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Lab 5 – Digital Audio Effects

5.1. Plain Reverb

The reverberation of a listening space is typically characterized by three distinct time periods: the direct
sound, the early reflections, and the late reflections, as illustrated below:
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The early reflections correspond to the first few reflections off the walls of the room. As the waves
continue to bounce off the walls, their density increases and they disperse, arriving at the listener from
all directions. This is the late reflection part.

The reverberation time constant is the time it takes for the room’s impulse response to decay by 60
dB. Typical concert halls have time constants of about 1.8–2 seconds.

In this and several other labs, we discuss how to emulate such reverberation characteristics using
DSP filtering algorithms. A plain reverberator can be used as an elementary building block for more
complicated reverberation algorithms. It is given by Eq. (8.2.12) of the text [1] and shown in Fig. 8.2.6.
Its input/output equation and transfer function are:

y(n)= ay(n−D)+x(n), H(z)= 1

1− az−D
The comb-like structure of its frequency response and its pole-pattern on the z-plane are depicted in

Fig. 8.2.7 of Ref. [1] and shown below.
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Its sample processing algorithm using a circular delay-line buffer is given by Eq. (8.2.14) of [1]:

x y

z-D

a

sD

for each input sample x do:
sD = ∗(p+D)
y = x+ asD
∗p = y
−−p

It can be immediately translated to C code with the help of the function pwrap() and embedded in
the interrupt service routine isr():



5 DIGITAL AUDIO EFFECTS 57

interrupt void isr()
{

float sD, x, y; // D-th state, input & output

read_inputs(&xL, &xR); // read inputs from codec

x = (float) xL; // process left channel only

sD = *pwrap(D,w,p+D); // extract D-th state relative to p
y = x + a*sD; // compute output sample
*p = y; // delay-line input
p = pwrap(D,w,--p); // backshift pointer

yL = yR = (short) y;

write_outputs(yL,yR); // write outputs to codec

return;
}

Lab Procedure

a. Modify the template program into a C program. plain1.c, that implements the above ISR. Set the
sampling rate to 8 kHz and the audio input to MIC. With the values of the parameters D = 2500 and
a = 0.5, compile and run your program on the DSK.

Listen to the impulse response of the system by lightly tapping the microphone on the table. Speak
into the mike.

Set the audio input to LINE, recompile and run. Play one of the wave files in the directory c:\dsplab\wav
(e.g., dsummer, noflange from [3]).

b. Recompile and run the program with the new feedback coefficient a = 0.25. Listen to the impulse
response. Repeat for a = 0.75. Discuss the effect of increasing or decreasing a.

c. According to Eq. (8.2.16), the effective reverberation time constant is given by

τeff = ln ε
lna

TD, TD = DT = D/fs

For each of the above values of a, calculate τeff in seconds, assuming ε = 0.001 (which corresponds
to the so-called 60-dB time constant.) Is what you hear consistent with this expression?

d. According to this formula, τeff remains invariant under the replacements:

D→ 2D, a→ a2

Test if this is true by running your program and hearing the output withD = 5000 and a = 0.52 = 0.25
and comparing it with the case D = 2500 and a = 0.5. Repeat the comparison also with D = 1250
and a = √0.5 = 0.7071.

e. When the filter parameter a is positive and near unity, the comb peak gains 1/(1− a) become large,
and may cause overflows. In such cases, the input must be appropriately scaled down before it is
passed to the filter.

To hear such overflow effects, choose the feedback coefficients to be very near unity, for example,
a = 0.99, with a corresponding gain of (1−a)−1= 100. You may also need to multiply the input x by
an additional gain factor such as 2 or 4.

f. Modify the above ISR so that it processes the input samples in stereo (you will need to define two
separate buffers for the left and right channels.) Experiment with choosing slightly different values
of the left and right delay parameters D, or different values of the feedback parameter a. Keep the
left/right speakers as far separated as possible.
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5.2. Allpass Reverb

Like the plain reverberator, an allpass reverberator can be used as an elementary building block for
building more complicated reverberation algorithms. It is given by Eq. (8.2.25) of the text [1] and shown
in Fig. 8.2.17. Its I/O equation and transfer function are:

y(n)= ay(n−D)−ax(n)+x(n−D), H(z)= −a+ z−D
1− az−D

As discussed in [1], its impulse response is similar to that of the plain reverberator, but its magnitude
response remains unity (hence the name “allpass”), that is,

