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Linear Prediction

12.1 Pure Prediction and Signal Modeling

In Sec. 1.17, we discussed the connection between linear prediction and signal modeling.
Here, we rederive the same results by considering the linear prediction problem as a
special case of the Wiener filtering problem, given by Eq. (11.4.6). Our aim is to cast
the results in a form that will suggest a practical way to solve the prediction problem
and hence also the modeling problem. Consider a stationary signal yn having a signal
model

Syy(z)= σ2
εB(z)B(z−1) (12.1.1)

as guaranteed by the spectral factorization theorem. Let Ryy(k) denote the autocorre-
lation of yn :

Ryy(k)= E[yn+kyn]
The linear prediction problem is to predict the current value yn on the basis of all the

past values Yn−1 = {yi , −∞ < i ≤ n− 1}. If we define the delayed signal y1(n)= yn−1,
then the linear prediction problem is equivalent to the optimal Wiener filtering problem
of estimating yn from the related signal y1(n). The optimal estimation filter H(z) is
given by Eq. (11.4.6), where we must identify xn and yn with yn and y1(n) of the present
notation. Using the filtering equation Y1(z)= z−1Y(z), we find that yn and y1(n) have
the same spectral factor B(z)

Sy1y1(z)= (z−1)(z)Syy(z)= Syy(z)= σ2
εB(z)B(z−1)

and also that
Syy1(z)= Syy(z)z = zσ2

εB(z)B(z−1)

Inserting these into Eq. (11.4.6), we find for the optimal filter H(z)

H(z)= 1

σ2
εB(z)

[Syy1(z)
B(z−1)

]
+
= 1

σ2
εB(z)

[
zσ2

εB(z)B(z−1)
B(z−1)

]
+
, or,

H(z)= 1

B(z)
[
zB(z)

]
+ (12.1.2)
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The causal instruction can be removed as follows: Noting that B(z) is a causal and
stable filter, we may expand it in the power series

B(z)= 1+ b1z−1 + b2z−2 + b3z−3 + · · ·
The causal part of zB(z) is then[

zB(z)
]
+ = [z+ b1 + b2z−1 + b3z−2 + · · · ]+= b1 + b2z−1 + b3z−2 + · · ·
= z(b1z−1 + b2z−2 + b3z−3 + · · · ) = z(B(z)−1

)
The prediction filter H(z) then becomes

H(z)= 1

B(z)
z
(
B(z)−1

) = z[1− 1

B(z)

]
(12.1.3)

The input to this filter is y1(n) and the output is the prediction ŷn/n−1.

Example 12.1.1: Suppose that yn is generated by driving the all-pole filter

yn = 0.9yn−1 − 0.2yn−2 + εn

by zero-mean white noise εn. Find the best predictor ŷn/n−1. The signal model in this case
is B(z)= 1/(1− 0.9z−1 + 0.2z−2) and Eq. (12.1.3) gives

z−1H(z)= 1− 1

B(z)
= 1− (1− 0.9z−1 + 0.2z−2)= 0.9z−1 − 0.2z−2

The I/O equation for the prediction filter is obtained by

Ŷ(z)= H(z)Y1(z)= z−1H(z)Y(z)= [0.9z−1 − 0.2z−2
]
Y(z)

and in the time domain
ŷn/n−1 = 0.9yn−1 − 0.2yn−2

Example 12.1.2: Suppose that

Syy(z)= (1− 0.25z−2)(1− 0.25z2)
(1− 0.8z−1)(1− 0.8z)

Determine the best predictor ŷn/n−1. Here, the minimum phase factor is

B(z)= 1− 0.25z−2

1− 0.8z−1

and therefore the prediction filter is

z−1H(z)= 1− 1

B(z)
= 1− 1− 0.8z−1

1− 0.25z−2
= 0.8z−1 − 0.25z−2

1− .25z−2

The I/O equation of this filter is conveniently given recursively by the difference equation

ŷn/n−1 = 0.25ŷn−2/n−3 + 0.8yn−1 − 0.25yn−2 ��
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The prediction error
en/n−1 = yn − ŷn/n−1

is identical to the whitening sequence εn driving the signal model (12.1.1) of yn, indeed,

E(z) = Y(z)−Ŷ(z)= Y(z)−H(z)Y1(z)= Y(z)−H(z)z−1Y(z)

= [1− z−1H(z)
]
Y(z)= 1

B(z)
Y(z)= ε(z)

Thus, in accordance with the results of Sec. 1.13 and Sec. 1.17

en/n−1 = yn − ŷn/n−1 = εn (12.1.4)

Fig. 12.1.1 Linear Predictor.

An overall realization of the linear predictor is shown in Fig. 12.1.1. The indicated
dividing line separates the linear predictor into the Wiener filtering part and the input
part which provides the proper input signals to the Wiener part. The transfer function
from yn to en/n−1 is the whitening inverse filter

A(z)= 1

B(z)
= 1− z−1H(z)

which is stable and causal by the minimum-phase property of the spectral factorization
(12.1.1). In the z-domain we have

E(z)= ε(z)= A(z)Y(z)

and in the time domain

en/n−1 = εn =
∞∑
m=0

amyn−m = yn + a1yn−1 + a2yn−2 + · · ·

The predicted estimate ŷn/n−1 = yn − en/n−1 is

ŷn/n−1 = −
[
a1yn−1 + a2yn−2 + · · ·

]
These results are identical to Eqs. (1.17.2) and (1.17.3). The relationship noted above

between linear prediction and signal modeling can also be understood in terms of the
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gapped-function approach of Sec. 11.7. Rewriting Eq. (12.1.1) in terms of the prediction-
error filter A(z) we have

Syy(z)= σ2
ε

A(z)A(z−1)
(12.1.5)

from which we obtain

A(z)Syy(z)= σ2
ε

A(z−1)
(12.1.6)

Since we have the filtering equation ε(z)= A(z)Y(z), it follows that

Sεy(z)= A(z)Syy(z)
and in the time domain

Rey(k)= E[εnyn−k]=
∞∑
i=0

aiRyy(k− i) (12.1.7)

which is recognized as the gapped function (11.7.1). By construction, εn is the orthog-
onal complement of yn with respect to the entire past subspace Yn−1 = {yn−k, k =
1,2, . . . }, therefore, εn will be orthogonal to each yn−k for k = 1,2, . . . . These are pre-
cisely the gap conditions. Because the prediction is based on the entire past, the gapped
function develops an infinite right-hand side gap. Thus, Eq. (12.1.7) implies

Rey(k)= E[εnyn−k]=
∞∑
i=0

aiRyy(k− i)= 0 , for all k = 1,2, . . . (12.1.8)

The same result, of course, also follows from the z-domain equation (12.1.6). Both
sides of the equation are stable, but since A(z) is minimum-phase, A(z−1) will be
maximum phase, and therefore it will have a stable but anticausal inverse 1/A(z−1).
Thus, the right-hand side of Eq. (12.1.6) has no strictly causal part. Equating to zero all
the coefficients of positive powers of z−1 results in Eq. (12.1.8).

The value of the gapped function at k = 0 is equal to σ2
ε . Indeed, using the gap

conditions (12.1.8) we find

σ2
ε = E[ε2

n]= E
[
εn(yn + a1yn−1 + a2yn−2 + · · · )

]
= Rεy(0)+a1Rεy(1)+a2Rεy(2)+· · · = Rεy(0)= E[εnyn]

Using Eq. (12.1.7) with k = 0 and the symmetry property Ryy(i)= Ryy(−i), we find

σ2
ε = E[ε2

n]= E[εnyn]= Ryy(0)+a1Ryy(1)+a2Ryy(2)+· · · (12.1.9)

Equations (12.1.8) and (12.1.9) may be combined into one:

∞∑
i=0

aiRyy(k− i)= σ2
εδ(k) , for all k ≥ 0 (12.1.10)

which can be cast in the matrix form:⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ryy(0) Ryy(1) Ryy(2) Ryy(3) · · ·
Ryy(1) Ryy(0) Ryy(1) Ryy(2) · · ·
Ryy(2) Ryy(1) Ryy(0) Ryy(1) · · ·
Ryy(3) Ryy(2) Ryy(1) Ryy(0) · · ·

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
a1

a2

a3

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ2
ε

0
0
0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(12.1.11)
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These equations are known as the normal equations of linear prediction [915–928].
They provide the solution to both the signal modeling and the linear prediction prob-
lems. They determine the model parameters {a1, a2, . . . ;σ2

ε} of the signal yn directly in
terms of the experimentally accessible quantities Ryy(k). To render them computation-
ally manageable, the infinite matrix equation (12.1.11) must be reduced to a finite one,
and furthermore, the quantities Ryy(k)must be estimated from actual data samples of
yn. We discuss these matters next.

12.2 Autoregressive Models

In general, the number of prediction coefficients {a1, a2, . . . } is infinite since the pre-
dictor is based on the infinite past. However, there is an important exception to this;
namely, when the process yn is autoregressive. In this case, the signal model B(z) is an
all-pole filter of the type

B(z)= 1

A(z)
= 1

1+ a1z−1 + a2z−2 + · · · + apz−p (12.2.1)

which implies that the prediction filter is a polynomial

A(z)= 1+ a1z−1 + a2z−2 + · · · + apz−p (12.2.2)

The signal generator for yn is the following difference equation, driven by the un-
correlated sequence εn :

yn + a1yn−1 + a2yn−2 + · · · + apyn−p = εn (12.2.3)

and the optimal prediction of yn is simply given by:

ŷn/n−1 = −
[
a1yn−1 + a2yn−2 + · · · + apyn−p

]
(12.2.4)

In this case, the best prediction of yn depends only on the past p samples {yn−1,
yn−2, . . . , yn−p}. The infinite set of equations (12.1.10) or (12.1.11) are still satisfied even
though only the first p+ 1 coefficients {1, a1, a2, . . . , ap} are nonzero.

The (p+ 1)×(p+ 1) portion of Eq. (12.1.11) is sufficient to determine the (p+ 1)
model parameters {a1, a2, . . . , ap;σ2

ε} :

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ryy(0) Ryy(1) Ryy(2) · · · Ryy(p)
Ryy(1) Ryy(0) Ryy(1) · · · Ryy(p− 1)
Ryy(2) Ryy(1) Ryy(0) · · · Ryy(p− 2)

...
...

...
. . .

...
Ryy(p) Ryy(p− 1) Ryy(p− 2) · · · Ryy(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
a1

a2

...
ap

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ2
ε

0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(12.2.5)

Such equations may be solved efficiently by Levinson’s algorithm, which requires
O(p2) operations and O(p) storage locations to obtain the ais instead of O(p3) and
O(p2), respectively, that would be required if the inverse of the autocorrelation matrix
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Ryy were to be computed. The finite set of model parameters {a1, a2, . . . , ap;σ2
ε} de-

termines the signal model of yn completely. Setting z = ejω into Eq. (12.1.5)) we find a
simple parametric representation of the power spectrum of the AR signal yn

Syy(ω)= σ2
ε∣∣A(ω)∣∣2 =

σ2
ε∣∣1+ a1e−jω + a2e−2jω + · · · + ape−jωp

∣∣2 (12.2.6)

In practice, the normal equations (12.2.5) provide a means of determining approx-
imate estimates for the model parameters {a1, a2, . . . , ap;σ2

ε} . Typically, a block of
length N of recorded data is available

y0, y1, y2, . . . , yN−1

There are many different methods of extracting reasonable estimates of the model
parameters using this block of data. We mention: (1) the autocorrelation or Yule-Walker
method, (2) the covariance method, and (3) Burg’s method. There are also some varia-
tions of these methods. The first method, the Yule-Walker method, is perhaps the most
obvious and straightforward one. In the normal equations (12.2.5), one simply replaces
the ensemble autocorrelations Ryy(k) by the corresponding sample autocorrelations
computed from the given block of data; that is,

R̂yy(k)= 1

N

N−1−k∑
n=0

yn+kyn , for 0 ≤ k ≤ p (12.2.7)

where only the first p + 1 lags are needed in Eq. (12.2.5). We must have, of course,
p ≤ N − 1. As discussed in Sec. 1.13, the resulting estimates of the model parameters
{â1, â2, . . . , âp; σ̂2

ε} may be used now in a number of ways; examples include obtaining
an estimate of the power spectrum of the sequence yn

Ŝyy(ω)= σ̂2
ε∣∣Â(ω)∣∣2 =

σ̂2
ε∣∣1+ â1e−jω + â2e−2jω + · · · + âpe−jωp

∣∣2

or, representing the block ofN samples yn in terms of a few (i.e., p+1) filter parameters.
To synthesize the original samples one would generate white noise εn of variance σ̂2

ε
and send it through the generator filter whose coefficients are the estimated values; that
is, the filter

B̂(z)= 1

Â(z)
= 1

1+ â1z−1 + â2z−2 + · · · + âpz−p
The Yule-Walker analysis procedure, also referred to as the autocorrelation method

of linear prediction [917], is summarized in Fig. 12.2.1.

12.3 Linear Prediction and the Levinson Recursion

In the last section, we saw that if the signal being predicted is autoregressive of order
p, then the optimal linear predictor collapses to a pth order predictor. The infinite di-
mensional Wiener filtering problem collapses to a finite dimensional one. A geometrical
way to understand this property is to say that the projection of yn on the subspace
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Fig. 12.2.1 Yule-Walker Analysis Algorithm.

spanned by the entire past {yn−i , 1 ≤ i < ∞} is the same as the projection of yn onto
the subspace spanned only by the past p samples; namely, {yn−i , 1 ≤ i ≤ p}. This is a
consequence of the difference equation (12.2.3) generating yn.

If the process yn is not autoregressive, these two projections will be different. For
any given p, the projection of yn onto the past p samples will still provide the best linear
prediction of yn that can be made on the basis of these p samples. As p increases, more
and more past information is taken into account, and we expect the prediction of yn
to become better and better in the sense of yielding a smaller mean-square prediction
error.

In this section, we consider the finite-past prediction problem and discuss its effi-
cient solution via the Levinson recursion [915–928]. For sufficiently large values of p, it
may be considered to be an adequate approximation to the full prediction problem and
hence also to the modeling problem.

Consider a stationary time series yn with autocorrelation functionR(k)= E[yn+kyn].
For any given p, we seek the best linear predictor of the form

ŷn = −
[
a1yn−1 + a2yn−2 + · · · + apyn−p

]
(12.3.1)

The p prediction coefficients {a1, a2, . . . , ap} are chosen to minimize the mean-
square prediction error

E = E[e2
n] (12.3.2)

where en is the prediction error

en = yn − ŷn = yn + a1yn−1 + a2yn−2 + · · · + apyn−p (12.3.3)

Differentiating Eq. (12.3.2) with respect to each coefficient ai, i = 1,2, . . . , p, yields
the orthogonality equations

E[enyn−i]= 0 , for i = 1,2, . . . , p (12.3.4)

which express the fact that the optimal predictor ŷn is the projection onto the span of
the past p samples; that is, {yn−i , i = 1,2, . . . , p}. Inserting the expression (12.3.3) for
en into Eq. (12.3.4), we obtain p linear equations for the coefficients

p∑
j=0

ajE[yn−jyn−i]=
p∑
j=0

R(i− j)aj = 0 , for i = 1,2, . . . , p (12.3.5)
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Using the conditions (12.3.4) we also find for the minimized value of

σ2
e = E = E[e2

n]= E[enyn]=
p∑
j=0

R(j)aj (12.3.6)

Equations (12.3.5) and (12.3.6) can be combined into the (p+1)×(p+1)matrix equation

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

R(0) R(1) R(2) · · · R(p)
R(1) R(0) R(1) · · · R(p− 1)
R(2) R(1) R(0) · · · R(p− 2)

...
...

...
. . .

...
R(p) R(p− 1) R(p− 2) · · · R(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
a1

a2

...
ap

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ2
e

0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(12.3.7)

which is identical to Eq. (12.2.5) for the autoregressive case. It is also the truncated
version of the infinite matrix equation (12.1.11) for the full prediction problem.

Instead of solving the normal equations (12.3.7) directly, we would like to embed
this problem into a whole class of similar problems; namely, those of determining the
best linear predictors of orders p = 1, p = 2, p = 3, . . . , and so on. This approach will
lead to Levinson’s algorithm and to the so-called lattice realizations of linear prediction
filters. Pictorially this class of problems is illustrated below

where [1, a11], [1, a21, a22], [1, a31, a32, a33], . . . , represent the best predictors of or-
ders p = 1,2,3, . . . , respectively. It was necessary to attach an extra index indicating the
order of the predictor. Levinson’s algorithm is an iterative procedure that constructs
the next predictor from the previous one. In the process, all optimal predictors of lower
orders are also computed. Consider the predictors of orders p and p+ 1, below

yn−p−1 yn−p · · · yn−2 yn−1 yn
app · · · ap2 ap1 1

ap+1,p+1 ap+1,p · · · ap+1,2 ap+1,1 1

ep(n)= yn + ap1yn−1 + ap2yn−2 + · · · + appyn−p
ep+1(n)= yn + ap+1,1yn−1 + ap+1,2yn−2 + · · · + ap+1,p+1yn−p−1
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Our objective is to construct the latter in terms of the former. We will use the ap-
proach of Robinson and Treitel, based on gapped functions [925]. Suppose that the best
predictor of order p, [1, ap1, ap2, . . . , app], has already been constructed. The corre-
sponding gapped function is

gp(k)= E[ep(n)yn−k]= E
⎡
⎣
⎛
⎝ p∑
i=0

apiyn−i

⎞
⎠yn−k

⎤
⎦ = p∑

i=0

apiR(k− i) (12.3.8)

It has a gap of length p as shown , that is,

gp(k)= 0 , for 1 ≤ k ≤ p

These gap conditions are the same as the orthogonality equations (12.3.4). Using
gp(k) we now construct a new gapped function gp+1(k) of gap p+ 1. To do this, first
we reflect gp(k) about the origin; that is, gp(k)→ gp(−k). The reflected function has
a gap of length p but at negatives times. A delay of (p+ 1) time units will realign this
gap with the original gap. This follows because if 1 ≤ k ≤ p, then 1 ≤ p + 1 − k ≤ p.
The reflected-delayed function will be gp(p+1−k). These operations are shown in the
following figure

Since both gp(k) and gp(p+1−k) have exactly the same gap, it follows that so will
any linear combination of them. Therefore,

gp+1(k)= gp(k)−γp+1gp(p+ 1− k) (12.3.9)

will have a gap of length at least p. We now select the parameter γp+1 so that gp+1(k)
acquires an extra gap point; its gap is now of length p+ 1. The extra gap condition is

gp+1(p+ 1)= gp(p+ 1)−γp+1gp(0)= 0

which may be solved for

γp+1 = gp(p+ 1)
gp(0)

Evaluating Eq. (12.3.8) at k = p+ 1, and using the fact that the value of the gapped
function at k = 0 is the minimized value of the mean-squared error, that is,

Ep = E
[
e2
p(n)

] = E[ep(n)yn]= gp(0) (12.3.10)
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we finally find

γp+1 = ΔpEp (12.3.11)

where we set Δp = gp(p+ 1)

Δp =
p∑
i=0

apiR(p+ 1− i)= [R(p+ 1),R(p),R(p− 1), . . . , R(1)
]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
ap1

ap2

...
app

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(12.3.12)

The coefficients γp+1 are called reflection, PARCOR, or Schur coefficients. This ter-
minology will become clear later. Evaluating Eq. (12.3.9) at k = 0 and using gp(p+ 1)=
γp+1gp(0), we also find a recursion for the quantity Ep+1 = gp+1(0)

Ep+1 = gp+1(0)= gp(0)−γp+1gp(p+ 1)= gp(0)−γp+1 · γp+1gp(0) , or,

Ep+1 = (1− γ2
p+1)Ep (12.3.13)

This represents the minimum value of the mean-square prediction error E
[
e2
p+1(n)

]
for the predictor of order p + 1. Since both Ep and Ep+1 are nonnegative, it follows
that the factor (1 − γ2

p+1) will be nonnegative and less than one. It represents the
improvement in the prediction obtained by using a predictor of order p+1 instead of a
predictor of order p. It also follows that γp+1 has magnitude less than one, |γp+1| ≤ 1.

To find the new prediction coefficients, ap+1,i, we use the fact that the gapped func-
tions are equal to the convolution of the corresponding prediction-error filters with the
autocorrelation function of yn :

gp(k)=
p∑
i=0

apiR(k− i) ⇒ Gp(z)= Ap(z)Syy(z)

gp+1(k)=
p+1∑
i=0

ap+1,iR(k− i) ⇒ Gp+1(z)= Ap+1(z)Syy(z)

where Syy(z) represents the power spectral density of yn. Taking z-transforms of both
sides of Eq. (12.3.9), we find

Gp+1(z)= Gp(z)−γp+1z−(p+1)Gp(z−1) , or,

Ap+1(z)Syy(z)= Ap(z)Syy(z)−γp+1z−(p+1)Ap(z−1)Syy(z−1)

where we used the fact that the reflected gapped function gp(−k) has z-transform
Gp(z−1), and therefore the delayed (by p + 1) as well as reflected gapped function
gp(p+1−k) has z-transform z−(p+1)Gp(z−1). Since Syy(z)= Syy(z−1) because of the
symmetry relations R(k)= R(−k), it follows that Syy(z) is a common factor in all the
terms. Therefore, we obtain a relationship between the new best prediction-error filter
Ap+1(z)and the old one Ap(z)

Ap+1(z)= Ap(z)−γp+1z−(p+1)Ap(z−1) (Levinson recursion) (12.3.14)
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Taking inverse z-transforms, we find

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ap+1,1
ap+1,2

...
ap+1,p
ap+1,p+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ap1

ap2

...
app
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− γp+1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
app
ap,p−1

...
ap1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12.3.15)

which can also be written as

ap+1,i = api − γp+1ap,p+1−i , for 1 ≤ i ≤ p
ap+1,p+1 = −γp+1

Introducing the reverse polynomial ARp(z)= z−pAp(z−1), we may write Eq. (12.3.14) as

Ap+1(z)= Ap(z)−γp+1z−1ARp(z) (12.3.16)

Taking the reverse of both sides, we find

Ap+1(z−1)= Ap(z−1)−γp+1zp+1Ap(z)

ARp+1(z)= z−(p+1)Ap+1(z−1)= z−(p+1)Ap(z−1)−γp+1Ap(z) , or,

ARp+1(z)= z−1ARp(z)−γp+1Ap(z) (12.3.17)

Equation (12.3.17) is, in a sense, redundant, but it will prove convenient to think
of the Levinson recursion as a recursion on both the forward, Ap(z), and the reverse,
ARp(z), polynomials. Equations (12.3.16) and Eq. (12.3.17) may be combined into a 2×2
matrix recursion equation, referred to as the forward Levinson recursion:[

Ap+1(z)
ARp+1(z)

]
=
[

1 −γp+1z−1

−γp+1 z−1

][
Ap(z)
ARp(z)

]
(forward recursion) (12.3.18)

The recursion is initialized at p = 0 by setting

A0(z)= AR0 (z)= 1 and E0 = R(0)= E[y2
n] (12.3.19)

which corresponds to no prediction at all. We summarize the computational steps of
the Levinson algorithm:

1. Initialize at p = 0 using Eq. (12.3.19).

2. At stage p, the filter Ap(z) and error Ep are available.

3. Using Eq. (12.3.11), compute γp+1.

4. Using Eq. (12.3.14) or Eq. (12.3.18), determine the new polynomial Ap+1(z).
5. Using Eq. (12.3.13), update the mean-square prediction error to Ep+1.

6. Go to stage p+ 1.
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The iteration may be continued until the final desired order is reached. The depen-
dence on the autocorrelation R(k) of the signal yn is entered through Eq. (12.3.11) and
E0 = R(0). To reach stage p, only the p+1 autocorrelation lags {R(0),R(1), . . . , R(p)}
are required. At the pth stage, the iteration already has provided all the prediction fil-
ters of lower order, and all the previous reflection coefficients. Thus, an alternative
parametrization of the pth order predictor is in terms of the sequence of reflection
coefficients {γ1, γ2, . . . , γp} and the prediction error Ep

{Ep, ap1, ap2, . . . , app} � {Ep,γ1, γ2, . . . , γp}

One may pass from one parameter set to another. And both sets are equivalent
to the autocorrelation set {R(0),R(1), . . . , R(p)}. The alternative parametrization of
the autocorrelation function R(k) of a stationary random sequence in terms of the
equivalent set of reflection coefficients is a general result [929,930], and has also been
extended to the multichannel case [931].

If the process yn is autoregressive of order p, then as soon as the Levinson recursion
reaches this order, it will provide the autoregressive coefficients {a1, a2, . . . , ap} which
are also the best prediction coefficients for the full (i.e., based on the infinite past)
prediction problem. Further continuation of the Levinson recursion will produce nothing
new—all prediction coefficients (and all reflection coefficients) of order higher than p
will be zero, so that Aq(z)= Ap(z) for all q > p.

The four functions lev, frwlev, bkwlev, and rlev allow the passage from one pa-
rameter set to another. The function lev is an implementation of the computational
sequence outlined above. The input to the function is the final desired order of the
predictor, sayM, and the vector of autocorrelation lags {R(0),R(1), ..., R(M)}. Its out-
put is the lower-triangular matrix L whose rows are the reverse of all the lower order
prediction-error filters. For example, forM = 4 the matrix L would be

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
a11 1 0 0 0
a22 a21 1 0 0
a33 a32 a31 1 0
a44 a43 a42 a41 1

⎤
⎥⎥⎥⎥⎥⎥⎦ (12.3.20)

The first column of L contains the negatives of all the reflection coefficients. This fol-
lows from the Levinson recursion (12.3.14) which implies that the negative of the highest
coefficient of the pth prediction-error filter is the pth reflection coefficient; namely,

γp = −app , p = 1,2, . . . ,M (12.3.21)

This choice for L is justified below and in Sec. 12.9. The function lev also produces
the vector of mean-square prediction errors {E0, E1, . . . , EM} according to the recursion
(12.3.13).

The function frwlev is an implementation of the forward Levinson recursion (12.3.18)
or (12.3.15). Its input is the set of reflection coefficients {γ1, γ2, . . . , γM} and its output
is the set of all prediction-error filters up to order M, that is, Ap(z), p = 1,2, . . . ,M.
Again, this output is arranged into the matrix L.
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The function bkwlev is the inverse operation to frwlev. Its input is the vector of
prediction-error filter coefficients [1, aM1, aM2, . . . , aMM] of the final order M, and its
output is the matrix L containing all the lower order prediction-error filters. The set of
reflection coefficients are extracted from the first column of L. This function is based
on the inverse of the matrix equation (12.3.18). Shifting p down by one unit, we write
Eq. (12.3.18) as [

Ap(z)
ARp(z)

]
=
[

1 −γpz−1

−γp z−1

][
Ap−1(z)
ARp−1(z)

]
(12.3.22)

Its inverse is[
Ap−1(z)
ARp−1(z)

]
= 1

1− γ2
p

[
1 γp
γpz z

][
Ap(z)
ARp(z)

]
(backward recursion) (12.3.23)

At each stage p, start withAp(z) and extract γp = −app from the highest coefficient
ofAp(z). Then, use Eq. (12.3.23) to obtain the polynomialAp−1(z). The iteration begins
at the given orderM and proceeds downwards to p =M − 1,M − 2, . . . ,1,0.

