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14.18 Using Eq. (14.11.12), show that the covariances of the LP parameters E and a are in the
complex-valued case:

E
[
(ΔE)2

] = E2

N
, E

[
ΔaΔE

] = 0 , E
[
ΔaΔa†

] = E
N
(
R−1 − E−1a a†

)

14.19 Let S(k)= s†kRsk be the Bartlett spectrum. Using Eq. (14.11.13), show that its variance is

E
[(
ΔS(k)

)2] = 1

N
S(k)2

Show that the variance of the ML spectrum S(k)= 1/s†kR−1sk is also given by a similar
formula.

14.20 (a) Let A(k)= s†ka be the frequency response of the LP polynomial in the complex-valued
case. Using the results of Problem 14.18, show that its variance is

E
[|ΔA(k)|2] = E

N
[
s†kR

−1sk − E−1|A(k)|2]
Use the kernel representation of Problem 12.17 to argue that the right-hand side is positive.
Alternatively, show that it is positive by writing A(k)= E(s†kR−1u0) and E = (u†0R−1u0)−1,
and using the Schwarz inequality.

(b) In the complex case, show that E[ΔaΔaT]= 0. Then, show that the variance of the AR
spectrum S(k)= E/|A(k)|2 is given by

E
[(
ΔS(k)

)2] = 1

N
S(k)2

[
2S(k)(s†kR

−1sk)−1
]

and show again that the right-hand side is positive.

15
SVD and Signal Processing

15.1 Vector and Matrix Norms

The three most widely used vector norms [1234,1235] are the L2 or Euclidean norm, the
L1 and the L∞ norms, defined for a vector x ∈ RN by:

‖x‖2 =
√
|x1|2 + |x2|2 + · · · + |xN|2 =

√
xTx

‖x‖1 = |x1| + |x2| + · · · + |xN|
‖x‖∞ = max

(|x1|, |x2|, . . . , |xN|
) where x =

⎡
⎢⎢⎢⎢⎢⎣
x1

x2

...
xN

⎤
⎥⎥⎥⎥⎥⎦ (15.1.1)

All vector norms satisfy the triangle inequality :

‖x+ y‖ ≤ ‖x‖ + ‖y‖ , for x,y ∈ RN (15.1.2)

Unless otherwise specified, from now on the notation ‖x‖ will denote the Euclidean
norm. The Cauchy-Schwarz inequality for the Euclidean norm reads:

∣∣xTy
∣∣ ≤ ‖x‖‖y‖ (15.1.3)

where equality is achieved when y is any scalar multiple of x, that is, y = cx. The “angle”
between the two vectors x,y is defined through:

cosθ = xTy

‖x‖‖y‖ (15.1.4)

An N×M matrix A is a linear mapping from RM to RN, that is, for each x ∈ RM, the
vector y = Ax is in RN. For each vector norm, one can define a corresponding matrix
norm through the definition:

‖A‖ = sup
‖x‖�=0

‖Ax‖
‖x‖ = sup

‖x‖=1
‖Ax‖ (15.1.5)

We will see later that the Euclidean matrix norm ‖A‖2 is equal to the largest singular
value of the SVD decomposition of A, or equivalently, the square-root of the largest

765



766 15. SVD and Signal Processing

eigenvalue of the matrix ATA or the matrix AAT. The L1 and L∞ matrix norms can be
expressed directly in terms of the matrix elements Aij of A:

‖A‖1 = max
j

∑
i
|Aij| = maximum of column-wise sums

‖A‖∞ = max
i

∑
j
|Aij| = maximum of row-wise sums

(15.1.6)

Another useful matrix norm—not derivable from a vector norm—is the Frobenius
norm defined to be the sum of the squares of all the matrix elements:

‖A‖F =
√∑

i, j
|Aij|2 =

√
tr
(
ATA)

)
(Frobenius norm) (15.1.7)

The L2, L1, L∞, and the Frobenius matrix norms satisfy the matrix versions of the
triangle and Cauchy-Schwarz inequalities:

‖A+ B‖ ≤ ‖A‖ + ‖B‖
‖AB‖ ≤ ‖A‖‖B‖

(15.1.8)

The distance between two vectors, or between two matrices, may be defined with
respect to any norm:

d(x,y)= ‖x− y‖ , d(A,B)= ‖A− B‖ (15.1.9)

15.2 Subspaces, Bases, and Projections

A subset Y ⊆ RN is a linear subspace if every linear combination of vectors from Y
also lies in Y. The dimension of the subspace Y is the maximum number of linearly
independent vectors in Y.

If the dimension of Y is M, then, any set of M linearly independent vectors, say
{b1,b2, . . . ,bM}, forms a basis for Y. Each basis vector bi is an N-dimensional vector,
that is, it lies in RN. Because Y is a subset of RN, we must necessarily haveM ≤ N. Any
vector in Y can be expanded uniquely as a linear combination of the basis vectors, that
is, for b ∈ Y:

b =
M∑
i=1

cibi = c1b1 + c2b2 + · · · cMbM = [b1,b2, . . . ,bM]

⎡
⎢⎢⎢⎢⎢⎣
c1

c2

...
cM

⎤
⎥⎥⎥⎥⎥⎦ = Bc (15.2.1)

where we defined the N×M basis matrix B = [b1,b2, . . . ,bM] and the M×1 vector of
expansion coefficients c = [c1, c2 . . . , cM]T.

Because the columns of B are linearly independent, B will have full rank equal to
M. It follows that the M×M matrix BTB will also have full rank† and, therefore, it will

†Indeed, BTBc = 0 ⇒ cTBTBc = ‖Bc‖2 = 0 ⇒ Bc = 0 ⇒ c = 0, because B has full rank.
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be invertible. This allows us to compute the expansion coefficients c. Multiplying both
sides of (15.2.1) by BT, we may solve for c :

BTb = BTBc ⇒ c = (BTB)−1BTb = B+b , B+ ≡ (BTB)−1BT (15.2.2)

The space spanned by the linear combinations of the columns of the matrix B is
called the column space or range space of B and is denoted by R(B). Because B is a
basis for Y, we will have Y = R(B). The matrix equation Bc = b given in (15.2.1) is an
overdetermined system of N equations in M unknowns that has a solution because we
assumed that b lies in the range space of B.

The quantity B+ = (BTB)−1BT is a special case of the Moore-Penrose pseudoinverse
(for the case of a full rank matrix B with N ≥ M.) In MATLAB notation, the solution
(15.2.2) is obtained via the backslash or the pseudoinverse operators (which produce the
same answer in the full-rank case):

c = B\b = pinv(B)∗b = B+b (15.2.3)

The matrix BTB ∈ RM×M is called the Grammian. Its matrix elements are the mutual
dot products of the basis vectors (BTB)ij= bTi bj, i, j = 1,2, . . . ,M.

The quantity P = BB+ = B(BTB)−1BT is the projection matrix onto the subspace
Y. As a projection matrix, it is idempotent and symmetric, that is, P2 = P andPT = P.
The matrix Q = IN − P is also a projection matrix, projecting onto the orthogonal
complement of Y, that is, the space Y⊥ of vectors in RN that are orthogonal to each
vector in Y. Thus, we have:

P = BB+ = B(BTB)−1BT = projector onto Y

Q = IN − BB+ = IN − B(BTB)−1BT = projector onto Y⊥
(15.2.4)

They satisfy the properties BTQ = 0, PQ = QP = 0, and P+Q = IN. These imply
that the full space RN is the direct sum of Y and Y⊥. Moreover, the subspace Y⊥ is the
same as the null space N(BT) of BT. This follows from the property that b⊥ ∈ Y⊥ if
and only if BTb⊥ = 0. Thus, we have the decomposition:

Y ⊕Y⊥ = R(B)⊕N(BT)= RN (15.2.5)

The orthogonal decomposition theorem follows from (15.2.5). It states that a given
vector in RN can be decomposed uniquely with respect to a subspace Y into the sum of
a vector that lies in Y and a vector that lies in Y⊥, that is, for b ∈ RN:

b = b‖ + b⊥ , where b‖ ∈ Y , b⊥ ∈ Y⊥ (15.2.6)

so that bT⊥b‖ = 0. The proof is trivial; defining b‖ = Pb and b⊥ = Qb, we have:

b = INb = (P+Q)b = Pb+Qb = b‖ + b⊥

The uniqueness is argued as follows: setting b‖ + b⊥ = b′‖ + b′⊥ for a different pair
b′‖ ∈ Y, b′⊥ ∈ Y⊥, we have b‖ −b′‖ = b′⊥ −b⊥, which implies that both difference vectors
lie in Y ∩Y⊥ = {0}, and therefore, they must be the zero vector.
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Fig. 15.2.1 Projection of b onto the subspace Y = R(B) spanned by B = [b1,b2].

Fig. 15.2.1 illustrates this theorem. An alternative proof is to expand b‖ in the B-
basis, that is, b‖ = Bc, and require that b⊥ = b − b‖ be perpendicular to Y, that is,
BTb⊥ = 0. Thus, we get the conditions:

b = Bc+ b⊥ ⇒ BTb = BTBc+ BTb⊥ = BTBc , or,

c = (BTB)−1BT b , b‖ = Bc = B(BTB)−1BT b = Pb (15.2.7)

A variation of the orthogonal decomposition theorem is the orthogonal projection
theorem, which states that the projection b‖ is that vector in Y that lies closest to b with
respect to the Euclidean distance, that is, as the vector y ∈ Y varies over Y, the distance
‖b− y‖ is minimized when y = b‖.

Fig. 15.2.2 illustrates the theorem. The proof is straightforward. We have b − y =
b‖ + b⊥ − y = (b‖ − y)+b⊥, but since both b‖ and y lie in Y, so does (b‖ − y) and
therefore, (b‖ − y)⊥ b⊥. It follows from the Pythagorean theorem that:

‖b− y‖2 = ‖(b‖ − y)+b⊥‖2 = ‖b‖ − y‖2 + ‖b⊥‖2

which is minimized when y = b‖. The minimized value of the distance is ‖b − b‖‖ =
‖b⊥‖. The orthogonal projection theorem provides an intuitive interpretation of linear
estimation problems and of least-squares solutions of linear equations.

Fig. 15.2.2 The projection b‖ minimizes the distance ‖b− y‖ to the subspace Y.

The basisB for the subspaceY is not unique. Any other set ofM linearly independent
vectors in Y would do. The projector P remains invariant under a change of basis.
Indeed, suppose that another basis is defined by the basis matrix U = [u1,u2, . . . ,uM]
whose M columns ui are assumed to be linearly independent. Then, each bj can be
expanded as a linear combination of the new basis vectors ui:

bj =
M∑
i=1

uicij , j = 1,2, . . . ,M (15.2.8)
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These relationships may be expressed compactly in the matrix form:

B = UC (base change) (15.2.9)

where C is the M×M matrix of expansion coefficients cij. Because U and B have full
rank, the matrix C will be invertible (the ui’s can just as well be expressed in terms of
the bj’s.) It follows that BTB = CT(UTU)C and:

P = B(BTB)−1BT = UC(CT(UTU)C)−1CTUT

= UC(C−1(UTU)−1C−T
)
CTUT = U(UTU)−1UT

where C−T denotes the inverse of the transposed matrix CT. Among the possible bases
for Y, a convenient one is to choose theM vectors ui to have unit norm and be mutually
orthogonal, that is, uTi uj = δij, for i, j = 1,2, . . . ,M. Compactly, we may express this
condition in terms of the basis matrix U = [u1,u2, . . . ,uM]:

UTU = IM (orthonormal basis) (15.2.10)

When U is orthonormal, the projection matrix P can be expressed simply as:

P = B(BTB)−1BT = U(UTU)−1UT = UUT (15.2.11)

There are many ways to construct the orthonormal basis U starting with B. One
is through the SVD implemented into the function orth. Another is through the QR-
factorization, which is equivalent to the Gram-Schmidt orthogonalization process. The
two alternatives are:

U = orth(B); % SVD-based

U = qr(B,0); % QR-factorization

Example 15.2.1: A three-dimensional subspace Y of R4 is spanned by the basis matrix B:

B =

⎡
⎢⎢⎢⎣

1.52 2.11 4.30
−1.60 −2.05 −4.30

2.08 2.69 3.70
−2.00 −2.75 −3.70

⎤
⎥⎥⎥⎦

The matrix B has rank 3, but non-orthogonal columns. The two orthogonal bases obtained
via the SVD and via the QR factorization are as follows:

B =

⎡
⎢⎢⎢⎣
−0.5 0.5 0.5

0.5 −0.5 0.5
−0.5 −0.5 −0.5

0.5 0.5 −0.5

⎤
⎥⎥⎥⎦
⎡
⎢⎣ −3.60 −4.80 −8.00
−0.48 −0.64 0.60
−0.08 0.06 0.00

⎤
⎥⎦ = U1C1

B =

⎡
⎢⎢⎢⎣
−0.4184 −0.5093 0.5617

0.4404 −0.4904 −0.5617
−0.5726 0.4875 −0.4295

0.5505 0.5122 0.4295

⎤
⎥⎥⎥⎦
⎡
⎢⎣ −3.6327 −4.8400 −7.8486

0.0000 −0.1666 −0.1729
0.0000 0.0000 1.6520

⎤
⎥⎦ = U2C2

The bases were constructed by the MATLAB commands:
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[U1,S1,V1] = svd(B,0); C1 = S1*V1’; % alternatively, U1 = orth(B);

[U2,C2] = qr(B,0);

The orthogonal bases satisfy UT1U1 = UT2U2 = I3, and C2 is upper triangular. The projec-
tion matrices onto Y and Y⊥ are:

P = U1UT1 =
1

4

⎡
⎢⎢⎢⎣

3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

⎤
⎥⎥⎥⎦ , Q = I4 −P = 1

4

⎡
⎢⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤
⎥⎥⎥⎦

The ranks of P,Q are the dimensions of the subspaces Y,Y⊥, that is, 3 and 1. ��

15.3 The Fundamental Theorem of Linear Algebra

AnN×M matrix A ∈ RN×M of rank r ≤ min{M,N} is characterized by four fundamen-
tal subspaces: the two range subspaces R(A) and R(AT) and the two null subspaces
N(A) andN(AT). These subspaces play a fundamental role in the SVD of A and in the
least-squares solution of the equation Ax = b.

The fundamental theorem of linear algebra [1234,1254] states that their dimensions
and orthogonality properties are as follows:

R(A), subspace of RN, dim = r, R(A)⊥= N(AT)
N(AT), subspace of RN, dim = N − r, N(AT)⊥= R(A)
R(AT), subspace of RM, dim = r, R(AT)⊥= N(A)
N(A), subspace of RM, dim =M − r, N(A)⊥= R(AT)

(15.3.1)

The dimensions of the two range subspaces are equal to the rank of A. The dimen-
sions of the null subspaces are called the nullity of A and AT. It follows that the spaces
RM and RN are the direct sums:

RN = R(A)⊕N(AT)= R(A)⊕R(A)⊥
RM = R(AT)⊕N(A)= R(AT)⊕R(AT)⊥ (15.3.2)

Their intersections are: R(A)∩N(AT)= {0} and R(AT)∩N(A)= {0}, that is, the
zero vector. Fig. 15.3.1 depicts these subspaces and the action of the matrices A and
AT. The fundamental theorem of linear algebra, moreover, states that the singular value
decomposition of A provides orthonormal bases for these four subspaces and that A
and AT become diagonal with respect to these bases.

15.4 Solving Linear Equations

Given an N×M matrix A ∈ RN×M of rank r ≤ min(N,M) and a vector b ∈ RN, the
linear system Ax = b may or may not have a solution x ∈ RM. A solution exists only if
the vector b lies in the range space R(A) of the matrix A.

However, there is always a solution in the least-squares sense. That solution may
not be unique. The properties of the four fundamental subspaces of A determine the
nature of the least-squares solutions [1234].
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Fig. 15.3.1 The four fundamental subspaces associated with an N×M matrix A.

Defining the error vector e = b − Ax, a least-squares solution is a vector x ∈ RM

that minimizes the Euclidean norm ‖e‖, that is,

J = ‖e‖2 = eTe = ‖b−Ax‖2 = (b−Ax)T(b−Ax)= min (15.4.1)

The solution is obtained by setting the gradient of the performance index to zero:

∂J
∂x

= −2ATe = −2AT(b−Ax)= 0

Thus, we obtain the orthogonality and normal equations:

ATe = 0 (orthogonality equations)

ATAx = ATb (normal equations)
(15.4.2)

If the M×M matrix ATA has full rank, then it is invertible and the solution of the
normal equations is unique and is given by

x = (ATA)−1ATb (full-rank overdetermined case) (15.4.3)

This happens, for example, if N ≥ M and r = M. In the special case of a square
full-rank matrix A (that is, r = N =M), this solution reduces to x = A−1b.

For the rank-defective case,ATA is not invertible, but Eq. (15.4.2) does have solutions.
They can be characterized with the help of the four fundamental subspaces of A, as
shown in Fig. 15.4.1.

Fig. 15.4.1 Role of the fundamental subspaces in the least-squares solution of Ax = b.

Using the direct-sum decompositions (15.3.2), we resolve both b and x into their
unique orthogonal components:

b = b‖ + b⊥, b‖ ∈ R(A), b⊥ ∈ N(AT), b ∈ RN
x = x‖ + x⊥, x‖ ∈ R(AT), x⊥ ∈ N(A), x ∈ RM (15.4.4)
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Because x⊥ lies in the null space of A, we have Ax⊥ = 0, and therefore, Ax =
A(x‖ + x⊥)= Ax‖. Then, the error vector becomes:

e = b−Ax = (
b‖ −Ax‖

)+ b⊥ ≡ e‖ + e⊥ (15.4.5)

Because both b‖ and Ax‖ lie in R(A), so does e‖ = b‖ −Ax‖, and therefore, it will
be orthogonal to e⊥ = b⊥. Thus, Eq. (15.4.5) represents the orthogonal decomposition
of the error vector e. But from the orthogonality equations (15.4.2), we have ATe = 0,
which means that e ∈ N(AT), and therefore, e = e⊥. This requires that e‖ = 0, or,
Ax‖ = b‖. Because b‖ lies in R(A), this system will have a solution x‖.

Moreover, because x‖ ∈ R(AT), this solution will be unique. Indeed, if b‖ = Ax‖ =
Ax′‖, for another vector x′‖ ∈ R(AT), then A(x‖ − x′‖)= 0, or, x‖ − x′‖ would lie in
N(A) in addition to lying in R(AT), and hence it must be the zero vector because
R(AT)∩N(A)= {0}. In fact, this unique x‖ may be constructed by the pseudoinverse
of A:

Ax‖ = b‖ ⇒ x‖ = A+b‖ = A+b (minimum-norm solution) (15.4.6)

An explicit expression for the pseudoinverse A+ will be given in Sec. 15.6 with the
help of the SVD ofA. We will also show there thatA+b‖ = A+b. In conclusion, the most
general solution of the least-squares problem (15.4.1) is given by:

x = A+b+ x⊥ (15.4.7)

where x⊥ is an arbitrary vector in N(A). The arbitrariness of x⊥ parametrizes the
non-uniqueness of the solution x.

The pseudoinverse solution x‖ is also recognized to be that particular solution of
the least-squares problem that has minimum norm. This follows from (15.4.4):

‖x‖2 = ‖x‖‖2 + ‖x⊥‖2 = ‖A+b‖2 + ‖x⊥‖2 (15.4.8)

which shows that the norm ‖x‖ is minimum when x⊥ = 0, or, when x = x‖. Fig. 15.4.1
illustrates this property.

The minimum-norm solution is computed by MATLAB’s built-in function pinv, x‖ =
pinv(A)∗b. The solution obtained by MATLAB’s backslash operator, x = A\b, does
not, in general, coincide with x‖. It has a term x⊥ chosen such that the resulting vector
x has at most r non-zero (and M − r zero) entries, where r is the rank of A.

We obtained the general least-squares solution by purely geometric means using
the orthogonality equation (15.4.2) and the orthogonal decompositions of x and b. An
alternative approach is to substitute (15.4.5) directly into the performance index and
use the fact that e‖ and e⊥ are orthogonal:

J = ‖e‖2 = ‖e‖‖2 + ‖e⊥‖2 = ‖b‖ −Ax‖‖2 + ‖b⊥‖2 (15.4.9)

This expression is minimized when Ax‖ = b‖, leading to the same general solution
(15.4.7). The minimized value of the mean-square error is ‖b⊥‖2.
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The full-rank case deserves special mention. There are three possibilities depending
on whether the system Ax = b is over-determined, under-determined, or square. Then,
one or both of the null subspaces consist only of the zero vector:

1. N > M, r =M, N(A)= {0}, R(AT)= RM, (over-determined)
2. M > N, r = N, N(AT)= {0}, R(A)= RN, (under-determined)
3. N =M, r = N, N(A)= {0}, N(AT)= {0}, (square, invertible)

The three cases are depicted in Fig. 15.4.2. In the over-determined case,N(A)= {0}
and therefore, the least-squares solution is unique x = x‖ and, as we saw earlier, it is
given by x = (ATA)−1ATb. Comparing with (15.4.6), it follows that the pseudoinverse
is in this case A+ = (ATA)−1AT.

Fig. 15.4.2 Subspaces in the full-rank least-squares solutions of Ax = b.

In the under-determined case, we have b = b‖, that is, b is in the range of A, and
therefore, Ax = b does have a solution. There are more unknowns than equations, and
therefore, there is an infinity of solutions x = x‖ +x⊥. The minimum norm solution can
be constructed as follows.

Because x‖ ∈ R(AT), there is a coefficient vector c ∈ RN such that x‖ = ATc. Then,
the system reads b = Ax = Ax‖ = AATc. TheN×NmatrixAAT is invertible because it
has full rank r = N. Thus, we find c = (AAT)−1b and hence, x‖ = ATc = AT(AAT)−1b.
It follows that A+ = AT(AAT)−1.
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Finally, in the square invertible case, we have x = A−1b. The three full-rank cases
may be summarized as follows:

1. N > M = r, x = A+b, A+ = (ATA)−1AT

2. M > N = r, x = A+b+ x⊥, A+ = AT(AAT)−1

3. N =M = r, x = A−1b, A+ = A−1

(15.4.10)

In the last two cases, the equation Ax = b is satisfied exactly. In the first case, it is
satisfied only in the least-squares sense.

