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Fig. 10.9.1 UWT/DWT decompositions and wavelet coefficients of housing data.

10.3 Prove the downsampling replication property (10.4.11) by working backwards, that is, start
from the Fourier transform expression and show that

1

L

L−1∑
m=0

X(f −mfdown
s )=

∑
k
s(k)x(k)e−2πjfk/fs =

∑
n
x(nL)e−2πjfnL/fs = Ydown(f)

where s(k) is the periodic “sampling function” with the following representations:

s(k)= 1

L

L−1∑
m=0

e−2πjkm/L = 1

L
1− e−2πjk

1− e−2πjk/L =
∑
n
δ(k− nL)

Moreover, show that the above representations are nothing but the inverse L-point DFT of
the DFT of one period of the periodic pulse train:

s(k)= [. . . ,1,0,0, . . . ,0︸ ︷︷ ︸
L−1 zeros

,1,0,0, . . . ,0︸ ︷︷ ︸
L−1 zeros

,1,0,0, . . . ,0︸ ︷︷ ︸
L−1 zeros

, . . . ]=
∑
n
δ(k− nL)

10.4 Show that the solution to the optimization problem (10.7.7) is the soft-thresholding rule of
Eq. (10.7.8).

10.5 Study the “Tikhonov regularizer” wavelet thresholding function:

dthr = f(d,λ, a)= d |d|a
|d|a + λa , a > 0, λ > 0

11
Wiener Filtering

The problem of estimating one signal from another is one of the most important in
signal processing. In many applications, the desired signal is not available or observable
directly. Instead, the observable signal is a degraded or distorted version of the original
signal. The signal estimation problem is to recover, in the best way possible, the desired
signal from its degraded replica.

We mention some typical examples: (1) The desired signal may be corrupted by
strong additive noise, such as weak evoked brain potentials measured against the strong
background of ongoing EEGs; or weak radar returns from a target in the presence of
strong clutter. (2) An antenna array designed to be sensitive towards a particular “look”
direction may be vulnerable to strong jammers from other directions due to sidelobe
leakage; the signal processing task here is to null the jammers while at the same time
maintaining the sensitivity of the array towards the desired look direction. (3) A signal
transmitted over a communications channel can suffer phase and amplitude distortions
and can be subject to additive channel noise; the problem is to recover the transmitted
signal from the distorted received signal. (4) A Doppler radar processor tracking a
moving target must take into account dynamical noise—such as small purely random
accelerations—affecting the dynamics of the target, as well as measurement errors. (5)
An image recorded by an imaging system is subject to distortions such as blurring due to
motion or to the finite aperture of the system, or other geometric distortions; the prob-
lem here is to undo the distortions introduced by the imaging system and restore the
original image. A related problem, of interest in medical image processing, is that of re-
constructing an image from its projections. (6) In remote sensing and inverse scattering
applications, the basic problem is, again, to infer one signal from another; for example,
to infer the temperature profile of the atmosphere from measurements of the spectral
distribution of infrared energy; or to deduce the structure of a dielectric medium, such
as the ionosphere, by studying its response to electromagnetic wave scattering; or, in
oil exploration to infer the layered structure of the earth by measuring its response to
an impulsive input near its surface.

In this chapter, we pose the signal estimation problem and discuss some of the
criteria used in the design of signal estimation algorithms.

We do not present a complete discussion of all methods of signal recovery and es-
timation that have been invented for applications as diverse as those mentioned above.
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Our emphasis is on traditional linear least-squares estimation methods, not only be-
cause they are widely used, but also because they have served as the motivating force
for the development of other estimation techniques and as the yardstick for evaluating
them.

We develop the theoretical solution of the Wiener filter both in the stationary and
nonstationary cases, and discuss its connection to the orthogonal projection, Gram-
Schmidt constructions, and correlation canceling ideas of Chap. 1. By means of an ex-
ample, we introduce Kalman filtering concepts and discuss their connection to Wiener
filtering and to signal modeling. Practical implementations of the Wiener filter are dis-
cussed in Chapters 12 and 16. Other signal recovery methods for deconvolution applica-
tions that are based on alternative design criteria are briefly discussed in Chap. 12, where
we also discuss some interesting connections between Wiener filtering/linear prediction
methods and inverse scattering methods.