The function rlev generates the set of autocorrelation lags {R(0),R(1), ..., R(M)}
from the knowledge of the final prediction-error filter AM(z) and final prediction error
EM. It calls bkwlev to generate all the lower order prediction-error filters, and then
it reconstructs the autocorrelation lags using the gapped function condition gp(p)=∑p
i=0 apiR(p− i)= 0, which may be solved for R(p) in terns of R(p− i), i = 1,2, . . . , p,

as follows:

R(p)= −
p∑
i=1

apiR(p− i) , p = 1,2, . . . ,M (12.3.24)

For example, the first few iterations of Eq. (12.3.24) will be:

R(1) = −[a11R(0)
]

R(2) = −[a21R(1)+a22R(0)
]

R(3) = −[a31R(2)+a32R(1)+a33R(0)
]

To get this recursion started, the value of R(0) may be obtained from Eq. (12.3.13).
Using Eq. (12.3.13) repeatedly, and E0 = R(0) we find

EM = (1− γ2
1)(1− γ2

2)· · · (1− γ2
M)R(0) (12.3.25)

Since the reflection coefficients are already known (from the call to bkwlev) and EM
is given, this equation provides the right value for R(0).

The function schur, based on the Schur algorithm and discussed in Sec. 12.10, is an
alternative to lev. The logical interconnection of these functions is shown below.
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Example 12.3.1: Given the autocorrelation lags

{R(0),R(1),R(2),R(3),R(4)} = {128,−64,80,−88,89}

Find all the prediction-error filters Ap(z) up to order four, the four reflection coefficients,
and the corresponding mean-square prediction errors. Below, we simply state the results
obtained using the function lev:

A1(z) = 1+ 0.5z−1

A2(z) = 1+ 0.25z−1 − 0.5z−2

A3(z) = 1− 0.375z−2 + 0.5z−3

A4(z) = 1− 0.25z−1 − 0.1875z−2 + 0.5z−3 − 0.5z−4

The reflection coefficients are the negatives of the highest coefficients; thus,

{γ1, γ2, γ3, γ4} = {−0.5, 0.5, −0.5, 0.5}

The vector of mean-squared prediction errors is given by

{E0, E1, E2, E3, E4} = {128, 96, 72, 54, 40.5}

Sending the above vector of reflection coefficients through the function frwlev would gen-
erate the above set of polynomials. Sending the coefficients of A4(z) through bkwlev
would generate the same set of polynomials. Sending the coefficients of A4(z) and E4 =
40.5 through rlev would recover the original autocorrelation lagsR(k), k = 0,1,2,3,4. ��

The Yule-Walker method (see Sec. 12.2) can be used to extract the linear prediction
parameters from a given set of signal samples. From a given length-N block of data

y0, y1, y2, . . . , yN−1

compute the sample autocorrelations {R̂(0), R̂(1), . . . , R̂(M)} using, for example, Eq. (12.2.7),
and send them through the Levinson recursion. The yw implements the Yule-Walker
method. The input to the function is the data vector of samples {y0, y1, . . . , yN−1} and
the desired final orderM of the predictor. Its output is the set of all prediction-error fil-
ters up to orderM, arranged in the matrix L, and the vector of mean-squared prediction
errors up to orderM, that is, {E0, E1, . . . , EM}
Example 12.3.2: Given the signal samples

{y0, y1, y2, y3, y4} = {1,1,1,1,1}

determine all the prediction-error filters up to order four. Using the fourth order predictor,
predict the sixth value in the above sequence, i.e., the value of y5.

The sample autocorrelation of the above signal is easily computed using the methods of
Chapter 1. We find (ignoring the 1/N normalization factor):

{R̂(0), R̂(1), R̂(2), R̂(3), {R̂(4)} = {5,4,3,2,1}
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Sending these lags through the function lev we find the prediction-error filters:

A1(z) = 1− 0.8z−1

A2(z) = 1− 0.889z−1 + 0.111z−2

A3(z) = 1− 0.875z−1 + 0.125z−3

A4(z) = 1− 0.857z−1 + 0.143z−4

Therefore, the fourth order prediction of yn given by Eq. (12.3.1) is

ŷn = 0.857yn−1 − 0.143yn−4

which gives ŷ5 = 0.857− 0.143 = 0.714. ��

The results of this section can also be derived from those of Sec. 1.8 by invoking
stationarity and making the proper identification of the various quantities. The data
vector y and the subvectors ȳ and ỹ are identified with y = yp+1(n), ȳ = yp(n), and
ỹ = yp(n− 1), where

yp+1(n)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

yn
yn−1

...
yn−p
yn−p−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, yp(n)=

⎡
⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−p

⎤
⎥⎥⎥⎥⎥⎦ , yp(n− 1)=

⎡
⎢⎢⎢⎢⎢⎣
yn−1

yn−2

...
yn−p−1

⎤
⎥⎥⎥⎥⎥⎦ (12.3.26)

It follows from stationarity that the autocorrelation matrices of these vectors are
independent of the absolute time instant n; therefore, we write

Rp = E[yp(n)yp(n)T]= E[yp(n− 1)yp(n− 1)T], Rp+1 = E[yp+1(n)yp+1(n)T]

It is easily verified thatRp is the order-p autocorrelation matrix defined in Eq. (12.3.7)
and that the order-(p+1) autocorrelation matrixRp+1 admits the block decompositions

Rp+1 =

⎡
⎢⎢⎢⎢⎢⎣

R(0) R(1) · · · R(p+ 1)
R(1)

... Rp
R(p+ 1)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

R(p+ 1)

Rp
...

R(1)
R(p+ 1) · · · R(1) R(0)

⎤
⎥⎥⎥⎥⎥⎦

It follows, in the notation of Sec. 1.8, that R̄ = R̃ = Rp and ρa = ρb = R(0), and

ra =

⎡
⎢⎢⎣

R(1)
...

R(p+ 1)

⎤
⎥⎥⎦ , rb =

⎡
⎢⎢⎣
R(p+ 1)

...
R(1)

⎤
⎥⎥⎦

Thus, ra and rb are the reverse of each other. It follows that the backward predictors
are the reverse of the forward ones. Therefore, Eq. (12.3.14) is the same as Eq. (1.8.40),
with the identifications

a = ap+1 , b = bp+1 , ā = ã = ap , b̄ = b̃ = bp
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where

ap+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
ap+1,1

...
ap+1,p
ap+1,p+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, bp+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ap+1,p+1

ap+1,p
...

ap+1,1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

ap =

⎡
⎢⎢⎢⎢⎢⎣

1
ap1

...
app

⎤
⎥⎥⎥⎥⎥⎦ , bp =

⎡
⎢⎢⎢⎢⎢⎣
app

...
ap1

1

⎤
⎥⎥⎥⎥⎥⎦

Symbolically, bp = aRp , bp+1 = aRp+1. We have Ēa = Ẽb = Ep and γa = γb = γp+1.
Thus, Eq. (12.3.15) may be written as

ap+1 =
[

ap
0

]
− γp+1

[
0
bp

]
=
[

ap
0

]
− γp+1

[
0
aRp

]
(12.3.27)

The normal Eqs. (12.3.7) can be written for orders p and p + 1 in the compact form of
Eqs. (1.8.38) and (1.8.12)

Rpap = Epup , Rp+1ap+1 = Ep+1up+1 , up =
[

1
0

]
, up+1 =

[
up
0

]
(12.3.28)

Recognizing that Eq. (12.3.12) can be written as Δp = aTp rb, it follows that the re-
flection coefficient equation (12.3.11) is the same as (1.8.42). The rows of the matrix L
defined by Eq. (12.3.20) are the reverse of the forward predictors; that is, the backward
predictors of successive orders. Thus, L is the same as that defined in Eq. (1.8.13). The
rows of the matrix U defined in Eq. (1.8.30) are the forward predictors, with the first
row being the predictor of highest order. For example,

U =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 a41 a42 a43 a44

0 1 a31 a32 a33

0 0 1 a21 a22

0 0 0 1 a11

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

Comparing L with U, we note that one is obtained from the other by reversing its
rows and then its columns; formally, U = JLJ, where J is the corresponding reversing
matrix.

12.4 Levinson’s Algorithm in Matrix Form

In this section, we illustrate the mechanics of the Levinson recursion—cast in matrix
form—by explicitly carrying out a few of the recursions given in Eq. (12.3.15). The
objective of such recursions is to solve normal equations of the type

⎡
⎢⎢⎢⎣
R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

1
a31

a32

a33

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
E3

0
0
0

⎤
⎥⎥⎥⎦
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for the unknowns {E3, a31, a32, a33}. The corresponding prediction-error filter is

A3(z)= 1+ a31z−1 + a32z−2 + a33z−3

and the minimum value of the prediction error is E3. The solution is obtained in an
iterative manner, by solving a family of similar matrix equations of lower dimensionality.
Starting at the upper left corner,

the Rmatrices are successively enlarged until the desired dimension is reached (4×4 in
this example). Therefore, one successively solves the matrix equations

[R0][1]= [E0] ,
[
R0 R1

R1 R0

][
1
a11

]
=
[
E1

0

]
,

⎡
⎢⎣R0 R1 R2

R1 R0 R1

R2 R1 R0

⎤
⎥⎦
⎡
⎢⎣ 1
a21

a22

⎤
⎥⎦ =

⎡
⎢⎣ E2

0
0

⎤
⎥⎦

The solution of each problem is obtained in terms of the solution of the previous
one. In this manner, the final solution is gradually built up. In the process, one also
finds all the lower order prediction-error filters.

The iteration is based on two key properties of the autocorrelation matrix: first,
the autocorrelation matrix of a given size contains as subblocks all the lower order
autocorrelation matrices; and second, the autocorrelation matrix is reflection invariant.
That is, it remains invariant under interchange of its columns and then its rows. This
interchanging operation is equivalent to the similarity transformation by the “reversing”
matrix J having 1’s along its anti-diagonal, e.g.,

J =

⎡
⎢⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎥⎦ (12.4.1)

The invariance property means that the autocorrelation matrix commutes with the
matrix J

JRJ−1 = R (12.4.2)

This property immediately implies that if the matrix equation is satisfied:

⎡
⎢⎢⎢⎣
R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
a0

a1

a2

a3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
b0

b1

b2

b3

⎤
⎥⎥⎥⎦
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then the following equation is also satisfied:⎡
⎢⎢⎢⎣
R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
a3

a2

a1

a0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
b3

b2

b1

b0

⎤
⎥⎥⎥⎦

The steps of the Levinson algorithm are explicitly as follows:

Step 0

Solve R0 ·1 = E0. This defines E0. Then enlarge to the next size by padding a zero, that
is, [

R0 R1

R1 R0

][
1
0

]
=
[
E0

Δ0

]
, this defines Δ0. Then, also

[
R0 R1

R1 R0

][
0
1

]
=
[
Δ0

E0

]
, by reversal invariance

These are the preliminaries to Step 1.

Step 1

We wish to solve [
R0 R1

R1 R0

][
1
a11

]
=
[
E1

0

]
(12.4.3)

Try an expression of the form[
1
a11

]
=
[

1
0

]
− γ1

[
0
1

]

Acting on both sides by

[
R0 R1

R1 R0

]
and using the results of Step 0, we obtain

[
R0 R1

R1 R0

][
1
a11

]
=
[
R0 R1

R1 R0

][
1
0

]
− γ1

[
R0 R1

R1 R0

][
0
1

]
, or,

[
E1

0

]
=
[
E0

Δ0

]
− γ1

[
Δ0

E0

]
, or,

E1 = E0 − γ1Δ0 , 0 = Δ0 − γ1E0 , or

γ1 = Δ0

E0
, E1 = E0 − γ1Δ0 = (1− γ2

1)E0 , where Δ0 = R1

These define γ1 and E1. As a preliminary to Step 2, enlarge Eq. (12.4.3) to the next
size by padding a zero⎡

⎢⎣R0 R1 R2

R1 R0 R1

R2 R1 R0

⎤
⎥⎦
⎡
⎢⎣ 1
a11

0

⎤
⎥⎦ =

⎡
⎢⎣ E1

0
Δ1

⎤
⎥⎦ , this defines Δ1. Then, also

⎡
⎢⎣R0 R1 R2

R1 R0 R1

R2 R1 R0

⎤
⎥⎦
⎡
⎢⎣ 0
a11

1

⎤
⎥⎦ =

⎡
⎢⎣Δ1

0
E1

⎤
⎥⎦ , by reversal invariance
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Step 2

We wish to solve ⎡
⎢⎣R0 R1 R2

R1 R0 R1

R2 R1 R0

⎤
⎥⎦
⎡
⎢⎣ 1
a21

a22

⎤
⎥⎦ =

⎡
⎢⎣ E2

0
0

⎤
⎥⎦ (12.4.4)

Try an expression of the form:

⎡
⎢⎣ 1
a21

a22

⎤
⎥⎦ =

⎡
⎢⎣ 1
a11

0

⎤
⎥⎦− γ2

⎡
⎢⎣ 0
a11

1

⎤
⎥⎦ , with γ2 to be determined

Acting on both sides by the 3×3 autocorrelation matrix and using Step 1, we find

⎡
⎢⎣ E2

0
0

⎤
⎥⎦ =

⎡
⎢⎣ E1

0
Δ1

⎤
⎥⎦− γ2

⎡
⎢⎣Δ1

0
E1

⎤
⎥⎦ , or,

E2 = E1 − γ2Δ1 , 0 = Δ1 − γ2E1 , or

γ2 = Δ1

E1
, E2 = (1− γ2

2)E1 , where Δ1 =
[
R2, R1

][ 1
a11

]

These define γ2 and E2. As a preliminary to Step 3, enlarge Eq. (12.4.4) to the next
size by padding a zero

⎡
⎢⎢⎢⎣
R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

1
a21

a22

0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
E2

0
0
Δ2

⎤
⎥⎥⎥⎦ , this defines Δ2. Then, also

⎡
⎢⎢⎢⎣
R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

0
a22

a21

1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
Δ2

0
0
E2

⎤
⎥⎥⎥⎦ , by reversal invariance

Step 3

We wish to solve ⎡
⎢⎢⎢⎣
R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

1
a31

a32

a33

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
E3

0
0
0

⎤
⎥⎥⎥⎦ (12.4.5)

Try an expression of the form:

⎡
⎢⎢⎢⎣

1
a31

a32

a33

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1
a21

a22

0

⎤
⎥⎥⎥⎦− γ3

⎡
⎢⎢⎢⎣

0
a22

a21

1

⎤
⎥⎥⎥⎦ , with γ3 to be determined
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Acting on both sides by the 4×4 autocorrelation matrix and using Step 2, we obtain

⎡
⎢⎢⎢⎣
E3

0
0
0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
E2

0
0
Δ2

⎤
⎥⎥⎥⎦− γ3

⎡
⎢⎢⎢⎣
Δ2

0
0
E2

⎤
⎥⎥⎥⎦ , or,

E3 = E2 − γ3Δ2 , 0 = Δ2 − γ3E2 , or

γ3 = Δ2

E2
, E3 = (1− γ2

3)E2 , where Δ2 =
[
R3, R2, R1

]⎡⎢⎣ 1
a21

a22

⎤
⎥⎦

Clearly, the procedure can be continued to higher and higher orders, as required
in each problem. Note that at each step, we used the order-updating Eqs. (1.8.40) in
conjunction with Eq. (1.8.47).

12.5 Autocorrelation Sequence Extensions

In this section, we discuss the problem of extending an autocorrelation function and
the related issues of singular autocorrelation matrices. The equivalence between an
autocorrelation function and the set of reflection coefficients provides a convenient and
systematic way to (a) test whether a given finite set of numbers are the autocorrelation
lags of a stationary signal and (b) extend a given finite set of autocorrelation lags to
arbitrary lengths while preserving the autocorrelation property.

For a finite set of numbers {R(0),R(1), . . . , R(p)} to be the lags of an autocorre-
lation function, it is necessary and sufficient that all reflection coefficients, extracted
from this set via the Levinson recursion, have magnitude less than one; that is, |γi| < 1,
for i = 1,2, . . . , p, and also that R(0)> 0. These conditions are equivalent to the pos-
itive definiteness of the autocorrelation matrix Rp. The proof follows from the fact
that the positivity of Rp is equivalent to the conditions on the prediction errors Ei > 0,
for i = 1,2, . . . , p. In turn, these conditions are equivalent to E0 = R(0)> 0 and and,
through Eq. (12.3.13), to the reflection coefficients having magnitude less than one.

The problem of extending a finite set {R(0),R(1), . . . , R(p)} of autocorrelation lags
is to find a numberR(p+1) such that the extended set {R(0),R(1), . . . , R(p),R(p+1)}
is still an autocorrelation sequence. This can be done by parametrizing R(p + 1) in
terms of the next reflection coefficient γp+1. Solving Eq. (12.3.12) for R(p + 1) and
using Eq. (12.3.11), we obtain

R(p+ 1)= γp+1Ep −
[
ap1R(p)+ap2R(p− 1)+· · · + appR(1)

]
(12.5.1)

Any number γp+1 in the range−1 < γp+1 < 1 will give rise to an acceptable value for
R(p+1) . The choiceγp+1 = 0 is special and corresponds to the so-called autoregressive
or maximum entropy extension of the autocorrelation function (see Problem 12.16). If
this choice is repeated to infinity, we will obtain the set of reflection coefficients

{γ1, γ2, . . . , γp,0,0, . . . }
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It follows from the Levinson recursion that all prediction-error filters of order greater
than p will remain equal to the pth filter,Ap(z)= Ap+1(z)= Ap+2(z)= · · · . Therefore,
the corresponding whitening filter will beA(z)= Ap(z), that is, an autoregressive model
of order p. With the exception of the above autoregressive extension that leads to an
all-pole signal model, the extendibility conditions |γp+i| < 1, i ≥ 1, do not necessarily
guarantee that the resulting signal model will be a rational (pole-zero) model.

Example 12.5.1: Consider the three numbers {R(0),R(1),R(2)} = {8,4,−1}. The Levinson
recursion gives {γ1, γ2} = {0.5,−0.5} and {E1, E2} = {6, 4.5}. Thus, the above numbers
qualify to be autocorrelation lags. The corresponding prediction-error filters are

a1 =
[

1
a11

]
=
[

1
−0.5

]
, a2 =

⎡
⎢⎣ 1
a21

a22

⎤
⎥⎦ =

⎡
⎢⎣ 1
−0.75

0.5

⎤
⎥⎦

The next lag in this sequence can be chosen according to Eq. (12.5.1)

R(3)= γ3E2 −
[
a21R(2)+a22R(1)

] = 4.5γ3 − 2.75

where γ3 is any number in the interval −1 < γ3 < 1 . The resulting possible values of
R(3) are plotted below versus γ3 . In particular, the autoregressive extension corresponds
to γ3 = 0, which gives R(3)= −2.75. ��

The end-points, γp+1 = ±1, of the allowed interval (−1,1) correspond to the two
possible extreme values of R(p+ 1):

R(p+ 1)= ±Ep −
[
ap1R(p)+ap2R(p− 1)+· · · + appR(1)

]
In this case, the corresponding prediction error vanishes Ep+1 = (1− γ2

p+1)Ep = 0.
This makes the resulting order-(p+ 1) autocorrelation matrix Rp+1 singular. The pre-
diction filter becomes either the symmetric (if γp+1 = −1) or antisymmetric (if γp+1 = 1)
combination

ap+1 =
[

ap
0

]
+
[

0
aRp

]
, Ap+1(z)= Ap(z)+z−1ARp(z) , or,

ap+1 =
[

ap
0

]
−
[

0
aRp

]
, Ap+1(z)= Ap(z)−z−1ARp(z)

In either case, it can be shown that the zeros of the polynomial Ap+1(z) lie on
the unit circle, and that the prediction filter ap+1 becomes an eigenvector of Rp+1 with
zero eigenvalue; namely, Rp+1ap+1 = 0. This follows from the normal Eqs. (12.3.28)
Rp+1ap+1 = Ep+1up+1 and Ep+1 = 0.
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Example 12.5.2: Consider the extended autocorrelation sequence of Example 12.5.1 defined
by the singular choice γ3 = −1. Then, R(3)= −4.5 − 2.75 = −7.25. The corresponding
order-3 prediction-error filter is computed using the order-2 predictor and the Levinson
recursion

a3 =

⎡
⎢⎢⎢⎣

1
a31

a32

a33

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1
−0.75

0.5
0

⎤
⎥⎥⎥⎦− γ3

⎡
⎢⎢⎢⎣

0
0.5
−0.75

1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1
−0.25
−0.25

1

⎤
⎥⎥⎥⎦

It is symmetric about its middle. Its zeros, computed as the solutions of (1 − 0.25z−1 −
0.25z−2 + z−3)= (1+ z−1)(1− 1.25z−1 + z−2)= 0 are

z = −1 , z = 5± j√39

8

and lie on the unit circle. Finally, we verify that a3 is an eigenvector of R3 with zero
eigenvalue:

R3a3 =

⎡
⎢⎢⎢⎣

8 4 −1 −7.25
4 8 4 −1
−1 4 8 4
−7.25 −1 4 8

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

1
−0.25
−0.25

1

⎤
⎥⎥⎥⎦ = 0 ��

Singular autocorrelation matrices, and the associated symmetric or antisymmetric
prediction filters with zeros on the unit circle, find application in the method of line
spectrum pairs (LSP) of speech analysis [937]. They are also intimately related to the
eigenvector methods of spectrum estimation, such as Pisarenko’s method of harmonic
retrieval, discussed in Sec. 14.2. This connection arises from the property that singular
autocorrelation matrices (with nonsingular principal minors) admit a representation as
a sum of sinusoidal components [938], the frequencies of which are given precisely by
the zeros, on the unit circle, of the corresponding prediction filter. This sinusoidal
representation is equivalent to the eigen-decomposition of the matrix. The prediction
filter can, alternatively, be computed as the eigenvector belonging to zero eigenvalue.
The proof of these results can be derived as a limiting case; namely, the noise-free case,
of the more general eigenvector methods that deal with sinusoids in noise. A direct
proof is suggested in Problem 14.10.

Example 12.5.3: Consider the autocorrelation matrix R =
⎡
⎢⎣ 2 1 −1

1 2 1
−1 1 2

⎤
⎥⎦. It is easily verified

that the corresponding autocorrelation lags R(k) admit the sinusoidal representation

R(k)= 2 cos(ω1k)= ejω1k + e−jω1k , for k = 0,1,2

where ω1 = π/3. Sending these lags through the Levinson recursion, we find {γ1, γ2} =
{0.5,−1} and {E1, E2} = {1.5, 0}. Thus, R singular. Its eigenvalues are {0, 3, 3}. The
corresponding prediction filters are a1 = [1,−0.5]T and a2 = [1,−1,1]T . It is easily
verified that a2 is an eigenvector ofRwith zero eigenvalue, i.e.,Ra2 = 0. The corresponding
eigenfilter A2(z)= 1 − z−1 + z−2, is symmetric about its middle and has zeros on the
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unit circle coinciding with the sinusoids present in R, namely, z = e±jω1 . The other two
eigenvectors of R are

c =
⎡
⎢⎣ 1

cosω1

cos 2ω1

⎤
⎥⎦ =

⎡
⎢⎣ 1

0.5
−0.5

⎤
⎥⎦ , d =

⎡
⎢⎣ 0

sinω1

sin 2ω1

⎤
⎥⎦ =

⎡
⎢⎣ 0√

3/2√
3/2

⎤
⎥⎦

both belonging to eigenvalue λ = 3. Their norm is ‖c‖ = ‖d‖ = √3/2. The three eigen-
vectors a2, c,d are mutually orthogonal. It is easily verified that the matrix R may be rep-
resented in the form R = 2ccT + 2ddT , which, after normalizing c and d to unit norm, is
recognized as the eigendecomposition of R, We can also express R in terms of its complex
sinusoidal components in the form R = ss† + s∗sT , where

s = c+ jd =
⎡
⎢⎣ 1
ejω1

e2jω1

⎤
⎥⎦ , s† = s∗T = [1, e−jω1 , e−2jω1

]

Example 12.5.4: Similarly, one can verify that the four autocorrelation lags {8, 4, −1, −7.25}
of the singular matrix of Example 12.5.2 can be represented in the sinusoidal form

R(k)= P1ejω1k + P2ejω2k + P3ejω3k , for k = 0,1,2,3

where P1 = 8/13, P2 = P3 = 96/13, and ωi correspond to the zeros of the prediction
filter a3, namely,

ejω1 = −1 , ejω2 = 5+ j√39

8
, ejω3 = 5− j√39

8
, so that,ω3 = −ω2

The matrix itself has the sinusoidal representation

R = P1s1s†1 + P2s2s†2 + P3s3s†3 , where si =

⎡
⎢⎢⎢⎣

1
ejωi
e2jωi

e3jωi

⎤
⎥⎥⎥⎦

Had we chosen the value γ3 = 1 in Example 12.5.2, we would have found the extended lag
R(3)= 1.75 and the antisymmetric order-3 prediction-error filter a3 = [1,−1.25,1.25,−1]T ,
whose zeros are on the unit circle:

ejω1 = 1 , ejω2 = 1+ j√63

8
, ejω3 = 1− j√63

8

with R(k) admitting the sinusoidal representation

R(k)= P1 + 2P2 cos(ω2k)= [8, 4, −1, 1.75] , for k = 0,1,2,3

where P1 = 24/7 and P2 = 16/7. ��
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12.6 Split Levinson Algorithm

The main computational burden of Levinson’s algorithm is 2pmultiplications per stage,
arising from the p multiplications in Eq. (12.3.15) and in the computation of the inner
product (12.3.12). Thus, forM stages, the algorithm requires

2
M∑
p=1

p =M(M + 1)

or,O(M2)multiplications. This represents a factor ofM savings over solving the normal
equations (12.3.7) by direct matrix inversion, requiring O(M3) operations. The savings
can be substantial considering that in speech processing M = 10–15, and in seismic
processing M = 100–200. Progress in VLSI hardware has motivated the development
of efficient parallel implementations of Levinson’s algorithm and its variants [939–958].
With M parallel processors, the complexity of the algorithm is typically reduced by
another factor ofM to O(M) or O(M logM) operations.

