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1. Vector and Matrix Norms

The three most widely used vector norms [1,2] are the L2 or Euclidean norm, the L1

and the L∞ norms, defined for a vector x ∈ RN by:

‖x‖2 =
√
|x1|2 + |x2|2 + · · · + |xN|2 =

√
xTx

‖x‖1 = |x1| + |x2| + · · · + |xN|
‖x‖∞ = max

(|x1|, |x2|, . . . , |xN|
) where x =

⎡
⎢⎢⎢⎢⎣
x1

x2
...
xN

⎤
⎥⎥⎥⎥⎦ (1.1)

All vector norms satisfy the triangle inequality :

‖x+ y‖ ≤ ‖x‖ + ‖y‖ , for x,y ∈ RN (1.2)

Unless otherwise specified, from now on the notation ‖x‖ will denote the Eu-
clidean norm. The Cauchy-Schwarz inequality for the Euclidean norm reads:∣∣xTy

∣∣ ≤ ‖x‖‖y‖ (1.3)

where equality is achieved when y is any scalar multiple of x, that is, y = cx. The
“angle” between the two vectors x,y is defined through:

cosθ = xTy

‖x‖‖y‖ (1.4)

AnN×M matrix A is a linear mapping from RM to RN, that is, for each x ∈ RM,
the vector y = Ax is in RN. For each vector norm, one can define a corresponding
matrix norm through the definition:

‖A‖ = sup
‖x‖�=0

‖Ax‖
‖x‖ = sup

‖x‖=1
‖Ax‖ (1.5)

We will see later that the Euclidean matrix norm ‖A‖2 is equal to the largest
singular value of the SVD decomposition of A, or equivalently, the square-root of
the largest eigenvalue of the matrix ATA or the matrix AAT. The L1 and L∞ matrix
norms can be expressed directly in terms of the matrix elements Aij of A:

‖A‖1 = max
j

∑
i
|Aij| = maximum of column-wise sums

‖A‖∞ = max
i

∑
j
|Aij| = maximum of row-wise sums

(1.6)

Another useful matrix norm—not derivable from a vector norm—is the Frobe-
nius norm defined to be the sum of the squares of all the matrix elements:

‖A‖F =
√∑

i, j
|Aij|2 =

√
tr
(
ATA)

)
(Frobenius norm) (1.7)
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The L2, L1, L∞, and the Frobenius matrix norms satisfy the matrix versions of
the triangle and Cauchy-Schwarz inequalities:

‖A+ B‖ ≤ ‖A‖ + ‖B‖
‖AB‖ ≤ ‖A‖‖B‖

(1.8)

The distance between two vectors, or between two matrices, may be defined with
respect to any norm:

d(x,y)= ‖x− y‖ , d(A,B)= ‖A− B‖ (1.9)

2. Subspaces, Bases, and Projections

A subset Y ⊆ RN is a linear subspace if every linear combination of vectors from Y
also lies in Y. The dimension of the subspace Y is the maximum number of linearly
independent vectors in Y.

If the dimension of Y is M, then, any set of M linearly independent vectors,
say {b1,b2, . . . ,bM}, forms a basis for Y. Each basis vector bi is an N-dimensional
vector, that is, it lies in RN. Because Y is a subset of RN, we must necessarily have
M ≤ N. Any vector in Y can be expanded uniquely as a linear combination of the
basis vectors, that is, for b ∈ Y:

b =
M∑
i=1

cibi = c1b1 + c2b2 + · · · cMbM = [b1,b2, . . . ,bM]

⎡
⎢⎢⎢⎢⎣
c1

c2
...
cM

⎤
⎥⎥⎥⎥⎦ = Bc (2.1)

where we defined the N×M basis matrix B = [b1,b2, . . . ,bM] and the M×1 vector
of expansion coefficients c = [c1, c2 . . . , cM]T.

Because the columns of B are linearly independent, B will have full rank equal
to M. It follows that the M×M matrix BTB will also have full rank† and, there-
fore, it will be invertible. This allows us to compute the expansion coefficients c.
Multiplying both sides of (2.1) by BT, we may solve for c :

BTb = BTBc ⇒ c = (BTB)−1BTb = B+b , B+ ≡ (BTB)−1BT (2.2)

The space spanned by the linear combinations of the columns of the matrix B
is called the column space or range space of B and is denoted by R(B). Because B
is a basis for Y, we will have Y = R(B). The matrix equation Bc = b given in (2.1)
is an overdetermined system of N equations in M unknowns that has a solution
because we assumed that b lies in the range space of B.

The quantity B+ = (BTB)−1BT is a special case of the Moore-Penrose pseudoin-
verse (for the case of a full rank matrix B with N ≥ M.) In MATLAB notation, the

†Indeed, BTBc = 0 ⇒ cTBTBc = ‖Bc‖2 = 0 ⇒ Bc = 0 ⇒ c = 0, because B has full rank.
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solution (2.2) is obtained via the backslash or the pseudoinverse operators (which
produce the same answer in the full-rank case):

c = B\b = pinv(B)∗b = B+b (2.3)

The matrix BTB ∈ RM×M is called the Grammian. Its matrix elements are the
mutual dot products of the basis vectors (BTB)ij= bTi bj, i, j = 1,2, . . . ,M.

The quantity P = BB+ = B(BTB)−1BT is the projection matrix onto the sub-
space Y. As a projection matrix, it is idempotent and symmetric, that is, P2 = P
and PT = P. The matrix Q = IN − P is also a projection matrix, projecting onto
the orthogonal complement of Y, that is, the space Y⊥ of vectors in RN that are
orthogonal to each vector in Y. Thus, we have:

P = BB+ = B(BTB)−1BT = projector onto Y

Q = IN − BB+ = IN − B(BTB)−1BT = projector onto Y⊥
(2.4)

They satisfy the properties BTQ = 0, PQ = QP = 0, and P +Q = IN. These
imply that the full space RN is the direct sum of Y and Y⊥. Moreover, the subspace
Y⊥ is the same as the null space N(BT) of BT. This follows from the property that
b⊥ ∈ Y⊥ if and only if BTb⊥ = 0. Thus, we have the decomposition:

Y ⊕Y⊥ = R(B)⊕N(BT)= RN (2.5)

The orthogonal decomposition theorem follows from (2.5). It states that a given
vector in RN can be decomposed uniquely with respect to a subspace Y into the
sum of a vector that lies in Y and a vector that lies in Y⊥, that is, for b ∈ RN:

b = b‖ + b⊥ , where b‖ ∈ Y , b⊥ ∈ Y⊥ (2.6)

so that bT⊥b‖ = 0. The proof is trivial; defining b‖ = Pb and b⊥ = Qb, we have:

b = INb = (P+Q)b = Pb+Qb = b‖ + b⊥

The uniqueness is argued as follows: setting b‖ + b⊥ = b′‖ + b′⊥ for a different
pair b′‖ ∈ Y, b′⊥ ∈ Y⊥, we have b‖−b′‖ = b′⊥−b⊥, which implies that both difference
vectors lie in Y ∩Y⊥ = {0}, and therefore, they must be the zero vector.

Fig. 2.1 Projection of b onto the subspace Y = R(B) spanned by B = [b1,b2].

Fig. 2.1 illustrates this theorem. An alternative proof is to expand b‖ in the B-
basis, that is, b‖ = Bc, and require that b⊥ = b− b‖ be perpendicular to Y, that is,
BTb⊥ = 0. Thus, we get the conditions:

b = Bc+ b⊥ ⇒ BTb = BTBc+ BTb⊥ = BTBc , or,

4



c = (BTB)−1BT b , b‖ = Bc = B(BTB)−1BT b = Pb (2.7)

A variation of the orthogonal decomposition theorem is the orthogonal projec-
tion theorem, which states that the projection b‖ is that vector in Y that lies closest
to b with respect to the Euclidean distance, that is, as the vector y ∈ Y varies over
Y, the distance ‖b− y‖ is minimized when y = b‖.

Fig. 2.2 illustrates the theorem. The proof is straightforward. We have b− y =
b‖ + b⊥ − y = (b‖ − y)+b⊥, but since both b‖ and y lie in Y, so does (b‖ − y) and
therefore, (b‖ − y)⊥ b⊥. It follows from the Pythagorean theorem that:

‖b− y‖2 = ‖(b‖ − y)+b⊥‖2 = ‖b‖ − y‖2 + ‖b⊥‖2

which is minimized when y = b‖. The minimized value of the distance is ‖b−b‖‖ =
‖b⊥‖. The orthogonal projection theorem provides an intuitive interpretation of
linear estimation problems and of least-squares solutions of linear equations.

Fig. 2.2 The projection b‖ minimizes the distance ‖b− y‖ to the subspace Y.

The basis B for the subspace Y is not unique. Any other set of M linearly
independent vectors in Y would do. The projector P remains invariant under a
change of basis. Indeed, suppose that another basis is defined by the basis matrix
U = [u1,u2, . . . ,uM] whoseM columns ui are assumed to be linearly independent.
Then, each bj can be expanded as a linear combination of the new basis vectors ui:

bj =
M∑
i=1

uicij , j = 1,2, . . . ,M (2.8)

These relationships may be expressed compactly in the matrix form:

B = UC (base change) (2.9)

where C is the M×M matrix of expansion coefficients cij. Because U and B have
full rank, the matrix C will be invertible (the ui’s can just as well be expressed in
terms of the bj’s.) It follows that BTB = CT(UTU)C and:

P = B(BTB)−1BT = UC(CT(UTU)C)−1CTUT

= UC(C−1(UTU)−1C−T
)
CTUT = U(UTU)−1UT

where C−T denotes the inverse of the transposed matrix CT. Among the possible
bases for Y, a convenient one is to choose the M vectors ui to have unit norm and
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be mutually orthogonal, that is, uTi uj = δij, for i, j = 1,2, . . . ,M. Compactly, we
may express this condition in terms of the basis matrix U = [u1,u2, . . . ,uM]:

UTU = IM (orthonormal basis) (2.10)

When U is orthonormal, the projection matrix P can be expressed simply as:

P = B(BTB)−1BT = U(UTU)−1UT = UUT (2.11)

There are many ways to construct the orthonormal basisU starting with B. One
is through the SVD implemented into the function orth. Another is through the QR-
factorization, which is equivalent to the Gram-Schmidt orthogonalization process.
The two alternatives are:

U = orth(B); % SVD-based

U = qr(B,0); % QR-factorization

Example 2.1: A three-dimensional subspace Y of R4 is spanned by the basis matrix B:

B =

⎡
⎢⎢⎢⎣

1.52 2.11 4.30
−1.60 −2.05 −4.30

2.08 2.69 3.70
−2.00 −2.75 −3.70

⎤
⎥⎥⎥⎦

The matrix B has rank 3, but non-orthogonal columns. The two orthogonal bases
obtained via the SVD and via the QR factorization are as follows:

B =

⎡
⎢⎢⎢⎣

0.5 0.5 −0.5
−0.5 −0.5 −0.5

0.5 −0.5 0.5
−0.5 0.5 0.5

⎤
⎥⎥⎥⎦
⎡
⎢⎣ 3.60 4.80 8.00
−0.48 −0.64 0.60

0.08 −0.06 0.00

⎤
⎥⎦ = U1C1

B =

⎡
⎢⎢⎢⎣
−0.4184 −0.5093 0.5617

0.4404 −0.4904 −0.5617
−0.5726 0.4875 −0.4295

0.5505 0.5122 0.4295

⎤
⎥⎥⎥⎦
⎡
⎢⎣ −3.6327 −4.8400 −7.8486

0.0000 −0.1666 −0.1729
0.0000 0.0000 1.6520

⎤
⎥⎦ = U2C2

The bases were constructed by the MATLAB commands:

[U1,S1,V1] = svd(B,0); C1 = S1*V1’; % alternatively, U1 = orth(B);
[U2,C2] = qr(B,0);

The orthogonal bases satisfy UT1U1 = UT2U2 = I3, and C2 is upper triangular. The
projection matrices onto Y and Y⊥ are:

P = U1UT1 =
1

4

⎡
⎢⎢⎢⎣

3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

⎤
⎥⎥⎥⎦ , Q = I4 −P = 1

4

⎡
⎢⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤
⎥⎥⎥⎦

The ranks of P,Q are the dimensions of the subspaces Y,Y⊥, that is, 3 and 1. ��
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3. The Fundamental Theorem of Linear Algebra

An N×M matrix A ∈ RN×M of rank r ≤ min{M,N} is characterized by four fun-
damental subspaces: the two range subspaces R(A) and R(AT) and the two null
subspaces N(A) and N(AT). These subspaces play a fundamental role in the SVD
of A and in the least-squares solution of the equation Ax = b.

The fundamental theorem of linear algebra [1,20] states that their dimensions
and orthogonality properties are as follows:

R(A), subspace of RN, dim = r, R(A)⊥= N(AT)
N(AT), subspace of RN, dim = N − r, N(AT)⊥= R(A)
R(AT), subspace of RM, dim = r, R(AT)⊥= N(A)
N(A), subspace of RM, dim =M − r, N(A)⊥= R(AT)

(3.1)

The dimensions of the two range subspaces are equal to the rank of A. The
dimensions of the null subspaces are called the nullity of A and AT. It follows that
the spaces RM and RN are the direct sums:

RN = R(A)⊕N(AT)= R(A)⊕R(A)⊥
RM = R(AT)⊕N(A)= R(AT)⊕R(AT)⊥ (3.2)

Their intersections are: R(A)∩N(AT)= {0} and R(AT)∩N(A)= {0}, that
is, the zero vector. Fig. 3.1 depicts these subspaces and the action of the matri-
ces A and AT. The fundamental theorem of linear algebra, moreover, states that
the singular value decomposition of A provides orthonormal bases for these four
subspaces and that A and AT become diagonal with respect to these bases.

Fig. 3.1 The four fundamental subspaces associated with an N×M matrix A.

4. Solving Linear Equations

Given an N×M matrix A ∈ RN×M of rank r ≤ min(N,M) and a vector b ∈ RN, the
linear system Ax = b may or may not have a solution x ∈ RM. A solution exists
only if the vector b lies in the range space R(A) of the matrix A.

However, there is always a solution in the least-squares sense. That solution may
not be unique. The properties of the four fundamental subspaces of A determine
the nature of the least-squares solutions [1].

Defining the error vector e = b−Ax, a least-squares solution is a vector x ∈ RM
that minimizes the Euclidean norm ‖e‖, that is,

J = ‖e‖2 = eTe = ‖b−Ax‖2 = (b−Ax)T(b−Ax)= min (4.1)
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The solution is obtained by setting the gradient of the performance index to zero:

∂J
∂x

= −2ATe = −2AT(b−Ax)= 0

Thus, we obtain the orthogonality and normal equations:

ATe = 0 (orthogonality equations)

ATAx = ATb (normal equations)
(4.2)

If the M×M matrix ATA has full rank, then it is invertible and the solution of
the normal equations is unique and is given by

x = (ATA)−1ATb (full-rank overdetermined case) (4.3)

This happens, for example, if N ≥M and r =M. In the special case of a square
full-rank matrix A (that is, r = N =M,) this solution reduces to x = A−1b.

For the rank-defective case, ATA is not invertible, but Eq. (4.2) does have solu-
tions. They can be characterized with the help of the four fundamental subspaces
of A, as shown in Fig. 4.1.

Fig. 4.1 Role of the fundamental subspaces in the least-squares solution of Ax = b.

Using the direct-sum decompositions (3.2), we resolve both b and x into their
unique orthogonal components:

b = b‖ + b⊥, b‖ ∈ R(A), b⊥ ∈ N(AT), b ∈ RN
x = x‖ + x⊥, x‖ ∈ R(AT), x⊥ ∈ N(A), x ∈ RM (4.4)

Because x⊥ lies in the null space of A, we have Ax⊥ = 0, and therefore, Ax =
A(x‖ + x⊥)= Ax‖. Then, the error vector becomes:

e = b−Ax = (b‖ −Ax‖
)+ b⊥ ≡ e‖ + e⊥ (4.5)

Because both b‖ andAx‖ lie inR(A), so does e‖ = b‖−Ax‖, and therefore, it will
be orthogonal to e⊥ = b⊥. Thus, Eq. (4.5) represents the orthogonal decomposition
of the error vector e. But from the orthogonality equations (4.2), we have ATe = 0,
which means that e ∈ N(AT), and therefore, e = e⊥. This requires that e‖ = 0, or,
Ax‖ = b‖. Because b‖ lies in R(A), this system will have a solution x‖.

Moreover, because x‖ ∈ R(AT), this solution will be unique. Indeed, if b‖ =
Ax‖ = Ax′‖, for another vector x′‖ ∈ R(AT), then A(x‖ − x′‖)= 0, or, x‖ − x′‖ would
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lie in N(A) in addition to lying in R(AT), and hence it must be the zero vector
because R(AT)∩N(A)= {0}. In fact, this unique x‖ may be constructed by the
pseudoinverse of A:

Ax‖ = b‖ ⇒ x‖ = A+b‖ = A+b (minimum-norm solution) (4.6)

An explicit expression for the pseudoinverse A+ will be given in Sec. 6 with the
help of the SVD of A. We will also show there that A+b‖ = A+b. In conclusion, the
most general solution of the least-squares problem (4.1) is given by:

x = A+b+ x⊥ (4.7)

where x⊥ is an arbitrary vector in N(A). The arbitrariness of x⊥ parametrizes the
non-uniqueness of the solution x.

The pseudoinverse solution x‖ is also recognized to be that particular solution
of the least-squares problem that has minimum norm. This follows from (4.4):

‖x‖2 = ‖x‖‖2 + ‖x⊥‖2 = ‖A+b‖2 + ‖x⊥‖2 (4.8)

which shows that the norm ‖x‖ is minimum when x⊥ = 0, or, when x = x‖. Fig. 4.1
illustrates this property.

The minimum-norm solution is computed by MATLAB’s built-in function pinv,
x‖ = pinv(A)∗b. The solution obtained by MATLAB’s backslash operator, x = A\b,
does not, in general, coincide with x‖. It has a term x⊥ chosen such that the resulting
vector x has at most r non-zero (and M− r zero) entries, where r is the rank of A.

We obtained the general least-squares solution by purely geometric means using
the orthogonality equation (4.2) and the orthogonal decompositions of x and b. An
alternative approach is to substitute (4.5) directly into the performance index and
use the fact that e‖ and e⊥ are orthogonal:

J = ‖e‖2 = ‖e‖‖2 + ‖e⊥‖2 = ‖b‖ −Ax‖‖2 + ‖b⊥‖2 (4.9)

This expression is minimized when Ax‖ = b‖, leading to the same general solu-
tion (4.7). The minimized value of the mean-square error is ‖b⊥‖2.

The full-rank case deserves special mention. There are three possibilities de-
pending on whether the system Ax = b is over-determined, under-determined, or
square. Then, one or both of the null subspaces consist only of the zero vector:

1. N > M, r =M, N(A)= {0}, R(AT)= RM, (over-determined)
2. M > N, r = N, N(AT)= {0}, R(A)= RN, (under-determined)
3. N =M, r = N, N(A)= {0}, N(AT)= {0}, (square, invertible)

The three cases are depicted in Fig. 4.2. In the over-determined case,N(A)= {0}
and therefore, the least-squares solution is unique x = x‖ and, as we saw earlier, is
given by x = (ATA)−1ATb. Comparing with (4.6), it follows that the pseudoinverse
is in this case A+ = (ATA)−1AT.

In the under-determined case, we have b = b‖, that is, b is in the range ofA, and
therefore, Ax = b does have a solution. There are more unknowns than equations,
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Fig. 4.2 Subspaces in the full-rank least-squares solutions of Ax = b.

and therefore, there is an infinity of solutions x = x‖ + x⊥. The minimum norm
solution can be constructed as follows.

Because x‖ ∈ R(AT), there is a coefficient vector c ∈ RN such that x‖ = ATc.
Then, the system reads b = Ax = Ax‖ = AATc. TheN×NmatrixAAT is invertible
because it has full rank r = N. Thus, we find c = (AAT)−1b and hence, x‖ = ATc =
AT(AAT)−1b. It follows that A+ = AT(AAT)−1.