11.1 Linear and Nonlinear Estimation of Signals

The signal estimation problem can be stated as follows: We wish to estimate a random
signal xn on the basis of available observations of a related signal yn. The available
signal yn is to be processed by an optimal processor that produces the best possible
estimate of xn:

The resulting estimate x̂n will be a function of the observations yn. If the optimal
processor is linear, such as a linear filter, then the estimate x̂n will be a linear function
of the observations. We are going to concentrate mainly on linear processors. However,
we would like to point out that, depending on the estimation criterion, there are cases
where the estimate x̂n may turn out to be a nonlinear function of the yns.

We discuss briefly four major estimation criteria for designing such optimal proces-
sors. They are:

(1) The maximum a posteriori (MAP) criterion.
(2) The maximum likelihood (ML) criterion.
(3) The mean square (MS) criterion.
(4) The linear mean-square (LMS) criterion.

The LMS criterion is a special case of the MS criterion. It requires, a priori, that the
estimate x̂n be a linear function of the yns.† The main advantage of the LMS processor
is that it requires only knowledge of second order statistics for its design, whereas the
other, nonlinear, processors require more detailed knowledge of probability densities.

To explain the various estimation criteria, let us assume that the desired signal xn
is to be estimated over a finite time interval na ≤ n ≤ nb Without loss of generality, we
may assume that the observed signal yn is also available over the same interval. Define

†Note that the acronym LMS is also used in the context of adaptive filtering, for least mean-square.
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the vectors

x =

⎡⎢⎢⎢⎢⎢⎣
xna
xna+1

...
xnb

⎤⎥⎥⎥⎥⎥⎦ , y =

⎡⎢⎢⎢⎢⎢⎣
yna
yna+1

...
ynb

⎤⎥⎥⎥⎥⎥⎦
For each value of n, we seek the functional dependence

x̂n = x̂n(y)

of x̂n on the given observation vector y that provides the best estimate of xn.

1. The criterion for the MAP estimate is to maximize the a posteriori conditional
density of xn given that y already occurred; namely,

p(xn|y)= maximum (11.1.1)

in other words, the optimal estimate x̂n is that xn that maximizes this quantity
for the given vector y; x̂n is therefore the most probable choice resulting from the
given observations y.

2. The ML criterion, on the other hand, selects x̂n to maximize the conditional density
of y given xn, that is,

p(y|xn)= maximum (11.1.2)

This criterion selects x̂n as though the already collected observations y were the
most likely to occur.

3. The MS criterion minimizes the mean-square estimation error

E = E[e2
n]= min, where en = xn − x̂n (11.1.3)

that is, the best choice of the functional dependence x̂n = x̂n(y) is sought that
minimizes this expression. We know from our results of Sec. 1.4 that the required
solution is the corresponding conditional mean

x̂n = E[xn|y]= MS estimate (11.1.4)

computed with respect to the conditional density p(xn|y).
4. Finally, the LMS criterion requires the estimate to be a linear function of the ob-

servations

x̂n =
nb∑
i=na

h(n, i)yi (11.1.5)

For each n, the weights h(n, i), na ≤ i ≤ nb are selected to minimize the mean-
square estimation error

E = E[e2
n]= E

[
(xn − x̂n)2] = minimum (11.1.6)
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With the exception of the LMS estimate, all other estimates x̂n(y) are, in general,
nonlinear functions of y.