An interesting recent development is the realization that Levinson’s algorithm has
some inherent redundancy, which can be exploited to derive more efficient versions
of the algorithm allowing an additional 50% reduction in computational complexity.
These versions were motivated by a new stability test for linear prediction polynomials
by Bistritz [959], and have been termed Split Levinson or Immitance-Domain Levinson
algorithms [960–967]. They are based on efficient three-term recurrence relations for
the symmetrized or antisymmetrized prediction polynomials. Following [960], we define
the order-p symmetric polynomial

Fp(z)= Ap−1(z)+z−1ARp−1(z) , fp =
[

ap−1

0

]
+
[

0
aRp−1

]
(12.6.1)

The coefficient vector fp is symmetric about its middle; that is, fp0 = fpp = 1 and
fpi = ap−1,i + ap−1,p−i = fp,p−i, for i = 1,2, . . . , p − 1. Thus, only half of the vector
fp, is needed to specify it completely. Using the backward recursion (12.3.22) to write
Ap−1(z) in terms of Ap(z), we obtain the alternative expression

Fp = 1

1− γ2
p

[
(Ap + γpARp)+z−1(γpzAp + zARp)

] = 1

1− γp [Ap +A
R
p] , or,

(1− γp)Fp(z)= Ap(z)+ARp(z) , (1− γp)fp = ap + aRp (12.6.2)

The polynomial Ap(z) and its reverse may be recovered from the knowledge of the
symmetric polynomials Fp(z). Writing Eq. (12.6.1) for order p+ 1, we obtain Fp+1(z)=
Ap(z)+z−1ARp(z). This equation, together with Eq. (12.6.2), may be solved for Ap(z)
and ARp(z), yielding

Ap(z)= Fp+1(z)−(1− γp)z−1Fp(z)
1− z−1

, ARp(z)=
(1− γp)Fp(z)−Fp+1(z)

1− z−1
(12.6.3)

Inserting these expressions into the forward Levinson recursion (12.3.16) and can-
celing the common factor 1/(1 − z−1), we obtain a three-term recurrence relation for
Fp(z):

Fp+2 − (1− γp+1)z−1Fp+1 =
[
Fp+1 − (1− γp)z−1Fp

]− γp+1z−1[(1− γp)Fp − Fp+1
]
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or,
Fp+2(z)= (1+ z−1)Fp+1(z)−αp+1z−1Fp(z) (12.6.4)

where αp+1 = (1+ γp+1)(1− γp). In block diagram form

Because Fp(z) has order p and is delayed by z−1, the coefficient form of (12.6.4) is

fp+2 =
[

fp+1

0

]
+
[

0
fp+1

]
−αp+1

⎡
⎢⎣ 0

fp
0

⎤
⎥⎦ (12.6.5)

The recursion is initialized by F0(z)= 2 and F1(z)= 1 + z−1. Because of the sym-
metric nature of the polynomial Fp(z) only half of its coefficients need be updated by
Eqs. (12.6.4) or (12.6.5). To complete the recursion, we need an efficient way to update
the coefficients αp+1. Taking the dot product of both sides of Eq. (12.6.2) with the row
vector

[
R(0),R(1), . . . , R(p)

]
, we obtain[

R(0), . . . , R(p)
]
ap +

[
R(0), . . . , R(p)

]
aRp = (1− γp)

[
R(0), . . . , R(p)

]
fp

The first term is recognized as the gapped function gp(0)= Ep, and the second term
as gp(p)= 0. Dividing by 1− γp and denoting τp = Ep/(1− γp), we obtain

τp =
[
R(0),R(1), . . . , R(p)

]
fp =

p∑
i=0

R(i)fpi (12.6.6)

Because of the symmetric nature of fp the quantity τp can be computed using only
half of the terms in the above inner product. For example, if p is odd, the above sum
may be folded to half its terms

τp =
(p−1)/2∑
i=0

[
R(i)+R(p− i)]fpi

Because Eqs. (12.6.5) and (12.6.6) can be folded in half, the total number of multi-
plications per stage will be 2(p/2)= p, as compared with 2p for the classical Levinson
algorithm. This is how the 50% reduction in computational complexity arises. The re-
cursion is completed by noting that αp+1 can be computed in terms of τp by

αp+1 = τp+1

τp
(12.6.7)

This follows from Eq. (12.3.13),

τp+1

τp
= Ep+1

1− γp+1

1− γp
Ep

= 1− γ2
p+1

1− γp+1
(1− γp)= (1+ γp+1)(1− γp)= αp+1

A summary of the algorithm, which also includes a recursive computation of the
reflection coefficients, is as follows:
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1. Initialize with τ0 = E0 = R(0), γ0 = 0, f0 = [2], f1 = [1,1]T.

2. At stage p, the quantities τp,γp, fp, fp+1 are available.

3. Compute τp+1 from Eq. (12.6.6), using only half the terms in the sum.

4. Compute αp+1 from Eq. (12.6.7), and solve for γp+1 = −1+αp+1/(1− γp).
5. Compute fp+2 from Eq. (12.6.5), using half of the coefficients.

6. Go to stage p+ 1.

After the final desired order is reached, the linear prediction polynomial can be
recovered from Eq. (12.6.3), which can be written recursively as

api = ap,i−1 + fp+1.i − (1− γp)fp,i−1 , i = 1,2, . . . , p (12.6.8)

with ap0 = 1, or vectorially,[
ap
0

]
=
[

0
ap

]
+ fp+1 − (1− γp)

[
0
fp

]
(12.6.9)

Using the three-term recurrence (12.6.5), we may replace fp+1 in terms of fp and fp−1,
and rewrite Eq. (12.6.9) as

[
ap
0

]
=
[

0
ap

]
+
[

fp
0

]
+ γp

[
0
fp

]
−αp

⎡
⎢⎣ 0

fp−1

0

⎤
⎥⎦ (12.6.10)

and in the z-domain

Ap(z)= z−1Ap(z)+(1+ γpz−1)Fp(z)−αpz−1Fp−1(z) (12.6.11)

Example 12.6.1: We rederive the results of Example 12.3.1 using this algorithm, showing ex-
plicitly the computational savings. Initialize with τ0 = R(0)= 128, f0 = [2], f1 = [1,1]T .
Using Eq. (12.6.6), we compute

τ1 =
[
R(0),R(1)

]
f1 =

[
R(0)+R(1)]f10 = 128− 64 = 64

Thus, α1 = τ1/τ0 = 64/128 = 0.5 and γ1 = −1+α1 = −0.5. Using Eq. (12.6.5) we find

f2 =
[

f1

0

]
+
[

0
f1

]
−α1

⎡
⎢⎣ 0

f0

0

⎤
⎥⎦ =

⎡
⎢⎣ 1

1
0

⎤
⎥⎦+

⎡
⎢⎣ 0

1
1

⎤
⎥⎦− 0.5

⎡
⎢⎣ 0

2
0

⎤
⎥⎦ =

⎡
⎢⎣ 1

1
1

⎤
⎥⎦

and compute τ2

τ2 =
[
R(0),R(1),R(2)

]
f2 =

[
R(0)+R(2)]f20 +R(1)f21 = 144

Thus, α2 = τ2/τ1 = 144/64 = 2.25 and γ2 = −1 +α2/(1 − γ1)= −1 + 2.25/1.5 = 0.5.
Next, compute f3 and τ3

f3 =
[

f2

0

]
+
[

0
f2

]
−α2

⎡
⎢⎣ 0

f1

0

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

1
1
1
0

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0
1
1
1

⎤
⎥⎥⎥⎦− 2.25

⎡
⎢⎢⎢⎣

0
1
1
0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1
−0.25
−0.25

1

⎤
⎥⎥⎥⎦
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τ3 =
[
R(0),R(1),R(2),R(3)

]
f3 =

[
R(0)+R(3)]f30 +

[
R(1)+R(2)]f31 = 36

which gives α3 = τ3/τ2 = 36/144 = 0.25 and γ3 = −1 +α3/(1 − γ2)= −0.5. Next, we
compute f4 and τ4

f4 =
[

f3

0

]
+
[

0
f3

]
−α3

⎡
⎢⎣ 0

f2

0

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
−0.25
−0.25

1
0

⎤
⎥⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎣

0
1

−0.25
−0.25

1

⎤
⎥⎥⎥⎥⎥⎥⎦− 0.25

⎡
⎢⎢⎢⎢⎢⎢⎣

0
1
1
1
0

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0.5
−0.75

0.5
1

⎤
⎥⎥⎥⎥⎥⎥⎦

τ4 =
[
R(0),R(1),R(2),R(3),R(4)

]
f4

= [R(0)+R(4)]f40 +
[
R(1)+R(3)]f41 +R(2)f42 = 81

which gives α4 = τ4/τ3 = 81/36 = 2.25 and γ4 = −1 + α4/(1 − γ3)= 0.5. The final
prediction filter a4 can be computed using Eq. (12.6.9) or (12.6.10). To avoid computing f5

we use Eq. (12.6.10), which gives

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
a41

a42

a43

a44

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
a41

a42

a43

a44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0.5
−0.75

0.5
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 0.5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

0.5
−0.75

0.5
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 2.25

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

−0.25
−0.25

1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

with solution a4 = [1, −0.25, −0.1875, 0.5, −0.5]T . ��

12.7 Analysis and Synthesis Lattice Filters

The Levinson recursion, expressed in the 2×2 matrix form of Eq. (12.3.18) forms the ba-
sis of the so-called lattice, or ladder, realizations of the prediction-error filters and their
inverses [917]. Remembering that the prediction-error sequence ep(n) is the convolu-
tion of the prediction-error filter [1, ap1, ap2, . . . , app] with the original data sequence
yn, that is,

e+p (n)= yn + ap1yn−1 + ap2yn−2 + · · · + appyn−p (12.7.1)

we find in the z-domain
E+p (z)= Ap(z)Y(z) (12.7.2)

where we changed the notation slightly and denoted ep(n) by e+p (n). At this point,
it proves convenient to introduce the backward prediction-error sequence, defined in
terms of the reverse of the prediction-error filter, as follows:

E−p (z) = ARp(z)Y(z)
e−p (n) = yn−p + ap1yn−p+1 + ap2yn−p+2 + · · · + appyn

(12.7.3)

where ARp(z) is the reverse of Ap(z), namely,

ARp(z)= z−pAp(z−1)= app + ap,p−1z−1 + ap,p−2z−2 + · · · + ap1z−(p−1) + z−p
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The signal sequence e−p (n)may be interpreted as the postdiction error in postdicting
the value of yn−p on the basis of the future p samples {yn−p+1, yn−p+2, . . . , yn−1, yn},
as shown below

Actually, the above choice of postdiction coefficients is the optimal one that mini-
mizes the mean-square postdiction error

E[e−p (n)2]= min (12.7.4)

This is easily shown by inserting Eq. (12.7.3) into (12.7.4) and using stationarity

E[e−p (n)2] = E
⎡
⎢⎣
⎛
⎝ p∑
m=0

apmyn−p+m

⎞
⎠2
⎤
⎥⎦ = p∑

m,k=0

apmE[yn−p+myn−p+k]apk

=
p∑

m,k=0

apmR(m− k)apk = E[e+p (n)2]

which shows that the forward and the backward prediction error criteria are the same,
thus, having the same solution for the optimal coefficients. We can write Eqs. (12.7.1)
and (12.7.3) vectorially

e+p (n)= [1, ap1, . . . , app]

⎡
⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−p

⎤
⎥⎥⎥⎥⎥⎦ = aTpyp(n) (12.7.5a)

e−p (n)= [app, ap,p−1, . . . ,1]

⎡
⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−p

⎤
⎥⎥⎥⎥⎥⎦ = aRTp yp(n)= bTpyp(n) (12.7.5b)

They are recognized as the forward and backward prediction errors ea and eb of
Eq. (1.8.9). Multiplying both sides of the Levinson recursion (12.3.18) by Y(z), we cast it
in the equivalent form in terms of the forward and backward prediction-error sequences:[

E+p+1(z)
E−p+1(z)

]
=
[

1 −γp+1z−1

−γp+1 z−1

][
E+p (z)
E−p (z)

]
(12.7.6)

and in the time domain

e+p+1(n) = e+p (n)−γp+1e−p (n− 1)

e−p+1(n) = e−p (n− 1)−γp+1e+p (n)
(12.7.7)
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and in block diagram form

These recursions are initialized at p = 0 by

E±0 (z)= A0(z)Y(z)= Y(z) and e±0 (n)= yn (12.7.8)

Eqs. (12.7.7) are identical to (1.8.50), with the identifications ea → e+p+1(n), ēa →
e+p (n), eb → e−p+1(n), ẽb → e−p (n− 1) the last following from Eq. (12.3.26).

The lattice realization of the prediction-error filter is based on the recursion (12.7.7).
Starting at p = 0, the output of the pth stage of (12.7.7) becomes the input of the
(p+ 1)th stage, up to the final desired order p =M. This is depicted in Fig. 12.7.1.

Fig. 12.7.1 Analysis lattice filter.

At each time instant n the numbers held in the M delay registers of the lattice can
be taken as the internal state of the lattice. The function lattice is an implementation of
Fig. 12.7.1. At each instant n, the function takes two overall inputs e±0 (n), makesM calls
to the function section that implements the single lattice section (12.7.7), produces the
two overall outputs e±M(n), and updates the internal state of the lattice in preparation
for the next call. By allowing the reflection coefficients to change between calls, the
function can also be used in adaptive lattice filters.

Eqs. (12.7.3) imply that the transfer function from the input yn to the output e+M(n)
is the desired prediction-error filter AM(z), whereas the transfer function from yn to
e−M(n) is the reversed filter ARM(z). The lattice realization is therefore equivalent to the
direct-form realization

e+M(n)= yn + aM1yn−1 + aM2yn−2 + · · ·aMMyn−M
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realized directly in terms of the prediction coefficients. It is depicted below

The synthesis filter 1/AM(z) can also be realized in a lattice form. The input to
the synthesis filter is the prediction error sequence e+M(n) and its output is the original
sequence yn :

Its direct-form realization is:

For the lattice realization, since yn corresponds to e+0 (n), we must write Eq. (12.7.7)
in an order-decreasing form, starting at e+M(n) and ending with e+0 (n)= yn. Rearranging
the terms of the first of Eq. (12.7.7), we have

e+p (n) = e+p+1(n)+γp+1e−p (n− 1)

e−p+1(n) = e−p (n− 1)−γp+1e+p (n)
(12.7.9)

which can be realized as shown below:

Note the difference in signs in the upper and lower adders. Putting together the
stages from p =M to p = 0, we obtain the synthesis lattice filter shown in Fig. 12.7.2.
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Fig. 12.7.2 Synthesis lattice filter.

Lattice structures based on the split Levinson algorithm can also be developed [960,961].
They are obtained by cascading the block diagram realizations of Eq. (12.6.4) for differ-
ent values of αp. The output signals from each section are defined by

ep(n)=
p∑
i=0

fpiyn−i , Ep(z)= Fp(z)Y(z)

Multiplying both sides of Eq. (12.6.1) by Y(z) we obtain the time-domain expression

ep(n)= e+p−1(n)+e−p−1(n− 1)

Similarly, multiplying both sides of Eq. (12.6.4) by Y(z) we obtain the recursions

ep+2(n)= ep+1(n)+ep+1(n− 1)−αpep(n− 1)

They are initialized by e0(n)= 2yn and e1(n)= yn + yn−1. Putting together the
various sections we obtain the lattice-type realization

The forward prediction error may be recovered from Eq. (12.6.3) or Eq. (12.6.11) by
multiplying both sides with Y(z); for example, using Eq. (12.6.11) we find

e+p (n)= e+p−1(n)+ep(n)+γpep(n)−αpep−1(n− 1)

12.8 Alternative Proof of the Minimum-Phase Property

The synthesis filter 1/AM(z) must be stable and causal, which requires all theM zeros
of the prediction-error filter AM(z) to lie inside the unit circle on the complex z-plane.
We have already presented a proof of this fact which was based on the property that
the coefficients of AM(z) minimized the mean-squared prediction error E[e+M(n)2].
Here, we present an alternative proof based on the Levinson recursion and the fact that
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all reflection coefficients γp have magnitude less than one [920]. From the definition
(12.7.3), it follows that

e−p (n− 1)= yn−p−1 + ap1yn−p + ap2yn−p+1 + · · · + appyn−1 (12.8.1)

This quantity represents the estimation error of postdicting yn−p−1 on the basis of the
p future samples {yn−p, yn−p+1, . . . , yn−1}. Another way to say this is that the linear
combination of these p samples is the projection of yn−p−1 onto the subspace of random
variables spanned by {yn−p, yn−p+1, . . . , yn−1}; that is,

e−p (n− 1)= yn−p−1 − (projection of yn−p−1 onto {yn−p, yn−p+1, . . . , yn−1}) (12.8.2)

On the other hand, e+p (n) given in Eq. (12.7.1) is the estimation error of yn based on
the same set of samples. Therefore,

e+p (n)= yn − (projection of yn onto {yn−p, yn−p+1, . . . , yn−1}) (12.8.3)

The samples {yn−p, yn−p+1, . . . , yn−1} are the intermediate set of samples between yn−p−1

and yn as shown below:

Therefore, according to the discussion in Sec. 1.7, the PARCOR coefficient between
yn−p−1 and yn with the effect of intermediate samples removed is given by

PARCOR = E
[
e+p (n)e−p (n− 1)

]
E
[
e−p (n− 1)2

]
This is precisely the reflection coefficient γp+1 of Eq. (12.3.11). Indeed, using Eq. (12.8.1)
and the gap conditions, gp(k)= 0, k = 1,2, . . . , p, we find

E
[
e+p (n)e−p (n− 1)

] = E[e+p (n)(yn−p−1 + ap1yn−p + ap2yn−p+1 + · · · + appyn−1)
]

= gp(p+ 1)+ap1gp(p)+ap2gp(p− 1)+· · ·appgp(1)
= gp(p+ 1)

Similarly, invoking stationarity and Eq. (12.7.4),

E
[
e−p (n− 1)2] = E[e−p (n)2] = E[e+p (n)2] = gp(0)

Thus, the reflection coefficient γp+1 is really a PARCOR coefficient:

γp+1 =
E
[
e+p (n)e−p (n− 1)

]
E
[
e−p (n− 1)2

] = E
[
e+p (n)e−p (n− 1)

]
√
E
[
e−p (n− 1)2

]
E
[
e+p (n)2

] (12.8.4)

Using the Schwarz inequality with respect to the inner product E[uv], that is,∣∣E[uv]∣∣2 ≤ E[u2]E[v2]
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then Eq. (12.8.4) implies that γp+1 will have magnitude less than one:

|γp+1| ≤ 1 , for each p = 0,1, . . . (12.8.5)

To prove the minimum-phase property of AM(z) we must show that all of its M
zeros are inside the unit circle. We will do this by induction. Let Zp and Np denote the
number of zeros and poles of Ap(z) that lie inside the unit circle. Levinson’s recursion,
Eq. (12.3.13), expresses Ap+1(z) as the sum of Ap(z) and a correction term F(z)=
−γp+1z−1ARp(z), that is,

Ap+1(z)= Ap(z)+F(z)
Using the inequality (12.8.5) and the fact that Ap(z) has the same magnitude spectrum
as ARp(z), we find the inequality∣∣F(z)∣∣ = ∣∣−γp+1z−1ARp(z)

∣∣ = ∣∣γp+1Ap(z)
∣∣ ≤ ∣∣Ap(z)∣∣

for z = ejω on the unit circle. Then, the argument principle and Rouche’s theorem imply
that the addition of the function F(z) will not affect the difference Np − Zp of poles
and zeros contained inside the unit circle. Thus,

Np+1 − Zp+1 = Np − Zp
Since the only pole of Ap(z) is the multiple pole of order p at the origin arising from
the term z−p, it follows that Np = p. Therefore,

(p+ 1)−Zp+1 = p− Zp , or,

Zp+1 = Zp + 1

Starting at p = 0 with A0(z)= 1, we have Z0 = 0. It follows that

Zp = p
which states that all the p zeros of the polynomial Ap(z) lie inside the unit circle.

Another way to state this result is: “A necessary and sufficient condition for a poly-
nomial AM(z) to have all of its M zeros strictly inside the unit circle is that all re-
flection coefficients {γ1, γ2, . . . , γM} resulting from AM(z) via the backward recursion
Eq. (12.3.21) have magnitude strictly less than one.” This is essentially equivalent to the
well-known Schur-Cohn test of stability [968–971]. The function bkwlev can be used
in this regard to obtain the sequence of reflection coefficients. The Bistritz test [959],
mentioned in Sec. 12.6, is an alternative stability test.

Example 12.8.1: Test the minimum phase property of the polynomials

(a) A(z)= 1− 2.60z−1 + 2.55z−2 − 2.80z−3 + 0.50z−4

(b) A(z)= 1− 1.40z−1 + 1.47z−2 − 1.30z−3 + 0.50z−4

Sending the coefficients of each through the function bkwlev, we find the set of reflection
coefficients

(a) {0.4,−0.5,2.0,−0.5}
(b) {0.4,−0.5,0.8,−0.5}

Since among (a) there is one reflection coefficient of magnitude greater than one, case (a)
will not be minimum phase, whereas case (b) is. ��
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12.9 Orthogonality of Backward Prediction Errors—Cholesky

Factorization

Another interesting structural property of the lattice realizations is that, in a certain
sense, the backward prediction errors e−p (n) are orthogonal to each other. To see this,
consider the caseM = 3, and form the matrix product⎡

⎢⎢⎢⎣
R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
R

⎡
⎢⎢⎢⎣

1 a11 a22 a33

0 1 a21 a32

0 0 1 a31

0 0 0 1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
LT

=

⎡
⎢⎢⎢⎣
E0 0 0 0
∗ E1 0 0
∗ ∗ E2 0
∗ ∗ ∗ E3

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
L1

Because the normal equations (written upside down) are satisfied by each prediction-
error filter, the right-hand side will be a lower-triangular matrix. The “don’t care” entries
have been denoted by ∗s. Multiply from the left by L to get

LRLT = LL1 =

⎡
⎢⎢⎢⎣
E0 0 0 0
∗ E1 0 0
∗ ∗ E2 0
∗ ∗ ∗ E3

⎤
⎥⎥⎥⎦

Since L is by definition lower-triangular, the right-hand side will still be lower tri-
angular. But the left-hand side is symmetric. Thus, so is the right-hand side and as a
result it must be diagonal. We have shown that

LRLT = D = diag{E0, E1, E2, E3} (12.9.1)

or, written explicitly⎡
⎢⎢⎢⎣

1 0 0 0
a11 1 0 0
a22 a21 1 0
a33 a32 a31 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

1 a11 a22 a33

0 1 a21 a32

0 0 1 a31

0 0 0 1

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣
E0 0 0 0
0 E1 0 0
0 0 E2 0
0 0 0 E3

⎤
⎥⎥⎥⎦

This is identical to Eq. (1.8.17). The pqth element of this matrix equation is then

bTpRbq = δpqEp (12.9.2)

where bp and bq denote the pth and qth columns of LT. These are recognized as the
backward prediction-error filters of orders p and q. Eq. (12.9.2) implies then the or-
thogonality of the backward prediction-error filters with respect to an inner product
xTRy.

The backward prediction errors e−p (n) can be expressed in terms of the bps and the
vector of samples y(n)= [yn, yn−1, yn−2, yn−3]T, as follows:

e−0 (n)= [1, 0, 0, 0]y(n)= bT0 y(n)= yn
e−1 (n)= [a11, 1, 0, 0]y(n)= bT1 y(n)= a11yn + yn−1

e−2 (n)= [a22, a21, 1, 0]y(n)= bT2 y(n)= a22yn + a21yn−1 + yn−2

e−3 (n)= [a33, a32, a31,1]y(n)= bT3 y(n)= a33yn + a32yn−1 + a31yn−2 + yn−3

(12.9.3)
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which can be rearranged into the vector form

e−(n)=

⎡
⎢⎢⎢⎣
e−0 (n)
e−1 (n)
e−2 (n)
e−3 (n)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 0 0 0
a11 1 0 0
a22 a21 1 0
a33 a32 a31 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
yn
yn−1

yn−2

yn−3

⎤
⎥⎥⎥⎦ = Ly(n) (12.9.4)

It is identical to Eq. (1.8.15). Using Eq. (12.9.1), it follows now that the covariance
matrix of e−(n) is diagonal; indeed, since R = E[y(n)y(n)T],

Re−e− = E[e−(n)e−(n)T]= LRLT = D (12.9.5)

which can also be expressed component-wise as the zero-lag cross-correlation

Re−p e−q (0)= E
[
e−p (n)e−q (n)

] = δpqEp (12.9.6)

Thus, at each time instant n, the backward prediction errors e−p (n) are mutually
uncorrelated (orthogonal) with each other. The orthogonality conditions (12.9.6) and the
lower-triangular nature of L render the transformation (12.9.4) equivalent to the Gram-
Schmidt orthogonalization of the data vector y(n)= [yn, yn−1, yn−2, yn−3]T. Equation
(12.9.1), written as

R = L−1DL−T

corresponds to an LU Cholesky factorization of the covariance matrix R.
Since the backward errors e−p (n), p = 0,1,2, . . . ,M, for an Mth order predictor are

generated at the output of each successive lattice segment of Fig. 12.7.1, we may view
the analysis lattice filter as an implementation of the Gram-Schmidt orthogonalization
of the vector y(n)= [yn, yn−1, yn−2, . . . , yn−M]T.

It is interesting to note, in this respect, that this implementation requires only knowl-
edge of the reflection coefficients {γ1, γ2, . . . , γM}.

The data vector y(n) can also be orthogonalized by means of the forward predictors,
using the matrix U. This representation, however, is not as conveniently realized by
the lattice structure because the resulting orthogonalized vector consists of forward
prediction errors that are orthogonal, but not at the same time instant. This can be seen
from the definition of the forward errors

Uy(n)=

⎡
⎢⎢⎢⎣

1 a31 a32 a33

0 1 a21 a22

0 0 1 a11

0 0 0 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
yn
yn−1

yn−2

yn−3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
e+3 (n)
e+2 (n− 1)
e+1 (n− 2)
e+0 (n− 3)

⎤
⎥⎥⎥⎦

Thus, additional delays must be inserted at the forward outputs of the lattice struc-
ture to achieve orthogonalization. For this reason, the backward outputs, being mutually
orthogonal at the same time instant n, are preferred. The corresponding UL factoriza-
tion of R is in this basis

URUT = diag{E3, E2, E1, E0}
This is the reverse of Eq. (12.9.1)) obtained by acting on both sides by the reversing

matrix J and using the fact that U = JLJ, the invariance of R = JRJ, and J2 = I.
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The above orthogonalization may also be understood in the z-domain: since the
backward prediction error e−p (n) is the output of the reversed prediction-error filter
ARp(z) driven by the data sequence yn, we have for the cross-density

Se−p e−q (z)= ARp(z)Syy(z)ARq(z−1)

Integrating this expression over the unit circle and using Eq. (12.9.6), we find∮
u.c.
ARp(z)Syy(z)ARq(z−1)

dz
2πjz

=
∮

u.c.
Se−p e−q (z)

dz
2πjz

= Re−p e−q (0)= E
[
e−p (n)e−q (n)

] = δpqEp
(12.9.7)

that is, the reverse polynomialsARp(z) are mutually orthogonal with respect to the above
inner product defined by the (positive-definite) weighting function Syy(z). Equation
(12.9.7) is the z-domain expression of Eq. (12.9.2). This result establishes an intimate
connection between the linear prediction problem and the theory of orthogonal polyno-
mials on the unit circle developed by Szegö [972,973].

The LU factorization of R implies a UL factorization of the inverse of R; that is,
solving Eq. (12.9.1) for R−1 we have:

R−1 = LTD−1L (12.9.8)

Since the Levinson recursion generates all the lower order prediction-error filters, it
essentially generates the inverse of R.

