHx) (2.1.8)

We show next that E+(z, t) corresponds to a forward-moving wave, that is, moving
towards the positive z-direction, and E−(z, t), to a backward-moving wave. Eqs. (2.1.7)
can be inverted to express E,H in terms of E+,E−. Adding and subtracting them, and
using the BAC-CAB rule and the orthogonality conditions ẑ · E± = 0, we obtain:

E(z, t) = E+(z, t)+E−(z, t)

H(z, t) = 1

η
ẑ× [E+(z, t)−E−(z, t)

] (2.1.9)

In terms of the forward and backward fields E±, the system of Eqs. (2.1.5) decouples
into two separate equations:

∂E+
∂z

= −1

c
∂E+
∂t

∂E−
∂z

= +1

c
∂E−
∂t

(2.1.10)

Indeed, using Eqs. (2.1.5), we verify:

∂
∂z
(E± ηH× ẑ)= −1

c
∂
∂t
(ηH× ẑ)∓1

c
∂E

∂t
= ∓1

c
∂
∂t
(E± ηH× ẑ)

Eqs. (2.1.10) can be solved by noting that the forward field E+(z, t) must depend
on z, t only through the combination z − ct (for a proof, see Problem 2.1.) If we set
E+(z, t)= F(z − ct), where F(ζ) is an arbitrary function of its argument ζ = z − ct,
then we will have:

∂E+
∂z

= ∂
∂z

F(z− ct)= ∂ζ
∂z
∂F(ζ)
∂ζ

= ∂F(ζ)
∂ζ

∂E+
∂t

= ∂
∂t

F(z− ct)= ∂ζ
∂t
∂F(ζ)
∂ζ

= −c ∂F(ζ)
∂ζ

⇒ ∂E+
∂z

= −1

c
∂E+
∂t

Vectorially, F must have only x, y components, F = x̂Fx + ŷFy, that is, it must be
transverse to the propagation direction, ẑ · F = 0.

Similarly, we find from the second of Eqs. (2.1.10) that E−(z, t) must depend on z, t
through the combination z+ct, so that E−(z, t)= G(z+ct), where G(ξ) is an arbitrary
(transverse) function of ξ = z + ct. In conclusion, the most general solutions for the
forward and backward fields of Eqs. (2.1.10) are:

E+(z, t) = F(z− ct)
E−(z, t) = G(z+ ct)

(2.1.11)

with arbitrary functions F and G, such that ẑ · F = ẑ ·G = 0.
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Inserting these into the inverse formula (2.1.9), we obtain the most general solution
of (2.1.5), expressed as a linear combination of forward and backward waves:

E(z, t) = F(z− ct)+G(z+ ct)

H(z, t) = 1

η
ẑ× [F(z− ct)−G(z+ ct)] (2.1.12)

The term E+(z, t)= F(z − ct) represents a wave propagating with speed c in the
positive z-direction, while E−(z, t)= G(z+ct) represents a wave traveling in the negative
z-direction.

To see this, consider the forward field at a later time t+Δt. During the time interval
Δt, the wave moves in the positive z-direction by a distance Δz = cΔt. Indeed, we have:

E+(z, t +Δt) = F
(
z− c(t +Δt)) = F(z− cΔt − ct)

E+(z−Δz, t) = F
(
(z−Δz)−ct) = F(z− cΔt − ct)

⇒ E+(z, t+Δt)= E+(z−Δz, t)

This states that the forward field at time t + Δt is the same as the field at time t,
but translated to the right along the z-axis by a distance Δz = cΔt. Equivalently, the
field at location z+Δz at time t is the same as the field at location z at the earlier time
t −Δt = t −Δz/c, that is,

E+(z+Δz, t)= E+(z, t −Δt)

Similarly, we find that E−(z, t+Δt)= E−(z+Δz, t), which states that the backward
field at time t+Δt is the same as the field at time t, translated to the left by a distance
Δz. Fig. 2.1.1 depicts these two cases.

Fig. 2.1.1 Forward and backward waves.

The two special cases corresponding to forward waves only (G = 0), or to backward
ones (F = 0), are of particular interest. For the forward case, we have:

E(z, t) = F(z− ct)

H(z, t) = 1

η
ẑ× F(z− ct)= 1

η
ẑ× E(z, t)

(2.1.13)
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This solution has the following properties: (a) The field vectors E and H are perpen-
dicular to each other, E · H = 0, while they are transverse to the z-direction, (b) The
three vectors {E,H, ẑ} form a right-handed vector system as shown in the figure, in the
sense that E×H points in the direction of ẑ, (c) The ratio of E to H× ẑ is independent
of z, t and equals the characteristic impedance η of the propagation medium; indeed:

H(z, t)= 1

η
ẑ× E(z, t) ⇒ E(z, t)= ηH(z, t)×ẑ (2.1.14)

The electromagnetic energy of such forward wave flows in the positive z-direction.
With the help of the BAC-CAB rule, we find for the Poynting vector:

PPP = E×H = ẑ
1

η
|F |2 = c ẑ ε|F |2 (2.1.15)

where we denoted |F |2 = F·F and replaced 1/η = cε. The electric and magnetic energy
densities (per unit volume) turn out to be equal to each other. Because ẑ and F are
mutually orthogonal, we have for the cross product |ẑ× F | = |ẑ||F | = |F |. Then,

we = 1

2
ε |E |2 = 1

2
ε|F |2

wm = 1

2
μ |H |2 = 1

2
μ

1

η2
|ẑ× F |2 = 1

2
ε |F |2 = we

where we replaced μ/η2 = ε. Thus, the total energy density of the forward wave will be:

w = we +wm = 2we = ε|F |2 (2.1.16)

In accordance with the flux/density relationship of Eq. (1.6.2), the transport velocity
of the electromagnetic energy is found to be:

v = PPP
w
= c ẑ ε|F |2

ε|F |2 = c ẑ

As expected, the energy of the forward-moving wave is being transported at a speed
c along the positive z-direction. Similar results can be derived for the backward-moving
solution that has F = 0 and G �= 0. The fields are now:

E(z, t) = G(z+ ct)

H(z, t) = − 1

η
ẑ×G(z+ ct)= − 1

η
ẑ× E(z, t)

(2.1.17)

The Poynting vector becomes PPP = E × H = −c ẑ ε|G |2 and points in the negative
z-direction, that is, the propagation direction. The energy transport velocity is v = −c ẑ.
Now, the vectors {E,H,−ẑ} form a right-handed system, as shown. The ratio of E to H
is still equal to η, provided we replace ẑ with −ẑ:

H(z, t)= 1

η
(−ẑ)×E(z, t) ⇒ E(z, t)= ηH(z, t)×(−ẑ)
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In the general case of Eq. (2.1.12), the E/H ratio does not remain constant. The
Poynting vector and energy density consist of a part due to the forward wave and a part
due to the backward one:

PPP = E×H = c ẑ
(
ε|F |2 − ε|G |2)

w = 1

2
ε|E |2 + 1

2
μ|H |2 = ε|F |2 + ε|G |2

(2.1.18)

Example 2.1.1: A source located at z = 0 generates an electric field E(0, t)= x̂E0 u(t), where
u(t) is the unit-step function, and E0, a constant. The field is launched towards the positive
z-direction. Determine expressions for E(z, t) and H(z, t).

Solution: For a forward-moving wave, we have E(z, t)= F(z − ct)= F
(
0 − c(t − z/c)), which

implies that E(z, t) is completely determined by E(z,0), or alternatively, by E(0, t):

E(z, t)= E(z− ct,0)= E(0, t − z/c)

Using this property, we find for the electric and magnetic fields:

E(z, t) = E(0, t − z/c)= x̂E0 u(t − z/c)

H(z, t) = 1

η
ẑ× E(z, t)= ŷ

E0

η
u(t − z/c)

Because of the unit-step, the non-zero values of the fields are restricted to t− z/c ≥ 0, or,
z ≤ ct, that is, at time t the wavefront has propagated only up to position z = ct. The
figure shows the expanding wavefronts at time t and t +Δt. 	


Example 2.1.2: Consider the following three examples of electric fields specified at t = 0, and
describing forward or backward fields as indicated:

E(z,0)= x̂E0 cos(kz) (forward-moving)

E(z,0)= ŷE0 cos(kz) (backward-moving)

E(z,0)= x̂E1 cos(k1z)+ŷE2 cos(k2z) (forward-moving)

where k, k1, k2 are given wavenumbers (measured in units of radians/m.) Determine the
corresponding fields E(z, t) and H(z, t).

Solution: For the forward-moving cases, we replace z by z − ct, and for the backward-moving
case, by z+ ct. We find in the three cases:

E(z, t) = x̂E0 cos
(
k(z− ct)) = x̂E0 cos(ωt − kz)

E(z, t) = ŷE0 cos
(
k(z+ ct)) = ŷE0 cos(ωt + kz)

E(z, t) = x̂E1 cos(ω1t − k1z)+ŷE2 cos(ω2t − k2z)

where ω = kc, and ω1 = k1c, ω2 = k2c. The corresponding magnetic fields are:

H(z, t) = 1

η
ẑ× E(z, t)= ŷ

E0

η
cos(ωt − kz) (forward)

H(z, t) = − 1

η
ẑ× E(z, t)= x̂

E0

η
cos(ωt + kz) (backward)

H(z, t) = 1

η
ẑ× E(z, t)= ŷ

E1

η
cos(ω1t − k1z)−x̂

E2

η
cos(ω2t − k2z)
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The first two cases are single-frequency waves, and are discussed in more detail in the
next section. The third case is a linear superposition of two waves with two different
frequencies and polarizations. 	


2.2 Monochromatic Waves

Uniform, single-frequency, plane waves propagating in a lossless medium are obtained
as a special case of the previous section by assuming the harmonic time-dependence:

E(x, y, z, t) = E(z)ejωt

H(x, y, z, t) = H(z)ejωt
(2.2.1)

where E(z) and H(z) are transverse with respect to the z-direction.
Maxwell’s equations (2.1.5), or those of the decoupled system (2.1.10), may be solved

very easily by replacing time derivatives by ∂t → jω. Then, Eqs. (2.1.10) become the
first-order differential equations (see also Problem 2.3):

∂E±(z)
∂z

= ∓jkE±(z) , where k = ω
c
=ω√με (2.2.2)

with solutions:
E+(z) = E0+e−jkz (forward)

E−(z) = E0−ejkz (backward)
(2.2.3)

where E0± are arbitrary (complex-valued) constant vectors such that ẑ · E0± = 0. The
corresponding magnetic fields are:

H+(z) = 1

η
ẑ× E+(z)= 1

η
(ẑ× E0+)e−jkz = H0+e−jkz

H−(z) = − 1

η
ẑ× E−(z)= − 1

η
(ẑ× E0−)ejkz = H0−ejkz

(2.2.4)

where we defined the constant amplitudes of the magnetic fields:

H0± = ± 1

η
ẑ× E0± (2.2.5)

Inserting (2.2.3) into (2.1.9), we obtain the general solution for single-frequency
waves, expressed as a superposition of forward and backward components:

E(z) = E0+e−jkz + E0−ejkz

H(z) = 1

η
ẑ × [E0+e−jkz − E0−ejkz

] (forward+backward waves) (2.2.6)

Setting E0± = x̂A±+ŷB±, and noting that ẑ×E0± = ẑ×(x̂A±+ŷB±)= ŷA±−x̂B±,
we may rewrite (2.2.6) in terms of its cartesian components:

Ex(z)= A+e−jkz +A−ejkz , Ey(z)= B+e−jkz + B−ejkz

Hy(z)= 1

η
[
A+e−jkz −A−ejkz

]
, Hx(z)= − 1

η
[
B+e−jkz − B−ejkz

] (2.2.7)
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Wavefronts are defined, in general, to be the surfaces of constant phase. A forward
moving wave E(z)= E0e−jkz corresponds to the time-varying field:

E(z, t)= E0ejωt−jkz = E0e−jϕ(z,t) , where ϕ(z, t)= kz−ωt

A surface of constant phase is obtained by setting ϕ(z, t)= const. Denoting this
constant by φ0 = kz0 and using the property c =ω/k, we obtain the condition:

ϕ(z, t)=ϕ0 ⇒ kz−ωt = kz0 ⇒ z = ct + z0

Thus, the wavefront is the xy-plane intersecting the z-axis at the point z = ct + z0,
moving forward with velocity c. This justifies the term “plane wave.”

A backward-moving wave will have planar wavefronts parametrized by z = −ct+z0,
that is, moving backwards. A wave that is a linear combination of forward and backward
components, may be thought of as having two planar wavefronts, one moving forward,
and the other backward.

The relationships (2.2.5) imply that the vectors {E0+,H0+, ẑ} and {E0−,H0−,−ẑ} will
form right-handed orthogonal systems. The magnetic field H0± is perpendicular to the
electric field E0± and the cross-product E0± ×H0± points towards the direction of prop-
agation, that is, ±ẑ. Fig. 2.2.1 depicts the case of a forward propagating wave.

Fig. 2.2.1 Forward uniform plane wave.