Example 15.4.1: Solve the two systems of equations:{
x = 1
x = 2

and

{
2x = 2
x = 2

Solution: The least-squares minimization problems and their solutions are in the two cases:

J = (x− 1)2+(x− 2)2= min ⇒ ∂J
∂x

= 2(x− 1)+2(x− 2)= 0 ⇒ x = 1.5

J = (2x− 2)2+(x− 2)2= min ⇒ ∂J
∂x

= 4(2x− 2)+2(x− 2)= 0 ⇒ x = 1.2

It may be surprising that the solutions are different since the first equations of the two
systems are the same, differing only by an overall scale factor. The presence of the scale
factor introduces an effective weighting of the performance index which alters the relative
importance of the squared terms. Indeed, the second performance index may be rewritten
as:

J = 4(x− 1)2+(x− 2)2

which assigns the weights 4:1 to the two terms, as opposed to the original 1:1. Generalizing
this example, we may express the systems in the form Ax = b:

a1x = b1

a2x = b2
⇒

[
a1

a2

]
x =

[
b1

b2

]
, A =

[
a1

a2

]
, b =

[
b1

b2

]
(15.4.11)

This is recognized as an overdetermined full-rank case, which can be solved by the pseu-
doinverse A+ = (ATA)−1AT . Noting that ATA = a2

1 + a2
2, we have:

[
a1

a2

]+
= [a1, a2]
a2

1 + a2
2

⇒ x = A+b = 1

a2
1 + a2

2
[a1, a2]

[
b1

b2

]
= a1b1 + a2b2

a2
1 + a2

2

The first system has [a1, a2]= [1,1] and [b1, b2]= [1,2], and the second system, [a1, a2]=
[2,1] and [b1, b2]= [2,2]. If we multiply both sides of Eq. (15.4.11) by the weightsw1,w2,
we get the system and solution:[

w1a1

w2a2

]
x =

[
w1b1

w2b2

]
⇒ x = w2

1a1b1 +w2
2a2b2

w2
1a2

1 +w2
2a2

2
(15.4.12)

The differences between (15.4.11) and (15.4.12) can be explained by inspecting the corre-
sponding performance indices that are being minimized:

J = (a1x− b1)2+(a2x− b2)2 , J = w2
1(a1x− b1)2+w2

2(a2x− b2)2

The scale factors w1,w2 alter the relative weighting of the terms in J. ��
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Example 15.4.2: Find the minimum norm solution, as well as the most general least-squares
solution of the system:

x1 + x2 = 2 � [1,1]
[
x1

x2

]
= [2] , A = [1,1], x =

[
x1

x2

]
, b = [2]

Solution: This is an under-determined full-rank case. The minimum norm solution is computed
using the pseudoinverse A+ = AT(AAT)−1. We have, AAT = 2, therefore,

A+ = 1

2

[
1
1

]
=
[

0.5
0.5

]
⇒ x‖ = A+b =

[
0.5
0.5

]
[2]=

[
1
1

]

The most general vector in the one-dimensional null space of A has the form:

x⊥ =
[

z
−z

]
� [1,1]

[
z
−z

]
= 0 � Ax⊥ = 0

Therefore, the most general least-squares solution will have the form:

x = x‖ + x⊥ =
[

1
1

]
+
[

z
−z

]
=
[

1+ z
1− z

]

It is evident that the norm-square ‖x‖2 = (z + 1)2+(z − 1)2= 2 + 2z2 is minimized

when z = 0. MATLAB’s backslash solution x = A\b =
[

2
0

]
is obtained when z = 1

and corresponds to the point of intersection of the line x1 + x2 = 2 with the x1 axis. A
geometrical picture of the general solution is shown in Fig. 15.4.3.

Fig. 15.4.3 The minimum norm solution is perpendicular to the straight line x1 + x2 = 2.

The equation x1 + x2 = 2 is represented by a straight line on the x1x2 plane. Any point on
the line is a solution. In particular, the minimum-norm solution x‖ is obtained by drawing
the perpendicular from the origin to the line.

The direction of x‖ defines the 1-dimensional range spaceR(AT). The orthogonal direction
to R(AT), which is parallel to the line, is the direction of the 1-dimensional null subspace
N(A). In the more general case, we may replace the given equation by:

a1x1 + a2x2 = b1 � [a1, a2]
[
x1

x2

]
= [b1], A = [a1, a2], b = [b1]

The pseudoinverse of A and the min-norm solution are:
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A+ = AT(AAT)−1= 1

a2
1 + a2

2

[
a1

a2

]
, x‖ = A+b = 1

a2
1 + a2

2

[
a1b1

a2b1

]

Vectors in N(A) and the most general least-squares solution are given by:

x⊥ = 1

a2
1 + a2

2

[
a2z

−a1z

]
, x = x‖ + x⊥ = 1

a2
1 + a2

2

[
a1b1 + a2z
a2b1 − a1z

]

It is easily verified that Ax⊥ = 0 and that ‖x‖2 is minimized when z = 0. ��

Example 15.4.3: The pseudoinverses of N-dimensional column and row vectors are:

a =

⎡
⎢⎢⎢⎢⎢⎣
a1

a2

...
aN

⎤
⎥⎥⎥⎥⎥⎦ ⇒ a+ = aT

‖a‖2
and aT = [a1, a2, . . . , aN] ⇒ (aT)+= a

‖a‖2

where ‖a‖2 = aTa = a2
1 + a2

2 + · · · + a2
N . Thus, we obtain the minimum-norm solutions:

⎡
⎢⎢⎢⎢⎢⎣
a1

a2

...
aN

⎤
⎥⎥⎥⎥⎥⎦x =

⎡
⎢⎢⎢⎢⎢⎣
b1

b2

...
bN

⎤
⎥⎥⎥⎥⎥⎦ ⇒ x = a+b = aTb

aTa
= a1b1 + a2b2 + · · · + aNbN

a2
1 + a2

2 + · · · + a2
N

a1x1 + a2x2 + · · · + aNxN = b ⇒

⎡
⎢⎢⎢⎢⎢⎣
x1

x2

...
xN

⎤
⎥⎥⎥⎥⎥⎦ =

1

a2
1 + a2

2 + · · · + a2
N

⎡
⎢⎢⎢⎢⎢⎣
a1

a2

...
aN

⎤
⎥⎥⎥⎥⎥⎦b

15.5 The Singular Value Decomposition

Given an N×M matrix A∈RN×M of rank r ≤ min(N,M), the singular value decom-
position theorem [1234] states that there exist orthogonal matrices U ∈ RN×N and
V ∈ RM×M such that A is factored in the form:

A = UΣVT (SVD) (15.5.1)

where Σ ∈ RN×M is an N×M diagonal matrix, partitioned in the form:

Σ =
[
Σr 0
0 0

]
(15.5.2)

with Σr a square diagonal matrix in Rr×r :

Σr = diag(σ1, σ2, . . . , σr) (15.5.3)
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with positive diagonal entries called the singular values ofA and arranged in decreasing
order:

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 (15.5.4)

The orthogonal matricesU,V are not unique, but the singular values σi are. To clar-
ify the structure ofΣ and the blocks of zeros borderingΣr , we give below the expressions
for Σ for the case of a 6×4 matrix A of rank r = 1,2,3,4:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 0 0
0 σ2 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 0 0
0 σ2 0 0
0 0 σ3 0

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 σ4

0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The orthogonality of U,V may be expressed by UTU = UUT = IN and VTV =
VVT = IM. These just mean the U has N orthonormal columns that form a complete
basis for RN, and V has M orthonormal columns that form a basis for RM.

Denoting the columns of U by ui, i = 1,2, . . . ,N, and the columns of V by vi, i =
1,2, . . . ,M, we may partition U,V in a compatible way as in Eq. (15.5.2):

U = [u1,u2, . . . ,ur︸ ︷︷ ︸
Ur

,ur+1, . . . ,uN︸ ︷︷ ︸
Ũr

]= [Ur | Ũr]

V = [v1,v2, . . . ,vr︸ ︷︷ ︸
Vr

,vr+1, . . . ,vM︸ ︷︷ ︸
Ṽr

]= [Vr | Ṽr]
(15.5.5)

Then, Eq. (15.5.1) can be written in the form:

A = [Ur | Ũr]
[
Σr 0
0 0

][
VTr
ṼTr

]
= UrΣrVTr (15.5.6)

or, as a sum of r rank-1 matrices:

A =
r∑
i=1

σiuivTi = σ1u1vT2 +σ2u2vT2 + · · · +σrurvTr (15.5.7)

The submatrices have dimensionsUr ∈ RN×r , Ũr ∈ RN×(N−r),Vr ∈ RM×r , and Ṽr ∈
RM×(M−r). The orthogonality and completeness properties of U,V may be expressed
equivalently in terms of these submatrices:

UTr Ur = Ir , ŨTr Ũr = IN−r , UTr Ũr = 0 , UrUTr + ŨrŨTr = IN
VTr Vr = Ir , ṼTr Ṽr = IM−r , VTr Ṽr = 0 , VrVTr + ṼrṼTr = IM

(15.5.8)

For example, we have:

UTU =
[
UTr Ur UTr Ũr
ŨTr Ur ŨTr Ũr

]
=
[
Ir 0
0 IN−r

]
= IN , UrUTr + ŨrŨTr = UUT = IN
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The SVD of A provides also the SVD of AT, that is, AT = VΣTUT. The singular
values of AT coincide with those of A. The matrix ΣT has dimension M×N, but since
ΣTr = Σr , we have:

AT = VΣTUT = [Vr | Ṽr]
[
Σr 0
0 0

][
UTr
ŨTr

]
= VrΣrUTr (15.5.9)

Although A and AT can be constructed only from Ur,Σr,Vr , the other submatrices
Ũr, Ṽr are needed in order to characterize the four fundamental subspaces of A, and
are needed also in the least-squares solutions.

Multiplying (15.5.6) from the right by Vr and Ṽr and multiplying (15.5.9) by Ur and
Ũr and using (15.5.8), we obtain:

AVr = UrΣrVTr Vr = UrΣr , AṼr = UrΣrVTr Ṽr = 0

ATUr = VrΣrUTr Ur = VrΣr , ATŨr = VrΣrUTr Ũr = 0

or, explicitly in terms of the basis vectors ui,vi:

AVr = UrΣr
AṼr = 0

ATUr = VrΣr
ATŨr = 0

�

Avi = σiui , i = 1,2, . . . , r
Avi = 0 , i = r + 1, . . . ,M
ATui = σivi , i = 1,2, . . . , r
ATui = 0 , i = r + 1, . . . ,N

(15.5.10)

These equations show that ui and vi, i = 1,2, . . . , r, lie in the range spaces R(A)
and R(AT), respectively. Moreover, they provide orthonormal bases for these two sub-
spaces. Similarly, vi, i = r + 1, . . . ,M, and ui, i = r + 1, . . . ,N, are bases for the null
subspaces N(A) and N(AT), respectively.

Thus, a second part of the fundamental theorem of linear algebra is that the matrices
Ur, Ũr,Vr, Ṽr provide orthonormal bases for the four fundamental subspaces ofA, and
with respect to these bases, A has a diagonal form (the Σ). The subspaces, their bases,
and the corresponding projectors onto them are:

R(A)= span{Ur} , dim = r , UTr Ur = Ir , PR(A) = UrUTr
N(AT)= span{Ũr} , dim = N − r , ŨTr Ũr = IN−r , PN(AT) = ŨrŨTr
R(AT)= span{Vr} , dim = r , VTr Vr = Ir , PR(AT) = VrVTr
N(A)= span{Ṽr} , dim =M − r , ṼTr Vr = IM−r , PN(A) = ṼrṼTr

(15.5.11)

The vectors ui and vi are referred to as the left and right singular vectors of A and
are the eigenvectors of the matricesAAT andATA, respectively. Indeed, it follows from
the orthogonality of U and V that:

ATA = VΣTUTUΣVT = V(ΣTΣ)VT , ΣTΣ =
[
Σ2
r 0

0 0

]
∈ RM×M

AAT = UΣVTVΣTUT = U(ΣΣT)UT , ΣΣT =
[
Σ2
r 0

0 0

]
∈ RN×N

(15.5.12)
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It is evident from these that V and U are the matrices of eigenvectors of ATA and
AAT and that the corresponding non-zero eigenvalues are λi = σ2

i , i = 1,2, . . . , r. The
ranks of ATA and AAT are equal to the rank r of A.

The SVD factors V,U could, in principle, be obtained by solving the eigenvalue prob-
lems of ATA and AAT. However, in practice, loss of accuracy can occur in squaring the
matrix A. Methods of computing the SVD directly from A are available.

A simplified proof of the SVD is as follows. We assume that N ≥ M and that A has
full rank r = M (the proof can easily be modified for the general case.) First, we solve
the eigenvalue problem of the matrix ATA:

ATA = VΛVT , Λ = diag(λ1, λ2, . . . , λM)∈ RM×M

Because ATA has full rank, it will be strictly positive definite, its eigenvalues will be
positive, and the corresponding eigenvectors may be chosen to be orthonormal, that is,
VTV = VVT = IM. Arranging the eigenvalues in decreasing order, we define σi =

√
λi,

i = 1,2, . . . ,M, and Σ1 = Λ1/2 = diag(σ1, . . . , σM)∈ RM×M. Then, we define U1 =
AVΣ−1

1 , which is an N×M matrix with orthonormal columns:

UT1U1 = Σ−1
1 VT(ATA)VΣ−1

1 = Σ−1
1 VT(VΣ2

1VT)VΣ
−1
1 = IM

Next, we solve for A. We have U1Σ1 = AV, and U1Σ1VT = AVVT = A, or

A = U1Σ1VT (economy SVD) (15.5.13)

The N×M matrix U1 may be enlarged into an N×N orthogonal matrix by adjoining
to it (N −M) orthonormal columns U2 such that UT2U1 = 0, and similarly, the M×M
diagonal matrix Σ1 may be enlarged into an N×M matrix Σ. Then, Eq. (15.5.13) may be
rewritten in the standard full SVD form:

A = U1Σ1VT = [U1 | U2]
[
Σ1

0

]
VT = UΣVT (15.5.14)

Eq. (15.5.13) is called the economy or thin SVD because the U1 matrix has the same
size as A but has orthonormal columns, and Σ1 has size M×M. For many applications,
such as SVD signal enhancement, the economy SVD is sufficient. In MATLAB, the full
and the economy SVDs are obtained with the calls:

[U,S,V] = svd(A); % full SVD

[U1,S1,V] = svd(A,0); % economy SVD

Example 15.5.1: To illustrate the loss of accuracy in forming ATA, consider the 4×3 matrix:

A =

⎡
⎢⎢⎢⎣

1 1 1
ε 0 0
0 ε 0
0 0 ε

⎤
⎥⎥⎥⎦ ⇒ ATA =

⎡
⎢⎣ 1+ ε2 1 1

1 1+ ε2 1
1 1 1+ ε2

⎤
⎥⎦

The matrix A remains full rank to order O(ε), but ATA requires that we work to order
O(ε2). The singular values of A are obtained from the eigenvalues of ATA:

λ1 = 3+ ε2, λ2 = λ3 = ε2 ⇒ σ1 =
√

3+ ε2, σ2 = σ2 = ε
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The full SVD of A can be constructed along the lines described above. Starting with the
eigenproblem of ATA, we find:

A = UΣVT =

⎡
⎢⎢⎢⎣

3α 0 0 −δε
αε β γ δ
αε −β γ δ
αε 0 −2γ δ

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
σ1 0 0
0 σ2 0
0 0 σ3

0 0 0

⎤
⎥⎥⎥⎦
⎡
⎢⎣ a b c
a −b c
a 0 −2c

⎤
⎥⎦
T

where a = 1√
3

, β = b = 1√
2

, γ = c = 1√
6

, α = 1√
3(3+ ε2)

, and δ = 1√
(3+ ε2)

. ��

Example 15.5.2: Consider the full SVD of the 4×2 matrix A:

A =

⎡
⎢⎢⎢⎣

0.5 1.0
1.1 0.2
1.1 0.2
0.5 1.0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0.5 0.5 −0.1 −0.7
0.5 −0.5 −0.7 0.1
0.5 −0.5 0.7 −0.1
0.5 0.5 0.1 0.7

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

2 0
0 1
0 0
0 0

⎤
⎥⎥⎥⎦
[

0.8 −0.6
0.6 0.8

]T
= UΣVT

Its economy SVD is:

A =

⎡
⎢⎢⎢⎣

0.5 1.0
1.1 0.2
1.1 0.2
0.5 1.0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0.5 0.5
0.5 −0.5
0.5 −0.5
0.5 0.5

⎤
⎥⎥⎥⎦
[

2 0
0 1

][
0.8 −0.6
0.6 0.8

]T

The choice of the last two columns of U is not unique. They can be transformed by any
2×2 orthogonal matrix without affecting the SVD. For example, v5.3 of MATLAB produces
the U matrix:

U =

⎡
⎢⎢⎢⎣

0.5 0.5 −0.1544 −0.6901
0.5 −0.5 −0.6901 0.1544
0.5 −0.5 0.6901 −0.1544
0.5 0.5 0.1544 0.6901

⎤
⎥⎥⎥⎦

The last two columns of the two Us are related by the 2×2 orthogonal matrix C:

⎡
⎢⎢⎢⎣
−0.1544 −0.6901
−0.6901 0.1544

0.6901 −0.1544
0.1544 0.6901

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
−0.1 −0.7
−0.7 0.1

0.7 −0.1
0.1 0.7

⎤
⎥⎥⎥⎦C , C =

[
0.9969 −0.0781
0.0781 0.9969

]

where CTC = I2. ��

Complex-Valued Case

The SVD of a complex-valued matrix A ∈ CN×M takes the form:

A = UΣV† (15.5.15)

where † denotes the Hermitian-conjugate, or conjugate-transpose, V† = V∗T. The
matrix Σ is exactly as in the real case, and U,V are unitary matrices U ∈ CN×N and
V ∈ CM×M, that is,

UU† = U†U = IN, VV† = V†V = IM (15.5.16)
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Maximization Criterion for the SVD

The singular values and singular vectors of a matrix A of rank r can be characterized
by the following maximization criterion [1321].

First, the maximum singular value σ1 and singular vectors u1,v1 are the solutions
of the maximization criterion:†

σ1 = max
‖u‖=1

max
‖v‖=1

u†Av = u†1Av1 (15.5.17)

Then, the remaining singular values and vectors are the solutions of the criteria:

σi = max
‖u‖=1

max
‖v‖=1

u†Av = u†i Avi , i = 2, . . . , r

subject to the constraints: u†uj = v†vj = 0 , j = 1,2, . . . , i− 1
(15.5.18)

The proof is straightforward. Using the Cauchy-Schwarz inequality and the con-
straints ‖u‖ = ‖v‖ = 1, and that the Euclidean norm of A is σ1, we have:

|u†Av| ≤ ‖u‖‖A‖‖v‖ = ‖A‖ = σ1

with the equality being realized when u = u1 and v = v1.
For the next singular value σ2, we must maximize u†Av over all vectors u,v that are

orthogonal to u1,v1, that is, u†u1 = v†v1 = 0. Using the SVD of A, we may separate the
contribution of u1,v1:

A = σ1u1v†1 +
r∑
i=2

σ1uiv
†
i ≡ σ1u1v†1 +A2

Then, the constraints imply that u†Av = u†(σ1u1v†1 + A2)v = u†A2v. But from
the previous result, the maximum of this quantity is the maximum singular value of A2,
that is, σ2, and this maximum is realized when u = u2 and v = v2. Then we repeat this
argument by separating out the remaining singular terms σiuiv

†
i one at a time, till we

exhaust all the singular values.
This theorem is useful in canonical correlation analysis and in characterizing the

angles between subspaces.

15.6 Moore-Penrose Pseudoinverse

For a full-rank N×N matrix with SVD A = UΣVT, the ordinary inverse is obtained by
inverting the SVD factors and writing them in reverse order:

A−1 = V−TΣ−1U−1 = VΣ−1UT (15.6.1)

where we used the orthogonality properties to write V−T = V and U−1 = UT. For an
N×M rectangular matrix with defective rank r, Σ−1 cannot be defined even if it were

†The quantity u†Av could just as well be replaced by its absolute value |u†Av| in (15.5.17) and (15.5.18).
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square because some of its singular values are zero. For a scalar x, we may define its
pseudoinverse by:

x+ =
⎧⎨
⎩x

−1, if x ≠ 0

0, if x = 0
(15.6.2)

For a square M×M diagonal matrix, we define its pseudoinverse to be the diagonal
matrix of the pseudoinverses:

Σ = diag(σ1, σ2, . . . , σM) ⇒ Σ+ = diag(σ+1 , σ+2 , . . . , σ+M) (15.6.3)

And, for an N×M rectangular diagonal matrix of r non-zero singular values Σ ∈
RN×M, we define its pseudoinverse to be the M×N diagonal matrix Σ+ ∈ RM×N:

Σ =
[
Σr 0
0 0

]
∈ RN×M ⇒ Σ+ =

[
Σ−1
r 0
0 0

]
∈ RM×N (15.6.4)

The pseudoinverse of an N×M matrix A is defined by replacing Σ−1 in Eq. (15.6.1)
by Σ+, that is, if A = UΣVT ∈ RN×M, then A+ ∈ RM×N:

A+ = VΣ+UT (Moore-Penrose pseudoinverse) (15.6.5)

Equivalently, using the block-matrix form (15.5.6), we have:

A = [Ur | Ũr]
[
Σr 0
0 0

][
VTr
ṼTr

]
= UrΣrVTr

A+ = [Vr | Ṽr]
[
Σ−1
r 0
0 0

][
UTr
ŨTr

]
= VrΣ−1

r UTr

(15.6.6)

Eqs. (15.6.6) can be written as sums of r rank-1 matrices:

A =
r∑
i=1

σiuivTi = σ1u1vT1 +σ2u2vT2 + · · · +σrurvTr

A+ =
r∑
i=1

1

σi
viu

T
i =

1

σ1
v1uT1 +

1

σ2
v2uT2 + · · · +

1

σr
vru

T
r

(15.6.7)

The matrix A+ satisfies (and is uniquely determined by) the four standard Penrose
conditions [1234]:

AA+A = A, (AA+)T= AA+
A+AA+ = A+ , (A+A)T= A+A (15.6.8)

These conditions are equivalent to the fact that AA+ and A+A are the projectors
onto the range spaces R(A) and R(AT), respectively. Indeed, using the definition
(15.6.6) and Eq. (15.5.11), we have:

PR(A) = UrUTr = AA+ , PR(AT) = VrVTr = A+A (15.6.9)

It is straightforward also to verify the three expressions forA+ given by Eq. (15.4.10)
for the full-rank cases. For example, if N > M = r, the matrix Vr is square and orthog-
onal, so that ATA = VrΣ2

rVTr is invertible, (ATA)−1= VrΣ−2
r VTr . Thus,

(ATA)−1AT = (
VrΣ−2

r VTr
)(
VrΣrUTr

) = VrΣ−1
r UTr = A+
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15.7 Least-Squares Problems and the SVD

Having defined the pseudoinverse and convenient bases for the four fundamental sub-
spaces of A, we may revisit the least-squares solution of the system Ax = b.