The computation of this inverse may also be done recursively in the order, as follows.
To keep track of the order let us use an extra index

R−1
3 = LT3D−1

3 L3 (12.9.9)

The matrix L3 contains as a submatrix the matrix L2; in fact,

L3 =

⎡
⎢⎢⎢⎣

1 0 0 0
a11 1 0 0
a22 a21 1 0
a33 a32 a31 1

⎤
⎥⎥⎥⎦ =

[
L2 0

αααRT3 1

]
(12.9.10)

whereαααRT3 denotes the transpose of the reverse of the vector of prediction coefficients;
namely, αααRT3 = [a33, a32, a21]. The diagonal matrix D−1

3 may also be block divided in
the same manner:

D−1
3 =

[
D−1

2 0

0T 1

]

Inserting these block decompositions into Eq. (12.9.9) and using the lower order
result R−1

2 = LT2D−1
2 L2, we find

R−1
3 =

⎡
⎢⎢⎣
R−1

2 + 1

E3
αααR3ααα

RT
3

1

E3
αααR3

1

E3
αααRT3

1

E3

⎤
⎥⎥⎦ =

[
R−1

2 0

0T 0

]
+ 1

E3
b3bT3 (12.9.11)
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where b3 = aR3 = [αααRT3 ,1]T= [a33, a32, a31,1]T. This is identical to Eq. (1.8.28).
Thus, through Levinson’s algorithm, as the prediction coefficients ααα3 and error E3

are obtained, the inverse of R may be updated to the next higher order. Eq. (12.9.11)
also suggests an efficient way of solving more general normal equations of the type

R3h3 =

⎡
⎢⎢⎢⎣
R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
h30

h31

h32

h33

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
r0

r1

r2

r3

⎤
⎥⎥⎥⎦ = r3 (12.9.12)

for a given right-hand vector r3. Such normal equations arise in the design of FIR Wiener
filters; for example, Eq. (11.3.9). The solution for h3 is obtained recursively from the
solution of similar linear equations of lower order. For example, let h2 be the solution
of the previous order

R2h2 =
⎡
⎢⎣R0 R1 R2

R1 R0 R1

R2 R1 R0

⎤
⎥⎦
⎡
⎢⎣ h20

h21

h22

⎤
⎥⎦ =

⎡
⎢⎣ r0

r1

r2

⎤
⎥⎦ = r2

where the right-hand side vector r2 is part of r3. Then, Eq. (12.9.11) implies a recursive
relationship between h3 and h2:

h3 = R−1
3 r3 =

⎡
⎢⎢⎣
R−1

2 + 1

E3
αααR3ααα

RT
3

1

E3
αααR3

1

E3
αααRT3

1

E3

⎤
⎥⎥⎦
[

r2

r3

]
=

⎡
⎢⎢⎣

h2 + 1

E3
αααR3 (r3 +αααRT3 r2)

1

E3
(r3 +αααRT3 r2)

⎤
⎥⎥⎦

In terms of the reverse prediction-error filter b3 = aR3 = [a33, a32, a31,1]T= [αααRT3 ,1]T,
we may write

h3 =
[

h2

0

]
+ cb3 , where c = 1

E3
(r3 +αααRT3 r2)= 1

E3
bT3 r3 (12.9.13)

Thus, the recursive updating of the solution h must be done by carrying out the aux-
iliary updating of the prediction-error filters. The method requires O(M2) operations,
compared to O(M3) if the inverse of R were to be computed directly.

This recursive method of solving general normal equations, developed by Robinson
and Treitel, has been reviewed elsewhere [921,922,974–976] Some additional insight into
the properties of these recursions can be gained by using the Toeplitz property of R.
This property together with the symmetric nature of R imply that R commutes with the
reversing matrix:

J3 =

⎡
⎢⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎥⎦ = J−1

3 , J3R3J3 = R3 (12.9.14)

Therefore, even though the inverse R−1
3 is not Toeplitz, it still commutes with this

reversing matrix; that is,
J3R−1

3 J3 = R−1
3 (12.9.15)
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The effect of this symmetry property on the block decomposition Eq. (12.9.11) may
be seen by decomposing J3 also as

J3 =
[

0 J2

1 0T

]
=
[

0T 1
J2 0

]

where J2 is the lower order reversing matrix. Combining Eq. (12.9.15) with Eq. (12.9.11),
we find

R−1
3 = J3R−1

3 J3 =
[

0T 1
J2 0

]⎡⎢⎢⎣
R−1

2 + 1

E3
αααR3ααα

RT
3

1

E3
αααR3

1

E3
αααRT3

1

E3

⎤
⎥⎥⎦
[

0 J2

1 0T

]

or, since R2 commutes with J2, and J2αααR3 =ααα3, we have

R−1
3 =

⎡
⎢⎢⎣

1

E3

1

E3
αααT3

1

E3
ααα3 R−1

2 + 1

E3
ααα3αααT3

⎤
⎥⎥⎦ =

[
0 0T

0 R−1
2

]
+ 1

E3
a3aT3 (12.9.16)

which is the same as Eq. (1.8.35). Both ways of expressing R−1
3 given by Eqs. (12.9.16)

and (12.9.11), are useful. They may be combined as follows: Eq. (12.9.16) gives for the
ijth matrix element:

(R−1
3 )ij= (R−1

2 +ααα3αααT3E
1
3)i−1,j−1= (R−1

2 )i−1,j−1+α3iα3jE−1
3

which valid for 1 ≤ i, j ≤ 3. On the other hand, from Eq. (12.9.11) we have

(R−1
3 )i−1,j−1= (R−1

2 )i−1,j−1+αR3iαR3jE−1
3

which is valid also for 1 ≤ i, j ≤ 3. Subtracting the two to cancel the common term
(R−1

2 )i−1,j−1, we obtain the Goberg-Semencul-Trench-Zohar recursion [977–981]:

(R−1
3 )ij= (R−1

3 )i−1,j−1+(ααα3αααT3 −αααR3αααRT3 )ijE
−1
3 , 1 ≤ i, j ≤ 3 (12.9.17)

which allows the building-up ofR−1
3 along each diagonal, provided one knows the “bound-

ary” values to get these recursions started. But these are:

(R−1
3 )00= E−1

3 , (R−1
3 )i0= (R−1

3 )0i= a3iE−1
3 , 1 ≤ i, j ≤ 3 (12.9.18)

Thus, from the prediction-error filter a3 and its reverse, the entire inverse of the
autocorrelation matrix may be built up. Computationally, of course, the best procedure
is to use Eq. (12.9.8), where L and D are obtained as byproducts of the Levinson re-
cursion. The function lev of the appendix starts with the M + 1 autocorrelation lags
{R(0),R(1), . . . , R(M)} and generates the required matrices L andD. The main reason
for the existence of fast algorithms for Toeplitz matrices can be traced to the nesting
property that the principal submatrices of a Toeplitz matrix are simply the lower order
Toeplitz submatrices. Similar fast algorithms have been developed for other types of
structured matrices, such as Hankel and Vandermonde matrices [982–984].
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12.10 Schur Algorithm

The Schur algorithm has its roots in the original work of Schur on the theory of functions
bounded in the unit disk [985,986]. It is an important signal processing tool in a variety
of contexts, such as linear prediction and signal modeling, fast matrix factorizations,
filter synthesis, inverse scattering, and other applications [987–1007].

In linear prediction, Schur’s algorithm is an efficient alternative to Levinson’s al-
gorithm and can be used to compute the set of reflection coefficients from the auto-
correlation lags and also to compute the conventional LU Cholesky factorization of the
autocorrelation matrix. The Schur algorithm is essentially the gapped function recursion
(12.3.9). It proves convenient to work simultaneously with Eq. (12.3.9) and its reverse.
We define the forward and backward gapped functions of order p

g+p (k)= E[e+p (n)yn−k] , g−p (k)= E[e−p (n)yn−k] (12.10.1)

The forward one is identical to that of Eq. (12.3.8). The backward one is the convo-
lution of the backward filter bp = aRp with the autocorrelation function; that is,

g+p (k)=
p∑
i=0

apiR(k− i) , g−p (k)=
p∑
i=0

bpiR(k− i) (12.10.2)

where bpi = ap,p−i. In the z-domain, we have

G+p (z)= Ap(z)Syy(z) , G−p (z)= ARp(z)Syy(z) (12.10.3)

Using Syy(z)= Syy(z−1), it follows that

G−p (z)= ARp(z)Syy(z)= z−pAp(z−1)Syy(z−1)= z−pG+p (z−1)

and in the time domain:
g−p (k)= g+p (p− k) (12.10.4)

Thus, the backward gapped function is the reflected and delayed version of the
forward one. However, the delay is only p units—one less than required to completely
align the gaps. Therefore, the forward and backward gapped functions have slightly
different gaps of length p; namely,

g+p (k) = 0 , for k = 1,2, . . . , p

g−p (k) = 0 , for k = 0,1, . . . , p− 1
(12.10.5)

By the definition (12.10.1), the gap conditions of the backward function are equiva-
lent to the orthogonality conditions for the backward predictor; namely, that the esti-
mation error e−p (n) be orthogonal to the observations {yn−k, k = 0,1, . . . , p − 1} that
make up the estimate of yn−p. Inserting the lattice recursions (12.7.7) into (12.10.1), or
using the polynomial recursions (12.3.18) into (12.10.3), we obtain the lattice recursions
for the gapped functions, known as the Schur recursions

g+p+1(k) = g+p (k)−γp+1g−p (k− 1)

g−p+1(k) = g−p (k− 1)−γp+1g+p (k)
(12.10.6)
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or, in matrix form [
g+p+1(k)
g−p+1(k)

]
=
[

1 −γp+1

−γp+1 1

][
g+p (k)
g−p (k− 1)

]

They are initialized by g±0 (k)= R(k). The first term of Eq. (12.10.6) is identical to
Eq. (12.3.9) and the second term is the reverse of Eq. (12.3.9) obtained by the substitution
k→ p+1−k. The forward gap condition g+p+1(p+1)= 0 can be solved for the reflection
coefficient

γp+1 =
g+p (p+ 1)
g−p (p)

(12.10.7)

Note that Eq. (12.10.4) implies g−p (p)= g+p (0)= Ep, and therefore, Eq. (12.10.7) is
the same as Eq. (12.3.11). For an Mth order predictor, we only need to consider the
values g±p (k), for k = 0,1, . . . ,M. We arrange these values (for the backward function)
into the column vector

g−p =

⎡
⎢⎢⎢⎢⎢⎣
g−p (0)
g−p (1)

...
g−p (M)

⎤
⎥⎥⎥⎥⎥⎦ (12.10.8)

By virtue of the gap conditions (12.10.5), the first p entries, k = 0,1, . . . , p − 1, of
this vector are zero. Therefore, we may construct the lower-triangular matrix having the
g−p s as columns

G = [g−0 ,g−1 , · · · ,g−M] (12.10.9)

For example, ifM = 3,

G =

⎡
⎢⎢⎢⎣
g−0 (0) 0 0 0
g−0 (1) g−1 (1) 0 0
g−0 (2) g−1 (2) g−2 (2) 0
g−0 (3) g−1 (3) g−2 (3) g−3 (3)

⎤
⎥⎥⎥⎦

The first column of G consists simply of theM + 1 autocorrelation lags:

g−0 =

⎡
⎢⎢⎢⎢⎢⎣
R(0)
R(1)

...
R(M)

⎤
⎥⎥⎥⎥⎥⎦ (12.10.10)

The main diagonal consists of the prediction errors of successive orders, namely,
g−p (p)= Ep, for p = 0,1, . . . ,M. Stacking the values of definition (12.10.1) into a vector,
we can write compactly,

g−p = E
[
ep(n)y(n)

]
(12.10.11)

where y(n)= [yn, yn−1, . . . , yn−M]T is the data vector for anMth order predictor. Thus,
the matrix G can be written as in Eq. (1.8.56)

G = E
[

y(n)
[
e−0 (n), e−1 (n), . . . , e−M(n)

]] = E[y(n)e−(n)T] (12.10.12)
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where e−(n)= [e−0 (n), e−1 (n), . . . , e−M(n)]T is the decorrelated vector of backward pre-
diction errors. Following Eq. (1.8.57), we multiply (12.10.12) from the left by the lower
triangular matrix L, and using the transformation e−(n)= Ly(n) and Eq. (12.9.5), we
obtain

LG = LE[y(n)e−(n)T]= E[e−(n)e−(n)T]= D
Therefore, G is essentially the inverse of L

G = L−1D (12.10.13)

Using Eq. (12.9.1), we obtain the conventional LU Cholesky factorization of the auto-
correlation matrix R in the form

R = L−1DL−T = (GD−1)D(D−1GT)= GD−1GT (12.10.14)

The backward gapped functions are computed by iterating the Schur recursions
(12.10.6) for 0 ≤ k ≤ M and 0 ≤ p ≤ M. One computational simplification is that,
because of the presence of the gap, the functions g±p (k) need only be computed for
p ≤ k ≤ M (actually, g+p (p)= 0 could also be skipped). This gives rise to the Schur
algorithm:

0. Initialize in order by g±0 (k)= R(k), k = 0,1, . . . ,M.
1. At stage p, we have available g±p (k) for p ≤ k ≤M.

2. Compute γp+1 =
g+p (p+ 1)
g−p (p)

.

3. For p+ 1 ≤ k ≤M, compute

g+p+1(k)= g+p (k)−γp+1g−p (k− 1)

g−p+1(k)= g−p (k− 1)−γp+1g+p (k)

4. Go to stage p+ 1.
5. At the final orderM, set EM = g−M(M).
The function schur is an implementation of this algorithm. The inputs to the func-

tion are the order M and the lags {R(0),R(1), . . . , R(M)}. The outputs are the pa-
rameters {EM,γ1, γ2, . . . , γM}. This function is a simple alternative to lev. It may be
used in conjunction with frwlev, bkwlev, and rlev, to pass from one linear prediction
parameter set to another. The function schur1 is a small modification of schur that, in
addition to the reflection coefficients, outputs the lower triangular Cholesky factor G.
The prediction errors can be read off from the main diagonal ofG, that is, EP = G(p,p),
p = 0,1, . . . ,M.

Example 12.10.1: Sending the five autocorrelation lags, {128,−64,80,−88,89}, of Example
12.3.1 through schur1 gives the set of reflection coefficients {γ1, γ2, γ3, γ4} = {−0.5,0.5,
−0.5,0.5}, and the matrix G

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

128 0 0 0 0
−64 96 0 0 0

80 −24 72 0 0
−88 36 0 54 0

89 −43.5 13.5 13.5 40.5

⎤
⎥⎥⎥⎥⎥⎥⎦
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Recall that the first column should be the autocorrelation lags and the main diagonal should
consist of the mean square prediction errors. It is easily verified that GD−1GT = R. ��

The computational bottleneck of the classical Levinson recursion is the computation
of the inner product (12.3.12). The Schur algorithm avoids this step by computing γp+1

as the ratio of the two gapped function values (12.10.7). Moreover, at each stage p, the
computations indicated in step 3 of the algorithm can be done in parallel. Thus, with
M parallel processors, the overall computation can be reduced to O(M) operations. As
formulated above, the Schur algorithm is essentially equivalent to the Le Roux-Gueguen
fixed-point algorithm [990]. The possibility of a fixed-point implementation arises from
the fact that all gapped functions have a fixed dynamic range, bounded by∣∣g±p (k)∣∣ ≤ R(0) (12.10.15)

This is easily seen by applying the Schwarz inequality to definition (12.10.1) and
using Ep ≤ R(0)∣∣g±p (k)∣∣2 = ∣∣E[e±p (n)yn−k]∣∣2 ≤ E[e±p (n)2]E[y2

n−k]≤ EpR(0)≤ R(0)2

The Schur algorithm admits a nice filtering interpretation in terms of the lattice struc-
ture. By definition, the gapped functions are the convolution of the forward/backward
pth order prediction filters with the autocorrelation sequence R(k). Therefore, g±p (k)
will be the outputs from the pth section of the lattice filter, Fig. 12.7.1, driven by the
input R(k). Moreover, Eq. (12.10.6) states that the (p + 1)st reflection coefficient is
obtainable as the ratio of the two inputs to the (p+ 1)st lattice section, at time instant
p+ 1 (note that g−p (p)= g−p (p+ 1− 1) is outputted at time p from the pth section and
is delayed by one time unit before it is inputted to the (p+ 1)st section at time p+ 1.)
The correct values of the gapped functions g±p (k) are obtained when the input to the
lattice filter is the infinite double-sided sequence R(k). If we send in the finite causal
sequence

x(k)= {R(0),R(1), . . . , R(M),0,0, . . . }
then, because of the initial and final transient behavior of the filter, the outputs of the
pth section will agree with g±p (k) only for p ≤ k ≤M. To see this, let y±p (k) denote the
two outputs. Because of the causality of the input and filter and the finite length of the
input, the convolutional filtering equation will be

y+p (k)=
min{p,k}∑

i=max{0,k−M}
api x(k− i)=

min{p,k}∑
i=max{0,k−M}

api R(k− i)

This agrees with Eq. (12.10.2) only after time p and before timeM, that is,

y±p (k)= g±p (k) , only for p ≤ k ≤M

The column vector y−p =
[
y−p (0), y−p (1), . . . , y−p (M)

]T
, formed by the first M back-

ward output samples of the pth section, will agree with g−p only for the entries p ≤ k ≤
M. Thus, the matrix of backward outputsY− = [y−0 ,y−1 , . . . ,y−M] formed by the columns
y−p will agree with G only in its lower-triangular part. But this is enough to determine
G because its upper part is zero.
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Example 12.10.2: Send the autocorrelation lags of Example 12.10.1 into the lattice filter of
Fig. 12.7.1 (with all its delay registers initialized to zero), arrange the forward/backward
outputs from the pth section into the column vectors, y±p , and put these columns together
to form the output matrices Y±. The result is,

Y− =

⎡
⎢⎢⎢⎢⎢⎢⎣

128 64 −64 64 −64
−64 96 64 −80 96

80 −24 72 64 −96
−88 36 0 54 64

89 −43.5 13.5 13.5 40.5

⎤
⎥⎥⎥⎥⎥⎥⎦ , Y+ =

⎡
⎢⎢⎢⎢⎢⎢⎣

128 128 128 128 128
−64 0 −32 −64 −96

80 48 0 32 72
−88 −48 −36 0 −32

89 45 27 27 0

⎤
⎥⎥⎥⎥⎥⎥⎦

The lower-triangular part of Y− agrees with G. The forward/backward outputs y±p can be
computed using, for example, the function lattice. They can also be computed directly by
convolving the prediction filters with the input. For example, the backward filter of order
4 given in Example 12.3.1 is aR4 = [−0.5,0.5,−0.1875,−0.25,1]T . Convolving it with the
autocorrelation sequence gives the last column of Y−

[128,−64,80,−88,89]∗[−0.5,0.5,−0.1875,−0.25,1]= [−64,96,−96,64,40.5, . . . ]

Convolving the forward filter a4 with the autocorrelation sequence gives the last column
of the matrix Y+

[128,−64,80,−88,89]∗[1,−0.25,−0.1875,0.5,−0.5]= [128,−96,72,−32,0, . . . ]

Note that we are interested only in the outputs for 0 ≤ k ≤ M = 4. The last 4 outputs (in
general, the last p outputs for a pth order filter) of these convolutions were not shown.
They correspond to the transient behavior of the filter after the input is turned off. ��

It is also possible to derive a split or immitance-domain version of the Schur al-
gorithm that achieves a further 50% reduction in computational complexity [962,963].
Thus, withM parallel processors, the complexity of the Schur algorithm can be reduced
to O(M/2) operations. We define a symmetrized or split gapped function in terms of
the symmetric polynomial Fp(z) defined in Eq. (12.6.1)

gp(k)=
p∑
i=0

fpi R(k− i) , Gp(z)= Fp(z)Syy(z) (12.10.16)

It can be thought of as the output of the filter Fp(z) driven by the autocorrelation
sequence. Multiplying both sides of Eq. (12.6.1) by Syy(z) and using the definition
(12.10.3), we obtain Gp(z)= G+p−1(z)+z−1G−p−1(z), or, in the time domain

gp(k)= g+p−1(k)+g−p−1(k− 1) (12.10.17)

Similarly, Eq. (12.6.2) gives

(1− γp)gp(k)= g+p (k)+g−p (k) (12.10.18)

It follows from Eqs. (12.10.4) and (12.10.18) or from the symmetry property of Fp(z)
thatgp(k)= gp(p−k), and in particular, gp(0)= gp(p). The split Levinson algorithm of
Sec. 12.6 requires the computation of the coefficients αp+1 = τp+1/τp. Setting k = 0 in
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the definition (12.10.16) and using the reflection symmetry R(i)= R(−i), we recognize
that the inner product of Eq. (12.6.6) is τp = gp(0)= gp(p). Therefore, the coefficient
αp+1 can be written as the ratio of the two gapped function values

αp+1 = gp+1(p+ 1)
gp(p)

(12.10.19)

Because the forward and backward gapped functions have overlapping gaps, it fol-
lows that gp(k) will have gap gp(k)= 0, for k = 1,2, . . . , p− 1. Therefore, for an Mth
order predictor, we only need to know the values of gp(k) for p ≤ k ≤ M. These
can be computed by the following three-term recurrence, obtained by multiplying the
recurrence (12.6.4) by Syy(z)

gp+2(k)= gp+1(k)+gp+1(k− 1)−αp+1gp(k− 1) (12.10.20)

Using F0(z)= 2 and F1(z)= 1 + z−1, it follows from the definition that g0(k)=
2R(k) and g1(k)= R(k)+R(k−1). To initialize τ0 correctly, however, we must choose
g0(0)= R(0), so that τ0 = g0(0)= R(0). Thus, we are led to the following split Schur
algorithm:

0. Initialize by g0(k)= 2R(k), g1(k)= R(k)+R(k − 1), for k = 1,2, . . . ,M, and
g0(0)= R(0), γ0 = 0.

1. At stage p, we have available γp, gp(k) for p ≤ k ≤ M, and gp+1(k) for p+ 1 ≤
k ≤M.

2. Compute αp+1 from Eq. (12.10.19) and solve for γp+1 = −1+αp+1/(1− γp).
3. For p+ 2 ≤ k ≤M, compute gp+2(k) using Eq. (12.10.20)

4. Go to stage p+ 1.

Recalling that Ep = τp(1 − γp), we may set at the final order EM = τM(1 − γM)=
gM(M)(1 − γM). Step 3 of the algorithm requires only one multiplication for each k,
whereas step 3 of the ordinary Schur algorithm requires two. This reduces the compu-
tational complexity by 50%. The function schur2 (see Appendix B) is an implemen-
tation of this algorithm. The inputs to the function are the order M and the lags
{R(0),R(1), . . . , R(M)}. The outputs are the parameters {EM,γ1, γ2, . . . , γM}. The
function can be modified easily to include the computation of the backward gapped
functions g−p (k), which are the columns of the Cholesky matrix G. This can be done by
the recursion

g−p (k)= g−p (k− 1)+(1− γp)gp(k)−gp+1(k) (12.10.21)

where p + 1 ≤ k ≤ M, with starting value g−p (p)= Ep = gp(p)(1 − γp). This recur-
sion will generate the lower-triangular part of G. Equation (12.10.21) follows by writing
Eq. (12.10.17) for order (p + 1) and subtracting it from Eq. (12.10.18). Note, also, that
Eq. (12.10.17) and the bound (12.10.15) imply the bound |gp(k)| ≤ 2R(0), which allows
a fixed-point implementation.

We finish this section by discussing the connection of the Schur algorithm to Schur’s
original work. It follows from Eq. (12.10.3) that the ratio of the two gapped functions
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G±p (z) is an all-pass stable transfer function, otherwise known as a lossless bounded real
function [971]:

Sp(z)=
G−p (z)
G+p (z)

= A
R
p(z)
Ap(z)

= app + ap,p−1z−1 + · · · + z−p
1+ ap1z−1 + · · · + appz−p (12.10.22)

The all-pass property follows from the fact that the reverse polynomial AR(z) has
the same magnitude response asAp(z). The stability property follows from the minimum-
phase property of the polynomials Ap(z), which in turn is equivalent to all reflection
coefficients having magnitude less than one. Such functions satisfy the boundedness
property ∣∣Sp(z)∣∣ ≤ 1 , for |z| ≥ 1 (12.10.23)

with equality attained on the unit circle. Taking the limit z → ∞, it follows from
Eq. (12.10.22) that the reflection coefficient γp is obtainable from Sp(z) by

Sp(∞)= app = −γp (12.10.24)

Using the backward Levinson recursion reqs5.3.23, we obtain a new all-pass function

Sp−1(z)=
G−p−1(z)
G+p−1(z)

= A
R
p−1(z)
Ap−1(z)

= z(γpAp +A
R
p)

Ap + γpARp
or, dividing numerator and denominator by Ap(z)

Sp−1(z)= z Sp(z)+γp
1+ γpSp(z) (12.10.25)

This is Schur’s original recursion [985]. Applying this recursion repeatedly from
some initial value p = M down to p = 0, with S0(z)= 1, will give rise to the set of
reflection or Schur coefficients {γ1, γ2, . . . , γM}. The starting all-pass function SM(z)
will be stable if and only if all reflection coefficients have magnitude less than one. We
note finally that there is an intimate connection between the Schur algorithm and inverse
scattering problems [991,995,1001,1002,1005–1007,1053].

In Sec. 12.13, we will see that the lattice recursions (12.10.6) describe the forward
and backward moving waves incident on a layered structure. The Schur function Sp(z)
will correspond to the overall reflection response of the structure, and the recursion
(12.10.25) will describe the successive removal of the layers. The coefficients γp will
represent the elementary reflection coefficients at the layer interfaces. This justifies the
term reflection coefficients for the γs.

12.11 Lattice Realizations of FIR Wiener Filters

In this section, we combine the results of Sections 11.3 and 12.9 to derive alternative
realizations of Wiener filters that are based on the Gram-Schmidt lattice structures.
Consider the FIR Wiener filtering problem of estimating a desired signal xn, on the basis
of the related signal yn, using anMth order filter. The I/O equation of the optimal filter
is given by Eq. (11.3.8). The vector of optimal weights is determined by solving the set of
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normal equations, given by Eq. (11.3.9). The discussion of the previous section suggests
that Eq. (11.3.9) can be solved efficiently using the Levinson recursion. Defining the data
vector

y(n)=

⎡
⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−M

⎤
⎥⎥⎥⎥⎥⎦ (12.11.1)

we rewrite Eq. (11.3.9) in the compact matrix form

Ryyh = rxy (12.11.2)

where Ryy is the (M+1)×(M+1) autocorrelation matrix of y(n), and rxy, the (M+1)-
vector of cross-correlations between xn, and y(n), namely,

Ryy = E
[
y(n)y(n)T

]
, rxy = E[xny(n)]=

⎡
⎢⎢⎢⎢⎢⎣
Rxy(0)
Rxy(1)

...
Rxy(M)

⎤
⎥⎥⎥⎥⎥⎦ (12.11.3)

and h is the (M + 1)-vector of optimal weights

h =

⎡
⎢⎢⎢⎢⎢⎣
h0

h1

...
hM

⎤
⎥⎥⎥⎥⎥⎦ (12.11.4)

The I/O equation of the filter, Eq. (12.9.4), is

x̂n = hTy(n)= h0yn + h1yn−1 + · · · + hMyn−M (12.11.5)

Next, consider the Gram-Schmidt transformation of Eq. (12.9.4) from the data vector
y(n) to the decorrelated vector e−(n):

e−(n)= Ly(n) or,

⎡
⎢⎢⎢⎢⎢⎣
e−0 (n)
e−1 (n)

...
e−M(n)

⎤
⎥⎥⎥⎥⎥⎦ = L

⎡
⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−M

⎤
⎥⎥⎥⎥⎥⎦ (12.11.6)

Inserting (12.11.6) into (12.11.5), we find

x̂n = hTL−1e−(n)

Defining the (M + 1)-vector
g = L−Th (12.11.7)

we obtain the alternative I/O equation for the Wiener filter:

x̂n = gTe−(n)=
M∑
p=0

gpe−p (n)= g0e−0 (n)+g1e−1 (n)+· · · + gMe−M(n) (12.11.8)
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This is easily recognized as the projection of xn onto the subspace spanned by{
e−0 (n), e−1 (n), . . . , e−M(n)

}
, which is the same as that spanned by the data vector {yn,

yn−1, . . . , yn−M}. Indeed, it follows from Eqs. (12.11.7) and (12.11.2) that

gT = hTL−1 = E[xny(n)T]E[y(n)y(n)T]−1L−1

= E[xne−(n)T]L−T
(
L−1E[e−(n)e−(n)T]L−T

)−1L−1

= E[xne−(n)T]E[e−(n)e−(n)T]−1

= [E[xne−0 (n)]/E0, E[xne−1 (n)]/E1, . . . , E[xne−M(n)]/EM
]

so that the estimate of xn can be expressed as

x̂n = E[xne−(n)T]E[e−(n)e−(n)T]−1e−(n)= E[xny(n)T]E[y(n)y(n)T]−1y(n)

The key to the lattice realization of the optimal filtering equation (12.11.8) is the
observation that the analysis lattice filter of Fig. 12.7.1 for the process yn, provides, in
its successive lattice stages, the signals e−p (n) which are required in the sum (12.11.8).
Thus, if the weight vector g is known, an alternative realization of the optimal filter will
be as shown in Fig. 12.11.1. By comparison, the direct form realization using Eq. (12.11.5)
operates directly on the vector y(n), which, at each time instant n, is available at the
tap registers of the filter. This is depicted in Fig. 12.11.2.