Example 11.1.1: If both xn and y are zero-mean and jointly gaussian, then Examples 1.4.1 and
1.4.2 imply that the MS and LMS estimates of xn are the same. Furthermore, since p(xn|y)
is gaussian it will be symmetric about its maximum, which occurs at its mean, that is, at
E[xn|y]. Therefore, the MAP estimate of xn is equal to the MS estimate. In conclusion, for
zero-mean jointly gaussian xn and y, the three estimates MAP, MS, and LMS coincide. ��

Example 11.1.2: To see the nonlinear character and the differences among the various esti-
mates, consider the following example: A discrete-amplitude, constant-in-time signal x
can take on the three values

x = −1, x = 0, x = 1

each with probability of 1/3. This signal is placed on a known carrier waveform cn and
transmitted over a noisy channel. The received samples are of the form

yn = cnx+ vn , n = 1,2, . . . ,M

where vn are zero-mean white gaussian noise samples of variance σ2
v , assumed to be inde-

pendent of x. The above set of measurements can be written in an obvious vector notation

y = cx+ v

(a) Determine the conditional densities p(y|x) and p(x|y).
(b) Determine and compare the four alternative estimates MAP, ML, MS, and LMS.

Solution: To compute p(y|x), note that if x is given, then the only randomness left in y arises
from the noise term v. Since vn are uncorrelated and gaussian, they will be independent;
therefore,

p(y|x) = p(v)=
M∏
n=1

p(vn)=
(
2πσ2

v
)−M/2

exp

⎡⎣− 1

2σ2
v

M∑
n=1

v2
n

⎤⎦
= (

2πσ2
v
)−M/2

exp
[
− 1

2σ2
v

v2
]
= (

2πσ2
v
)−M/2

exp
[
− 1

2σ2
v
(y− cx)2

]

Using Bayes’ rule we find p(x|y)= p(y|x)p(x)/p(y). Since

p(x)= 1

3

[
δ(x− 1)+δ(x)+δ(x+ 1)

]
we find

p(x|y)= 1

A
[
p(y|1)δ(x− 1)+p(y|0)δ(x)+p(y| − 1)δ(x+ 1)

]
where the constant A is

A = 3p(y)= 3

∫
p(y|x)p(x)dx = p(y|1)+p(y|0)+p(y| − 1)

To find the MAP estimate of x, the quantity p(x|y) must be maximized with respect to x.
Since the expression for p(x|y) forces x to be one of the three values +1,0,−1, it follows
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that the maximum among the three coefficients p(y|1), p(y|0), p(y| − 1) will determine
the value of x. Thus, for a given y we select that x that

p(y|x)= maximum of
{
p(y|1), p(y|0), p(y| − 1)}

Using the gaussian nature of p(y|x), we find equivalently

(y− cx)2= minimum of
{
(y− c)2, y2, (y+ c)2}

Subtracting y2 from both sides, dividing by cTc, and denoting

ȳ = cTy

cTc

we find the equivalent equation

x2 − 2xȳ = min{1− 2ȳ, 0, 1+ 2ȳ}

and in particular, applying these for +1,0,−1, we find

x̂MAP =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if ȳ >

1

2

0, if − 1

2
< ȳ <

1

2

−1, if ȳ < −1

2

To determine the ML estimate, we must maximize p(y|x) with respect to x. The ML esti-
mate does not require knowledge of the a priori probability density p(x) of x. Therefore,
differentiating p(y|x) with respect to x and setting the derivative to zero gives

∂
∂x
p(y|x)= 0 or

∂
∂x

lnp(y|x)= 0 or
∂
∂x
(y− cx)2= 0

which gives

x̂ML = cTy

cTc
= ȳ

The MS estimate is obtained by computing the conditional mean

E[x|y] =
∫
xp(x|y)dx =

∫
x

1

A
[
p(y|1)δ(x− 1)+p(y|0)δ(x)+p(y| − 1)δ(x+ 1)

]
dx

= 1

A
[
p(y|1)−p(y| − 1)

]
, or,

x̂MS = p(y|1)−p(y| − 1)
p(y|1)+p(y|0)+p(y| − 1)

Canceling some common factors from the numerator and denominator, we find the simpler
expression
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x̂MS = 2 sinh(2aȳ)
ea + 2 cosh(2aȳ)

, where a = cTc

2σ2
v

Finally, the LMS estimate can be computed as in Example 1.4.3. We find

x̂LMS = cTy

σ2
v

σ2
x
+ cTc

= cTc

σ2
v

σ2
x
+ cTc

ȳ

All four estimates have been expressed in terms of ȳ. Note that the ML estimate is linear
but has a different slope than the LMS estimate. The nonlinearity of the various estimates
is best seen in the following figure:

11.2 Orthogonality and Normal Equations

From now on, we will concentrate on the optimal linear estimate defined by Eqs. (11.1.5)
and (11.1.6). For each time instant n at which an estimate x̂n is sought, the optimal
weights h(n, i), na ≤ i ≤ nb must be determined that minimize the error criterion
(11.1.6). In general, a new set of optimal weights must be computed for each time instant
n. In the special case when the processes xn and yn are stationary and the observations
are available for a long time, that is, na = −∞, the weights become time-invariant in
the sense that h(n, i)= h(n − i), and the linear processor becomes an ordinary time-
invariant linear filter. We will discuss the solution for h(n, i) both for the time-invariant
and the more general cases.

The problem of determining the optimal weights h(n, i) according to the mean-
square error minimization criterion (11.1.6) is in general referred to as the Wiener fil-
tering problem [849–866]. An interesting historical account of the development of this
problem and its ramifications is given in the review article by Kailath [866]. Wiener
filtering problems are conventionally divided into three types:

1. The optimal smoothing problem,
2. The optimal filtering problem, and
3. The optimal prediction problem.

In all cases, the optimal estimate of xn at a given time instant n is given by an
expression of the form (11.1.5), as a linear combination of the available observations
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yn in the interval na ≤ n ≤ nb. The division into three types of problems depends on
which of the available observations in that interval are taken into account in making up
the linear combination (11.1.5).

In the smoothing problem, all the observations in the interval [na, nb] are taken
into account. The shaded part in the following figure denotes the range of observations
that are used in the summation of Eq. (11.1.5):

x̂n =
nb∑
i=na

h(n, i)yi

Since some of the observations are to the future of xn, the linear operation is not
causal. This does not present a problem if the sequence yn is already available and
stored in memory.

The optimal filtering problem, on the other hand, requires the linear operation
(11.1.5) to be causal, that is, only those observations that are in the present and past of
the current sample xn must be used in making up the estimate x̂n. This requires that
the matrix of optimal weights h(n, i) be lower triangular, that is,

h(n, i)= 0, for n < i

Thus, in reference to the figure below, only the shaded portion of the observation
interval is used at the current time instant:

x̂n =
n∑

i=na
h(n, i)yi

The estimate x̂n depends on the present and all the past observations, from the fixed
starting point na to the current time instant n. As n increases, more and more observa-
tions are taken into account in making up the estimate, and the actual computation of
x̂n becomes less and less efficient. It is desirable, then, to be able to recast the expres-
sion for x̂n a time-recursive form. This is what is done in Kalman filtering. But, there is
another way to make the Wiener filter computationally manageable. Instead of allowing
a growing number of observations, only the current and the past M observations yi,
i = n,n− 1, . . . , n−M are taken into account. In this case, only (M + 1) filter weights
are to be computed at each time instant n. This is depicted below:

x̂n =
n∑

i=n−M
h(n, i)yi =

M∑
m=0

h(n,n−m)yn−m

This is referred to as the finite impulse response (FIR) Wiener filter. Because of its
simple implementation, the FIR Wiener filter has enjoyed widespread popularity. De-
pending on the particular application, the practical implementation of the filter may
vary. In Sec. 11.3 we present the theoretical formulation that applies to the stationary
case; in Chap. 12 we reconsider it as a waveshaping and spiking filter and discuss a
number of deconvolution applications. In Chap. 16, we consider its adaptive implemen-
tation using the Widrow-Hoff LMS algorithm and discuss a number of applications such
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as channel equalization and echo cancellation; we also discuss two alternative adaptive
implementations—the so-called “gradient lattice,” and the “recursive least-squares.”