First, we show that the solution of Ax‖ = b‖ is, indeed, given by the pseudoinverse
A+ acting directly on b. By definition, we have b‖ = PR(A)b. Using the SVD of A and
the projectors (15.6.9), we have:

Ax‖ = b‖ ⇒ UrΣrVTr x‖ = UrUTr b ⇒ VTr x‖ = Σ−1
r UTr b

where we multiplied both sides of the second equation by UTr and divided by Σr to get
the third. Multiplying from the left by Vr and using (15.6.6), we find:

VrVTr x‖ = VrΣ−1
r UTr b = A+b

but we have x‖ = VrVTr x‖, which follows from (VrVTr )2= VrVTr , that is, x‖ = VrVTr x =
VrVTr (VrVTr x)= VrVTr x‖. Thus, we find x‖ = A+b. Using (15.6.8) and (15.6.9), we also
have A+b = (A+AA+)b = A+(AA+b)= A+b‖. Thus, we have shown:

x‖ = A+b‖ = A+b (minimum-norm solution) (15.7.1)

or, explicitly in terms of the non-zero singular values:

x‖ = A+b = VrΣ−1
r UTr b =

r∑
i=1

1

σi
vi u

T
i b (15.7.2)

We recall that the most general least-squares solution of Ax = b is given by x =
x‖ + x⊥, where x⊥ ∈ N(A). We can give an explicit construction of x⊥ by noting that
Ṽr is an orthonormal basis for N(A). Therefore, we may write x⊥ = Ṽrz, where z is an
(M − r)-dimensional column vector of expansion coefficients, that is,

x⊥ =
M∑

i=r+1

zivi = [vr+1,vr+2, . . . ,vM]

⎡
⎢⎢⎢⎢⎢⎣
zr+1

zr+2

...
zM

⎤
⎥⎥⎥⎥⎥⎦ = Ṽrz

Because x⊥ is arbitrary, so is z. Thus, the most general solution of the least-squares
problem can be written in the form [1234]:

x = x‖ + x⊥ = A+b+ Ṽrz , for arbitrary z ∈ RM−r (15.7.3)

The error vector is:

e = e⊥ = b⊥ = PN(AT)b = ŨrŨTr b = (IN −UrUTr )b = (IN −AA+)b

and the minimized value of the least-squares performance index:

Jmin = ‖e‖2 = bT(IN −AA+)b (15.7.4)



784 15. SVD and Signal Processing

where we used the property (IN − AA+)T(IN − AA+)= (IN − AA+), which can be
proved directly using (15.6.8). Indeed,

(IN −AA+)T(IN −AA+)= IN − 2AA+ +AA+AA+ = IN − 2AA+ +AA+ = IN −AA+

Example 15.7.1: Here, we revisit Example 15.4.2 from the point of view of Eq. (15.7.3). The full
and economy SVD of A = [a1, a2] are:

A = [a1, a2]= [1][σ1,0]
[
a1/σ1 −a2/σ1

a2/σ1 a1/σ1

]T
= [1][σ1]

[
a1/σ1

a2/σ1

]T

with the singular value σ1 =
√
a2

1 + a2
2. Thus, the pseudoinverse of A and the basis Ṽr of

N(A) will be:

A+ = [a1, a2]+=
[
a1/σ1

a2/σ1

]
[σ−1

1 ][1]T= 1

σ2
1

[
a1

a2

]
, Ṽr = 1

σ1

[
−a2

a1

]

It follows from (15.7.3) that the most general solution of a1x1 + a2x2 = b1 will be:

[
x1

x2

]
= A+[b1]+ 1

σ1

[
−a2

a1

]
z = 1

σ2
1

[
a1

a2

]
b1 + 1

σ1

[
−a2

a1

]
z

which is equivalent to that given in Example 15.4.2 up to a redefinition of z. ��

Example 15.7.2: Find the most general solution of the following linear system, and in particu-
lar, find the minimum-norm and MATLAB’s backslash solutions:

Ax =

⎡
⎢⎢⎢⎣

1.8 2.4 4.0
−1.8 −2.4 −4.0

1.8 2.4 4.0
−1.8 −2.4 −4.0

⎤
⎥⎥⎥⎦
⎡
⎢⎣ x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

10
20
30
40

⎤
⎥⎥⎥⎦ = b

A possible SVD of A is as follows:

A = UΣVT =

⎡
⎢⎢⎢⎣

0.5 0.5 −0.5 0.5
−0.5 −0.5 −0.5 0.5

0.5 −0.5 0.5 0.5
−0.5 0.5 0.5 0.5

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

10 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎦
⎡
⎢⎣ 0.36 −0.48 0.8

0.48 −0.64 −0.6
0.80 0.60 0.0

⎤
⎥⎦
T

The matrix A has rank one, so that the last three columns of U and the last two columns
of V are not uniquely defined. The pseudoinverse of A will be:

A =

⎡
⎢⎢⎢⎣

0.5
−0.5

0.5
−0.5

⎤
⎥⎥⎥⎦ [10][0.36,0.48,0.80] , A+ =

⎡
⎢⎣ 0.36

0.48
0.80

⎤
⎥⎦ [10−1][0.5,−0.5,0.5,−0.5]

Therefore, the minimum-norm solution is:

x‖ = A+b =
⎡
⎢⎣ 0.36

0.48
0.80

⎤
⎥⎦ [10−1][0.5,−0.5,0.5,−0.5]

⎡
⎢⎢⎢⎣

10
20
30
40

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣ −0.36
−0.48
−0.80

⎤
⎥⎦
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The term Ṽrz of Eq. (15.7.3) depends on the two last columns of V, where z is an arbitrary
two-dimensional vector. Thus, the most general least-squares solution is:

x =
⎡
⎢⎣ −0.36
−0.48
−0.80

⎤
⎥⎦+

⎡
⎢⎣ −0.48 0.80
−0.64 −0.60

0.60 0.00

⎤
⎥⎦
[
z1

z2

]
=
⎡
⎢⎣ −0.36− 0.48z1 + 0.80z2

−0.48− 0.64z1 − 0.60z2

−0.80+ 0.60z1

⎤
⎥⎦

MATLAB’s backslash solution is obtained by fixing z1, z2 such that x will have at most one
nonzero entry. For example, demanding that the top two entries be zero, we get:

−0.36− 0.48z1 + 0.80z2 = 0
−0.48− 0.64z1 − 0.60z2 = 0

⇒ z1 = −0.75 , z2 = 0

which gives −0.8 + 0.6z1 = −1.25, and therefore, x = [0,0,−1.25]T . This is indeed
MATLAB’s output of the operation A\b. ��

15.8 Condition Number

The condition number of a full-rank N×N matrix A is given by:

κ(A)= ‖A‖2‖A−1‖2 = σmax

σmin
(15.8.1)

where σmax, σmin are the largest and smallest singular values of A, that is, σ1, σN. The
last equation of (15.8.1) follows from ‖A‖2 = σ1 and ‖A−1‖2 = σ−1

N .
The condition number characterizes the sensitivity of the solution of a linear system

Ax = b to small changes in A and b. Taking differentials of both sides of the equation
Ax = b, we find:

Adx+ (dA)x = db ⇒ dx = A−1[db− (dA)x]
Taking (the Euclidean) norms of both sides, we have:

‖dx‖ ≤ ‖A−1‖‖db− (dA)x‖ ≤ ‖A−1‖[‖db‖ + ‖dA‖‖x‖]
Using the inequality ‖b‖ = ‖Ax‖ ≤ ‖A‖‖x‖, we get:

‖dx‖
‖x‖ ≤ κ(A)

[‖dA‖
‖A‖ + ‖db‖

‖b‖
]

(15.8.2)

Large condition numbers result in a highly sensitive system, that is, small changes
in A and b may result in very large changes in the solution x. Large condition numbers,
κ(A)� 1, imply that σ1 � σN, or that A is nearly singular.

Example 15.8.1: Consider the matrix A, which is very close to the singular matrix A0:

A =
[

10.0002 19.9999
4.9996 10.0002

]
, A0 =

[
10 20

5 10

]
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Its SVD is:

A =
[ √

0.8 −√0.2√
0.2

√
0.8

][
25.0000 0.0000

0.0000 0.0005

][ √
0.2 −√0.8√
0.8

√
0.2

]T
= UΣVT

Its condition number is κ(A)= σ1/σ2 = 25/0.0005 = 50000. Computing the solutions of
Ax = b for three slightly different b’s, we find:

b1 =
[

10.00
5.00

]
⇒ x1 = A\b1 =

[
0.2
0.4

]

b2 =
[

10.00
5.01

]
⇒ x2 = A\b2 =

[
−15.79992

8.40016

]

b3 =
[

10.01
5.00

]
⇒ x3 = A\b3 =

[
8.20016

−3.59968

]

The solutions are exact in the decimal digits shown. Even though the b’s differ only slightly,
there are very large differences in the x’s. ��

15.9 Reduced-Rank Approximation

The Euclidean and Frobenius matrix norms of an N×M matrix A of rank r can be ex-
pressed conveniently in terms of the singular values of A:

‖A‖2 = σ1 = maximum singular value

‖A‖F = (σ2
1 +σ2

2 + · · · +σ2
r )1/2

(15.9.1)

Associated with the SVD expansion (15.5.7), we define a family of reduced-rank ma-
trices Ak obtained by keeping only the first k terms in the expansion:

Ak =
k∑
i=1

σiuivTi = σ1u1vT1 +σ2u2vT2 + · · ·σkukvTk , k = 1,2, . . . , r (15.9.2)

Clearly, Ak has rank k, and when k = r, we have Ar = A. In terms of the original
full SVD of A, we can write:

Ak = U
[
Σk 0
0 0

]
VT , Σk = diag(σ1, σ2, . . . , σk, 0, . . . ,0︸ ︷︷ ︸

r−k zeros

)∈ Rr×r (15.9.3)

Thus, A and Ak agree in their highest k singular values, but the last r − k singular
values of A, that is, σk+1, . . . , σr , have been replaced by zeros in Ak. The matrices Ak
play a special role in constructing reduced-rank matrices that approximate the original
matrix A.

The reduced-rank approximation theorem [1234] states that within the set of N×M
matrices of rank k (we assume k < r), the matrix B that most closely approximates A
in the Euclidean (or the Frobenius) matrix norm is the matrix Ak, that is, the distance
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‖A − B‖ is minimized over the rank-k N×M matrices when B = Ak. The minimized
matrix distance is:

‖A−Ak‖2 = σk+1

‖A−Ak‖F = (σ2
k+1 + · · · +σ2

r )1/2 (15.9.4)

This theorem is an essential tool in signal processing, data compression, statistics,
principal component analysis, and other applications, such as chaotic dynamics, mete-
orology, and oceanography.

In remarkably many applications the matrix A has full rank but its singular values
tend to cluster into two groups, those that are large and those that are small , that is,
assuming N ≥M, we group the M singular values into:

σ1 ≥ σ2 ≥ · · · ≥ σr︸ ︷︷ ︸
large group

� σr+1 ≥ · · · ≥ σM︸ ︷︷ ︸
small group

(15.9.5)

Fig. 15.9.1 illustrates the typical pattern. A similar pattern arises in the practical
determination of the rank of a matrix. To infinite arithmetic precision, a matrix A may
have rank r, but to finite precision, the matrix might acquire full rank. However, its
lowest M − r singular values are expected to be small.

Fig. 15.9.1 Signal subspace vs. noise subspace singular values.

The presence of a significant gap between the large and small singular values allows
us to define an effective or numerical rank for the matrix A.

In least-squares solutions, the presence of small non-zero singular values may cause
inaccuracies in the computation of the pseudoinverse. If the last (M−r) small singular
values in (15.9.5) are kept, then A+ would be given by (15.6.7):

A+ =
r∑
i=1

1

σi
viu

T
i +

M∑
i=r+1

1

σi
viu

T
i

and the last (M − r) terms would tend to dominate the expression. For this reason,
the rank and the pseudoinverse can be determined with respect to a threshold level or
tolerance, say, δ such that if σi ≤ δ, for i = r+1, . . . ,M, then these singular values may
be set to zero and the effective rank will be r. MATLAB’s functions rank and pinv allow
the user to specify any desired level of tolerance.
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Example 15.9.1: Consider the matrices:

A =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ , Â =

⎡
⎢⎢⎢⎣

0.9990 −0.0019 −0.0008 −0.0004
0.0037 0.9999 0.0009 −0.0005
0.0008 −0.0016 0.0010 −0.0002
−0.0007 0.0004 0.0004 −0.0006

⎤
⎥⎥⎥⎦

where the second was obtained by adding small random numbers to the elements of the
first using the MATLAB commands:

A = zeros(4); A(1,1)=1; A(2,2)=1; % define the matrix A
Ahat = A + 0.001 * randn(size(A));

The singular values of the two matrices are:

σi = [1.0000, 1.0000, 0.0000, 0.0000]
σ̂i = [1.0004, 0.9984, 0.0012, 0.0005]

Although A and Â are very close to each other, and so are the two sets of singular values,
the corresponding pseudoinverses differ substantially:

A+ =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ , Â+ =

⎡
⎢⎢⎢⎣

0.9994 0.0043 1.1867 −1.0750
−0.0035 0.9992 −0.6850 −0.5451
−1.1793 2.0602 1165.3515 −406.8197
−1.8426 1.8990 701.5460 −1795.6280

⎤
⎥⎥⎥⎦

This would result in completely inaccurate least-squares solutions. For example,

b =

⎡
⎢⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎥⎦ ⇒ x = A+b =

⎡
⎢⎢⎢⎣

1
2
0
0

⎤
⎥⎥⎥⎦ , x̂ = Â+b =

⎡
⎢⎢⎢⎣

0.2683
−2.2403

1871.7169
−5075.9187

⎤
⎥⎥⎥⎦

On the other hand, if we define Â+ = pinv(A,δ) with a tolerance of δ = 10−2, which
amounts to setting σ̂3 = σ̂4 = 0, we get acceptable results:

Â+ =

⎡
⎢⎢⎢⎣

1.0010 0.0020 0.0008 −0.0007
−0.0037 1.0001 −0.0016 0.0004
−0.0008 0.0009 −0.0000 0.0000
−0.0004 −0.0005 0.0000 0.0000

⎤
⎥⎥⎥⎦ ⇒ x̂ = Â+b =

⎡
⎢⎢⎢⎣

1.0043
1.9934
0.0010
−0.0014

⎤
⎥⎥⎥⎦

To avoid such potential pitfalls in solving least squares problems, one may calculate first
the singular values of A and then make a decision as to the rank of A. ��

In the previous example, we saw that a small change in A caused a small change in
the singular values. The following theorem [1236] establishes this property formally. If
A and Â are N×M matrices with N ≥M, then their singular values differ by:

max
1≤i≤M

|σ̂i −σi| ≤ ‖Â−A‖2

M∑
i=1

|σ̂i −σi|2 ≤ ‖Â−A‖2
F

(15.9.6)

15.9. Reduced-Rank Approximation 789

In signal processing applications, we think of the large group of singular values as
arising from a desired signal or dynamics, and the small group as arising from noise.
Often, the choice of the r that separates the large from the small group is unambiguous.
Sometimes, it is ambiguous and we may need to choose it by trial and error. Replacing
the original matrix A by its rank-r approximation tends to reduce the effects of noise
and enhance the desired signal.

The construction procedure for the rank-r approximation is as follows. Assuming
N ≥ M and starting with the economy SVD of A, we may partition the singular values
according to (15.9.5):

A = [Ur | Ũr]
[
Σr 0

0 Σ̃r

][
VTr
ṼTr

]
= UrΣrVTr + ŨrΣ̃rṼTr = Ar + Ãr (15.9.7)

where Σr = diag(σ1, . . . , σr) and Σ̃r = diag(σr+1, . . . , σM), and we set

Ar = [Ur | Ũr]
[
Σr 0
0 0

][
VTr
ṼTr

]
= UrΣrVTr

Ãr = [Ur | Ũr]
[

0 0

0 Σ̃r

][
VTr
ṼTr

]
= ŨrΣ̃rṼTr

(15.9.8)

where Ur ∈ RN×r , Ũr ∈ RN×(M−r), Vr ∈ RM×r , Ṽr ∈ RM×(M−r).
We will refer to Ar as the “signal subspace” part of A and to Ãr as the “noise sub-

space” part. The two parts are mutually orthogonal, that is, ATr Ãr = 0. Similarly, Σr
and Σ̃r are called the signal subspace and noise subspace singular values.

Example 15.9.2: Consider the following 4×3 matrix:

A =

⎡
⎢⎢⎢⎣
−0.16 −0.13 6.40

0.08 0.19 −6.40
3.76 4.93 1.60
−3.68 −4.99 −1.60

⎤
⎥⎥⎥⎦

Its full SVD is:

UΣVT =

⎡
⎢⎢⎢⎣

0.5 0.5 −0.5 0.5
−0.5 −0.5 −0.5 0.5

0.5 −0.5 0.5 0.5
−0.5 0.5 0.5 0.5

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

10 0 0
0 8 0
0 0 0.1
0 0 0

⎤
⎥⎥⎥⎦
⎡
⎢⎣ 0.36 −0.48 0.80

0.48 −0.64 −0.60
0.80 0.60 0.00

⎤
⎥⎦
T

The economy SVD is:

A =

⎡
⎢⎢⎢⎣

0.5 0.5 −0.5
−0.5 −0.5 −0.5

0.5 −0.5 0.5
−0.5 0.5 0.5

⎤
⎥⎥⎥⎦
⎡
⎢⎣ 10 0 0

0 8 0
0 0 0.1

⎤
⎥⎦
⎡
⎢⎣ 0.36 −0.48 0.80

0.48 −0.64 −0.60
0.80 0.60 0.00

⎤
⎥⎦
T

The singular values are {σ1, σ2, σ3} = {10, 8, 0.1}. The first two are “large” and we
attribute them to the signal part, whereas the third is “small” and we assume that it is
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due to noise. The matrix A may be replaced by its rank-2 version by setting σ3 = 0. The
resulting signal subspace part of A is:

Ar =

⎡
⎢⎢⎢⎣

0.5 0.5 −0.5
−0.5 −0.5 −0.5

0.5 −0.5 0.5
−0.5 0.5 0.5

⎤
⎥⎥⎥⎦
⎡
⎢⎣ 10 0 0

0 8 0
0 0 0

⎤
⎥⎦
⎡
⎢⎣ 0.36 −0.48 0.80

0.48 −0.64 −0.60
0.80 0.60 0.00

⎤
⎥⎦
T

which gives:

Ar =

⎡
⎢⎢⎢⎣
−0.12 −0.16 6.40

0.12 0.16 −6.40
3.72 4.96 1.60
−3.72 −4.96 −1.60

⎤
⎥⎥⎥⎦

The full SVD of Ar , and the one generated by MATLAB are:

Ar =

⎡
⎢⎢⎢⎣

0.5 0.5 −0.5 0.5
−0.5 −0.5 −0.5 0.5

0.5 −0.5 0.5 0.5
−0.5 0.5 0.5 0.5

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

10 0 0
0 8 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎦
⎡
⎢⎣ 0.36 −0.48 0.80

0.48 −0.64 −0.60
0.80 0.60 0.00

⎤
⎥⎦
T

Ar =

⎡
⎢⎢⎢⎣

0.5 0.5 −0.6325 −0.3162
−0.5 −0.5 −0.6325 −0.3162

0.5 −0.5 −0.3162 0.6325
−0.5 0.5 −0.3162 0.6325

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

10 0 0
0 8 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎦
⎡
⎢⎣ 0.36 −0.48 0.80

0.48 −0.64 −0.60
0.80 0.60 0.00

⎤
⎥⎦
T

As usual, the last two columns of the U’s are related by a 2×2 orthogonal matrix. ��
The OSP MATLAB function sigsub constructs both the signal and noise subspace

parts of a matrix. It has usage:

[As,An] = sigsub(A,r); % signal + noise susbpaces, r = rank

Signal processing methods based on rank reduction are collectively referred to as
“SVD signal enhancement methods,” or “reduced-rank signal processing methods,” or
simply, “subspace methods.” A number of applications are presented in Refs. [1259–
1297]. We will discuss several of these later on.

One of the earliest applications of such methods was in image compression [1296,1297],
essentially via the Karhunen-Loève transform. A typical black and white image is repre-
sented by a square N×N matrix, where N depends on the resolution, but typical values
are N = 256,512,1024. A color image is represented by three such matrices, one for
each primary color (red, green, blue.)

The N singular values of an image matrix drop rapidly to zero. Keeping only the r
largest singular values leads to the approximation:

Ar = σ1u1vT1 +σ2u2vT2 + · · · +σrurvTr
Data compression arises because each term in the expansion requires the storage

of 2N coefficients, that is, N coefficients for each of the vectors σiui and vi. Thus, the
total number of coefficients to be stored is 2Nr. Compression takes place as long as
this is less than N2, the total number of matrix elements of the original image. Thus,
we require 2Nr < N2 or r < N/2. In practice, typical values of r that work well are of
the order of N/6 to N/5.
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Example 15.9.3: Fig. 15.9.2 shows the singular values of a 512×512 image. They were com-
puted by first removing the column means of the image and then performing a full SVD.
The singular values become small after the first 100.

1 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

i

σ i
 / 

σ 1

Singular Values

1 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

i

σ i
 / 

σ 1

Singular Values

Fig. 15.9.2 Singular values of 512×512 image, with expanded view of first 100 values.

Fig. 15.9.3 shows the original image and the image reconstructed on the basis of the first
100 singular values. The typical MATLAB code was as follows:

Fig. 15.9.3 Original (left) and compressed images, keeping r = 100 components.

A = imread(’stream.tiff’, ’tiff’); % read image file, size 512×512

[B,M] = zmean(double(A)); % remove and save mean

[U,S,V] = svd(B); % perform svd

r = 100;
Ar = M + U(:,1:r) * S(1:r,1:r) * V(:,1:r)’; % image from first r components

Ar = uint8(round(Ar)); % convert to unsigned 8-bit int

figure; image(A); colormap(’gray(256)’); % display image

figure; image(Ar); colormap(’gray(256)’);
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The image was obtained from the USC image database [1298]. The function zmean removes
the mean of each column and saves it. After rank-reduction, the matrix of the means is
added back to the image. ��

15.10 Regularization of Ill-Conditioned Problems

We saw in the previous section that the presence of small, but nonzero, singular values
can cause the least squares solution x = A+b to be highly inaccurate.

Thresholding of the singular values is one of many possible ways to regularize the
problem and produce an accurate solution. In all such methods, the true pseudo inverse
of A = UΣVT is replaced by a “filtered” or “regularized” version:

A+ = VΣ+UT =
r∑
i=1

1

σi
vi u

T
i (true)

A+f = f(A)A+ = Vf(Σ)Σ+UT =
r∑
i=1

f(σi)
σi

vi u
T
i (regularized)

(15.10.1)

The regularized least-squares solution becomes xf = A+f b. The function f(σ) is
chosen so that it is nearly unity for large σ, and f(σ)/σ is nearly zero for small σ (they
may be thought of as highpass filters). Some examples are:

f(σ)= u(σ − δ) (thresholding)

f(σ)= σ2

σ2 + λ (Tikhonov)
(15.10.2)

where u(t) is the unit-step and δ > 0, λ > 0 are positive selectable parameters. The
unit-step keeps only those singular values that are above the threshold, σi > δ. The
Tikhonov regularization is explicitly:

xf = A+f b =
r∑
i=1

σi
σ2
i + λ

vi u
T
i b (15.10.3)

Tikhonov regularization can also be obtained from the following modified least-
squares criterion, also known as ridge regression,

J = ‖b−Ax‖2 + λ‖x‖2 = min (15.10.4)

Indeed, setting the gradient of J to zero, we find:

∂J
∂x

= 2AT(Ax− b)+2λx = 0 ⇒ (ATA+ λI)x = ATb

where I is the identity matrix. The solution can be expressed in the form of Eq. (15.10.1).
Assuming that A is ill-conditioned but has full rank, then, A+ = (ATA)−1AT (for the
case N ≥M), so that:

x = (ATA+ λI)−1ATb = [
(ATA)(ATA+ λI)−1](ATA)−1ATb = f(A)A+b
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Regularization is used in many practical inverse problems, such as the deblurring
of images or tomography. The second term in the performance index (15.10.4) guards
both against ill-conditioning and against noise in the data. If the parameter λ is chosen
to be too large, it is possible that noise is removed too much at the expense of getting an
accurate inverse. In large-scale inverse problems (e.g., a 512×512 image is represented
by a vector x of dimension 5122 = 2.6×105), performing the SVD required in (15.10.1)
is not practical and the solution is obtained iteratively, for example, using conjugate-
gradients. Regularization can be incorporated into such iterative methods, for example,
see Ref. [1236].

Often, the second term in (15.10.4) is replaced by the more general term ‖Dx‖2 =
xTDTDx, where D is an appropriate matrix. For example, in an image restoration ap-
plication, D could be chosen to be a differentiation matrix so that the performance
index would attempt to preserve the sharpness of the image. The more general ridge
regression performance index and its solution are:

J = ‖b−Ax‖2 + λ‖Dx‖2 = min ⇒ x = (
ATA+ λDTD)−1ATb (15.10.5)

For example, the Whittaker-Henderson case of Sec. 8.1 corresponds to A = I and D
the s-differencing matrix. Another variation of regularization is to assume a decompo-
sition into multiple components of the form, b = A1x1 + A2x2, and impose different
regularization constraints on each part, for example, with positive λ1, λ2,

J = ‖b−A1x1 −A2x2‖2 + λ1‖D1x1‖2 + λ2‖D1x2‖2 = min (15.10.6)

whose minimization with respect to x1,x2, leads to the solution,[
x1

x2

]
=
[
AT1A1 + λ1DT1D1 AT1A2

AT2A1 AT2A+ λ2DT2D2

]−1 [AT1 b

AT2 b

]
(15.10.7)

An example of such decomposition was the seasonal Whittaker-Henderson case dis-
cussed in Sec. 9.9 in which x1 represented the seasonal component, and x2, the trend. In
addition to the Whittaker-Henderson smoothing methods and their L2, L1, and seasonal
versions, we previously discussed regularization in the context of Kernel machines in
Sec. 8.6, and also in Sec. 12.14 with regard to inverse filtering and deconvolution. Next,
we consider sparse regularization.