Finally, in the square invertible case, we have x = A−1b. The three full-rank
cases may be summarized as follows:

1. N > M = r, x = A+b, A+ = (ATA)−1AT

2. M > N = r, x = A+b+ x⊥, A+ = AT(AAT)−1

3. N =M = r, x = A−1b, A+ = A−1

(4.10)

In the last two cases, the equation Ax = b is satisfied exactly. In the first case,
it is satisfied only in the least-squares sense.

Example 4.1: Solve the two systems of equations:{
x = 1
x = 2

and

{
2x = 2
x = 2

Solution: The least-squares minimization problems and their solutions are in the two cases:
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J = (x− 1)2+(x− 2)2= min ⇒ ∂J
∂x

= 2(x− 1)+2(x− 2)= 0 ⇒ x = 1.5

J = (2x− 2)2+(x− 2)2= min ⇒ ∂J
∂x

= 4(2x− 2)+2(x− 2)= 0 ⇒ x = 1.2

It may be surprising that the solutions are different since the first equations of the two
systems are the same, differing only by an overall scale factor. The presence of the
scale factor introduces an effective weighting of the performance index which alters
the relative importance of the squared terms. Indeed, the second performance index
may be rewritten as:

J = 4(x− 1)2+(x− 2)2

which assigns the weights 4:1 to the two terms, as opposed to the original 1:1. Gen-
eralizing this example, we may express the systems in the form Ax = b:

a1x = b1

a2x = b2
⇒

[
a1

a2

]
x =

[
b1

b2

]
, A =

[
a1

a2

]
, b =

[
b1

b2

]
(4.11)

This is recognized as an overdetermined full-rank case, which can be solved by the
pseudoinverse A+ = (ATA)−1AT. Noting that ATA = a2

1 + a2
2, we have:

[
a1

a2

]+
= [a1, a2]
a2

1 + a2
2

⇒ x = A+b = 1

a2
1 + a2

2
[a1, a2]

[
b1

b2

]
= a1b1 + a2b2

a2
1 + a2

2

The first system has [a1, a2]= [1,1] and [b1, b2]= [1,2], and the second system,
[a1, a2]= [2,1] and [b1, b2]= [2,2]. If we multiply both sides of Eq. (4.11) by the
weights w1,w2, we get the system and solution:[

w1a1

w2a2

]
x =

[
w1b1

w2b2

]
⇒ x = w2

1a1b1 +w2
2a2b2

w2
1a2

1 +w2
2a2

2
(4.12)

The differences between (4.11) and (4.12) can be explained by inspecting the corre-
sponding performance indices that are being minimized:

J = (a1x− b1)2+(a2x− b2)2 , J = w2
1(a1x− b1)2+w2

2(a2x− b2)2

The scale factors w1,w2 alter the relative weighting of the terms in J. ��

Example 4.2: Find the minimum norm solution, as well as the most general least-squares
solution of the system:

x1 + x2 = 2 � [1,1]
[
x1

x2

]
= [2] , A = [1,1], x =

[
x1

x2

]
, b = [2]
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Solution: This is an under-determined full-rank case. The minimum norm solution is com-
puted using the pseudoinverse A+ = AT(AAT)−1. We have, AAT = 2, therefore,

A+ = 1

2

[
1
1

]
=
[

0.5
0.5

]
⇒ x‖ = A+b =

[
0.5
0.5

]
[2]=

[
1
1

]

The most general vector in the one-dimensional null space of A has the form:

x⊥ =
[

z
−z

]
� [1,1]

[
z

−z
]
= 0 � Ax⊥ = 0

Therefore, the most general least-squares solution will have the form:

x = x‖ + x⊥ =
[

1
1

]
+
[

z
−z

]
=
[

1+ z
1− z

]

It is evident that the norm-square ‖x‖2 = (z+ 1)2+(z− 1)2= 2+ 2z2 is minimized

when z = 0. MATLAB’s backslash solution x = A\b =
[

2
0

]
is obtained when z = 1

and corresponds to the point of intersection of the line x1 + x2 = 2 with the x1 axis.
A geometrical picture of the general solution is shown in Fig. 4.3.

Fig. 4.3 The minimum norm solution is perpendicular to the straight line x1 + x2 = 2.

The equation x1+x2 = 2 is represented by a straight line on the x1x2 plane. Any point
on the line is a solution. In particular, the minimum-norm solution x‖ is obtained by
drawing the perpendicular from the origin to the line.

The direction of x‖ defines the 1-dimensional range space R(AT). The orthogonal
direction to R(AT), which is parallel to the line, is the direction of the 1-dimensional
null subspaceN(A). In the more general case, we may replace the given equation by:

a1x1 + a2x2 = b1 � [a1, a2]
[
x1

x2

]
= [b1], A = [a1, a2], b = [b1]

The pseudoinverse of A and the min-norm solution are:

A+ = AT(AAT)−1= 1

a2
1 + a2

2

[
a1

a2

]
, x‖ = A+b = 1

a2
1 + a2

2

[
a1b1

a2b1

]

Vectors in N(A) and the most general least-squares solution are given by:
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x⊥ = 1

a2
1 + a2

2

[
a2z

−a1z

]
, x = x‖ + x⊥ = 1

a2
1 + a2

2

[
a1b1 + a2z
a2b1 − a1z

]

It is easily verified that Ax⊥ = 0 and that ‖x‖2 is minimized when z = 0. ��

Example 4.3: The pseudoinverses of N-dimensional column and row vectors are:

a =

⎡
⎢⎢⎢⎢⎣
a1

a2

...
aN

⎤
⎥⎥⎥⎥⎦ ⇒ a+ = aT

‖a‖2
and aT = [a1, a2, . . . , aN] ⇒ (aT)+= a

‖a‖2

where ‖a‖2 = aTa = a2
1+a2

2+· · ·+a2
N. Thus, we obtain the minimum-norm solutions:

⎡
⎢⎢⎢⎢⎣
a1

a2

...
aN

⎤
⎥⎥⎥⎥⎦x =

⎡
⎢⎢⎢⎢⎣
b1

b2

...
bN

⎤
⎥⎥⎥⎥⎦ ⇒ x = a+b = aTb

aTa
= a1b1 + a2b2 + · · · + aNbN

a2
1 + a2

2 + · · · + a2
N

a1x1 + a2x2 + · · · + aNxN = b ⇒

⎡
⎢⎢⎢⎢⎣
x1

x2

...
xN

⎤
⎥⎥⎥⎥⎦ =

1

a2
1 + a2

2 + · · · + a2
N

⎡
⎢⎢⎢⎢⎣
a1

a2

...
aN

⎤
⎥⎥⎥⎥⎦b

5. The Singular Value Decomposition

Given an N×M matrix A∈RN×M of rank r ≤ min(N,M), the singular value de-
composition theorem [1] states that there exist orthogonal matrices U ∈ RN×N and
V ∈ RM×M such that A is factored in the form:

A = UΣVT (SVD) (5.1)

where Σ ∈ RN×M is an N×M diagonal matrix, partitioned in the form:

Σ =
[
Σr 0
0 0

]
(5.2)

with Σr a square diagonal matrix in Rr×r :

Σr = diag(σ1, σ2, . . . , σr) (5.3)

with positive diagonal entries called the singular values of A and arranged in de-
creasing order:

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 (5.4)
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The orthogonal matrices U,V are not unique, but the singular values σi are. To
clarify the structure of Σ and the blocks of zeros bordering Σr , we give below the
expressions for Σ for the case of a 6×4 matrix A of rank r = 1,2,3,4:⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 0 0
0 σ2 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 σ4

0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The orthogonality of U,V may be expressed by UTU = UUT = IN and VTV =
VVT = IM. These just mean the U has N orthonormal columns that form a com-
plete basis for RN, and V has M orthonormal columns that form a basis for RM.

Denoting the columns of U by ui, i = 1,2, . . . ,N, and the columns of V by vi,
i = 1,2, . . . ,M, we may partition U,V in a compatible way as in Eq. (5.2):

U = [u1,u2, . . . ,ur︸ ︷︷ ︸
Ur

,ur+1, . . . ,uN︸ ︷︷ ︸
Ũr

]= [Ur | Ũr]

V = [v1,v2, . . . ,vr︸ ︷︷ ︸
Vr

,vr+1, . . . ,vM︸ ︷︷ ︸
Ṽr

]= [Vr | Ṽr]
(5.5)

Then, Eq. (5.1) can be written in the form:

A = [Ur | Ũr]
[
Σr 0
0 0

][
VTr
ṼTr

]
= UrΣrVTr (5.6)

or, as a sum of r rank-1 matrices:

A =
r∑
i=1

σiuivTi = σ1u1vT2 +σ2u2vT2 + · · · +σrurvTr (5.7)

The submatrices have dimensions Ur ∈ RN×r , Ũr ∈ RN×(N−r), Vr ∈ RM×r , and
Ṽr ∈ RM×(M−r). The orthogonality and completeness properties of U,V may be
expressed equivalently in terms of these submatrices:

UTr Ur = Ir , ŨTr Ũr = IN−r , UTr Ũr = 0 , UrUTr + ŨrŨTr = IN
VTr Vr = Ir , ṼTr Ṽr = IM−r , VTr Ṽr = 0 , VrVTr + ṼrṼTr = IM

(5.8)

For example, we have:

UTU =
[
UTr Ur UTr Ũr
ŨTr Ur ŨTr Ũr

]
=
[
Ir 0
0 IN−r

]
= IN , UrUTr + ŨrŨTr = UUT = IN

The SVD of A provides also the SVD of AT, that is, AT = VΣTUT. The singular
values of AT coincide with those of A. The matrix ΣT has dimension M×N, but
since ΣTr = Σr , we have:

AT = VΣTUT = [Vr | Ṽr]
[
Σr 0
0 0

][
UTr
ŨTr

]
= VrΣrUTr (5.9)
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Although A and AT can be constructed only from Ur,Σr,Vr , the other subma-
trices Ũr, Ṽr are needed in order to characterize of the four fundamental subspaces
of A, and are needed also in the least-squares solutions.

Multiplying (5.6) from the right by Vr, Ṽr and multiplying (5.9) by Ur, Ũr and
using (5.8), we obtain:

AVr = UrΣrVTr Vr = UrΣr , AṼr = UrΣrVTr Ṽr = 0

ATUr = VrΣrUTr Ur = VrΣr , ATŨr = VrΣrUTr Ũr = 0

or, explicitly in terms of the basis vectors ui,vi:

AVr = UrΣr
AṼr = 0

ATUr = VrΣr
ATŨr = 0

�

Avi = σiui , i = 1,2, . . . , r
Avi = 0 , i = r + 1, . . . ,M
ATui = σivi , i = 1,2, . . . , r
ATui = 0 , i = r + 1, . . . ,N

(5.10)

These equations show that ui and vi, i = 1,2, . . . , r, lie in the range spaces R(A)
and R(AT), respectively. Moreover, they provide orthonormal bases for these two
subspaces. Similarly, vi, i = r+ 1, . . . ,M, and ui, i = r+ 1, . . . ,N, are bases for the
null subspaces N(A) and N(AT), respectively.

Thus, a second part of the fundamental theorem of linear algebra is that the
matrices Ur, Ũr,Vr, Ṽr provide orthonormal bases for the four fundamental sub-
spaces of A, and with respect to these bases, A has a diagonal form (the Σ). The
subspaces, their bases, and the corresponding projectors onto them are:

R(A)= span{Ur} , dim = r , UTr Ur = Ir , PR(A) = UrUTr
N(AT)= span{Ũr} , dim = N − r , ŨTr Ũr = IN−r , PN(AT) = ŨrŨTr
R(AT)= span{Vr} , dim = r , VTr Vr = Ir , PR(AT) = VrVTr
N(A)= span{Ṽr} , dim =M − r , ṼTr Vr = IM−r , PN(A) = ṼrṼTr

(5.11)

The vectors ui and vi are referred to as the left and right singular vectors of
A and are the eigenvectors of the matrices AAT and ATA, respectively. Indeed, it
follows from the orthogonality of U and V that:

ATA = VΣTUTUΣVT = V(ΣTΣ)VT , ΣTΣ =
[
Σ2
r 0

0 0

]
∈ RM×M

AAT = UΣVTVΣTUT = U(ΣΣT)UT , ΣΣT =
[
Σ2
r 0

0 0

]
∈ RN×N

(5.12)

It is evident from these thatV andU are the matrices of eigenvectors ofATA and
AAT and that the corresponding non-zero eigenvalues are λi = σ2

i , i = 1,2, . . . , r.
The ranks of ATA and AAT are equal to the rank r of A.

The SVD factors V,U could, in principle, be obtained by solving the eigenvalue
problems of ATA and AAT. However, in practice, loss of accuracy can occur in
squaring the matrixA. Methods of computing the SVD directly fromA are available.
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A simplified proof of the SVD is as follows. We assume that N ≥M and that A
has full rank r = M (the proof can easily be modified for the general case.) First,
we solve the eigenvalue problem of the matrix ATA:

ATA = VΛVT , Λ = diag(λ1, λ2, . . . , λM)∈ RM×M

BecauseATA has full rank, it will be strictly positive definite, its eigenvalues will
be positive, and the corresponding eigenvectors may be chosen to be orthonormal,
that is, VTV = VVT = IM. Arranging the eigenvalues in decreasing order, we define
σi =

√
λi, i = 1,2, . . . ,M, and Σ1 = Λ1/2 = diag(σ1, . . . , σM)∈ RM×M. Then, we

define U1 = AVΣ−1
1 , which is an N×M matrix with orthonormal columns:

UT1U1 = Σ−1
1 VT(ATA)VΣ−1

1 = Σ−1
1 VT(VΣ2

1VT)VΣ
−1
1 = IM

Next, we solve for A. We have U1Σ1 = AV, and U1Σ1VT = AVVT = A, or

A = U1Σ1VT (economy SVD) (5.13)

TheN×MmatrixU1 may be enlarged into anN×N orthogonal matrix by adjoin-
ing to it (N−M) orthonormal columns U2 such that UT2U1 = 0, and similarly, the
M×M diagonal matrix Σ1 may be enlarged into an N×M matrix Σ. Then, Eq. (5.13)
may be rewritten in the standard full SVD form:

A = U1Σ1VT = [U1 | U2]
[
Σ1

0

]
VT = UΣVT (5.14)

Eq. (5.13) is called the economy or thin SVD because the U1 matrix has the
same size as A but has orthonormal columns, and Σ1 has size M×M. For many
applications, such as SVD signal enhancement, the economy SVD is sufficient. In
MATLAB, the full and the economy SVDs are obtained with the calls:

[U,S,V] = svd(A); % full SVD

[U1,S1,V] = svd(A,0); % economy SVD

Example 5.1: To illustrate the loss of accuracy in forming ATA, consider the 4×3 matrix:

A =

⎡
⎢⎢⎢⎣

1 1 1
ε 0 0
0 ε 0
0 0 ε

⎤
⎥⎥⎥⎦ ⇒ ATA =

⎡
⎢⎣ 1+ ε2 1 1

1 1+ ε2 1
1 1 1+ ε2

⎤
⎥⎦

The matrixA remains full rank to orderO(ε), butATA requires that we work to order
O(ε2). The singular values of A are obtained from the eigenvalues of ATA:

λ1 = 3+ ε2, λ2 = λ3 = ε2 ⇒ σ1 =
√

3+ ε2, σ2 = σ2 = ε

The full SVD of A can be constructed along the lines described above. Starting with
the eigenproblem of ATA, we find:

A = UΣVT =

⎡
⎢⎢⎢⎣

3α 0 0 −δε
αε β γ δ
αε −β γ δ
αε 0 −2γ δ

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
σ1 0 0
0 σ2 0
0 0 σ3

0 0 0

⎤
⎥⎥⎥⎦
⎡
⎢⎣ a b c
a −b c
a 0 −2c

⎤
⎥⎦
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where a = 1√
3

, β = b = 1√
2

, γ = c = 1√
6

, α = 1√
3(3+ ε2)

, and δ = 1√
(3+ ε2)

. ��

Example 5.2: Consider the full SVD of the 4×2 matrix A:

A =

⎡
⎢⎢⎢⎣

0.5 1.0
1.1 0.2
1.1 0.2
0.5 1.0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0.5 0.5 −0.1 −0.7
0.5 −0.5 −0.7 0.1
0.5 −0.5 0.7 −0.1
0.5 0.5 0.1 0.7

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

2 0
0 1
0 0
0 0

⎤
⎥⎥⎥⎦
[

0.8 −0.6
0.6 0.8

]T
= UΣVT

Its economy SVD is:

A =

⎡
⎢⎢⎢⎣

0.5 1.0
1.1 0.2
1.1 0.2
0.5 1.0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0.5 0.5
0.5 −0.5
0.5 −0.5
0.5 0.5

⎤
⎥⎥⎥⎦
[

2 0
0 1

][
0.8 −0.6
0.6 0.8

]T

The choice of the last two columns of U is not unique. They can be transformed by
any 2×2 orthogonal matrix without affecting the SVD. For example, v5.3 of MATLAB
produces the U matrix:

U =

⎡
⎢⎢⎢⎣

0.5 0.5 −0.1544 −0.6901
0.5 −0.5 −0.6901 0.1544
0.5 −0.5 0.6901 −0.1544
0.5 0.5 0.1544 0.6901

⎤
⎥⎥⎥⎦

The last two columns of the two Us are related by the 2×2 orthogonal matrix C:⎡
⎢⎢⎢⎣
−0.1544 −0.6901
−0.6901 0.1544

0.6901 −0.1544
0.1544 0.6901

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
−0.1 −0.7
−0.7 0.1

0.7 −0.1
0.1 0.7

⎤
⎥⎥⎥⎦C , C =

[
0.9969 −0.0781
0.0781 0.9969

]

where CTC = I2. ��

Complex-Valued Case

The SVD of a complex-valued matrix A ∈ CN×M takes the form:

A = UΣV† (5.15)

where † denotes the Hermitian-conjugate, or conjugate-transpose, V† = V∗T. The
matrix Σ is exactly as in the real case, and U,V are unitary matrices U ∈ CN×N and
V ∈ CM×M, that is,

UU† = U†U = IN, VV† = V†V = IM (5.16)
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Maximization Criterion for the SVD

The singular values and singular vectors of a matrixA of rank r can be characterized
by the following maximization criterion [87].

First, the maximum singular value σ1 and singular vectors u1,v1 are the solu-
tions of the maximization criterion:†

σ1 = max
‖u‖=1

max
‖v‖=1

u†Av = u†1Av1 (5.17)

Then, the remaining singular values and vectors are the solutions of the criteria:

σi = max
‖u‖=1

max
‖v‖=1

u†Av = u†i Avi , i = 2, . . . , r

subject to the constraints: u†uj = v†vj = 0 , j = 1,2, . . . , i− 1
(5.18)

The proof is straightforward. Using the Cauchy-Schwarz inequality and the con-
straints ‖u‖ = ‖v‖ = 1, and that the Euclidean norm of A is σ1, we have:

|u†Av| ≤ ‖u‖‖A‖‖v‖ = ‖A‖ = σ1

with the equality being realized when u = u1 and v = v1.
For the next singular value σ2, we must maximize u†Av over all vectors u,v

that are orthogonal to u1,v1, that is, u†u1 = v†v1 = 0. Using the SVD of A, we may
separate the contribution of u1,v1:

A = σ1u1v†1 +
r∑
i=2

σ1uiv
†
i ≡ σ1u1v†1 +A2

Then, the constraints imply that u†Av = u†(σ1u1v†1+A2)v = u†A2v. But from
the previous result, the maximum of this quantity is the maximum singular value
of A2, that is, σ2, and this maximum is realized when u = u2 and v = v2. Then we
repeat this argument by separating out the remaining singular terms σiuiv

†
i one at

a time, till we exhaust all the singular values.
This theorem is useful in canonical correlation analysis and in characterizing

the angles between subspaces.