∣
∣H(ejω)

∣
∣ = 1 , for all ω

Its block diagram representation using the so-called canonical realization and the corresponding sam-
ple processing algorithm using a circular delay-line buffer is given by Eq. (8.2.14) of [1]:

x
s0

sD

z-D

y

a

-a for each input sample x do:
sD = ∗(p+D)
s0 = x+ asD
y = −as0 + sD
∗p = s0

−−p

The algorithm can be translated immediately to C with the help of pwrap(). In this lab, we are going
to put these steps into a separate C function, allpass(), which is to be called by isr(), and linked to
the overall project. The function is defined as follows:

// ---------------------------------------------------------------------------
// allpass.c - allpass reverb with circular delay line - canonical realization
// ---------------------------------------------------------------------------

float *pwrap(int, float *, float *);

float allpass(int D, float *w, float **p, float a, float x)
{

float y, s0, sD;

sD = *pwrap(D,w,*p+D);

s0 = x + a * sD;

y = -a * s0 + sD;

**p = s0;

*p = pwrap(D,w,--*p);

return y;
}
// ---------------------------------------------------------------------------

The allpass function is essentially the same as that in the text [1], but slightly modified to use floats
and the function pwrap(). In the above definition, the parameter p was declared as pointer to pointer
to float because in the calling ISR function p must be defined as a pointer to float and must be passed
passed by address because it keeps changing from call to call. The calling ISR function isr() is defined
as follows:
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interrupt void isr()
{

float x, y;

read_inputs(&xL, &xR); // read inputs from codec

x = (float) xL; // process left channel only

y = allpass(D,w,&p,a,x); // to be linked with main()

yL = yR = (short) y;

write_outputs(yL,yR); // write outputs to codec

return;
}

Although the overall frequency response of the allpass reverberator is unity, the intermediate stage
of computing the recursive part s0 can overflow because this part is just like the plain reverb and its peak
gain is 1/(1 − a). Such overflow behavior is a potential problem of canonical realizations and we will
investigate it further in a future lab.

The allpass reverberator can also be implemented in its transposed realization form, which is less
prone to overflows. It is depicted below together with its sample processing algorithm:

x y

sD

s0

−a

a

z-D

for each input x do:
sD = ∗(p+D)
y = sD − ax
∗p = s0 = x+ ay
−−p

The following function allpass_tr() is the translation into C using pwrap(), where againp is defined
as a pointer to pointer to float:

// -------------------------------------------------------------------------------
// allpass_tr.c - allpass reverb with circular delay line - transposed realization
// -------------------------------------------------------------------------------

float *pwrap(int, float *, float *); // defined in dsplab.c

float allpass_tr(int D, float *w, float **p, float a, float x)
{

float y, sD;

sD = *pwrap(D,w,*p+D);

y = sD - a*x;

**p = x + a*y;

*p = pwrap(D,w,--*p);

return y;
}
// -------------------------------------------------------------------------------

Lab Procedure

a. Incorporate the above ISR into a main program, allpass1.c, and create a project. Remember to
prototype the allpass function at the beginning of your program. Add the file that contains the
allpass function to the project. Compile and run with the parameter choices: D = 2500, a = 0.5,
with an 8 kHz sampling rate and LINE input.
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b. Repeat part (a) using the transposed form implemented by the function allpass_tr(), and name
your main program allpass2.c.

c. Choose a value of a and input gain that causes allpass1.c to overflow, then run allpass2.c with
the same parameter values to see if your are still getting overflows.

5.3. Lowpass Reverb

The lowpass reverberator of this experiment is shown in Figs. 8.2.20 and 8.2.21 of Ref. [1]. The feedback
gain a of the plain reverb is replaced by a lowpass filter G(z), so that one obtains the new transfer
function by the replacement:

H(z)= 1

1− az−D ⇒ H(z)= 1

1−G(z)z−D
The filter G(z) effectively acts as frequency-dependent feedback parameter whose value is smaller

at higher frequencies (because it is a lowpass filter), thus attenuating high frequencies faster, and whose
value is larger at lower frequencies, and hence attenuating those more slowly—which is a more realistic
behavior of reverberating spaces. For this experiment, we will work with the simple choice:

G(z)= b0 + b1z−1

1+ a1z−1

Setting a = −a1, the corresponding sample processing algorithm is:

for each input sample x do:
sD = ∗(p+D)
v0 = av1 + sD
u = b0v0 + b1v1

y = x+ u
v1 = v0

∗p = y
−−p

The following is its C translation into the isr() function:

interrupt void isr()
{

float x, y, sD, u;

read_inputs(&xL, &xR); // read inputs from codec

x = (float) xL; // process left channel only

sD = *pwrap(D,w,p+D);

v0 = a*v1 + sD; // feedback filter G(z) = (b0 + b1*z^-1)/(1-a*z^-1)
u = b0*v0 + b1*v1; // feedback filter’s output
v1 = v0; // update feedback filter’s delay

y = x+u; // closed-loop output

*p = y;

p = pwrap(D,w,--p);

yL = yR = (short) y;

write_outputs(yL,yR); // write outputs to codec

return;
}
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Lab Procedure

a. Create a project with this ISR. Choose an 8 kHz sampling rate and MIC input. Set the parameter values
D = 2500, a = 0.5, b0 = 0.2, b1 = 0.1. Compile and run. Listen to its impulse response. Speak
into the mike. Notice how successive echoes get more and more mellow as they circulate through the
lowpass filter. Note that the DC gain of the loop filter G(z), obtained by setting z = 1, and the AC
gain at Nyquist, obtained by setting z = −1, are:

G(z)
∣
∣
z=1 =

b0 + b1

1− a = 0.6 , G(z)
∣
∣
z=−1 =

b0 − b1

1+ a = 1

15
= 0.0667

These are the effective feedback coefficients at low and high frequencies. Therefore, the lower fre-
quencies persist longer than the higher ones.

Recompile and run with LINE input and play a wave file (e.g., noflange) through it.

b. Try the case D = 20, a = 0, b0 = b1 = 0.495. You will hear a guitar-like sound. Repeat for D = 100.
What do you hear?

Repeat by setting the sampling rate to 44.1 kHz and D = 100.

This type of feedback filter is the basis of the so-called Karplus-Strong string algorithm for synthe-
sizing plucked-string sounds, and we will study it further in another experiment.

5.4. Schroeder’s Reverb Algorithm

A more realistic reverberation effect can be achieved using Schroeder’s model of reverberation, which
consists of several plain reverb units in parallel, followed by several allpass units in series. An example
is depicted in Fig. 8.2.18 and on the cover of the text [1], and shown below.
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The different delays in the six units cause the density of the reverberating echoes to increase, gener-
ating an impulse response that exhibits the typical early and late reflection characteristics.

Its sample processing algorithm is given by Eq. (8.2.31) of [1]. It is stated in terms of the functions
plain() and allpass() that implement the individual units:
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for each input sample x do:
x1 = plain(D1, w1, &p1, a1, x)
x2 = plain(D2, w2, &p2, a2, x)
x3 = plain(D3, w3, &p3, a3, x)
x4 = plain(D4, w4, &p4, a4, x)
x5 = b1x1 + b2x2 + b3x3 + b4x4

x6 = allpass(D5, w5, &p5, a5, x5)
y = allpass(D6, w6, &p6, a6, x6)

(5.1)

There are six multiple delays each requiring its own circular buffer and pointer. The allpass()
function was already defined in the allpass reverb lab section. The plain function is straightforward and
implements the steps used in the plain reverb lab section:

// ------------------------------------------------------
// plain.c - plain reverb with circular delay line
// ------------------------------------------------------

float *pwrap(int, float *, float *);

float plain(int D, float *w, float **p, float a, float x)
{

float y, sD;

sD = *pwrap(D,w,*p+D);

y = x + a * sD;

**p = y;

*p = pwrap(D,w,--*p);

return y;
}
// ------------------------------------------------------

The following (incomplete) C program implements the above sample processing algorithm in its isr()
function and operates at a sampling rate of 44.1 kHz:

// --------------------------------------------------------------------
// schroeder.c - Schroeder’s reverb algorithm using circular buffers
// --------------------------------------------------------------------

#include "dsplab.h" // init parameters and function prototypes

short xL, xR, yL, yR; // input and output samples from/to codec

short fs = 44; // sampling rate in kHz

#define D1 1759
#define D2 1949
#define D3 2113
#define D4 2293
#define D5 307
#define D6 313