15.11 Sparse Regularization

Replacing the �2-norm in the regularization term of Eq. (15.10.5) by the �p norm leads
to the alternative minimization criterion, referred to as �p-regularized least-squares,

J = ‖b−Ax‖2
2 + λ‖Dx‖pp = min (15.11.1)

where the first term in (15.11.1) is still the �2 norm of the modeling error, b−Ax, and
‖x‖p denotes the �p norm of the vector x = [x1, x2, · · · , xM]T,

‖x‖p =
⎡
⎣ M∑
n=1

|xn|p
⎤
⎦

1
p

⇒ ∥∥x
∥∥p
p =

M∑
n=1

|xn|p
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Such criteria have been studied very extensively in inverse problems, with renewed
interest in the past 15 years in sparse modeling, statistical learning, and compressive
sensing applications. Even though ‖x‖p is a proper norm only for p ≥ 1, the cases
0 ≤ p ≤ 1 have also been considered widely because they promote the sparsity of
the resulting solution vector x, or rather, the sparsity of the vector Dx in (15.11.1). In
particular, the case p = 1 is unique for the following reasons: (a) it corresponds to
the smallest possible proper norm, (b) it typically results in a sparse solution, which
under many circumstances is close to, or coincides with, the sparsest solution, and (c)
the minimization problem (15.11.1) is a convex optimization problem for which there
are efficient numerical methods.

We concentrate below on the three cases p = 0,1,2, and also set D = I for now, and
consider the following three optimization criteria for solving the linear system Ax = b,
with A ∈ RN×M, b ∈ RN, and, x ∈ RM,

(L0): J = ‖b−Ax‖2
2 + λ‖x‖0 = min

(L1): J = ‖b−Ax‖2
2 + λ‖x‖1 = min

(L2): J = ‖b−Ax‖2
2 + λ‖x‖2

2 = min

(15.11.2)

where the �0 norm, ‖x‖0, is the cardinality of the vector x, that is, the number of its
non-zero entries. The criteria try to minimize the corresponding norm of x while being
consistent with the given linear system. Criterion (L0) results in the sparsest solution
but is essentially intractable. Criterion (L1) is used as an alternative to (L0) and results
also in a sparse solution. It is known as the lasso† [531], or as basis pursuit denoising
[534], or as �1-regularized least squares.

There is a vast literature on the properties, applications, and numerical methods of
the above criteria. A small and incomplete set of references is [479–589]. A comprehen-
sive review is [557]. Several MATLAB-based packages are also available [590].

Below we discuss two examples that illustrate the sparsity of the resulting solutions:
(i) an overdetermined sparse spike deconvolution problem, and (ii) an underdetermined
sparse signal recovery example. In these examples, the (L0) problem is solved with an
iteratively re-weighted least-squares (IRLS) method, and the (L1) problem, with the CVX
package‡ as well as with the IRLS method for comparison.

We introduced the IRLS method in the context of sparse Whittaker-Henderson smooth-
ing, or, �1-trend filtering, in Sec. 8.7. There are several variants of this method, [520–
528,532,553,557,560,565,566], but the basic idea is to replace the �p norm with a weighted
�2 norm, which can be solved iteratively. We recall from Sec. 8.7 that given a real number
0 ≤ p ≤ 2, set q = 2− p, and write for any real number x �= 0,

|x|p = |x|2
|x|q ≈

|x|2
|x|q + ε

†Least Absolute Shrinkage and Selection Operator
‡http://cvxr.com/cvx/
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where ε is a sufficiently small positive number needed to also allow the case x = 0.
Similarly, we can write for the �p-norm of a vector x ∈ RM,

‖x‖pp =
M∑
i=1

|xi|p ≈
M∑
i=1

|xi|2
|xi|q + ε = xTW(x)x

W(x) = diag
[

1

|x|q + ε
]
= diag

[
1

|x1|q + ε ,
1

|x2|q + ε , . . . ,
1

|xM|q + ε
] (15.11.3)

Alternatively, one can define W(x) as the pseudo-inverse of the diagonal matrix of
the powers |xi|q, i = 1,2, . . . ,M, that is, in MATLAB language,†

W(x)= pinv
(

diag
[|x1|q , |x2|q , . . . , |xM|q

])
(15.11.4)

Then, the �p-regularized least-squares problem can be written in the form,

J = ‖b−Ax‖2
2 + λ‖x‖pp = ‖b−Ax‖2

2 + λxTW(x)x = min (15.11.5)

This approximation leads to the following iterative solution in which the diagonal
weighting matrixW to be used in the the next iteration is replaced by its value from the
previous iteration,

for k = 1,2, . . . , K, do:

Wk−1 =W
(
x(k−1))

x(k) = arg min
x

∥∥b−Ax
∥∥2

2 + λxTWk−1x

(IRLS) (15.11.6)

with the algorithm initialized to the ordinary least-squares solution of criterion (L2):

x(0) = (
λI +ATA)−1ATb

The solution of the optimization problem in (15.11.6) at the kth step is:

x(k) = (
λWk−1 +ATA

)−1ATb

Thus, the choices p = 0 and p = 1 should resemble the solutions of the �0 and �1

regularized problems. The IRLS algorithm (15.11.6) works well for moderate-sized prob-
lems (N,M < 1000). For large-scale problems (N,M > 106), the successive least-squares
problems could be solved with more efficient methods, such as conjugate gradients.

The general case of (15.11.1) that includes the smoothness-constraining matrix D
can also be handled in the same way. Following the discussion of Sec. 8.7, we can write,

J = ∥∥b−Ax
∥∥2

2 + λ
∥∥Dx

∥∥p
p =

∥∥b−Ax
∥∥2

2 + λxTDTW(Dx)Dx = min (15.11.7)

which leads to to the following iterative algorithm,

for k = 1,2, . . . , K, do:

Wk−1 =W
(
Dx(k−1))

x(k) = arg min
x

∥∥b−Ax
∥∥2

2 + λxTDTWk−1Dx

(IRLS) (15.11.8)

†e.g., pinv(diag([2, 0, 4])) produces the diagonal matrix, diag([0.50, 0, 0.25]).
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with the algorithm initialized to the ordinary least-squares solution:

x(0) = (
ATA+ λDTD)−1ATb

The solution of the optimization problem at the kth step is:

x(k) = (
ATA+ λDTWk−1D

)−1ATb

Sparse Spike Deconvolution Example

Consider a deconvolution problem in which the observed signal yn is the noisy convolu-
tion, yn = hn∗sn+vn, where vn is zero-mean white noise of variance σ2

v . The objective
is to recover the signal sn assuming knowledge of the filter hn. For an FIR filter of order
M and input of length L, the output will have length N = L +M, and we may cast the
above convolutional filtering equation in the matrix form:

y = Hs+ v

where y,v ∈ RN, s ∈ RL, and H is the N×L convolution matrix corresponding to the
filter. It can be constructed as a sparse matrix by the function:

H = convmat(h,L); % H = convmtx(h,N) = non-sparse version

The filter is taken to be:

hn = cos
(
0.15(n− n0)

)
exp

(−0.004(n− n0)2) , n = 0,1, . . . ,M

where M = 53 and n0 = 25. The input is a sparse spike train consisting of S spikes:

sn =
S∑
i=1

aiδ(n− ni) , n = 0,1, . . . , L− 1 (15.11.9)

where S = 8 and the spike locations and amplitudes are given as follows:

ni = [20, 40, 60, 70, 80, 100, 120, 140] , ai = [10, 8, 4, −4, 5, 6, −2, 4]

The input signal length is defined from the last spike location to be L = n8 + 1 =
141. The noise standard deviation is chosen to be σv = 0.1, which corresponds to
approximately 38 dB signal-to-noise ratio, that is, SNR = 20 log10

(
max |Hs|/σv

) = 38.
The input signal sn and the convolved noisy signal yn are shown below. Also shown

are the impulse responsehn and the corresponding magnitude response |H(ω)| plotted
in dB versus 0 ≤ω ≤ π rads/sample.

15.11. Sparse Regularization 797

0 20 40 60 80 100 120 140 160 180 200

−4

−2

0

2

4

6

8

10

exact input,  s(n)

n
0 20 40 60 80 100 120 140 160 180 200

−4

−2

0

2

4

6

8

10

noisy observations,  y(n)

n

SNR = 38 dB

0 20 40 60 80 100 120 140 160 180 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
impulse response,  h(n)

n
0 0.2 0.4 0.6 0.8 1

−40

−30

−20

−10

0

10

20

30

40
magnitude response in dB,  |H(ω)|

dB

ω / π

We note that H(ω) occupies a low frequency band, thus, we expect the effective
deconvolution inverse filtering operation by 1/H(ω) to be very sensitive to even small
amounts of noise in yn, even though the noise is barely visible in yn itself. The three
criteria of Eq. (15.11.2) to be implemented are,

J = ‖y−Hx‖2
2 + λ‖x‖0 = min

J = ‖y−Hx‖2
2 + λ‖x‖1 = min

J = ‖y−Hx‖2
2 + λ‖x‖2

2 = min

(15.11.10)

The �2 case with λ = 0 corresponds to the ordinary (full-rank overdetermined) least-
squares solution of the linear system, Hx = y, that is, xord = (HTH)−1HTy, or, xord =
H\y, in MATLAB.

Similarly, the �2-regularized solution with non-zero λ is, x2 = (λI +HTH)−1HTy.
These two solutions are depicted below, displaying also the percent error of recovering
the desired signal s, defined in terms of the �2 norms by, Perror = 100·‖x− s‖2/‖s‖2.
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The MATLAB code for generating the above six graphs was as follows:

g = @(x) cos(0.15*x).*exp(-0.004*x.^2); % filter function
delta = @(x) (x==0);

M = 53; n0 = 25; k = (0:M)’; h = g(k-n0); % filter h(n)

ni = [20 40 60 70 80 100 120 140]; % spike locations & amplitudes
ai = [10 8 4 -4 5 6 -2 4 ];

L = ni(end)+1; N = M+L; % L = 141, N = 194
n = (0:L-1)’; t = (0:N-1)’; % time indices for s(n) and y(n)

s = 0;
for i=1:length(ni), % exact input s(n)
s = s + ai(i) * delta(n-ni(i));

end

H = convmat(h,L); % NxL=194x141 convolution matrix

sigma = 0.1;
seed = 2017; randn(’state’,seed); % initialize generator

y = H*s + sigma * randn(N,1); % noisy observations y(n)

w = linspace(0,1,1001)*pi; % frequencies in rads/sample
Hmag = 20*log10(abs(dtft(h,w))); % can also use freqz(h,1,w)

xord = H\y; % ordinary least-squares
Perr = 100 * norm(s-xord)/norm(s);

la = 0.01;
x2 = (la * eye(L) + H’*H) \ (H’*y); % L2-regularized
Perr = 100 * norm(s-x2)/norm(s);

figure; plot(n,s); figure; plot(t,y); % plot s(n) and y(n)
figure; plot(k,h); figure; plot(w/pi,Hmag); % plot h(n) and H(w)
figure; plot(n,xord); figure; plot(n,x2); % plot xord(n) and x2(n)

As expected from the lowpass nature of H(ω), the ordinary least-squares solution
is too noisy to be useful, while the regularized one is only slightly better. The effect
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of increasing λ is to smooth the noise further, but at the expense of flattening and
broadening the true spikes (for example, try the value, λ = 0.1).

To understand this behavior from the frequency point of view, let us pretend that
the signals yn, xn are infinitely long. Following the approach of Sec. 8.2, we may replace
the (L2) criterion in Eq. (15.11.10) by the following,

J =
∞∑

n=−∞

∣∣yn − hn ∗ xn∣∣2 + λ
∞∑

n=−∞

∣∣xn∣∣2 =

=
∫ π
−π

∣∣Y(ω)−H(ω)X(ω)∣∣2 dω
2π

+ λ
∫ π
−π

∣∣X(ω)∣∣2 dω
2π

= min

(15.11.11)

where we used Parseval’s identity. The vanishing of the functional derivative of J with
respect to X∗(ω), then leads to the following regularized inverse filtering solution,

δJ
δX∗(ω)

= ∣∣H(ω)∣∣2X(ω)−H∗(ω)Y(ω)+λX(ω)= 0 , or, (15.11.12)

X(ω)= H∗(ω)
λ+ ∣∣H(ω)∣∣2 Y(ω) (regularized inverse filter) (15.11.13)

If we express Y(ω) in terms of the spectrum S(ω) of the desired signal and the
spectrum V(ω) of the added noise, then, Eq. (15.11.13) leads to,

Y(ω)= H(ω)S(ω)+V(ω) ⇒ X(ω)=
∣∣H(ω)∣∣2

λ+ ∣∣H(ω)∣∣2 S(ω)+
H∗(ω)

λ+ ∣∣H(ω)∣∣2 V(ω)

For λ = 0, this becomes the ordinary inverse filter,

X(ω)= 1

H(ω)
Y(ω)= S(ω)+ 1

H(ω)
V(ω)

which, although it recovers the S(ω) term, it greatly amplifies the portions of the white-
noise spectrum that lie in the stopband of the filter, that is where, H(ω)≈ 0. For
λ �= 0 on the other hand, the regularization filter acts as a lowpass filter, becoming
vanishingly small over the stopband, and hence removing some of the noise, but also
smoothing and broadening the spikes for the same reason, that is, removing some of
the high-frequencies in S(ω).

By contrast, the �0 and �1 regularized criteria of Eq. (15.11.10) behave dramatically
differently and are capable of accurately extracting the input spikes, as seen in the
graphs of Fig. 15.11.1.

The �1 case was computed with the CVX package, as well as with the IRLS algorithm
of Eq. (15.11.6), with the parameter values, λ = 0.1, p = 1, q = 1, ε = 10−5, and K = 100
iterations.

The �0 case was computed with the IRLS algorithm using parameters, λ = 0.1, p = 0,
q = 2, ε = 10−5, and K = 100 iterations—however, it actually converges within about
10 iterations as seen in the bottom-right graph that plots the iteration percentage error
defined at the kth iteration by, P(k)= 100·‖x(k) − x(k−1)‖2/‖x(k−1)‖2.
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Fig. 15.11.1 Deconvolved signals based on the �1 and �0 criteria.

The recovered signal in the �0 case is slightly sparser than that of the �1 case, as is
seen in the figures, or by evaluating the reconstruction error, Perror = 100·‖x−s‖2/‖s‖2,
but both versions fairly accurately extract the spike amplitudes and locations. The
MATLAB code used to produce these four graphs was as follows.

la = 0.1;

cvx_begin % L1 case - CVX solution
variable x(L)
minimize( sum_square(H*x-y) + la * norm(x,1) )

cvx_end

Perr = 100*norm(x-s)/norm(s); % reconstruction error

figure; plot(n,x,’r-’); % plot L1 - CVX version

% -------------------------------------------------------------------

p=1; q=2-p; epsilon=1e-5; K=100; % L1 case - IRLS solution
W = speye(L);
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x0 = (la * W + H’*H) \ (H’*y);

for k=1:K,
W = diag(1./(abs(x0).^q + epsilon));
x = (la * W + H’*H) \ (H’*y);
P(k) = norm(x-x0)*100/norm(x0);
x0 = x;

end

Perr = 100*norm(x-s)/norm(s); % reconstruction error

figure; plot(n,x,’r-’); % plot L1 - IRLS version

% -------------------------------------------------------------------

p=0; q=2-p; epsilon=1e-5; K=100; % L0 case - IRLS solution
W = speye(L);

x0 = (la * W + H’*H) \ (H’*y); % initialize iteration

for k=1:K, % IRLS iteration
W = diag(1./(abs(x0).^q + epsilon));
x = (la * W + H’*H) \ (H’*y);
P(k) = 100*norm(x-x0)/norm(x0); % iteration error
x0 = x;

end

Perr = 100*norm(x-s)/norm(s); % reconstruction error

figure; plot(n,x,’r-’); % plot L0 - IRLS version
k = 1:K;
figure; plot(k,P,’r-’, k,P,’b.’); % plot iteration error P(k)

Sparse Signal Recovery Example

In this example, based on [544], we consider the underdetermined noisy linear system:

y = As+ v

where A ∈ R1000×2000, s ∈ R2000, and y,v ∈ R1000. The matrix A has full rank and
consists of zero-mean, unit-variance, gaussian, independent random entries, and the
2000-long input signal s is sparse with only L = 100 non-zero entries taken to be ran-
domly positioned within its length, and constructed to have amplitudes±1 with random
signs and then weighted by a triangular window in order to get a variety of values.

The noise v is zero-mean gaussian white noise with standard deviation σv = 0.1.
The recovery criteria are as in Eq. (15.11.2),

J = ‖y−Ax‖2
2 + λ‖x‖0 = min

J = ‖y−Ax‖2
2 + λ‖x‖1 = min

J = ‖y−Ax‖2
2 + λ‖x‖2

2 = min

(15.11.14)

Fig. 15.11.2 shows the signal s(n) and the observations y(n), as well as the recovered
signals x(n) based on the above criteria. The �1 solution was computed with the CVX
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package and the IRLS algorithm, and the �0 solution, with the IRLS algorithm. The
parameter λ was chosen to be λ = 0.1 in the �1 and �0 cases, and λ = 0 for the �2 case,
which corresponds to the usual minimum-norm solution of the underdetermined linear
system Ax = y, that is, x = A+y = AT(AAT)−1y, in terms of the pseudo-inverse of A.
Note that using λ = 0.1 in the �2 case is virtually indistinguishable from the λ = 0 case.

The �2 criterion does not produce an acceptable solution. But both the �1 and the �0

criteria accurately recover the sparse signal s(n), with the �0 solution being somewhat
sparser and resulting in smaller recovery error, Perror = 100·‖x− s‖2/‖s‖2.

The IRLS algorithms were run with parameters λ = 0.1, ε = 10−6, and K = 20 itera-
tions. The successive iteration percentage errors, P(k)= 100·‖x(k)−x(k−1)‖2/‖x(k−1)‖2,
are plotted versus k in Fig. 15.11.3 for the �1 and �0 cases. The MATLAB code used to
produce the solutions and graphs is given below.

N = 1000; M = 2000; L = 100; % L-sparse

seed = 1000; % initialize generators
randn(’state’,seed);
rand(’state’,seed);

A = randn(N,M); % random NxM matrix
s = zeros(M,1);

I = randperm(M); I = I(1:L); % L random indices in 1:M
s(I) = sign(randn(L,1)); % L random signs at locations I

t = (0:N-1)’; n = (0:M-1)’;
w = 1 - abs(2*n-M+1)/(M-1); % triangular window
s = s .* w; % L-sparse windowed input

sigma = 0.1;
v = sigma * randn(N,1);
y = A*s + v; % noisy observations

SNR = 20*log10(norm(A*s,Inf)/sigma); % SNR = 45 dB

figure; stem(n,s); figure; stem(t,y); % plot s(n) and y(n)

% -----------------------------------

rank(A); % verify full rank = 1000

x = pinv(A)*y; % L2 - minimum-norm solution

Perr = 100 * norm(x-s)/norm(s); % reconstruction error = 71.21 %

figure; stem(n,x,’r-’);

% -----------------------------------

la = 0.1;

cvx_begin % L1 - CVX solution
variable x(M)
minimize( sum_square(A*x-y) + la * norm(x,1) )

cvx_end
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Fig. 15.11.2 Recovered signals based on the �2, �1, and �0 criteria.

Perr = 100 * norm(x-s)/norm(s); % reconstruction error = 2.54 %

figure; stem(n,x,’r-’);
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Fig. 15.11.3 IRLS iteration error based on the �1, and �0 criteria.

% -----------------------------------

p = 1; q = 2-p; epsilon = 1e-6; K = 20;
W = speye(M);

ATA = A’*A;
ATy = A’*y;

x0 = (la*W + ATA) \ ATy;

for k=1:K, % L1 - IRLS solution
W = diag(1./(abs(x0).^q + epsilon));
x = (la*W + ATA) \ ATy;
P(k) = norm(x-x0)*100/norm(x0);
x0 = x;

end

Perr = 100 * norm(x-s)/norm(s); % reconstruction error = 2.54 %

figure; stem(n,x,’r-’);

k = 1:K;
figure; plot(k,P,’r-’, k,P,’b.’); % iteration error

% -----------------------------------

p = 0; q = 2-p; epsilon = 1e-6; K = 20;
W = speye(M);

x0 = (la*W + ATA) \ ATy;

for k=1:K, % L0 - IRLS solution
W = diag(1./(abs(x0).^q + epsilon));
x = (la*W + ATA) \ ATy;
P(k) = norm(x-x0)*100/norm(x0);
x0 = x;
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end

Perr = 100 * norm(x-s)/norm(s); % reconstruction error = 0.63 %

figure; stem(n,x,’r-’);

k = 1:K;
figure; plot(k,P,’r-’, k,P,’b.’); % iteration error

15.12 SVD and Signal Processing

In many signal processing applications, such as Wiener filtering and linear prediction,
the SVD appears naturally in the context of solving the normal equations.

The optimum order-M Wiener filter for estimating a signal x(n) on the basis of the
signals {y0(n), y1(n), . . . , yM(n)} satisfies the normal equations:

Rh = r , where R = E[y∗(n)yT(n)], r = E[x(n)y∗(n)] (15.12.1)

where we assumed stationarity and complex-valued signals. The optimum estimate of
x(n) is given by the linear combination:

x̂(n)= hTy(n)= [h0, h1, . . . , hM]

⎡
⎢⎢⎢⎢⎢⎣
y0(n)
y1(n)

...
yM(n)

⎤
⎥⎥⎥⎥⎥⎦ =

M∑
m=0

hmym(n) (15.12.2)

The observation signals ym(n) are typically (but not necessarily) either the outputs
of a tapped delay line whose input is a single time signal yn, so that ym(n)= yn−m, or,
alternatively, they are the outputs of an antenna (or other spatial sensor) array. The two
cases are shown in Fig. 15.12.1.

Fig. 15.12.1 Time-series processing versus spatial processing

The vector y(n) is defined as:
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y(n)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

yn
yn−1

yn−2

...
yn−M

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, or, y(n)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y0(n)
y1(n)
y2(n)

...
yM(n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(15.12.3)

In the array case, y(n) is called a snapshot vector because it represents the mea-
surement of the wave field across the array at the nth time instant. The autocor-
relation matrix R measures spatial correlations among the antenna elements, that is,
Rij = E[y∗i (n)yj(n)], i, j,= 0,1, . . . ,M.

In the time-series case, R measures temporal correlations between successive sam-
ples of yn, that is, Rij = E[y∗n−i yn−j]= E[yn+i−j y∗n ]= R(i − j), where we used the
stationarity assumption to shift the time indices and defined the autocorrelation func-
tion of yn by:

R(k)= E[yn+k y∗n ] (15.12.4)

The normal equations are derived from the requirement that the optimum weights
h = [h0, h1, . . . , hM]T minimize the mean-square estimation error:

E = E[|e(n)|2]= E[|x(n)−x̂(n)|2]= E[|x(n)−hTy(n)|2]= min (15.12.5)

The minimization condition is equivalent to the orthogonality equations, which are
equivalent to the normal equations:

E[e(n)y∗(n)]= 0 � E[y∗(n)yT(n)]h = E[x(n)y∗(n)] (15.12.6)

Setting R = E[y∗(n)yT(n)] and r = E[x(n)y∗(n)], we find for the optimum
weights and the optimum estimate of x(n):

h = E[y∗(n)yT(n)]−1E[x(n)y∗(n)]= R−1r

x̂(n)= hTy(n)= E[x(n)y†(n)]E[y(n)y†(n)]−1y(n)
(15.12.7)

In practice, we may replace the above statistical expectation values by time-averages
based on a finite, but stationary, set of time samples of the signals x(n) and y(n),
n = 0,1, . . . ,N − 1, where typically N > M. Thus, we make the replacements:

R = E[y∗(n)yT(n)] ⇒ R̂ = 1

N

N−1∑
n=0

y∗(n)yT(n)

r = E[y∗(n)x(n)] ⇒ r̂ = 1

N

N−1∑
n=0

y∗(n)x(n)

E[y∗(n)e(n)]= 0 ⇒ 1

N

N−1∑
n=0

y∗(n)e(n)= 0

(15.12.8)

To simplify the expressions, we will drop the common factor 1/N in the above time-
averages. Next, we define theN×(M+1) data matrix Y whose rows are theN snapshots
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yT(n),

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yT(0)
yT(1)

...
yT(n)

...
yT(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0(0) y1(0) · · · yM(0)
y0(1) y1(1) · · · yM(1)

...
...