6. Moore-Penrose Pseudoinverse

For a full-rank N×N matrix with SVD A = UΣVT, the ordinary inverse is obtained
by inverting the SVD factors and writing them in reverse order:

A−1 = V−TΣ−1U−1 = VΣ−1UT (6.1)

where we used the orthogonality properties to write V−T = V and U−1 = UT. For
an N×M rectangular matrix with defective rank r, Σ−1 cannot be defined even if it

†The quantity u†Av could just as well be replaced by its absolute value |u†Av| in (5.17) and (5.18).

18



were square because some of its singular values are zero. For a scalar x, we may
define its pseudoinverse by:

x+ =
{
x−1, if x ≠ 0

0, if x = 0
(6.2)

For a square M×M diagonal matrix, we define its pseudoinverse to be the diag-
onal matrix of the pseudoinverses:

Σ = diag(σ1, σ2, . . . , σM) ⇒ Σ+ = diag(σ+1 , σ+2 , . . . , σ+M) (6.3)

And, for an N×M rectangular diagonal matrix of r non-zero singular values
Σ ∈ RN×M, we define its pseudoinverse to be theM×N diagonal matrixΣ+ ∈ RM×N:

Σ =
[
Σr 0
0 0

]
∈ RN×M ⇒ Σ+ =

[
Σ−1
r 0
0 0

]
∈ RM×N (6.4)

The pseudoinverse of an N×M matrix A is defined by replacing Σ−1 in Eq. (6.1)
by Σ+, that is, if A = UΣVT ∈ RN×M, then A+ ∈ RM×N:

A+ = VΣ+UT (Moore-Penrose pseudoinverse) (6.5)

Equivalently, using the block-matrix form (5.6), we have:

A = [Ur | Ũr]
[
Σr 0
0 0

][
VTr
ṼTr

]
= UrΣrVTr

A+ = [Vr | Ṽr]
[
Σ−1
r 0
0 0

][
UTr
ŨTr

]
= VrΣ−1

r UTr

(6.6)

Eqs. (6.6) can be written as sums of r rank-1 matrices:

A =
r∑
i=1

σiuivTi = σ1u1vT1 +σ2u2vT2 + · · · +σrurvTr

A+ =
r∑
i=1

1

σi
viu

T
i =

1

σ1
v1uT1 +

1

σ2
v2uT2 + · · · +

1

σr
vru

T
r

(6.7)

The matrix A+ satisfies (and is uniquely determined by) the four standard Pen-
rose conditions [1]:

AA+A = A, (AA+)T= AA+
A+AA+ = A+ , (A+A)T= A+A (6.8)

These conditions are equivalent to the fact thatAA+ andA+A are the projectors
onto the range spaces R(A) and R(AT), respectively. Indeed, using the definition
(6.6) and Eq. (5.11), we have:

PR(A) = UrUTr = AA+ , PR(AT) = VrVTr = A+A (6.9)

It is straightforward also to verify the three expressions forA+ given by Eq. (4.10)
for the full-rank cases. For example, if N > M = r, the matrix Vr is square and
orthogonal, so that ATA = VrΣ2

rVTr is invertible, (ATA)−1= VrΣ−2
r VTr . Thus,

(ATA)−1AT = (VrΣ−2
r VTr

)(
VrΣrUTr

) = VrΣ−1
r UTr = A+
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7. Least-Squares Problems and the SVD

Having defined the pseudoinverse and convenient bases for the four fundamental
subspaces of A, we may revisit the least-squares solution of the system Ax = b.

First, we show that the solution of Ax‖ = b‖ is, indeed, given by the pseudoin-
verse A+ acting directly on b. By definition, we have b‖ = PR(A)b. Using the SVD
of A and the projectors (6.9), we have:

Ax‖ = b‖ ⇒ UrΣrVTr x‖ = UrUTr b ⇒ VTr x‖ = Σ−1
r UTr b

where we multiplied both sides of the second equation by UTr and divided by Σr to
get the third. Multiplying from the left by Vr and using (6.6), we find:

VrVTr x‖ = VrΣ−1
r UTr b = A+b

but we have x‖ = VrVTr x‖, which follows from (VrVTr )2= VrVTr , that is, x‖ =
VrVTr x = VrVTr (VrVTr x)= VrVTr x‖. Thus, we find x‖ = A+b. Using (6.8) and (6.9),
we also have A+b = (A+AA+)b = A+(AA+b)= A+b‖. Thus, we have shown:

x‖ = A+b‖ = A+b (minimum-norm solution) (7.1)

or, explicitly in terms of the non-zero singular values:

x‖ = A+b = VrΣ−1
r UTr b =

r∑
i=1

1

σi
vi u

T
i b (7.2)

We recall that the most general least-squares solution of Ax = b is given by
x = x‖+x⊥, where x⊥ ∈ N(A). We can give an explicit construction of x⊥ by noting
that Ṽr is an orthonormal basis forN(A). Therefore, we may write x⊥ = Ṽrz, where
z is an (M − r)-dimensional column vector of expansion coefficients, that is,

x⊥ =
M∑

i=r+1

zivi = [vr+1,vr+2, . . . ,vM]

⎡
⎢⎢⎢⎢⎣
zr+1

zr+2
...
zM

⎤
⎥⎥⎥⎥⎦ = Ṽrz

Because x⊥ is arbitrary, so is z. Thus, the most general solution of the least-
squares problem can be written in the form [1]:

x = x‖ + x⊥ = A+b+ Ṽrz , for arbitrary z ∈ RM−r (7.3)

The error vector is:

e = e⊥ = b⊥ = PN(AT)b = ŨrŨTr b = (IN −UrUTr )b = (IN −AA+)b
and the minimized value of the least-squares performance index:

Jmin = ‖e‖2 = bT(IN −AA+)b (7.4)
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where we used the property (IN −AA+)T(IN −AA+)= (IN −AA+), which can be
proved directly using (6.8). Indeed,

(IN−AA+)T(IN−AA+)= IN−2AA++AA+AA+ = IN−2AA++AA+ = IN−AA+

Example 7.1: Here, we revisit Example 4.2 from the point of view of Eq. (7.3). The full and
economy SVD of A = [a1, a2] are:

A = [a1, a2]= [1][σ1,0]
[
a1/σ1 −a2/σ1

a2/σ1 a1/σ1

]T
= [1][σ1]

[
a1/σ1

a2/σ1

]T

with the singular value σ1 =
√
a2

1 + a2
2. Thus, the pseudoinverse of A and the basis

Ṽr of N(A) will be:

A+ = [a1, a2]+=
[
a1/σ1

a2/σ1

]
[σ−1

1 ][1]T= 1

σ2
1

[
a1

a2

]
, Ṽr = 1

σ1

[
−a2

a1

]

It follows from (7.3) that the most general solution of a1x1 + a2x2 = b1 will be:

[
x1

x2

]
= A+[b1]+ 1

σ1

[
−a2

a1

]
z = 1

σ2
1

[
a1

a2

]
b1 + 1

σ1

[
−a2

a1

]
z

which is equivalent to that given in Example 4.2 up to a redefinition of z. ��
Example 7.2: Find the most general solution of the following linear system, and in partic-

ular, find the minimum-norm and MATLAB’s backslash solutions:

Ax =

⎡
⎢⎢⎢⎣

1.8 2.4 4.0
−1.8 −2.4 −4.0

1.8 2.4 4.0
−1.8 −2.4 −4.0

⎤
⎥⎥⎥⎦
⎡
⎢⎣ x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

10
20
30
40

⎤
⎥⎥⎥⎦ = b

A possible SVD of A is as follows:

A = UΣVT =

⎡
⎢⎢⎢⎣

0.5 0.5 −0.5 0.5
−0.5 −0.5 −0.5 0.5

0.5 −0.5 0.5 0.5
−0.5 0.5 0.5 0.5

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

10 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎦
⎡
⎢⎣ 0.36 −0.48 0.8

0.48 −0.64 −0.6
0.80 0.60 0.0

⎤
⎥⎦
T

The matrix A has rank one, so that the last three columns of U and the last two
columns of V are not uniquely defined. The pseudoinverse of A will be:

A =

⎡
⎢⎢⎢⎣

0.5
−0.5

0.5
−0.5

⎤
⎥⎥⎥⎦ [10][0.36,0.48,0.80] , A+ =

⎡
⎢⎣ 0.36

0.48
0.80

⎤
⎥⎦ [10−1][0.5,−0.5,0.5,−0.5]

Therefore, the minimum-norm solution is:

x‖ = A+b =
⎡
⎢⎣ 0.36

0.48
0.80

⎤
⎥⎦ [10−1][0.5,−0.5,0.5,−0.5]

⎡
⎢⎢⎢⎣

10
20
30
40

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣ −0.36
−0.48
−0.80

⎤
⎥⎦
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The term Ṽrz of Eq. (7.3) depends on the two last columns ofV, where z is an arbitrary
two-dimensional vector. Thus, the most general least-squares solution is:

x =
⎡
⎢⎣ −0.36
−0.48
−0.80

⎤
⎥⎦+

⎡
⎢⎣ −0.48 0.80
−0.64 −0.60

0.60 0.00

⎤
⎥⎦
[
z1

z2

]
=
⎡
⎢⎣ −0.36− 0.48z1 + 0.80z2

−0.48− 0.64z1 − 0.60z2

−0.80+ 0.60z1

⎤
⎥⎦

MATLAB’s backslash solution is obtained by fixing z1, z2 such that x will have at most
one nonzero entry. For example, demanding that the top two entries be zero, we get:

−0.36− 0.48z1 + 0.80z2 = 0
−0.48− 0.64z1 − 0.60z2 = 0

⇒ z1 = −0.75 , z2 = 0

which gives −0.8+ 0.6z1 = −1.25, and therefore, x = [0,0,−1.25]T. This is indeed
MATLAB’s output of the operation A\b. ��

8. Condition Number

The condition number of a full-rank N×N matrix A is given by:

κ(A)= ‖A‖2‖A−1‖2 = σmax

σmin
(8.1)

where σmax, σmin are the largest and smallest singular values of A, that is, σ1, σN.
The last equation of (8.1) follows from ‖A‖2 = σ1 and ‖A−1‖2 = σ−1

N .
The condition number characterizes the sensitivity of the solution of a linear

system Ax = b to small changes in A and b. Taking differentials of both sides of
the equation Ax = b, we find:

Adx+ (dA)x = db ⇒ dx = A−1[db− (dA)x]
Taking (the Euclidean) norms of both sides, we have:

‖dx‖ ≤ ‖A−1‖‖db− (dA)x‖ ≤ ‖A−1‖[‖db‖ + ‖dA‖‖x‖]
Using the inequality ‖b‖ = ‖Ax‖ ≤ ‖A‖‖x‖, we get:

‖dx‖
‖x‖ ≤ κ(A)

[‖dA‖
‖A‖ + ‖db‖

‖b‖
]

(8.2)

Large condition numbers result in a highly sensitive system, that is, small changes
in A and b may result in very large changes in the solution x. Large condition num-
bers, κ(A)� 1, imply that σ1 � σN, or that A is nearly singular.

Example 8.1: Consider the matrix A, which is very close to the singular matrix A0:

A =
[

10.0002 19.9999
4.9996 10.0002

]
, A0 =

[
10 20

5 10

]
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Its SVD is:

A =
[ √

0.8 −√0.2√
0.2

√
0.8

][
25.0000 0.0000
0.0000 0.0005

][ √
0.2 −√0.8√
0.8

√
0.2

]T
= UΣVT

Its condition number is κ(A)= σ1/σ2 = 25/0.0005 = 50000. Computing the solu-
tions of Ax = b for three slightly different b’s, we find:

b1 =
[

10.00
5.00

]
⇒ x1 = A\b1 =

[
0.2
0.4

]

b2 =
[

10.00
5.01

]
⇒ x2 = A\b2 =

[
−15.79992

8.40016

]

b3 =
[

10.01
5.00

]
⇒ x3 = A\b3 =

[
8.20016

−3.59968

]

The solutions are exact in the decimal digits shown. Even though the b’s differ only
slightly, there are very large differences in the x’s. ��

9. Reduced-Rank Approximation

The Euclidean and Frobenius matrix norms of an N×M matrix A of rank r can be
expressed conveniently in terms of the singular values of A:

‖A‖2 = σ1 = maximum singular value

‖A‖F = (σ2
1 +σ2

2 + · · · +σ2
r )1/2

(9.1)

Associated with the SVD expansion (5.7), we define a family of reduced-rank
matrices Ak obtained by keeping only the first k terms in the expansion:

Ak =
k∑
i=1

σiuivTi = σ1u1vT1 +σ2u2vT2 + · · ·σkukvTk , k = 1,2, . . . , r (9.2)

Clearly,Ak has rank k, and when k = r, we haveAr = A. In terms of the original
full SVD of A, we can write:

Ak = U
[
Σk 0
0 0

]
VT , Σk = diag(σ1, σ2, . . . , σk, 0, . . . ,0︸ ︷︷ ︸

r−k zeros

)∈ Rr×r (9.3)

Thus,A andAk agree in their highest k singular values, but the last r−k singular
values of A, that is, σk+1, . . . , σr , have been replaced by zeros in Ak. The matrices
Ak play a special role in constructing reduced-rank matrices that approximate the
original matrix A.

The reduced-rank approximation theorem [1] states that within the set of N×M
matrices of rank k (we assume k < r), the matrix B that most closely approximates
A in the Euclidean (or the Frobenius) matrix norm is the matrix Ak, that is, the
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distance ‖A− B‖ is minimized over the rank-k N×M matrices when B = Ak. The
minimized matrix distance is:

‖A−Ak‖2 = σk+1

‖A−Ak‖F = (σ2
k+1 + · · · +σ2

r )1/2 (9.4)

This theorem is an essential tool in signal processing, data compression, statis-
tics, principal component analysis, and other applications, such as chaotic dynam-
ics, meteorology, and oceanography.

In remarkably many applications the matrix A has full rank but its singular
values tend to cluster into two groups, those that are large and those that are small ,
that is, assuming N ≥M, we group the M singular values into:

σ1 ≥ σ2 ≥ · · · ≥ σr︸ ︷︷ ︸
large group

� σr+1 ≥ · · · ≥ σM︸ ︷︷ ︸
small group

(9.5)

Fig. 9.1 illustrates the typical pattern. A similar pattern arises in the practical
determination of the rank of a matrix. To infinite arithmetic precision, a matrix A
may have rank r, but to finite precision, the matrix might acquire full rank. However,
its lowest M − r singular values are expected to be small.

Fig. 9.1 Signal subspace vs. noise subspace singular values.

The presence of a significant gap between the large and small singular values
allows us to define an effective or numerical rank for the matrix A.

In least-squares solutions, the presence of small non-zero singular values may
cause inaccuracies in the computation of the pseudoinverse. If the last (M − r)
small singular values in (9.5) are kept, then A+ would be given by (6.7):

A+ =
r∑
i=1

1

σi
viu

T
i +

M∑
i=r+1

1

σi
viu

T
i

and the last (M−r) terms would tend to dominate the expression. For this reason,
the rank and the pseudoinverse can be determined with respect to a threshold level
or tolerance, say, δ such that if σi ≤ δ, for i = r + 1, . . . ,M, then these singular
values may be set to zero and the effective rank will be r. MATLAB’s functions rank
and pinv allow the user to specify any desired level of tolerance.
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Example 9.1: Consider the matrices:

A =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ , Â =

⎡
⎢⎢⎢⎣

0.9990 −0.0019 −0.0008 −0.0004
0.0037 0.9999 0.0009 −0.0005
0.0008 −0.0016 0.0010 −0.0002
−0.0007 0.0004 0.0004 −0.0006

⎤
⎥⎥⎥⎦

where the second was obtained by adding small random numbers to the elements of
the first using the MATLAB commands:

A = zeros(4); A(1,1)=1; A(2,2)=1; % define the matrix A
Ahat = A + 0.001 * randn(size(A));

The singular values of the two matrices are:

σi = [1.0000, 1.0000, 0.0000, 0.0000]
σ̂i = [1.0004, 0.9984, 0.0012, 0.0005]

Although A and Â are very close to each other, and so are the two sets of singular
values, the corresponding pseudoinverses differ substantially:

A+ =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ , Â+ =

⎡
⎢⎢⎢⎣

0.9994 0.0043 1.1867 −1.0750
−0.0035 0.9992 −0.6850 −0.5451
−1.1793 2.0602 1165.3515 −406.8197
−1.8426 1.8990 701.5460 −1795.6280

⎤
⎥⎥⎥⎦

This would result in completely inaccurate least-squares solutions. For example,

b =

⎡
⎢⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎥⎦ ⇒ x = A+b =

⎡
⎢⎢⎢⎣

1
2
0
0

⎤
⎥⎥⎥⎦ , x̂ = Â+b =

⎡
⎢⎢⎢⎣

0.2683
−2.2403

1871.7169
−5075.9187

⎤
⎥⎥⎥⎦

On the other hand, if we define Â+ = pinv(A,δ) with a tolerance of δ = 10−2, which
amounts to setting σ̂3 = σ̂4 = 0, we get acceptable results:

A+ =

⎡
⎢⎢⎢⎣

1.0010 0.0020 0.0008 −0.0007
−0.0037 1.0001 −0.0016 0.0004
−0.0008 0.0009 −0.0000 0.0000
−0.0004 −0.0005 0.0000 0.0000

⎤
⎥⎥⎥⎦ ⇒ x̂ = Â+b =

⎡
⎢⎢⎢⎣

1.0043
1.9934
0.0010

−0.0014

⎤
⎥⎥⎥⎦

To avoid such potential pitfalls in solving least squares problems, one may calculate
first the singular values of A and then make a decision as to the rank of A. ��

In the previous example, we saw that a small change inA caused a small change
in the singular values. The following theorem [3] establishes this property formally.
If A and Â are N×M matrices with N ≥M, then their singular values differ by:

max
1≤i≤M

|σ̂i −σi| ≤ ‖Â−A‖2

M∑
i=1

|σ̂i −σi|2 ≤ ‖Â−A‖2
F

(9.6)
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In signal processing applications, we think of the large group of singular values
as arising from a desired signal or dynamics, and the small group as arising from
noise. Often, the choice of the r that separates the large from the small group is
unambiguous. Sometimes, it is ambiguous and we may need to choose it by trial
and error. Replacing the original matrix A by its rank-r approximation tends to
reduce the effects of noise and enhance the desired signal.

The construction procedure for the rank-r approximation is as follows. Assum-
ing N ≥M and starting with the economy SVD of A, we may partition the singular
values according to (9.5):

A = [Ur | Ũr]
[
Σr 0

0 Σ̃r

][
VTr
ṼTr

]
= UrΣrVTr + ŨrΣ̃rṼTr = Ar + Ãr (9.7)

where Σr = diag(σ1, . . . , σr) and Σ̃r = diag(σr+1, . . . , σM), and we set

Ar = [Ur | Ũr]
[
Σr 0
0 0

][
VTr
ṼTr

]
= UrΣrVTr

Ãr = [Ur | Ũr]
[

0 0

0 Σ̃r

][
VTr
ṼTr

]
= ŨrΣ̃rṼTr

(9.8)

where Ur ∈ RN×r , Ũr ∈ RN×(M−r), Vr ∈ RM×r , Ṽr ∈ RM×(M−r).
We will refer toAr as the “signal subspace” part ofA and to Ãr as the “noise sub-

space” part. The two parts are mutually orthogonal, that is, ATr Ãr = 0. Similarly,
Σr and Σ̃r are called the signal subspace and noise subspace singular values.