The wavelength λ is the distance by which the phase of the sinusoidal wave changes
by 2π radians. Since the propagation factor e−jkz accumulates a phase of k radians per
meter, we have by definition that kλ = 2π. The wavelength λ can be expressed via the
frequency of the wave in Hertz, f =ω/2π, as follows:

λ = 2π
k
= 2πc

ω
= c
f

(2.2.8)

If the propagation medium is free space, we use the vacuum values of the parame-
ters {ε, μ, c, η}, that is, {ε0, μ0, c0, η0}. The free-space wavelength and corresponding
wavenumber are:

λ0 = 2π
k0

= c0

f
, k0 = ω

c0
(2.2.9)

In a lossless but non-magnetic (μ = μ0) dielectric with refractive index n = √
ε/ε0,

the speed of light c, wavelength λ, and characteristic impedance η are all reduced by a
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scale factorn compared to the free-space values, whereas the wavenumber k is increased
by a factor of n. Indeed, using the definitions c = 1/√μ0ε and η = √μ0/ε, we have:

c = c0

n
, η = η0

n
, λ = λ0

n
, k = nk0 (2.2.10)

Example 2.2.1: A microwave transmitter operating at the carrier frequency of 6 GHz is pro-
tected by a Plexiglas radome whose permittivity is ε = 3ε0.

The refractive index of the radome is n = √ε/ε0 =
√

3 = 1.73. The free-space wavelength
and the wavelength inside the radome material are:

λ0 = c0

f
= 3× 108

6× 109
= 0.05 m = 5 cm, λ = λ0

n
= 5

1.73
= 2.9 cm

We will see later that if the radome is to be transparent to the wave, its thickness must be
chosen to be equal to one-half wavelength, l = λ/2. Thus, l = 2.9/2 = 1.45 cm. 	


Example 2.2.2: The nominal speed of light in vacuum is c0 = 3×108 m/s. Because of the rela-
tionship c0 = λf , it may be expressed in the following suggestive units that are appropriate
in different application contexts:

c0 = 5000 km × 60 Hz (power systems)
300 m × 1 MHz (AM radio)

40 m × 7.5 MHz (amateur radio)
3 m × 100 MHz (FM radio, TV)

30 cm × 1 GHz (cell phones)
10 cm × 3 GHz (waveguides, radar)

3 cm × 10 GHz (radar, satellites)
0.3 mm × 1 THz (biotech, security, spectroscopy)
1.5 μm × 200 THz (optical fibers, THz applications)
500 nm × 600 THz (visible spectrum)

100 nm × 3000 THz (UV)

Similarly, in terms of length/time of propagation:

c0 = 36 000 km/120 msec (geosynchronous satellites)
300 km/msec (power lines)
300 m/μsec (transmission lines)
30 cm/nsec (circuit boards)
300 μm/psec (nanocircuits)

The typical half-wave monopole antenna (half of a half-wave dipole over a ground plane)
has length λ/4 and is used in many applications, such as AM, FM, and cell phones. Thus,
one can predict that the lengths of AM radio, FM radio, and cell phone antennas will be of
the order of 75 m, 0.75 m, and 7.5 cm, respectively.

A more detailed list of electromagnetic frequency bands is given in Appendix B. The precise
value of c0 and the values of other physical constants are given in Appendix A. 	


Wave propagation effects become important, and cannot be ignored, whenever the
physical length of propagation is comparable to the wavelength λ. It follows from
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Eqs. (2.2.2) that the incremental change of a forward-moving electric field in propagating
from z to z+Δz is: |ΔE+|

|E+| = kΔz = 2π
Δz
λ

(2.2.11)

Thus, the change in the electric field can be ignored only if Δz� λ, otherwise, propa-
gation effects must be taken into account.

For example, for an integrated circuit operating at 10 GHz, we have λ = 3 cm, which
is comparable to the physical dimensions of the circuit.

Similarly, a cellular base station antenna is connected to the transmitter circuits by
several meters of coaxial cable. For a 1-GHz system, the wavelength is 0.3 m, which
implies that a 30-meter cable will be equivalent to 100 wavelengths.

2.3 Energy Density and Flux

The time-averaged energy density and flux of a uniform plane wave can be determined
by Eq. (1.9.6). As in the previous section, the energy is shared equally by the electric
and magnetic fields (in the forward or backward cases.) This is a general result for most
wave propagation and waveguide problems.

The energy flux will be in the direction of propagation. For either a forward- or a
backward-moving wave, we have from Eqs. (1.9.6) and (2.2.5):

we = 1

2
Re
[

1

2
εE±(z)·E∗± (z)

]
= 1

2
Re
[

1

2
εE0±e−jkz · E∗0±ejkz

]
= 1

4
ε|E0±|2

wm = 1

2
Re
[

1

2
μH±(z)·H∗± (z)

]
= 1

4
μ|H0±|2 = 1

4
μ

1

η2
|ẑ× E0±|2 = 1

4
ε|E0±|2 = we

Thus, the electric and magnetic energy densities are equal and the total density is:

w = we +wm = 2we = 1

2
ε|E0±|2 (2.3.1)

For the time-averaged Poynting vector, we have similarly:

PPP = 1

2
Re
[

E±(z)×H∗± (z)
] = 1

2η
Re
[

E0± × (±ẑ× E∗0±)
]

Using the BAC-CAB rule and the orthogonality property ẑ · E0± = 0, we find:

PPP = ±ẑ
1

2η
|E0±|2 = ±c ẑ

1

2
ε|E0±|2 (2.3.2)

Thus, the energy flux is in the direction of propagation, that is, ±ẑ. The correspond-
ing energy velocity is, as in the previous section:

v = PPP
w
= ±c ẑ (2.3.3)

In the more general case of forward and backward waves, we find:

w = 1

4
Re
[
εE(z)·E∗(z)+μH(z)·H∗(z)

] = 1

2
ε|E0+|2 + 1

2
ε|E0−|2

PPP = 1

2
Re
[
E(z)×H∗(z)

] = ẑ

(
1

2η
|E0+|2 − 1

2η
|E0−|2

) (2.3.4)
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Thus, the total energy is the sum of the energies of the forward and backward com-
ponents, whereas the net energy flux (to the right) is the difference between the forward
and backward fluxes.

2.4 Wave Impedance

For forward or backward fields, the ratio of E(z) to H(z)×ẑ is constant and equal to
the characteristic impedance of the medium. Indeed, it follows from Eq. (2.2.4) that

E±(z)= ±ηH±(z)×ẑ

However, this property is not true for the more general solution given by Eqs. (2.2.6).
In general, the ratio of E(z) to H(z)×ẑ is called the wave impedance. Because of the
vectorial character of the fields, we must define the ratio in terms of the corresponding
x- and y-components:

Zx(z) =
[
E(z)

]
x[

H(z)×ẑ
]
x
= Ex(z)
Hy(z)

Zy(z) =
[
E(z)

]
y[

H(z)×ẑ
]
y
= − Ey(z)

Hx(z)

(wave impedances) (2.4.1)

Using the cartesian expressions of Eq. (2.2.7), we find:

Zx(z) = Ex(z)
Hy(z)

= η A+e
−jkz +A−ejkz

A+e−jkz −A−ejkz

Zy(z) = − Ey(z)Hx(z)
= η B+e

−jkz + B−ejkz
B+e−jkz − B−ejkz

(wave impedances) (2.4.2)

Thus, the wave impedances are nontrivial functions of z. For forward waves (that is,
with A− = B− = 0), we have Zx(z)= Zy(z)= η. For backward waves (A+ = B+ = 0), we
have Zx(z)= Zy(z)= −η.

The wave impedance is a very useful concept in the subject of multiple dielectric
interfaces and the matching of transmission lines. We will explore its use later on.

2.5 Polarization

Consider a forward-moving wave and let E0 = x̂A+ + ŷB+ be its complex-valued pha-
sor amplitude, so that E(z)= E0e−jkz = (x̂A+ + ŷB+)e−jkz. The time-varying field is
obtained by restoring the factor ejωt:

E(z, t)= (x̂A+ + ŷB+)ejωt−jkz

The polarization of a plane wave is defined to be the direction of the electric field.
For example, if B+ = 0, the E-field is along the x-direction and the wave will be linearly
polarized.
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More precisely, polarization is the direction of the time-varying real-valued field
EEE(z, t)= Re

[
E(z, t)]. At any fixed point z, the vector EEE(z, t) may be along a fixed

linear direction or it may be rotating as a function of t, tracing a circle or an ellipse.
The polarization properties of the plane wave are determined by the relative magni-

tudes and phases of the complex-valued constants A+, B+. Writing them in their polar
forms A+ = Aejφa and B+ = Bejφb , where A,B are positive magnitudes, we obtain:

E(z, t)= (x̂Aejφa + ŷBejφb
)
ejωt−jkz = x̂Aej(ωt−kz+φa) + ŷBej(ωt−kz+φb) (2.5.1)

Extracting real parts and setting EEE(z, t)= Re
[
E(z, t)

] = x̂Ex(z, t)+ŷEy(z, t), we
find the corresponding real-valued x, y components:

Ex(z, t) = A cos(ωt − kz+φa)
Ey(z, t) = B cos(ωt − kz+φb)

(2.5.2)

For a backward moving field, we replace k by −k in the same expression. To deter-
mine the polarization of the wave, we consider the time-dependence of these fields at
some fixed point along the z-axis, say at z = 0:

Ex(t) = A cos(ωt +φa)
Ey(t) = B cos(ωt +φb)

(2.5.3)

The electric field vector EEE(t)= x̂Ex(t)+ŷEy(t) will be rotating on the xy-plane
with angular frequency ω, with its tip tracing, in general, an ellipse. To see this, we
expand Eq. (2.5.3) using a trigonometric identity:

Ex(t) = A
[
cosωt cosφa − sinωt sinφa

]
Ey(t) = B

[
cosωt cosφb − sinωt sinφb

]
Solving for cosωt and sinωt in terms of Ex(t),Ey(t), we find:

cosωt sinφ = Ey(t)
B

sinφa − Ex(t)A
sinφb

sinωt sinφ = Ey(t)
B

cosφa − Ex(t)A
cosφb

where we defined the relative phase angle φ = φa −φb.
Forming the sum of the squares of the two equations and using the trigonometric

identity sin2ωt + cos2ωt = 1, we obtain a quadratic equation for the components Ex
and Ey, which describes an ellipse on the Ex,Ey plane:

(Ey(t)
B

sinφa − Ex(t)A
sinφb

)2

+
(Ey(t)

B
cosφa − Ex(t)A

cosφb
)2

= sin2φ

This simplifies into:

E2
x

A2
+ E

2
y

B2
− 2 cosφ

ExEy
AB

= sin2φ (polarization ellipse) (2.5.4)



2.5. Polarization 49

Depending on the values of the three quantities {A,B,φ} this polarization ellipse
may be an ellipse, a circle, or a straight line. The electric field is accordingly called
elliptically, circularly, or linearly polarized.

To get linear polarization, we set φ = 0 or φ = π, corresponding to φa = φb = 0,
orφa = 0,φb = −π, so that the phasor amplitudes are E0 = x̂A± ŷB. Then, Eq. (2.5.4)
degenerates into:

E2
x

A2
+ E

2
y

B2
∓ 2

ExEy
AB

= 0 ⇒
(Ex
A

∓ Ey
B

)2

= 0

representing the straight lines:

Ey = ±BA Ex

The fields (2.5.2) take the forms, in the two cases φ = 0 and φ = π:

Ex(t)= A cosωt
Ey(t)= B cosωt and

Ex(t)= A cosωt
Ey(t)= B cos(ωt −π)= −B cosωt

To get circular polarization, we set A = B and φ = ±π/2. In this case, the polariza-
tion ellipse becomes the equation of a circle:

E2
x

A2
+ E

2
y

A2
= 1

The sense of rotation, in conjunction with the direction of propagation, defines left-
circular versus right-circular polarization. For the case, φa = 0 and φb = −π/2, we
have φ = φa −φb = π/2 and complex amplitude E0 = A(x̂− jŷ). Then,

Ex(t) = A cosωt

Ey(t) = A cos(ωt −π/2)= A sinωt

Thus, the tip of the electric field vector rotates counterclockwise on the xy-plane.
To decide whether this represents right or left circular polarization, we use the IEEE
convention [115], which is as follows.

Curl the fingers of your left and right hands into a fist and point both thumbs towards
the direction of propagation. If the fingers of your right (left) hand are curling in the
direction of rotation of the electric field, then the polarization is right (left) polarized.†

Thus, in the present example, because we had a forward-moving field and the field is
turning counterclockwise, the polarization will be right-circular. If the field were moving

†Most engineering texts use the IEEE convention and most physics texts, the opposite convention.
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backwards, then it would be left-circular. For the case, φ = −π/2, arising from φa = 0
andφb = π/2, we have complex amplitude E0 = A(x̂+ jŷ). Then, Eq. (2.5.3) becomes:

Ex(t) = A cosωt

Ey(t) = A cos(ωt +π/2)= −A sinωt

The tip of the electric field vector rotates clockwise on the xy-plane. Since the wave
is moving forward, this will represent left-circular polarization. Fig. 2.5.1 depicts the
four cases of left/right polarization with forward/backward waves.

Fig. 2.5.1 Left and right circular polarizations.