...
y0(n) y1(n) · · · yM(n)

...
...

...
y0(N − 1) y1(N − 1) · · · yM(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15.12.9)

The ni-th matrix element of the data matrix isYni = yi(n), 0 ≤ n ≤ N−1, 0 ≤ i ≤M.
In particular, in the time series case, we have Yni = yn−i. We defined Y in terms of its
rows. It can also be defined column-wise, where the ith column is an N-dimensional
time signal yi = [yi(0), . . . , yi(n), . . . , yi(N − 1)]T. Therefore,

Y = [y0,y1, . . . ,yM]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

yT(0)
...

yT(n)
...

yT(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15.12.10)

The N×1 column vectors of the x(n), e(n), and the estimates x̂(n) are:

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(0)
x(1)

...
x(n)

...
x(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e(0)
e(1)

...
e(n)

...
e(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂(0)
x̂(1)

...
x̂(n)

...
x̂(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15.12.11)

Noting that Y† = Y∗T = [y∗(0),y∗(1), . . . ,y∗(N − 1)], we can write Eqs. (15.12.8)
in the following compact forms (without the 1/N factor):

R̂ = Y†Y , r̂ = Y†x , Y†e = 0 (15.12.12)

Indeed, we have:

R̂ =
N−1∑
n=0

y∗(n)yT(n)= [y∗(0),y∗(1), . . . ,y∗(N − 1)]

⎡
⎢⎢⎢⎢⎢⎣

yT(0)
yT(1)

...
yT(N − 1)

⎤
⎥⎥⎥⎥⎥⎦ = Y

†Y

r̂ =
N−1∑
n=0

y∗(n)x(n)= [y∗(0),y∗(1), . . . ,y∗(N − 1)]

⎡
⎢⎢⎢⎢⎢⎣

x(0)
x(1)

...
x(N − 1)

⎤
⎥⎥⎥⎥⎥⎦ = Y

†x
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Similarly, replacing x̂(n)= yT(n)h in (15.12.11), we obtain:

x̂ = Yh , e = x− x̂ = x−Yh (15.12.13)

The performance index is replaced by the least-squares index:

E = E[|e(n)|2]= min ⇒ Ê =
N−1∑
n=0

|e(n)|2 = e†e = ‖x−Yh‖2 = min (15.12.14)

The minimization of the least-squares index with respect to h gives rise to the or-
thogonality and normal equations, as in Eq. (15.4.2):

Y†e = 0 , Y†Yh = Y†x ⇒ R̂h = r̂ (15.12.15)

Thus, we recognize that replacing the theoretical normal equations Rh = r by their
time-averaged versions R̂h = r̂ is equivalent to solving—in the least-squares sense—the
overdetermined N×(M + 1) linear system:

Yh = x (15.12.16)

The SVD of the data matrix, Y = UΣV†, can used to characterize the nature of the
solutions of these equations. The min-norm and backslash solutions are in MATLAB’s
notation:

h = pinv(Y)∗x , h = Y\x (15.12.17)

Since N > M+ 1, these will be the same if Y has full rank, that is, r =M+ 1. In this
case, the solution is unique and is given by:

h = (Y†Y)−1Y†x = R̂−1r̂ (full rank Y) (15.12.18)

In the time-series case, some further clarification of the definition of the data matrix
Y is necessary. Since ym(n)= yn−m, the estimate x̂(n) is obtained by convolving the
order-M filter h with the sequence yn:

x̂(n)=
M∑
m=0

hmym(n)=
M∑
m=0

hmyn−m

For a length-N input signal yn, n = 0,1, . . . ,N−1, the output sequence x̂(n)will have
lengthN+M, with the firstM output samples corresponding to the input-on transients,
the lastM outputs being the input-off transients, and the middleN−M samples, x̂(n),
n =M, . . . ,N − 1, being the steady-state outputs.

There are several possible choices in defining the range of summation over n in the
least-squares index:

Ê =
∑
n
|e(n)|2,

One can consider: (a) the full range, 0 ≤ n ≤ N − 1 +M, leading to the so-called
autocorrelation method, (b) the steady-state range, M ≤ n ≤ N − 1, leading to the
covariance method, (c) the pre-windowed range, 0 ≤ n ≤ N−1, or (d) the post-windowed
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range, M ≤ n ≤ N − 1 +M. The autocorrelation and covariance choices are the most
widely used:

Êaut =
N−1+M∑
n=0

|e(n)|2 , Êcov =
N−1∑
n=M

|e(n)|2 (15.12.19)

The minimization of these indices leads to the least-squares equationsYh = x, where
Y is defined as follows. First, we define the input-on and input-off parts of Y in terms
of the first M and last M data vectors:

Yon =

⎡
⎢⎢⎣

yT(0)
...

yT(M − 1)

⎤
⎥⎥⎦ , Yoff =

⎡
⎢⎢⎣

yT(N)
...

yT(N − 1+M)

⎤
⎥⎥⎦

Then, we define Y for the autocorrelation and covariance cases:

Yaut =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yT(0)
...

yT(M − 1)
yT(M)

...
yT(N − 1)

yT(N)
...

yT(N − 1+M)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣
Yon

Ycov

Yoff

⎤
⎥⎥⎦ , Ycov =

⎡
⎢⎢⎣

yT(M)
...

yT(N − 1)

⎤
⎥⎥⎦ (15.12.20)

To clarify these expressions, consider an example where N = 6 and M = 2. The
observation sequence is yn, n = 0,1, . . . ,5. Noting that yn is causal and that it is zero
for n ≥ 6, we have:

Yaut =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0 0 0
y1 y0 0

y2 y1 y0

y3 y2 y1

y4 y3 y2

y5 y4 y3

0 y5 y4

0 0 y5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ycov =

⎡
⎢⎢⎢⎣
y2 y1 y0

y3 y2 y1

y4 y3 y2

y5 y4 y3

⎤
⎥⎥⎥⎦

These follow from the definition yT(n)= [yn, yn−1, yn−2], which gives, yT(0)= [y0, y−1, y−2]=
[y0,0,0], and so on until the last time sample at n = N − 1+M = 6− 1+ 2 = 7, that
is, yT(7)= [y7, y6, y5]= [0,0, y5]. The middle portion of Yaut is the covariance version
Ycov.

The autocorrelation version Yaut is recognized as the ordinary Toeplitz convolution
matrix for a length-6 input signal and an order-2 filter. It can be constructed easily by
invoking MATLAB’s built-in function convmtx:
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Y = convmtx(y,M+1); % y is a column vector of time samples

The least-squares linear system Yh = x for determining the optimum weights h =
[h0, h1, h2]T reads as follows in the two cases:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0 0 0
y1 y0 0
y2 y1 y0

y3 y2 y1

y4 y3 y2

y5 y4 y3

0 y5 y4

0 0 y5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣ h0

h1

h2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

x2

x3

x4

x5

x6

x7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎣
y2 y1 y0

y3 y2 y1

y4 y3 y2

y5 y4 y3

⎤
⎥⎥⎥⎦
⎡
⎢⎣ h0

h1

h2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣
x2

x3

x4

x5

⎤
⎥⎥⎥⎦

where we assumed that the signal x(n) was available for 0 ≤ n ≤ N − 1+M = 7.
There is yet a third type of a data matrix that is used in linear prediction applica-

tions. It corresponds to the modified covariance method, also known as the forward-
backward method. The data matrix is obtained by appending its row-reversed and
complex-conjugated version. For our example, this gives:

Yfb =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y2 y1 y0

y3 y2 y1

y4 y3 y2

y5 y4 y3

y∗0 y∗1 y∗2
y∗1 y∗2 y∗3
y∗2 y∗3 y∗4
y∗3 y∗4 y∗5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[
Ycov

Y∗covJ

]
(15.12.21)

where J is the usual reversing matrix consisting of ones along its antidiagonal. While
Yaut and Ycov are Toeplitz matrices, only the upper half of Yfb is Toeplitz whereas its
lower half is a Hankel matrix, that is, it has the same entries along each antidiagonal.

Given one of the three types of a data matrix Y, one can extract the signal yn that
generated that Y. The MATLAB function datamat (in the OSP toolbox) constructs a data
matrix from the signal yn, whereas the function datasig extracts the signal yn from Y.
The functions have usage:

Y = datamat(y,M,type); % type =0,1,2, for autocorrelation,

y = datasig(Y,type); % covariance, or F/B methods

15.13 Least-Squares Linear Prediction

Next, we discuss briefly how linear prediction problems can be solved in a least-squares
sense. For an order-M predictor, we define the forward and backward prediction errors
in terms of the forward and an reversed-conjugated filters:
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e+(n)= [yn, yn−1, . . . , yn−M]

⎡
⎢⎢⎢⎢⎢⎣

1
a1

...
aM

⎤
⎥⎥⎥⎥⎥⎦ = yT(n)a (15.13.1)

e−(n)= [yn, yn−1, . . . , yn−M]

⎡
⎢⎢⎢⎢⎢⎣
a∗M

...
a∗1
1

⎤
⎥⎥⎥⎥⎥⎦ = yT(n)aR∗ (15.13.2)

The prediction coefficients a are found by minimizing one of the three least-square
performance indices, corresponding to the autocorrelation, covariance, and forward/backward
methods:

Êaut =
N−1+M∑
n=0

|e+(n)|2 = min

Êcov =
N−1∑
n=M

|e+(n)|2 = min

Êfb =
N−1∑
n=M

[|e+(n)|2 + |e−(n)|2] = min

(15.13.3)

Stacking the samples e±(n) into a column vector, we may express the error vectors
in terms of the corresponding autocorrelation or covariance data matrices:

e+ = Ya

e− = YaR∗
where e+ =

⎡
⎢⎢⎢⎣

...
e+(n)

...

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

...
yT(n)

...

⎤
⎥⎥⎥⎦ a = Ya (15.13.4)

and similarly for e−. Noting that aR = Ja, we have for the covariance case:

e− = YcovJa∗ ⇒ e∗− = (Y∗covJ)a

Then, we may define the extended error vector consisting of both the forward and
backward errors:

e =
[

e+
e∗−

]
=
[
Ycov

Y∗covJ

]
a = Yfb a (15.13.5)

Noting that e†e = e†+e+ +e†−e−, we may express the indices (15.13.3) in the compact
forms:

Êaut = e†+e+ = ‖e+‖2 = ‖Yaut a‖2

Êcov = e†+e+ = ‖e+‖2 = ‖Ycov a‖2

Êfb = e†+e+ + e†−e− = ‖e+‖2 + ‖e−‖2 = ‖e‖2 = ‖Yfb a‖2

(15.13.6)
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Thus, in all three cases, the problem reduces to the least-squares solution of the
linear equation Ya = 0, that is,

Ya = 0 � Ê = ‖e‖2 = ‖Ya‖2 = min (15.13.7)

subject to the constraint a0 = 1. The solution is obtained by separating the first column
of the matrix Y in order to take the constraint into account. Setting Y = [y0, Y1] and
aT = [1,αααT], we find the equivalent linear system:

Ya = [y0, Y1]
[

1
ααα

]
= y0 +Y1ααα = 0 ⇒ Y1ααα = −y0 (15.13.8)

The minimum-norm least-squares solution is obtained by the pseudoinverse:

ααα = −pinv(Y1)∗y0 = −Y+1 y0 ⇒ a =
[

1
ααα

]
=
[

1
−Y+1 y0

]
(15.13.9)

The OSP function lpls implements this procedure. It has usage:

[a,E] = lpls(Y); % least-squares linear prediction filter

where E is the minimized prediction error E = ‖e‖2/L, where L is the column dimension
ofY. Combined with the function datamat, one can obtain the prediction filter according
to the three criteria:

[a,E] = lpls(datamat(y,M,0)) % autocorrelation or Yule-Walker method

[a,E] = lpls(datamat(y,M,1)) % covariance method

[a,E] = lpls(datamat(y,M,2)) % modified covariance or f/b method

The autocorrelation method can be computed by the alternative call to the Yule-
Walker function yw :

a = lpf(yw(y,M)); % autocorrelation or Yule-Walker method

Further improvements of these methods result, especially in the case of extracting
sinusoids in noise, when the least-squares solution (15.13.9) is used in conjunction with
the SVD enhancement iteration procedure discussed in Sec. 15.17.

15.14 MA and ARMA modeling

There are many methods for fitting MA and ARMA models to a given data sequence yn,
n = 0,1, . . . ,N − 1. Some methods are nonlinear and involve an iterative minimization
of a maximum likelihood criterion. Other methods are adaptive, continuously updating
the model parameters on a sample by sample basis.

Here, we briefly discuss a class of methods, originally suggested by Durbin [1299,1300],
which begin by fitting a long AR model to the data, and then deriving the MA or ARMA
model parameters from that AR model by using only least-squares solutions of linear
equations.
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MA Models

A moving-average model of order q, denoted by MA(q), is described by the I/O equation
driven by a zero-mean white-noise signal εn of variance σ2

ε :

yn = b0εn + b1εn−1 + b2εn−2 + · · · + bqεn−q (15.14.1)

Thus, the synthesis model filter and the power spectrum of yn are:

B(z)= b0 + b1z−1 + b2z−2 + · · · + bqz−q , Syy(ω)= σ2
ε
∣∣B(ω)∣∣2

(15.14.2)

Without loss of generality, we may assume that b0 = 1. We will also assume that
B(z) is a minimum-phase polynomial so that the analysis filter A(z)= 1/B(z) is stable
and causal.

Durbin’s method consists of approximating the analysis filter A(z) by a polyno-
mial AM(z) of some large order M, such that M � q. The polynomial coefficients
a = [1, a1, . . . , aM]T are found by applying any least-squares LP method to the given
sequence y = [y0, y1, . . . , yN−1]T, including Burg’s method.

Finally, the desired MA filter b = [1, b1, . . . , bq]T is obtained by designing an order-
q least-squares inverse to a = [1, a1, . . . , aM]T using, for example, the techniques of
section 12.14. Specifically, we wish to solve the approximate equation AM(z)B(z)�
1. This condition may be expressed in matrix form using the (M + q + 1)×(q + 1)
convolution matrix of the filter a acting on the input b:

Ab = u , where A = datamat(a, q) (15.14.3)

and u = [1,0, . . . ,0]T is the (M+q+1)-dimensional representation of δn. For example,
if q = 2 and M = 4, we have:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
a1 1 0
a2 a1 1
a3 a2 a1

a4 a3 a2

0 a4 a3

0 0 a4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣ 1
b1

b2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 1 0
a2 a1 1
a3 a2 a1

a4 a3 a2

0 a4 a3

0 0 a4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣ 1
b1

b2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15.14.4)

where in the second equation, we deleted the first row of A, which corresponds to the
identity 1 = 1. Thus, denoting the bottom part of A by Abot, we obtain the following
(M + q)×(q+ 1) linear system to be solved by least-squares:

Abotb = 0 ⇒ b = lpls(Abot) (15.14.5)

This problem is identical to that of Eq. (15.13.7) and therefore, its solution was ob-
tained with the help of the function lpls. These design steps have been incorporated
into the MATLAB function madurbin with usage:

[b,sigma2] = madurbin(y,q,M); % MA modeling by Durbin’s method
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To clarify further the above solution, we write (15.14.5) in partitioned form, separat-
ing out the first column of Abot and the bottom part of b:

Abot = [a1,A1], b =
[

1
βββ

]
⇒ Abotb = [a1,A1]

[
1
βββ

]
= a1 +A1βββ = 0

The least-squares solution is (assuming A1 has full rank):

βββ = −A1\ a1 = −(A†1A1)−1A†1a1 (15.14.6)

This has the form of a linear prediction solution βββ = −R−1r, where R = A†1A1 and
r = A†1a1. It easily verified that R, r are given by:

Rij = (A†1A1)ij= Raa(i− j) , ri = (A†1a1)i= Raa(i+ 1) (15.14.7)

for i, j = 0,1, . . . , q− 1, and Raa is the sample autocorrelation of the filter a:

Raa(k)=
M−|k|∑
m=0

a∗m+|k|am , −M ≤ k ≤M (15.14.8)

In other words, as observed by Durbin, the MA filter b may obtained by fitting an
AR(q) model to the AR filter a using the autocorrelation or Yule-Walker method. Thus,
an alternative design procedure is by the following two steps:

a = lpf(yw(y,M)); % fit an AR(M) model to y

b = lpf(yw(a,q)); % fit an AR(q) model to a

where the function lpf extracts the prediction filter from the output of the function yw.
Once the MA filter is designed, the input noise variance σ2

ε may be calculated using
Parseval’s identity:

σ2
y = σ2

ε

∫ π
−π
|B(ω)|2dω

2π
= σ2

ε

q∑
m=0

|bm|2 = σ2
ε b†b ⇒ σ2

ε =
σ2
y

b†b

where σ2
y can be estimated directly from the data sequence by:

σ̂2
y =

1

N

N−1∑
n=0

|yn|2

ARMA models

An ARMA(p, q) model is characterized by a synthesis filter of the form:

H(z)= B(z)
A(z)

= 1+ b1z−1 + · · · + bqz−q
1+ a1z−1 + . . .+ apz−p (15.14.9)

The sequence yn is generated by driving H(z) by zero-mean white-noise εn:

yn + a1yn−1 + · · · + apyn−p = εn + b1εn−1 + · · · + bqεn−q (15.14.10)
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The corresponding power spectrum of yn is:

Syy(ω)= σ2
ε |H(ω)|2 = σ2

ε

∣∣∣∣B(ω)A(ω)

∣∣∣∣2

= σ2
ε

∣∣∣∣∣1+ b1e−jω + · · · + bqe−jqω
1+ a1e−jω + · · · + ape−jpω

∣∣∣∣∣
2

If the innovations sequence εn were known, then by considering Eq. (15.14.10) at
successive time instants, say, n = 0,1, . . . ,N− 1, one could solve for the model param-
eters a = [1, a1, . . . , ap]T and b = [1, b1, . . . , bq]T. To see how this might be done, we
rewrite (15.14.10) vectorially in the form:

[yn, yn−1, . . . , yn−p]

⎡
⎢⎢⎢⎢⎢⎣

1
a1

...
ap

⎤
⎥⎥⎥⎥⎥⎦ = [εn, εn−1, . . . , εn−q]

⎡
⎢⎢⎢⎢⎢⎣

1
b1

...
bq

⎤
⎥⎥⎥⎥⎥⎦ (15.14.11)

or, compactly,

yT(n)a = eT(n)b , where y(n)=

⎡
⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−p

⎤
⎥⎥⎥⎥⎥⎦ , e(n)=

⎡
⎢⎢⎢⎢⎢⎣
εn
εn−1

...
εn−q

⎤
⎥⎥⎥⎥⎥⎦ (15.14.12)

Arranging these into a column vector for n = 0,1 . . . ,N − 1, we may express them
as a single vector equation involving the data matrices of yn and εn:

Ya = E b , where Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

yT(0)
...

yT(n)
...

yT(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

eT(0)
...

eT(n)
...

eT(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15.14.13)

The data matricesY and E have dimensionsN×(p+1) andN×(q+1), respectively,
and correspond to the “prewindowed” type. They can be constructed from the sequences
y = [y0, y1 . . . , yN−1]T and e = [ε0, ε1 . . . , εN−1]T by the OSP function datamat:

Y = datamat(y, p,’pre’)
E = datamat(e, q,’pre’)

For example, if N = 7, p = 3, and q = 2, and assuming zero initial conditions, then
Eq. (15.14.13) reads as follows:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0 0 0 0
y1 y0 0 0
y2 y1 y0 0
y3 y2 y1 y0

y4 y3 y2 y1

y5 y4 y3 y2

y6 y5 y4 y3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1
a1

a2

a3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε0 0 0
ε1 ε0 0
ε2 ε1 ε0

ε3 ε2 ε1

ε4 ε3 ε2

ε5 ε4 ε3

ε6 ε5 ε4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣ 1
b1

b2

⎤
⎥⎦ (15.14.14)
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Even though overdetermined, these equations are consistent and may be solved for
the model parameters. Unfortunately, in practice, only the observed output sequence
y = [y0, y1 . . . , yN−1]T is available.

A possible strategy to overcome this problem, originally proposed by Durbin, is to
replace the unknown exact innovation vector e = [ε0, ε1 . . . , εN−1]T by an estimated one
ê = [ε̂0, ε̂1 . . . , ε̂N−1]T and then solve (15.14.13) approximately using least-squares, that
is, if Ê is the data matrix of the approximate innovations, then solve the least-squares
problem:

Yâ = Ê b̂ � J = ‖Yâ− Ê b̂‖2 = min (15.14.15)

One way to obtain an estimated innovations sequence ê is to fit to y an autoregressive
model AM(z) of large order M, such that M� p+ q. This amounts to approximating
the synthesis filter by the all-pole model Ĥ(z)= 1/AM(z). Passing the given sequence
yn through the approximate analysis filter AM(z) would generate the estimated inno-
vations, that is, Ê(z)= AM(z)Y(z). Thus, the first step in the design is, in MATLAB
notation:

aM = lpf
(
yw(y,M)

)
ê = filter(aM,1,y)

Ê = datamat(ê, q,’pre’)

(15.14.16)

The second step is to solve (15.14.15) using least squares. To this end, we separate the
first columns of the matrices Y, Ê, and the bottom parts of â, b̂ to get:

Y = [y0, Y1], Ê = [ê0, Ê1], â =
[

1
α̂αα

]
, b̂ =

[
1

β̂ββ

]

and recast (15.14.15) in the form:

Yâ = Ê b̂ ⇒ [y0, Y1]
[

1
α̂αα

]
= [ê0, Ê1]

[
1

β̂ββ

]
⇒ y0 +Y1α̂αα = ê0 + Ê1β̂ββ

This may be rearranged into Y1α̂αα− Ê1β̂ββ = −(y0 − ê0), and solved:

[Y1,−Ê1]
[
α̂αα
β̂ββ

]
= −(y0 − ê0) ⇒

[
α̂αα
β̂ββ

]
= −[Y1,−Ê1] \(y0 − ê0) (15.14.17)

This completes step two. We note that because of the prewindowed choice of the data
matrices, the first columns y0, ê0 are the length-N signal sequences y and ê themselves,
that is, y0 = y = [y0, y1 . . . , yN−1]T and ê0 = ê = [ε̂0, ε̂1 . . . , ε̂N−1]T. Thus, we have,
y+ Y1α̂αα = ê+ Ê1β̂ββ, and rearranging, ê = y+ Y1α̂αα− Ê1β̂ββ. An alternative least-squares
criterion that is used sometimes is the following:

J = ‖ê‖2 = ‖y+Y1α̂αα− Ê1β̂ββ‖2 = min (15.14.18)

This has the solution: [
α̂αα
β̂ββ

]
= −[Y1,−Ê1]\y (15.14.19)
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We will be using (15.14.17). The second-stage solutions can be shown not to be
asymptotically efficient. In order to minimize their variance, Mayne and Firoozan [1301]
proposed a third step. It consists of replacing the sequences yn, ε̂n by the inverse-filtered
versions V(z)= Y(z)/B̂(z) and W(z)= Ê(z)/B̂(z) and repeating step two. This pro-
duces the final estimates of the ARMA parameters a and b.

The filtered sequences vn,wn and their data matrices are constructed as follows, in
MATLAB notation:

v = filter(1, b̂,y); V = datamat(v, p,’pre’);
w = filter(1, b̂, ê); W = datamat(w, q,’pre’);

(15.14.20)

The resulting least-squares problem is then:

Va =W b ⇒ [v0, V1]
[

1
ααα

]
= [w0,W1]

[
1
βββ

]
(15.14.21)

with performance index J = ‖Va−W b‖2 = min. The solution of (15.14.21) is:[
ααα
βββ

]
= −[V1,−W1] \(v0 −w0) (15.14.22)

In summary, the Mayne-Firoozan three-stage ARMA parameter estimation method
consists of Eqs. (15.14.16), (15.14.17), and (15.14.22).