#define a 0.88

float b1=1, b2=0.9, b3=0.8, b4=0.7;
float a1=a, a2=a, a3=a, a4=a, a5=a, a6=a;

float w1[D1+1], *p1;
float w2[D2+1], *p2;
float w3[D3+1], *p3;
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float w4[D4+1], *p4;
float w5[D5+1], *p5;
float w6[D6+1], *p6;

float plain(int, float *, float **, float, float); // must be added to project
float allpass(int, float *, float **, float, float);

// ----------------------------------------------------------------------------------

void main()
{

int n;
for (n=0; n<=D1; n++) w1[n] = 0; // initialize buffers to zero
for (n=0; n<=D2; n++) w2[n] = 0;
for (n=0; n<=D3; n++) w3[n] = 0;
for (n=0; n<=D4; n++) w4[n] = 0;
for (n=0; n<=D5; n++) w5[n] = 0;
for (n=0; n<=D6; n++) w6[n] = 0;

p1 = w1; p2 = w2; p3 = w3; p4 = w4; p5 = w5; p6 = w6; // initialize pointers

initialize(); // initialize DSK board and codec, define interrupts

sampling_rate(fs); // possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz
audio_source(MIC); // LINE or MIC for line or microphone input

while(1); // keep waiting for interrupt, then jump to isr()
}

// ----------------------------------------------------------------------------------

interrupt void isr()
{

read_inputs(&xL, &xR); // read inputs from codec

// ------------------------------------------------------------
// here insert your algorithm implementing Eq.(5.1) given above
// ------------------------------------------------------------

write_outputs(yL,yR); // write outputs to codec

return;
}

// ----------------------------------------------------------------------------------

Lab Procedure

a. Create a project for this program, compile and run it with audio input set to MIC. Listen to its impulse
response and speak into the mike. To reduce potential overflow effects, you may want to reduce the
input level by half, for example, by the statement:

x = (float) (xL>>1);

b. What are the feedback delays of each unit in msec? Replace all the delays by double their values,
compile, and run again. Compare the output with that of part (a). Repeat when you triple all the
delays. (Note that you can just replace the constant definitions by #define D1 1759*2, etc.)

c. Repeat part (a) by experimenting with different values of the feedback parameter a.

5.5. Stereo Reverb

In some of the previous experiments, we considered processing in stereo, but the left and right channels
were processed completely independently of each other. In this experiment, we allow the cross-coupling
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of the two channels, so that the reverb characteristics of one channel influences those of the other.
An example of such system is given in Problems 8.22 and 8.23 and depicted in Fig. 8.4.1 of the text

[1] and shown below.

Here, we assume that the feedback filters are plain multiplier gains, so that

GL(z)= aL, GR(z)= aR
Each channel has its own delay-line buffer and circular pointer. The sample processing algorithm is

modified now to take in a pair of stereo inputs and produce a pair of stereo outputs:

for each input stereo pair xL, xR do:
sL = ∗(pL + L)
sR = ∗(pR +R)
yL = cLxL + sL
yR = cRxR + sR
∗pL = sL0 = bLxL + aLsL + dRsR
∗pR = sR0 = bRxR + aRsR + dLsL
−−pL
−−pR

where L and R denote the left and right delays. Cross-coupling between the channels arises because of
the coefficients dL and dR. The following is its C translation into an isr() function:

interrupt void isr() // sample processing algorithm - interrupt service routine
{

float sL, sR;

read_inputs(&xL, &xR); // read inputs from codec

sL = *pwrap(L,wL,pL+L);
sR = *pwrap(R,wR,pR+R);
yL = cL*xL + sL;
yR = cR*xR + sR;
*pL = bL*xL + aL*sL + dR*sR;
*pR = bR*xR + aR*sR + dL*sL;
pL = pwrap(L,wL,--pL);
pR = pwrap(R,wR,--pR);

write_outputs(yL,yR); // write outputs to codec

return;
}



5 DIGITAL AUDIO EFFECTS 65

Lab Procedure

a. Create a project whose main program includes the above ISR. Select an 8 kHz sampling rate and line
input. Choose the following parameter values:

L = R = 3000, aL = aR = 0, bL = bR = 0.8, cL = cR = 0.5, dL = dR = 0.5

Compile and run this program. Even though the self-feedback multipliers were set to zero, aL = aR =
0, you will hear repeated echoes bouncing back and forth between the speakers because of the cross-
coupling. Make sure the speakers are as far separated as possible, and play one of the wave files in
c:\dsplab\wav (e.g., take5, dsummer).

b. Next try the case dL �= 0, dR = 0. And then, dL = 0, dR �= 0. These choices decouple the influence of
one channel but not that of the other.

c. Next, introduce some self-feedback, such as aL = aR = 0.2. Repeat part (a). Vary all the parameters
at will to see what you get.