To summarize, the electric field of a circularly polarized uniform plane wave will be,
in its phasor form:

E(z)= A(x̂− jŷ)e−jkz (right-polarized, forward-moving)

E(z)= A(x̂+ jŷ)e−jkz (left-polarized, forward-moving)

E(z)= A(x̂− jŷ)ejkz (left-polarized, backward-moving)

E(z)= A(x̂+ jŷ)ejkz (right-polarized, backward-moving)

If A �= B, but the phase difference is still φ = ±π/2, we get an ellipse with major
and minor axes oriented along the x, y directions. Eq. (2.5.4) will be now:

E2
x

A2
+ E

2
y

B2
= 1
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Finally, if A �= B and φ is arbitrary, then the major/minor axes of the ellipse (2.5.4)
will be rotated relative to the x, y directions. Fig. 2.5.2 illustrates the general case.

Fig. 2.5.2 General polarization ellipse.

It can be shown (see Problem 2.15) that the tilt angle θ is given by:

tan 2θ = 2AB
A2 − B2

cosφ (2.5.5)

The ellipse semi-axes A′, B′, that is, the lengths OC and OD, are given by:

A′ =
√

1

2
(A2 + B2)+ s

2

√
(A2 − B2)2+4A2B2 cos2φ

B′ =
√

1

2
(A2 + B2)− s

2

√
(A2 − B2)2+4A2B2 cos2φ

(2.5.6)

where s = sign(A − B). These results are obtained by defining the rotated coordinate
system of the ellipse axes:

E′x = Ex cosθ+Ey sinθ

E′y = Ey cosθ−Ex sinθ
(2.5.7)

and showing that Eq. (2.5.4) transforms into the standardized form:

E′2x
A′2

+ E
′2
y

B′2
= 1 (2.5.8)

The polarization ellipse is bounded by the rectangle with sides at the end-points
±A,±B, as shown in the figure. To decide whether the elliptic polarization is left- or
right-handed, we may use the same rules depicted in Fig. 2.5.1.

The angle χ subtended by the major to minor ellipse axes shown in Fig. 2.5.2 is given
as follows and is discussed further in Problem 2.15:

sin 2χ = 2AB
A2 + B2

| sinφ| , −π
4
≤ χ ≤ π

4
(2.5.9)

that is, it can be shown that tanχ = B′/A′ or A′/B′, whichever is less than one.
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Example 2.5.1: Determine the real-valued electric and magnetic field components and the po-
larization of the following fields specified in their phasor form (given in units of V/m):

a. E(z)= −3j x̂e−jkz

b. E(z)= (3 x̂+ 4 ŷ
)
e+jkz

c. E(z)= (−4 x̂+ 3 ŷ
)
e−jkz

d. E(z)= (3ejπ/3 x̂+ 3 ŷ
)
e+jkz

e. E(z)= (4 x̂+ 3e−jπ/4 ŷ
)
e−jkz

f. E(z)= (3e−jπ/8 x̂+ 4ejπ/8 ŷ
)
e+jkz

g. E(z)= (4ejπ/4 x̂+ 3e−jπ/2 ŷ
)
e−jkz

h. E(z)= (3e−jπ/2 x̂+ 4ejπ/4 ŷ
)
e+jkz

Solution: Restoring the ejωt factor and taking real-parts, we find the x, y electric field compo-
nents, according to Eq. (2.5.2):

a. Ex(z, t)= 3 cos(ωt − kz−π/2), Ey(z, t)= 0

b. Ex(z, t)= 3 cos(ωt + kz), Ey(z, t)= 4 cos(ωt + kz)
c. Ex(z, t)= 4 cos(ωt − kz+π), Ey(z, t)= 3 cos(ωt − kz)
d. Ex(z, t)= 3 cos(ωt + kz+π/3), Ey(z, t)= 3 cos(ωt + kz)
e. Ex(z, t)= 4 cos(ωt − kz), Ey(z, t)= 3 cos(ωt − kz−π/4)
f. Ex(z, t)= 3 cos(ωt + kz−π/8), Ey(z, t)= 4 cos(ωt + kz+π/8)
g. Ex(z, t)= 4 cos(ωt − kz+π/4), Ey(z, t)= 3 cos(ωt − kz−π/2)
h. Ex(z, t)= 3 cos(ωt + kz−π/2), Ey(z, t)= 4 cos(ωt + kz+π/4)

Since these are either forward or backward waves, the corresponding magnetic fields are
obtained by using the formulaHHH(z, t)= ± ẑ×EEE(z, t)/η. This gives the x, y components:

(cases a, c, e, g): Hx(z, t)= − 1

η
Ey(z, t), Hy(z, t)= 1

η
Ex(z, t)

(cases b, d, f, h): Hx(z, t)= 1

η
Ey(z, t), Hy(z, t)= − 1

η
Ex(z, t)

To determine the polarization vectors, we evaluate the electric fields at z = 0:

a. Ex(t)= 3 cos(ωt −π/2), Ey(t)= 0

b. Ex(t)= 3 cos(ωt), Ey(t)= 4 cos(ωt)
c. Ex(t)= 4 cos(ωt +π), Ey(t)= 3 cos(ωt)
d. Ex(t)= 3 cos(ωt +π/3), Ey(t)= 3 cos(ωt)
e. Ex(t)= 4 cos(ωt), Ey(t)= 3 cos(ωt −π/4)
f. Ex(t)= 3 cos(ωt −π/8), Ey(t)= 4 cos(ωt +π/8)
g. Ex(t)= 4 cos(ωt +π/4), Ey(t)= 3 cos(ωt −π/2)
h. Ex(t)= 3 cos(ωt −π/2), Ey(t)= 4 cos(ωt +π/4)

The polarization ellipse parameters A, B, and φ = φa − φb, as well as the computed
semi-major axes A′, B′, tilt angle θ, sense of rotation of the electric field, and polarization
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type are given below:

case A B φ A′ B′ θ rotation polarization

a. 3 0 −90o 3 0 0o → linear/forward

b. 3 4 0o 0 5 −36.87o ↗ linear/backward

c. 4 3 180o 5 0 −36.87o ↖ linear/forward

d. 3 3 60o 3.674 2.121 45o � left/backward

e. 4 3 45o 4.656 1.822 33.79o � right/forward

f. 3 4 −45o 1.822 4.656 −33.79o � right/backward

g. 4 3 135o 4.656 1.822 −33.79o � right/forward

h. 3 4 −135o 1.822 4.656 33.79o � right/backward

In the linear case (b), the polarization ellipse collapses along its A′-axis (A′ = 0) and
becomes a straight line along its B′-axis. The tilt angle θ still measures the angle of theA′-
axis from the x-axis. The actual direction of the electric field will be 90o−36.87o = 53.13o,
which is equal to the slope angle, atan(B/A)= atan(4/3)= 53.13o.

In case (c), the ellipse collapses along its B′-axis. Therefore, θ coincides with the angle of
the slope of the electric field vector, that is, atan(−B/A)= atan(−3/4)= −36.87o. 	


With the understanding that θ always represents the slope of the A′-axis (whether
collapsed or not, major or minor), Eqs. (2.5.5) and (2.5.6) correctly calculate all the special
cases, except when A = B, which has tilt angle and semi-axes:

θ = 45o , A′ = A
√

1+ cosφ, B′ = A
√

1− cosφ (2.5.10)

The MATLAB function ellipse.m calculates the ellipse semi-axes and tilt angle, A′,
B′, θ, given the parameters A, B, φ. It has usage:

[a,b,th] = ellipse(A,B,phi) % polarization ellipse parameters

For example, the function will return the values of the A′, B′, θ columns of the pre-
vious example, if it is called with the inputs:

A = [3, 3, 4, 3, 4, 3, 4, 3]’;
B = [0, 4, 3, 3, 3, 4, 3, 4]’;
phi = [-90, 0, 180, 60, 45, -45, 135, -135]’;

To determine quickly the sense of rotation around the polarization ellipse, we use
the rule that the rotation will be counterclockwise if the phase difference φ = φa −φb
is such that sinφ > 0, and clockwise, if sinφ < 0. This can be seen by considering the
electric field at time t = 0 and at a neighboring time t. Using Eq. (2.5.3), we have:

EEE(0) = x̂A cosφa + ŷB cosφb

EEE(t) = x̂A cos(ωt +φa)+ŷB cos(ωt +φb)

The sense of rotation may be determined from the cross-product EEE(0)×EEE(t). If
the rotation is counterclockwise, this vector will point towards the positive z-direction,
and otherwise, it will point towards the negative z-direction. It follows easily that:

EEE(0)×EEE(t)= ẑAB sinφ sinωt (2.5.11)
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Thus, for t small and positive (such that sinωt > 0), the direction of the vector
EEE(0)×EEE(t) is determined by the sign of sinφ.

2.6 Uniform Plane Waves in Lossy Media

We saw in Sec. 1.14 that power losses may arise because of conduction and/or material
polarization. A wave propagating in a lossy medium will set up a conduction current
Jcond = σE and a displacement (polarization) current Jdisp = jωD = jωεdE . Both
currents will cause ohmic losses. The total current is the sum:

Jtot = Jcond + Jdisp = (σ + jωεd)E = jωεcE

where εc is the effective complex dielectric constant introduced in Eq. (1.14.2):

jωεc = σ + jωεd ⇒ εc = εd − j σω (2.6.1)

The quantitiesσ, εd may be complex-valued and frequency-dependent. However, we
will assume that over the desired frequency band of interest, the conductivity σ is real-
valued; the permittivity of the dielectric may be assumed to be complex, εd = ε′d − jε′′d .
Thus, the effective εc has real and imaginary parts:

εc = ε′ − jε′′ = ε′d − j
(
ε′′d +

σ
ω

)
(2.6.2)

Power losses arise from the non-zero imaginary part ε′′. We recall from Eq. (1.14.5)
that the time-averaged ohmic power losses per unit volume are given by:

dPloss

dV
= 1

2
Re
[
Jtot · E∗

] = 1

2
ωε′′

∣∣E
∣∣2 = 1

2
(σ +ωε′′d )

∣∣E
∣∣2

(2.6.3)

Uniform plane waves propagating in such lossy medium will satisfy Maxwell’s equa-
tions (1.9.2), with the right-hand side of Ampère’s law given by Jtot = J+ jωD = jωεcE .

The assumption of uniformity (∂x = ∂y = 0), will imply again that the fields E,H are
transverse to the direction ẑ. Then, Faraday’s and Ampère’s equations become:

∇∇∇× E = −jωμH

∇∇∇×H = jωεcE
⇒

ẑ× ∂zE = −jωμH

ẑ× ∂zH = jωεcE
(2.6.4)

These may be written in a more convenient form by introducing the complex wave-
number kc and complex characteristic impedance ηc defined by:

kc =ω
√
μεc , ηc =

√
μ
εc

(2.6.5)

They correspond to the usual definitions k = ω/c = ω
√
με and η = √

μ/ε with
the replacement ε → εc. Noting that ωμ = kcηc and ωεc = kc/ηc, Eqs. (2.6.4) may
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be written in the following form (using the orthogonality property ẑ · E = 0 and the
BAC-CAB rule on the first equation):

∂
∂z

[
E

ηcH× ẑ

]
=
[

0 −jkc
−jkc 0

][
E

ηcH× ẑ

]
(2.6.6)

To decouple them, we introduce the forward and backward electric fields:

E+ = 1

2

(
E+ ηcH× ẑ)

�
E = E+ + E−

E− = 1

2

(
E− ηcH× ẑ) H = 1

ηc
ẑ× [E+ − E−

] (2.6.7)

Then, Eqs. (2.6.6) may be replaced by the equivalent system:

∂
∂z

[
E+
E−

]
=
[
−jkc 0

0 jkc

][
E+
E−

]
(2.6.8)

with solutions:
E±(z)= E0±e∓jkcz , where ẑ · E0± = 0 (2.6.9)

Thus, the propagating electric and magnetic fields are linear combinations of forward
and backward components:

E(z) = E0+e−jkcz + E0−ejkcz

H(z) = 1

ηc
ẑ× [E0+e−jkcz − E0−ejkcz

] (2.6.10)

In particular, for a forward-moving wave we have:

E(z)= E0e−jkcz , H(z)= H0e−jkcz , with ẑ · E0 = 0 , H0 = 1

ηc
ẑ× E0 (2.6.11)

Eqs. (2.6.10) are the same as in the lossless case but with the replacements k → kc
and η→ ηc. The lossless case is obtained in the limit of a purely real-valued εc.