Example 9.2: Consider the following 4×3 matrix:

A =

⎡
⎢⎢⎢⎣
−0.16 −0.13 6.40

0.08 0.19 −6.40
3.76 4.93 1.60
−3.68 −4.99 −1.60

⎤
⎥⎥⎥⎦

Its full SVD is:

UΣVT =

⎡
⎢⎢⎢⎣

0.5 0.5 −0.5 0.5
−0.5 −0.5 −0.5 0.5

0.5 −0.5 0.5 0.5
−0.5 0.5 0.5 0.5

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

10 0 0
0 8 0
0 0 0.1
0 0 0

⎤
⎥⎥⎥⎦
⎡
⎢⎣ 0.36 −0.48 0.80

0.48 −0.64 −0.60
0.80 0.60 0.00

⎤
⎥⎦
T

The economy SVD is:

A =

⎡
⎢⎢⎢⎣

0.5 0.5 −0.5
−0.5 −0.5 −0.5

0.5 −0.5 0.5
−0.5 0.5 0.5

⎤
⎥⎥⎥⎦
⎡
⎢⎣ 10 0 0

0 8 0
0 0 0.1

⎤
⎥⎦
⎡
⎢⎣ 0.36 −0.48 0.80

0.48 −0.64 −0.60
0.80 0.60 0.00

⎤
⎥⎦
T

The singular values are {σ1, σ2, σ3} = {10, 8, 0.1}. The first two are “large” and we
attribute them to the signal part, whereas the third is “small” and we assume that it
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is due to noise. The matrix Amay be replaced by its rank-2 version by setting σ3 = 0.
The resulting signal subspace part of A is:

Ar =

⎡
⎢⎢⎢⎣

0.5 0.5 −0.5
−0.5 −0.5 −0.5

0.5 −0.5 0.5
−0.5 0.5 0.5

⎤
⎥⎥⎥⎦
⎡
⎢⎣ 10 0 0

0 8 0
0 0 0

⎤
⎥⎦
⎡
⎢⎣ 0.36 −0.48 0.80

0.48 −0.64 −0.60
0.80 0.60 0.00

⎤
⎥⎦
T

which gives:

Ar =

⎡
⎢⎢⎢⎣
−0.12 −0.16 6.40

0.12 0.16 −6.40
3.72 4.96 1.60
−3.72 −4.96 −1.60

⎤
⎥⎥⎥⎦

The full SVD of Ar , and the one generated by MATLAB are:

Ar =

⎡
⎢⎢⎢⎣

0.5 0.5 −0.5 0.5
−0.5 −0.5 −0.5 0.5

0.5 −0.5 0.5 0.5
−0.5 0.5 0.5 0.5

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

10 0 0
0 8 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎦
⎡
⎢⎣ 0.36 −0.48 0.80

0.48 −0.64 −0.60
0.80 0.60 0.00

⎤
⎥⎦
T

Ar =

⎡
⎢⎢⎢⎣

0.5 0.5 −0.6325 −0.3162
−0.5 −0.5 −0.6325 −0.3162

0.5 −0.5 −0.3162 0.6325
−0.5 0.5 −0.3162 0.6325

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

10 0 0
0 8 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎦
⎡
⎢⎣ 0.36 −0.48 0.80

0.48 −0.64 −0.60
0.80 0.60 0.00

⎤
⎥⎦
T

As usual, the last two columns of the U’s are related by a 2×2 orthogonal matrix. ��
The OSP MATLAB function sigsub constructs both the signal and noise sub-

space parts of a matrix. It has usage:

[As,An] = sigsub(A,r); % r = desired rank

Signal processing methods based on rank reduction are collectively referred to
as “SVD signal enhancement methods,” or “reduced-rank signal processing meth-
ods,” or simply, “subspace methods.” A number of applications are presented in
Refs. [25–63]. We will discuss several of these later on.

One of the earliest applications of such methods was in image compression
[62,63], essentially via the Karhunen-Loève transform. A typical black and white
image is represented by a squareN×Nmatrix, whereN depends on the resolution,
but typical values are N = 256,512,1024. A color image is represented by three
such matrices, one for each primary color (red, green, blue.)

The N singular values of an image matrix drop rapidly to zero. Keeping only
the r largest singular values leads to the approximation:

Ar = σ1u1vT1 +σ2u2vT2 + · · · +σrurvTr
Data compression arises because each term in the expansion requires the stor-

age of 2N coefficients, that is, N coefficients for each of the vectors σiui and vi.
Thus, the total number of coefficients to be stored is 2Nr. Compression takes place
as long as this is less than N2, the total number of matrix elements of the original
image. Thus, we require 2Nr < N2 or r < N/2. In practice, typical values of r that
work well are of the order of N/6 to N/5.
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Example 9.3: Fig. 9.2 shows the singular values of a 512×512 image. They were computed
by first removing the column means of the image and then performing a full SVD. The
singular values become small after the first 100.
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Fig. 9.2 Singular values of 512×512 image, with expanded view of first 100 values.

Fig. 9.3 shows the original image and the image reconstructed on the basis of the first
100 singular values. The typical MATLAB code was as follows:

Fig. 9.3 Original (left) and compressed images, keeping r = 100 components.

A = imread(’stream.tiff’, ’tiff’); % read image file, size 512×512

[B,M] = zmean(double(A)); % remove and save mean
[U,S,V] = svd(B); % perform svd

r = 100;
Ar = M + U(:,1:r) * S(1:r,1:r) * V(:,1:r)’; % image from first r components
Ar = uint8(round(Ar)); % convert to unsigned 8-bit int

figure; image(A); colormap(’gray(256)’); % display image
figure; image(Ar); colormap(’gray(256)’);
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The image was obtained from the USC image database [64]. The function zmean re-
moves the mean of each column and saves it. After rank-reduction, the matrix of the
means is added back to the image. ��

10. Regularization of Ill-Conditioned Problems

We saw in the previous section that the presence of small, but nonzero, singular
values can cause the least squares solution x = A+b to be highly inaccurate.

Thresholding of the singular values is one of many possible ways to regularize
the problem and produce an accurate solution. In all such methods, the true pseudo
inverse of A = UΣVT is replaced by a “filtered” or “regularized” version:

A+ = VΣ+UT =
r∑
i=1

1

σi
vi u

T
i (true)

A+f = f(A)A+ = Vf(Σ)Σ+UT =
r∑
i=1

f(σi)
σi

vi u
T
i (regularized)

(10.1)

The regularized least-squares solution becomes xf = A+f b. The function f(σ)
is chosen so that it is nearly unity for large σ, and f(σ)/σ is nearly zero for small
σ (they may be thought of as highpass filters). Some examples are:

f(σ)= u(σ − δ) (thresholding)

f(σ)= σ2

σ2 + λ2
(Tikhonov)

(10.2)

where u(t) is the unit-step and δ,λ are selectable parameters. The unit-step keeps
only those singular values that are above the threshold, σi > δ. The Tikhonov
regularization is explicitly:

xf = A+f b =
r∑
i=1

σi
σ2
i + λ2

vi u
T
i b (10.3)

The Tikhonov regularization can also be obtained from the following modified
least-squares criterion:

J = ‖Ax− b‖2 + λ2‖x‖2 = min (10.4)

Indeed, setting the gradient of J to zero, we find:

∂J
∂x

= 2AT(Ax− b)+2λ2x = 0 ⇒ (ATA+ λ2I)x = ATb

where I is the identity matrix. The solution can be expressed in the form of Eq. (10.1).
Assuming that A is ill-conditioned but has full rank, then, A+ = (ATA)−1AT (for
the case N ≥M), so that:

x = (ATA+ λ2I)−1ATb = [(ATA)(ATA+ λ2I)−1](ATA)−1ATb = f(A)A+b
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Regularization is used in many practical inverse problems, such as the deblur-
ring of images or tomography. The second term in the performance index (10.4)
guards both against ill-conditioning and against noise in the data. If the parameter
λ is chosen to be too large, it is possible that noise is removed too much against
getting an accurate inverse. Some illustration of this tradeoff is shown in section
5.14 of the OSP text.

Often, the second term in (10.4) is replaced by the more general term ‖Dx‖2 =
xTDTDx, where D is an appropriate matrix. For example, in an image restoration
application, D could be chosen to be a differentiation matrix so that the perfor-
mance index would attempt to preserve the sharpness of the image. The more
general performance index and its solution are:

J = ‖Ax− b‖2 + λ2‖Dx‖2 = min ⇒ x = (ATA+ λ2DTD)−1ATb (10.5)

In large-scale inverse problems (e.g., a 512×512 image is represented by a vector
x of dimension 5122 = 2.6×105), performing the SVD is not practical and the solu-
tion is obtained iteratively, for example, using conjugate-gradients. Regularization
can be incorporated into such iterative methods, for example, see Ref. [3].

11. SVD and Signal Processing

In many signal processing applications, such as Wiener filtering and linear predic-
tion, the SVD appears naturally in the context of solving the normal equations.

The optimum order-M Wiener filter for estimating a signal x(n) on the basis of
the signals {y0(n), y1(n), . . . , yM(n)} satisfies the normal equations:

Rh = r , where R = E[y∗(n)yT(n)], r = E[x(n)y∗(n)] (11.1)

where we assumed stationarity and complex-valued signals. The optimum estimate
of x(n) is given by the linear combination:

x̂(n)= hTy(n)= [h0, h1, . . . , hM]

⎡
⎢⎢⎢⎢⎣
y0(n)
y1(n)

...
yM(n)

⎤
⎥⎥⎥⎥⎦ =

M∑
m=0

hmym(n) (11.2)

The observation signals ym(n) are typically (but not necessarily) either the
outputs of a tapped delay line whose input is a single time signal yn, so that
ym(n)= yn−m, or, alternatively, they are the outputs of an antenna (or other spatial
sensor) array. The two cases are shown in Fig. 11.1.
The vector y(n) is defined as:

y(n)=

⎡
⎢⎢⎢⎢⎢⎢⎣

yn
yn−1

yn−2
...

yn−M

⎤
⎥⎥⎥⎥⎥⎥⎦ , or, y(n)=

⎡
⎢⎢⎢⎢⎢⎢⎣

y0(n)
y1(n)
y2(n)

...
yM(n)

⎤
⎥⎥⎥⎥⎥⎥⎦ (11.3)
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Fig. 11.1 Time-series processing versus spatial processing

In the array case, y(n) is called a snapshot vector because it represents the
measurement of the wave field across the array at the nth time instant. The au-
tocorrelation matrix R measures spatial correlations among the antenna elements,
that is, Rij = E[y∗i (n)yj(n)], i, j,= 0,1, . . . ,M.

In the time-series case, R measures temporal correlations between successive
samples of yn, that is, Rij = E[y∗n−i yn−j]= E[yn+i−j y∗n ]= R(i− j), where we used
the stationarity assumption to shift the time indices and defined the autocorrelation
function of yn by:

R(k)= E[yn+k y∗n ] (11.4)

The normal equations are derived from the requirement that the optimum weights
h = [h0, h1, . . . , hM]T minimize the mean-square estimation error:

E = E[|e(n)|2]= E[|x(n)−x̂(n)|2]= E[|x(n)−hTy(n)|2]= min (11.5)

The minimization condition is equivalent to the orthogonality equations, which
are equivalent to the normal equations:

E[e(n)y∗(n)]= 0 � E[y∗(n)yT(n)]h = E[x(n)y∗(n)] (11.6)

Setting R = E[y∗(n)yT(n)] and r = E[x(n)y∗(n)], we find for the optimum
weights and the optimum estimate of x(n):

h = E[y∗(n)yT(n)]−1E[x(n)y∗(n)]= R−1r

x̂(n)= hTy(n)= E[x(n)y†(n)]E[y(n)y†(n)]−1y(n)
(11.7)

In practice, we may replace the above statistical expectation values by time-
averages based on a finite, but stationary, set of time samples of the signals x(n)
and y(n), n = 0,1, . . . ,N, where typicallyN > M. Thus, we make the replacements:
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R = E[y∗(n)yT(n)] ⇒ R̂ = 1

N

N−1∑
n=0

y∗(n)yT(n)

r = E[y∗(n)x(n)] ⇒ r̂ = 1

N

N−1∑
n=0

y∗(n)x(n)

E[y∗(n)e(n)]= 0 ⇒ 1

N

N−1∑
n=0

y∗(n)e(n)= 0

(11.8)

To simplify the expressions, we will drop the common factor 1/N in the above
time-averages. Next, we define the N×(M + 1) data matrix Y whose rows are the
N snapshots yT(n),

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yT(0)
yT(1)

...
yT(n)

...
yT(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0(0) y1(0) · · · yM(0)
y0(1) y1(1) · · · yM(1)

...
...

...
y0(n) y1(n) · · · yM(n)

...
...

...
y0(N − 1) y1(N − 1) · · · yM(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.9)

The ni-th matrix element of the data matrix is Yni = yi(n), 0 ≤ n ≤ N − 1,
0 ≤ i ≤M. In particular, in the time series case, we have Yni = yn−i. We defined Y
in terms of its rows. It can also be defined column-wise, where the ith column is an
N-dimensional time signal yi = [yi(0), . . . , yi(n), . . . , yi(N − 1)]T. Therefore,

Y = [y0,y1, . . . ,yM]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

yT(0)
...

yT(n)
...

yT(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.10)

The N×1 column vectors of the x(n), e(n), and the estimates x̂(n) are:

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(0)
x(1)

...
x(n)

...
x(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e(0)
e(1)

...
e(n)

...
e(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂(0)
x̂(1)

...
x̂(n)

...
x̂(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.11)

Noting that Y† = Y∗T = [y∗(0),y∗(1), . . . ,y∗(N−1)], we can write Eqs. (11.8)
in the following compact forms (without the 1/N factor):

R̂ = Y†Y , r̂ = Y†x , Y†e = 0 (11.12)
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Indeed, we have:

R̂ =
N−1∑
n=0

y∗(n)yT(n)= [y∗(0),y∗(1), . . . ,y∗(N − 1)]

⎡
⎢⎢⎢⎢⎣

yT(0)
yT(1)

...
yT(N − 1)

⎤
⎥⎥⎥⎥⎦ = Y†Y

r̂ =
N−1∑
n=0

y∗(n)x(n)= [y∗(0),y∗(1), . . . ,y∗(N − 1)]

⎡
⎢⎢⎢⎢⎣

x(0)
x(1)

...
x(N − 1)

⎤
⎥⎥⎥⎥⎦ = Y†x

Similarly, replacing x̂(n)= yT(n)h in (11.11), we obtain:

x̂ = Yh , e = x− x̂ = x−Yh (11.13)

The performance index is replaced by the least-squares index:

E = E[|e(n)|2]= min ⇒ Ê =
N−1∑
n=0

|e(n)|2 = e†e = ‖x−Yh‖2 = min (11.14)

The minimization of the least-squares index with respect to h gives rise to the
orthogonality and normal equations, as in Eq. (4.2):

Y†e = 0 , Y†Yh = Y†x ⇒ R̂h = r̂ (11.15)

Thus, we recognize that replacing the theoretical normal equations Rh = r by
their time-averaged versions R̂h = r̂ is equivalent to solving—in the least-squares
sense—the overdetermined N×(M + 1) linear system:

Yh = x (11.16)

The SVD of the data matrix, Y = UΣV†, can used to characterize the nature
of the solutions of these equations. The min-norm and backslash solutions are in
MATLAB’s notation:

h = pinv(Y)∗x , h = Y\x (11.17)

Since N > M+ 1, these will be the same if Y has full rank, that is, r =M+ 1. In
this case, the solution is unique and is given by:

h = (Y†Y)−1Y†x = R̂−1r̂ (full rank Y) (11.18)

In the time-series case, some further clarification of the definition of the data
matrix Y is necessary. Since ym(n)= yn−m, the estimate x̂(n) is obtained by con-
volving the order-M filter h with the sequence yn:

x̂(n)=
M∑
m=0

hmym(n)=
M∑
m=0

hmyn−m
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For a length-N input signal yn, n = 0,1, . . . ,N−1, the output sequence x̂(n)will
have length N+M, with the first M output samples corresponding to the input-on
transients, the lastM outputs being the input-off transients, and the middleN−M
samples, x̂(n), n =M, . . . ,N − 1, being the steady-state outputs.

There are several possible choices in defining the range of summation over n in
the least-squares index:

Ê =
∑
n
|e(n)|2,

One can consider: (a) the full range, 0 ≤ n ≤ N−1+M, leading to the so-called
autocorrelation method, (b) the steady-state range, M ≤ n ≤ N − 1, leading to the
covariance method, (c) the pre-windowed range, 0 ≤ n ≤ N − 1, or (d) the post-
windowed range, M ≤ n ≤ N− 1+M. The autocorrelation and covariance choices
are the most widely used:

Êaut =
N−1+M∑
n=0

|e(n)|2 , Êcov =
N−1∑
n=M

|e(n)|2 (11.19)

The minimization of these indices leads to the least-squares equations Yh = x,
where Y is defined as follows. First, we define the input-on and input-off parts of
Y in terms of the first M and last M data vectors:

Yon =

⎡
⎢⎢⎣

yT(0)
...

yT(M − 1)

⎤
⎥⎥⎦ , Yoff =

⎡
⎢⎢⎣

yT(N)
...

yT(N − 1+M)

⎤
⎥⎥⎦

Then, we define Y for the autocorrelation and covariance cases:

Yaut =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yT(0)
...

yT(M − 1)
yT(M)

...
yT(N − 1)

yT(N)
...

yT(N − 1+M)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎢⎣
Yon

Ycov

Yoff

⎤
⎥⎦ , Ycov =

⎡
⎢⎢⎣

yT(M)
...

yT(N − 1)

⎤
⎥⎥⎦ (11.20)

To clarify these expressions, consider an example whereN = 6 andM = 2. The
observation sequence is yn, n = 0,1, . . . ,5. Noting that yn is causal and that it is
zero for n ≥ 6, we have:
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Yaut =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0 0 0
y1 y0 0

y2 y1 y0

y3 y2 y1

y4 y3 y2

y5 y4 y3

0 y5 y4

0 0 y5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ycov =

⎡
⎢⎢⎢⎣
y2 y1 y0

y3 y2 y1

y4 y3 y2

y5 y4 y3

⎤
⎥⎥⎥⎦

These follow from the definition yT(n)= [yn, yn−1, yn−2], which gives, yT(0)=
[y0, y−1, y−2]= [y0,0,0], and so on until the last time sample at n = N− 1+M =
6−1+2 = 7, that is, yT(7)= [y7, y6, y5]= [0,0, y5]. The middle portion of Yaut is
the covariance version Ycov.

The autocorrelation version Yaut is recognized as the ordinary Toeplitz convo-
lution matrix for a length-6 input signal and an order-2 filter. It can be constructed
easily by invoking MATLAB’s built-in function convmtx:

Y = convmtx(y,M+1); % y is a column vector of time samples

The least-squares linear system Yh = x for determining the optimum weights
h = [h0, h1, h2]T reads as follows in the two cases:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0 0 0
y1 y0 0
y2 y1 y0

y3 y2 y1

y4 y3 y2

y5 y4 y3

0 y5 y4

0 0 y5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣h0

h1

h2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

x2

x3

x4

x5

x6

x7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎣
y2 y1 y0

y3 y2 y1

y4 y3 y2

y5 y4 y3

⎤
⎥⎥⎥⎦
⎡
⎢⎣h0

h1

h2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣
x2

x3

x4

x5

⎤
⎥⎥⎥⎦

where we assumed that the signal x(n) was available for 0 ≤ n ≤ N − 1+M = 7.
There is yet a third type of a data matrix that is used in linear prediction applica-

tions. It corresponds to the modified covariance method, also known as the forward-
backward method. The data matrix is obtained by appending its row-reversed and
complex-conjugated version. For our example, this gives:

Yfb =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y2 y1 y0

y3 y2 y1

y4 y3 y2

y5 y4 y3

y∗0 y∗1 y∗2
y∗1 y∗2 y∗3
y∗2 y∗3 y∗4
y∗3 y∗4 y∗5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[
Ycov

Y∗covJ

]
(11.21)
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where J is the usual reversing matrix consisting of ones along its antidiagonal.
While Yaut and Ycov are Toeplitz matrices, only the upper half of Yfb is Toeplitz
whereas its lower half is a Hankel matrix, that is, it has the same entries along each
antidiagonal.