Finally, the linear prediction problem is a special case of the optimal filtering problem
with the additional stipulation that observations only up to time instant n−D must be
used in obtaining the current estimate x̂n; this is equivalent to the problem of predicting
D units of time into the future. The range of observations used in this case is shown
below:

x̂n =
n−D∑
i=na

h(n, i)yi

Of special interest to us will be the case of one-step prediction, corresponding to the
choice D = 1. This is depicted below:

x̂n =
n−1∑
i=na

h(n, i)yi

If we demand that the prediction be based only on the past M samples (from the
current sample), we obtain the FIR version of the prediction problem, referred to as
linear prediction based on the past M samples, which is depicted below:

x̂n =
n−1∑
i=n−M

h(n, i)yi =
M∑
m=1

h(n,n−m)yn−m

Next, we set up the orthogonality and normal equations for the optimal weights. We
begin with the smoothing problem. The estimation error is in this case

en = xn − x̂n = xn −
nb∑
i=na

h(n, i)yi (11.2.1)

Differentiating the mean-square estimation error (11.1.6) with respect to each weight
h(n, i), na ≤ i ≤ nb, and setting the derivative to zero, we obtain the orthogonality
equations that are enough to determine the weights:

∂E
∂h(n, i)

= 2E
[
en

∂en
∂h(n, i)

]
= −2E[enyi]= 0 , for na ≤ i ≤ nb , or,

Rey(n, i)= E[enyi]= 0 (orthogonality equations) (11.2.2)

for na ≤ i ≤ nb. Thus, the estimation error en is orthogonal (uncorrelated) to each
observation yi used in making up the estimate x̂n. The orthogonality equations provide
exactly as many equations as there are unknown weights.

Inserting Eq. (11.2.1) for en, the orthogonality equations may be written in an equiv-
alent form, known as the normal equations

E
[(
xn −

nb∑
k=na

h(n, k)yk
)
yi
] = 0 , or,

E[xnyi]=
nb∑
k=na

h(n, k)E[ykyi] (normal equations) (11.2.3)
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These determine the optimal weights at the current time instant n. In the vector
notation of Sec. 11.1, we write Eq. (11.2.3) as

E[xyT]= HE[yyT]

where H is the matrix of weights h(n, i). The optimal H and the estimate are then

x̂ = Hy = E[xyT]E[yyT]−1y

This is identical to the correlation canceler of Sec. 1.4. The orthogonality equations
(11.2.2) are precisely the correlation cancellation conditions. Extracting the nth row of
this matrix equation, we find an explicit expression for the nth estimate x̂n

x̂n = E[xnyT]E[yyT]−1y

which is recognized as the projection of the random variable xn onto the subspace
spanned by the available observations; namely, Y = {yna, yna+1, . . . , ynb}. This is a
general result: The minimum mean-square linear estimate x̂n is the projection of xn onto
the subspace spanned by all the observations that are used to make up that estimate.
This result is a direct consequence of the quadratic minimization criterion (11.1.6) and
the orthogonal projection theorem discussed in Sec. 1.6.

Using the methods of Sec. 1.4, the minimized estimation error at time instant n is
easily computed by

En = E[enen]= E[enxn]= E
[(
xn −

nb∑
i=na

h(n, i)yi
)
xn
]

= E[x2
n]−

nb∑
i=na

h(n, i)E[yixn]= E[x2
n]−E[xnyT]E[yyT]−1E[yxn]

which corresponds to the diagonal entries of the covariance matrix of the estimation
error e :

Ree = E[eeT]= E[xxT]−E[xyT]E[yyT]−1E[yxT]

The optimum filtering problem is somewhat more complicated because of the causal-
ity condition. In this case, the estimate at time n is given by

x̂n =
n∑

i=na
h(n, i)yi (11.2.4)

Inserting this into the minimization criterion (11.1.6) and differentiating with respect
to h(n, i) for na ≤ i ≤ n, we find again the orthogonality conditions

Rey(n, i)= E[enyi]= 0 for na ≤ i ≤ n (11.2.5)

where the most important difference from Eq. (11.2.2) is the restriction on the range
of i, that is, en is decorrelated only from the present and past values of yi. Again, the
estimation error en is orthogonal to each observation yi that is being used to make up



484 11. Wiener Filtering

the estimate. The orthogonality equations can be converted into the normal equations
as follows:

E[enyi]= E
[(
xn −

n∑
k=na

h(n, k)yk
)
yi
] = 0 , or,

E[xnyi]=
n∑

k=na
h(n, k)E[ykyi] for na ≤ i ≤ n , or, (11.2.6)