Because kc is complex-valued, we define the phase and attenuation constants β and
α as the real and imaginary parts of kc, that is,

kc = β− jα =ω
√
μ(ε′ − jε′′) (2.6.12)

We may also define a complex refractive index nc = kc/k0 that measures kc relative
to its free-space value k0 =ω/c0 =ω√μ0ε0. For a non-magnetic medium, we have:

nc = kc
k0
=
√
εc
ε0
=
√
ε′ − jε′′
ε0

≡ nr − jni (2.6.13)

where nr, ni are the real and imaginary parts of nc. The quantity ni is called the ex-
tinction coefficient and nr , the refractive index. Another commonly used notation is the
propagation constant γ defined by:

γ = jkc = α+ jβ (2.6.14)
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It follows from γ = α + jβ = jkc = jk0nc = jk0(nr − jni) that β = k0nr and
α = k0ni. The nomenclature about phase and attenuation constants has its origins in
the propagation factor e−jkcz. We can write it in the alternative forms:

e−jkcz = e−γz = e−αze−jβz = e−k0nize−jk0nrz (2.6.15)

Thus, the wave amplitudes attenuate exponentially with the factor e−αz, and oscillate
with the phase factor e−jβz. The energy of the wave attenuates by the factor e−2αz, as
can be seen by computing the Poynting vector. Because e−jkcz is no longer a pure phase
factor and ηc is not real, we have for the forward-moving wave of Eq. (2.6.11):

PPP(z) = 1

2
Re
[

E(z)×H∗(z)
] = 1

2
Re

[
1

η∗c
E0 × (ẑ× E∗0 )e−(α+jβ)ze−(α−jβ)z

]

= ẑ
1

2
Re
(
η−1
c
) |E0|2e−2αz = ẑP(0)e−2αz = ẑP(z)

Thus, the power per unit area flowing past the point z in the forward z-direction will be:

P(z)= P(0)e−2αz (2.6.16)

The quantityP(0) is the power per unit area flowing past the point z = 0. Denoting
the real and imaginary parts of ηc by η′, η′′, so that, ηc = η′ + jη′′, and noting that
|E0| = |ηcH0 × ẑ| = |ηc||H0|, we may express P(0) in the equivalent forms:

P(0)= 1

2
Re
(
η−1
c
) |E0|2 = 1

2
η′ |H0|2 (2.6.17)

The attenuation coefficient α is measured in nepers per meter. However, a more
practical way of expressing the power attenuation is in dB per meter. Taking logs of
Eq. (2.6.16), we have for the dB attenuation at z, relative to z = 0:

AdB(z)= −10 log10

[P(z)
P(0)

]
= 20 log10(e)αz = 8.686αz (2.6.18)

where we used the numerical value 20 log10 e = 8.686. Thus, the quantityαdB = 8.686α
is the attenuation in dB per meter :

αdB = 8.686α (dB/m) (2.6.19)

Another way of expressing the power attenuation is by means of the so-called pen-
etration or skin depth defined as the inverse of α:

δ = 1

α
(skin depth) (2.6.20)

Then, Eq. (2.6.18) can be rewritten in the form:

AdB(z)= 8.686
z
δ

(attenuation in dB) (2.6.21)
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This gives rise to the so-called “9-dB per delta” rule, that is, every time z is increased
by a distance δ, the attenuation increases by 8.686 � 9 dB.

A useful way to represent Eq. (2.6.16) in practice is to consider its infinitesimal ver-
sion obtained by differentiating it with respect to z and solving for α :

P′(z)= −2αP(0)e−2αz = −2αP(z) ⇒ α = −P
′(z)

2P(z)
The quantity P′

loss = −P′ represents the power lost from the wave per unit length
(in the propagation direction.) Thus, the attenuation coefficient is the ratio of the power
loss per unit length to twice the power transmitted:

α = P′loss

2Ptransm
(attenuation coefficient) (2.6.22)

If there are several physical mechanisms for the power loss, then α becomes the
sum over all possible cases. For example, in a waveguide or a coaxial cable filled with a
slightly lossy dielectric, power will be lost because of the small conduction/polarization
currents set up within the dielectric and also because of the ohmic losses in the walls
of the guiding conductors, so that the total α will be α = αdiel +αwalls.

Next, we verify that the exponential loss of power from the propagating wave is due
to ohmic heat losses. In Fig. 2.6.1, we consider a volume dV = l dA of area dA and
length l along the z-direction.

Fig. 2.6.1 Power flow in lossy dielectric.

From the definition of P(z) as power flow per unit area, it follows that the power
entering the area dA at z = 0 will be dPin = P(0)dA, and the power leaving that area
at z = l, dPout = P(l)dA. The difference dPloss = dPin−dPout =

[P(0)−P(l)]dA will
be the power lost from the wave within the volume l dA. Because P(l)= P(0)e−2αl, we
have for the power loss per unit area:

dPloss

dA
= P(0)−P(l)= P(0)(1− e−2αl) = 1

2
Re
(
η−1
c
) |E0|2

(
1− e−2αl) (2.6.23)
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On the other hand, according to Eq. (2.6.3), the ohmic power loss per unit volume
will be ωε′′|E(z)|2/2. Integrating this quantity from z = 0 to z = l will give the total
ohmic losses within the volume l dA of Fig. 2.6.1. Thus, we have:

dPohmic = 1

2
ωε′′

∫ l
0
|E(z)|2 dzdA = 1

2
ωε′′

[∫ l
0
|E0|2e−2αz dz

]
dA , or,

dPohmic

dA
= ωε′′

4α
|E0|2

(
1− e−2αl) (2.6.24)

Are the two expressions in Eqs. (2.6.23) and (2.6.24) equal? The answer is yes, as
follows from the following relationship among the quantities ηc, ε′′,α (see Problem
2.17):

Re
(
η−1
c
) = ωε′′

2α
(2.6.25)

Thus, the power lost from the wave is entirely accounted for by the ohmic losses
within the propagation medium. The equality of (2.6.23) and (2.6.24) is an example of
the more general relationship proved in Problem 1.5.

In the limit l→∞, we have P(l)→ 0, so that dPohmic/dA = P(0), which states that
all the power that enters at z = 0 will be dissipated into heat inside the semi-infinite
medium. Using Eq. (2.6.17), we summarize this case:

dPohmic

dA
= 1

2
Re
(
η−1
c
) |E0|2 = 1

2
η′ |H0|2 (ohmic losses) (2.6.26)

This result will be used later on to calculate ohmic losses of waves incident on lossy
dielectric or conductor surfaces, as well as conductor losses in waveguide and transmis-
sion line problems.

Example 2.6.1: The absorption coefficient α of water reaches a minimum over the visible
spectrum—a fact undoubtedly responsible for why the visible spectrum is visible.

Recent measurements [145] of the absorption coefficient show that it starts at about 0.01
nepers/m at 380 nm (violet), decreases to a minimum value of 0.0044 nepers/m at 418
nm (blue), and then increases steadily reaching the value of 0.5 nepers/m at 600 nm (red).
Determine the penetration depth δ in meters, for each of the three wavelengths.

Determine the depth in meters at which the light intensity has decreased to 1/10th its
value at the surface of the water. Repeat, if the intensity is decreased to 1/100th its value.

Solution: The penetration depths δ = 1/α are:

δ = 100, 227.3, 2 m for α = 0.01, 0.0044, 0.5 nepers/m

Using Eq. (2.6.21), we may solve for the depth z = (A/8.686)δ. Since a decrease of the light
intensity (power) by a factor of 10 is equivalent to A = 10 dB, we find z = (10/8.686)δ =
1.128δ, which gives: z = 112.8, 256.3, 2.3 m. A decrease by a factor of 100 = 1020/10

corresponds to A = 20 dB, effectively doubling the above depths. 	
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Example 2.6.2: A microwave oven operating at 2.45 GHz is used to defrost a frozen food having
complex permittivity εc = (4− j)ε0 farad/m. Determine the strength of the electric field
at a depth of 1 cm and express it in dB and as a percentage of its value at the surface.
Repeat if εc = (45− 15j)ε0 farad/m.

Solution: The free-space wavenumber is k0 =ω√μ0ε0 = 2πf/c0 = 2π(2.45×109)/(3×108)=
51.31 rad/m. Using kc =ω√μ0εc = k0

√
εc/ε0, we calculate the wavenumbers:

kc = β− jα = 51.31
√

4− j = 51.31(2.02− 0.25j)= 103.41− 12.73j m−1

kc = β− jα = 51.31
√

45− 15j = 51.31(6.80− 1.10j)= 348.84− 56.61j m−1

The corresponding attenuation constants and penetration depths are:

α = 12.73 nepers/m, δ = 7.86 cm
α = 56.61 nepers/m, δ = 1.77 cm

It follows that the attenuations at 1 cm will be in dB and in absolute units:

A = 8.686z/δ = 1.1 dB, 10−A/20 = 0.88
A = 8.686z/δ = 4.9 dB, 10−A/20 = 0.57

Thus, the fields at a depth of 1 cm are 88% and 57% of their values at the surface. The
complex permittivities of some foods may be found in [146]. 	


A convenient way to characterize the degree of ohmic losses is by means of the loss
tangent, originally defined in Eq. (1.14.8). Here, we set:

τ = tanθ = ε′′

ε′
= σ +ωε′′d

ωε′d
(2.6.27)

Then, εc = ε′ − jε′′ = ε′(1− jτ)= ε′d(1− jτ). Therefore, kc, ηc may be written as:

kc =ω
√
με′d (1− jτ)1/2 , ηc =

√
μ
ε′d
(1− jτ)−1/2 (2.6.28)

The quantities cd = 1/
√
με′d and ηd =

√
μ/ε′d would be the speed of light and

characteristic impedance of an equivalent lossless dielectric with permittivity ε′d.
In terms of the loss tangent, we may characterize weakly lossy media versus strongly

lossy ones by the conditionsτ� 1 versusτ� 1, respectively. These conditions depend
on the operating frequency ω :

σ +ωε′′d
ωε′d

� 1 versus
σ +ωε′′d
ωε′d

� 1

The expressions (2.6.28) may be simplified considerably in these two limits. Using
the small-x Taylor series expansion (1+x)1/2� 1+x/2, we find in the weakly lossy case
(1− jτ)1/2� 1− jτ/2, and similarly, (1− jτ)−1/2� 1+ jτ/2.

On the other hand, ifτ� 1, we may approximate (1−jτ)1/2� (−jτ)1/2= e−jπ/4τ1/2,
where we wrote (−j)1/2= (e−jπ/2)1/2= e−jπ/4. Similarly, (1 − jτ)−1/2� ejπ/4τ−1/2.
Thus, we summarize the two limits:
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(1− jτ)1/2 =
⎧⎪⎨
⎪⎩

1− jτ
2
, if τ� 1

e−jπ/4 τ1/2 = (1− j)
√τ

2
, if τ� 1

(2.6.29)

(1− jτ)−1/2=

⎧⎪⎪⎨
⎪⎪⎩

1+ jτ
2
, if τ� 1

ejπ/4 τ−1/2 = (1+ j)
√

1

2τ
, if τ� 1

(2.6.30)

2.7 Propagation in Weakly Lossy Dielectrics

In the weakly lossy case, the propagation parameters kc, ηc become:

kc = β− jα =ω
√
με′d

(
1− jτ

2

)
=ω

√
με′d

(
1− jσ +ωε

′′
d

2ωε′d

)

ηc = η′ + jη′′ =
√
μ
ε′d

(
1+ jτ

2

)
=
√
μ
ε′d

(
1+ jσ +ωε

′′
d

2ωε′d

) (2.7.1)

Thus, the phase and attenuation constants are:

β =ω
√
με′d =

ω
cd
, α = 1

2

√
μ
ε′d
(σ +ωε′′d )=

1

2
ηd(σ +ωε′′d ) (2.7.2)

For a slightly conducting dielectric with ε′′d = 0 and a small conductivityσ , Eq. (2.7.2)
implies that the attenuation coefficient α is frequency-independent in this limit.

Example 2.7.1: Seawater has σ = 4 Siemens/m and εd = 81ε0 (so that ε′d = 81ε0, ε′′d = 0.)
Then, nd =

√
εd/ε0 = 9, and cd = c0/nd = 0.33× 108 m/sec and ηd = η0/nd = 377/9 =

41.89 Ω. The attenuation coefficient (2.7.2) will be:

α = 1

2
ηdσ = 1

2
41.89× 4 = 83.78 nepers/m ⇒ αdB = 8.686α = 728 dB/m

The corresponding skin depth is δ = 1/α = 1.19 cm. This result assumes that σ�ωεd,
which can be written in the form ω� σ/εd, or f � f0, where f0 = σ/(2πεd). Here, we
have f0 = 888 MHz. For frequencies f � f0, we must use the exact equations (2.6.28). For
example, we find:

f = 1 kHz, αdB = 1.09 dB/m, δ = 7.96 m
f = 1 MHz, αdB = 34.49 dB/m, δ = 25.18 cm
f = 1 GHz, αdB = 672.69 dB/m, δ = 1.29 cm

Such extremely large attenuations explain why communication with submarines is impos-
sible at high RF frequencies. 	
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2.8 Propagation in Good Conductors

A conductor is characterized by a large value of its conductivity σ, while its dielectric
constant may be assumed to be real-valued εd = ε (typically equal to ε0.) Thus, its
complex permittivity and loss tangent will be:

εc = ε− j σω = ε
(

1− j σ
ωε

)
, τ = σ

ωε
(2.8.1)

A good conductor corresponds to the limit τ� 1, or, σ �ωε. Using the approxi-
mations of Eqs. (2.6.29) and (2.6.30), we find for the propagation parameters kc, ηc:

kc = β− jα =ω√με
√
τ
2
(1− j)=

√
ωμσ

2
(1− j)

ηc = η′ + jη′′ =
√
μ
ε

√
1

2τ
(1+ j)=

√
ωμ
2σ

(1+ j)
(2.8.2)

Thus, the parameters β,α,δ are:

β = α =
√
ωμσ

2
=
√
πfμσ , δ = 1

α
=
√

2

ωμσ
= 1√

πfμσ
(2.8.3)

where we replaced ω = 2πf . The complex characteristic impedance ηc can be written
in the form ηc = Rs(1+ j), where Rs is called the surface resistance and is given by the
equivalent forms (where η = √μ/ε ):

Rs = η
√
ωε
2σ

=
√
ωμ
2σ

= α
σ
= 1

σδ
(2.8.4)

Example 2.8.1: For copper we have σ = 5.8 × 107 Siemens/m. The skin depth at frequency f
is:

δ = 1√
πfμσ

= 1√
π · 4π · 10−7 · 5.8 · 107

f−1/2 = 0.0661 f−1/2 ( f in Hz)

We find at frequencies of 1 kHz, 1 MHz, and 1 GHz:

f = 1 kHz, δ = 2.09 mm
f = 1 MHz, δ = 0.07 mm
f = 1 GHz, δ = 2.09 μm

Thus, the skin depth is extremely small for good conductors at RF. 	