Given one of the three types of a data matrixY, one can extract the signal yn that
generated that Y. The MATLAB function datamat (in the OSP toolbox) constructs
a data matrix from the signal yn, whereas the function datasig extracts the signal
yn from Y. The functions have usage:

Y = datamat(y,M,type); % type= 0,1,2, for autocorrelation, covariance, forward/backward

y = datasig(Y,type);

12. Inverse Filter Design

A straightforward application of the least-squares solutions of Wiener filters is the
design of inverse filters. This topic is also discussed in section 5.14 of the OSP text.
Briefly, given a filter described by an order-N impulse response {f0, f1, . . . , fN},
the problem is to design an order-M inverse filter {h0, h1, . . . , hM}, such that the
convolution hn ∗ fn is the delta-function δn:

min(n,M)∑
m=max(0,n−N)

fn−mhm = δn , 0 ≤ n ≤ N +M (12.1)

In the z-domain, we require F(z)H(z)= 1. Because both filters are FIR, this can
only be satisfied approximately. More generally, we may allow an overall delay in
the output so that F(z)H(z)= z−i. Introducing a delay may give better results.
The reason is that the exact inverse filter H(z)= z−i/F(z) may have poles outside
the unit circle, which would imply that the stable inverse hn cannot be causal. Such
filter may be made approximately causal by clipping its anticausal part at some
large negative time n = −i and then delaying the clipped filter by i time units to
make it causal. Thus, we replace (12.1) by

min(n,M)∑
m=max(0,n−N)

fn−mhm = δn−i , 0 ≤ n ≤ N +M (12.2)

where the delay can be anywhere in the range 0 ≤ i ≤ n +M. Eq. (12.2) can be
written in the compact matrix form:

F h = ui (12.3)

where F is the (N +M + 1)×(M + 1) convolution matrix, or, the autocorrelation
version of the data matrix formed from the signal fn, and ui is the (N +M + 1)-
dimensional unit vector with 1 at the i-th slot and zeros elsewhere, that is, ui(n)=
δ(n− i), for n = 0,1, . . . ,N +M:

ui = [0, . . . ,0, 1
↑
i

,0, . . . ,0]T
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The minimum norm, least-squares, solution of (12.3) is:

h = F+ui (12.4)

This is recognized as the i-th column of the pseudoinverse F+. Therefore, the
(N + M + 1) columns of the matrix H = F+ are all the possible inverse filters
corresponding to the different choices of the delay i.

The solution (12.4) minimizes the squared error J = ‖e‖2, where e = ui − F h.
Using the orthogonality condition FTe = 0, we may express the minimized error as
eTe = (uTi − hTFT)e = uTi e = uTi (ui − F h)= 1− uTi F h, or,

J = ‖e|2 = 1− uTi FF
+ui = 1− (FF+)ii (12.5)

where (FF+)ii denotes the i-th diagonal entry of the projection matrix FF+. Once
the matrix of inverse filters is computedH = F+, one can pick the optimum among
them as the one that has the smallest error (12.5), or equivalently, the one that
corresponds to the largest diagonal entry of FF+.

The solution (12.4) can be regularized if so desired using the techniques dis-
cussed in section 10. The regularized inverse filters will be the columns of the
matrix Hf = f(F)F+, where f(σ) is a regularization function.

Example 12.1: Fig. 12.1 shows the given filter fn, the designed inverse filter hn, and the
filtered signal hn ∗ fn, which is supposed to be a delta function. The signal fn was
defined by:

fn = cos
(
ω0(n− n0)

)
e−a(n−n0)2

, n = 0,1, . . . ,N

where N = 65, ω0 = 0.1, a = 0.004, and n0 = 25. The filter order was M = 50 and
the delay was chosen to be i = n0 = 25.
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 hn * fn
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 inverse filter hn

Fig. 12.1 Inverse filter design.

The MATLAB code used to generate these graphs was:

N = 65; M = 50; w0 = 0.15; a = 0.004; n0 = 25;
n=(0:N)’; m = (0:M)’; k =(0:N+M)’;
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f = cos(w0*(n-n0)) .* exp(-a*(n-n0).^2); % define fn

F = datamat(f,M,0); % construct data matrix
H = pinv(F); % calculate all inverse filters
i = 26; % time_index = matlab_index − 1 = 25
h = H(:,i); % extract i-th filter
d = conv(h,f); % convolution is equivalent to d = F h

plot(n,f, k,d, ’:r’); figure; plot(m,h);

13. Least-Squares Linear Prediction

Next, we discuss briefly how linear prediction problems can be solved in a least-
squares sense. For an order-M predictor, we define the forward and backward
prediction errors in terms of the forward and an reversed-conjugated filters:

e+(n)= [yn, yn−1, . . . , yn−M]

⎡
⎢⎢⎢⎢⎣

1
a1
...
aM

⎤
⎥⎥⎥⎥⎦ = yT(n)a (13.1)

e−(n)= [yn, yn−1, . . . , yn−M]

⎡
⎢⎢⎢⎢⎣
a∗M

...
a∗1
1

⎤
⎥⎥⎥⎥⎦ = yT(n)aR∗ (13.2)

The prediction coefficients a are found by minimizing one of the three least-
square performance indices, corresponding to the autocorrelation, covariance, and
forward/backward methods:

Êaut =
N−1+M∑
n=0

|e+(n)|2 = min

Êcov =
N−1∑
n=M

|e+(n)|2 = min

Êfb =
N−1∑
n=M

[|e+(n)|2 + |e−(n)|2] = min

(13.3)

Stacking the samples e±(n) into a column vector, we may express the error
vectors in terms of the corresponding autocorrelation or covariance data matrices:

e+ = Ya

e− = YaR∗
where e+ =

⎡
⎢⎢⎢⎣

...
e+(n)

...

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

...
yT(n)

...

⎤
⎥⎥⎥⎦ a = Ya (13.4)
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and similarly for e−. Noting that aR = Ja, we have for the covariance case:

e− = YcovJa∗ ⇒ e∗− = (Y∗covJ)a

Then, we may define the extended error vector consisting of both the forward
and backward errors:

e =
[

e+
e∗−

]
=
[
Ycov

Y∗covJ

]
a = Yfb a (13.5)

Noting that e†e = e†+e++e†−e−, we may express the indices (13.3) in the compact
forms:

Êaut = e†+e+ = ‖e+‖2 = ‖Yaut a‖2

Êcov = e†+e+ = ‖e+‖2 = ‖Ycov a‖2

Êfb = e†+e+ + e†−e− = ‖e+‖2 + ‖e−‖2 = ‖e‖2 = ‖Yfb a‖2

(13.6)

Thus, in all three cases, the problem reduces to the least-squares solution of the
linear equation Ya = 0, that is,

Ya = 0 � Ê = ‖e‖2 = ‖Ya‖2 = min (13.7)

subject to the constraint a0 = 1. The solution is obtained by separating the first
column of the matrix Y in order to take the constraint into account. Setting Y =
[y0, Y1] and aT = [1,αααT], we find the equivalent linear system:

Ya = [y0, Y1]
[

1
ααα

]
= y0 +Y1ααα = 0 ⇒ Y1ααα = −y0 (13.8)

The minimum-norm least-squares solution is obtained by the pseudoinverse:

ααα = −pinv(Y1)∗y0 = −Y+1 y0 ⇒ a =
[

1
ααα

]
=
[

1
−Y+1 y0

]
(13.9)

The OSP function lpls implements this procedure. It has usage:

[a,E] = lpls(Y); % least-squares linear prediction filter

where E is the minimized prediction error E = ‖e‖2/L, where L is the column di-
mension of Y. Combined with the function datamat, one can obtain the prediction
filter according to the three criteria:

[a,E] = lpls(datamat(y,M,0)) % autocorrelation or Yule-Walker method

[a,E] = lpls(datamat(y,M,1)) % covariance method

[a,E] = lpls(datamat(y,M,2)) % modified covariance or f/b method

The autocorrelation method can be computed by the alternative call to the Yule-
Walker function yw :

a = lpf(yw(y,M)); % autocorrelation or Yule-Walker method

Further improvements of these methods result, especially in the case of extract-
ing sinusoids in noise, when the least-squares solution (13.9) is used in conjunction
with the SVD enhancement iteration procedure discussed in Sec. 17.
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14. MA and ARMA modeling

There are many methods for fitting MA and ARMA models to a given data sequence
yn, n = 0,1, . . . ,N − 1. Some methods are nonlinear and involve an iterative mini-
mization of a maximum likelihood criterion. Other methods are adaptive, continu-
ously updating the model parameters on a sample by sample basis.

Here, we briefly discuss a class of methods, originally suggested by Durbin
[65,66], which begin by fitting a long AR model to the data, and then deriving the
MA or ARMA model parameters from that AR model by using only least-squares
solutions of linear equations.

MA Models

A moving-average model of order q, denoted by MA(q), is described by the I/O
equation driven by a zero-mean white-noise signal εn of variance σ2

ε :

yn = b0εn + b1εn−1 + b2εn−2 + · · · + bqεn−q (14.1)

Thus, the synthesis model filter and the power spectrum of yn are:

B(z)= b0 + b1z−1 + b2z−2 + · · · + bqz−q , Syy(ω)= σ2
ε
∣∣B(ω)∣∣2

(14.2)

Without loss of generality, we may assume that b0 = 1. We will also assume
that B(z) is a minimum-phase polynomial so that the analysis filterA(z)= 1/B(z)
is stable and causal.

Durbin’s method consists of approximating the analysis filterA(z) by a polyno-
mial AM(z) of some large order M, such that M� q. The polynomial coefficients
a = [1, a1, . . . , aM]T are found by applying any least-squares LP method to the
given sequence y = [y0, y1, . . . , yN−1]T, including Burg’s method.

Finally, the desired MA filter b = [1, b1, . . . , bq]T is obtained by designing
an order-q least-squares inverse to a = [1, a1, . . . , aM]T using, for example, the
techniques of section 12. Specifically, we wish to solve the approximate equa-
tion AM(z)B(z)� 1. This condition may be expressed in matrix form using the
(M + q+ 1)×(q+ 1) convolution matrix of the filter a acting on the input b:

Ab = u , where A = datamat(a, q) (14.3)

and u = [1,0, . . . ,0]T is the (M + q + 1)-dimensional representation of δn. For
example, if q = 2 and M = 4, we have:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
a1 1 0
a2 a1 1
a3 a2 a1

a4 a3 a2

0 a4 a3

0 0 a4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣ 1
b1

b2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1 1 0
a2 a1 1
a3 a2 a1

a4 a3 a2

0 a4 a3

0 0 a4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣ 1
b1

b2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(14.4)
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where in the second equation, we deleted the first row of A, which corresponds to
the identity 1 = 1. Thus, denoting the bottom part of A by Abot, we obtain the
following (M + q)×(q+ 1) linear system to be solved by least-squares:

Abotb = 0 ⇒ b = lpls(Abot) (14.5)

This problem is identical to that of Eq. (13.7) and therefore, its solution was
obtained with the help of the function lpls. These design steps have been incor-
porated into the MATLAB function ma with usage:

[b,sigma2] = ma(y,q,M); % MA modeling by Durbin’s method

To clarify further the above solution, we write (14.5) in partitioned form, sepa-
rating out the first column of Abot and the bottom part of b:

Abot = [a1,A1], b =
[

1
βββ

]
⇒ Abotb = [a1,A1]

[
1
βββ

]
= a1 +A1βββ = 0

The least-squares solution is (assuming A1 has full rank):

βββ = −A1\ a1 = −(A†1A1)−1A†1a1 (14.6)

This has the form of a linear prediction solution βββ = −R−1r, where R = A†1A1

and r = A†1a1. It easily verified that R, r are given by:

Rij = (A†1A1)ij= Raa(i− j) , ri = (A†1a1)i= Raa(i+ 1) (14.7)

for i, j = 0,1, . . . , q− 1, and Raa is the sample autocorrelation of the filter a:

Raa(k)=
M−|k|∑
m=0

a∗m+|k|am , −M ≤ k ≤M (14.8)

In other words, as observed by Durbin, the MA filter b may obtained by fitting
an AR(q)model to the AR filter a using the autocorrelation or Yule-Walker method.
Thus, an alternative design procedure is by the following two steps:

a = lpf(yw(y,M)); % fit an AR(M) model to y

b = lpf(yw(a,q)); % fit an AR(q) model to a

where the function lpf extracts the prediction filter from the output of the function
yw. Once the MA filter is designed, the input noise variance σ2

ε may be calculated
using Parseval’s identity:

σ2
y = σ2

ε

∫ π
−π
|B(ω)|2dω

2π
= σ2

ε

q∑
m=0

|bm|2 = σ2
ε b†b ⇒ σ2

ε =
σ2
y

b†b

where σ2
y can be estimated directly from the data sequence by:

σ̂2
y =

1

N

N−1∑
n=0

|yn|2
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ARMA models

An ARMA(p, q) model is characterized by a synthesis filter of the form:

H(z)= B(z)
A(z)

= 1+ b1z−1 + · · · + bqz−q
1+ a1z−1 + . . .+ apz−p (14.9)

The sequence yn is generated by driving H(z) by zero-mean white-noise εn:

yn + a1yn−1 + · · · + apyn−p = εn + b1εn−1 + · · · + bqεn−q (14.10)

The corresponding power spectrum of yn is:

Syy(ω)= σ2
ε |H(ω)|2 = σ2

ε

∣∣∣∣B(ω)A(ω)

∣∣∣∣2

= σ2
ε

∣∣∣∣∣1+ b1e−jω + · · · + bqe−jqω
1+ a1e−jω + · · · + ape−jpω

∣∣∣∣∣
2

If the innovations sequence εn were known, then by considering Eq. (14.10) at
successive time instants, say, n = 0,1, . . . ,N − 1, one could solve for the model
parameters a = [1, a1, . . . , ap]T and b = [1, b1, . . . , bq]T. To see how this might
be done, we rewrite (14.10) vectorially in the form:

[yn, yn−1, . . . , yn−p]

⎡
⎢⎢⎢⎢⎣

1
a1
...
ap

⎤
⎥⎥⎥⎥⎦ = [εn, εn−1, . . . , εn−q]

⎡
⎢⎢⎢⎢⎣

1
b1
...
bq

⎤
⎥⎥⎥⎥⎦ (14.11)

or, compactly,

yT(n)a = eT(n)b , where y(n)=

⎡
⎢⎢⎢⎢⎣
yn
yn−1

...
yn−p

⎤
⎥⎥⎥⎥⎦ , e(n)=

⎡
⎢⎢⎢⎢⎣
εn
εn−1

...
εn−q

⎤
⎥⎥⎥⎥⎦ (14.12)

Arranging these into a column vector for n = 0,1 . . . ,N − 1, we may express
them as a single vector equation involving the data matrices of yn and εn:

Ya = E b , where Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

yT(0)
...

yT(n)
...

yT(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

eT(0)
...

eT(n)
...

eT(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14.13)

The data matrices Y and E have dimensionsN×(p+1) andN×(q+1), respec-
tively, and correspond to the “prewindowed” type. They can be constructed from
the sequences y = [y0, y1 . . . , yN−1]T and e = [ε0, ε1 . . . , εN−1]T by the MATLAB
calls to the function datamat:

Y = datamat(y, p,’pre’)
E = datamat(e, q,’pre’)
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For example, if N = 7, p = 3, and q = 2, and assuming zero initial conditions,
then Eq. (14.13) reads as follows:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0 0 0 0
y1 y0 0 0
y2 y1 y0 0
y3 y2 y1 y0

y4 y3 y2 y1

y5 y4 y3 y2

y6 y5 y4 y3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1
a1

a2

a3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε0 0 0
ε1 ε0 0
ε2 ε1 ε0

ε3 ε2 ε1

ε4 ε3 ε2

ε5 ε4 ε3

ε6 ε5 ε4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣ 1
b1

b2

⎤
⎥⎦ (14.14)

Even though overdetermined, these equations are consistent and may be solved
for the model parameters. Unfortunately, in practice, only the observed output
sequence y = [y0, y1 . . . , yN−1]T is available.

A possible strategy to overcome this problem, originally proposed by Durbin,
is to replace the unknown exact innovation vector e = [ε0, ε1 . . . , εN−1]T by an
estimated one ê = [ε̂0, ε̂1 . . . , ε̂N−1]T and then solve (14.13) approximately using
least-squares, that is, if Ê is the data matrix of the approximate innovations, then
solve the least-squares problem:

Yâ = Ê b̂ � J = ‖Yâ− Ê b̂‖2 = min (14.15)

One way to obtain an estimated innovations sequence ê is to fit to y an autore-
gressive model AM(z) of large order M, such that M � p + q. This amounts to
approximating the synthesis filter by the all-pole model Ĥ(z)= 1/AM(z). Passing
the given sequence yn through the approximate analysis filter AM(z) would gen-
erate the estimated innovations, that is, Ê(z)= AM(z)Y(z). Thus, the first step in
the design is, in MATLAB notation:

aM = lpf
(
yw(y,M)

)
ê = filter(aM,1,y)

Ê = datamat(ê, q,’pre’)
(14.16)

The second step is to solve (14.15) using least squares. To this end, we separate the
first columns of the matrices Y, Ê, and the bottom parts of â, b̂ to get:

Y = [y0, Y1], Ê = [ê0, Ê1], â =
[

1
α̂αα

]
, b̂ =

[
1

β̂ββ

]

and recast (14.15) in the form:

Yâ = Ê b̂ ⇒ [y0, Y1]
[

1
α̂αα

]
= [ê0, Ê1]

[
1

β̂ββ

]
⇒ y0 +Y1α̂αα = ê0 + Ê1β̂ββ

This may be rearranged into Y1α̂αα− Ê1β̂ββ = −(y0 − ê0), and solved:

[Y1,−Ê1]
[
α̂αα
β̂ββ

]
= −(y0 − ê0) ⇒

[
α̂αα
β̂ββ

]
= −[Y1,−Ê1] \(y0 − ê0) (14.17)
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This completes step two. We note that because of the prewindowed choice of
the data matrices, the first columns y0, ê0 are the length-N signal sequences y and
ê themselves, that is, y0 = y = [y0, y1 . . . , yN−1]T and ê0 = ê = [ε̂0, ε̂1 . . . , ε̂N−1]T.
Thus, we have, y + Y1α̂αα = ê + Ê1β̂ββ, and rearranging, ê = y + Y1α̂αα − Ê1β̂ββ. An
alternative least-squares criterion that is used sometimes is the following:

J = ‖ê‖2 = ‖y+Y1α̂αα− Ê1β̂ββ‖2 = min (14.18)

This has the solution: [
α̂αα
β̂ββ

]
= −[Y1,−Ê1]\y (14.19)

We will be using (14.17). The second-stage solutions can be shown not to be
asymptotically efficient. In order to minimize their variance, Mayne and Firoozan
[67,68] proposed a third step. It consists of replacing the sequences yn, ε̂n by the
inverse-filtered versions V(z)= Y(z)/B̂(z) and W(z)= Ê(z)/B̂(z) and repeating
step two. This produces the final estimates of the ARMA parameters a and b.

The filtered sequences vn,wn and their data matrices are constructed as follows,
in MATLAB notation:

v = filter(1, b̂,y); V = datamat(v, p,’pre’);
w = filter(1, b̂, ê); W = datamat(w, q,’pre’);

(14.20)

The resulting least-squares problem is then:

Va =W b ⇒ [v0, V1]
[

1
ααα

]
= [w0,W1]

[
1
βββ

]
(14.21)

with performance index J = ‖Va−W b‖2 = min. The solution of (14.21) is:[
ααα
βββ

]
= −[V1,−W1] \(v0 −w0) (14.22)

In summary, the Mayne-Firoozan three-stage ARMA parameter estimation method
consists of Eqs. (14.16), (14.17), and (14.22).