To justify the need for the inverse filtering, we consider an improved innovations
vector obtained from ê by adding a small correction, that is, e = ê + δe, or in terms
of the data matrices, E = Ê + δE. We imagine that the vector e is closer to the true
innovations vector than ê. The small change δe will induce similar small changes in
the ARMA parameters, a = â + δa and b = b̂ + δb, which must satisfy the improved
input/output equation:

Ya = E b (15.14.23)

To first order in the corrections, that is, ignoring terms like δEδb, we have:

Ya = (Ê + δE)(b̂+ δb)= Ê(b̂+ δb)+δE b̂ = Ê b+ δE b̂ , or

Ya− Ê b = δE b̂ (15.14.24)

The term δE b̂ represents the filtering of the vector δe by the filter b̂, and therefore,
it can just as well be expressed in terms of the convolution matrix of b̂ acting on δe, that
is, δE b̂ = B̂δe. Actually, B̂ is the N×N square portion of the full convolution matrix,
with the bottom q rows (the input-off transients) deleted. For example, with N = 7 and
q = 2, we have:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δε0 0 0
δε1 δε0 0
δε2 δε1 δε0

δε3 δε2 δε1

δε4 δε3 δε2

δε5 δε4 δε3

δε6 δε5 δε4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣ 1

b̂1

b̂2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

b̂1 1 0 0 0 0 0

b̂2 b̂1 1 0 0 0 0

0 b̂2 b̂1 1 0 0 0

0 0 b̂2 b̂1 1 0 0

0 0 0 b̂2 b̂1 1 0

0 0 0 0 b̂2 b̂1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δε0

δε1

δε2

δε3

δε4

δε5

δε6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The matrix B̂ is invertible. Therefore, we may solve (15.14.24) for δe. Defining
V = B̂−1Y and W = B̂−1Ê, we have:

Ya− Ê b = δE b̂ = B̂δe ⇒ B̂−1(Ya− Ê b)= δe ⇒ Va−W b = δe (15.14.25)

Thus, the least-squares problem (15.14.21) is equivalent to minimizing the norm of
the correction vector:

J = ‖Va−W b‖2 = ‖δe‖2 = min � Va =W b

The operations V = B̂−1Y and W = B̂−1Ê are equivalent to the inverse filtering
operations (15.14.20). The MATLAB function armamf implements this three-step ARMA
modeling algorithm. It has usage:

[a,b,sigma2] = armamf(y,p,q,M,iter); % Mayne-Firoozan ARMA modeling

The third stage may be repeated a few additional times. At each iteration, the filtered
signals V(z)= Y(z)/B(z) andW(z)= Ê(z)/B(z) are obtained by using the filter B(z)
from the previous iteration. The parameter iter specifies the total number of iterations.
The default value is iter=2.

The innovations variance σ2
ε is estimated by calculating the impulse response hn of

the designed ARMA filter, H(z)= B(z)/A(z), and using:

σ2
y = σ2

ε

∞∑
n=0

|hn|2 (15.14.26)

where the infinite summation may be approximated by a finite one of appropriate length—
typically, a multiple of the 60-dB time-constant of the filter.

We have written a number of other MATLAB functions for MA and ARMA work.
Examples of their usage are included in their respective help files.

h = arma2imp(a,b,N); % ARMA impulse response

[a,b] = imp2arma(h,p,q); % impulse response to ARMA coefficients

R = armaacf(a,b,s2,M); % ARMA autocorrelation function

[A,B,D] = armachol(a,b,s2,N); % ARMA covariance matrix Cholesky factorization

y = armasim(a,b,s2,N,seed); % simulate an ARMA process using FILTER

y = armasim2(a,b,s2,N,seed); % simulate an ARMA process using ARMACHOL

J = armainf(a,b); % ARMA asymptotic Fisher information matrix

------------------------------------------------------------------------------

[b,sig2] = mafit(R); % fit MA(q) model to given covariance lags

[a,b,sig2] = armafit(R,p,q); % fit ARMA(p,q) model to given covariance lags

------------------------------------------------------------------------------

[b,sig2] = madurbin(y,q,M); % MA modeling by Durbin’s method

[b,sig2] = mainnov(y,q,M); % MA modeling by the innovations method

------------------------------------------------------------------------------

[a,b,sig2] = armainnov(y,p,q,M); % ARMA modeling by innovations method

[a,b,sig2] = armamf(y,p,q,M); % ARMA modeling by Mayne-Firoozan method

[a,b,sig2] = armamyw(y,p,q,Ma,Mb); % ARMA modeling by modified Yule-Walker

------------------------------------------------------------------------------

[B,D] = cholgs(R); % Cholesky factorization by Gram-Schmidt method

[B,D] = cholinnov(R); % Cholesky factorization by innovations method
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15.15 Karhunen-Loève Transform

Traditionally, the Karhunen-Loève transform (KLT), also known as the Hotelling trans-
form, of an (M + 1)-dimensional stationary zero-mean random signal vector y(n)=
[y0(n), y1(n), . . . , yM(n)]T with covariance matrix R = E[y∗(n)yT(n)] is defined as
the linear transformation:

z(n)= VTy(n) (KLT) (15.15.1)

where V is the (M + 1)×(M + 1) unitary matrix of eigenvectors of R, that is,

V = [v0,v1, . . . ,vM] , Rvi = λivi, i = 0,1, . . . ,M (15.15.2)

with the eigenvalues λi assumed to be in decreasing order. The orthonormality of the
eigenvectors v†i vj = δij is equivalent to the unitarity of V,

V†V = VV† = IM+1 (15.15.3)

The eigenvalue equations can be written compactly in the form:

RV = VΛ , Λ = diag{λ0, λ1, . . . , λM} ⇒ V†RV = Λ (15.15.4)

The components of the transformed vector, z(n)= [z0(n), z1(n), . . . , zM(n)]T, are
called principal components. They can be expressed as the dot products of the eigen-
vectors vi with y(n):

z(n)= VTy(n) ⇒

⎡
⎢⎢⎢⎢⎢⎣
z0(n)
z1(n)

...
zM(n)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

vT0 y(n)
vT1 y(n)

...
vTMy(n)

⎤
⎥⎥⎥⎥⎥⎦ , or,

zi(n)= vTi y(n) , i = 0,1, . . . ,M (15.15.5)

These may be thought of as the filtering of y(n) by the FIR filters vi. Therefore, the
vectors vi are often referred to as eigenfilters. The principal components are mutually
orthogonal, that is, uncorrelated. The matrix V†RV = Λ is the covariance matrix of the
transformed vector z(n):

E[z∗(n)zT(n)]= V†E[y∗(n)yT(n)]V = V†RV , or,

E[z∗(n)zT(n)]= Λ (15.15.6)

or, component-wise:

E[z∗i (n)zj(n)]= λiδij , i, j = 0,1, . . . ,M (15.15.7)

Thus, the KLT decorrelates the components of the vector y(n). The eigenvalues
of R are the variances of the principal components, σ2

i = E[|zi(n)|2]= λi. Because
λ0 ≥ λ1 ≥ · · · ≥ λM, the principal component z0(n) will have the largest variance, the
component z1(n), the next to largest, and so on.
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Defining the total variance of y(n) to be the sum of the variances of its M + 1
components, we can show that the total variance is equal to the sum of the variances of
the principal components, or the sum of the eigenvalues of R. We have:

σ2
y =

M∑
i=0

E[|yi(n)|2]= E[y†(n)y(n)] (total variance) (15.15.8)

Using the trace property y†y = tr(y∗yT), we find:

σ2
y = tr

(
E[y∗(n)yT(n)]

) = tr(R)= λ0 + λ1 + · · · + λM (15.15.9)

The inverse Karhunen-Loève transform is obtained by noting that V−T = V∗, which
follows from V†V = I. Therefore,

y(n)= V∗z(n) (inverse KLT) (15.15.10)

It can be written as a sum of the individual principal components:

y(n)= V∗z(n)= [v∗0 ,v∗1 , . . . ,v∗M]

⎡
⎢⎢⎢⎢⎢⎣
z0(n)
z1(n)

...
zM(n)

⎤
⎥⎥⎥⎥⎥⎦ =

M∑
i=0

v∗i zi(n) (15.15.11)

In many applications, the first few principal components, zi(n), 0 ≤ i ≤ r−1, where
r�M+ 1, account for most of the total variance. In such cases, we may keep only the
first r terms in the inverse transform:

ŷ(n)=
r−1∑
i=0

v∗i zi(n) (15.15.12)

If the ignored eigenvalues are small, the reconstructed signal ŷ(n) will be a good
approximation of the original y(n). This approximation amounts to a rank-r reduction
of the original problem. The mean-square approximation error is:

E
[‖y(n)−ŷ(n)‖2] = E[ M∑

i=r
|zi(n)|2

] = M∑
i=r
λi (15.15.13)

15.16 Principal Component Analysis

Principal component analysis (PCA) is essentially equivalent to the KLT. The only dif-
ference is that instead of applying the KLT to the theoretical covariance matrix R, it is
applied to the sample covariance matrix R̂ constructed from N available signal vectors
y(n), n = 0,1, . . . ,N − 1:

R̂ = 1

N

N−1∑
n=0

y∗(n)yT(n) (15.16.1)

15.16. Principal Component Analysis 821

where we assume that the sample means have been removed, so that

m = 1

N

N−1∑
n=0

y(n)= 0

We will ignore the overall factor 1/N, as we did in section 15.12, and work with the
simpler definition:

R̂ =
N−1∑
n=0

y∗(n)yT(n)= Y†Y , Y =

⎡
⎢⎢⎢⎢⎢⎣

yT(0)
yT(1)

...
yT(N − 1)

⎤
⎥⎥⎥⎥⎥⎦ (15.16.2)

where Y is theN×(M+1) data matrix constructed from the y(n). The eigenproblem of
R̂, that is, R̂V = VΛ, defines the KLT/PCA transformation matrix V. The corresponding
principal component signals will be:

z(n)= VTy(n) , n = 0,1, . . . ,N − 1 (15.16.3)

These can be combined into a single compact equation involving the data matrix
constructed from the z(n). Indeed, noting that zT(n)= yT(n)V, we have:

Z = YV (PCA) (15.16.4)

where Z is the N×(M + 1) data matrix of the z(n):

Z =

⎡
⎢⎢⎢⎢⎢⎣

zT(0)
zT(1)

...
zT(N − 1)

⎤
⎥⎥⎥⎥⎥⎦ (15.16.5)

The inverse transform can be obtained by multiplying (15.16.4) by V† from the right
and using the unitarity property of V, that is, ZV† = YVV†, or,

Y = ZV† ⇒ y(n)= V∗z(n) , n = 0,1, . . . ,N − 1 (15.16.6)

or, explicitly in terms of the PCA signals zi(n):

y(n)=
M∑
i=0

v∗i zi(n) , n = 0,1, . . . ,N − 1 (15.16.7)

The uncorrelatedness property of the KLT translates now to the orthogonality of
the signals zi(n)= vTi y(n) as functions of time. It follows from (15.16.4) that Z has
orthogonal columns, or equivalently, a diagonal sample covariance matrix:

Z†Z = V†R̂V = Λ ⇒
N−1∑
n=0

z∗(n)zT(n)= Λ (15.16.8)
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or, written component-wise:

N−1∑
n=0

z∗i (n)zj(n)= λiδij , i, j = 0,1, . . . ,M (15.16.9)

In fact, the principal component signals zi(n) are, up to a scale, equal to the left
singular eigenvectors of the SVD of the data matrix Y.

Following the simplified proof of the SVD that we gave in Sec. 15.5, we assume a
full-rank case so that all the λi are nonzero and define the singular values σi =

√
λi, for

i = 0,1, . . . ,M, and the matrices:

U = ZΣ−1 , Σ = diag{σ0, σ1, . . . , σM} = Λ1/2 (15.16.10)

where U,Σ have sizes N×(M+ 1) and (M+ 1)×(M+ 1), respectively. It follows from
(15.16.8) that U has orthonormal columns:

U†U = Σ−1Z†ZΣ−1 = Λ−1/2ΛΛ1/2 = IM+1 (15.16.11)

Solving for Y in terms of U, we obtain the economy SVD of Y. Indeed, we have
Z = UΣ and Y = ZV†, so that

Y = UΣV† (economy SVD) (15.16.12)

Thus, principal component analysis based on R̂ is equivalent to performing the econ-
omy SVD of the data matrix Y.

The matrixU has the same size asY, but mutually orthogonal columns. The (M+1)-
dimensional vectors u(n)= Σ−1z(n)= Σ−1VTy(n), n = 0,1, . . . ,N−1, have U as their
data matrix and correspond to normalized versions of the principal components with
unit sample covariance matrix:

U†U =
N−1∑
n=0

u∗(n)uT(n)= IM+1 �
N−1∑
n=0

u∗i (n)uj(n)= δij

where ui(n) is the ith component of u(n)= [u0(n), u1(n), . . . , uM(n)]T. It is the same
as zi(n), but normalized to unit norm.

Example 15.16.1: Consider the following 8×2 data matrix Y and its economy SVD:

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.31 1.92
2.49 1.68

−2.31 −1.92
−2.49 −1.68

3.32 2.24
−3.08 −2.56

3.08 2.56
−3.32 −2.24

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3 0.3
0.3 −0.3

−0.3 −0.3
−0.3 0.3

0.4 −0.4
−0.4 −0.4

0.4 0.4
−0.4 0.4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
10 0
0 0.5

][
0.8 −0.6
0.6 0.8

]T
= UΣVT

The singular values of Y are σ0 = 10 and σ1 = 0.5. Let the two columns of Y be y0

and y1, so that Y = [y0,y1]. The scatterplot of the eight pairs [y0, y1] is shown below.

15.16. Principal Component Analysis 823

We observe the clustering along a preferential direction. This is the direction of the first
principal component.
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z0
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The corresponding 8×2 matrix of principal components and its diagonal covariance matrix
are:

Z = [z0, z1]= UΣ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0.15
3 −0.15

−3 −0.15
−3 0.15

4 −0.20
−4 −0.20

4 0.20
−4 0.20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Λ = ZTZ =

[
σ2

0 0
0 σ2

1

]
=
[

100 0
0 0.25

]

The covariance matrix of Y, R = YTY, is diagonalized by the matrix V:

R =
[

64.09 47.88
47.88 36.16

]
=
[

0.8 −0.6
0.6 0.8

][
100 0

0 0.25

][
0.8 −0.6
0.6 0.8

]T
= VΛVT

Each principal component pair [z0, z1] is constructed by the following linear combinations
of the [y0, y1] pairs:

z0 = vT0 y = [0.8,0.6]
[
y0

y1

]
= 0.8y0 + 0.6y1

z1 = vT1 y = [−0.6,0.8]
[
y0

y1

]
= −0.6y0 + 0.8y1

Conversely, each [y0, y1] pair may be reconstructed from the PCA pair [z0, z1]:[
y0

y1

]
= V∗z = [v∗0 ,v∗1 ]

[
z0

z1

]
= v∗0 z0 + v∗1 z1 =

[
0.8
0.6

]
z0 +

[
−0.6

0.8

]
z1

The two terms in this expression define parametrically two straight lines on the y0, y1

plane along the directions of the principal components, as shown in the above figure. The
percentage variances carried by z0, z1 are:
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σ2
0

σ2
0 +σ2

1
= 0.9975 = 99.75 % ,

σ2
1

σ2
0 +σ2

1
= 0.0025 = 0.25 %

This explains the clustering along the z0 direction. ��

Example 15.16.2: The table below gives N = 24 values of the signals yT(n)= [y0(n), y1(n)].
The data represent the measured lengths and widths of 24 female turtles and were obtained
from the file turtle.dat on the book’s web page. This data set represents one of the most
well-known examples of PCA [1306]. To simplify the discussion, we consider only a subset
of this data set.

The data matrixY has dimensionN×(M+1)= 24×2. It must be replaced by its zero-mean
version, that is, with the column means removed from each column. Fig. 15.16.1 shows
the scatterplot of the pairs [y0, y1].

n y0(n) y1(n) n y0(n) y1(n) n y0(n) y1(n)

0 98 81 8 133 102 16 149 107
1 103 84 9 133 102 17 153 107
2 103 86 10 134 100 18 155 115
3 105 86 11 136 102 19 155 117
4 109 88 12 137 98 20 158 115
5 123 92 13 138 99 21 159 118
6 123 95 14 141 103 22 162 124
7 133 99 15 147 108 23 177 132
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Fig. 15.16.1 Scatterplots of original data and their principal components.

We observe that the pairs are distributed essentially one-dimensionally along a particular
direction, which is the direction of the first principal component.

Performing the economy SVD on (the zero-mean version of) Y gives the singular values
σ0 = 119.05 and σ1 = 12.38, and the unitary PCA transformation matrix V:

V = [v0,v1]=
[

0.8542 −0.5200
0.5200 0.8542

]
, v0 =

[
0.8542
0.5200

]
, v1 =

[
−0.5200

0.8542

]
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The total variance is σ2
y = σ2

0 + σ2
1 . The percentages of this variance carried by the two

principal components are:

σ2
0

σ2
0 +σ2

1
= 0.989 = 98.9 % ,

σ2
1

σ2
0 +σ2

1
= 0.011 = 1.1 %

Thus, the principal component z0 carries the bulk of the variance. The two principal
components are obtained by the linear combinations z = VTy, or,

z0 = vT0 y = 0.8542y0 + 0.52y1

z1 = vT1 y = −0.52y0 + 0.8542y1

The inverse relationships are y = V∗z = v∗0 z0 + v∗1 z1, or,[
y0

y1

]
=
[

0.8542
0.5200

]
z0 +

[
−0.5200

0.8542

]
z1

The two terms represent the projections of y onto the two PCA directions. The two straight
lines shown in Fig. 15.16.1 are given by these two terms separately, where z0 and z1 can
be used to parametrize points along these lines.

The MATLAB code used to generate this example was as follows:

Y = loadfile(’turtle.dat’); % read full data set

Y = zmean(Y(:,4:5)); % get columns 4,5 and remove column means

[U,S,V] = svd(Y,0); % economy SVD

figure; plot(Y(:,1),Y(:,2),’.’); % scatterplot of [y0, y1]
figure; plot(U(:,1),U(:,2),’.’); % scatterplot of [u0, u1]

The right graph in Fig. 15.16.1 is the scatterplot of the columns ofU, that is, the unit-norm
principal components u0(n), u1(n), n = 0,1, . . . ,N−1. Being mutually uncorrelated, they
do not exhibit clustering along any special directions. ��

Several applications of PCA in diverse fields, such as statistics, physiology, psychol-
ogy, meteorology, and computer vision, are discussed in [1237–1239,1241–1244,1303–
1314].

15.17 SVD Signal Enhancement

The main idea of PCA is rank reduction for the purpose of reducing the dimensionality
of the problem. In many signal processing applications, such as sinusoids in noise, or
plane waves incident on an array, the noise-free signal has a data matrix of reduced rank.
For example, the rank is equal to the number of (complex) sinusoids that are present.
We will be discussing this in detail later.

The presence of noise causes the data matrix to become full rank. Forcing the rank
back to what it is supposed to be in the absence of noise has a beneficial noise-reduction
or signal-enhancement effect. However, rank-reduction destroys any special structure
that the data matrix might have, for example, being Toeplitz or Toeplitz over Hankel. A
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further step is required after rank reduction that restores the special structure of the
matrix. But when the structure is restored, the rank becomes full again. Therefore, one
must iterate this process of rank-reduction followed by structure restoration.

Given an initial data matrix of a given type, such as the autocorrelation, covariance,
or forward/backward type, the following steps implement the typical SVD enhancement
iteration:

Y = datamat(y,M,type); % construct data matrix from signal y

Ye = Y; % initialize enhancement iteration

for i=1:K, % iterate K times, typically, K=2-3.

Ye = sigsub(Ye,r); % force rank reduction to rank r

Ye = toepl(Ye,type); % restore Toeplitz/Toeplitz-Hankel structure

end

ye = datasig(Ye,type); % extract enhanced signal from Ye

After the iteration, one may extract the “enhanced” signal from the enhanced data
matrix. The MATLAB function sigsub, introduced in Sec. 15.9, carries out an economy
SVD of Y and then keeps only the r largest singular values, that is, it extracts the signal
subspace part of Y. The function toepl, discussed in Sec. 15.18, restores the Toeplitz
or Toeplitz-over-Hankel structure by finding the matrix with such structure that lies
closest to the rank-reduced data matrix.

The SVD enhancement iteration method has been re-invented in different contexts.
In the context of linear prediction and extracting sinusoids in noise it is known as the
Cadzow iteration [1268–1270]. In the context of chaotic dynamics, climatology, and
meteorology, it is known as singular spectral analysis (SSA)† [1322–1337]; actually, in
SSA only one iteration (K = 1) is used. In nonlinear dynamics, the process of forming
the data matrix Y is referred to as “delay-coordinate embedding” and the number of
columns, M + 1, of Y is the “embedding dimension.”

In the literature, one often finds that the data matrixY is defined as a Hankel instead
of a Toeplitz matrix. This corresponds to reversing the rows of the Toeplitz definition.
For example, using the reversing matrix J, we have:

Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

y2 y1 y0

y3 y2 y1

y4 y3 y2

y5 y4 y3

y6 y5 y2

⎤
⎥⎥⎥⎥⎥⎥⎦ = Toeplitz ⇒ YJ =

⎡
⎢⎢⎢⎢⎢⎢⎣

y0 y1 y2

y1 y2 y3

y2 y3 y4

y3 y4 y5

y4 y5 y6

⎤
⎥⎥⎥⎥⎥⎥⎦ = Hankel

In such cases, in the SVD enhancement iterations one must invoke the function toepl
with its Hankel option, that is, type=1.

Example 15.17.1: As an example that illustrates the degree of enhancement obtained from
such methods, consider the length-25 signal yn listed in the file sine1.dat on the book’s
web page. The signal consists of two equal-amplitude sinusoids of frequencies f1 = 0.20
and f2 = 0.25 cycles/sample, in zero-mean, white gaussian noise with a 0-dB SNR. The
signal samples were generated by:

yn = cos(2πf1n)+ cos(2πf2n)+0.707vn , n = 0,1, . . . ,24

†Sometimes also called “singular system analysis” or the “caterpillar” method.
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where vn is zero-mean, unit-variance, white noise, and the amplitude 1/
√

2 = 0.707 en-
sures that SNR = 0 dB.

The short duration and the low SNR make this a difficult signal to handle. Fig. 15.17.1 com-
pares the performance of four spectrum estimation methods: the ordinary periodogram,
the linear-prediction-based methods of Burg and Yule-Walker, and the SVD-enhanced Burg
method in which the SVD-enhanced signal is subjected to Burg’s algorithm, instead of the
original signal.
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Fig. 15.17.1 SVD-enhanced linear prediction spectra.

The effective rank is r = 4 (each real sinusoid counts for two complex ones.) The SVD-
enhanced version of Burg’s method gives narrow peaks at the two desired frequencies. The
number of iterations was K = 3, and the prediction filter order M = 20.

The Yule-Walker method results in fairly wide peaks at the two frequencies—the SNR is
just too small for the method to work. The ordinary Burg method gives narrower peaks,
but because the filter order M is high, it also produces several false peaks that are just as
narrow.

Reducing the order of the prediction filter from M down to r, as is done in the SVD
method to avoid any false peaks, will not work at all for the Yule-Walker and ordinary
Burg methods—both will fail to resolve the peaks.

The periodogram exhibits wide mainlobes and sidelobes—the signal duration is just too
short to make the mainlobes narrow enough. If the signal is windowed prior to computing
the periodogram, for example, using a Hamming window, the two mainlobes will broaden
so much that they will overlap with each other, masking completely the frequency peaks.