5.6. Reverberating Delay

A prototypical delay effect found in most commercial audio effects processors was discussed in Problem
8.17 of the text [1]. Its transfer function is:

H(z)= c+ b z−D

1− az−D
Its block diagram realization and corresponding sample processing algorithm using a circular delay-line
buffer are given below:

x y
b

c

a

z-D
s0 sD

for each input x do:
sD = ∗(p+D)
y = cx+ sD
∗p = s0 = bx+ asD
−−p

The following is its C translation into an isr() function:

interrupt void isr() // sample processing algorithm - interrupt service routine
{

float sD, x, y; // D-th state, input & output

read_inputs(&xL, &xR); // read inputs from codec

x = (float) xL; // process left channel only

sD = *pwrap(D,w,p+D); // extract states relative to p
y = c*x + sD; // output sample
*p = b*x + a*sD; // delay-line input
p = pwrap(D,w,--p); // backshift pointer

yL = yR = (short) y;

write_outputs(yL,yR); // write outputs to codec

return;
}



5 DIGITAL AUDIO EFFECTS 66

Lab Procedure

a. Create a project, compile and run it with 8 kHz sampling rate and MIC input. Choose the parameters:

D = 6000, a = 0.5, b = 1, c = 0

Listen to its impulse response and speak into the mike. Here, the direct sound path has been removed,
c = 0, in order to let the echoes be more clearly heard.

b. What values of b and c would you use (expressed in terms of a) in order to implement a plain rever-
berator of the form:

H(z)= 1

1− az−D
For a = 0.5, calculate the proper values of b, c, and then compile and run the program. Compare its
output with that of plain1.c.

c. Compile and run the case: a = 1, b = c = 1, and then the case: a = −1, b = −1, c = 1. What are the
transfer functions in these cases?

5.7. Multi-Delay Effects

Here, we consider the multi-delay effects processor shown in Fig. 8.2.27 of the text [1]. We assume that
the feedback filters are plain multipliers. Using two separate circular buffers for the two delays, the block
diagram realization and sample processing algorithm are in this case:

for each input x do:
s1 = ∗(p1 +D1)
s2 = ∗(p2 +D2)
y = b0x+ b1s1 + b2s2

∗p2 = s20 = s1 + a2s2

−−p2

∗p1 = s10 = x+ a1s1

−−p1

Its C translation is straightforward:

interrupt void isr() // sample processing algorithm - interrupt service routine
{

float x, s1, s2, y;

read_inputs(&xL, &xR); // read inputs from codec

x = (float) xL; // process left channel only

s1 = *pwrap(D1, w1, p1+D1);
s2 = *pwrap(D2, w2, p2+D2);

y = b0*x + b1*s1 + b2*s2;

*p2 = s1 + a2*s2;
p2 = pwrap(D2, w2, --p2);

*p1 = x + a1*s1;
p1 = pwrap(D1, w1, --p1);

yL = yR = (short) y;

write_outputs(yL,yR); // write outputs to codec

return;
}
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Lab Procedure

a. Write a main program, multidel.c, that incorporates this ISR, compile and run it with an 8 kHz
sampling rate and MIC input, and the following parameter choices:

D1 = 5000, D2 = 2000, a1 = 0.5, a2 = 0.4, b0 = 1, b1 = 0.8, b2 = 0.6

Listen to its impulse response and speak into the mike. Then select LINE input and play a wave file
(e.g., dsummer) through it.

b. Set b1 = 0 and run again. Then, set b2 = 0 and run. Can you explain what you hear?

5.8. Multitap Delay Effects

This experiment is based on the multi-tap delay line effects processor of Fig. 8.2.29 of the text [1].
Both this effect and the multi-delay effect of the previous section are commonly found in commercially
available digital audio effects units.