Rxy(n, i)=
n∑

k=na
h(n, k)Ryy(k, i) for na ≤ i ≤ n (11.2.7)

Such equations are generally known as Wiener-Hopf equations. Introducing the vec-
tor of observations up to the current time n, namely,

yn = [yna , yna+1, . . . , yn]T

we may write Eq. (11.2.6) in vector form as

E[xnyTn]=
[
h(n,na), h(n,na + 1), . . . , h(n,n)

]
E[ynyTn]

which can be solved for the vector of weights[
h(n,na), h(n,na + 1), . . . , h(n,n)

] = E[xnyTn]E[ynyTn]−1

and for the estimate x̂n:
x̂n = E[xnyTn]E[ynyTn]−1yn (11.2.8)

Again, x̂n is recognized as the projection of xn onto the space spanned by the ob-
servations that are used in making up the estimate; namely, Yn = {yna, yna+1, . . . , yn}.
This solution of Eqs. (11.2.5) and (11.2.7) will be discussed in more detail in Sec. 11.8,
using covariance factorization methods.

11.3 Stationary Wiener Filter

In this section, we make two assumptions that simplify the structure of Eqs. (11.2.6) and
(11.2.7). The first is to assume stationarity for all signals so that the cross-correlation
and autocorrelation appearing in Eq. (11.2.7) become functions of the differences of their
arguments. The second assumption is to take the initial time na to be the infinite past,
na = −∞, that is, the observation interval is Yn = {yi, −∞ < i ≤ n}.

The assumption of stationarity can be used as follows: Suppose we have the solution
of h(n, i) of Eq. (11.2.7) for the best weights to estimate xn, and wish to determine the
best weights h(n + d, i), na ≤ i ≤ n + d for estimating the sample xn+d at the future
time n + d. Then, the new weights will satisfy the same equations as (11.2.7) with the
changes

Rxy(n+ d, i)=
n+d∑
k=na

h(n+ d, k)Ryy(k, i), for na ≤ i ≤ n+ d (11.3.1)
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Making a change of variables i→ i+ d and k→ k+ d, we rewrite Eq. (11.3.1) as

Rxy(n+d, i+d)=
n∑

k=na−d
h(n+d, k+d)Ryy(k+d, i+d), for na−d ≤ i ≤ n (11.3.2)

Now, if we assume stationarity, Eqs. (11.2.7) and (11.3.2) become

Rxy(n− i) =
n∑

k=na
h(n, k)Ryy(k− i) , for na ≤ i ≤ n

Rxy(n− i) =
n∑

k=na−d
h(n+ d, k+ d)Ryy(k− i) , for na − d ≤ i ≤ n

(11.3.3)

If it were not for the differences in the ranges of i and k, these two equations would
be the same. But this is exactly what happens when we make the second assumption
that na = −∞. Therefore, by uniqueness of the solution, we find in this case

h(n+ d, k+ d)= h(n, k)
and since d is arbitrary, it follows that h(n, k) must be a function of the difference of
its arguments, that is,

h(n, k)= h(n− k) (11.3.4)

Thus, the optimal linear processor becomes a shift-invariant causal linear filter and
the estimate is given by

x̂n =
n∑

i=−∞
h(n− i)yi =

∞∑
i=0

h(i)yn−i (11.3.5)

and Eq. (11.3.3) becomes in this case

Rxy(n− i)=
n∑

k=−∞
h(n, k)Ryy(k− i) , for −∞ < i ≤ n

With the change of variables n− i→ n and n− k→ k, we find

Rxy(n)=
∞∑
k=0

Ryy(n− k)h(k) , for n ≥ 0 (11.3.6)

and written in matrix form⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ryy(0) Ryy(1) Ryy(2) Ryy(3) · · ·
Ryy(1) Ryy(0) Ryy(1) Ryy(2) · · ·
Ryy(2) Ryy(1) Ryy(0) Ryy(1) · · ·
Ryy(3) Ryy(2) Ryy(1) Ryy(0) · · ·

...
...