Both types of realizations can be formulated adaptively, without requiring prior
knowledge of the filter coefficients or the correlation matrices Ryy and rxy. We will
discuss adaptive implementations in Chap. 16. If Ryy and rxy are known, or can be es-
timated, then the design procedure for both the lattice and the direct form realizations
is implemented by the following three steps:

1. Using Levinson’s algorithm, implemented by the function lev, perform the LU
Cholesky factorization of Ryy, to determine the matrices L and D.

2. The vector of weights g can be computed in terms of the known quantities L,D, rxy
as follows:

g = L−Th = L−TR−1
yy rxy = L−T

(
LTD−1L

)
rxy = D−1Lrxy

3. The vector h can be recovered from g by h = LTg.

The function firw is an implementation of this design procedure. The inputs to
the function are the order M and the correlation lags

{
Ryy(0),Ryy(1), . . . , Ryy(M)

}
and

{
Rxy(0),Rxy(1), . . . , Rxy(M)

}
. The outputs are the quantities L,D,g, and h. The

estimate (12.11.8) may also be written recursively in the order of the filter. If we denote,

x̂p(n)=
p∑
i=0

gie−i (n) (12.11.9)

we obtain the recursion

x̂p(n)= x̂p−1(n)+gpe−p (n) , p = 0,1, . . . ,M (12.11.10)
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Fig. 12.11.1 Lattice realization of FIR Wiener filter.

initialized as x̂−1(n)= 0. The quantity x̂p(n) is the projection of xn on the subspace
spanned by

{
e−0 (n), e−1 (n), . . . , e−p (n)

}
, which by virtue of the lower-triangular nature

of the matrix L is the same space as that spanned by {yn, yn−1, . . . , yn−p}. Thus, x̂p(n)
represents the optimal estimate of xn based on a pth order filter. Similarly, x̂p−1(n)
represents the optimal estimate of xn based on the (p− 1)th order filter; that is, based
on the past p− 1 samples {yn, yn−1, . . . , yn−p+1}. These two subspaces differ by yn−p.

The term e−p (n) is by construction the best postdiction error of estimating yn−p from
the samples {yn, yn−1, . . . , yn−p+1}; that is, e−p (n) is the orthogonal complement of yn−p
projected on that subspace. Therefore, the term gpe−p (n) in Eq. (12.11.10) represents
the improvement in the estimate of xn that results by taking into account the additional
past value yn−p; it represents that part of xn that cannot be estimated in terms of the
subspace {yn, yn−1, . . . , yn−p+1}. The estimate x̂p(n) of xn is better than x̂p−1(n) in the
sense that it produces a smaller mean-squared estimation error. To see this, define the
estimation errors in the two cases

ep(n)= xn − x̂p(n) , ep−1(n)= xn − x̂p−1(n)

Using the recursion (12.11.10), we find

ep(n)= ep−1(n)−gpe−p (n) (12.11.11)
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Fig. 12.11.2 Direct-form realization of FIR Wiener filter.

Using gp = E[xne−p (n)]/Ep, we find for Ep = E[ep(n)2]

Ep = E[x2
n]−

p∑
i=0

giE[xne−i (n)]= Ep−1 − gpE[xne−p (n)]

= Ep−1 −
(
E[xne−p (n)]

)2/Ep = Ep−1 − g2
pEp

Thus, Ep is smaller than Ep−1. This result shows explicitly how the estimate is con-
stantly improved as the length of the filter is increased. The nice feature of the lat-
tice realization is that the filter length can be increased simply by adding more lattice
sections without having to recompute the weights gp of the previous sections. A re-
alization equivalent to Fig. 12.11.1, but which shows explicitly the recursive construc-
tion (12.11.10) of the estimate of xn and of the estimation error (12.11.11), is shown in
Fig. 12.11.3.

The function lwf is an implementation of the lattice Wiener filter of Fig. 12.11.3. The
function dwf implements the direct-form Wiener filter of Fig. 12.11.2. Each call to these
functions transforms a pair of input samples {x, y} into the pair of output samples
{x̂, e} and updates the internal state of the filter. Successive calls over n = 0,1,2, . . . ,
will transform the input sequences {xn, yn} into the output sequences {x̂n, en}. In both
realizations, the internal state of the filter is taken to be the vector of samples stored
in the delays of the filter; that is, wp(n)= e−p−1(n − 1), p = 1,2, . . . ,M for the lattice
case, and wp(n)= yn−p, p = 1,2, . . . ,M for the direct-form case. By allowing the filter
coefficients to change between calls, these functions can be used in adaptive implemen-
tations.

Next, we present a Wiener filter design example for a noise canceling application.
The primary and secondary signals x(n) and y(n) are of the form

x(n)= s(n)+v1(n) , y(n)= v2(n)
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Fig. 12.11.3 Lattice realization of FIR Wiener filter.

where s(n) is a desired signal corrupted by noise v1(n). The signal v2(n) is correlated
with v1(n) but not with s(n), and provides a reference noise signal. The noise canceler
is to be implemented as a Wiener filter of order M, realized either in the direct or the
lattice form. It is shown below:

Its basic operation is that of a correlation canceler; that is, the optimally designed
filter H(z) will transform the reference noise v2(n) into the best replica of v1(n), and
then proceed to cancel it from the output, leaving a clean signal s(n). For the purpose
of the simulation, we took s(n) to be a simple sinusoid

s(n)= sin(ω0n) , ω0 = 0.075π [rads/sample]

and v1(n) and v2(n) were generated by the difference equations

v1(n) = −0.5v1(n− 1)+v(n)
v2(n) = 0.8v2(n− 1)+v(n)

driven by a common, zero-mean, unit-variance, uncorrelated sequence v(n). The dif-
ference equations establish a correlation between the two noise components v1 and v2,
which is exploited by the canceler to effect the noise cancellation.

Figs. 12.11.4 and 12.11.5 show 100 samples of the signals x(n), s(n), and y(n)
generated by a particular realization of v(n). For M = 4 and M = 6, the sample auto-
correlation and cross-correlation lags, Ryy(k), Rxy(k), k = 0,1, . . . ,M, were computed
and sent through the function firw to get the filter weights g and h.

The reference signal yn was filtered through H(z) to get the estimate x̂n—which
is really an estimate of v1(n)—and the estimation error e(n)= x(n)−x̂(n), which is
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Fig. 12.11.4 Noise corrupted sinusoid.
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Fig. 12.11.5 Reference noise.

really an estimate of s(n). This estimate of s(n) is shown in Figs. (12.11.6) and 12.11.7,
for the cases M = 4 and M = 6, respectively. The improvement afforded by a higher
order filter is evident. For the particular realization of x(n) and y(n) that we used, the
sample correlations Ryy(k), Rxy(k), k = 0,1, . . . ,M, were:

Ryy = [2.5116, 1.8909, 1.2914, 0.6509, 0.3696, 0.2412, 0.1363]

Rxy = [0.7791, −0.3813, 0.0880, −0.3582, 0.0902, −0.0684, 0.0046]

and the resulting vector of lattice weights gp, p = 0,1, . . . ,M, reflection coefficients γp,
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Fig. 12.11.6 Output of noise canceler (M = 4).
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Fig. 12.11.7 Output of noise canceler (M = 6).

p = 1,2, . . . ,M, and direct-form weights hm,m = 0,1, . . . ,M were forM = 6,

g = [0.3102, −0.8894, 0.4706, −0.2534, 0.1571, −0.0826, 0.0398]

γγγ = [0.7528, −0.1214, −0.1957, 0.1444, 0.0354, −0.0937]

h = [0.9713, −1.2213, 0.6418, −0.3691, 0.2245, −0.1163, 0.0398]

To get the g and γγγ of the case M = 4, simply ignore the last two entries in the above.
The corresponding h is in this case:

h = [0.9646, −1.2262, 0.6726, −0.3868, 0.1571]

Using the results of Problems 12.25 and 12.26, we may compute the theoretical filter
weights for this example, and note that they compare fairly well with the estimated ones
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that were based on the length-100 data blocks. ForM = 6, we have:

g = [0.2571, −0.9286, 0.4643, −0.2321, 0.1161, −0.0580, 0.0290]

γγγ = [0.8, 0, 0, 0, 0, 0]

h = [1, −1.3, 0.65, −0.325, 0.1625, −0.0812, 0.0290]

As we discussed in Sec. 1.8, the lattice realizations based on the backward orthog-
onal basis have three major advantages over the direct-form realizations: (a) the filter
processes non-redundant information only, and hence adaptive implementations would
adapt faster; (b) the design of the optimal filter weights g does not require any matrix
inversion; and (c) the lower-order portions of g are already optimal. Moreover, it appears
that adaptive versions of the lattice realizations have better numerical properties than
the direct-form versions. In array processing problems, because the data vector y(n)
does not have the tapped-delay line form (12.11.1), the Gram-Schmidt orthogonalization
cannot be done by a simple a lattice filter. It requires a more complicated structure that
basically amounts to carrying out the lower-triangular linear transformation (12.11.6).
The benefits, however, are the same. We discuss adaptive versions of Gram-Schmidt
preprocessors for arrays in Chap. 16.

12.12 Autocorrelation, Covariance, and Burg’s Methods

As mentioned in Sec. 12.3, the finite order linear prediction problem may be thought of
as an approximation to the infinite order prediction problem. For large enough order
p of the predictor, the prediction-error filter Ap(z) may be considered to be an ade-
quate approximation to the whitening filter A(z) of the process yn. In this case, the
prediction-error sequence e+p (n) is approximately white, and the inverse synthesis filter
1/Ap(z) is an approximation to the signal model B(z) of yn. Thus, we have obtained
an approximate solution to the signal modeling problem depicted below:

The variance of e+p (n) is Ep. Depending on the realization one uses, the model pa-
rameters are either the set {ap1, ap2, . . . , app;Ep}, or, {γ1, γ2, . . . , γp;Ep}. Because these
can be determined by solving a simple linear system of equations—that is, the normal
equations (12.3.7)—this approach to the modeling problem has become widespread.

In this section, we present three widely used methods of extracting the model pa-
rameters from a given block of measured signal values yn [917,920,926,927,1008–1018].
These methods are:

1. The autocorrelation, or Yule-Walker, method
2. The covariance method.
3. Burg’s method.

We have already discussed the Yule-Walker method, which consists simply of replac-
ing the theoretical autocorrelations Ryy(k) with the corresponding sample autocorre-
lations R̂yy(k) computed from the given frame of data. This method, like the other
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two, can be justified on the basis of an appropriate least-squares minimization criterion
obtained by replacing the ensemble averages E[e+p (n)2] by appropriate time averages.

The theoretical minimization criteria for the optimal forward and backward predic-
tors are

E[e+p (n)2]= min , E[e−p (n)2]= min (12.12.1)

where e+p (n) and e−p (n) are the result of filtering yn through the prediction-error fil-
ter a = [1, ap1, . . . , app]T and its reverse aR = [app, ap,p−1, . . . , ap1,1]T, respectively;
namely,

e+p (n) = yn + ap1yn−1 + ap2yn−2 + · · · + appyn−p
e−p (n) = yn−p + ap1yn−p+1 + ap2yn−p+2 + · · · + appyn

(12.12.2)

Note that in both cases the mean-square value of e±p (n) can be expressed in terms
of the (p+ 1)×(p+ 1) autocorrelation matrix

R(i, j)= R(i− j)= E[yn+i−jyn]= E[yn−jyn−i] , 0 ≤ i, j ≤ p
as follows

E[e+p (n)2]= E[e−p (n)2]= aTRa (12.12.3)

Consider a frame of length N of measured values of yn

y0, y1, . . . , yN−1

1. The Yule-Walker, or autocorrelation, method replaces the ensemble average (12.12.1)
by the least-squares time-average criterion

E =
N+p−1∑
n=0

e+p (n)2= min (12.12.4)

where e+p (n) is obtained by convolving the length-(p + 1) prediction-error filter a =
[1, ap1, . . . , app]T with the length-N data sequence yn. The length of the sequence
e+p (n) is, therefore, N + (p + 1)−1 = N + p, which justifies the upper-limit in the
summation of Eq. (12.12.4). This convolution operation is equivalent to assuming that
the block of data yn has been extended both to the left and to the right by padding it
with zeros and running the filter over this extended sequence. The last p output samples
e+p (n), N ≤ n ≤ N + p − 1, correspond to running the filter off the ends of the data
sequence to the right. These terms arise because the prediction-error filter has memory
of p samples. This is depicted below:

Inserting Eq. (12.12.2) into (12.12.4), it is easily shown that E can be expressed in the
equivalent form

E =
N+p−1∑
n=0

e+p (n)2=
p∑
i,j=0

aiR̂(i− j)aj = aTR̂a (12.12.5)
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where R̂(k) denotes the sample autocorrelation of the length-N data sequence yn:

R̂(k)= R̂(−k)=
N−1−k∑
n=0

yn+kyn , 0 ≤ k ≤ N − 1

where the usual normalization factor 1/N has been ignored. This equation is identical
to Eq. (12.12.3) with R replaced by R̂. Thus, the minimization of the time-average index
(12.12.5) with respect to the prediction coefficients will lead exactly to the same set of
normal equations (12.3.7) with R replaced by R̂. The positive definiteness of the sample
autocorrelation matrix also guarantees that the resulting prediction-error filter will be
minimum phase, and thus also that all reflection coefficients will have magnitude less
than one.

2. The covariance method replaces Eq. (12.12.1) by the time average

E =
N−1∑
n=p
e+p (n)2= min (12.12.6)

where the summation in n is such that the filter does not run off the ends of the data
block, as shown below:

To explain the method and to see its potential problems with stability, consider a
simple example of a length-three sequence and a first-order predictor:

E =
2∑
n=1

e+1 (n)2= e+1 (1)2+e+1 (2)2= (y1 + a11y0)2+(y2 + a11y1)2

Differentiating with respect to a11 and setting the derivative to zero gives

(y1 + a11y0)y0 + (y2 + a11y1)y1 = 0

a11 = −y1y0 + y2y1

y2
0 + y2

1

Note that the denominator does not depend on the variable y2 and therefore it is
possible, if y2 is large enough, for a11 to have magnitude greater than one, making
the prediction-error filter nonminimal phase. Although this potential stability problem
exists, this method has been used with good success in speech processing, with few,
if any, such stability problems. The autocorrelation method is sometimes preferred in



564 12. Linear Prediction

speech processing because the resulting normal equations have a Toeplitz structure and
their solution can be obtained efficiently using Levinson’s algorithm. However, similar
ways of solving the covariance equations have been developed recently that are just as
efficient [1013].

3. Although the autocorrelation method is implemented efficiently, and the resulting
prediction-error filter is guaranteed to be minimum phase, it suffers from the effect of
windowing the data sequence yn, by padding it with zeros to the left and to the right.
This reduces the accuracy of the method somewhat, especially when the data record N
is short. In this case, the effect of windowing is felt more strongly. The proper way
to extend the sequence yn, if it must be extended, is a way compatible with the signal
model generating this sequence. Since we are trying to determine this model, the fairest
way of proceeding is to try to use the available data block in a way which is maximally
noncommittal as to what the sequence is like beyond the ends of the block.

Burg’s method, also known as the maximum entropy method (MEM), arose from the
desire on the one hand not to run off the ends of the data, and, on the other, to always
result in a minimum-phase filter. Burg’s minimization criterion is to minimize the sum-
squared of both the forward and the backward prediction errors:

E =
N−1∑
n=p

[
e+p (n)2+e−p (n)2] = min (12.12.7)

where the summation range is the same as in the covariance method, but with both the
forward and the reversed filters running over the data, as shown:

If the minimization is performed with respect to the coefficients api, it is still possi-
ble for the resulting prediction-error filter not to be minimum phase. Instead, Burg sug-
gests an iterative procedure: Suppose that the prediction-error filter [1, ap−1,1, ap−1,2,
. . . , ap−1,p−1] of order (p − 1) has already been determined. Then, to determine the
prediction-error filter of order p, one needs to know the reflection coefficient γp and to
apply the Levinson recursion:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ap1

ap2

...
ap,p−1

app

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ap−1,1
ap−1,2

...
ap−1,p−1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− γp

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
ap−1,p−1

ap−1,p−2

...
ap−1,1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12.12.8)

To guarantee the minimum-phase property, the reflection coefficient γp must have
magnitude less than one. The best choice for γp is that which minimizes the perfor-
mance index (12.12.7). Differentiating with respect to γp and setting the derivative to
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zero we find
∂E
∂γp

= 2
N−1∑
n=p

[
e+p (n)

∂e+p (n)
∂γp

+ e−p (n)
∂e−p (n)
∂γp

]
= 0

Using the lattice relationships

e+p (n) = e+p−1(n)−γpe−p−1(n− 1)

e−p (n) = e−p−1(n− 1)−γpe+p−1(n)
(12.12.9)

both valid for p ≤ n ≤ N − 1 if the filter is not to run off the ends of the data, we find
the condition

N−1∑
n=p

[
e+p (n)e

−
p−1(n− 1)+e−p (n)e+p−1(n)

] = 0 , or,

N−1∑
n=p

[(
e+p−1(n)−γpe−p−1(n− 1)

)
e−p−1(n− 1)+(e−p−1(n− 1)−γpe+p−1(n)

)
e+p−1(n)

] = 0

which can be solved for γp to give

γp =
2
N−1∑
n=p
e+p−1(n)e

−
p−1(n− 1)

N−1∑
n=p

[
e+p−1(n)2+e−p−1(n− 1)2] (12.12.10)

This expression for γp is of the form

γp = 2a · b

|a|2 + |b|2

where a and b are vectors. Using the Schwarz inequality, it is easily verified that γp has
magnitude less than one. Equations (12.12.8) through (12.12.10) define Burg’s method.
The computational steps are summarized below:

0. Initialize in order as follows:

e+0 (n)= e−0 (n)= yn , for 0 ≤ n ≤ N − 1 , and A0(z)= 1, E0 = 1

N

N−1∑
n=0

y2
n

1. At stage (p− 1), we have available the quantities:

Ap−1(z), Ep−1, and e±p−1(n), for p− 1 ≤ n ≤ N − 1

2. Using Eq. (12.12.10), compute the reflection coefficient γp.

3. Using (12.12.8), compute Ap(z).
4. Using (12.12.9), compute e±p (n), for p ≤ n ≤ N − 1.

5. Update the mean-square error by Ep = (1− γ2
p)Ep−1.

6. Go to stage p.
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The function burg is an implementation of this method. The inputs to the function
are the vector of data samples {y0, y1, . . . , yN−1} and the desired final order M of the
predictor. The outputs are all the prediction-error filters of order up toM, arranged as
usual into the lower triangular matrix L, and the corresponding mean-square prediction
errors {E0, E1, . . . , EM}.

Example 12.12.1: The length-six block of data

yn = [4.684, 7.247, 8.423, 8.650, 8.640, 8.392]

forn = 0,1,2,3,4,5, is known to have been generated by sending zero-mean, unit-variance,
white-noise εn through the difference equation

yn − 1.70yn−1 + 0.72yn−2 = εn

Thus, the theoretical prediction-error filter and mean-square error areA2(z)= 1−1.70z−1+
0.72z−2 and E2 = 1. Using Burg’s method, extract the model parameters for a second-order
model. The reader is urged to go through the algorithm by hand. Sending the above six yn
samples through the function burg, we find the first- and second-order prediction-error
filters and the corresponding errors:

A1(z) = 1− 0.987z−1 , E1 = 1.529

A2(z) = 1− 1.757z−1 + 0.779z−2 , E2 = 0.60

We note that the theoretical first-order filter obtained from A2(z)= 1−1.70z−1+0.72z−2

via the backward Levinson recursion is A1(z)= 1− 0.9884z−1. ��

The resulting set of LPC model parameters, from any of the above analysis methods,
can be used in a number of ways as suggested in Sec. 1.13. One of the most successful
applications has been to the analysis and synthesis of speech [920,1019–1027]. Each
frame of speech, of duration of the order of 20 msec, is subjected to the Yule-Walker
analysis method to extract the corresponding set of model parameters. The order M
of the predictor is typically 10–15. Pitch and voiced/unvoiced information are also
extracted. The resulting set of parameters represents that speech segment.

To synthesize the segment, the set of model parameters are recalled from memory
and used in the synthesizer to drive the synthesis filter. The latter is commonly realized
as a lattice filter. Lattice realizations are preferred because they are much better well-
behaved under quantization of their coefficients (i.e., the reflection coefficients) than
the direct-form realizations [920,1023,1024]. A typical speech analysis and synthesis
system is shown in Fig. 12.12.1.

Linear predictive modeling techniques have also been applied to EEG signal process-
ing in order to model EEG spectra, to classify EEGs automatically, to detect EEG transients
that might have diagnostic significance, and to predict the onset of epileptic seizures
[1028–1035].

LPC methods have been applied successfully to signal classification problems such
as speech recognition [1022,1036–1041] or the automatic classification of EEGs [1032].
Distance measures between two sets of model parameters extracted from two signal
frames can be used as measures of similarity between the frames. Itakura’s LPC distance
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Fig. 12.12.1 LPC analysis and synthesis of speech.

measure can be introduced as follows: Consider two autoregressive signal sequences,
the test sequence yT(n) to be compared against the reference sequence yR(n). Let
AT(z) and AR(z) be the two whitening filters, both of orderM. The two signal models
are

Now, suppose the sequence to be tested, yT(n), is filtered through the whitening
filter of the reference signal

resulting in the output signal eT(n). The mean output power is easily expressed as

E[eT(n)2] = a†RRTaR =
∫ π
−π
SeTeT(ω)

dω
2π

=
∫ π
−π

∣∣AR(ω)∣∣2SyTyT(ω)
dω
2π

=
∫ π
−π

∣∣AR(ω)∣∣2 σ2
εT∣∣AT(ω)∣∣2

dω
2π

where RT is the autocorrelation matrix of yT(n). On the other hand, if yT(n) is filtered
through its own whitening filter, it will produce εT(n). Thus, in this case

σ2
εT = E[εT(n)2]= a†TRTaT

It follows that
E[eT(n)2]
E[εT(n)2]

= a†RRTaR

a†TRTaT
=
∫ π
−π

∣∣AR(ω)∣∣2∣∣AT(ω)∣∣2

dω
2π

(12.12.11)

The log of this quantity is Itakura’s LPC distance measure

d(aT, aR)= log

(
E[eT(n)2]
E[εT(n)2]

)
= log

(
a†RRTaR

a†TRTaT

)
= log

[∫ π
−π

∣∣AR(ω)∣∣2∣∣AT(ω)∣∣2

dω
2π

]

In practice, the quantities aT, RT, and aR are extracted from a frame of yT(n) and a
frame of yR(n). If the model parameters are equal, the distance is zero. This distance
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measure effectively provides a comparison between the two spectra of the processes
yT and yR, but instead of comparing them directly, a prewhitening of yT(n) is carried
out by sending it through the whitening filter of the other signal. If the two spectra
are close, the filtered signal eT(n) will be close to white—that is, with a spectrum close
to being flat; a measure of this flatness is precisely the above integrated spectrum of
Eq. (12.12.11).

12.13 Dynamic Predictive Deconvolution—Waves in Layered

Media

The analysis and synthesis lattice filters, implemented via the Levinson recursion, were
obtained within the context of linear prediction. Here, we would like to point out the re-
markable fact that the same analysis and synthesis lattice structures also occur naturally
in the problem of wave propagation in layered media [920–925,974,976,1010,1019,1042–
1059]. This is perhaps the reason behind the great success of linear prediction methods
in speech and seismic signal processing. In fact, historically many linear prediction
techniques were originally developed within the context of these two application areas.

In speech, the vocal tract is modeled as an acoustic tube of varying cross-sectional
area. It can be approximated by the piece-wise constant area approximation shown
below:

The acoustic impedance of a sound wave varies inversely with the tube area

Z = ρc
A

where ρ, c,A are the air density, speed of sound, and tube area, respectively. Therefore,
as the sound wave propagates from the glottis to the lips, it will suffer reflections every
time it encounters an interface; that is, every time it enters a tube segment of differ-
ent diameter. Multiple reflections will be set up within each segment and the tube will
reverberate in a complicated manner depending on the number of segments and the
diameter of each segment. By measuring the speech wave that eventually comes out of
the lips, it is possible to remove, or deconvolve, the reverberatory effects of the tube
and, in the process, extract the tube parameters, such as the areas of the segments or,
equivalently, the reflection coefficients at the interfaces. During speech, the configu-
ration of the vocal tract tube changes continuously. But being a mechanical system, it
does so fairly slowly, and for short periods of time (of the order of 20–30 msec) it may
be assumed to maintain a fixed configuration. From each such short segment of speech,
a set of configuration parameters (e.g., reflection coefficients) may be extracted. This
set may be used to synthesize the speech segment.
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The seismic problem is somewhat different. Here it is not the transmitted wave that
is experimentally accessible, but rather the overall reflected wave:

An impulsive input to the earth, such as a dynamite explosion near the surface,
will set up seismic elastic waves propagating downwards. As the various earth layers
are encountered, reflections will take place. Eventually each layer will be reverberating
and an overall reflected wave will be measured at the surface. On the basis of this
reflected wave, the layered structure (i.e., reflection coefficients, impedances, etc.) must
be extracted by deconvolution techniques. These are essentially identical to the linear
prediction methods.

In addition to geophysical and speech applications, this wave problem and the as-
sociated inverse problem of extracting the structure of the medium from the observed
(reflected or transmitted) response have a number of other applications. Examples in-
clude the probing of dielectric materials by electromagnetic waves, the study of the
optical properties of thin films, the probing of tissues by ultrasound, and the design
of broadband terminations of transmission lines. The mathematical analysis of such
wave propagation problems has been done more or less independently in each of these
application areas, and is well known dating back to the time of Stokes.

In this type of wave propagation problem there are always two associated propa-
gating field quantities, the ratio of which is constant and equal to the corresponding
characteristic impedance of the propagation medium. Examples of these include the
electric and magnetic fields in the case of EM waves, the air pressure and particle vol-
ume velocity for sound waves, the stress and particle displacement for seismic waves,
and the voltage and current waves in the case of TEM transmission lines.