Because δ is so small, the fields will attenuate rapidly within the conductor, de-
pending on distance like e−γz = e−αze−jβz = e−z/δe−jβz. The factor e−z/δ effectively
confines the fields to within a distance δ from the surface of the conductor.

This allows us to define equivalent “surface” quantities, such as surface current and
surface impedance. With reference to Fig. 2.6.1, we define the surface current density by
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integrating the density J(z)= σE(z)= σE0e−γz over the top-side of the volume l dA ,
and taking the limit l→∞ :

Js =
∫∞

0
J(z)dz =

∫∞
0
σE0e−γzdz = σ

γ
E0 , or,

Js = 1

Zs
E0 (2.8.5)

where we defined the surface impedance Zs = γ/σ. In the good-conductor limit, Zs is
equal to ηc. Indeed, it follows from Eqs. (2.8.3) and (2.8.4) that:

Zs = γ
σ
= α+ jβ

σ
= α
σ
(1+ j)= Rs(1+ j)= ηc

Because H0 × ẑ = E0/ηc , it follows that the surface current will be related to the
magnetic field intensity at the surface of the conductor by:

Js = H0 × ẑ = n̂×H0 (2.8.6)

where n̂ = −ẑ is the outward normal to the conductor. The meaning of Js is that it
represents the current flowing in the direction of E0 per unit length measured along the
perpendicular direction to E0, that is, the H0-direction. It has units of A/m.

The total amount of ohmic losses per unit surface area of the conductor may be
calculated from Eq. (2.6.26), which reads in this case:

dPohmic

dA
= 1

2
Rs|H0|2 = 1

2
Rs|Js|2 (ohmic loss per unit conductor area) (2.8.7)

2.9 Skin Effect in Cylindrical Wires

Fig. 2.9.1 Current distribution in cylindrical wire.

2.10 Propagation in Oblique Directions

So far we considered waves propagating towards the z-direction. For single-frequency
uniform plane waves propagating in some arbitrary direction in a lossless medium, the
propagation factor is obtained by the substitution:
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e−jkz → e−j k·r

where k = kk̂, with k = ω√με = ω/c and k̂ is a unit vector in the direction of propa-
gation. The fields take the form:

E(r, t)= E0ejωt−j k·r

H(r, t)= H0ejωt−j k·r (2.10.1)

where E0, H0 are constant vectors transverse to k̂, that is, k̂ ·E0 = k̂ ·H0 = 0, such that:

H0 = 1

ωμ
k× E0 = 1

η
k̂× E0 (2.10.2)

where η = √μ/ε. Thus, {E,H, k̂} form a right-handed orthogonal system.
The solutions (2.10.1) can be derived from Maxwell’s equations in a straightforward

fashion. When the gradient operator acts on the above fields, it can be simplified into
∇∇∇ → −jk. This follows from:

∇∇∇(e−j k·r) = −jk (e−j k·r)
After canceling the common factor ejωt−j k·r, Maxwell’s equations (2.1.1) take the form:

−jk× E0 = −jωμH0

−jk×H0 = jωεE0

k · E0 = 0

k ·H0 = 0

⇒

k× E0 =ωμH0

k×H0 = −ωεE0

k · E0 = 0

k ·H0 = 0

(2.10.3)

The last two imply that E0,H0 are transverse to k. The other two can be decoupled
by taking the cross product of the first equation with k and using the second equation:

k× (k× E0)=ωμk×H0 = −ω2μεE0 (2.10.4)

The left-hand side can be simplified using the BAC-CAB rule and k · E0 = 0, that is,
k× (k× E0)= k(k · E0)−E0(k · k)= −(k · k)E0. Thus, Eq. (2.10.4) becomes:

−(k · k)E0 = −ω2μεE0

Thus, we obtain the consistency condition:

k · k =ω2με (2.10.5)

Defining k =
√

k · k = |k |, we have k =ω√με. Using the relationshipωμ = kη and
defining the unit vector k̂ = k/|k | = k/k, the magnetic field is obtained from:

H0 = k× E0

ωμ
= k× E0

kη
= 1

η
k̂× E0

64 2. Uniform Plane Waves

The constant-phase (and constant-amplitude) wavefronts are the planes k · r =
constant, or, k̂ · r = constant. They are the planes perpendicular to the propagation
direction k̂.

As an example, consider a rotated coordinate system {x′, y′, z′} in which the z′x′

axes are rotated by angle θ relative to the original zx axes, as shown in Fig. 2.10.1. Thus,
the new coordinates and corresponding unit vectors will be:

Fig. 2.10.1 TM and TE waves.

z′ = z cosθ+ x sinθ, ẑ′ = ẑ cosθ+ x̂ sinθ
x′ = x cosθ− z sinθ, x̂′ = x̂ cosθ− ẑ sinθ
y′ = y, ŷ′ = ŷ

(2.10.6)

We choose the propagation direction to be the new z-axis, that is, k̂ = ẑ′, so that the
wave vector k = k k̂ = k ẑ′ will have components kz = k cosθ and kx = k sinθ :

k = k k̂ = k(ẑ cosθ+ x̂ sinθ)= ẑkz + x̂kx

The propagation phase factor becomes:

e−j k·r = e−j(kzz+kxx) = e−jk(z cosθ+x sinθ) = e−jkz′

Because {E0,H0,k } form a right-handed vector system, the electric field may have
components along the new transverse (with respect to z′) axes, that is, along x′ and y.
Thus, we may resolve E0 into the orthogonal directions:

E0 = x̂′A+ ŷB = (x̂ cosθ− ẑ sinθ)A+ ŷB (2.10.7)

The corresponding magnetic field will be H0 = k̂×E0/η = ẑ′×(x̂′A+ ŷB)/η. Using
the relationships ẑ′ × x̂′ = ŷ and ẑ′ × ŷ = −x̂′, we find:

H0 = 1

η
[
ŷA− x̂′B

] = 1

η
[
ŷA− (x̂ cosθ− ẑ sinθ)B

]
(2.10.8)

The complete expressions for the fields are then:

E(r, t) = [
(x̂ cosθ− ẑ sinθ)A+ ŷB

]
ejωt−jk(z cosθ+x sinθ)

H(r, t) = 1

η
[
ŷA− (x̂ cosθ− ẑ sinθ)B

]
ejωt−jk(z cosθ+x sinθ)

(2.10.9)
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Written with respect to the rotated coordinate system {x′, y′, z′}, the solutions be-
come identical to those of Sec. 2.2:

E(r, t) = [
x̂′A+ ŷ′B

]
ejωt−jkz

′

H(r, t) = 1

η
[
ŷ′A− x̂′B

]
ejωt−jkz

′ (2.10.10)

They are uniform in the sense that they do not depend on the new transverse coor-
dinates x′, y′. The constant-phase planes are z′ = ẑ′ · r = z cosθ+ x sinθ = const.

The polarization properties of the wave depend on the relative phases and ampli-
tudes of the complex constantsA,B, with the polarization ellipse lying on the x′y′ plane.

The A- and B-components of E0 are referred to as transverse magnetic (TM) and
transverse electric (TE), respectively, where “transverse” is meant here with respect to
the z-axis. The TE case has an electric field transverse to z; the TM case has a magnetic
field transverse to z. Fig. 2.10.1 depicts these two cases separately.

This nomenclature arises in the context of plane waves incident obliquely on inter-
faces, where the xz plane is the plane of incidence and the interface is the xy plane. The
TE and TM cases are also referred to as having “perpendicular” and “parallel” polariza-
tion vectors with respect to the plane of incidence, that is, the E-field is perpendicular
or parallel to the xz plane.

We may define the concept of transverse impedance as the ratio of the transverse
(with respect to z) components of the electric and magnetic fields. In particular, by
analogy with the definitions of Sec. 2.4, we have:

ηTM = Ex
Hy

= A cosθ
1

η
A

= η cosθ

ηTE = − EyHx =
B

1

η
B cosθ

= η
cosθ

(2.10.11)

Such transverse impedances play an important role in describing the transfer matri-
ces of dielectric slabs at oblique incidence. We discuss them further in Chap. 7.

2.11 Complex or Inhomogeneous Waves

The steps leading to the wave solution (2.10.1) do not preclude a complex-valued wavevec-
tor k. For example, if the medium is lossy, we must replace {η, k} by {ηc, kc}, where
kc = β − jα, resulting from a complex effective permittivity εc. If the propagation
direction is defined by the unit vector k̂ , chosen to be a rotated version of ẑ, then the
wavevector will be defined by k = kc k̂ = (β−jα)k̂ . Because kc =ω

√
μεc and k̂·k̂ = 1,

the vector k satisfies the consistency condition (2.10.5):

k · k = k2
c =ω2μεc (2.11.1)

The propagation factor will be:

e−j k·r = e−jkc k̂·r = e−(α+jβ) k̂·r = e−α k̂·re−jβ k̂·r
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The wave is still a uniform plane wave in the sense that the constant-amplitude
planes, α k̂ · r = const., and the constant-phase planes, β k̂ · r = const., coincide with
each other—being the planes perpendicular to the propagation direction. For example,
the rotated solution (2.10.10) becomes in the lossy case:

E(r, t) = [x̂′A+ ŷ′B
]
ejωt−jkcz

′ = [x̂′A+ ŷ′B
]
ejωt−(α+jβ)z

′

H(r, t) = 1

ηc

[
ŷ′A− x̂′B

]
ejωt−jkcz

′ = 1

ηc

[
ŷ′A− x̂′B

]
ejωt−(α+jβ)z

′ (2.11.2)

In this solution, the real and imaginary parts of the wavevector k = βββ − jααα are
collinear, that is, βββ = β k̂ andααα = α k̂.

More generally, there exist solutions having a complex wavevector k = βββ− jααα such
that βββ,ααα are not collinear. The propagation factor becomes now:

e−j k·r = e−(ααα+jβββ)·r = e−ααα·re−jβββ·r (2.11.3)

If ααα,βββ are not collinear, such a wave will not be a uniform plane wave because the
constant-amplitude planes,ααα ·r = const., and the constant-phase planes, βββ ·r = const.,
will be different. The consistency condition k · k = k2

c = (β − jα)2 splits into the
following two conditions obtained by equating real and imaginary parts:

(βββ− jααα)·(βββ− jααα)= (β− jα)2 �
βββ ·βββ−ααα ·ααα = β2 −α2

βββ ·ααα = αβ (2.11.4)

With E0 chosen to satisfy k·E0 = (βββ− jααα)·E0 = 0, the magnetic field is computed from
Eq. (2.10.2), H0 = k× E0/ωμ = (βββ− jααα)×E0/ωμ.

Let us look at an explicit construction. We choose βββ,ααα to lie on the xz plane of
Fig. 2.10.1, and resolve them as βββ = ẑβz + x̂βx and ααα = ẑαz + x̂αx. Thus,

k = βββ− jααα = ẑ (βz − jαz)+ x̂ (βx − jαx)= ẑkz + x̂kx

Then, the propagation factor (2.11.3) and conditions (2.11.4) read explicitly:

e−j k·r = e−(αzz+αxx)e−j(βzz+βxx)
β2
z + β2

x −α2
z −α2

x = β2 −α2

βzαz + βxαx = βα
(2.11.5)

Because k is orthogonal to both ŷ and ŷ× k, we construct the electric field E0 as the
following linear combination of TM and TE terms:

E0 = (ŷ× k̂)A+ ŷB , where k̂ = k

kc
= βββ− jααα
β− jα (2.11.6)

This satisfies k · E0 = 0. Then, the magnetic field becomes:

H0 = k× E0

ωμ
= 1

ηc

[
ŷA− (ŷ× k̂)B

]
(2.11.7)
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The vector k̂ is complex-valued and satisfies k̂ · k̂ = 1. These expressions reduce to
Eq. (2.11.2), if k̂ = ẑ′.

Waves with a complex k are known as complex waves, or inhomogeneous waves. In
applications, they always appear in connection with some interface between two media.
The interface serves either as a reflecting/transmitting surface, or as a guiding surface.