...
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

h(0)
h(1)
h(2)
h(3)

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Rxy(0)
Rxy(1)
Rxy(2)
Rxy(3)

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (11.3.7)

These are the discrete-time Wiener-Hopf equations. Were it not for the restriction
n ≥ 0 (which reflects the requirement of causality), they could be solved easily by z-
transform methods. As written above, they require methods of spectral factorization
for their solution.
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Before we discuss such methods, we mention in passing the continuous-time version
of the Wiener-Hopf equation:

Rxy(t)=
∫∞

0
Ryy(t − t′)h(t′)dt′ , t ≥ 0

We also consider the FIR Wiener filtering problem in the stationary case. The obser-
vation interval in this case is Yn = {yi, n −M ≤ i ≤ n}. Using the same arguments as
above we have h(n, i)= h(n − i), and the estimate x̂n is obtained by an ordinary FIR
linear filter

x̂n =
n∑

i=n−M
h(n− i)yi = h(0)yn + h(1)yn−1 + · · · + h(M)yn−M (11.3.8)

where the (M+1) filter weightsh(0), h(1), . . . , h(M) are obtained by the (M+1)×(M+
1) matrix version of the Wiener-Hopf normal equations:⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ryy(0) Ryy(1) Ryy(2) · · · Ryy(M)
Ryy(1) Ryy(0) Ryy(1) · · · Ryy(M − 1)
Ryy(2) Ryy(1) Ryy(0) · · · Ryy(M − 2)
...

...
...

...
Ryy(M) Ryy(M − 1) Ryy(M − 2) · · · Ryy(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

h(0)
h(1)
h(2)

...
h(M)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Rxy(0)
Rxy(1)
Rxy(2)

...
Rxy(M)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(11.3.9)

Exploiting the Toeplitz property of the matrix Ryy, the above matrix equation can
be solved efficiently using Levinson’s algorithm. This will be discussed in Chap. 12.
In Chap. 16, we will consider adaptive implementations of the FIR Wiener filter which
produce the optimal filter weights adaptively without requiring prior knowledge of the
autocorrelation and cross-correlation matrices Ryy and Rxy and without requiring any
matrix inversion.

Fig. 11.3.1 Time-Invariant Wiener Filter.

We summarize our results on the stationary Wiener filter in Fig. 11.3.1. The optimal
filter weights h(n), n = 0,1,2, . . . are computed from Eq. (11.3.7) or Eq. (11.3.9). The
action of the filter is precisely that of the correlation canceler: The filter processes the
observation signal yn causally to produce the best possible estimate x̂n of xn, and then
it proceeds to cancel it from the output en. As a result, the output en is no longer
correlated with any of the present and past values of yn, that is, E[enyn−i]= 0, for
i = 0,1,2, . . . . As we remarked in Sec. 1.4, it is better to think of x̂n as the optimal
estimate of that part of the primary signal xn which happens to be correlated with the
secondary signal yn. This follows from the property that if xn = x1(n)+x2(n) with
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Rx2y = 0, then Rxy = Rx1y. Therefore, the solution of Eq. (11.3.7) for the best weights to
estimate xn is also the solution for the best weights to estimate x1(n). The filter may
also be thought of as the optimal signal separator of the two signal components x1(n)
and x2(n).

11.4 Construction of the Wiener Filter by Prewhitening

The normal equations (11.3.6) would have a trivial solution if the sequence yn were a
white-noise sequence with delta-function autocorrelation. Thus, the solution procedure
is first to whiten the sequence yn and then solve the normal equations. To this end, let
yn have a signal model, as guaranteed by the spectral factorization theorem

Syy(z)= σ2
εB(z)B(z−1) (11.4.1)

where εn is the driving white noise, and B(z) a minimal-phase filter. The problem
of estimating xn in terms of the sequence yn becomes equivalent to the problem of
estimating xn in terms of the white-noise sequence εn :

If we could determine the combined filter

F(z)= B(z)H(z)

we would then solve for the desired Wiener filter H(z)

H(z)= F(z)
B(z)

(11.4.2)

Since B(z) is minimum-phase, the indicated inverse 1/B(z) is guaranteed to be
stable and causal. Let fn be the causal impulse response of F(z). Then, it satisfies the
normal equations of the type of Eq. (11.3.6):