The implementation uses a common circular delay-line buffer of order D1+D2, which is tapped out
at taps D1 and D1+D2. The sample processing algorithm is:

x y

b0

b1
a1

a2 b2

z-D1

z-D2

s0

s1

s2

for each input sample x do:
s1 = ∗(p+D1)
s2 = ∗(p+D1 +D2)
y = b0x+ b1s1 + b2s2

s0 = x+ a1s1 + a2s2

∗p = s0

−−p

The following ISR is its C translation:

interrupt void isr() // sample processing algorithm - interrupt service routine
{

float x, s0, s1, s2, y;

read_inputs(&xL, &xR); // read inputs from codec

x = (float) xL; // process left channel only

s1 = *pwrap(D1+D2, w, p+D1);
s2 = *pwrap(D1+D2, w, p+D1+D2);
y = b0*x + b1*s1 + b2*s2;
s0 = x + a1*s1 + a2*s2;
*p = s0;
p = pwrap(D1+D2, w, --p);

yL = yR = (short) y;

write_outputs(yL,yR); // write outputs to codec

return;
}
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Lab Procedure

a. Write a main program, multidel.c, that incorporates this ISR, compile and run it with an 8 kHz
sampling rate and MIC input, and the following parameter choices:

D1 = 3000, D2 = 1500, a1 = 0.2, a2 = 0.5, b0 = 1, b1 = 0.8, b2 = 0.6

Listen to its impulse response and speak into the mike. Then select LINE input and play a wave file
(e.g., dsummer) through it.

b. Repeat for the following values of the feedback parameters: a1 = a2 = 0.5, which makes the system
marginally stable with a periodic steady output (any random noise would be grow unstable.)

Repeat also for the case a1 = a2 = 0.75, which corresponds to an unstable filter. Please reset the
processor before the output grows too loud. However, do let it grow loud enough to hear the overflow
effects arising from the growing feedback output s0.

As discussed in Ref. [1], the condition of stability for this filter is |a1| + |a2| < 1. Interestingly, most
commercially available digital audio effects units allow the setting of the parametersD1,D2, a1, a2, b0,
b1, b2 from their front panel, but do not check this stability condition.

5.9. Karplus-Strong String Algorithm

A model of a plucked string is obtained by running the lowpass reverb filter with zero input, but with
initially filling the delay line with random numbers. These random numbers model the initial harshness
of plucking the string. But, as the random numbers recirculate through the lowpass filter, their high
frequencies are gradually removed, resulting in a sound that models the string vibration.

The model can be approximately “tuned” to a frequency f1 by picking D such that D = fs/f1. The
Karplus-Strong model [9] assumes a simple averaging FIR filter for the lowpass feedback filter as given
by Eq. (8.2.40) of the text [1]. Here, we take the transfer function to be:

G(z)= b0(1+ z−1)

with some b0 � 0.5 to improve the stability of the closed-loop system. See Refs. [4–15] for more discus-
sion on such models and computer music in general. The following program implements the algorithm.
The code is identical to that of the lowpass reverb case.

The sampling rate is set to 44.1 kHz and the generated sound is the note A440, that is, having fre-
quency 440 Hz. The correct amount of delay is then

D = fs
f1
= 44100

440
≈ 100

The delay line must be filled withD+1 random numbers. They were generated as follows by MATLAB
and exported to the file rand.dat using the function C_header(), e.g., by the code:

iseed = 1000; randn(’state’, iseed);
r = 10000 * randn(101,1);
C_header(’rand.dat’, ’r’, ’D’, r);

The full program is as follows:

// ----------------------------------------------------------------------------------
// ks.c - Karplus-Strong string algorithm
// ----------------------------------------------------------------------------------

#include "dsplab.h" // init parameters and function prototypes

short xL, xR, yL, yR; // input and output samples from/to codec

#define D 100
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float w[D+1], *p; // circular delay-line buffer, circular pointer

#include "rand.dat" // D+1 random numbers

float a = 0;
float b0 = 0.499, b1 = 0.499;

float v0, v1; // states of feedback filter

short fs = 44; // sampling rate is 44.1 kHz

// ----------------------------------------------------------------------------------

void main() // main program executed first
{

int n;
for (n=0; n<=D; n++) // initialize circular buffer to zero

w[n] = r[n];
p = w; // initialize pointer
v1 = 0; // initialize feedback filter

initialize(); // initialize DSK board and codec, define interrupts

sampling_rate(fs); // possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz
audio_source(LINE); // LINE or MIC for line or microphone input

while(1); // keep waiting for interrupt, then jump to isr()
}

// ----------------------------------------------------------------------------------

interrupt void isr() // sample processing algorithm - interrupt service routine
{

float y, sD, u;