The graph on the right of Fig. 15.17.1 makes the length even shorter, N = 15, by using
only the first 15 samples of yn. The SVD method, implemented with M = 10, still exhibits
the two narrow peaks, whereas all of the other methods fail, with the ordinary Burg being
a little better than the others, but still exhibiting a false peak. The SVD method works well
also for K = 2 iterations, but not so well for K = 1. The following MATLAB code illustrates
the computational steps for producing these graphs:

y = loadfile(’sine1.dat’); % read signal samples yn from file

r = 4; M = 20; K = 3; % rank, filter order, number of iterations
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f = linspace(0.1,0.4,401); w = 2*pi*f; % frequency band

a = lpf(burg(y,M)); % Burg prediction filter of order M
H1 = 1./abs(dtft(a,w)); % compute ordinary Burg LP spectrum

H1 = 20*log10(H1/max(H1)); % spectrum in dB

a = lpf(yw(y,M)); % Yule-Walker prediction filter

H2 = 1./abs(dtft(a,w)); % compute Yule-Walker LP spectrum

H2 = 20*log10(H2/max(H2));

H3 = abs(dtft(y,w));
H3 = 20*log10(H3/max(H3)); % periodogram spectrum in dB

Y = datamat(y,M); % Y is the autocorrelation type

Ye = Y;
for i=1:K, % SVD enhancement iterations

Ye = sigsub(Ye,r); % set rank to r
Ye = toepl(Ye); % toeplitzize Ye

end
ye = datasig(Ye); % extract enhanced time signal

a = lpf(burg(ye,r)); % Burg prediction filter of order r
H = 1./abs(dtft(a,w)); % compute enhanced Burg LP spectrum

H = 20*log10(H/max(H));

plot(f,H,’-’, f,H1,’--’, f,H2,’:’, f,H3,’-.’);

The functions lpf, burg, yw implement the standard Burg and Yule-Walker methods. ��
Example 15.17.2: The SVD enhancement process can be used to smooth data and extract local

or global trends from noisy times series. Typically, the first few principal components
represent the trend.

As an example, we consider the global annual average temperature obtained from the web
site: www.cru.uea.ac.uk/cru/data/temperature/. The data represent the temperature
anomalies in degrees oC with respect to the 1961–1990 average.

Using M = 30 and one SVD enhancement iteration, K = 1, we find the first five variances,
given as percentages of the total variance:

{λ1, λ2, λ3, λ4, λ5} = {63.78, 12.44, 2.27, 1.79, 1.71}

The first two PCs account for 76% of the total variance. The percent variances are plotted
in Fig. 15.17.2.

The smoothed signals extracted from reducing the rank to r = 1,2,3,4,5,6 are shown in
Figs. 15.17.3, 15.17.4, and 15.17.5. We note that the r = 2 case represents the trend well.
As the rank is increased, the smoothed signal tries to capture more and more of the finer
variations of the original signal.

Assuming that the global trend ye(n) is represented by the first two principal components
(r = 2), one can subtract it from the original sequence resulting into the residual y1(n)=
y(n)−ye(n), and the SVD enhancement method may be repeated on that signal. The first
few components of y1(n) can be taken to represent the local variations in the original
y(n), such as short-period cyclical components. The rest of the principal components of
y1(n) may be taken to represent the noise.

The MATLAB code used to generate these graphs was as follows:
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Fig. 15.17.2 Percentage variances of the first 31 principal components.
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Fig. 15.17.3 Principal component signals of ranks r = 1,2.

A = loadfile(’TaveGL2.dat’); % read data file

y = A(:,14); % column-14 holds the annual averages

n = A(:,1); % column-1 holds the year

M = 30; K=1; r = 1; % or, r = 2,3,4,5,6
y = zmean(y); % zero mean

Ye = datamat(y,M,2); % forward-backward Toeplitz-Hankel type

for i=1:K, % SVD enhancement iteration

Ye = sigsub(Ye,r); % extract rank-r signal subspace

Ye = toepl(Ye,2); % convert to Toeplitz-Hankel

end
ye = datasig(Ye,2); % extract smoothed signal

plot(n,y,’:’, n,ye,’-’); % plot original and smoothed signal

For comparison, we show in Fig. 15.17.6, the Whittaker-Henderson smoothing method,
which appears to have comparable performance with the SVD method. The MATLAB code
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Fig. 15.17.4 Principal component signals of ranks r = 3,4.
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Fig. 15.17.5 Principal component signals of ranks r = 5,6.

for that was,

lambda = 10000;
ywh = whsm(y,lambda,3);
plot(n,y,’r:’, n,ywh,’b-’);

Here, the degree of smoothing is controlled by the regularization parameter λ. ��

15.18 Structured Matrix Approximations

We saw in the previous section that the process of rank reduction destroys the Toeplitz
or Toeplitz/Hankel nature of the data matrix. The purpose of the MATLAB function
toepl was to restore the structure of the data matrix by finding the closest matrix of the
desired structure.

15.18. Structured Matrix Approximations 831

1860 1880 1900 1920 1940 1960 1980 2000
−0.6

−0.3

0

0.3

0.6
Whittaker−Henderson, λ = 10000

year

de
gr

ee
s 

o C

1860 1880 1900 1920 1940 1960 1980 2000
−0.6

−0.3

0

0.3

0.6
Whittaker−Henderson, λ = 1000

year

de
gr

ee
s 

o C

Fig. 15.17.6 Whittaker-Henderson smoothing method.

Given a data matrix Y that ideally should be Toeplitz, such as the autocorrelation
or covariance types, one can find a Toeplitz matrix T that is closest to Y with respect
to a matrix norm. The easiest norm to use is the Frobenius norm. Thus, we have the
approximation problem:

J = ‖Y −T‖2
F = min, where T is required to be Toeplitz (15.18.1)

The solution is the Toeplitz matrix obtained by replacing each diagonal of Y by the
average along that diagonal. We demonstrate this with a small example. Let Y and T be
defined as:

Y =
⎡
⎢⎣ y11 y12 y13

y21 y22 y23

y31 y32 y33

⎤
⎥⎦ , T =

⎡
⎢⎣ t2 t1 t0
t3 t2 t1
t4 t3 t2

⎤
⎥⎦

The difference matrix is:

Y −T =
⎡
⎢⎣ y11 − t2 y12 − t1 y13 − t0
y21 − t3 y22 − t2 y23 − t1
y31 − t4 y32 − t3 y33 − t2

⎤
⎥⎦

Because the Frobenius norm is the sum of the squares of all the matrix elements, we
have:

J = ‖Y −T‖2
F =|y11 − t2|2 + |y22 − t2|2 + |y33 − t2|2

+ |y12 − t1|2 + |y23 − t1|2 + |y13 − t0|2

+ |y21 − t3|2 + |y32 − t3|2 + |y13 − t4|2

The minimization conditions ∂J/∂ti = 0, i = 0,1,2,3,4, easily lead to the desired
solutions: t0 = y13, t4 = y31 and

t1 = y12 + y23

2
, t2 = y11 + y22 + y33

3
, t3 = y21 + y32

2
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For a Hankel matrix approximation, we have the minimization problem:

J = ‖Y −H‖2
F = min, where H is required to be Hankel (15.18.2)

Its solution is obtained by replacing each antidiagonal of Y by the average along that
antidiagonal. This problem can be reduced to an equivalent Toeplitz type by noting that
the row-reversing operation Y → YJ, where J is the usual reversing matrix, leaves the
Frobenius norm unchanged and it maps a Hankel matrix into a Toeplitz one. Setting
T = HJ, the problem (15.18.2) becomes:

J = ‖Y −H‖2
F = ‖YJ −T‖2

F = min, where T is required to be Toeplitz (15.18.3)

OnceT is found by averaging the diagonals ofYJ, the Hankel matrixH is constructed
by row-reversal, H = TJ. This amounts to averaging the antidiagonals of the original
data matrix Y.

Finally, in the case of Toeplitz over Hankel structure, we have a data matrix whose
upper half is to be Toeplitz and its lower half is the row-reversed and conjugated upper
part. Partitioning Y into these two parts, we set:

Y =
[
YT
YH

]
, M =

[
T
T∗J

]
= required approximation

The matrix approximation problem is then:

J = ‖Y −M‖2
F =

∥∥∥∥∥
[
YT
YH

]
−
[
T
T∗J

]∥∥∥∥∥
2

F
= ‖YT −T‖2

F + ‖Y∗HJ −T‖2
F = min

where we used the property ‖YH−T∗J‖2
F = ‖Y∗HJ−T‖2

F. The solution of this minimiza-
tion problem is obtained by choosingT to be the average of the Toeplitz approximations
of YT and Y∗HJ, that is, in the notation of the function toepl:

T = toepl(YT)+toepl(Y∗HJ)
2

Example 15.18.1: As an example, we give below the optimum Toeplitz, Hankel, and Toeplitz
over Hankel approximations of the same data matrix Y:

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 10 10
20 20 20
30 30 30
40 40 40
50 50 50
60 60 60

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒ T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

20 15 10
30 20 15
40 30 20
50 40 30
55 50 40
60 55 50

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 15 20
15 20 30
20 30 40
30 40 50
40 50 55
50 55 60

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 10 10
20 20 20
30 30 30

40 40 40
50 50 50
60 60 60

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒ M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

35 30 25
40 35 30
45 40 35

25 30 35
30 35 40
35 40 45

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[

T
T∗J

]
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The function toepl has usage:

Z = toepl(Y,type); % structured approximation of a data matrix

Y = data matrix

type=0: Toeplitz type, each diagonal of Y is replaced by its average

type=1: Hankel type, each anti-diagonal of Y is replaced by its average

type=2: Toeplitz over Hankel, Y must have even number of rows

15.19 Matrix Pencil Methods

The matrix pencil of two N×M matrices A,B, is defined to be the matrix:

A− λB (15.19.1)

where λ is a parameter. The generalized eigenvalues of the matrix pair {A,B} are those
values of λ that cause A−λB to reduce its rank. A generalized eigenvector correspond-
ing to such a λ is a vector in the null space N(A− λB).

A matrix pencil is a generalization of the eigenvalue concept to non-square matrices.
A similar rank reduction takes place in the ordinary eigenvalue problem of a square
matrix. Indeed, the eigenvalue-eigenvector condition Avi = λivi can be written as (A−
λiI)vi = 0, which states that A − λI loses its rank when λ = λi and vi lies in the null
space N(A− λiI).

Matrix pencil methods arise naturally in the problem of estimating damped or un-
damped sinusoids in noise [1280], and are equivalent to the so-called ESPRIT methods
[1276]. Consider a signal that is the sum of r, possibly damped, complex sinusoids in
additive, zero-mean, white noise:

yn =
r∑
i=1

Aie−αinejωin + vn =
r∑
i=1

Aizni + vn (15.19.2)

where zi = e−αi+jωi , i = 1,2, . . . , r. The problem is to estimate the unknown damping
factors, frequencies, and complex amplitudes of the sinusoids, {αi,ωi,Ai}, from avail-
able observations of a length-N data block y = [y0, y1, . . . , yN−1]T of the noisy signal
yn. We may assume that the zi are distinct.

In the absence of noise, the (N −M)×(M + 1)–dimensional, covariance-type, data
matrix Y can be shown to have rank r, provided that the embedding order M is chosen
such that r ≤M ≤ N − r. The data matrix Y is defined as:

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

yT(M)
...

yT(n)
...

yT(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, y(n)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

yn
yn−1

yn−2

...
yn−M

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

r∑
i=1

Ai zni

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
z−1
i
z−2
i
...

z−Mi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(15.19.3)
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and, Y becomes:

Y =
r∑
i=1

Ai

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

zMi
...
zni
...

zN−1
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
1, z−1

i , z
−2
i , . . . , z

−M
i

]
(15.19.4)

Thus, Y is the sum of r rank-1 matrices, and therefore, it will have rank r. Its null
space N(Y) can be characterized conveniently in terms of the order-r polynomial with
the zi as roots, that is,

A(z)=
r∏
i=1

(1− ziz−1) (15.19.5)

Multiplying A(z) by an arbitrary polynomial F(z) of order M− r, gives an order-M
polynomial B(z)= A(z)F(z), such that r of its roots are the zi, that is, B(zi)= 0, for
i = 1,2 . . . , r, and the remainingM−r roots are arbitrary. The polynomial B(z) defines
an (M + 1)–dimensional vector b = [b0, b1, . . . , bM]T through its inverse z-transform:

B(z)= b0 + b1z−1 + · · · + bMz−M =
[
1, z−1, z−2, . . . , z−M

]
⎡
⎢⎢⎢⎢⎢⎣
b0

b1

...
bM

⎤
⎥⎥⎥⎥⎥⎦ (15.19.6)

Then, the root conditions can be stated in the form:

B(zi)=
[
1, z−1

i , z
−2
i , . . . , z

−M
i

]
⎡
⎢⎢⎢⎢⎢⎣
b0

b1

...
bM

⎤
⎥⎥⎥⎥⎥⎦ = 0 , i = 1,2, . . . , r (15.19.7)

This implies that the vector b must lie in the null space of Y:

Y b =
r∑
i=1

Ai

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

zMi
...
zni
...

zN−1
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
1, z−1

i , z
−2
i , . . . , z

−M
i

]
⎡
⎢⎢⎢⎢⎢⎣
b0

b1

...
bM

⎤
⎥⎥⎥⎥⎥⎦ = 0 (15.19.8)

Conversely, if b satisfies Eq. (15.19.8), then because M ≤ N − r, or, r ≤ N −M, the
(N−M)–dimensional column vectors [zMi , . . . , z

n
i , . . . , z

N−1
i ]T are linearly independent,†

†This follows from the fact that the r×r Vandermonde matrix Vki = zk−1
i , k, i = 1,2, . . . , r, has nonva-

nishing determinant det(V)=∏
1≤i<j≤r(zi − zj), because the zi are distinct. See Ref. [1234].
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and therefore, we must have:

Y b =
r∑
i=1

Ai

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

zMi
...
zni
...

zN−1
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
B(zi)= 0 ⇒ B(zi)= 0 (15.19.9)

Thus, B(z)must have the form B(z)= A(z)F(z). Because F(z) has degreeM−r, it
will be characterized byM+1−r arbitrary coefficients. It follows that the dimensionality
of b, and hence of the null space N(Y), will be M+ 1− r. This implies that the rank of
Y is r.

Next, we consider the matrix pencil of the two submatrices Y1, Y0 of Y, where Y1 is
defined to be the first M columns of Y, and Y0, the last M, that is,

Y1 =
r∑
i=1

Ai

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

zMi
...
zni
...

zN−1
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
1, z−1

i , z
−2
i , . . . , z

−(M−1)
i

]

Y0 =
r∑
i=1

Ai

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

zMi
...
zni
...

zN−1
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
z−1
i , z

−2
i , . . . , z

−M
i

]
(15.19.10)

They were obtained by keeping the first or last M entries of [1, z−1
i , z

−2
i , . . . , z

−M
i ]:

[
1, z−1

i , z
−2
i , . . . , z

−(M−1)
i︸ ︷︷ ︸

first M

, z−Mi
] = [

1, z−1
i , z

−2
i , . . . , z

−(M−1)
i , z−Mi︸ ︷︷ ︸

last M

]

Both matrices Y1, Y0 have dimension (N −M)×M. Noting that

[
1, z−1

i , z
−2
i , . . . , z

−(M−1)
i

] = zi[z−1
i , z

−2
i , . . . , z

−M
i

]
,

we may rewrite Y1 in the form:

Y1 =
r∑
i=1

ziAi

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

zMi
...
zni
...

zN−1
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
z−1
i , z

−2
i , . . . , z

−M
i

]
(15.19.11)
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Therefore, the matrix pencil Y1 − λY0 can be written as:

Y1 − λY0 =
r∑
i=1

(zi − λ)Ai

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

zMi
...
zni
...

zN−1
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
z−1
i , z

−2
i , . . . , z

−M
i

]
(15.19.12)

Because r ≤M and r ≤ N−M, and Y1−λY0 is a sum of r rank-1 matrices, it follows
that, as long as λ �= zi, the rank of Y1 − λY0 will be r. However, whenever λ becomes
equal to one of the zi, one of the rank-1 terms will vanish and the rank of Y1−λY0 will
collapse to r − 1. Thus, the r desired zeros zi are the generalized eigenvalues of the
rank-r matrix pencil Y1 − λY0.

When noise is added to the sinusoids, the matrix pencil Y1−λY0 will have full rank,
but we expect its r most dominant generalized eigenvalues to be good estimates of the
zi.

In fact, the problem of finding the r eigenvalues zi can be reduced to an ordinary
r×r eigenvalue problem. First, the data matrices Y1, Y0 are extracted from the matrix
Y, for example, if N = 10 and M = 3, we have:

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y3 y2 y1 y0

y4 y3 y2 y1

y5 y4 y3 y2

y6 y5 y4 y3

y7 y6 y5 y4

y8 y7 y6 y5

y9 y8 y7 y6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒ Y1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y3 y2 y1

y4 y3 y2

y5 y4 y3

y6 y5 y4

y7 y6 y5

y8 y7 y6

y9 y8 y7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Y0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y2 y1 y0

y3 y2 y1

y4 y3 y2

y5 y4 y3

y6 y5 y4

y7 y6 y5

y8 y7 y6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Second, a rank-r reduction is performed on Y0, approximating it as Y0 = UrΣrV†r ,
where Ur has size (N −M)×r, Σr is r×r, and Vr , M×r. The matrix pencil becomes
then Y1−λUrΣrV†r . Multiplying from the left byU†r and from the right by Vr and using
the orthogonality properties U†rUr = Ir and V†rVr = Ir , we obtain the equivalent r×r
matrix pencil:

U†r (Y1 − λY0)Vr = U†rY1Vr − λΣr or,

Σ−1
r U†r (Y1 − λY0)Vr = Z − λIr , where Z = Σ−1

r U†rY1Vr (15.19.13)

Finally, the eigenvalues of the r×r matrix Z are computed, which are the desired
estimates of the zi. The matrix pencil Z−λIr may also be obtained by invertingY0 using
its pseudoinverse and then reducing the problem to size r×r. Using Y+0 = VrΣ−1

r U
†
r , it

can be shown easily that:

V†r (Y
+
0 Y1 − λIM)Vr = Z − λIr
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Once the zi are determined, the amplitudes Ai may be calculated by least-squares.
Writing Eq. (15.19.2) vectorially for the given length-N signal yn, we have:⎡

⎢⎢⎢⎢⎢⎣
y0

y1

...
yN−1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1
z1 z2 · · · zr
...

...
...

...
zN−1

1 zN−1
2 · · · zN−1

r

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
A1

A2

...
Ar

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣
v0

v1

...
vN−1

⎤
⎥⎥⎥⎥⎥⎦ (15.19.14)

or, written compactly as
y = SA+ v (15.19.15)

with least-squares solution:
A = S+y = S\y (15.19.16)

The above design steps have been implemented into the MATLAB mpencil:

[z,A] = mpencil(y,r,M); % matrix pencil method

The N×r Vandermonde matrix S with matrix elements Sni = zni , for 0 ≤ n ≤ N − 1
and 1 ≤ i ≤ r, is known as a steering matrix and its individual columns as steering
vectors. It can be computed by the MATLAB function steering:

S = steering(N-1,z); % steering matrix

15.20 QR Factorization

The Gram-Schmidt orthogonalization of random variables has many uses: (a) it leads
to signal models through the innovations representation, (b) it is equivalent to linear
prediction, (c) it corresponds to the Cholesky factorization of the covariance matrix,
and (d) it provides efficient computational bases for linear estimation problems, leading
to fast solutions of normal equations via Levinson’s or Schur’s algorithms and to fast
adaptive implementations, such as adaptive Gram-Schmidt preprocessors in antenna
arrays and fast adaptive lattice filters in time-series applications.

The Gram-Schmidt orthogonalization of an (M+1)-dimensional complex-valued zero-
mean random vector y = [y0, y1, . . . , yM]T is defined by:

ε0 = y0

for m = 1,2, . . . ,M do:

εm = ym −
m−1∑
i=0

E[ε∗i ym]
E[ε∗i εi]

εi

(15.20.1)

The constructed random vector εεε = [ε0, ε1 . . . , εM]T has uncorrelated components
E[ε∗i εj]= 0, if i ≠ j. The unit lower-triangular innovations matrix B may be defined in
terms of its lower-triangular matrix elements:

bmi = E[y∗mεi]
E[ε∗i εi]

, 1 ≤m ≤M , 0 ≤ i ≤m− 1 (15.20.2)
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Then, Eq. (15.20.1) can be written as ym = εm +
∑m−1
i=0 b∗miεi, or expressed vectorially:

y = B∗εεε (15.20.3)

for example, ⎡
⎢⎢⎢⎣
y0

y1

y2

y3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 0 0 0
b∗10 1 0 0
b∗20 b∗21 1 0
b∗30 b∗31 b∗32 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
ε0

ε1

ε2

ε3

⎤
⎥⎥⎥⎦

The matrix B is the unit lower-triangular Cholesky factor of the covariance matrix of
the random vector y:

R = BDB† (15.20.4)

where R = E[y∗yT] and D = E[εεε∗εεεT]= diag{E0, E1, . . . , EM}, where Ei is the variance
of εi, that is, Ei = E[ε∗i εi].

We may work also with the random variables qi = εi/E1/2
i , i = 0,1, . . . ,M, normal-

ized to have unit variance. Then, the random vector q = [q0, q1, . . . , qM]T will have
unit covariance matrix:

q = D−1/2εεε ⇒ E[q∗qT]= I (15.20.5)

where I is the (M+1)-dimensional identity matrix. Defining the upper triangular matrix
G = D1/2B†, we note that G†G = BDB† and GT = B∗D1/2 and therefore, Eqs. (15.20.3)
and (15.20.4) can be rewritten as:

y = GTq , R = G†G (15.20.6)

In practice, we must work with sample covariance matrices estimated on the basis
of N vectors y(n), n = 0,1, . . . ,N− 1. The N×(M+1) data matrix Y constructed from
these vectors is used to obtain the sample covariance matrix:

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

yT(0)
...

yT(n)
...

yT(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒ R̂ = Y†Y (15.20.7)

The QR-factorization factors the data matrix Y into an N×(M+1) matrix Q with
orthonormal columns and an (M+1)×(M+1) upper triangular matrix G:

Y = QG, Q†Q = I , G = upper triangular (15.20.8)

The matrix Q is obtained by the Gram-Schmidt orthogonalization of the (M+1)
columns ofY. The QR-factorization implies the Cholesky factorization of the covariance
matrix R̂. Using Q†Q = I, we have:

R̂ = Y†Y = G†Q†QG = G†G (15.20.9)
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WritingQ row-wise, we can extract the snapshot vector q(n) corresponding to y(n),
that is,

Y = QG ⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

yT(0)
...

yT(n)
...

yT(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

qT(0)
...

qT(n)
...

qT(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
G ⇒ yT(n)= qT(n)G , or,

y(n)= GTq(n) , n = 0,1, . . .N − 1 (15.20.10)

which is the same as Eq. (15.20.6).
Writing qT(n)= [q0(n), q1(n), . . . , qM(n)], the ith column of Q is the time signal

qi(n), n = 0,1, . . . ,N−1. Orthonormality in the statistical sense translates to orthonor-
mality in the time-average sense:

E[q∗qT]= I ⇒ Q†Q =
N−1∑
n=0

q∗(n)qT(n)= I (15.20.11)

or, component-wise, for i, j,= 0,1, . . . ,M:

E[q∗i qj]= δij ⇒
N−1∑
n=0

q∗i (n)qj(n)= δij (15.20.12)

In comparing the SVD versus the QR-factorization, we observe that both methods
orthogonalize the random vector y. The SVD corresponds to the KLT/PCA eigenvalue
decomposition of the covariance matrix, whereas the QR corresponds to the Cholesky
factorization. The following table compares the two approaches.

KLT/PCA Cholesky Factorization

R = E[y∗yT]= VΛV† R = E[y∗yT]= G†G = BDB†

y = V∗z = V∗Σ u y = GTq = B∗εεε
E[z∗zT]= Λ = Σ2 E[εεε∗εεεT]= D
E[u∗uT]= I E[q∗qT]= I

SVD QR

Y = UΣV† = ZV† Y = QG
R̂ = Y†Y = VΛV† = VΣ2V† R̂ = Y†Y = G†G
y(n)= V∗z(n)= V∗Σ u(n) y(n)= GTq(n)= B∗εεε(n)
N−1∑
n=0

u∗(n)uT(n)= I
N−1∑
n=0

q∗(n)qT(n)= I
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15.21 Canonical Correlation Analysis

Canonical correlation analysis (CCA) attempts to determine if there are any significant
correlations between two groups of random variables. It does so by finding linear com-
binations of the first group and linear combinations of the second group that are maxi-
mally correlated with each other [1237–1239,1315–1321].