To justify the need for the inverse filtering, we consider an improved innovations
vector obtained from ê by adding a small correction, that is, e = ê+δe, or in terms
of the data matrices, E = Ê+ δE. We imagine that the vector e is closer to the true
innovations vector than ê. The small change δe will induce similar small changes in
the ARMA parameters, a = â+δa and b = b̂+δb, which must satisfy the improved
input/output equation:

Ya = E b (14.23)

To first order in the corrections, that is, ignoring terms like δEδb, we have:

Ya = (Ê + δE)(b̂+ δb)= Ê(b̂+ δb)+δE b̂ = Ê b+ δE b̂ , or

Ya− Ê b = δE b̂ (14.24)
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The term δE b̂ represents the filtering of the vector δe by the filter b̂, and there-
fore, it can just as well be expressed in terms of the convolution matrix of b̂ acting
on δe, that is, δE b̂ = B̂δe. Actually, B̂ is the N×N square portion of the full
convolution matrix, with the bottom q rows (the input-off transients) deleted. For
example, with N = 7 and q = 2, we have:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δε0 0 0
δε1 δε0 0
δε2 δε1 δε0

δε3 δε2 δε1

δε4 δε3 δε2

δε5 δε4 δε3

δε6 δε5 δε4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣ 1
b̂1

b̂2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
b̂1 1 0 0 0 0 0
b̂2 b̂1 1 0 0 0 0
0 b̂2 b̂1 1 0 0 0
0 0 b̂2 b̂1 1 0 0
0 0 0 b̂2 b̂1 1 0
0 0 0 0 b̂2 b̂1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δε0

δε1

δε2

δε3

δε4

δε5

δε6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The matrix B̂ is invertible. Therefore, we may solve (14.24) for δe. Defining
V = B̂−1Y and W = B̂−1Ê, we have:

Ya− Ê b = δE b̂ = B̂δe ⇒ B̂−1(Ya− Ê b)= δe ⇒ Va−W b = δe (14.25)

Thus, the least-squares problem (14.21) is equivalent to minimizing the norm
of the correction vector:

J = ‖Va−W b‖2 = ‖δe‖2 = min � Va =W b

The operations V = B̂−1Y and W = B̂−1Ê are equivalent to the inverse filtering
operations (14.20). The MATLAB function arma implements this three-step model-
ing algorithm. It has usage:

[a,b,sigma2] = arma(y,p,q,M,iter); % Mayne-Firoozan ARMA modeling method

The third stage may be repeated a few additional times. At each iteration, the
filtered signals V(z)= Y(z)/B(z) and W(z)= Ê(z)/B(z) are obtained by using
the filter B(z) from the previous iteration. The parameter iter specifies the total
number of iterations. The default value is iter=2.

The innovations variance σ2
ε is estimated by calculating the impulse response

hn of the designed ARMA filter, H(z)= B(z)/A(z), and using:

σ2
y = σ2

ε

∞∑
n=0

|hn|2 (14.26)

where the infinite summation may be approximated by a finite one of appropriate
length—typically, a multiple of the 60-dB time-constant of the filter.

15. Karhunen-Loève Transform

Traditionally, the Karhunen-Loève transform (KLT), also known as the Hotelling
transform, of an (M + 1)-dimensional stationary zero-mean random signal vector
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y(n)= [y0(n), y1(n), . . . , yM(n)]T with covariance matrix R = E[y∗(n)yT(n)] is
defined as the linear transformation:

z(n)= VTy(n) (KLT) (15.1)

where V is the (M + 1)×(M + 1) unitary matrix of eigenvectors of R, that is,

V = [v0,v1, . . . ,vM] , Rvi = λivi, i = 0,1, . . . ,M (15.2)

with the eigenvalues λi assumed to be in decreasing order. The orthonormality of
the eigenvectors v†i vj = δij is equivalent to the unitarity of V,

V†V = VV† = IM+1 (15.3)

The eigenvalue equations can be written compactly in the form:

RV = VΛ , Λ = diag{λ0, λ1, . . . , λM} ⇒ V†RV = Λ (15.4)

The components of the transformed vector, z(n)= [z0(n), z1(n), . . . , zM(n)]T,
are called principal components. They can be expressed as the dot products of the
eigenvectors vi with y(n):

z(n)= VTy(n) ⇒

⎡
⎢⎢⎢⎢⎣
z0(n)
z1(n)

...
zM(n)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

vT0 y(n)
vT1 y(n)

...
vTMy(n)

⎤
⎥⎥⎥⎥⎦ , or,

zi(n)= vTi y(n) , i = 0,1, . . . ,M (15.5)

These may be thought of as the filtering of y(n) by the FIR filters vi. Therefore,
the vectors vi are often referred to as eigenfilters. The principal components are
mutually orthogonal, that is, uncorrelated. The matrix V†RV = Λ is the covariance
matrix of the transformed vector z(n):

E[z∗(n)zT(n)]= V†E[y∗(n)yT(n)]V = V†RV , or,

E[z∗(n)zT(n)]= Λ (15.6)

or, component-wise:

E[z∗i (n)zj(n)]= λiδij , i, j = 0,1, . . . ,M (15.7)

Thus, the KLT decorrelates the components of the vector y(n). The eigenvalues
of R are the variances of the principal components, σ2

i = E[|zi(n)|2]= λi. Because
λ0 ≥ λ1 ≥ · · · ≥ λM, the principal component z0(n) will have the largest variance,
the component z1(n), the next to largest, and so on.

Defining the total variance of y(n) to be the sum of the variances of its M + 1
components, we can show that the total variance is equal to the sum of the variances
of the principal components, or the sum of the eigenvalues of R. We have:
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σ2
y =

M∑
i=0

E[|yi(n)|2]= E[y†(n)y(n)] (total variance) (15.8)

Using the trace property y†y = tr(y∗yT), we find:

σ2
y = tr

(
E[y∗(n)yT(n)]

) = tr(R)= λ0 + λ1 + · · · + λM (15.9)

The inverse Karhunen-Loève transform is obtained by noting that V−T = V∗,
which follows from V†V = I. Therefore,

y(n)= V∗z(n) (inverse KLT) (15.10)

It can be written as a sum of the individual principal components:

y(n)= V∗z(n)= [v∗0 ,v∗1 , . . . ,v∗M]

⎡
⎢⎢⎢⎢⎣
z0(n)
z1(n)

...
zM(n)

⎤
⎥⎥⎥⎥⎦ =

M∑
i=0

v∗i zi(n) (15.11)

In many applications, the first few principal components, zi(n), 0 ≤ i ≤ r − 1,
where r � M + 1, account for most of the total variance. In such cases, we may
keep only the first r terms in the inverse transform:

ŷ(n)=
r−1∑
i=0

v∗i zi(n) (15.12)

If the ignored eigenvalues are small, the reconstructed signal ŷ(n) will be a
good approximation of the original y(n). This approximation amounts to a rank-r
reduction of the original problem. The mean-square approximation error is:

E
[‖y(n)−ŷ(n)‖2] = E[ M∑

i=r
|zi(n)|2

] = M∑
i=r
λi (15.13)

16. Principal Component Analysis

Principal component analysis (PCA) is essentially equivalent to the KLT. The only
difference is that instead of applying the KLT to the theoretical covariance matrix
R, it is applied to the sample covariance matrix R̂ constructed from N available
signal vectors y(n), n = 0,1, . . . ,N − 1:

R̂ = 1

N

N−1∑
n=0

y∗(n)yT(n) (16.1)

where we assume that the sample means have been removed, so that

m = 1

N

N−1∑
n=0

y(n)= 0
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We will ignore the overall factor 1/N, as we did in section 11, and work with the
simpler definition:

R̂ =
N−1∑
n=0

y∗(n)yT(n)= Y†Y , Y =

⎡
⎢⎢⎢⎢⎣

yT(0)
yT(1)

...
yT(N − 1)

⎤
⎥⎥⎥⎥⎦ (16.2)

where Y is theN×(M+1) data matrix constructed from the y(n). The eigenprob-
lem of R̂, that is, R̂V = VΛ, defines the KLT/PCA transformation matrix V. The
corresponding principal component signals will be:

z(n)= VTy(n) , n = 0,1, . . . ,N − 1 (16.3)

These can be combined into a single compact equation involving the data matrix
constructed from the z(n). Indeed, noting that zT(n)= yT(n)V, we have:

Z = YV (PCA) (16.4)

where Z is the N×(M + 1) data matrix of the z(n):

Z =

⎡
⎢⎢⎢⎢⎣

zT(0)
zT(1)

...
zT(N − 1)

⎤
⎥⎥⎥⎥⎦ (16.5)

The inverse transform can be obtained by multiplying (16.4) by V† from the
right and using the unitarity property of V, that is, ZV† = YVV†, or,

Y = ZV† ⇒ y(n)= V∗z(n) , n = 0,1, . . . ,N − 1 (16.6)

or, explicitly in terms of the PCA signals zi(n):

y(n)=
M∑
i=0

v∗i zi(n) , n = 0,1, . . . ,N − 1 (16.7)

The uncorrelatedness property of the KLT translates now to the orthogonality
of the signals zi(n)= vTi y(n) as functions of time. It follows from (16.4) that Z
has orthogonal columns, or equivalently, a diagonal sample covariance matrix:

Z†Z = V†R̂V = Λ ⇒
N−1∑
n=0

z∗(n)zT(n)= Λ (16.8)

or, written component-wise:

N−1∑
n=0

z∗i (n)zj(n)= λiδij , i, j = 0,1, . . . ,M (16.9)
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In fact, the principal component signals zi(n) are, up to a scale, equal to the
left singular eigenvectors of the SVD of the data matrix Y.

Following the simplified proof of the SVD that we gave in Sec. 5, we assume a
full-rank case so that all the λi are nonzero and define the singular valuesσi =

√
λi,

for i = 0,1, . . . ,N − 1, and the matrices:

U = ZΣ−1 , Σ = diag{σ0, σ1, . . . , σM} = Λ1/2 (16.10)

where U,Σ have sizes N×(M + 1) and (M + 1)×(M + 1), respectively. It follows
from (16.8) that U has orthonormal columns:

U†U = Σ−1Z†ZΣ−1 = Λ−1/2ΛΛ1/2 = IM+1 (16.11)

Solving for Y in terms of U, we obtain the economy SVD of Y. Indeed, we have
Z = UΣ and Y = ZV†, so that

Y = UΣV† (economy SVD) (16.12)

Thus, principal component analysis based on R̂ is equivalent to performing the
economy SVD of the data matrix Y.

The matrix U has the same size as Y, but mutually orthogonal columns. The
(M + 1)-dimensional vectors u(n)= Σ−1z(n)= Σ−1VTy(n), n = 0,1, . . . ,N − 1,
have U as their data matrix and correspond to normalized versions of the principal
components with unit sample covariance matrix:

U†U =
N−1∑
n=0

u∗(n)uT(n)= IM+1 �
N−1∑
n=0

u∗i (n)uj(n)= δij

where ui(n) is the ith component of u(n)= [u0(n), u1(n), . . . , uM(n)]T. It is the
same as zi(n), but normalized to unit norm.

Example 16.1: Consider the following 8×2 data matrix Y and its economy SVD:

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.31 1.92
2.49 1.68
−2.31 −1.92
−2.49 −1.68

3.32 2.24
−3.08 −2.56

3.08 2.56
−3.32 −2.24

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3 0.3
0.3 −0.3
−0.3 −0.3
−0.3 0.3

0.4 −0.4
−0.4 −0.4

0.4 0.4
−0.4 0.4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
10 0
0 0.5

][
0.8 −0.6
0.6 0.8

]T
= UΣVT

The singular values of Y are σ0 = 10 and σ1 = 0.5. Let the two columns of Y be
y0 and y1, so that Y = [y0,y1]. The scatterplot of the eight pairs [y0, y1] is shown
below. We observe the clustering along a preferential direction. This is the direction
of the first principal component.
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The corresponding 8×2 matrix of principal components and its diagonal covariance
matrix are:

Z = [z0, z1]= UΣ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0.15
3 −0.15
−3 −0.15
−3 0.15

4 −0.20
−4 −0.20

4 0.20
−4 0.20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Λ = ZTZ =

[
σ2

0 0
0 σ2

1

]
=
[

100 0
0 0.25

]

The covariance matrix of Y, R = YTY, is diagonalized by the matrix V:

R =
[

64.09 47.88
47.88 36.16

]
=
[

0.8 −0.6
0.6 0.8

][
100 0

0 0.25

][
0.8 −0.6
0.6 0.8

]T
= VΛVT

Each principal component pair [z0, z1] is constructed by the following linear combi-
nations of the [y0, y1] pairs:

z0 = vT0 y = [0.8,0.6]
[
y0

y1

]
= 0.8y0 + 0.6y1

z1 = vT1 y = [−0.6,0.8]
[
y0

y1

]
= −0.6y0 + 0.8y1

Conversely, each [y0, y1] pair may be reconstructed from the PCA pair [z0, z1]:[
y0

y1

]
= V∗z = [v∗0 ,v∗1 ]

[
z0

z1

]
= v∗0 z0 + v∗1 z1 =

[
0.8
0.6

]
z0 +

[
−0.6

0.8

]
z1

The two terms in this expression define parametrically two straight lines on the y0, y1

plane along the directions of the principal components, as shown in the above figure.
The percentage variances carried by z0, z1 are:

σ2
0

σ2
0 +σ2

1
= 0.9975 = 99.75 % ,

σ2
1

σ2
0 +σ2

1
= 0.0025 = 0.25 %

This explains the clustering along the z0 direction. ��

50



Example 16.2: The table below givesN = 24 values of the signals yT(n)= [y0(n), y1(n)].
The data represent the measured lengths and widths of 24 female turtles and were
obtained from the file turtle.dat on the course web page. This data set represents
one of the most well-known examples of PCA [72]. To simplify the discussion, we
consider only a subset of this data set.

The data matrix Y has dimensionN×(M+1)= 24×2. It must be replaced by its zero-
mean version, that is, with the column means removed from each column. Fig. 16.1
shows the scatterplot of the pairs [y0, y1].

n y0(n) y1(n) n y0(n) y1(n) n y0(n) y1(n)
0 98 81 8 133 102 16 149 107
1 103 84 9 133 102 17 153 107
2 103 86 10 134 100 18 155 115
3 105 86 11 136 102 19 155 117
4 109 88 12 137 98 20 158 115
5 123 92 13 138 99 21 159 118
6 123 95 14 141 103 22 162 124
7 133 99 15 147 108 23 177 132
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Fig. 16.1 Scatterplots of original data and their principal components.

We observe that the pairs are distributed essentially one-dimensionally along a par-
ticular direction, which is the direction of the first principal component.

Performing the economy SVD on (the zero-mean version of)Y gives the singular values
σ0 = 119.05 and σ1 = 12.38, and the unitary PCA transformation matrix V:

V = [v0,v1]=
[

0.8542 −0.5200
0.5200 0.8542

]
, v0 =

[
0.8542
0.5200

]
, v1 =

[
−0.5200

0.8542

]

The total variance is σ2
y = σ2

0 + σ2
1 . The percentages of this variance carried by the

two principal components are:

σ2
0

σ2
0 +σ2

1
= 0.989 = 98.9 % ,

σ2
1

σ2
0 +σ2

1
= 0.011 = 1.1 %
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Thus, the principal component z0 carries the bulk of the variance. The two principal
components are obtained by the linear combinations z = VTy, or,

z0 = vT0 y = 0.8542y0 + 0.52y1

z1 = vT1 y = −0.52y0 + 0.8542y1

The inverse relationships are y = V∗z = v∗0 z0 + v∗1 z1, or,[
y0

y1

]
=
[

0.8542
0.5200

]
z0 +

[
−0.5200

0.8542

]
z1

The two terms represent the projections of y onto the two PCA directions. The two
straight lines shown in Fig. 16.1 are given by these two terms separately, where z0

and z1 can be used to parametrize points along these lines.

The MATLAB code used to generate this example was as follows:

Y = loadfile(’turtle.dat’); % read full data set
Y = zmean(Y(:,4:5)); % get columns 4,5 and remove column means

[U,S,V] = svd(Y,0); % economy SVD

figure; plot(Y(:,1),Y(:,2),’.’); % scatterplot of [y0, y1]
figure; plot(U(:,1),U(:,2),’.’); % scatterplot of [u0, u1]

The right graph in Fig. 16.1 is the scatterplot of the columns ofU, that is, the unit-norm
principal components u0(n), u1(n), n = 0,1, . . . ,N−1. Being mutually uncorrelated,
they do not exhibit clustering along any special directions. ��

Several applications of PCA in diverse fields, such as statistics, physiology, psy-
chology, meteorology, and computer vision, are discussed in [4–10,69–80].

17. SVD Signal Enhancement

The main idea of PCA is rank reduction for the purpose of reducing the dimension-
ality of the problem. In many signal processing applications, such as sinusoids in
noise, or plane waves incident on an array, the noise-free signal has a data matrix of
reduced rank. For example, the rank is equal to the number of (complex) sinusoids
that are present. We will be discussing this in detail later.

The presence of noise causes the data matrix to become full rank. Forcing the
rank back to what it is supposed to be in the absence of noise has a beneficial
noise-reduction or signal-enhancement effect. However, rank-reduction destroys
any special structure that the data matrix might have, for example, being Toeplitz or
Toeplitz over Hankel. A further step is required after rank reduction that restores
the special structure of the matrix. But when the structure is restored, the rank
becomes full again. Therefore, one must iterate this process of rank-reduction
followed by structure restoration.

Given an initial data matrix of a given type, such as the autocorrelation, covari-
ance, or forward/backward type, the following steps implement the typical SVD
enhancement iteration:
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Y = datamat(y,M,type); % construct data matrix from signal

Ye = Y; % initialize iteration

for i=1:K, % iterate K times, typically, K =2–3.

Ye = sigsub(Ye,r); % force rank reduction to rank r
Ye = toepl(Ye,type); % restore Toeplitz or Toeplitz-Hankel structure

end
ye = datasig(Ye,type); % extract enhanced signal from enhanced data matrix

After the iteration, one may extract the “enhanced” signal from the enhanced
data matrix. The MATLAB function sigsub (in the OSP toolbox) carries out an
economy SVD of Y and then keeps only the r largest singular values, that is, it
extracts the signal subspace part of Y. The function toepl restores the Toeplitz or
Toeplitz-over-Hankel structure by finding the matrix with such structure that lies
closest to the rank-reduced data matrix. We will be discussing these functions later.

The SVD enhancement iteration method has been re-invented in different con-
texts. In the context of linear prediction and extracting sinusoids in noise it is
known as the Cadzow iteration [34–36]. In the context of chaotic dynamics, clima-
tology, and meteorology, it is known as singular spectral analysis (SSA)† [88–103];
actually, in SSA only one iteration (K = 1) is used. In nonlinear dynamics, the pro-
cess of forming the data matrix Y is referred to as “delay-coordinate embedding”
and the number of columns, M + 1, of Y is the “embedding dimension.”

In the literature, one often finds that the data matrix Y is defined as a Hankel
instead of a Toeplitz matrix. This corresponds to reversing the rows of the Toeplitz
definition. For example, using the reversing matrix J, we have:

Y =

⎡
⎢⎢⎢⎢⎢⎣
y2 y1 y0

y3 y2 y1

y4 y3 y2

y5 y4 y3

y6 y5 y2

⎤
⎥⎥⎥⎥⎥⎦ = Toeplitz ⇒ YJ =

⎡
⎢⎢⎢⎢⎢⎣
y0 y1 y2

y1 y2 y3

y2 y3 y4

y3 y4 y5

y4 y5 y6

⎤
⎥⎥⎥⎥⎥⎦ = Hankel

In such cases, in the SVD enhancement iterations one must invoke the function
toepl with its Hankel option, that is, type=1.

Example 17.1: As an example that illustrates the degree of enhancement obtained from
such methods, consider the length-25 signal yn listed in the file sine1.dat on the
course web page. The signal consists of two equal-amplitude sinusoids of frequencies
f1 = 0.20 and f2 = 0.25 cycles/sample, in zero-mean, white gaussian noise with a 0-dB
SNR. The signal samples were generated by:

yn = cos(2πf1n)+ cos(2πf2n)+0.707vn , n = 0,1, . . . ,24

where vn is zero-mean, unit-variance, white noise, and the amplitude 1/
√

2 = 0.707
ensures that SNR = 0 dB.

The short duration and the low SNR make this a difficult signal to handle. Fig. 17.1
compares the performance of four spectrum estimation methods: the ordinary pe-
riodogram, the linear-prediction-based methods of Burg and Yule-Walker, and the
SVD-enhanced Burg method in which the SVD-enhanced signal is subjected to Burg’s
algorithm, instead of the original signal.

†Sometimes also called “singular system analysis” or the “caterpillar” method.
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Fig. 17.1 SVD-enhanced linear prediction spectra.

The effective rank is r = 4 (each real sinusoid counts for two complex ones.) The SVD-
enhanced version of Burg’s method gives narrow peaks at the two desired frequencies.
The number of iterations was K = 3, and the prediction filter order M = 20.