As a concrete example, we have chosen to present in some detail the case of EM
waves propagating in lossless dielectrics. The simplest and most basic scattering prob-
lem arises when there is a single interface separating two semi-infinite dielectrics of
characteristic impedances Z and Z′, as shown

where E+ and E− are the right and left moving electric fields in medium Z, and E ′+ and
E ′− are those in medium Z′. The arrows indicate the directions of propagation, the fields
are perpendicular to these directions. Matching the boundary conditions (i.e., continuity
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of the tangential fields at the interface), gives the two equations:

E+ + E− = E ′+ + E ′− (continuity of electric field)

1

Z
(E+ − E−)= 1

Z′
(E′+ − E′−) (continuity of magnetic field)

Introducing the reflection and transmission coefficients,

ρ = Z
′ − Z
Z′ + Z , τ = 1+ ρ , ρ′ = −ρ , τ′ = 1+ ρ′ = 1− ρ (12.13.1)

the above equations can be written in a transmission matrix form[ E+
E−

]
= 1

τ

[
1 ρ
ρ 1

][ E ′+
E ′−

]
(12.13.2)

The flow of energy carried by these waves is given by the Poynting vector

P = 1

2
Re
[
(E+ + E−)∗ 1

Z
(E+ − E−)

]
= 1

2Z
(E∗+ E+ − E∗− E−) (12.13.3)

One consequence of the above matching conditions is that the total energy flow to
the right is preserved across the interface; that is,

1

2Z
(E∗+ E+ − E∗− E−)= 1

2Z′
(E ′∗+ E ′+ − E ′∗− E ′−) (12.13.4)

It proves convenient to absorb the factors 1/2Z and 1/2Z′ into the definitions for
the fields by renormalizing them as follows:[

E+
E−

]
= 1√

2Z

[ E+
E−

]
,
[
E′+
E′−

]
= 1√

2Z′

[ E ′+
E ′−

]

Then, Eq. (12.13.4) reads

E∗+E+ − E∗−E− = E′∗+ E′+ − E′∗− E′− (12.13.5)

and the matching equations (12.13.2) can be written in the normalized form[
E+
E−

]
= 1

t

[
1 ρ
ρ 1

][
E′+
E′−

]
, t =

√
1− ρ2 = √ττ′ (12.13.6)

They may also be written in a scattering matrix form that relates the outgoing fields
to the incoming ones, as follows:[

E′+
E−

]
=
[
t ρ′

ρ t

][
E+
E′−

]
= S

[
E+
E′−

]
(12.13.7)

This is the most elementary scattering matrix of all, and ρ and t are the most ele-
mentary reflection and transmission responses. From these, the reflection and trans-
mission response of more complicated structures can be built up. In the more general
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Fig. 12.13.1 Layered structure.

Fig. 12.13.2 Reflection and transmission responses.

case, we have a dielectric structure consisting of M slabs stacked together as shown in
Fig. 12.13.1.

The media to the left and right in the figure are assumed to be semi-infinite. The
reflection and transmission responses (from the left, or from the right) of the structure
are defined as the responses of the structure to an impulse (incident from the left, or
from the right) as shown in Fig. 12.13.2.
The corresponding scattering matrix is defined as

S =
[
T R′

R T′

]

and by linear superposition, the relationship between arbitrary incoming and outgoing
waves is

[
E′+
E−

]
=
[
T R′

R T′

][
E+
E′−

]

The inverse scattering problem that we pose is how to extract the detailed prop-
erties of the layered structure, such as the reflection coefficients ρ0, ρ1, . . . , ρM from
the knowledge of the scattering matrix S; that is, from observations of the reflection
response R or the transmission response T.

Without loss of generality, we may assume the M slabs have equal travel time. We
denote the common one-way travel time by T1 and the two-way travel time by T2 = 2T1.
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As an impulse δ(t) is incident from the left on interface M, there will be immediately
a reflected wave and a transmitted wave into mediumM. When the latter reaches inter-
face M − 1, part of it will be transmitted into medium M − 1, and part will be reflected
back towards interface M where it will be partially rereflected towards M − 1 and par-
tially transmitted to the left into medium M + 1, thus contributing towards the overall
reflection response. Since the wave had to travel to interfaceM−1 and back, this latter
contribution will occur at time T2. Similarly, another wave will return back to interface
M due to reflection from the second interfaceM− 2; this wave will return 2T2 seconds
later and will add to the contribution from the zig-zag path within medium M which
is also returning at 2T2, and so on. The timing diagram below shows all the possible
return paths up to time t = 3T2, during which the original impulse can only travel as
far as interfaceM − 3:

When we add the contributions of all the returned waves we see that the reflection
response will be a linear superposition of returned impulses

R(t)=
∞∑
k=0

Rkδ(t − kT2)

It has a Fourier transform expressible more conveniently as the z-transform

R(z)=
∞∑
k=0

Rkz−k , z = ejωT2 , (here,ω is in rads/sec)

We observe that R is periodic in frequencyω with period 2π/T2, which plays a role
analogous to the sampling frequency in a sample-data system. Therefore, it is enough
to specify R within the Nyquist interval [−π/T2,π/T2].

Next, we develop the lattice recursions that facilitate the solution of the direct and
the inverse scattering problems. Consider the mth slab and let E±m be the right/left
moving waves incident on the left side of themth interface. To relate them to the same
quantities E±m−1 incident on the left side of the (m − 1)st interface, first we use the
matching equations to “pass” to the other side of the mth interface and into the mth
slab, and then we propagate these quantities to reach the left side of the (m − 1)st
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interface. This is shown below.

The matching equations are:[
E+m
E−m

]
= 1

tm

[
1 ρm
ρm 1

][
E+′m
E−′m

]
, tm = (1− ρ2

m)1/2 (12.13.8)

Since the left-moving wave E−′m is the delayed replica of E−m−1 by T1 seconds, and
E+′m is the advanced replica of E+m−1 by T1 seconds, it follows that

E+′m = z1/2E+m−1 , E−′m = z−1/2E−m−1

or, in matrix form [
E+′m
E−′m

]
=
[
z1/2 0
0 z−1/2

][
E+m−1

E−m−1

]
(12.13.9)

where the variable z−1 was defined above and represents the two-way travel time delay,
while z−1/2 represents the one-way travel time delay. Combining the matching and prop-
agation equations (12.13.8) and (12.13.9), we obtain the desired relationship between E±m
and E±m−1: [

E+m
E−m

]
= z

1/2

tm

[
1 ρmz−1

ρm z−1

][
E+m−1

E−m−1

]
(12.13.10)

Or, written in a convenient vector notation

Em(z)= ψm(z)Em−1(z) (12.13.11)

where we defined

Em(z)=
[
E+m(z)
E−m(z)

]
, ψm(z)= z

1/2

tm

[
1 ρmz−1

ρm z−1

]
(12.13.12)

The “match-and-propagate” transition matrixψm(z) has two interesting properties;
namely, defining ψ̄m(z)= ψm(z−1)

ψ̄m(z)TJ3ψm(z)= J3 , J3 =
[

1 0
0 −1

]
(12.13.13)

ψ̄m(z)= J1ψm(z)J1 , J1 =
[

0 1
1 0

]
(12.13.14)
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where J1, J3 are recognized as two of the three Pauli spin matrices. From Eq. (12.3.13),
we have with Ē±m(z)= E±m(z−1):

Ē+mE+m − Ē−mE−m = ĒTmJ3Em = ĒTm−1ψ̄TmJ3ψmEm−1 = ĒTm−1J3Ēm−1

= Ē+m−1E
+
m−1 − Ē−m−1E

−
m−1

(12.13.15)

which is equivalent to energy conservation, according to Eq. (12.13.5). The second prop-
erty, Eq. (12.13.14), expresses time-reversal invariance and allows the construction of a
second, linearly independent, solution of the recursive equations (12.13.11), Using the
property J2

1 = I, we have

Êm = J1Ēm =
[
Ē−m
Ē+m

]
= J1ψ̄mĒm−1 = J1ψ̄mJ1J1Ēm−1 = ψmÊm−1 (12.13.16)

The recursions (12.13.11) may be iterated now down to m = 0. By an additional
boundary match, we may pass to the right side of interfacem = 0:

Em = ψmψm−1 · · ·ψ1E0 = ψmψm−1 · · ·ψ1ψ0E′0

where we defined ψ0 by

ψ0 = 1

t0

[
1 ρ0

ρ0 1

]

or, more explicitly[
E+m
E−m

]
= zm/2

tmtm−1 · · · t1t0

[
1 ρmz−1

ρm z−1

]
· · ·

[
1 ρ1z−1

ρ1 z−1

][
1 ρ0

ρ0 1

][
E+′0

E−′0

]
(12.13.17)

To deal with this product of matrices, we define[
Am Cm
Bm Dm

]
=
[

1 ρmz−1

ρm z−1

]
· · ·

[
1 ρ1z−1

ρ1 z−1

][
1 ρ0

ρ0 1

]
(12.13.18)

where Am,Cm,Bm,Dm are polynomials of degree m in the variable z−1. The energy
conservation and time-reversal invariance properties of the ψm matrices imply similar
properties for these polynomials. Writing Eq. (12.13.18) in terms of the ψms, we have[

Am Cm
Bm Dm

]
= z−m/2σmψmψm−1 · · ·ψ1ψ0

where we defined the quantity

σm = tmtm−1 · · · t1t0 =
m∏
i=0

(1− ρ2
i )

1/2 (12.13.19)

Property (12.13.13) implies the same for the above product of matrices; that is, with
Ām(z)= Am(z−1), etc.,[

Ām C̄m
B̄m D̄m

][
1 0
0 −1

][
Am Cm
Bm Dm

]
=
[

1 0
0 −1

]
σ2
m
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which implies that the quantity Ām(z)Am(z)−B̄m(z)Bm(z) is independent of z:

Ām(z)Am(z)−B̄m(z)Bm(z)= σ2
m (12.13.20)

Property (12.13.14) implies thatCm andDm are the reverse polynomials BRm andARm,
respectively; indeed[

ARm CRm
BRm DRm

]
= z−m

[
Ām C̄m
B̄m D̄m

]
= z−mzm/2σmψ̄m · · · ψ̄1ψ̄0

= z−m/2σmJ1(ψm · · ·ψ0)J1 = J1

[
Am Cm
Bm Dm

]
J1

=
[

0 1
1 0

][
Am Cm
Bm Dm

][
0 1
1 0

]
=
[
Dm Bm
Cm Am

]
(12.13.21)

from which it follows thatCm(z)= BRm(z) andDm(z)= ARm(z). The definition (12.13.18)
implies also the recursion[

Am BRm
Bm ARm

]
=
[

1 ρmz−1

ρm z−1

][
Am−1 BRm−1

Bm−1 ARm−1

]

Therefore each column of the ABCD matrix satisfies the same recursion. To sum-
marize, we have[

Am(z) BRm(z)
Bm(z) ARm(z)

]
=
[

1 ρmz−1

ρm z−1

]
· · ·

[
1 ρ1z−1

ρ1 z−1

][
1 ρ0

ρ0 1

]
(12.13.22)

with the lattice recursion[
Am(z)
Bm(z)

]
=
[

1 ρmz−1

ρm z−1

][
Am−1(z)
Bm−1(z)

]
(12.13.23)

and the property (12.13.20). The lattice recursion is initialized atm = 0 by:

A0(z)= 1 , B0(z)= ρ0 , or,

[
A0(z) BR0 (z)
B0(z) AR0 (z)

]
=
[

1 ρ0

ρ0 1

]
(12.13.24)

Furthermore, it follows from the lattice recursion (12.13.23) that the reflection co-
efficients ρm always appear in the first and last coefficients of the polynomials Am(z)
and Bm(z), as follows

am(0)= 1 , am(m)= ρ0ρm , bm(0)= ρm , bm(m)= ρ0 (12.13.25)

Eq. (12.13.17) for the field components reads now[
E+m
E−m

]
= z

m/2

σm

[
Am BRm
Bm ARm

][
E+′0

E−′0

]

Settingm =M, we find the relationship between the fields incident on the dielectric
slab structure from the left to those incident from the right:[

E+M
E−M

]
= z

M/2

σM

[
AM BRM
BM ARM

][
E+′0

E−′0

]
(12.13.26)
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All the multiple reflections and reverberatory effects of the structure are buried in
the transition matrix [

AM BRM
BM ARM

]

In reference to Fig. 12.13.2, the reflection and transmission responses R,T,R′, T′ of
the structure can be obtained from Eq. (12.13.26) by noting that[

1
R

]
= z

M/2

σM

[
AM BRM
BM ARM

][
T
0

]
,

[
0
T′

]
= z

M/2

σM

[
AM BRM
BM ARM

][
R′

1

]

which may be combined into one equation:[
1 0
R T′

]
= z

M/2

σM

[
AM BRM
BM ARM

][
T R′

0 1

]

that can be written as follows:

zM/2

σM

[
AM BRM
BM ARM

]
=
[

1 0
R T′

][
T R′

0 1

]−1

=
[

1 0
R 1

][
T−1 0

0 T′

][
1 −R′
0 1

]

Solving these for the reflection and transmission responses, we find:

R(z)= BM(z)
AM(z)

, T(z)= σMz
−M/2

AM(z)

R′(z)= −B
R
M(z)
AM(z)

, T′(z)= σMz
−M/2

AM(z)

(12.13.27)

Note that T(z)= T′(z). Since on physical grounds the transmission response T(z)
must be a stable and causal z-transform, it follows that necessarily the polynomial
AM(z)must be a minimum-phase polynomial. The overall delay factor z−M/2 in T(z) is
of no consequence. It just means that before anything can be transmitted through the
structure, it must traverse allM slabs, each with a travel time delay of T1 seconds; that
is, with overall delay ofMT1 seconds.

Let Rm−1(z) and Tm−1(z) be the reflection and transmission responses based on
m − 1 layers. The addition of one more layer will change the responses to Rm(z) and
Tm(z). Using the lattice recursions, we may derive a recursion for these responses:

Rm(z)= Bm(z)Am(z)
= ρmAm−1(z)+z−1Bm−1(z)
Am−1(z)+ρmz−1Bm−1(z)

Dividing numerator and denominator by Am−1(z) we obtain

Rm(z)= ρm + z−1Rm−1(z)
1+ ρmz−1Rm−1(z)

(12.13.28)

12.13. Dynamic Predictive Deconvolution—Waves in Layered Media 577

It describes the effect of adding a layer. Expanding it in a power series, we have

Rm(z)= ρm + (1− ρ2
m)
[
z−1Rm−1(z)

]− (1− ρ2
m)ρm

[
z−1Rm−1(z)

]2 + · · ·

It can be verified easily that the various terms in this sum correspond to the multiple
reflections taking place within themth layer, as shown below:

The first term in the expansion is always ρm; that is, ρm = Rm(∞). Thus, from the
knowledge of Rm(z) we may extract ρm. With ρm known, we may invert Eq. (12.13.28)
to get Rm−1(z) from which we can extract ρm−1; and so on, we may extract the series
of reflection coefficients. The inverse of Eq. (12.13.28), which describes the effect of
removing a layer, is

Rm−1(z)= z Rm(z)−ρm
1− ρmRm(z) (12.13.29)

Up to a difference in the sign of ρm, this is recognized as the Schur recursion
(12.10.25). It provides a nice physical interpretation of that recursion; namely, the Schur
functions represent the overall reflection responses at the successive layer interfaces,
which on physical grounds must be stable, causal, and bounded |Rm(z)| ≤ 1 for all z in
their region of convergence that includes, at least, the unit circle and all the points out-
side it. We may also derive a recursion for the transmission responses, which requires
the simultaneous recursion of Rm(z):

Tm(z)= tmz−1/2Tm−1(z)
1+ ρmz−1Rm−1(z)

, Tm−1(z)= z1/2 tmTm(z)
1− ρmRm(z) (12.13.30)

The dynamic predictive deconvolution method is an alternative method of extracting
the sequence of reflection coefficients and is discussed below.

The equations (12.13.27) for the scattering responses R,T,R′, T′ imply the unitarity
of the scattering matrix S given by

S =
[
T R′

R T′

]

that is,
S̄(z)TS(z)= S(z−1)TS(z)= I (12.13.31)

where I is the 2×2 unit matrix. On the unit circle z = ejωT2 the scattering matrix
becomes a unitary matrix: S(ω)†S(ω)= I. Component-wise, Eq. (12.13.31) becomes

T̄T + R̄R = T̄′T′ + R̄′R′ = 1 , T̄R′ + R̄T′ = 0 (12.13.32)
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Robinson and Treitel’s dynamic predictive deconvolution method [974] of solving
the inverse scattering problem is based on the above unitarity equation. In the inverse
problem, it is required to extract the set of reflection coefficients from measurements of
either the reflection response R or the transmission response T. In speech processing it
is the transmission response that is available. In geophysical applications, or in studying
the reflectivity properties of thin films, it is the reflection response that is available. The
problem of designing terminations of transmission lines also falls in the latter category.
In this case, an appropriate termination is desired that must have a specified reflection
response R(z); for example, to be reflectionless over a wide band of frequencies about
some operating frequency.

The solution of both types of problems follows the same steps. First, from the
knowledge of the reflection response R(z), or the transmission response T(z), the
spectral function of the structure is defined:

Φ(z)= 1−R(z)R̄(z)= T(z)T̄(z)= σ2
M

AM(z)ĀM(z)
(12.13.33)

This is recognized as the power spectrum of the transmission response, and it is of
the autoregressive type. Thus, linear prediction methods can be used in the solution.

In the time domain, the autocorrelation lags φ(k) of the spectral function are ob-
tained from the sample autocorrelations of the reflection sequence, or the transmission
sequence:

φ(k)= δ(k)−C(k)= D(k) (12.13.34)

whereC(k) andD(k) are the sample autocorrelations of the reflection and transmission
time responses:

C(k)=
∑
n
R(n+ k)R(n) , D(k)=

∑
n
T(n+ k)T(n) (12.13.35)

In practice, only a finite record of the reflection (or transmission) sequence will be
available, say {R(0),R(1), . . . , R(N − 1)}. Then, an approximation to C(k) must be
used, as follows:

C(k)=
N−1−k∑
n=0

R(n+ k)R(n) , k = 0,1, . . . ,M (12.13.36)

The polynomial AM(z) may be recovered from the knowledge of the firstM lags of
the spectral function; that is, {φ(0),φ(1), . . . ,φ(M)}. The determining equations for
the coefficients of AM(z) are precisely the normal equations of linear prediction. In the
present context, they may be derived directly by noting that Φ(z) is a stable spectral
density and is already factored into its minimum-phase factors in Eq. (12.13.33). Thus,
writing

Φ(z)AM(z)= σ2
M

AM(z−1)
it follows that the right-hand side is expandable in positive powers of z; the negative
powers of z in the left-hand side must be set equal to zero. This gives the normal
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equations:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ(0) φ(1) φ(2) · · · φ(M)
φ(1) φ(0) φ(1) · · · φ(M − 1)
φ(2) φ(1) φ(0) · · · φ(M − 2)

...
...

...
...

φ(M) φ(M − 1) φ(M − 2) · · · φ(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
aM(1)
aM(2)

...
aM(M)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ2
M
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(12.13.37)
which can be solved efficiently using Levinson’s algorithm. Having obtained AM(z)
and noting the BM(z)= AM(z)R(z), the coefficients of the polynomial BM(z) may be
recovered by convolution:

bM(n)=
n∑
m=0

aM(n−m)R(m) , n = 0,1, . . . ,M (12.13.38)

Having obtained both AM(z) and BM(z) and noting that ρM = bM(0), the lattice
recursion (12.13.23) may be inverted to recover the polynomials AM−1(z) and BM−1(z)
as well as the next reflection coefficient ρM−1 = bM−1(0), and so on. The inverse of the
lattice recursion matrix is[

1 ρmz−1

ρm z−1

]−1

= 1

1− ρ2
m

[
1 −ρm

−ρmz z

]

Therefore, the backward recursion becomes:

ρm = bm(0) ,
[
Am−1(z)
Bm−1(z)

]
= 1

1− ρ2
m

[
1 −ρm

−ρmz z

][
Am(z)
Bm(z)

]
(12.13.39)

In this manner, all the reflection coefficients {ρ0, ρ1, . . . , ρM} can be extracted. The
computational algorithm is summarized as follows:

1. Measure R(0),R(1), . . . , R(N − 1).
2. Select a reasonable value for the number of slabsM.

3. Compute the M + 1 sample autocorrelation lags C(0),C(1), . . . , C(M) of the re-
flection response R(n), using Eq. (12.13.36).

4. Compute φ(k)= δ(k)−C(k), k = 0,1, . . . ,M.

5. Using Levinson’s algorithm, solve the normal equations (12.13.37) for the coeffi-
cients of AM(z).

6. Convolve AM(z) with R(z) to find BM(z).
7. Compute ρM = bM(0) and iterate the backward recursion (12.13.39) fromm =M

down tom = 0.

The function dpd is an implementation of the dynamic predictive deconvolution pro-
cedure. The inputs to the function areN samples of the reflection response {R(0),R(1), . . . , R(N−
1)} and the number of layers M. The outputs are the lattice polynomials Ai(z) and
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Bi(z), for i = 0,1, . . . ,M, arranged in the two lower-triangular matrices A and B whose
rows hold the coefficients of these polynomials; that is, A(i, j)= ai(j), or

Ai(z)=
i∑
j=0

A(i, j)z−j

and similarly for Bi(z). The function invokes the function lev to solve the normal
equations (12.13.34). The forward scattering problem is implemented by the function
scatt, whose inputs are the set of reflection coefficients {ρ0, ρ1, . . . , ρM} and whose
outputs are the lattice polynomials Ai(z) and Bi(z), for i = 0,1, . . . ,M, as well as a
pre-specified number N of reflection response samples {R(0),R(1), . . . , R(N − 1)}. It
utilizes the forward lattice recursion (12.13.23) to obtain the lattice polynomials, and
then computes the reflection response samples by taking the inverse z-transform of
Eq. (12.13.27).

Next, we present a number of deconvolution examples simulated by means of the
functions scatter and dpd. In each case, we specified the five reflection coefficients
of a structure consisting of four layers. Using scatter we generated the exact lattice
polynomials whose coefficients are arranged in the matricesA and B, and also generated
16 samples of the reflection response R(n), n = 0,1, . . . ,15. These 16 samples were
sent through the dpd function to extract the lattice polynomials A and B.

The first figure of each example displays a table of the reflection response samples
and the exact and extracted polynomials. Note that the first column of the matrix B
is the vector of reflection coefficients, according to Eq. (12.13.25). The remaining two
graphs of each example show the reflection response R in the time domain and in the
frequency domain. Note that the frequency response is plotted only over one Nyquist
interval [0,2π/T2], and it is symmetric about the Nyquist frequency π/T2.

Figs. 12.13.3 and 12.13.4 correspond to the case of equal reflection coefficients
{ρ0, ρ1, ρ2, ρ3, ρ4} = {0.5,0.5,0.5,0.5,0.5}.

In Figs. 12.13.5 and 12.13.6 the reflection coefficients have been tapered somewhat
at the ends (windowed) and are {0.3,0.4,0.5,0.4,0.3}. Note the effect of tapering on
the lobes of the reflection frequency response. Figs. 12.13.7 and 12.13.8 correspond
to the set of reflection coefficients {0.1,0.2,0.3,0.2,0.1}. Note the broad band of fre-
quencies about the Nyquist frequency for which there is very little reflection. In con-
trast, the example in Figs. 12.13.9 and 12.13.10 exhibits high reflectivity over a broad
band of frequencies about the Nyquist frequency. Its set of reflection coefficients is
{0.5,−0.5,0.5,−0.5,0.5}.

In this section we have discussed the inverse problem of unraveling the structure
of a medium from the knowledge of its reflection response. The connection of the
dynamic predictive deconvolution method to the conventional inverse scattering meth-
ods based on the Gelfand-Levitan-Marchenko approach [1054] has been discussed in
[1043,1055,1056].‘The lattice recursions characteristic of the wave propagation prob-
lem were derived as a direct consequence of the boundary conditions at the interfaces
between media, whereas the lattice recursions of linear prediction were a direct con-
sequence of the Gram-Schmidt orthogonalization process and the minimization of the
prediction-error performance index. Is there a deeper connection between these two
problems [1005–1007]? One notable result in this direction has been to show that the
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Aexact =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.0000 0 0 0 0
1.0000 0.2500 0 0 0
1.0000 0.5000 0.2500 0 0
1.0000 0.7500 0.5625 0.2500 0
1.0000 1.0000 0.9375 0.6250 0.2500

⎤
⎥⎥⎥⎥⎥⎥⎦

Aextract =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.0000 0 0 0 0
1.0000 0.2509 0 0 0
1.0000 0.5009 0.2510 0 0
1.0000 0.7509 0.5638 0.2508 0
1.0000 1.0009 0.9390 0.6263 0.2504

⎤
⎥⎥⎥⎥⎥⎥⎦

Bexact =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.5000 0 0 0 0
0.5000 0.5000 0 0 0
0.5000 0.6250 0.5000 0 0
0.5000 0.7500 0.7500 0.5000 0
0.5000 0.8750 1.0313 0.8750 0.5000

⎤
⎥⎥⎥⎥⎥⎥⎦

Bextract =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.5010 0 0 0 0
0.5000 0.5010 0 0 0
0.5000 0.6255 0.5010 0 0
0.5000 0.7505 0.7510 0.5010 0
0.5000 0.8755 1.0323 0.8764 0.5010

⎤
⎥⎥⎥⎥⎥⎥⎦

k R(k)
0 0.5000
1 0.3750
2 0.1875
3 0.0234
4 −0.0586
5 −0.1743
6 0.1677
7 0.0265
8 −0.0601
9 −0.0259

10 0.0238
11 0.0314
12 −0.0225
13 −0.0153
14 0.0109
15 0.0097

Fig. 12.13.3 Reflection response and lattice polynomials.
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Fig. 12.13.4 Reflection responses in the time and frequency domains.