// read_inputs(&xL, &xR); // inputs not used

sD = *pwrap(D,w,p+D);

v0 = a*v1 + sD; // feedback filter G(z) = (b0 + b1*z^-1)/(1-a*z^-1)
u = b0*v0 + b1*v1; // feedback filter’s output
v1 = v0; // update feedback filter’s delay

y = u; // closed-loop output - with x=0

*p = y;

p = pwrap(D,w,--p);

yL = yR = (short) y;

write_outputs(yL,yR); // write outputs to codec

return;
}
// ----------------------------------------------------------------------------------

Lab Procedure

a. Create a project, compile and run. The program disables the inputs and simply outputs the re-
circulating and gradually decaying random numbers.

b. Repeat for D = 200 by generating a new file rand.dat using the above MATLAB code. The note you
hear should be an octave lower.
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5.10. Flangers and Vibrato

As discussed in Ref. [1], a flanging effect is implemented as an FIR comb filter with a time-variable delay.

s(n)

x(n) y(n)

z-d
variable
delay d a

π
d

3π
d

2π0 . . .

1+a

1-a

|H(ω)|

ω

If the delay d varies sinusoidally between 0 ≤ d(n)≤ D, with some low frequency fd, then

d(n)= D
2

[
1− cos(ωdn)

]
, ωd = 2πfd

fs
[rads/sample]

and the flanger output is obtained by

y(n)= x(n)+ax(n− d(n))

If the delay d were fixed, the transfer function would be:

H(z)= 1+ az−d

The peaks of the frequency response of the resulting time-varying comb filter, occurring at multiples
of fs/d, and its notches at odd multiples of fs/2d, will sweep up and down the frequency axis resulting
in the characteristic whooshing type sound called flanging. The parameter a controls the depth of the
notches. In units of [radians/sample], the notches occur at odd multiples of π/d.

In the early days, the flanging effect was created by playing the music piece simultaneously through
two tape players and alternately slowing down each tape by manually pressing the flange of the tape reel.

Because the variable delay d can take non-integer values within its range 0 ≤ d ≤ D, the implementa-
tion requires the calculation of the output x(n−d) of a delay line at such non-integer values. This can be
accomplished easily by truncating to the nearest integer, or as discussed in [1], by rounding, or by linear
interpolation. To sharpen the comb peaks one may use a plain-reverb filter with variable delay, that is,

y(n)= x(n)+ay(n− d) , H(z)= 1

1− az−d
Its sample processing algorithm using a circular buffer of maximum order D is:

for each input x do:
d = floor

[(
1− cos(ωdn)

)
D/2

]

sd = ∗(p+ d)
y = x+ asd
∗p = y
−−p

Its translation to C is straightforward and can be incorporated into the ISR function:

interrupt void isr() // sample processing algorithm - interrupt service routine
{

float sd;

read_inputs(&xL, &xR); // read inputs from codec

x = (float) xL; // work with left input only

d = (1 - cos(wd*n))*D/2; // automatically cast to int, wd = 2*PI*fd/fs
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if (++n>=L) n=0; // L = 16000 to allow fd = 0.5 Hz

sd = *pwrap(D,w,p+d); // extract d-th state relative to p
y = x + a*sd; // output
*p = y; // delay-line input
p = pwrap(D,w,--p); // backshift pointer

yL = yR = (short) y;

write_outputs(yL,yR); // write outputs to codec

return;
}

Lab Procedure

a. Create a project for this ISR. You will need to include <math.h> and define PI. ChooseD to correspond
to a 2 msec maximum delay and let fd = 1 Hz and a = 0.7. Run the program and play a wave file
through it (e.g., noflange, dsummer, take5). Repeat when fd = 0.5 Hz.

b. Experiment with other values of D, fd, and a.

c. Rewrite part (a) so that an FIR comb filter is used as shown at the beginning of this section. Play the
same material through the IIR and FIR versions and discuss differences in their output sounds.

d. A vibrato effect can be obtained by using the filter H(z)= z−d with a variable delay. You can easily
modify your FIR comb filter of part (c) so that the output is taken directly from the output of the delay.
For this effect the typical delay variations are about 5 msec and their frequency about 5 Hz. Create a
vibrato project with D = 16 (correspondoing to 2 msec at an 8 kHz rate) and fd = 5 Hz, and play a
wave file through it. Repeat by doubling D and/or fd.
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