The Yule-Walker method results in fairly wide peaks at the two frequencies—the SNR
is just too small for the method to work. The ordinary Burg method gives narrower
peaks, but because the filter orderM is high, it also produces several false peaks that
are just as narrow.

Reducing the order of the prediction filter from M down to r, as is done in the SVD
method to avoid any false peaks, will not work at all for the Yule-Walker and ordinary
Burg methods—both will fail to resolve the peaks.

The periodogram exhibits wide mainlobes and sidelobes—the signal duration is just
too short to make the mainlobes narrow enough. If the signal is windowed prior to
computing the periodogram, for example, using a Hamming window, the two main-
lobes will broaden so much that they will overlap with each other, masking completely
the frequency peaks.

The graph on the right of Fig. 17.1 makes the length even shorter, N = 15, by using
only the first 15 samples of yn. The SVD method, implemented with M = 10, still
exhibits the two narrow peaks, whereas all of the other methods fail, with the ordinary
Burg being a little better than the others, but still exhibiting a false peak. The SVD
method works well also for K = 2 iterations, but not so well for K = 1. The following
MATLAB code illustrates the computational steps for producing these graphs:

y = loadfile(’sine1.dat’); % read signal samples yn from file

r = 4; M = 20; K = 3; % rank, filter order, number of iterations

f = linspace(0.1,0.4,401); w = 2*pi*f; % frequency band

a = lpf(burg(y,M)); % Burg prediction filter of order M
H1 = 1./abs(dtft(a,w)); % compute ordinary Burg LP spectrum
H1 = 20*log10(H1/max(H1)); % spectrum in dB

a = lpf(yw(y,M)); % Yule-Walker prediction filter
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H2 = 1./abs(dtft(a,w)); % compute Yule-Walker LP spectrum
H2 = 20*log10(H2/max(H2));

H3 = abs(dtft(y,w));
H3 = 20*log10(H3/max(H3)); % periodogram spectrum in dB

Y = datamat(y,M); % Y is the autocorrelation type
Ye = Y;
for i=1:K, % SVD enhancement iterations

Ye = sigsub(Ye,r); % set rank to r
Ye = toepl(Ye); % toeplitzize Ye

end
ye = datasig(Ye); % extract enhanced time signal

a = lpf(burg(ye,r)); % Burg prediction filter of order r
H = 1./abs(dtft(a,w)); % compute enhanced Burg LP spectrum
H = 20*log10(H/max(H));

plot(f,H,’-’, f,H1,’--’, f,H2,’:’, f,H3,’-.’);

The functions lpf, burg, yw implement the standard Burg and Yule-Walker methods.
They will be discussed later on. ��

Example 17.2: The SVD enhancement process can be used to smooth data and extract local
or global trends from noisy times series. Typically, the first few principal components
represent the trend.

As an example, we consider the global annual average temperature obtained from the
web site: www.cru.uea.ac.uk/cru/data/temperature/. The data represent the
temperature anomalies in degrees oC with respect to the 1961–1990 average.

Using M = 30 and one SVD enhancement iteration, K = 1, we find the first five
variances, given as percentages of the total variance:

{λ1, λ2, λ3, λ4, λ5} = {63.78, 12.44, 2.27, 1.79, 1.71}

The first two PCs account for 76% of the total variance. The percent variances are
plotted in Fig. 17.2.

The smoothed signals extracted from reducing the rank to r = 1,2,3,4,5,6 are shown
in Figs. 17.3, 17.4, and 17.5. We note that the r = 2 case represents the trend well.
As the rank is increased, the smoothed signal tries to capture more and more of the
finer variations of the original signal.

Assuming that the global trend ye(n) is represented by the first two principal com-
ponents (r = 2), one can subtract it from the original sequence resulting into the
residual y1(n)= y(n)−ye(n), and the SVD enhancement method may be repeated
on that signal. The first few components of y1(n) can be taken to represent the local
variations in the original y(n), such as short-period cyclical components. The rest of
the principal components of y1(n) may be taken to represent the noise.

The MATLAB code used to generate these graphs was as follows:

A = loadfile(’TaveGL2.dat’); % read data file
y = A(:,14); % column-14 holds the annual averages
n = A(:,1); % column-1 holds the year
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Fig. 17.2 Percentage variances of the first 31 principal components.
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Fig. 17.3 Principal component signals of ranks r = 1,2.

M = 30; K=1; r = 1; % or, r = 2,3,4,5,6
y = zmean(y); % zero mean
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Fig. 17.4 Principal component signals of ranks r = 3,4.
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Fig. 17.5 Principal component signals of ranks r = 5,6.

Ye = datamat(y,M,2); % forward-backward Toeplitz-Hankel type
for i=1:K, % SVD enhancement iteration

Ye = sigsub(Y,r); % extract rank-r signal subspace
Ye = toepl(Ye,2); % convert to Toeplitz-Hankel

end
ye = datasig(Ye,2); % extract smoothed signal

plot(n,y,’:’, n,ye,’-’); % plot original and smoothed signal

There are other popular methods of smoothing data and extracting trends. We men-
tion two methods: spline smoothing and local polynomial regression. They are shown
in Fig. 17.6. They have comparable performance to the SVD method. Both methods
have a free parameter, such as λ or α, that controls the degree of smoothing. ��

18. Structured Matrix Approximations

We saw in the previous section that the process of rank reduction destroys the
Toeplitz or Toeplitz/Hankel nature of the data matrix. The purpose of the MATLAB
function toepl was to restore the structure of the data matrix by finding the closest
matrix of the desired structure.

Given a data matrixY that ideally should be Toeplitz, such as the autocorrelation
or covariance types, one can find a Toeplitz matrixT that is closest toYwith respect
to a matrix norm. The easiest norm to use is the Frobenius norm. Thus, we have
the approximation problem:

J = ‖Y −T‖2
F = min, where T is required to be Toeplitz (18.1)

The solution is the Toeplitz matrix obtained by replacing each diagonal of Y by
the average along that diagonal. We demonstrate this with a small example. Let Y
and T be defined as:

Y =
⎡
⎢⎣ y11 y12 y13

y21 y22 y23

y31 y32 y33

⎤
⎥⎦ , T =

⎡
⎢⎣ t2 t1 t0
t3 t2 t1
t4 t3 t2

⎤
⎥⎦
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Fig. 17.6 Spline smoothing and local polynomial regression.

The difference matrix is:

Y −T =
⎡
⎢⎣ y11 − t2 y12 − t1 y13 − t0
y21 − t3 y22 − t2 y23 − t1
y31 − t4 y32 − t3 y33 − t2

⎤
⎥⎦

Because the Frobenius norm is the sum of the squares of all the matrix elements,
we have:

J = ‖Y −T‖2
F =|y11 − t2|2 + |y22 − t2|2 + |y33 − t2|2

+ |y12 − t1|2 + |y23 − t1|2 + |y13 − t0|2

+ |y21 − t3|2 + |y32 − t3|2 + |y13 − t4|2

The minimization conditions ∂J/∂ti = 0, i = 0,1,2,3,4, easily lead to the
desired solutions: t0 = y13, t4 = y31 and

t1 = y12 + y23

2
, t2 = y11 + y22 + y33

3
, t3 = y21 + y32

2

For a Hankel matrix approximation, we have the minimization problem:

J = ‖Y −H‖2
F = min, where H is required to be Hankel (18.2)
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Its solution is obtained by replacing each antidiagonal of Y by the average along
that antidiagonal. This problem can be reduced to an equivalent Toeplitz type by
noting that the row-reversing operation Y → YJ, where J is the usual reversing
matrix, leaves the Frobenius norm unchanged and it maps a Hankel matrix into a
Toeplitz one. Setting T = HJ, the problem (18.2) becomes:

J = ‖Y −H‖2
F = ‖YJ −T‖2

F = min, where T is required to be Toeplitz (18.3)

Once T is found by averaging the diagonals of YJ, the Hankel matrix H is con-
structed by row-reversal, H = TJ. This amounts to averaging the antidiagonals of
the original data matrix Y.

Finally, in the case of Toeplitz over Hankel structure, we have a data matrix
whose upper half is to be Toeplitz and its lower half is the row-reversed and con-
jugated upper part. Partitioning Y into these two parts, we set:

Y =
[
YT
YH

]
, M =

[
T
T∗J

]
= required approximation

The matrix approximation problem is then:

J = ‖Y −M‖2
F =

∥∥∥∥∥
[
YT
YH

]
−
[
T
T∗J

]∥∥∥∥∥
2

F
= ‖YT −T‖2

F + ‖Y∗HJ −T‖2
F = min

where we used the property ‖YH − T∗J‖2
F = ‖Y∗HJ − T‖2

F. The solution of this
minimization problem is obtained by choosing T to be the average of the Toeplitz
approximations of YT and Y∗HJ, that is, in the notation of the function toepl:

T = toepl(YT)+toepl(Y∗HJ)
2

Example 18.1: As an example, we give below the optimum Toeplitz, Hankel, and Toeplitz
over Hankel approximations of the same data matrix Y:

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

10 10 10
20 20 20
30 30 30
40 40 40
50 50 50
60 60 60

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⇒ T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

20 15 10
30 20 15
40 30 20
50 40 30
55 50 40
60 55 50

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

10 15 20
15 20 30
20 30 40
30 40 50
40 50 55
50 55 60

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 10 10
20 20 20
30 30 30

40 40 40
50 50 50
60 60 60

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒ M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

35 30 25
40 35 30
45 40 35

25 30 35
30 35 40
35 40 45

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[
T
T∗J

]
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19. Matrix Pencil Methods

The matrix pencil of two N×M matrices A,B, is defined to be the matrix:

A− λB (19.1)

where λ is a parameter. The generalized eigenvalues of the matrix pair {A,B} are
those values of λ that cause A − λB to reduce its rank. A generalized eigenvector
corresponding to such a λ is a vector in the null space N(A− λB).

A matrix pencil is a generalization of the eigenvalue concept to non-square ma-
trices. A similar rank reduction takes place in the ordinary eigenvalue problem of
a square matrix. Indeed, the eigenvalue-eigenvector condition Avi = λivi can be
written as (A−λiI)vi = 0, which states that A−λI loses its rank when λ = λi and
vi lies in the null space N(A− λiI).

Matrix pencil methods arise naturally in the problem of estimating damped or
undamped sinusoids in noise [46], and are equivalent to the so-called ESPRIT meth-
ods [42]. Consider a signal that is the sum of r, possibly damped, complex sinusoids
in additive, zero-mean, white noise:

yn =
r∑
i=1

Aie−αinejωin + vn =
r∑
i=1

Aizni + vn (19.2)

where zi = e−αi+jωi , i = 1,2, . . . , r. The problem is to estimate the unknown damp-
ing factors, frequencies, and complex amplitudes of the sinusoids, {αi,ωi,Ai},
from available observations of a length-N data block y = [y0, y1, . . . , yN−1]T of the
noisy signal yn. We may assume that the zi are distinct.

In the absence of noise, the (N −M)×(M + 1)–dimensional, covariance-type,
data matrix Y can be shown to have rank r, provided that the embedding order M
is chosen such that r ≤M ≤ N − r. The data matrix Y is defined as:

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

yT(M)
...

yT(n)
...

yT(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, y(n)=

⎡
⎢⎢⎢⎢⎢⎢⎣

yn
yn−1

yn−2
...

yn−M

⎤
⎥⎥⎥⎥⎥⎥⎦ =

r∑
i=1

Ai zni

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
z−1
i
z−2
i
...

z−Mi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(19.3)

and, Y becomes:

Y =
r∑
i=1

Ai

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

zMi
...
zni
...

zN−1
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
1, z−1

i , z
−2
i , . . . , z

−M
i
]

(19.4)

Thus,Y is the sum of r rank-1 matrices, and therefore, it will have rank r. Its null
space N(Y) can be characterized conveniently in terms of the order-r polynomial
with the zi as roots, that is,
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A(z)=
r∏
i=1

(1− ziz−1) (19.5)

MultiplyingA(z) by an arbitrary polynomial F(z) of orderM−r, gives an order-
M polynomialB(z)= A(z)F(z), such that r of its roots are the zi, that is, B(zi)= 0,
for i = 1,2 . . . , r, and the remainingM−r roots are arbitrary. The polynomial B(z)
defines an (M + 1)–dimensional vector b = [b0, b1, . . . , bM]T through its inverse
z-transform:

B(z)= b0 + b1z−1 + · · · + bMz−M =
[
1, z−1, z−2, . . . , z−M

]
⎡
⎢⎢⎢⎢⎣
b0

b1
...
bM

⎤
⎥⎥⎥⎥⎦ (19.6)

Then, the root conditions can be stated in the form:

B(zi)=
[
1, z−1

i , z
−2
i , . . . , z

−M
i
]
⎡
⎢⎢⎢⎢⎣
b0

b1
...
bM

⎤
⎥⎥⎥⎥⎦ = 0 , i = 1,2, . . . , r (19.7)

This implies that the vector b must lie in the null space of Y:

Y b =
r∑
i=1

Ai

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

zMi
...
zni
...

zN−1
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
1, z−1

i , z
−2
i , . . . , z

−M
i
]
⎡
⎢⎢⎢⎢⎣
b0

b1
...
bM

⎤
⎥⎥⎥⎥⎦ = 0 (19.8)

Conversely, if b satisfies Eq. (19.8), then because M ≤ N − r, or, r ≤ N −
M, the (N −M)–dimensional column vectors [zMi , . . . , z

n
i , . . . , z

N−1
i ]T are linearly

independent,† and therefore, we must have:

Y b =
r∑
i=1

Ai

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

zMi
...
zni
...

zN−1
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
B(zi)= 0 ⇒ B(zi)= 0 (19.9)

Thus, B(z) must have the form B(z)= A(z)F(z). Because F(z) has degree
M − r, it will be characterized by M + 1 − r arbitrary coefficients. It follows that

†This follows from the fact that the r×r Vandermonde matrix Vki = zk−1
i , k, i = 1,2, . . . , r, has

nonvanishing determinant det(V)=∏1≤i<j≤r(zi − zj), because the zi are distinct. See Ref. [1].
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the dimensionality of b, and hence of the null space N(Y), will be M + 1− r. This
implies that the rank of Y is r.

Next, we consider the matrix pencil of the two submatrices Y1, Y0 of Y, where
Y1 is defined to be the first M columns of Y, and Y0, the last M, that is,

Y1 =
r∑
i=1

Ai

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

zMi
...
zni
...

zN−1
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
1, z−1

i , z
−2
i , . . . , z

−(M−1)
i

]

Y0 =
r∑
i=1

Ai

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

zMi
...
zni
...

zN−1
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
z−1
i , z

−2
i , . . . , z

−M
i
]

(19.10)

They were obtained by keeping the first or lastM entries of [1, z−1
i , z

−2
i , . . . , z

−M
i ]:

[
1, z−1

i , z
−2
i , . . . , z

−(M−1)
i︸ ︷︷ ︸

first M

, z−Mi
] = [1, z−1

i , z
−2
i , . . . , z

−(M−1)
i , z−Mi︸ ︷︷ ︸

last M

]

Both matrices Y1, Y0 have dimension (N −M)×M. Noting that

[
1, z−1

i , z
−2
i , . . . , z

−(M−1)
i

] = zi[z−1
i , z

−2
i , . . . , z

−M
i
]
,

we may rewrite Y1 in the form:

Y1 =
r∑
i=1

ziAi

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

zMi
...
zni
...

zN−1
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
z−1
i , z

−2
i , . . . , z

−M
i
]

(19.11)

Therefore, the matrix pencil Y1 − λY0 can be written as:

Y1 − λY0 =
r∑
i=1

(zi − λ)Ai

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

zMi
...
zni
...

zN−1
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
z−1
i , z

−2
i , . . . , z

−M
i
]

(19.12)

Because r ≤ M and r ≤ N −M, and Y1 − λY0 is a sum of r rank-1 matrices, it
follows that, as long as λ �= zi, the rank of Y1 − λY0 will be r. However, whenever
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λ becomes equal to one of the zi, one of the rank-1 terms will vanish and the rank
of Y1 − λY0 will collapse to r − 1. Thus, the r desired zeros zi are the generalized
eigenvalues of the rank-r matrix pencil Y1 − λY0.

When noise is added to the sinusoids, the matrix pencil Y1 − λY0 will have
full rank, but we expect its r most dominant generalized eigenvalues to be good
estimates of the zi.

In fact, the problem of finding the r eigenvalues zi can be reduced to an ordinary
r×r eigenvalue problem. First, the data matrices Y1, Y0 are extracted from the
matrix Y, for example, if N = 10 and M = 3, we have:

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y3 y2 y1 y0

y4 y3 y2 y1

y5 y4 y3 y2

y6 y5 y4 y3

y7 y6 y5 y4

y8 y7 y6 y5

y9 y8 y7 y6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒ Y1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y3 y2 y1

y4 y3 y2

y5 y4 y3

y6 y5 y4

y7 y6 y5

y8 y7 y6

y9 y8 y7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Y0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y2 y1 y0

y3 y2 y1

y4 y3 y2

y5 y4 y3

y6 y5 y4

y7 y6 y5

y8 y7 y6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Second, a rank-r reduction is performed onY0, approximating it asY0 = UrΣrV†r ,
whereUr has size (N−M)×r, Σr is r×r, and Vr ,M×r. The matrix pencil becomes
then Y1 − λUrΣrV†r . Multiplying from the left by U†r and from the right by Vr
and using the orthogonality properties U†rUr = Ir and V†rVr = Ir , we obtain the
equivalent r×r matrix pencil:

U†r (Y1 − λY0)Vr = U†rY1Vr − λΣr or,

Σ−1
r U†r (Y1 − λY0)Vr = Z − λIr , where Z = Σ−1

r U†rY1Vr (19.13)

Fianlly, the eigenvalues of the r×rmatrixZ are computed, which are the desired
estimates of the zi. The matrix pencil Z − λIr may also be obtained by inverting
Y0 using its pseudoinverse and then reducing the problem to size r×r. Using
Y+0 = VrΣ−1

r U
†
r , it can be shown easily that:

V†r (Y
+
0 Y1 − λIM)Vr = Z − λIr

Once the zi are determined, the amplitudes Ai may be calculated by least-
squares. Writing Eq. (19.2) vectorially for the given length-N signal yn, we have:⎡

⎢⎢⎢⎢⎣
y0

y1
...

yN−1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1
z1 z2 · · · zr
...

...
...

...
zN−1

1 zN−1
2 · · · zN−1

r

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
A1

A2
...
Ar

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣
v0

v1
...

vN−1

⎤
⎥⎥⎥⎥⎦ (19.14)

or, written compactly as
y = SA+ v (19.15)

with least-squares solution:
A = S+y = S\y (19.16)

The above design steps have been implemented into the MATLAB function mpencil:
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[z,A] = mpencil(y,r,M); % matrix pencil method

The N×r Vandermonde matrix S with matrix elements Sni = zni , for 0 ≤ n ≤
N − 1 and 1 ≤ i ≤ r, is known as a steering matrix and its individual columns as
steering vectors. It can be computed by the MATLAB function steering:

S = steering(N-1,z); % steering matrix

20. QR Factorization

The Gram-Schmidt orthogonalization of random variables has many uses: (a) it
leads to signal models through the innovations representation, (b) it is equivalent
to linear prediction, (c) it corresponds to the Cholesky factorization of the covari-
ance matrix, and (d) it provides efficient computational bases for linear estimation
problems, leading to fast solutions of normal equations via Levinson’s or Schur’s
algorithms and to fast adaptive implementations, such as adaptive Gram-Schmidt
preprocessors in antenna arrays and fast adaptive lattice filters in time-series ap-
plications.