Cholesky factorization of Toeplitz or near-Toeplitz matrices via the Schur algorithm
can be cast in a wave propagation model and derived as a simple consequence of energy
conservation [1002].
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Aexact =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.0000 0 0 0 0
1.0000 0.1200 0 0 0
1.0000 0.3200 0.1500 0 0
1.0000 0.5200 0.3340 0.1200 0
1.0000 0.6400 0.5224 0.2760 0.0900

⎤
⎥⎥⎥⎥⎥⎥⎦

Aextract =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.0000 0 0 0 0
1.0000 0.1200 0 0 0
1.0000 0.3200 0.1500 0 0
1.0000 0.5200 0.3340 0.1200 0
1.0000 0.6400 0.5224 0.2760 0.0900

⎤
⎥⎥⎥⎥⎥⎥⎦

Bexact =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.3000 0 0 0 0
0.4000 0.3000 0 0 0
0.5000 0.4600 0.3000 0 0
0.4000 0.6280 0.5200 0.3000 0
0.3000 0.5560 0.7282 0.5560 0.3000

⎤
⎥⎥⎥⎥⎥⎥⎦

Bextract =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.3000 0 0 0 0
0.4000 0.3000 0 0 0
0.5000 0.4600 0.3000 0 0
0.4000 0.6280 0.5200 0.3000 0
0.3000 0.5560 0.7282 0.5560 0.3000

⎤
⎥⎥⎥⎥⎥⎥⎦

k R(k)
0 0.3000
1 0.3640
2 0.3385
3 0.0664
4 −0.0468
5 −0.1309
6 0.0594
7 0.0373
8 −0.0146
9 −0.0148

10 0.0014
11 0.0075
12 −0.0001
13 −0.0029
14 −0.0003
15 0.0010

Fig. 12.13.5 Reflection response and lattice polynomials.
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Fig. 12.13.6 Reflection responses in the time and frequency domains.
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Aexact =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.0000 0 0 0 0
1.0000 0.0200 0 0 0
1.0000 0.0800 0.0300 0 0
1.0000 0.1400 0.0712 0.0200 0
1.0000 0.1600 0.1028 0.0412 0.0100

⎤
⎥⎥⎥⎥⎥⎥⎦

Aextract =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.0000 0 0 0 0
1.0000 0.0200 0 0 0
1.0000 0.0800 0.0300 0 0
1.0000 0.1400 0.0712 0.0200 0
1.0000 0.1600 0.1028 0.0412 0.0100

⎤
⎥⎥⎥⎥⎥⎥⎦

Bexact =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.1000 0 0 0 0
0.2000 0.1000 0 0 0
0.3000 0.2060 0.1000 0 0
0.2000 0.3160 0.2120 0.1000 0
0.1000 0.2140 0.3231 0.2140 0.1000

⎤
⎥⎥⎥⎥⎥⎥⎦

Bextract =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.1000 0 0 0 0
0.2000 0.1000 0 0 0
0.3000 0.2060 0.1000 0 0
0.2000 0.3160 0.2120 0.1000 0
0.1000 0.2140 0.3231 0.2140 0.1000

⎤
⎥⎥⎥⎥⎥⎥⎦

k R(k)
0 0.1000
1 0.1980
2 0.2812
3 0.1445
4 0.0388
5 −0.0346
6 −0.0072
7 0.0017
8 0.0015
9 0.0002

10 −0.0002
11 −0.0001
12 0.0000
13 0.0000
14 0.0000
15 −0.0000

Fig. 12.13.7 Reflection response and lattice polynomials.

0 2 4 6 8 10 12 14
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

time k

time response R(k)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

frequency in cycles/sample

frequency response |R(ω )|2

Fig. 12.13.8 Reflection responses in the time and frequency domains.
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Aexact =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.0000 0 0 0 0
1.0000 −0.2500 0 0 0
1.0000 −0.5000 0.2500 0 0
1.0000 −0.7500 0.5625 −0.2500 0
1.0000 −1.0000 0.9375 −0.6250 0.2500

⎤
⎥⎥⎥⎥⎥⎥⎦

Aextract =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.0000 0 0 0 0
1.0000 −0.2509 0 0 0
1.0000 −0.5009 0.2510 0 0
1.0000 −0.7509 0.5638 −0.2508 0
1.0000 −1.0009 0.9390 −0.6263 0.2504

⎤
⎥⎥⎥⎥⎥⎥⎦

Bexact =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.5000 0 0 0 0
−0.5000 0.5000 0 0 0

0.5000 −0.6250 0.5000 0 0
−0.5000 0.7500 −0.7500 0.5000 0

0.5000 −0.8750 1.0313 −0.8750 0.5000

⎤
⎥⎥⎥⎥⎥⎥⎦

Bextract =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.5010 0 0 0 0
−0.5000 0.5010 0 0 0

0.5000 −0.6255 0.5010 0 0
−0.5000 0.7505 −0.7510 0.5010 0

0.5000 −0.8755 1.0323 −0.8764 0.5010

⎤
⎥⎥⎥⎥⎥⎥⎦

k R(k)
0 0.5000
1 −0.3750
2 0.1875
3 −0.0234
4 −0.0586
5 0.1743
6 0.1677
7 −0.0265
8 −0.0601
9 0.0259

10 0.0238
11 −0.0314
12 −0.0225
13 0.0153
14 0.0109
15 −0.0097

Fig. 12.13.9 Reflection response and lattice polynomials.

0 2 4 6 8 10 12 14
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time k

time response R(k)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

frequency in cycles/sample

frequency response |R(ω )|2

Fig. 12.13.10 Reflection responses in the time and frequency domains.
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12.14 Least-Squares Waveshaping and Spiking Filters

In linear prediction, the three practical methods of estimating the prediction error filter
coefficients were all based on replacing the ensemble mean-square minimization crite-
rion by a least-squares criterion based on time averages. Similarly, the more general
Wiener filtering problem may be recast in terms of such time averages. A practical for-
mulation, which is analogous to the Yule-Walker or autocorrelation method, is as follows
[974,975,1010,1059]. Given a record of available data

y0, y1, . . . , yN

find the best linear FIR filter of orderM

h0, h1, . . . , hM

which reshapes yn into a desired signal xn, specified in terms of the samples:

x0, x1, . . . , xN+M

where for consistency of convolution, we assumed we know N +M + 1 samples of the
desired signal. The actual convolution output of the waveshaping filter will be:

x̂n =
min(n,M)∑

m=max(0,n−N)
hmxn−m , 0 ≤ n ≤ N +M (12.14.1)

and the estimation error:

en = xn − x̂n , 0 ≤ n ≤ N +M (12.14.2)

As the optimality criterion, we choose the least-squares criterion:

E =
N+M∑
n=0

e2
n = min (12.14.3)

The optimal filter weights hm are selected to minimize E. It is convenient to recast
the above in a compact matrix form. Define the (N+M+1)×(M+1) convolution data
matrix Y, the (M+1)×1 vector of filter weights h, the (N+M+1)×1 vector of desired
samples x, (and estimates x̂ and estimation errors e), as follows:

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0 0 0 · · · 0
y1 y0 0 · · · 0
y2 y1 y0 · · · 0
...

...
...

...
yN yN−1 yN−2 · · · yN−M
0 yN yN−1 · · · yN−M+1

0 0 yN · · · yN−M+2

...
...

...
...

0 0 0 · · · yN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, h =

⎡
⎢⎢⎢⎢⎢⎣
h0

h1

...
hM

⎤
⎥⎥⎥⎥⎥⎦ , x =

⎡
⎢⎢⎢⎢⎢⎣
x0

x1

...
xN+M

⎤
⎥⎥⎥⎥⎥⎦ (12.14.4)
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Equations (12.14.1) through (12.14.3) now become

x̂ = Yh , e = x− x̂ , E = eTe (12.14.5)

Minimizing E with respect to the weight vector h results in the orthogonality equations:

YTe = YT(x−Yh)= 0 (12.14.6)

which are equivalent to the normal equations:

YTYh = YTx (12.14.7)

Solving for h, we find
h = (YTY)−1YTx = R−1r (12.14.8)

where the quantities
R = YTY , r = YTx (12.14.9)

may be recognized (see Sec. 1.11) as the (M+1)×(M+1) autocorrelation matrix formed
by the sample autocorrelations R̂yy(0), R̂yy(1), . . . R̂yy(M) of yn, and as the (M+1)×1
vector of sample cross-correlations R̂xy(0), R̂xy(1), . . . R̂xy(M) between the desired and
the available vectors xn and yn. We have already used this expression for the weight
vector h in the example of Sec. 12.11. Here we have justified it in terms of the least-
squares criterion (12.14.3). The function firw may be used to solve for the weights
(12.14.8) and, if so desired, to give the corresponding lattice realization. The actual
filter output x̂ is expressed as

x̂ = Yh = YR−1YTx = Px (12.14.10)

where
P = YR−1YT = Y(YTY)−1YT (12.14.11)

The error vector becomes e = (I − P)x. The “performance” matrix P is a projection
matrix, and thus, so is (I − P). Then, the error square becomes

E = eTe = xT(I − P)2x = xT(I − P)x (12.14.12)

The (N+M+1)×(N+M+1)matrix P has trace equal toM+1, as can be checked
easily. Since its eigenvalues as a projection matrix are either 0 or 1, it follows that in
order for the sum of all the eigenvalues (the trace) to be equal to M + 1, there must
necessarily be M + 1 eigenvalues that are equal to 1, and N eigenvalues equal to 0.
Therefore, the matrix P has rankM+ 1, and if the desired vector x is selected to be any
of theM+1 eigenvectors belonging to eigenvalue 1, the corresponding estimation error
will be zero.

Among all possible waveshapes that may be chosen for the desired vector x, of
particular importance are the spikes, or impulses. In this case, x is a unit impulse, say
at the origin; that is, xn = δn. The convolution x̂n = hn ∗ yn of the corresponding filter
with yn is the best least-squares approximation to the unit impulse. In other words, hn is
the best least-squares inverse filter to yn that attempts to reshape, or compress, yn into
a unit impulse. Such least squares inverse filters are used extensively in deconvolution
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applications. More generally. the vector x may be chosen to be any one of the unit
vectors

x = ui =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
← ith slot , i = 0,1, . . . ,N +M (12.14.13)

which corresponds to a unit impulse occurring at the ith time instant instead of at the
origin; that is, xn = δ(n− i). The actual output from the spiking filter is given by

x̂ = Px = Pui = ith column of P (12.14.14)

Thus, the ith column of the matrix P is the output of the ith spiking filter which
attempts to compress yn into a spike with i delays. The corresponding ith filter is
h = R−1YTui. Therefore, the columns of the matrix

H = R−1YT = (YTY)−1YT (12.14.15)

are all the optimal spiking filters. The estimation error of the ith filter is

Ei = uTi (I − P)ui = 1− Pii (12.14.16)

where Pii, is the ith diagonal element of P. Since the delay imay be positioned anywhere
from i = 0 to i = N +M, there are N +M + 1 such spiking filters, each with error Ei.
Among these, there will be one that has the optimal delay i which corresponds to the
smallest of the Eis; or, equivalently, to the maximum of the diagonal elements Pii.

The design procedure for least-squares spiking filters for a given finite signal yn,
n = 0,1, . . . ,N − 1 is summarized as follows:

1. Compute R = YTY.

2. Compute the inverse R−1 (preferably by the Levinson recursion).

3. Compute H = R−1YT = all the spiking filters.

4. Compute P = YH = YR−1YT = all spiking filter outputs.

5. Select that column i of P for which Pii is the largest.

If the Levinson-Cholesky algorithm is used to compute the inverse R−1, this design
procedure becomes fairly efficient. An implementation of the procedure is given by the
function spike. The inputs to the function are the N + 1 samples {y0, y1, . . . , yN}, the
desired order M of the spiking filter, and a so-called “prewhitening” or Backus-Gilbert
parameter ε, which will be explained below. The outputs of the function are the matrices
P and H.

To explain the role of the parameter ε, let us go back to the waveshaping problem.
When the data sequence yn to be reshaped into xn is inaccurately known—if, for example,
it has been contaminated by white noise vn—the least-squares minimization criterion
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(12.14.3) can be extended slightly to accomplish the double task of (1) producing the
best estimate of xn and (2) reducing the noise at the output of the filter hn as much as
possible.

The input to the filter is the noisy sequence yn+vn and its output is hn∗yn+hn∗
vn = x̂n + un, where we set un = hn ∗ vn. The term un represents the filtered noise.
The minimization criterion (12.14.3) may be replaced by

E =
∑
n
e2
n + λE[u2

n]= min (12.14.17)

where λ is a positive parameter which can be chosen by the user. Large λ emphasizes
large reduction of the output noise, but this is done at the expense of resolution; that is,
at the expense of obtaining a very good estimate. On the other hand, smallλ emphasizes
higher resolution but with lesser noise reduction. This tradeoff between resolution and
noise reduction is the basic property of this performance index. Assuming that vn is
white with variance σ2

v , we have

E[u2
n]= σ2

v

M∑
n=0

h2
n = σ2

v hTh

Thus, Eq. (12.14.17) may be written as

E = eTe+ λσ2
v hTh = min (12.14.18)

Its minimization with respect to h gives the normal equations:

(YTY + λσ2
v I)h = YTx (12.14.19)

from which it is evident that the diagonal of YTY is shifted by an amount λσ2
v ; that is,

R̂yy(0)−→ R̂yy(0)+λσ2
v ≡ (1+ ε)R̂yy(0) , ε = λσ2

v

R̂yy(0)

In practice, εmay be taken to be a few percent or less. It is evident from Eq. (12.14.19)
that one beneficial effect of the parameter ε is the stabilization of the inverse of the
matrix YTY + λσ2

v I.
The main usage of spiking filters is in deconvolution problems [59,60,95,144–146],

where the desired and the available signals xn and yn are related to each other by the
convolutional relationship

yn = fn ∗ xn =
∑
m
fmxn−m (12.14.20)

where fn is a “blurring” function which is assumed to be approximately known. The ba-
sic deconvolution problem is to recover xn from yn if fn is known. For example, yn may
represent the image of an object xn recorded through an optical system with a point-
spread function fn. Or, yn might represent the recorded seismic trace arising from the
excitation of the layered earth by an impulsive waveform fn (the source wavelet) which
is convolved with the reflection impulse response xn of the earth (in the previous sec-
tion xn was denoted by Rn.) If the effect of the source wavelet fn can be “deconvolved
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away,” the resulting reflection sequence xn may be subjected to the dynamic predictive
deconvolution procedure to unravel the earth structure. Or, fn may represent the im-
pulse response of a channel, or a magnetic recording medium, which broadens and blurs
(intersymbol interference) the desired message xn.

The least-squares inverse spiking filters offer a way to solve the deconvolution prob-
lem: Simply design a least-squares spiking filter hn corresponding to the blurring func-
tion fn; that is, hn ∗ fn � δn, in the least-squares sense. Then, filtering yn through hn
will recover the desired signal xn:

x̂n = hn ∗ yn = (hn ∗ fn)∗xn � δn ∗ xn = xn (12.14.21)

If the ith spiking filter is used, which compresses fn into an impulse with i delays,
hn ∗ fn � δ(n− i), then the desired signal xn will be recovered with a delay of i units
of time.

This and all other approaches to deconvolution work well when the data yn are not
noisy. In presence of noise, Eq. (12.14.20) becomes

yn = fn ∗ xn + vn (12.14.22)

where vn may be assumed to be zero-mean white noise of variance σ2
v . Even if the

blurring function fn is known exactly and a good least-squares inverse filter hn can be
designed, the presence of the noise term can distort the deconvolved signal beyond
recognition. This may be explained as follows. Filtering yn through the inverse filter hn
results in

hn ∗ yn = (hn ∗ fn)∗xn + hn ∗ vn � xn + un
where un = hn ∗ vn is the filtered noise. Its variance is

E[u2
n]= σ2

v hTh = σ2
v

M∑
n=0

h2
n

which, depending on the particular shape of hn may be much larger than the original
variance σ2

v . This happens, for example, when fn consists mainly of low frequencies.
For hn to compress fn into a spike with a high frequency content, the impulse response
hn itself must be very spiky, which can result in values for hTh which are greater than
one.

To combat the effects of noise, the least-squares design criterion for h must be
changed by adding to it a term λE[u2

n] as was done in Eq. (12.14.17). The modified
design criterion is then

E =
∑
n
(δn − hn ∗ fn)2+λσ2

v

M∑
n=0

h2
n

which effectively amounts to changing the autocorrelation lag R̂ff (0) into (1+ε)R̂ff (0).
The first term in this performance index tries to produce a good inverse filter; the second
term tries to minimize the output power of the noise after filtering by the deconvolu-
tion filter hn. Note that conceptually this index is somewhat different from that of
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Eq. (12.14.17), because now vn represents the noise in the data yn whereas there vn
represented inaccuracies in the knowledge of the wavelet fn.

In this approach to deconvolution we are not attempting to determine the best least-
squares estimate of the desired signal xn, but rather the best least-squares inverse to
the blurring function fn. If the second order statistics of xn were known, we could, of
course, determine the optimal (Wiener) estimate x̂n of xn. This is also done in many
applications.

The performance of the spiking filters and their usage in deconvolution are illus-
trated by the following example: The blurring function fn to be spiked was chosen as

fn =
⎧⎨
⎩g(n− 25), n = 0,1, . . . ,65

0, for other n

where g(k) was the “gaussian hat” function:

g(k)= cos(0.15k)exp(−0.004k2)

The signal xn to be recovered was taken to be the series of delayed spikes:

xn =
9∑
i=0

aiδ(n− ni)

where the amplitudes ai and delays ni were chosen as

ai = 1, 0.8, 0.5, 0.95, 0.7, 0.5, 0.3, 0.9, 0.5, 0.85

ni = 25, 50, 60, 70, 80, 90, 100, 120, 140, 160

for i = 0,1,2,3,4,5,6,7,8,9.
Fig. 12.14.1 shows the signal fn to be spiked. Since the gaussian hat is symmetric

about the origin, we chose the spiking delay to be at i = 25. The order of the spiking
filter hn was M = 50. The right graph in Fig. 12.14.1 shows the impulse response hn
versus time. Note the spiky nature of hn which is required here because fn has a fairly
low frequency content. Fig. 12.14.2 shows the results of the convolution hn ∗ fn, which
is the best least-squares approximation to the impulse δ(n− 25).

The “goodness” of the spiking filter is judged by the diagonal entries of the per-
formance matrix P, according to Eq. (12.14.16). For the chosen delay k = 25, we find
P(25,25)= 0.97. To obtain a better picture of the overall performance of the spiking
filters, on the right in Fig. 12.14.2 we have plotted the diagonal elements P(k, k) versus
k. It is seen that the chosen delay k = 25 is nearly optimal. Fig. 12.14.3 shows the
composite signal yn obtained by convolving fn and xn, according to Eq. (12.14.20).

Fig. 12.14.3 shows on the right the deconvolved signal xn according to Eq. (12.14.21).
The recovery of the amplitudes ai and delays ni of xn is very accurate. These results
represent the idealistic case of noise-free data yn and perfect knowledge of the blurring
function fn. To study the sensitivity of the deconvolution technique to inaccuracies in
the knowledge of the signal fn we have added a small high frequency perturbation on
fn as follows:

f ′n = fn + 0.05 sin
(
1.5(n− 25)

)
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Fig. 12.14.1 Spiking filter and its inverse.
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Fig. 12.14.2 Deconvolved signal and performance index.

The approximate signal f ′n is shown in Fig. 12.14.4. The spiking filter was designed
on the basis of f ′n rather than fn. The result of filtering the same composite signal yn
through the corresponding inverse filter is shown on the right in Fig. 12.14.4. The delays
and amplitudes ai and ni are not well resolved, but the basic nature of xn can still be
seen. Inspecting Fig. 12.14.1 we note the large spikes that are present in the impulse
response hn of the inverse filter; these can cause the amplification of any additive noise
component. Indeed, the noise reduction ratio of the filter hn is hTh = 612, thus it will
tend to amplify even small amounts of noise.

To study the effect of noise, we have added a noise term vn, as in Eq. (12.14.22), with
variance equal to 10−4 (this corresponds to just 1% of the amplitude a0); the composite
signal yn is shown on the left in Fig. 12.14.5. One can barely see the noise. Yet, after
filtering with the inverse filter hn of Fig. 12.14.1, the noise component is amplified to
a great extent. The result of deconvolving the noisy yn with hn is shown on the right
in Fig. 12.14.5. To reduce the effects of noise, the prewhitening parameter ε must be
chosen to be nonzero. Even a small nonzero value of ε can have a beneficial effect. The
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Fig. 12.14.3 Composite and deconvolved signal.
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Fig. 12.14.4 Composite and deconvolved signal.

graphs in Fig. 12.14.6 show the deconvolved signal xn when the filter hn was designed
with the choices ε = 0.0001 and ε = 0.001, respectively. Note the trade-off between the
noise reduction and the loss of resolution in the recovered spikes of xn.

Based on the studies of Robinson and Treitel [974], Oldenburg [1065], and others,
the following summary of the use of the above deconvolution method may be made:

1. If the signal fn to be spiked is a minimum-phase signal, the optimal spiking delay
must be chosen at the origin i = 0. The optimality of this choice is not actually
seen until the filter orderM is sufficiently high. The reason for this choice has to
do with the minimum-delay property of such signals which implies that most of
their energy is concentrated at the beginning, therefore, they may be more easily
compressed to spikes with zero delay.

2. If fn is a mixed-delay signal, as in the above example, then the optimal spiking
delay will have some intermediate value.

3. Even if the shape of fn is not accurately known, the deconvolution procedure
based on the approximate fn might have some partial success in deconvolving the
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Fig. 12.14.5 Composite and deconvolved signal.
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Fig. 12.14.6 Deconvolved signals.

replicas of fn.

4. In the presence of noise in the data yn to deconvolved, some improvement may
result by introducing a nonzero value for the prewhitening parameter ε, where
effectively the sample autocorrelation Rff(0) is replaced by (1 + ε)R̂ff (0). The
trade-off is a resulting loss of resolution.

The deconvolution problem of Eq. (12.14.20) and (12.14.22) has been approached by
a wide variety of other methods. Typically, a finite number of samples yn, n = 0,1, . . . ,N
is available. Collecting these into a vector y = [y0, y1, . . . , yN]T, we write Eq. (12.14.22)
in an obvious vectorial form

y = Fx+ v (12.14.23)

Instead of determining an approximate inverse filter for the blurring function F, an
alternative method is to attempt to determine the best—in some sense—vector x which
is compatible with these equations. A popular method is based on the least-squares
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criterion [1060].

E =
N∑
n=0

v2
n = vTv = (y− Fx)T(y− Fx)= min (12.14.24)

That is, x is chosen so as to minimize E. Setting the derivative with respect to x to
zero gives the standard least-squares solution

x̂ = (FTF)−1FTy

A prewhitening term can be added to the right of the performance index to stabilize
the indicated inverse

E = vTv+ λxTx

with solution x̂ = (FTF+λI)−1FTy. Another approach that has been used with success
is based on the L1-norm criterion

E =
N∑
n=0

|vn| = min (12.14.25)

This quantity is referred to as the L1 norm of the vector v. The minimization of this
norm with respect to x may be formulated as a linear programming problem [1063–
1073]. It has been observed that this method performs very well in the presence of
noise, and it tends to ignore a few “bad” data points—that is, those for which the noise
value vn might be abnormally high—in favor of the good points, whereas the standard
least-squares method based on the L2-norm (12.14.24) will spend all its efforts trying
to minimize the few large terms in the sum (12.14.24), and might not result in as good
an estimate of x as it would if the few bad data points were to be ignored. We discuss
this approach further in Sec. 15.11

Another class of deconvolution methods are iterative methods, reviewed in [1074].
Such methods, like the linear programming method mentioned above, offer the addi-
tional option of enforcing priori constraints that may be known to be satisfied by x, for
example, positivity, band-limiting, or time-limiting constraints. The imposition of such
constraints can improve the restoration process dramatically.

12.15 Computer Project – ARIMA Modeling

The Box-Jenkins airline data set has served as a benchmark in testing seasonal ARIMA
models. In particular, it has led to the popular “airline model”, which, for monthly data
with yearly periodicity, is defined by the following innovations signal model:

(1− Z−1)(1− Z−12)yn = (1− bZ−1)(1− BZ−12)εn (12.15.1)

where Z−1 denotes the delay operator and b,B are constants such that |b| < 1 and
|B| < 1. In this experiment, we briefly consider this model, but then replace it with the
following ARIMA model,

(1− Z−12)yn = 1

A(Z)
εn , A(z)= 1+ a1z−1 + a2z−2 + · · · + apz−p (12.15.2)

The airline data set can be loaded with the MATLAB commands:
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Y = load(’airline.dat’); % in OSP data file folder
Y = Y’; Y = Y(:); % concatenate rows
y = log(Y); % log data

The data represent monthly airline passengers for the period Jan. 1949 to Dec. 1960.
There are N = 144 data points. In this experiment, we will work with a subset of the
first n0 = 108 points, that is, yn, 0 ≤ n ≤ n0 − 1, and attempt to predict the future 36
months of data (108+ 36 = 144.)

a. Plot Yn and the log-data yn = lnYn versus n and note the yearly periodicity. Note
how the log-transformation tends to equalize the apparent increasing amplitude of
the original data.

b. Compute and plot the normalized sample ACF, ρk = R(k)/R(0), of the zero-mean
log-data for lags 0 ≤ k ≤ 40 and note the peaks at multiples of 12 months.

c. Let xn = (1−Z−1)(1−Z−12)yn in the model of Eq. (12.15.1). The signal xn follows
an MA model with spectral density:

Sxx(z)= σ2
ε(1− bz−1)(1− bz)(1− Bz−12)(1− Bz12)

Multiply the factors out and perform an inverse z-transform to determine the auto-
correlation lags Rxx(k). Show in particular, that

Rxx(1)
Rxx(0)

= − b
1+ b2

,
Rxx(12)
Rxx(0)

= − B
1+ B2

(12.15.3)

Filter the subblock yn,0 ≤ n ≤ n0 − 1 through the filter (1 − z−1)(1 − z−12) to
determine xn. You may discard the first 13 transient outputs of xn. Use the rest
of xn to calculate its sample ACF and apply Eq. (12.15.3) to solve for the model
parameters b,B.

This simple method gives values that are fairly close to the Box/Jenkins values deter-
mined by maximum likelihood methods, namely, b = 0.4 and B = 0.6, see Ref. [22].

d. Consider, next, the model of Eq. (12.15.2) with a second-order AR model i.e., A(z)
filter order of p = 2. Define xn = (1 − Z−12)yn = yn − yn−12 and denote its auto-
correlation function by Rk. Since xn follows an AR(2) model, its model parameters
a1, a2, σ2

ε can be computed from:[
a1

a2

]
= −

[
R0 R1

R1 R0

]−1 [
R1

R2

]
, σ2

ε = R0 + a1R1 + a2R2 (12.15.4)

Using the data subset yn,0 ≤ n ≤ n0 − 1, calculate the signal xn and discard the
first 12 transient samples. Using the rest of xn, compute its sample ACF, R̂k for
0 ≤ k ≤M withM = 40, and use the first 3 computed lags R̂0, R̂1, R̂2 in Eqs. (12.15.4)
to estimate a1, a2, σ2

ε (in computing the ACF, the signal xn need not be replaced by
its zero-mean version).

Because of the assumed autoregressive model, it is possible to calculate all the au-
tocorrelation lags Rk for k ≥ p+ 1 from the first p+ 1 lags. This can accomplished
by the MATLAB “autocorrelation sequence extension” function:



596 12. Linear Prediction

M=40; Rext = acext(R(1:p+1), zeros(1,M-p));

On the same graph, plot the sample and extended ACFs, R̂(k) and Rext(k) versus
0 ≤ k ≤M normalized by their lag-0 values.

e. Let x̂n denote the estimate/prediction of xn based on the data subset {xm,m ≤
n0 − 1}. Clearly, x̂n = xn, if n ≤ n0 − 1. Writing Eq. (12.15.2) recursively, we obtain
for the predicted values into the future beyond n0:

xn = −
(
a1xn−1 + a2xn−2

)+ εn
x̂n = −

(
a1x̂n−1 + a2x̂n−2

)
, for n ≥ n0

(12.15.5)

where we set ε̂n = 0 because all the observations are in the strict past of εn when
n ≥ n0.