Consider the two groups of random variables to be the components of two zero-
mean random vectors ya and yb of dimensions p and q. Concatenating the vectors
ya,yb into a (p+q)-dimensional vector, we have:

y =
[

ya
yb

]
, where ya =

⎡
⎢⎢⎢⎢⎢⎣
ya1

ya2

...
yap

⎤
⎥⎥⎥⎥⎥⎦ , yb =

⎡
⎢⎢⎢⎢⎢⎣
yb1

yb2

...
ybq

⎤
⎥⎥⎥⎥⎥⎦ (15.21.1)

Its covariance matrix can be expressed in the partitioned form:

R = E[y∗yT]=
[
E[y∗ayTa] E[y∗ayTb]
E[y∗byTa] E[y∗byTb]

]
=
[
Raa Rab
Rba Rbb

]
(15.21.2)

In general, the matrices Raa,Rab,Rbb are full and inspection of their entries does
not provide—especially when the matrices are large—a clear insight as to the essential
correlations between the two groups.

What should be the ideal form of R in order to bring out such essential correlations?
As an example, consider the case p = 3 and q = 2 and suppose R has the following
structure, referred to as the canonical correlation structure:

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ra1,a1 Ra1,a2 Ra1,a3 Ra1,b1 Ra1,b2

Ra2,a1 Ra2,a2 Ra2,a3 Ra2,b1 Ra2,b2

Ra3,a1 Ra3,a2 Ra3,a3 Ra3,b1 Ra3,b2

Rb1,a1 Rb1,a2 Rb1,a3 Rb1,b1 Rb1,b2

Rb2,a1 Rb2,a2 Rb2,a3 Rb2,b1 Rb2,b2

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 c1 0
0 1 0 0 c2

0 0 1 0 0

c1 0 0 1 0
0 c2 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

where the random vectors are ya = [ya1, ya2, ya3]T and yb = [yb1, yb2]T, and we
denoted Rai,aj = E[y∗aiyaj], Rai,bj = E[y∗aiybj], Rbi,bj = E[y∗biybj].

This form tells us that the random variables {ya1, ya2, ya3} are mutually uncorrelated
and have unit variance, and so are the {yb1, yb2}. Moreover, between group a and group
b, the random variable ya1 is correlated only with yb1, with correlation c1 = E[y∗a1yb1],
and ya2 is correlated only with yb2, with correlation c2 = E[y∗a2yb2]. Assuming c1 ≥ c2,
the pair {ya1, yb1} will be more correlated than the pair {ya2, yb2}. The case p = 2 and
q = 3 would be:

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ra1,a1 Ra1,a2 Ra1,b1 Ra1,b2 Ra1,b3

Ra2,a1 Ra2,a2 Ra2,b1 Ra2,b2 Ra2,b3

Rb1,a1 Rb1,a2 Rb1,b1 Rb1,b2 Rb1,b3

Rb2,a1 Rb2,a2 Rb2,b1 Rb2,b2 Rb2,b3

Rb3,a1 Rb3,a2 Rb3,b1 Rb3,b2 Rb3,b3

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 c1 0 0
0 1 0 c2 0

c1 0 1 0 0
0 c2 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
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Thus, the canonical structure, having a diagonal submatrix Rab, describes the corre-
lations between a and b in their clearest form. The goal of CCA is to bring the general
covariance matrix R of Eq. (15.21.2) into such a canonical form. This is accomplished
by finding appropriate linear transformations that change the bases ya and yb into the
above form.

One may start by finding p- and q-dimensional vectors a,b such that the linear com-
binations wa = aTya and wb = bTyb are maximally correlated, that is, finding a,b that
maximize the normalized correlation coefficient:

c = E[w∗awb]√
E[w∗awa]E[w∗bwb]

= max (15.21.3)

Noting that E[w∗awb]= a†Rabb, E[w∗awa]= a†Raaa, and E[w∗bwb]= b†Rbbb, the
above criterion becomes:

c = a†Rabb√
(a†Raaa)(b†Rbbb)

= max (15.21.4)

We may impose the constraints that wa,wb have unit variance, that is, E[w∗awa]=
a†Raaa = 1 and E[w∗bwb]= b†Rbbb = 1. Then, the equivalent criterion reads:

c = a†Rabb = max , subject to a†Raaa = 1 , b†Rbbb = 1 (15.21.5)

This is reminiscent of the maximization criterion for singular values that we dis-
cussed in Sec. 15.5. To recast (15.21.5) into that form, we first change into a basis in
which the group random vectors have unit covariance matrix. Performing the full SVDs
of Raa and Rbb, we set:

Raa = UaΛaV†a = VaΣ2
aV

†
a , Ua = Va , Σa = Λ1/2

a , V†aVa = Ip
Rbb = UbΛbV†b = VbΣ2

bV
†
b , Ub = Vb , Σb = Λ1/2

b , V†bVb = Iq
(15.21.6)

These are essentially the eigenvalue decompositions of the hermitian positive defi-
nite matrices Raa,Rbb. We assume that Σa,Σb are non-singular, that is, Raa,Rbb have
full rank. Then, we define the transformed random vectors and corresponding cross-
correlation matrix:

ua = Σ−1
a VTaya

ub = Σ−1
b V

T
byb

⇒ Cab = E[u∗auTb]= Σ−1
a V†aRabVbΣ

−1
b (15.21.7)

In this basis, E[u∗auTa]= Σ−1
a V

†
aRaaVaΣ−1

a = Σ−1
a V

†
aVaΣ2

aV
†
aVaΣ−1

a = Ip, and simi-
larly, E[u∗buTb]= Iq. The transformed covariance matrix will be:

u =
[

ua
ub

]
⇒ Ruu = E[u∗uT]=

[
E[u∗auTa] E[u∗auTb]
E[u∗buTa] E[u∗buTb]

]
=
[
Ip Cab
C†ab Iq

]

An alternative method of obtaining unit-covariance bases is to use the Cholesky
factorization. For example, we may set Raa = G†aGa, where Ga is upper triangular, and
define ua = G−Ta ya.
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Having transformed to a new basis, we also transform the coefficients a,b so that
wa,wb are expressed as linear combinations in the new basis:

fa = ΣaV†aa ⇒ a = VaΣ−1
a fa ⇒ wa = aTya = fTaua

fb = ΣbV†bb ⇒ b = VbΣ−1
b fb ⇒ wb = bTyb = fTbub

(15.21.8)

Similarly, we have:

E[w∗awa]= a†Raaa = f†aΣ−1
a V

†
aRaaVaΣ−1

a fa = f†afa

E[w∗bwb]= b†Rbbb = f†bΣ
−1
b V

†
bRbbVbΣ

−1
b fb = f†bfb

E[w∗awb]= a†Rabb = f†aΣ−1
a V

†
aRabVbΣ−1

b fb = f†aCabfb

(15.21.9)

Then, the criterion (15.21.5) may be expressed as an SVD maximization criterion in
the new basis:

c = f†aCabfb = max , subject to f†afa = f†bfb = 1 (15.21.10)

It follows from Eq. (15.5.17) that the solution is c = c1, the maximum singular value
ofCab, and the vectors fa, fb are the first singular vectors. The remaining singular values
of Cab are the lower maxima of (15.21.10) and are obtained subject to the orthogonality
constraints of Eq. (15.5.18).

Thus, the desired canonical correlation structure is derived from the SVD of the ma-
trix Cab. The singular values of Cab are called the canonical correlations. The following
procedure will construct all of them. Start with the full SVD of Cab:

Cab = FaCF†b , C = diag{c1, c2 . . . , cr} ∈ Cp×q (15.21.11)

where c1 ≥ c2 ≥ · · · ≥ cr > 0 and r = min(p, q) (full rank case), and Fa, Fb are unitary
matrices, that is, F†aFa = FaF†a = Ip and F†bFb = FbF†b = Iq. Then, construct the CCA
coefficient matrices:

A = VaΣ−1
a Fa = [a1, a2, . . . , ap]= p×p matrix

B = VbΣ−1
b Fb = [b1,b2, . . . ,bq]= q×q matrix

(15.21.12)

The coefficient matrices A,B transform the basis ya,yb directly into the canonical cor-
relation basis. We define:

wa = ATya

wb = BTyb
⇒ w =

[
wa
wb

]
=
[
AT 0
0 BT

][
ya
yb

]
(15.21.13)

Then, the corresponding covariance matrix will be:

Rww = E[w∗wT]=
[
E[w∗

awT
a] E[w∗

awT
b]

E[w∗
bwT

a] E[w∗
bwT

b]

]
=
[
A†RaaA A†RabB
B†RbaA B†RbbB

]
(15.21.14)

By construction, we have A†RaaA = Ip, A†RabB = C, and B†RbbB = Iq. Thus, we
obtain the canonical correlation structure:
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Rww = E[w∗wT]=
[
E[w∗

awT
a] E[w∗

awT
b]

E[w∗
bwT

a] E[w∗
bwT

b]

]
=
[
Ip C
C† Iq

]
(15.21.15)

The canonical correlations and canonical random variables are obtained from the
columns of A,B by the linear combinations:

ci = E[w∗aiwbi] , wai = aTi ya , wbi = bTi yb , i = 1,2, . . . , r (15.21.16)

The MATLAB function ccacov.m takes as input a (p+q)×(p+q) covariance ma-
trix R and computes the coefficient matrices A,B and canonical correlations C, using
Eqs. (15.21.6), (15.21.7), and (15.21.12). It has usage:

[A,C,B] = ccacov(R,p); % CCA of a covariance matrix

Next, we consider the practical implementation of CCA based on N observations
ya(n),yb(n), n = 0,1, . . . ,N−1. We form the N×p and N×q data matrices, as well as
the concatenated N×(p+q) data matrix:

Ya =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

yTa(0)
...

yTa(n)
...

yTa(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Yb =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

yTb(0)
...

yTb(n)
...

yTb(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Y = [Ya,Yb] (15.21.17)

We assume that the column means have been removed from Y. The corresponding
sample covariance matrices are then:

R̂ = Y†Y =
⎡
⎣Y†aYa Y†aYb
Y†bYa Y†bYb

⎤
⎦ =

[
R̂aa R̂ab
R̂ba R̂bb

]
(15.21.18)

We may obtain the CCA transformation matrices A,B by applying the previous con-
struction to R̂. However, a more direct approach is as follows. Starting with the economy
SVDs of Ya and Yb, we have:

Ya = UaΣaV†a = economy SVD of Ya , Ua ∈ CN×p , U†aUa = Ip
Yb = UbΣbV†b = economy SVD of Yb , Ub ∈ CN×q , U†bUb = Iq
Cab = U†aUb = cross-covariance in u-basis , Cab ∈ Cp×q
Cab = FaCF†b = full SVD , C = diag{c1, c2 . . . , cr} , r = min(p, q)

A = VaΣ−1
a Fa = CCA coefficients , A ∈ Cp×p

B = VbΣ−1
b Fb = CCA coefficients , B ∈ Cq×q

Wa = YaA , Wa ∈ CN×p with orthonormal columns, W†
aWa = Ip

Wb = YbB , Wb ∈ CN×q with orthonormal columns, W†
bWb = Iq

W†
aWb = C = p×q diagonal matrix of canonical correlations

(15.21.19)
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The transformed data matrices Wa,Wb and W = [Wa,Wb] have the canonical cor-
relation structure:

W†W =
⎡
⎣W†

aWa W†
aWb

W†
bWa W†

bWb

⎤
⎦ =

[
Ip C
C† Iq

]
(15.21.20)

Denoting the ith columns ofWa,Wb bywai(n),wbi(n), n = 0,1, . . . ,N−1, we note
that they have unit norm as N-dimensional vectors, and the ith canonical correlation is
given by the time-average:

ci =
N−1∑
n=0

w∗ai(n)wbi(n) , i = 1,2, . . . , r (15.21.21)

The above steps have been implemented by the MATLAB function cca. It takes as
inputs the data matrices Ya,Yb and outputs A,B,C. Its usage is as follows:

[A,C,B] = cca(Ya,Yb); % CCA of two data matrices

Example 15.21.1: As an example, consider again the turtle data in the file turtle.dat. We take
Ya,Yb to be the (N = 24) measured lengths and widths of the male (group a) and female
(group b) turtles. The data are shown below:

Ya Yb

n ya1 ya2 yb1 yb2

1 93 74 98 81
2 94 78 103 84
3 96 80 103 86
4 101 84 105 86
5 102 85 109 88
6 103 81 123 92
7 104 83 123 95
8 106 83 133 99
9 107 82 133 102

10 112 89 133 102
11 113 88 134 100
12 114 86 136 102

Ya Yb

n ya1 ya2 yb1 yb2

13 116 90 137 98
14 117 90 138 99
15 117 91 141 103
16 119 93 147 108
17 120 89 149 107
18 120 93 153 107
19 121 95 155 115
20 123 93 155 117
21 127 96 158 115
22 128 95 159 118
23 131 95 162 124
24 135 106 177 132

After removing the columns means, the computed sample covariance matrix is:

R̂ = Y†Y =
⎡
⎣ Y†aYa Y†aYb
Y†bYa Y†bYb

⎤
⎦ = 103

⎡
⎢⎢⎢⎢⎣

3.1490 1.8110 5.5780 3.3785
1.8110 1.1510 3.1760 1.9495

5.5780 3.1760 10.3820 6.2270
3.3785 1.9495 6.2270 3.9440

⎤
⎥⎥⎥⎥⎦

The computed CCA coefficients and canonical correlations are:

A =
[

0.0191 0.0545
−0.0023 −0.0955

]
, B =

[
0.0083 0.0418
0.0026 −0.0691

]

C =
[
c1 0
0 c2

]
=
[

0.9767 0
0 0.1707

]
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The correlation structure in the transformed basis W = [Wa,Wb] is:

W†W =
⎡
⎣W†

aWa W†
aWb

W†
bWa W†

bWb

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

1 0 0.9767 0
0 1 0 0.1707

0.9767 0 1 0
0 0.1707 0 1

⎤
⎥⎥⎥⎥⎦

The first columns of Wa,Wb are the most correlated. They are obtained as the following
linear combinations of the columns of Ya,Yb:

wa1(n)= 0.0191ya1(n)−0.0023ya2(n)

wb1(n)= 0.0083yb1(n)+0.0026yb2(n)
⇒

N−1∑
n=0

wa1(n)wb1(n)= c1 = 0.9767

where the linear combination coefficients are the first columns of A,B. The following
MATLAB code implements this example:

D = loadfile(’turtle.dat’); % read data file

Ya = zmean(D(:,1:2)); % extract columns 1,2 and remove their mean

Yb = zmean(D(:,4:5)); % extract columns 4,5 and remove their mean

[A,C,B] = cca(Ya,Yb);

Y = [Ya,Yb]; Ryy = Y’*Y; % correlated basis

Wa = Ya*A; Wb = Yb*B;
W = [Wa,Wb]; Rww = W’*W; % canonical correlation basis

The quantities A,B,C could also be obtained by the function ccacov applied to R = Y†Y
with p = 2. Once the coefficients A,B are known, the data matrices Ya,Yb may be trans-
formed to Wa,Wb. ��

Finally, we mention that CCA is equivalent to the problem of finding the canonical
angles between two linear subspaces. Consider the two subspaces of CN spanned by the
columns of Ya and Yb. The economy SVDs of Ya,Yb provide orthonormal bases Ua,Ub
for these subspaces.

The canonical angles between the two subspaces are defined [1234,1320,1321] in
terms of the singular values of the matrixU†aUb, but these are the canonical correlations.
The cosines of the canonical angles are the canonical correlations:

ci = cosθi , i = 1,2 . . . , r = min(p, q) (15.21.22)

The largest angle corresponds to the smallest singular value, that is, cosθmax =
cmin = cr . This angle (in radians) is returned by the built-in MATLAB function subspace,
that is,

th_max = subspace(Ya,Yb);
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15.22 Problems

15.1 SVD construction. Consider the following 5×3 matrix, where ε is a small positive parameter:

Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

1+ 3ε 1 1
1 1 1
1 1+ 3ε 1
1 1 1
1 1 1+ 3ε

⎤
⎥⎥⎥⎥⎥⎥⎦

a. Construct the economy SVD of Y, in the form, Y = UΣVT .

b. Show that the rank-1 and rank-2 approximations to Y are given by:

Y1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1+ ε 1+ ε 1+ ε
1 1 1

1+ ε 1+ ε 1+ ε
1 1 1

1+ ε 1+ ε 1+ ε

⎤
⎥⎥⎥⎥⎥⎥⎦ , Y2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1+ ε 1+ ε 1+ ε
1 1 1

1+ ε 1+ 2.5ε 1− 0.5ε
1 1 1

1+ ε 1− 0.5ε 1+ 2.5ε

⎤
⎥⎥⎥⎥⎥⎥⎦

c. Verify the results of parts (a-b) numerically for the value ε = 0.1.

Hint: Note the following matrix has eigenvalues and normalized eigenvectors:

R =
⎡
⎢⎣ R0 R1 R1

R1 R0 R1

R1 R1 R0

⎤
⎥⎦ ⇒

⎡
⎢⎣ λ1

λ2

λ3

⎤
⎥⎦ =

⎡
⎢⎣ R0 + 2R1

R0 −R1

R0 −R1

⎤
⎥⎦ , V =

⎡
⎢⎣ 1/

√
3 0 2/

√
6

1/
√

3 1/
√

2 −1/
√

6
1/
√

3 −1/
√

2 −1/
√

6

⎤
⎥⎦

15.2 Computer Experiment – Southern Oscillation Index. It has been observed that in the southern
Pacific there occurs regularly an upwelling of large masses of lower-level colder water which
has important implications for marine life and coastal weather. This effect, which is variable
on a monthly and yearly basis, has been termed El Niño. It has been held responsible for
many strange global weather effects in the past decades.

One measure of the variability of this effect is the so-called southern oscillation index (SOI)
which is the atmospheric pressure difference at sea level between two standard locations in
the Pacific, namely, Tahiti and Darwin, Australia. This data exhibits a strong 40–50 month
cycle and a weaker 10–12 month cycle.

The SOI data, spanning the years 1920–1992, are in the included file soi2.dat. The monthly
data must be concatenated, resulting into a long one-dimensional time series y(n) and the
mean must be removed. (The concatenation can be done by the following MATLAB com-
mands: assuming that Y is the data matrix whose rows are the monthly data for each year,
then redefine Y=Y’; and set y = Y(:);)

a. It is desired to fit an AR model to this data, plot the AR spectrum, and identify the
spectral peaks. Starting with model orderM = 15, calculate the ordinary Burg estimate
of the prediction-error filter , say ab.

b. Form the order-M autocorrelation and forward/backward data matrices Y, perform an
SVD, and plot the principal component variances as percentages of the total variance.
You will observe that beyond the 5th principal component, the variances flatten out,
indicating that the dimension of the signal subspace can be taken to be of the order
of r = 5–9.

Start with the choice r = 8 and perform K = 1 and K = 3 rank-r enhancement
operations on the data matrix, as expressed symbolically in MATLAB language:
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Y = datamat(y,M,type) % type = 0 or 2
Ye = Y; % initialize SVD iterations
for i=1:K,

Ye = sigsub(Ye,r) % rank-r signal subspace
Ye = toepl(Ye,type) % type = 0 or 2

end
ye = datasig(Ye,type) % extract enhanced signal from Ye

c. Using the enhanced data matrix Ye, calculate the least-squares prediction error filter,
aLS, by solving Yea = 0.

d. From the extracted enhanced signal ye(n), calculate the corresponding order-r Burg
estimate of the prediction-error filter, say ae. (You could also do an order-M Burg
estimate from ye(n), but the order-r choice is more appropriate since r is the assumed
dimension of the signal subspace.)

e. Calculate and plot in dB the AR spectra of the three prediction filters, ab, aLS, ae.
Normalize each spectrum to unity maximum.

Identify the frequency of the highest peak in each spectrum and determine the corre-
sponding period of the cycle in months. Identify also the frequency and period of the
secondary peak that would represent the 10–12 month cycle.

f. Repeat the steps (a)–(e) for the following values of the parameters: For M = 4, r = 3,
K = 1,3. And then, for M = 15, r = 5,6,7,9, and K = 1,3. Moreover, do both the
autocorrelation and forward-backward versions of the data matrices. Some example
graphs are shown below.
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15.3 Computer Experiment – Sunspot Numbers. The Wolf sunspot numbers are of great historical
importance in the development of spectral analysis methods (periodogram and parametric).
Sunspot activity is cyclical and variation in the sunspot numbers has been correlated with
weather and other terrestrial phenomena of economic significance. There is a strong 10-11
year cycle.

The observed yearly number of sunspots over the period 1700–2004 can be obtained from
the course’s web page. The mean of this data must be removed.

a. It is desired to fit an AR model to this data, plot the AR spectrum, and identify the
dominant peak corresponding to the 10–11 year cycle.

b. Perform the steps (a)–(e) as described in Problem 15.2 for the following values of the
parameters: M = 10, r = 2,3,4, K = 1,3. Try also the simpler case M = 3, r = 2,
K = 1,3. Some example graphs are shown below.
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15.4 Computer Experiment – PCA analysis of Olympic Track Records. Please read reference [1309]
on applying PCA to the 1984 Olympic track records. The attached files, olymp1.dat, olymp2.dat,
contain the women’s and men’s track data in a form that can be read by the function load-

file.m.

Read the data files into the 55×7 and 55×8 data matricesY1 andY2 and remove their column
means using the function zmean.

a. For the women’s data matrix Y1, plot the scatterplot of the 100-meter and 200-meter
columns (after removing their mean). Notice that they lie mostly along a one-dimensional
subspace. Perform a PCA on these two columns and determine the percentage vari-
ances carried by the two principal components. On the scatterplot, place the two
straight lines representing the two principal components, as was done in Fig.16.16.1
of the text.

b. Repeat part (a) for the following track pairs:

(100m, 800m), (100m,3000m), (100m, Marathon), (3000m, Marathon)

Comment on the observed clustering of the data points along one-dimensional direc-
tions. Do these make intuitive sense? For example, is a good 100m-sprinter also a
good marathoner, or, is a good 100m-sprinter also a good 200m-sprinter?

c. Next, consider the full data matrix Y1. Working with the SVD of Y1, perform a PCA on
it and determine, print in a table, and plot the percentage variances of the principal
components. Then, determine the PCA coefficients of the first two principal compo-
nents and compare them with those given in the attached paper. Based on the first
component determine the countries that correspond to the top 15 scores. (Hint: use
the MATLAB function sort.)

d. Repeat part (c) using the men’s data matrix Y2.

e. Next, combine the women’s and men’s data matrices into a single matrix by concate-
nating their columns, that is, Y = [Y1, Y2]. Carry out a PCA on Y and determine,
print in a table, and plot the percentage variances. Determine the PCA coefficients of
the first principal component. Then, determine the top 15 countries. Finally, make a
table like the one below that presents the results of parts (c,d,e). Some representative
graphs and results are included below.

rank women men women + men
--------------------------------------------------------------
1 USA USA USA
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2 USSR GB & NI USSR
3 GDR Italy GDR
4 GB & NI USSR GB & NI
5 FRG GDR FRG
6 Czechoslovakia FRG Italy
7 Canada Australia Canada
8 Poland Kenya Poland
9 Italy France Czechoslovakia
10 Finland Belgium Australia
11 Australia Poland Finland
12 Norway Canada France
13 New Zealand Finland New Zealand
14 Netherlands Switzerland Sweden
15 Romania New Zealand Netherlands

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

100 m

20
0 

m

 

 

 data
 PCA

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

3000 m

m
ar

at
h

on

 

 

 data
 PCA

0 1 2 3 4 5 6 7 8

0

20

40

60

80

100

PCA variances, σ
i
2  −  women

PCA index

pe
rc

en
t

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

20

40

60

80

100

PCA variances, σ
i
2  −  women + men

PCA index

pe
rc

en
t