For example, when plane waves are incident obliquely from a lossless dielectric onto
a planar interface with a lossy medium, the waves transmitted into the lossy medium
are of such complex type. Taking the interface to be the xy-plane and the lossy medium
to be the region z ≥ 0, it turns out that the transmitted waves are characterized by
attenuation only in the z-direction. Therefore, Eqs. (2.11.5) apply with αz > 0 and
αx = 0. The parameter βx is fixed by Snel’s law, so that Eqs. (2.11.5) provide a system
of two equations in the two unknowns βz and αz. We discuss this further in Chap. 7.

Wave solutions with complex k = βββ − jααα are possible even when the propagation
medium is lossless so that εc = ε is real, and β =ω√με and α = 0. Then, Eqs. (2.11.4)
become βββ ·βββ−ααα ·ααα = β2 and βββ ·ααα = 0. Thus, the constant-amplitude and constant-
phase planes are orthogonal to each other.

Examples of such waves are the evanescent waves in total internal reflection, various
guided-wave problems, such as surface waves, leaky waves, and traveling-wave antennas.
The most famous of these is the Zenneck wave, which is a surface wave propagating
along a lossy ground, decaying exponentially with distance above and along the ground.

Another example of current interest is surface plasmons [593–631], which are sur-
face waves propagating along the interface between a metal, such as silver, and a dielec-
tric, such as air, with the fields decaying exponentially perpendicularly to the interface
both in the air and the metal. We discuss them further in Sections 7.11 and 8.5.

For a classification of various types of complex waves and a review of several ap-
plications, including the Zenneck wave, see Refs. [902–909]. We will encounter some of
these in Section 7.7.

The table below illustrates the vectorial directions and relative signs of some possible
types, assuming thatααα,βββ lie on the xz plane with the yz plane being the interface plane.

ααα βββ αz αx βz βx complex wave type

0 ↘ 0 0 + − oblique incidence

↑ → 0 + + 0 evanescent surface wave

↗ ↘ + + + − Zenneck surface wave

↖ ↗ − + + + leaky wave

2.12 Doppler Effect

The Doppler effect is the frequency shift perceived by an observer whenever the source
of the waves and the observer are in relative motion.

Besides the familiar Doppler effect for sound waves, such as the increase in pitch
of the sound of an approaching car, ambulance, or train, the Doppler effect has several
other applications, such as Doppler radar for aircraft tracking, weather radar, ground
imaging, and police radar; several medical ultrasound applications, such as monitoring
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blood flow or imaging internal organs and fetuses; and astrophysical applications, such
as measuring the red shift of light emitted by receding galaxies.

In the classical treatment of the Doppler effect, one assumes that the waves prop-
agate in some medium (e.g., sound waves in air). If c is the wave propagation speed in
the medium, the classical expression for the Doppler effect is given by:

fb = fa c− vbc− va (2.12.1)

where fa and fb are the frequencies measured in the rest frames of the source Sa and
observer Sb, and va and vb are the velocities of Sa and Sb with respect to the propagation
medium, projected along their line of sight.

The algebraic sign of va is positive if Sa is moving toward Sb from the left, and the
sign of vb is positive if Sb is moving away from Sa. Thus, there is a frequency increase
whenever the source and the observer are approaching each other (va > 0 or vb < 0),
and a frequency decrease if they are receding from each other (va < 0 or vb > 0).

Eq. (2.12.1) can be derived by considering the two cases of a moving source and a sta-
tionary observer, or a stationary source and a moving observer, as shown in Fig. 2.12.1.

Fig. 2.12.1 Classical Doppler effect.

In the first case, the spacing of the successive crests of the wave (the wavelength) is
decreased in front of the source because during the time interval between crests, that
is, during one period Ta = 1/fa, the source has moved by a distance vaTa bringing two
successive crests closer together by that amount. Thus, the wavelength perceived by
the observer will be λb = λa − vaTa = (c− va)/fa, which gives:

fb = c
λb

= fa c
c− va (moving source) (2.12.2)

In the second case, because the source is stationary, the wavelength λa will not
change, but now the effective speed of the wave in the rest frame of the observer is
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(c− vb). Therefore, the frequency perceived by the observer will be:

fb = c− vb
λa

= fa c− vbc
(moving observer) (2.12.3)

The combination of these two cases leads to Eq. (2.12.1). We have assumed in
Eqs. (2.12.1)–(2.12.3) that va, vb are less than c so that supersonic effects are not consid-
ered. A counter-intuitive aspect of the classical Doppler formula (2.12.1) is that it does
not depend on the relative velocity (vb − va) of the observer and source. Therefore,
it makes a difference whether the source or the observer is moving. Indeed, when the
observer is moving with vb = v away from a stationary source, or when the source is
moving with va = −v away from a stationary observer, then Eq. (2.12.1) gives:

fb = fa(1− v/c) , fb = fa
1+ v/c (2.12.4)

These two expressions are equivalent to first-order in v/c. This follows from the
Taylor series approximation (1+x)−1� 1−x, which is valid for |x| � 1. More generally,
to first order in va/c and vb/c, Eq. (2.12.1) does depend only on the relative velocity. In
this case the Doppler shift Δf = fb − fa is given approximately by:

Δf
fa
= va − vb

c
(2.12.5)

For Doppler radar this doubles to Δf/fa = 2(va − vb)/c because the wave suffers
two Doppler shifts, one for the transmitted and one for the reflected wave. This is
further discussed in Sec. 5.8.

For electromagnetic waves,† the correct Doppler formula depends only on the rela-
tive velocity between observer and source and is given by the relativistic generalization
of Eq. (2.12.1):

fb = fa
√
c− vb
c+ vb ·

c+ va
c− va = fa

√
c− v
c+ v (relativistic Doppler effect) (2.12.6)

where v is the velocity of the observer relative to the source, which according to the
Einstein addition theorem for velocities is given through the equivalent expressions:

v = vb − va
1− vbva/c2

� vb = va + v
1+ vav/c2

�
c− v
c+ v =

c− vb
c+ vb ·

c+ va
c− va (2.12.7)

Using the first-order Taylor series expansion (1 + x)±1/2= 1 ± x/2, one can show
that Eq. (2.12.6) can be written approximately as Eq. (2.12.5).

Next, we present a more precise discussion of the Doppler effect based on Lorentz
transformations. Our discussion follows that of Einstein’s 1905 paper on special rela-
tivity [474]. Fig. 2.12.2 shows a uniform plane wave propagating in vacuum as viewed
from the vantage point of two coordinate frames: a fixed frame S and a frame S′ moving
towards the z-direction with velocity v. We assume that the wavevector k in S lies in the
xz-plane and forms an angle θ with the z-axis as shown.

†The question of the existence of a medium (the ether) required for the propagation of electromagnetic
waves precipitated the development of the special relativity theory.
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Fig. 2.12.2 Plane wave viewed from stationary and moving frames.

As discussed in Appendix K, the transformation of the frequency-wavenumber four-
vector (ω/c,k) between the frames S and S′ is given by the Lorentz transformation of
Eq. (K.14). Because ky = 0 and the transverse components of k do not change, we will
have k′y = ky = 0, that is, the wavevector k ′ will still lie in the xz-plane of the S′ frame.
The frequency and the other components of k transform as follows:

ω′ = γ(ω− βckz)
k′z = γ

(
kz − βcω

)
k′x = kx

β = v
c
, γ = 1√

1− β2
(2.12.8)

Setting kz = k cosθ, kx = k sinθ, with k = ω/c, and similarly in the S′ frame,
k′z = k′ cosθ′, k′x = k′ sinθ′, with k′ =ω′/c, Eqs. (2.12.8) may be rewritten in the form:

ω′ =ωγ(1− β cosθ)
ω′ cosθ′ =ωγ(cosθ− β)
ω′ sinθ′ =ω sinθ

(2.12.9)

The first equation is the relativistic Doppler formula, relating the frequency of the
wave as it is measured by an observer in the moving frame S′ to the frequency of a
source in the fixed frame S:

f ′ = fγ(1− β cosθ)= f 1− β cosθ√
1− β2

(2.12.10)

The last two equations in (2.12.9) relate the apparent propagation angles θ,θ′ in the
two frames. Eliminating ω,ω′, we obtain the following equivalent expressions:

cosθ′ = cosθ− β
1− β cosθ

� sinθ′ = sinθ
γ(1− β cosθ)

�
tan(θ′/2)
tan(θ/2)

=
√

1+ β
1− β (2.12.11)

where to obtain the last one we used the identity tan(φ/2)= sinφ/(1 + cosφ). The
difference in the propagation angles θ,θ′ is referred to as the aberration of light due
to motion. Using Eqs. (2.12.11), the Doppler equation (2.12.10) may be written in the
alternative forms:

f ′ = fγ(1− β cosθ)= f
γ(1+ β cosθ′)

= f
√

1− β cosθ
1+ β cosθ′

(2.12.12)
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If the wave is propagating in the z-direction (θ = 0o), Eq. (2.12.10) gives:

f ′ = f
√

1− β
1+ β (2.12.13)

and, if it is propagating in the x-direction (θ = 90o), we obtain the so-called transverse
Doppler effect: f ′ = fγ. The relativistic Doppler effect, including the transverse one,
has been observed experimentally.

To derive Eq. (2.12.6), we consider two reference frames Sa, Sb moving along the
z-direction with velocities va, vb with respect to our fixed frame S, and we assume that
θ = 0o in the frame S. Let fa, fb be the frequencies of the wave as measured in the
frames Sa, Sb. Then, the separate application of Eq. (2.12.13) to Sa and Sb gives:

fa = f
√

1− βa
1+ βa , fb = f

√
1− βb
1+ βb ⇒ fb = fa

√
1− βb
1+ βb ·

1+ βa
1− βa (2.12.14)

where βa = va/c and βb = vb/c. This is equivalent to Eq. (2.12.6). The case when the
wave is propagating in an arbitrary direction θ is given in Problem 2.27.

Next, we consider the transformation of the electromagnetic field components be-
tween the two frames. The electric field has the following form in S and S′:

E = E0ej(ωt−kxx−kzz) , E ′ = E ′0ej(ω
′t′−k′xx′−k′zz′) (2.12.15)

As we discussed in Appendix K, the propagation phase factors remain invariant in
the two frames, that is, ωt − kxx − kzz = ω′t′ − k′xx′ − k′zz′. Assuming a TE wave
and using Eq. (2.10.9), the electric and magnetic field amplitudes will have the following
form in the two frames:

E0 = E0ŷ , cB0 = η0H0 = k̂× E0 = E0(−x̂ cosθ+ ẑ sinθ)

E ′0 = E′0ŷ , cB ′0 = η0H ′
0 = k̂

′ × E ′0 = E′0(−x̂ cosθ′ + ẑ sinθ′)
(2.12.16)

Applying the Lorentz transformation properties of Eq. (K.31) to the above field com-
ponents, we find:

E′y = γ(Ey + βcBx)
cB′x = γ(cBx + βEy)
cB′z = cBz

⇒
E′0 = E0γ(1− β cosθ)

−E′0 cosθ′ = −E0γ(cosθ− β)
E′0 sinθ′ = E0 sinθ

(2.12.17)

The first equation gives the desired relationship between E0 and E′0. The last two
equations imply the same angle relationships as Eq. (2.12.11). The same relationship
between E0, E′0 holds also for a TM wave defined by E0 = E0(x̂ cosθ− ẑ sinθ).

2.13 Propagation in Negative-Index Media

In media with simultaneously negative permittivity and permeability, ε < 0 and μ < 0,
the refractive index must be negative [391]. To see this, we consider a uniform plane
wave propagating in a lossless medium:

Ex(z, t)= E0 ejωt−jkz , Hy(z, t)= H0 ejωt−jkz
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Then, Maxwell’s equations require the following relationships, which are equivalent
to Faraday’s and Ampère’s laws, respectively:

kE0 =ωμH0 , kH0 =ωεE0 , or,

η = E0

H0
= ωμ

k
= k
ωε

⇒ k2 =ω2εμ (2.13.1)

Because the medium is lossless, k and η will be real and the time-averaged Poynting
vector, which points in the z-direction, will be:

Pz = 1

2
Re[E0H∗0 ]=

1

2η
|E0|2 = 1

2
η|H0|2 (2.13.2)

If we require that the energy flux be towards the positive z-direction, that is,Pz > 0,
then we must have η > 0. Because μ and ε are negative, Eq. (2.13.1) implies that kmust
be negative, k < 0, in order for the ratio η = ωμ/k to be positive. Thus, in solving
k2 =ω2με, we must choose the negative square root:

k = −ω√με (2.13.3)

The refractive index n may be defined through k = k0n, where k0 = ω√μ0ε0 is
the free-space wavenumber. Thus, we have n = k/k0 = −√με/μ0ε0 = −√μrelεrel,
expressed in terms of the relative permittivity and permeability. Writing ε = −|ε| and
μ = −|μ|, we have for the medium impedance:

η = ωμ
k
= −ω|μ|
−ω√|με| =

√
|μ|
|ε| =

√
μ
ε

(2.13.4)

which can be written also as follows, where η0 =
√
μ0/ε0:

η = η0
μ
μ0n

= η0
ε0n
ε

(2.13.5)

Thus, in negative-index media, the wave vector k and the phase velocity vph =ω/k =
c0/nwill be negative, pointing in opposite direction than the Poynting vector. As we saw
in Sec. 1.18, for lossless negative-index media the energy transport velocity ven, which
is in the direction of the Poynting vector, coincides with the group velocity vg. Thus,
vg = ven > 0, while vph < 0.