Calculate the predicted values 36 steps into the future, x̂n for n0 ≤ n ≤ N−1, using
the fact that x̂n = xn, if n ≤ n0 − 1. Once you have the predicted xn’s, you can
calculate the predicted yn’s by the recursive equation:

ŷn = ŷn−12 + x̂n (12.15.6)

where you must use ŷn = yn, if n ≤ n0 − 1. Compute ŷn for n0 ≤ n ≤ N − 1, and
plot it on the same graph with the original data yn, 0 ≤ n ≤ N−1. Indicate the start
of the prediction horizon with a vertical line at n = n0 (see example graph at end.)

f. Repeat parts (d,e) using an AR(4) model (i.e., p = 4), with signal model equations:

xn = yn − yn−12 , xn = −
(
a1xn−1 + a2xn−2 + a3xn−3 + a4xn−4

)+ εn
and normal equations:

⎡
⎢⎢⎢⎣
a1

a2

a3

a4

⎤
⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎣
R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤
⎥⎥⎥⎦
−1 ⎡
⎢⎢⎢⎣
R1

R2

R3

R4

⎤
⎥⎥⎥⎦ , σ2

ε = R0+a1R1+a2R2+a3R3+a4R4

with predictions:

x̂n = −
(
a1x̂n−1 + a2x̂n−2 + a3x̂n−3 + a4x̂n−4

)
ŷn = ŷn−12 + x̂n

taking into account the properties that x̂n = xn and ŷn = yn, if n ≤ n0 − 1.

g. Inspecting the log-data, it is evident that there is an almost linear trend as well as
a twelve-month, or even, a six-month periodicity. In this part, we will attempt to fit
the the data using a conventional basis-functions method and then use this model
to predict the last 36 months.
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Consider the following model for the first n0 points of the log data yn that assumes
a quadratic trend and 12-month, 6-month, and 4-month periodicities, i.e., three har-
monics of the fundamental frequency of 1/12 cycle/month, for 0 ≤ n ≤ n0 − 1,

ŷn = c0 + c1n+ c2n2+c3 sin
(

2πn
12

)
+ c4 cos

(
2πn
12

)
+

+c5 sin
(

4πn
12

)
+ c6 cos

(
4πn
12

)

+c7 sin
(

6πn
12

)
+ c8 cos

(
6πn
12

)
(12.15.7)

Carry out a least-squares fit to determine the nine coefficients ci, that is, determine
the ci that minimize the quadratic performance index,

J =
n0−1∑
n=0

(
yn − ŷn

)2 = min (12.15.8)

In addition, carry out a fit based on the L1 criterion,

J =
n0−1∑
n=0

∣∣yn − ŷn∣∣ = min (12.15.9)

Show that the coefficients are, for the two criteria,

L2 L1

c0 4.763415 4.764905
c1 0.012010 0.011912
c2 −0.000008 −0.000006
c3 0.036177 0.026981
c4 −0.135907 −0.131071
c5 0.063025 0.067964
c6 0.051890 0.051611
c7 −0.025511 −0.017619
c8 −0.009168 −0.012753

Using the found coefficients for each criterion, evaluate the fitted quantity ŷn of
Eq. (12.15.7) over the entire data record, 0 ≤ n ≤ N − 1, and plot it on the same
graph together with the actual data, and with the AR(4) prediction. It appears that
this approach also works well but over a shorter prediction interval, i.e., 24 months
instead of 36 for the AR(4) method.

Some example graphs for this experiment are included below.
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12.16 Problems

12.1 (a) Following the methods of Sec. 12.1, show that the optimal filter for predicting D steps
into the future—i.e., estimating y(n+D) on the basis of {y(m); m ≤ n}—is given by

H(z)= 1

B(z)
[
zDB(z)

]
+

(b) Express
[
zDB(z)

]
+ in terms of B(z) itself and the first D− 1 impulse response coef-

ficients bm,m = 1,2, . . . ,D− 1 of B(z).

(c) For the two random signals yn defined in Examples 12.1.1 and 12.1.2, find the optimal
prediction filters for D = 2 and D = 3, and write the corresponding I/O equations.

12.2 Consider the order-p autoregressive sequence yn defined by the difference equation (12.2.3).
Show that a direct consequence of this difference equation is that the projection of yn onto
the subspace spanned by the entire past {yn−i; 1 ≤ i < ∞} is the same as the projection of
yn onto the subspace spanned only by the past p samples {yn−i; 1 ≤ i ≤ p}.

12.3 (a) Show that the performance index (12.3.2) may be written as

E = E[e2
n]= aTRa

where a = [1, a1, . . . , ap]T is the order-p prediction-error filter, and R the autocorre-
lation matrix of yn; that is, Rij = E[yn−iyn−j].

(b) Derive Eq. (12.3.7) by minimizing the index E with respect to the weights a, subject
to the linear constraint that a0 = 1, and incorporating this constraint by means of a
Lagrange multiplier.

12.4 Take the inverse z-transform of Eq. (12.3.17) and compare the resulting equation with Eq. (12.3.15).

12.5 Verify that Eq. (12.3.22) and (12.3.23) are inverses of each other.

12.6 A fourth order all-pole random signal process y(n) is represented by the following set of
signal model parameters (reflection coefficients and input variance):

{γ1, γ2, γ3, γ4, σ2
ε} = {0.5, −0.5, 0.5, −0.5, 40.5}

(a) Using the Levinson recursion, find the prediction error filter A4(z).
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(b) Determine σ2
y = Ryy(0). Using intermediate results from part (a), determine the au-

tocorrelation lags Ryy(k), k = 1,2,3,4.

12.7 The first five lags of the autocorrelation function of a fourth-order autoregressive random
sequence y(n) are

{R(0), R(1), R(2), R(3), R(4)} = {256, 128, −32, −16, 22}

Determine the best prediction-error filters and the corresponding mean-square errors of
orders p = 1,2,3,4 by using Levinson’s algorithm in matrix form.

12.8 The fourth-order prediction-error filter and mean-square prediction error of a random signal
have been determined to be

A4(z)= 1− 1.25z−1 + 1.3125z−2 − z−3 + 0.5z−4 , E4 = 0.81

Using the function rlev, determine the autocorrelation lags R(k), 0 ≤ k ≤ 4, the four
reflection coefficients, and all the lower order prediction-error filters.

12.9 Verify the results of Example 12.3.1 using the functions lev, frwlev, bkwlev, and rlev, as
required.

12.10 (a) Given the five signal samples

{y0, y1, y2, y3, y4} = {1, −1, 1, −1, 1}

compute the corresponding sample autocorrelation lags R̂(k), k = 0,1,2,3,4, and
send them through the function lev to determine the fourth-order prediction error
filter A4(z).

(b) Predict the sixth sample in this sequence.

(c) Repeat (a) and (b) for the sequence of samples {1,2,3,4,5}.
12.11 Find the infinite autoregressive or maximum-entropy extension of the two autocorrelation

sequences

(a) {R(0), R(1)} = {1, 0.5}
(b) {R(0), R(1), R(2)} = {4, 0, 1}

In both cases, determine the corresponding power spectrum density Syy(z) and from it
calculate the R(k) for all lags k.

12.12 Write Eq. (12.3.24) for order p + 1. Derive Eq. (12.5.1) from Eq. (12.3.24) by replacing the
filter ap+1 in terms of the filter ap via the Levinson recursion.

12.13 Do Problem 12.7 using the split Levinson algorithm.

12.14 Draw the lattice realization of the analysis and synthesis filtersA4(a) and 1/A4(z) obtained
in Problems 12.6, 12.7, and 12.8.

12.15 Test the minimum-phase property of the two polynomials

A(z) = 1− 1.08z−1 + 0.13z−2 + 0.24z−3 − 0.5z−4

A(z) = 1+ 0.18z−1 − 0.122z−2 − 0.39z−3 − 0.5z−4

12.16 (a) The entropy of anM-dimensional random vector is defined byS = − ∫ p(y)lnp(y)dMy.
Show that the entropy of a zero-mean gaussian y with covariance matrix R is given,
up to an additive constant, by S = 1

2 ln(detR).
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(b) With the help of the LU factorization (12.9.1), show that ratio of the determinants of
an orderM autocorrelation matrix and its order p (p < M) submatrix is

detRM
detRp

=
M∏

i=p+1

Ei

(c) Consider all possible autocorrelation extensions of the set {R(0), R(1), . . . , R(p)}
up to orderM. For gaussian processes, use the results in parts (a) and (b) to show that
the particular extension defined by the choice γi = 0, i = p+ 1, . . . ,M maximizes the
entropy of the order-M process; hence, the name maximum entropy extension.

12.17 Consider the LU factorization LRLT = D of an order-M autocorrelation matrix R. Denote
by bTp , p = 0,1, . . . ,M the rows of L. They are the backward prediction filters with zeros
padded to their ends to make them (M + 1)-dimensional vectors.

(a) Show that the inverse factorization R−1 = LTD−1L can be written as

R−1 =
M∑
p=0

1

Ep
bpb

T
p

(b) Define the “phasing” vectors s(z)= [1, z−1, z−2, . . . , z−M]T . Show that the z-transform
of an order-M filter and its inverse can be expressed compactly as

A(z)= s(z)Ta , a =
∮

u.c
A(z)s(z−1)

dz
2πjz

(c) Define the “kernel” vector k(w)= R−1s(w). The z-transform of this vector is called a
reproducing kernel [972,973,981]. Show that it can be written in the alternative forms

K(z,w)= s(z)Tk(w)= k(z)Ts(w)= k(z)TRk(w)= s(z)TR−1s(w)

(d) Let J denote the (M + 1)×(M + 1) reversing matrix. Show that Js(z)= z−Ms(z−1).
And that K(z,w)= z−Mw−MK(z−1,w−1).

(e) Show that K(z,w) admits the following representations in terms of the backward and
forward prediction polynomials

K(z,w)=
M∑
p=0

1

Ep
Bp(z)Bp(w)=

M∑
p=0

1

Ep
Ap(z)Ap(w)z−(M−p)w−(M−p)

12.18 Let Syy(z) be the power spectral density of the autocorrelation function R(k) from which
we build the matrix R of the previous problem. Show that R and R−1 admit the following
representations in terms of the phasing and kernel vectors:

R =
∮

u.c.
Syy(z)s(z−1)s(z)T

dz
2πjz

, R−1 =
∮

u.c.
Syy(z)k(z−1)k(z)T

dz
2πjz

Then, show the reproducing kernel property

K(z,w)=
∮

u.c.
K(z,u−1)K(w,u)Syy(u)

du
2πju
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12.19 (a) Let sp(z)= [1, z−1, z−2, . . . , z−p]T . Using the order-updating formulas for R−1
p show

that the kernel vector kp(w)= R−1
p sp(w) satisfies the following order-recursive equa-

tions

kp(w)=
[

kp−1(w)
0

]
+ 1

Ep
bpBp(w) , kp(w)=

[
0

w−1kp−1(w)

]
+ 1

Ep
apAp(w)

(b) Show that the corresponding reproducing kernels satisfy

Kp(z,w) = Kp−1(z,w)+ 1

Ep
Bp(z)Bp(w)

Kp(z,w) = z−1w−1Kp−1(z,w)+ 1

Ep
Ap(z)Ap(w)

(c) Using part (b), show the Christoffel-Darboux formula [972,973,981]

Kp(z,w)= 1

Ep
Ap(z)Ap(w)−z−1w−1Bp(z)Bp(w)

1− z−1w−1

(d) Let zi be the ith zero of the prediction polynomial Ap(z). Using part (c), evaluate
Kp(zi, z∗i ) and thereby show that necessarily |zi| ≤ 1. This is yet another proof of
the minimum-phase property of the prediction-error filters. Show further that if the
prediction filter ap is symmetric; i.e., ap = aRp , then its zeros lie on the unit circle.

(e) Show the Christoffel-Darboux formula [972,973,981]

Kp−1(z,w)= 1

Ep
Ap(z)Ap(w)−Bp(z)Bp(w)

1− z−1w−1

and use this expression to prove the result in (d) that |zi| ≤ 1.

12.20 Do Problem 12.7 using the Schur algorithm, determine the Cholesky factor G, and verify
R = GD−1GT by explicit matrix multiplication.

12.21 For the Example 12.10.2, compute the entries of the output matrices Y± by directly convolv-
ing the forward/backward prediction filters with the input autocorrelation lags.

12.22 Do Problem 12.7 using the split Schur algorithm, and determine the Cholesky factor G by
the recursion (12.10.21).

12.23 (a) Show the identity

∣∣∣∣∣−a
∗ + z−1

1− az−1

∣∣∣∣∣
2

= 1−
(
1− |z−1|2)(1− |a|2)

|1− az−1|2

(b) Using part (a), show that the all-pass Schur function Sp(z) defined by Eq. (12.10.22) sat-
isfies the boundedness inequality (12.10.23), with equality attained on the unit circle.
Show that it also satisfies |Sp(z)| > 1 for |z| < 1.

12.24 Define the Schur function

S3(z)= 0.125− 0.875z−2 + z−3

1− 0.875z−1 + 0.125z−3

Carry out the recursions (12.10.24) and (12.10.25) to construct the lower order Schur func-
tions Sp(z), p = 2,1,0, and, in the process, extract the corresponding reflection coefficients.
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12.25 Consider a generalized version of the simulation example discussed in Sec. 12.11, defined
by

x(n)= s(n)+v1(n) , y(n)= v2(n)

where
s(n) = sin(ω0n+φ)
v1(n) = a1v1(n− 1)+v(n)
v2(n) = a2v2(n− 1)+v(n)

where v(n) is zero-mean, unit-variance, white noise, and φ is a random phase independent
of v(n). This ensures that the s(n) component is uncorrelated with v1(n) and v2(n).

(a) Show that

Rxy(k)= ak1
1− a1a2

, Ryy(k)= ak2
1− a2

2
, k ≥ 0

(b) Show that the infinite-order Wiener filter for estimating x(n) on the basis of y(n) has
a (causal) impulse response

h0 = 1 , hk = (a1 − a2)ak−1
1 , k ≥ 1

(c) Next, consider the order-M FIR Wiener filter. Send the theoretical correlations of part
(a) for k = 0,1, . . . ,M through the function firw to obtain the theoretical Mth order
Wiener filter realized both in the direct and the lattice forms. Draw these realizations.
Compare the theoretical values of the weights h, g, and γγγ with the simulated values
presented in Sec. 12.11 that correspond to the choice of parametersM = 4, a1 = −0.5,
and a2 = 0.8. Also compare the answer for h with the first (M + 1) samples of the
infinite-order Wiener filter impulse response of part (b).

(d) Repeat (c) withM = 6.

12.26 A closed form solution of Problem 12.25 can be obtained as follows.

(a) Show that the inverse of the (M + 1)×(M + 1) autocorrelation matrix defined by
the autocorrelation lags Ryy(k), k = 0,1, . . . ,M of Problem 12.25(a) is given by the
tridiagonal matrix:

R−1
yy =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −a2 0 · · · 0 0
−a2 b −a2 · · · 0 0

0 −a2 b · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · b −a2

0 0 0 · · · −a2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where b = 1+ a2
2.

(b) Using this inverse, show that the optimalMth order Wiener filter has impulse response

h0 = 1 , hk = (a1 − a2)ak−1
1 , for 1 ≤ k ≤M − 1 , and hM = a1 − a2

1− a1a2
aM−1

1

(c) Show that the lattice weights g can be obtained from h by the backward substitution

gM = hM , and gm = a2gm+1 + hm , m =M − 1,M − 2, . . . ,1,0



604 12. Linear Prediction

(d) For M = 4, a1 = −0.5, a2 = 0.8, compute the numerical values of h and g using the
above expressions and compare them with those of Problem 12.25(c).

12.27 Computer Experiment. Consider the noise canceling example of Sec. 12.11 and Problem
12.25, defined by the choice of parameters

ω0 = 0.075π [radians/sample] , φ = 0 , a1 = −0.5 , a2 = 0.8 , M = 4

(a) Generate 100 samples of the signals x(n), s(n), and y(n). On the same graph, plot
x(n) and s(n) versus n. Plot y(n) versus n.

(b) Using these samples, compute the sample correlations R̂yy(k), R̂xy(k), for k = 0,1,
. . . ,M, and compare them with the theoretical values obtained in Problem 12.25(a).

(c) Send these lags through the function firw to get the optimal Wiener filter weights h
and g, and the reflection coefficients γγγ. Draw the lattice and direct-form realizations
of the Wiener filter.

(d) Filter y(n) through the Wiener filter realized in the lattice form, and plot the output
e(n)= x(n)−x̂(n) versus n.

(e) Repeat (d) using the direct-form realization of the Wiener filter.

(f) Repeat (d) whenM = 6.

12.28 The following six samples

{y0, y1, y2, y3, y4, y5} = {4.684, 7.247, 8.423, 8.650, 8.640, 8.392}
have been generated by sending zero-mean unit-variance white noise through the difference
equation

yn = a1yn−1 + a2yn−2 + εn
where a1 = 1.70 and a2 = −0.72. Iterating Burg’s method by hand, obtain estimates of the
model parameters a1, a2, and σ2

ε .

12.29 Derive Eq. (12.12.11).

12.30 Computer Experiment. Ten samples from a fourth-order autoregres-
sive process y(n) are given. It is desired to extract the model pa-
rameters {a1, a2, a3, a4, σ2

ε} as well as the equivalent parameter set
{γ1, γ2, γ3, γ4, σ2

ε}.
(a) Determine these parameters using Burg’s method.
(b) Repeat using the Yule-Walker method.

Note: The exact parameter values by which the above simulated sam-
ples were generated are

{a1, a2, a3, a4, σ2
ε} = {−2.2137, 2.9403, −2.2697, 0.9606, 1}

n y(n)
0 4.503
1 −10.841
2 −24.183
3 −25.662
4 −14.390
5 1.453
6 10.980
7 13.679
8 15.517
9 15.037

12.31 Using the continuity equations at an interface, derive the transmission matrix equation
(12.13.2) and the energy conservation equation (12.13.4).

12.32 Show Eq. (12.13.6).

12.33 Fig. 12.13.2 defines the scattering matrix S. Explain how the principle of linear superposition
may be used to show the general relationship[

E′+
E−

]
= S

[
E+
E′−

]

between incoming and outgoing fields.
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12.34 Show the two properties of the matrix ψm(z) stated in Eqs. (12.13.13) and (12.13.14).

12.35 Show Eqs. (12.13.25).

12.36 The reflection response of a stack of four dielectrics has been found to be

R(z)= −0.25+ 0.0313z−1 + 0.2344z−2 − 0.2656z−3 + 0.25z−4

1− 0.125z−1 + 0.0664z−3 − 0.0625z−4

Determine the reflection coefficients {ρ0, ρ1, ρ2, ρ3, ρ4}.

12.37 Computer Experiment. It is desired to probe
the structure of a stack of dielectrics from
its reflection response. To this end, a unit
impulse is sent incident on the stack and the
reflection response is measured as a func-
tion of time.
It is known in advance (although this is not
necessary) that the stack consists of four
equal travel-time slabs stacked in front of
a semi-infinite medium.
Thirteen samples of the reflection response
are collected as shown here. Determine the
reflection coefficients {ρ0, ρ1, ρ2, ρ3, ρ4} by
means of the dynamic predictive deconvolu-
tion procedure.

k R(k)
0 −0.2500
1 0.0000
2 0.2344
3 −0.2197
4 0.2069
5 0.0103
6 0.0305
7 −0.0237
8 0.0093
9 −0.0002

10 0.0035
11 −0.0017
12 0.0004

12.38 Computer Experiment. Generate the results of Figures 5.16–5.17 and 5.25–5.26.

12.39 Computer Experiment. This problem illustrates the use of the dynamic predictive deconvolu-
tion method in the design of broadband terminations of transmission lines. The termination
is constructed by the cascade of M equal travel-time segments of transmission lines such
that the overall reflection response of the structure approximates the desired reflection re-
sponse. The characteristic impedances of the various segments are obtainable from the
reflection coefficients {ρ0, ρ1, . . . , ρM}. The reflection response R(ω) of the structure is a
periodic function ofω with periodωs = 2π/T2, where T2 is the two-way travel time delay
of each segment. The design procedure is illustrated by the following example: The desired
frequency response R(ω) is defined over one Nyquist period, as shown in Fig. 5.39:

R(ω)=
⎧⎨
⎩0, for 0.25ω2 ≤ω ≤ 0.75ωs

0.9, for 0 ≤ω < 0.25ωs and 0.75ωs < ω ≤ωs

Fig. 12.16.1 Desired reflection frequency response.

(a) Using the Fourier series method of designing digital filters, design an N = 21-tap
filter with impulse response R(k), k = 0,1, . . . ,N − 1, whose frequency response
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approximates the desired response defined above. Window the designed reflection
impulse responseR(k) by a length-NHamming window. Plot the magnitude frequency
response of the windowed reflection series over one Nyquist interval 0 ≤ω ≤ωs.

(b) ForM = 6, send theN samples of the windowed reflection series through the dynamic
predictive deconvolution function dpd to obtain the polynomials AM(z) and BM(z)
and the reflection coefficients {ρ0, ρ1, . . . , ρM}. Plot the magnitude response of the
structure; that is, plot

|R(ω)| =
∣∣∣∣ BM(z)AM(z)

∣∣∣∣ , z = exp(jωT2)= exp
(

2πj
ω
ωs

)

and compare it with the windowed response of part (a). To facilitate the comparison,
plot both responses of parts (a) and (b) on the same graph.

(c) Repeat part (b) forM = 2,M = 3, andM = 10.

(d) Repeat parts (a) through (c) for N = 31 reflection series samples.

(e) Repeat parts (a) through (c) for N = 51.

12.40 Show that the performance matrix P defined by Eq. (12.14.11) has trace equal toM + 1.

12.41 Computer Experiment. Reproduce the results of Figs. 12.14.1 through 12.14.6.

12.42 Computer Experiment – ARIMA Models. The file GNPC96.dat contains the data for the U.S.
Real Gross National Product (in billions of chained 2005 dollars, measured quarterly and
seasonally adjusted.) In this experiment, you will test whether an ARIMA(p,1,0) model is
appropriate for these data.

Extract the data from 1980 onwards and take their log. This results inN = 119 observations,
yn = ln(GNPn), n = 0,1, . . . ,N − 1. Because of the upward trend of the data, define the
length-(N−1) differenced signal zn = yn − yn−1, for n = 1,2, . . . ,N − 1. Then, subtract its
sample mean, say μ, to get the signal xn = zn − μ, for n = 1,2, . . . ,N − 1.

a. Calculate and plot the first M = 24 sample autocorrelation lags R(k), 0 ≤ k ≤ M,
of the signal xn. Send these into the Levinson algorithm to determine and plot the
corresponding reflection coefficients γp, for p = 1,2 . . . ,M. Add on that graph the
95% confidence bands, that is, the horizontal lines at ±1.96/

√
N. Based on this plot,

determine a reasonable value for the order p of an autoregressive model of fitting the
xn data.

b. Check the chosen value of p against also the FPE, AIC, and MDL criteria, that is, by
plotting them versus p = 1,2, . . . ,M, and identifying their minimum:

FPEp = Ep N + p+ 1

N − p− 1
, AICp = N lnEp + 2(p+ 1) , MDLp = N lnEp + (p+ 1)lnN

c. For the chosen value of p, use the Yule-Walker method to determine the linear pre-
diction error filter ap of order p, then, calculate the one-step-ahead prediction x̂n/n−1,
add the mean μ to get the prediction ẑn/n−1, and undo the differencing operation to
compute the prediction ŷn/n−1 of yn. There is a small subtlety here that has to do with
the initial value of yn. On the same graph plot yn and its prediction.

d. Repeat part (c) for a couple of other values of p, say p = 1 and p = 10.

e. Calculate the DTFT |X(ω)|2 of the data xn over 0 ≤ ω ≤ π. For the chosen order
p, calculate the corresponding AR power spectrum but this time use the Burg method
to determine the order-p prediction filter. Plot the DTFT and AR spectra on the same
graph, but for convenience in comparing them, normalize both spectra to their max-
imum values. Investigate if higher values of p can model these spectra better, for
example, try the orders p = 10 and p = 15. Some example graphs are included below.
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12.43 Computer Experiment – Wiener Filter Design. It is desired to design a Wiener filter to enhance
a sinusoidal signal buried in noise. The noisy sinusoidal signal is given by

xn = sn + vn , where sn = sin(ω0n)

withω0 = 0.075π. The noise component vn is related to the secondary signal yn by

vn = yn + yn−1 + yn−2 + yn−3 + yn−4 + yn−5 + yn−6

a. Generate N = 200 samples of the signal yn by assuming that it is an AR(4) process
with reflection coefficients:

{γ1, γ2, γ3, γ4} = {0.5,−0.5,0.5,−0.5}

The variance σ2
ε of the driving white noise of the model must be chosen in such a way

as to make the variance σ2
v of the noise component vn approximately σ2

v = 0.5, such
that the two terms sn and vn of xn have approximately equal strengths, that is, 0 dB
signal-to-noise ratio.

(This can be done by writing vn = cTy(n) and therefore, σ2
v = cTRc, where c is a

7-dimensional column vector of ones, and R is the order-6 autocorrelation matrix,
you can then write σ2

v = σ2
yc
TRnormc, where Rnorm has all its entries normalized by
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R(0)= σ2
y . You can easily determine Rnorm by doing a maximum entropy extension to

order six, starting with the four reflection coefficients and setting γ5 = γ6 = 0.)

In generating yn make sure that the transients introduced by the filter have died out.
Then, generate the corresponding N samples of the signal xn. On the same graph,
plot xn together with the desired signal sn. On a separate graph (but using the same
vertical scales as the previous one) plot the reference signal yn versus n.

b. For M = 4, design a Wiener filter of order-M based on the generated signal blocks
{xn, yn}, n = 0,1, . . . ,N − 1, and realize it in both the direct and lattice forms.

c. Using the lattice form, filter the signals xn, yn through the designed filter and generate
the outputs x̂n, en. Explain why en should be an estimate of the desired signal sn. On
the same graph, plot en and sn using the same vertical scales as in part (a).

d. Repeat parts (b) and (c) for filter ordersM = 5,6,7,8. Discuss the improvement ob-
tained with increasing order. What is the smallestM that would, at least theoretically,
result in en = sn? Some example graphs are included below.
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13
Kalman Filtering

13.1 State-Space Models

The Kalman filter is based on a state/measurement model of the form:

xn+1 = Anxn +wn

yn = Cnxn + vn

(state model)

(measurement model)
(13.1.1)

where xn is ap-dimensional state vector and yn, an r-dimensional vector of observations.
The p×p state-transition matrix An and r×p measurement matrix Cn may depend on
time n. The signals wn,vn are assumed to be mutually-independent, zero-mean, white-
noise signals with known covariance matrices Qn and Rn:

E[wnwTi ] = Qnδni
E[vnvTi ] = Rnδni
E[wnvTi ] = 0

(13.1.2)

The model is iterated starting at n = 0. The initial state vector x0 is assumed to be
random and independent of wn,vn, but with a known mean x̄0 = E[x0] and covariance
matrix Σ0 = E[(x0 − x̄0)(x0 − x̄0)T]. We will assume, for now, that x0,wn,vn are nor-
mally distributed, and therefore, their statistical description is completely determined
by their means and covariances. A non-zero cross-covariance E[wnvTi ]= Snδni may
also be assumed. A scalar version of the model was discussed in Chap. 11.

The covariance matrices Qn,Rn have dimensions p×p and r×r, but they need not
have full rank (which would mean that some of the components of xn or yn would, in
an appropriate basis, be noise-free.) For example, to allow the possibility of fewer state
noise components, the model (13.1.1) is often written in the form:

xn+1 = Anxn +Gnwn

yn = Cnxn + vn

(state model)

(measurement model)
(13.1.3)
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