The Gram-Schmidt orthogonalization of an (M+1)-dimensional complex-valued
zero-mean random vector y = [y0, y1, . . . , yM]T is defined by:

ε0 = y0

for m = 1,2, . . . ,M do:

εm = ym −
m−1∑
i=0

E[ε∗i ym]
E[ε∗i εi]

εi

(20.1)

The constructed random vector εεε = [ε0, ε1 . . . , εM]T has uncorrelated compo-
nents E[ε∗i εj]= 0, if i ≠ j. The unit lower-triangular innovations matrix B may be
defined in terms of its lower-triangular matrix elements:

bmi = E[y∗mεi]
E[ε∗i εi]

, 1 ≤m ≤M , 0 ≤ i ≤m− 1 (20.2)

Then, Eq. (20.1) can be written as ym = εm +
∑m−1
i=0 b∗miεi, or expressed vectorially:

y = B∗εεε (20.3)

for example, ⎡
⎢⎢⎢⎣
y0

y1

y2

y3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 0 0 0
b∗10 1 0 0
b∗20 b∗21 1 0
b∗30 b∗31 b∗32 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
ε0

ε1

ε2

ε3

⎤
⎥⎥⎥⎦

The matrix B is the unit lower-triangular Cholesky factor of the covariance ma-
trix of the random vector y:

R = BDB† (20.4)
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where R = E[y∗yT] and D = E[εεε∗εεεT]= diag{E0, E1, . . . , EM}, where Ei is the
variance of εi, that is, Ei = E[ε∗i εi].

We may work also with the random variables qi = εi/E1/2
i , i = 0,1, . . . ,M,

normalized to have unit variance. Then, the random vector q = [q0, q1, . . . , qM]T
will have unit covariance matrix:

q = D−1/2εεε ⇒ E[q∗qT]= I (20.5)

where I is the (M+1)-dimensional identity matrix. Defining the upper triangular
matrix G = D1/2B†, we note that G†G = BDB† and GT = B∗D1/2 and therefore,
Eqs. (20.3) and (20.4) can be rewritten as:

y = GTq , R = G†G (20.6)

In practice, we must work with sample covariance matrices estimated on the ba-
sis ofN vectors y(n), n = 0,1, . . . ,N−1. TheN×(M+1) data matrixY constructed
from these vectors is used to obtain the sample covariance matrix:

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

yT(0)
...

yT(n)
...

yT(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒ R̂ = Y†Y (20.7)

The QR-factorization factors the data matrixY into anN×(M+1)matrixQ with
orthonormal columns and an (M+1)×(M+1) upper triangular matrix G:

Y = QG, Q†Q = I , G = upper triangular (20.8)

The matrixQ is obtained by the Gram-Schmidt orthogonalization of the (M+1)
columns of Y. The QR-factorization implies the Cholesky factorization of the co-
variance matrix R̂. Using Q†Q = I, we have:

R̂ = Y†Y = G†Q†QG = G†G (20.9)

Writing Q row-wise, we can extract the snapshot vector q(n) corresponding to
y(n), that is,

Y = QG ⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

yT(0)
...

yT(n)
...

yT(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

qT(0)
...

qT(n)
...

qT(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
G ⇒ yT(n)= qT(n)G , or,

y(n)= GTq(n) , n = 0,1, . . .N − 1 (20.10)

which is the same as Eq. (20.6).
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Writing qT(n)= [q0(n), q1(n), . . . , qM(n)], the ith column of Q is the time
signal qi(n), n = 0,1, . . . ,N− 1. Orthonormality in the statistical sense translates
to orthonormality in the time-average sense:

E[q∗qT]= I ⇒ Q†Q =
N−1∑
n=0

q∗(n)qT(n)= I (20.11)

or, component-wise, for i, j,= 0,1, . . . ,M:

E[q∗i qj]= δij ⇒
N−1∑
n=0

q∗i (n)qj(n)= δij (20.12)

In comparing the SVD versus the QR-factorization, we observe that both meth-
ods orthogonalize the random vector y. The SVD corresponds to the KLT/PCA
eigenvalue decomposition of the covariance matrix, whereas the QR corresponds
to the Cholesky factorization. The following table compares the two approaches.

KLT/PCA Cholesky Factorization

R = E[y∗yT]= VΛV† R = E[y∗yT]= G†G = BDB†

y = V∗z = V∗Σ u y = GTq = B∗εεε
E[z∗zT]= Λ = Σ2 E[εεε∗εεεT]= D
E[u∗uT]= I E[q∗qT]= I

SVD QR

Y = UΣV† = ZV† Y = QG
R̂ = Y†Y = VΛV† = VΣ2V† R̂ = Y†Y = G†G
y(n)= V∗z(n)= V∗Σ u(n) y(n)= GTq(n)= B∗εεε(n)
N−1∑
n=0

u∗(n)uT(n)= I
N−1∑
n=0

q∗(n)qT(n)= I

21. Canonical Correlation Analysis

Canonical correlation analysis (CCA) attempts to determine if there are any signif-
icant correlations between two groups of random variables. It does so by finding
linear combinations of the first group and linear combinations of the second group
that are maximally correlated with each other [4–6,81–87].

Consider the two groups of random variables to be the components of two zero-
mean random vectors ya and yb of dimensions p and q. Concatenating the vectors
ya,yb into a (p+q)-dimensional vector, we have:
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y =
[

ya
yb

]
, where ya =

⎡
⎢⎢⎢⎢⎣
ya1

ya2
...
yap

⎤
⎥⎥⎥⎥⎦ , yb =

⎡
⎢⎢⎢⎢⎣
yb1

yb2
...
ybq

⎤
⎥⎥⎥⎥⎦ (21.1)

Its covariance matrix can be expressed in the partitioned form:

R = E[y∗yT]=
[
E[y∗ayTa] E[y∗ayTb]
E[y∗byTa] E[y∗byTb]

]
=
[
Raa Rab
Rba Rbb

]
(21.2)

In general, the matrices Raa,Rab,Rbb are full and inspection of their entries
does not provide—especially when the matrices are large—a clear insight as to the
essential correlations between the two groups.

What should be the ideal form of R in order to bring out such essential correla-
tions? As an example, consider the case p = 3 and q = 2 and suppose R has the
following structure, referred to as the canonical correlation structure:

R =

⎡
⎢⎢⎢⎢⎢⎣

Ra1,a1 Ra1,a2 Ra1,a3 Ra1,b1 Ra1,b2

Ra2,a1 Ra2,a2 Ra2,a3 Ra2,b1 Ra2,b2

Ra3,a1 Ra3,a2 Ra3,a3 Ra3,b1 Ra3,b2

Rb1,a1 Rb1,a2 Rb1,a3 Rb1,b1 Rb1,b2

Rb2,a1 Rb2,a2 Rb2,a3 Rb2,b1 Rb2,b2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 c1 0
0 1 0 0 c2

0 0 1 0 0

c1 0 0 1 0
0 c2 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

where the random vectors are ya = [ya1, ya2, ya3]T and yb = [yb1, yb2]T, and we
denoted Rai,aj = E[y∗aiyaj], Rai,bj = E[y∗aiybj], Rbi,bj = E[y∗biybj].

This form tells us that the random variables {ya1, ya2, ya3} are mutually un-
correlated and have unit variance, and so are the {yb1, yb2}. Moreover, between
group a and group b, the random variable ya1 is correlated only with yb1, with
correlation c1 = E[y∗a1yb1], and ya2 is correlated only with yb2, with correlation
c2 = E[y∗a2yb2]. Assuming c1 ≥ c2, the pair {ya1, yb1} will be more correlated than
the pair {ya2, yb2}. The case p = 2 and q = 3 would be:

R =

⎡
⎢⎢⎢⎢⎢⎣

Ra1,a1 Ra1,a2 Ra1,b1 Ra1,b2 Ra1,b3

Ra2,a1 Ra2,a2 Ra2,b1 Ra2,b2 Ra2,b3

Rb1,a1 Rb1,a2 Rb1,b1 Rb1,b2 Rb1,b3

Rb2,a1 Rb2,a2 Rb2,b1 Rb2,b2 Rb2,b3

Rb3,a1 Rb3,a2 Rb3,b1 Rb3,b2 Rb3,b3

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

1 0 c1 0 0
0 1 0 c2 0

c1 0 1 0 0
0 c2 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

Thus, the canonical structure, having a diagonal submatrix Rab, describes the
correlations between a and b in their clearest form. The goal of CCA is to bring
the general covariance matrix R of Eq. (21.2) into such a canonical form. This is
accomplished by finding appropriate linear transformations that change the bases
ya and yb into the above form.

One may start by finding p- and q-dimensional vectors a,b such that the linear
combinations wa = aTya and wb = bTyb are maximally correlated, that is, finding
a,b that maximize the normalized correlation coefficient:
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c = E[w∗awb]√
E[w∗awa]E[w∗bwb]

= max (21.3)

Noting that E[w∗awb]= a†Rabb, E[w∗awa]= a†Raaa, and E[w∗bwb]= b†Rbbb,
the above criterion becomes:

c = a†Rabb√
(a†Raaa)(b†Rbbb)

= max (21.4)

We may impose the constraints thatwa,wb have unit variance, that is, E[w∗awa]=
a†Raaa = 1 and E[w∗bwb]= b†Rbbb = 1. Then, the equivalent criterion reads:

c = a†Rabb = max , subject to a†Raaa = 1 , b†Rbbb = 1 (21.5)

This is reminiscent of the maximization criterion for singular values that we
discussed in Sec. 5. To recast (21.5) into that form, we first change into a basis in
which the group random vectors have unit covariance matrix. Performing the full
SVDs of Raa and Rbb, we set:

Raa = UaΛaV†a = VaΣ2
aV

†
a , Ua = Va , Σa = Λ1/2

a , V†aVa = Ip
Rbb = UbΛbV†b = VbΣ2

bV
†
b , Ub = Vb , Σb = Λ1/2

b , V†bVb = Iq
(21.6)

These are essentially the eigenvalue decompositions of the hermitian positive
definite matricesRaa,Rbb. We assume thatΣa,Σb are non-singular, that is,Raa,Rbb
have full rank. Then, we define the transformed random vectors and corresponding
cross-correlation matrix:

ua = Σ−1
a VTaya

ub = Σ−1
b V

T
byb

⇒ Cab = E[u∗auTb]= Σ−1
a V†aRabVbΣ

−1
b (21.7)

In this basis, E[u∗auTa]= Σ−1
a V

†
aRaaVaΣ−1

a = Σ−1
a V

†
aVaΣ2

aV
†
aVaΣ−1

a = Ip, and
similarly, E[u∗buTb]= Iq. The transformed covariance matrix will be:

u =
[

ua
ub

]
⇒ Ruu = E[u∗uT]=

[
E[u∗auTa] E[u∗auTb]
E[u∗buTa] E[u∗buTb]

]
=
[
Ip Cab
C†ab Iq

]

An alternative method of obtaining unit-covariance bases is to use the Cholesky
factorization. For example, we may set Raa = G†aGa, where Ga is upper triangular,
and define ua = G−Ta ya.

Having transformed to a new basis, we also transform the coefficients a,b so
that wa,wb are expressed as linear combinations in the new basis:

fa = ΣaV†aa ⇒ a = VaΣ−1
a fa ⇒ wa = aTya = fTaua

fb = ΣbV†bb ⇒ b = VbΣ−1
b fb ⇒ wb = bTyb = fTbub

(21.8)

Similarly, we have:
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E[w∗awa]= a†Raaa = f†aΣ−1
a V

†
aRaaVaΣ−1

a fa = f†afa

E[w∗bwb]= b†Rbbb = f†bΣ
−1
b V

†
bRbbVbΣ

−1
b fb = f†bfb

E[w∗awb]= a†Rabb = f†aΣ−1
a V

†
aRabVbΣ−1

b fb = f†aCabfb

(21.9)

Then, the criterion (21.5) may be expressed as an SVD maximization criterion in
the new basis:

c = f†aCabfb = max , subject to f†afa = f†bfb = 1 (21.10)

It follows from Eq. (5.17) that the solution is c = c1, the maximum singular
value of Cab, and the vectors fa, fb are the first singular vectors. The remaining
singular values of Cab are the lower maxima of (21.10) and are obtained subject to
the orthogonality constraints of Eq. (5.18).

Thus, the desired canonical correlation structure is derived from the SVD of the
matrix Cab. The singular values of Cab are called the canonical correlations. The
following procedure will construct all of them. Start with the full SVD of Cab:

Cab = FaCF†b , C = diag{c1, c2 . . . , cr} ∈ Cp×q (21.11)

where c1 ≥ c2 ≥ · · · ≥ cr > 0 and r = min(p, q) (full rank case), and Fa, Fb are
unitary matrices, that is, F†aFa = FaF†a = Ip and F†bFb = FbF†b = Iq. Then, construct
the CCA coefficient matrices:

A = VaΣ−1
a Fa = [a1, a2, . . . , ap]= p×p matrix

B = VbΣ−1
b Fb = [b1,b2, . . . ,bq]= q×q matrix

(21.12)

The coefficient matrices A,B transform the basis ya,yb directly into the canonical
correlation basis. We define:

wa = ATya

wb = BTyb
⇒ w =

[
wa
wb

]
=
[
AT 0
0 BT

][
ya
yb

]
(21.13)

Then, the corresponding covariance matrix will be:

Rww = E[w∗wT]=
[
E[w∗

awT
a] E[w∗

awT
b]

E[w∗
bwT

a] E[w∗
bwT

b]

]
=
[
A†RaaA A†RabB
B†RbaA B†RbbB

]
(21.14)

By construction, we have A†RaaA = Ip, A†RabB = C, and B†RbbB = Iq. Thus,
we obtain the canonical correlation structure:

Rww = E[w∗wT]=
[
E[w∗

awT
a] E[w∗

awT
b]

E[w∗
bwT

a] E[w∗
bwT

b]

]
=
[
Ip C
C† Iq

]
(21.15)

The canonical correlations and canonical random variables are obtained from
the columns of A,B by the linear combinations:

ci = E[w∗aiwbi] , wai = aTi ya , wbi = bTi yb , i = 1,2, . . . , r (21.16)

The MATLAB function ccacov.m takes as input a (p+q)×(p+q) covariance
matrix R and computes the coefficient matrices A,B and canonical correlations C,
using Eqs. (21.6), (21.7), and (21.12). It has usage:
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[A,C,B] = ccacov(R,p); % CCA of a covariance matrix

Next, we consider the practical implementation of CCA based onN observations
ya(n),yb(n), n = 0,1, . . . ,N − 1. We form the N×p and N×q data matrices, as
well as the concatenated N×(p+q) data matrix:

Ya =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

yTa(0)
...

yTa(n)
...

yTa(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Yb =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

yTb(0)
...

yTb(n)
...

yTb(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Y = [Ya,Yb] (21.17)

We assume that the column means have been removed fromY. The correspond-
ing sample covariance matrices are then:

R̂ = Y†Y =
[
Y†aYa Y†aYb
Y†bYa Y†bYb

]
=
[
R̂aa R̂ab
R̂ba R̂bb

]
(21.18)

We may obtain the CCA transformation matrices A,B by applying the previous
construction to R̂. However, a more direct approach is as follows. Starting with the
economy SVDs of Ya and Yb, we have:

Ya = UaΣaV†a = economy SVD of Ya , Ua ∈ CN×p , U†aUa = Ip
Yb = UbΣbV†b = economy SVD of Yb , Ub ∈ CN×q , U†bUb = Iq
Cab = U†aUb = cross-covariance in u-basis , Cab ∈ Cp×q
Cab = FaCF†b = full SVD , C = diag{c1, c2 . . . , cr} , r = min(p, q)
A = VaΣ−1

a Fa = CCA coefficients , A ∈ Cp×p
B = VbΣ−1

b Fb = CCA coefficients , B ∈ Cq×q
Wa = YaA , Wa ∈ CN×p with orthonormal columns, W†

aWa = Ip
Wb = YbB , Wb ∈ CN×q with orthonormal columns, W†

bWb = Iq
W†
aWb = C = p×q diagonal matrix of canonical correlations

(21.19)

The transformed data matrices Wa,Wb and W = [Wa,Wb] have the canonical
correlation structure:

W†W =
[
W†
aWa W†

aWb

W†
bWa W†

bWb

]
=
[
Ip C
C† Iq

]
(21.20)

Denoting the ith columns of Wa,Wb by wai(n),wbi(n), n = 0,1, . . . ,N − 1,
we note that they have unit norm as N-dimensional vectors, and the ith canonical
correlation is given by the time-average:

ci =
N−1∑
n=0

w∗ai(n)wbi(n) , i = 1,2, . . . , r (21.21)
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The above steps have been implemented by the MATLAB function cca.m. It takes
as inputs the data matrices Ya,Yb and outputs A,B,C. Its usage is as follows:

[A,C,B] = cca(Ya,Yb); % CCA of two data matrices

Example 21.1: As an example, consider again the turtle data in the file turtle.dat. We
take Ya,Yb to be the (N = 24) measured lengths and widths of the male (group a)
and female (group b) turtles. The data are shown below:

Ya Yb
n ya1 ya2 yb1 yb2

1 93 74 98 81
2 94 78 103 84
3 96 80 103 86
4 101 84 105 86
5 102 85 109 88
6 103 81 123 92
7 104 83 123 95
8 106 83 133 99
9 107 82 133 102
10 112 89 133 102
11 113 88 134 100
12 114 86 136 102

Ya Yb
n ya1 ya2 yb1 yb2

13 116 90 137 98
14 117 90 138 99
15 117 91 141 103
16 119 93 147 108
17 120 89 149 107
18 120 93 153 107
19 121 95 155 115
20 123 93 155 117
21 127 96 158 115
22 128 95 159 118
23 131 95 162 124
24 135 106 177 132

After removing the columns means, the computed sample covariance matrix is:

R̂ = Y†Y =
⎡
⎣ Y†aYa Y†aYb
Y†bYa Y†bYb

⎤
⎦ = 103

⎡
⎢⎢⎢⎣

3.1490 1.8110 5.5780 3.3785
1.8110 1.1510 3.1760 1.9495

5.5780 3.1760 10.3820 6.2270
3.3785 1.9495 6.2270 3.9440

⎤
⎥⎥⎥⎦

The computed CCA coefficients and canonical correlations are:

A =
[

0.0191 0.0545
−0.0023 −0.0955

]
, B =

[
0.0083 0.0418
0.0026 −0.0691

]

C =
[
c1 0
0 c2

]
=
[

0.9767 0
0 0.1707

]

The correlation structure in the transformed basis W = [Wa,Wb] is:

W†W =
⎡
⎣W†

aWa W†
aWb

W†
bWa W†

bWb

⎤
⎦ =

⎡
⎢⎢⎢⎣

1 0 0.9767 0
0 1 0 0.1707

0.9767 0 1 0
0 0.1707 0 1

⎤
⎥⎥⎥⎦

The first columns of Wa,Wb are the most correlated. They are obtained as the fol-
lowing linear combinations of the columns of Ya,Yb:

wa1(n)= 0.0191ya1(n)−0.0023ya2(n)

wb1(n)= 0.0083yb1(n)+0.0026yb2(n)
⇒

N−1∑
n=0

wa1(n)wb1(n)= c1 = 0.9767

where the linear combination coefficients are the first columns of A,B. The following
MATLAB code implements this example:
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D = loadfile(’turtle.dat’); % read data file

Ya = zmean(D(:,1:2)); % extract columns 1,2 and remove their mean
Yb = zmean(D(:,4:5)); % extract columns 4,5 and remove their mean

[A,C,B] = cca(Ya,Yb);

Y = [Ya,Yb]; Ryy = Y’*Y; % correlated basis

Wa = Ya*A; Wb = Yb*B;
W = [Wa,Wb]; Rww = W’*W; % canonical correlation basis

The quantities A,B,C could also be obtained by the function ccacov applied to R =
Y†Y with p = 2. Once the coefficients A,B are known, the data matrices Ya,Yb may
be transformed to Wa,Wb. ��

Finally, we mention that CCA is equivalent to the problem of finding the canoni-
cal angles between two linear subspaces. Consider the two subspaces ofCN spanned
by the columns of Ya and Yb. The economy SVDs of Ya,Yb provide orthonormal
bases Ua,Ub for these subspaces.

The canonical angles between the two subspaces are defined [1,86,87] in terms
of the singular values of the matrix U†aUb, but these are the canonical correlations.
The cosines of the canonical angles are the canonical correlations:

ci = cosθi , i = 1,2 . . . , r = min(p, q) (21.22)

The largest angle corresponds to the smallest singular value, that is, cosθmax =
cmin = cr . This angle (in radians) is returned by the built-in MATLAB function
subspace, that is,

th_max = subspace(Ya,Yb);
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