Two consequences of the negative refractive index, n < 0, are the reversal of Snel’s
law discussed in Sec. 7.16 and the possibility of a perfect lens discussed in Sec. 8.6. These
and other consequences of n < 0, such as the reversal of the Doppler and Cherenkov
effects and the reversal of the field momentum, have been discussed by Veselago [391].

If the propagation is along an arbitrary direction defined by a unit-vector ŝ (i.e.,
a rotated version of ẑ), then we may define the wavevector by k = kŝ, with k to be
determined, and look for solutions of Maxwell’s equations of the form:

E(r, t)= E0 ejωt−j k·r

H(r, t)= H0 ejωt−j k·r (2.13.6)
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Gauss’s laws require that the constant vectors E0, H0 be transverse to k, or ŝ, that
is, ŝ · E0 = ŝ ·H0 = 0. Then, Faraday’s and Ampère’s laws require that:

H0 = 1

η
(ŝ× E0) , η = ωμ

k
= k
ωε

⇒ k2 =ω2με (2.13.7)

with a Poynting vector:

PPP = 1

2
Re
[
E0 ×H∗0

] = ŝ
1

2η
|E0|2 (2.13.8)

Thus, if PPP is assumed to be in the direction of ŝ, then we must have η > 0, and
therefore, k must be negative as in Eq. (2.13.3). It follows that the wavevector k = kŝ
will be in the opposite direction of ŝ andPPP. Eq. (2.13.7) implies that the triplet {E0,H0, ŝ}
is still a right-handed vector system, but {E0,H0,k} will be a left-handed system. This
is the reason why Veselago [391] named such media left-handed media.†

In a lossy negative-index medium, the permittivity and permeability will be complex-
valued, ε = εr − jεi and μ = μr − jμi, with negative real parts εr, μr < 0, and positive
imaginary parts εi, μi > 0. Eq. (2.13.1) remains the same and will imply that k and η will
be complex-valued. Letting k = β− jα, the fields will be attenuating as they propagate:

Ex(z, t)= E0e−αzejωt−jβz , Hy(z, t)= H0e−αzejωt−jβz

and the Poynting vector will be given by:

Pz = 1

2
Re
[
Ex(z)H∗y (z)

] = 1

2
Re
( 1

η
)|E0|2e−2αz = 1

2
Re(η)|H0|2e−2αz (2.13.9)

The refractive index is complex-valued, n = nr − jni, and is related to k through
k = k0n, or, β− jα = k0(nr − jni), or, β = k0nr and α = k0ni. Thus, the conditions of
negative phase velocity (β < 0), field attenuation (α > 0), and positive power flow can
be stated equivalently as follows:

nr < 0 , ni > 0 , Re(η)> 0 (2.13.10)

Next, we look at the necessary and sufficient conditions for a medium to satisfy these
conditions. If we express ε, μ in their polar forms, ε = |ε|e−jθε and μ = |μ|e−jθμ , then,
regardless of the signs of εr, μr , the assumption that the medium is lossy, εi, μi > 0,
requires that sinθε > 0 and sinθμ > 0, and these are equivalent to the restrictions:

0 ≤ θε ≤ π, 0 ≤ θμ ≤ π (2.13.11)

To guarantee α > 0, the wavenumber k must be computed by taking the positive
square root of k2 =ω2με =ω2|με|2e−j(θε+θμ), that is,

k = β− jα =ω
√
|με|e−jθ+ , θ+ = θε + θμ

2
(2.13.12)

Indeed, the restrictions (2.13.11) imply the same for θ+, that is, 0 ≤ θ+ ≤ π, or,
equivalently, sinθ+ > 0, and hence α > 0. Similarly, the quantities n,η are given by:

n = |n|e−jθ+ , η = |η|e−jθ− , θ− = θε − θμ
2

(2.13.13)

†The term negative-index media is preferred in order to avoid confusion with chiral media.
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where |n| = √|με|/μ0ε0 and |η| = √|μ|/|ε|. It follows that ni = |n| sinθ+ > 0. Since
nr = |n| cosθ+ and Re(η)= |η| cosθ−, the conditions nr < 0 and Re(η)> 0 will be
equivalent to

cosθ+ = cos
(θε + θμ

2

)
< 0 , cosθ− = cos

(θε − θμ
2

)
> 0 (2.13.14)

Using some trigonometric identities, these conditions become equivalently:

cos(θε/2)cos(θμ/2)− sin(θε/2)sin(θμ/2) < 0

cos(θε/2)cos(θμ/2)+ sin(θε/2)sin(θμ/2) > 0

which combine into

− sin(θε/2)sin(θμ/2)< cos(θε/2)cos(θμ/2)< sin(θε/2)sin(θμ/2)

Because 0 ≤ θε/2 ≤ π/2, we have cos(θε/2)≥ 0 and sin(θε/2)≥ 0, and similarly
for θμ/2. Thus, the above conditions can be replaced by the single equivalent inequality:

tan(θε/2)tan(θμ/2)> 1 (2.13.15)

A number of equivalent conditions have been given in the literature [412,440] for a
medium to have negative phase velocity and positive power:

(|ε| − εr)(|μ| − μr) > εiμi
εr|μ| + μr|ε| < 0

εrμi + μrεi < 0

(2.13.16)

They are all equivalent to condition (2.13.15). This can be seen by writing them
in terms of the angles θε,θμ and then using simple trigonometric identities, such as
tan(θ/2)= (1− cosθ)/ sinθ, to show their equivalence to (2.13.15):

(1− cosθε)(1− cosθμ)> sinθε sinθμ
cosθε + cosθμ < 0

cotθε + cotθμ < 0

(2.13.17)

If the medium has negative real parts, εr < 0 and μr < 0, then the conditions
(2.13.16) are obviously satisfied.

2.14 Problems

2.1 A function E(z, t) may be thought of as a function E(ζ, ξ) of the independent variables
ζ = z − ct and ξ = z + ct. Show that the wave equation (2.1.6) and the forward-backward
equations (2.1.10) become in these variables:

∂2E

∂ζ∂ξ
= 0 ,

∂E+
∂ξ

= 0 ,
∂E−
∂ζ

= 0

Thus, E+ may depend only on ζ and E− only on ξ.
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2.2 A source located at z = 0 generates an electromagnetic pulse of duration of T sec, given by
E(0, t)= x̂E0

[
u(t)−u(t − T)], where u(t) is the unit step function and E0 is a constant.

The pulse is launched towards the positive z-direction. Determine expressions for E(z, t)
and H(z, t) and sketch them versus z at any given t.

2.3 Show that for a single-frequency wave propagating along the z-direction the corresponding
transverse fields E(z),H(z) satisfy the system of equations:

∂
∂z

[
E

H× ẑ

]
=
[

0 −jωμ
−jωε 0

][
E

H× ẑ

]

where the matrix equation is meant to apply individually to the x, y components of the
vector entries. Show that the following similarity transformation diagonalizes the transition
matrix, and discuss its role in decoupling and solving the above system in terms of forward
and backward waves:

[
1 η
1 −η

][
0 −jωμ

−jωε 0

][
1 η
1 −η

]−1

=
[
−jk 0

0 jk

]

where k =ω/c, c = 1/√με , and η = √μ/ε.
2.4 The visible spectrum has the wavelength range 380–780 nm. What is this range in THz? In

particular, determine the frequencies of red, orange, yellow, green, blue, and violet having
the nominal wavelengths of 700, 610, 590, 530, 470, and 420 nm.

2.5 What is the frequency in THz of a typical CO2 laser (used in laser surgery) having the far
infrared wavelength of 20 μm?

2.6 What is the wavelength in meters or cm of a wave with the frequencies of 10 kHz, 10 MHz,
and 10 GHz?

What is the frequency in GHz of the 21-cm hydrogen line observed in the cosmos?

What is the wavelength in cm of the typical microwave oven frequency of 2.45 GHz?

2.7 Suppose you start with E(z, t)= x̂E0ejωt−jkz, but you do not yet know the relationship
between k andω (you may assume they are both positive.) By inserting E(z, t) into Maxwell’s
equations, determine the k–ω relationship as a consequence of these equations. Determine
also the magnetic field H(z, t) and verify that all of Maxwell’s equations are satisfied.

Repeat the problem if E(z, t)= x̂E0ejωt+jkz and if E(z, t)= ŷE0ejωt−jkz.

2.8 Determine the polarization types of the following waves, and indicate the direction, if linear,
and the sense of rotation, if circular or elliptic:

a. E = E0(x̂+ ŷ)e−jkz e. E = E0(x̂− ŷ)e−jkz

b. E = E0(x̂−
√

3 ŷ)e−jkz f. E = E0(
√

3 x̂− ŷ)e−jkz

c. E = E0(j x̂+ ŷ)e−jkz g. E = E0(j x̂− ŷ)ejkz

d. E = E0(x̂− 2j ŷ)e−jkz h. E = E0(x̂+ 2j ŷ)ejkz

2.9 A uniform plane wave, propagating in the z-direction in vacuum, has the following electric
field:

EEE(t, z)= 2 x̂ cos(ωt − kz)+4 ŷ sin(ωt − kz)
a. Determine the vector phasor representingEEE(t, z) in the complex form E = E0ejωt−jkz.

b. Determine the polarization of this electric field (linear, circular, elliptic, left-handed,
right-handed?)
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c. Determine the magnetic fieldHHH(t, z) in its real-valued form.

2.10 A uniform plane wave propagating in vacuum along the z direction has real-valued electric
field components:

Ex(z, t)= cos(ωt − kz) , Ey(z, t)= 2 sin(ωt − kz)

a. Its phasor form has the form E = (A x̂+B ŷ)e±jkz. Determine the numerical values of
the complex-valued coefficients A,B and the correct sign of the exponent.

b. Determine the polarization of this wave (left, right, linear, etc.). Explain your reasoning.

2.11 Consider the two electric fields, one given in its real-valued form, and the other, in its phasor
form:

a. EEE(t, z)= x̂ sin(ωt + kz)+2ŷ cos(ωt + kz)
b. E(z)= [(1+ j)x̂− (1− j)ŷ]e−jkz

For both cases, determine the polarization of the wave (linear, circular, left, right, etc.) and
the direction of propagation.

For case (a), determine the field in its phasor form. For case (b), determine the field in its
real-valued form as a function of t, z.

2.12 A uniform plane wave propagating in the z-direction has the following real-valued electric
field:

EEE(t, z)= x̂ cos(ωt − kz−π/4)+ŷ cos(ωt − kz+π/4)

a. Determine the complex-phasor form of this electric field.

b. Determine the corresponding magnetic field HHH(t, z) given in its real-valued form.

c. Determine the polarization type (left, right, linear, etc.) of this wave.

2.13 Determine the polarization type (left, right, linear, etc.) and the direction of propagation of
the following electric fields given in their phasor forms:

a. E(z)= [(1+ j√3)x̂+ 2 ŷ
]
e+jkz

b. E(z)= [(1+ j)x̂− (1− j)ŷ]e−jkz
c. E(z)= [x̂− ẑ+ j√2 ŷ

]
e−jk(x+z)/

√
2

2.14 Consider a forward-moving wave in its real-valued form:

EEE(t, z)= x̂A cos(ωt − kz+φa)+ŷB cos(ωt − kz+φb)

Show that:

EEE(t +Δt, z+Δz)×EEE(t, z)= ẑAB sin(φa −φb)sin(ωΔt − kΔz)

2.15 In this problem we explore the properties of the polarization ellipse. Let us assume initially
that A �= B. Show that in order for the polarization ellipse of Eq. (2.5.4) to be equivalent
to the rotated one of Eq. (2.5.8), we must determine the tilt angle θ to satisfy the following
matrix condition:

[
cosθ sinθ

− sinθ cosθ

]⎡⎢⎢⎢⎣
1

A2
− cosφ
AB

− cosφ
AB

1

B2

⎤
⎥⎥⎥⎦
[

cosθ − sinθ
sinθ cosθ

]
= sin2φ

⎡
⎢⎢⎣

1

A′2
0

0
1

B′2

⎤
⎥⎥⎦ (2.14.1)
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From this condition, show that θ must satisfy Eq. (2.5.5). However, this equation does not
determine θ uniquely. To see this, let τ = tanθ and use a standard trigonometric identity
to write (2.5.5) in the form:

tan 2θ = 2τ
1− τ2

= 2AB
A2 − B2

cosφ (2.14.2)

Show that the two possible solutions for τ are given by:

τs = B2 −A2 + sD
2AB cosφ

, s = ±1

where
D =

√
(A2 − B2)2+4A2B2 cos2φ =

√
(A2 + B2)2−4A2B2 sin2φ

Show also that τsτ−s = −1. Thus one or the other of the τ’s must have magnitude less than
unity. To determine which one, show the relationship:

1− τ2
s =

s(A2 − B2)
[
D− s(A2 − B2)

]
2A2B2 cos2φ

Show that the quantity D− s(A2−B2) is always positive. If we select s = sign(A−B), then
s(A2 − B2)= |A2 − B2|, and therefore, 1− τ2

s > 0, or |τs| < 1. This is the proper choice of
τs and corresponding tilt angle θ. We note parenthetically, that if Eq. (2.14.2) is solved by
taking arc tangents of both sides,

θ = 1

2
atan

[
2AB

A2 − B2
cosφ

]
(2.14.3)

then, because MATLAB constrains the returned angle from the arctan function to lie in the
interval −π/2 ≤ 2θ ≤ π/2, it follows that θ will lie in −π/4 ≤ θ ≤ π/4, which always
results in a tangent with | tanθ| ≤ 1. Thus, (2.14.3) generates the proper θ corresponding
to τs with s = sign(A−B). In fact, our function ellipse uses (2.14.3) internally. The above
results can be related to the eigenvalue properties of the matrix,

Q =

⎡
⎢⎢⎢⎣

1

A2
− cosφ
AB

− cosφ
AB

1

B2

⎤
⎥⎥⎥⎦

defined by the quadratic form of the polarization ellipse (2.5.4). Show that Eq. (2.14.1) is
equivalent to the eigenvalue decomposition of Q, with the diagonal matrix on the right-
hand side representing the two eigenvalues, and [cosθ, sinθ]T and [− sinθ, cosθ]T , the
corresponding eigenvectors. By solving the characteristic equation det(Q − λI)= 0, show
that the two eigenvalues of Q are given by:

λs = A2 + B2 + sD
2A2B2

, s = ±1

Thus, it follows from (2.14.1) that sin2φ/A′2 and sin2φ/B′2 must be identified with one or
the other of the two eigenvalues λs, λ−s. From Eq. (2.14.1) show the relationships:

λsλ−s = sin2φ
A2B2

,
1

A2
− cosφ

AB
τs = λ−s , 1

B2
+ cosφ

AB
τs = λs
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With the choice s = sign(A− B), show that the ellipse semi-axes are given by the following
equivalent expressions:

A′2 = A2 + τsAB cosφ = A2 − B2τ2
s

1− τ2
s

= 1

2

[
A2 + B2 + sD] = A2B2λs

B′2 = B2 − τsAB cosφ = B2 −A2τ2
s

1− τ2
s

= 1

2

[
A2 + B2 − sD] = A2B2λ−s

(2.14.4)

with the right-most expressions being equivalent to Eqs. (2.5.6). Show also the following:

A′2 + B′2 = A2 + B2 , A′B′ = AB| sinφ|

Using these relationships and the definition (2.5.9) for the angle χ, show that tanχ is equal
to the minor-to-major axis ratio B′/A′ or A′/B′, whichever is less than one.

Finally, for the special case A = B, by directly manipulating the polarization ellipse (2.5.4),
show that θ = π/4 and that A′, B′ are given by Eq. (2.5.10). Since τ = 1 in this case, the
left-most equations in (2.14.4) generate the same A′, B′. Show that one can also choose
θ = −π/4 or τ = −1, withA′, B′ reversing roles, but with the polarization ellipse remaining
the same.

2.16 Show the cross-product equation (2.5.11). Then, prove the more general relationship:

EEE(t1)×EEE(t2)= ẑAB sinφ sin
(
ω(t2 − t1)

)
Discuss how linear polarization can be explained with the help of this result.

2.17 Using the properties kcηc = ωμ and k2
c = ω2μεc for the complex-valued quantities kc, ηc

of Eq. (2.6.5), show the following relationships, where εc = ε′ − jε′′ and kc = β− jα:

Re
(
η−1
c
) = ωε′′

2α
= β
ωμ

2.18 Show that for a lossy medium the complex-valued quantities kc and ηc may be expressed as
follows, in terms of the loss angle θ defined in Eq. (2.6.27):

kc = β− jα =ω
√
με′d

(
cos

θ
2
− j sin

θ
2

)
(cosθ)−1/2

ηc = η′ + jη′′ =
√
μ
ε′d

(
cos

θ
2
+ j sin

θ
2

)
(cosθ)1/2

2.19 It is desired to reheat frozen mashed potatoes and frozen cooked carrots in a microwave oven
operating at 2.45 GHz. Determine the penetration depth and assess the effectiveness of this
heating method. Moreover, determine the attenuation of the electric field (in dB and absolute
units) at a depth of 1 cm from the surface of the food. The complex dielectric constants of
the mashed potatoes and carrots are (see [146]) εc = (65− j25)ε0 and εc = (75− j25)ε0.

2.20 We wish to shield a piece of equipment from RF interference over the frequency range from
10 kHz to 1 GHz by enclosing it in a copper enclosure. The RF interference inside the
enclosure is required to be at least 50 dB down compared to its value outside. What is the
minimum thickness of the copper shield in mm?

2.21 In order to protect a piece of equipment from RF interference, we construct an enclosure
made of aluminum foil (you may assume a reasonable value for its thickness.) The conduc-
tivity of aluminum is 3.5×107 S/m. Over what frequency range can this shield protect our
equipment assuming the same 50-dB attenuation requirement of the previous problem?
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2.22 A uniform plane wave propagating towards the positive z-direction in empty space has an
electric field at z = 0 that is a linear superposition of two components of frequencies ω1

and ω2:

E(0, t)= x̂ (E1ejω1t + E2ejω2t)

Determine the fields E(z, t) and H(z, t) at any point z.

2.23 An electromagnetic wave propagating in a lossless dielectric is described by the electric and
magnetic fields, E(z)= x̂E(z) and H(z)= ŷH(z), consisting of the forward and backward
components:

E(z) = E+e−jkz + E−ejkz

H(z) = 1

η
(E+e−jkz − E−ejkz)

a. Verify that these expressions satisfy all of Maxwell’s equations.

b. Show that the time-averaged energy flux in the z-direction is independent of z and is
given by:

Pz = 1

2
Re
[
E(z)H∗(z)

] = 1

2η
(|E+|2 − |E−|2)

c. Assuming μ = μ0 and ε = n2ε0, so that n is the refractive index of the dielectric, show
that the fields at two different z-locations, say at z = z1 and z = z2 are related by the
matrix equation:

[
E(z1)
η0H(z1)

]
=
[

coskl jn−1 sinkl
jn sinkl coskl

][
E(z2)
η0H(z2)

]

where l = z2 − z1, and we multiplied the magnetic field by η0 =
√
μ0/ε0 in order to

give it the same dimensions as the electric field.

d. Let Z(z)= E(z)
η0H(z)

and Y(z)= 1

Z(z)
be the normalized wave impedance and admit-

tance at location z. Show the relationships at at the locations z1 and z2 :

Z(z1)= Z(z2)+jn−1 tankl
1+ jnZ(z2)tankl

, Y(z1)= Y(z2)+jn tankl
1+ jn−1Y(z2)tankl

What would be these relationships if had we normalized to the medium impedance,
that is, Z(z)= E(z)/ηH(z)?

2.24 Show that the time-averaged energy density and Poynting vector of the obliquely moving
wave of Eq. (2.10.10) are given by

w = 1

2
Re
[1

2
εE · E∗ + 1

2
μH ·H∗] = 1

2
ε
(|A|2 + |B|2)

PPP = 1

2
Re
[
E×H∗]= ẑ′

1

2η
(|A|2 + |B|2)= (ẑ cosθ+ x̂ sinθ)

1

2η
(|A|2 + |B|2)

where ẑ′ = ẑ cosθ+ x̂ sinθ is the unit vector in the direction of propagation. Show that the
energy transport velocity is v =PPP/w = c ẑ′.
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2.25 A uniform plane wave propagating in empty space has electric field:

E(x, z, t)= ŷE0ejωte−jk(x+z)/
√

2 , k = ω
c0

a. Inserting E(x, z, t) into Maxwell’s equations, work out an expression for the corre-
sponding magnetic field H(x, z, t).

b. What is the direction of propagation and its unit vector k̂?

c. Working with Maxwell’s equations, determine the electric field E(x, z, t) and propaga-
tion direction k̂, if we started with a magnetic field given by:

H(x, z, t)= ŷH0ejωte−jk(
√

3z−x)/2

2.26 A linearly polarized light wave with electric field E0 at angle θ with respect to the x-axis
is incident on a polarizing filter, followed by an identical polarizer (the analyzer) whose
primary axes are rotated by an angle φ relative to the axes of the first polarizer, as shown
in Fig. 2.14.1.

Fig. 2.14.1 Polarizer–analyzer filter combination.

Assume that the amplitude attenuations through the first polarizer are a1, a2 with respect
to the x- and y-directions. The polarizer transmits primarily the x-polarization, so that
a2 � a1. The analyzer is rotated by an angle φ so that the same gains a1, a2 now refer to
the x′- and y′-directions.

a. Ignoring the phase retardance introduced by each polarizer, show that the polarization
vectors at the input, and after the first and second polarizers, are:

E0 = x̂ cosθ+ ŷ sinθ

E1 = x̂a1 cosθ+ ŷa2 sinθ

E2 = x̂′(a2
1 cosφ cosθ+ a1a2 sinφ sinθ)+ŷ′(a2

2 cosφ sinθ− a1a2 sinφ cosθ)

where {x̂′, ŷ′} are related to {x̂, ŷ} as in Problem 4.7.

b. Explain the meaning and usefulness of the matrix operations:

[
a1 0
0 a2

][
cosφ sinφ

− sinφ cosφ

][
a1 0
0 a2

][
cosθ
sinθ

]
and

[
cosφ − sinφ
sinφ cosφ

][
a1 0
0 a2

][
cosφ sinφ

− sinφ cosφ

][
a1 0
0 a2

][
cosθ
sinθ

]
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c. Show that the output light intensity is proportional to the quantity:

I =(a4
1 cos2 θ+ a4

2 sin2 θ)cos2φ+ a2
1a2

2 sin2φ+
+ 2a1a2(a2

1 − a2
2)cosφ sinφ cosθ sinθ

d. If the input light were unpolarized, that is, incoherent, show that the average of the
intensity of part (c) over all angles 0 ≤ θ ≤ 2π, will be given by the generalized Malus’s
law:

I = 1

2
(a4

1 + a4
2)cos2φ+ a2

1a2
2 sin2φ

The case a2 = 0, represents the usual Malus’ law.

2.27 First, prove the equivalence of the three relationships given in Eq. (2.12.11). Then, prove the
following identity between the angles θ,θ′:

(1− β cosθ)(1+ β cosθ′)= (1+ β cosθ)(1− β cosθ′)= 1− β2

Using this identity, prove the alternative Doppler formulas (2.12.12).

2.28 In proving the relativistic Doppler formula (2.12.14), it was assumed that the plane wave
was propagating in the z-direction in all three reference frames S, Sa, Sb. If in the frame S
the wave is propagating along the θ-direction shown in Fig. 2.12.2, show that the Doppler
formula may be written in the following equivalent forms:

fb = fa γb(1− βb cosθ)
γa(1− βa cosθ)

= faγ(1− β cosθa)= fa
γ(1+ β cosθb)

= fa
√

1− β cosθa
1+ β cosθb

where

βa = va
c
, βb = vb

c
, β = v

c
, γa = 1√

1− β2
a

, γb = 1√
1− β2

b

, γ = 1√
1− β2

and v is the relative velocity of the observer and source given by Eq. (2.12.7), and θa, θb
are the propagation directions in the frames Sa, Sb. Moreover, show the following relations
among these angles:

cosθa = cosθ− βa
1− βa cosθ

, cosθb = cosθ− βb
1− βb cosθ

, cosθb = cosθa − β
1− β cosθa

2.29 Ground-penetrating radar operating at 900 MHz is used to detect underground objects, as
shown in the figure below for a buried pipe. Assume that the earth has conductivity σ =
10−3 S/m, permittivity ε = 9ε0, and permeability μ = μ0. You may use the “weakly lossy
dielectric” approximation.

a. Determine the numerical value of the wavenumber k = β − jα in meters−1, and the
penetration depth δ = 1/α in meters.

b. Determine the value of the complex refractive index nc = nr − jni of the ground at
900 MHz.
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c. With reference to the above figure, explain why the electric field returning back to the
radar antenna after getting reflected by the buried pipe is given by

∣∣∣∣Eret

E0

∣∣∣∣
2

= exp

[
−4
√
h2 + d2

δ

]

where E0 is the transmitted signal, d is the depth of the pipe, and h is the horizontal
displacement of the antenna from the pipe. You may ignore the angular response of
the radar antenna and assume it emits isotropically in all directions into the ground.

d. The depth d may be determined by measuring the roundtrip time t(h) of the trans-
mitted signal at successive horizontal distances h. Show that t(h) is given by:

t(h)= 2nr
c0

√
d2 + h2

where nr is the real part of the complex refractive index nc.

e. Suppose t(h) is measured over the range −2 ≤ h ≤ 2 meters over the pipe and its
minimum recorded value is tmin = 0.2 μsec. What is the depth d in meters?