Rxε(n)=
∞∑
i=0

fiRεε(n− i) , n ≥ 0 (11.4.3)

Since Rεε(n− i)= σ2
εδ(n− i), Eq. (11.4.3) collapses to

Rxε(n)= σ2
ε fn , n ≥ 0 , or,

fn = Rxε(n)
σ2
ε

, for n ≥ 0 (11.4.4)

Next, we compute the corresponding z-transform F(z)

F(z)=
∞∑
n=0

fnz−n = 1

σ2
ε

∞∑
n=0

Rxε(n)z−n = 1

σ2
ε

[
Sxε(z)

]
+ (11.4.5)
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where
[
Sxε(z)

]
+ denotes the causal part of the double-sided z-transform Sxε(z). Gen-

erally, the causal part of a z-transform

G(z)=
∞∑

n=−∞
gnz−n =

−1∑
n=−∞

gnz−n +
∞∑
n=0

gnz−n

is defined as [
G(z)

]
+ =

∞∑
n=0

gnz−n

The causal instruction in Eq. (11.4.5) was necessary since the above solution for fn
was valid only for n ≥ 0. Since yn is the output of the filter B(z) driven by εn, it follows
that

Sxy(z)= Sxε(z)B(z−1) or Sxε(z)= Sxy(z)
B(z−1)

Combining Eqs. (11.4.2) and (11.4.5), we finally find

H(z)= 1

σ2
εB(z)

[ Sxy(z)
B(z−1)

]
+

(Wiener filter) (11.4.6)

Thus, the construction of the optimal filter first requires the spectral factorization of
Syy(z) to obtain B(z), and then use of the above formula. This is the optimal realizable
Wiener filter based on the infinite past. If the causal instruction is ignored, one obtains
the optimal unrealizable Wiener filter

Hunreal(z)= Sxy(z)
σ2
εB(z)B(z−1)

= Sxy(z)
Syy(z)

(11.4.7)

The minimum value of the mean-square estimation error can be conveniently ex-
pressed by a contour integral, as follows

E = E[e2
n]= E

[
en(xn − x̂n)

] = E[enxn]−E[enx̂n]= E[enxn]= Rex(0)
=
∮

u.c.
Sex(z)

dz
2πjz

=
∮

u.c.

[
Sxx(z)−Sx̂x(z)

] dz
2πjz

, or,

E =
∮

u.c.

[
Sxx(z)−H(z)Syx(z)

] dz
2πjz

(11.4.8)

11.5 Wiener Filter Example

This example, in addition to illustrating the above ideas, will also serve as a short intro-
duction to Kalman filtering. It is desired to estimate the signal xn on the basis of noisy
observations

yn = xn + vn
where vn is white noise of unit variance, σ2

v = 1, uncorrelated with xn. The signal xn is
a first order Markov process, having a signal model

xn+1 = 0.6xn +wn
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where wn is white noise of variance σ2
w = 0.82. Enough information is given above to

determine the required power spectral densities Sxy(z) and Syy(z). First, we note that
the signal generator transfer function for xn is

M(z)= 1

z− 0.6

so that

Sxx(z)= σ2
wM(z)M(z−1)= 0.82

(z− 0.6)(z−1 − 0.6)
= 0.82

(1− 0.6z−1)(1− 0.6z)

Then, we find

Sxy(z) = Sx(x+v)(z)= Sxx(z)+Sxv(z)= Sxx(z)= 0.82

(1− 0.6z−1)(1− 0.6z)

Syy(z) = S(x+v)(x+v)(z)= Sxx(z)+Sxv(z)+Svx(z)+Svv(z)= Sxx(z)+Svv(z)

= 0.82

(1− 0.6z−1)(1− 0.6z)
+ 1 = 0.82+ (1− 0.6z−1)(1− 0.6z)

(1− 0.6z−1)(1− 0.6z)

= 2(1− 0.3z−1)(1− 0.3z)
(1− 0.6z−1)(1− 0.6z)

= 2 · 1− 0.3z−1

1− 0.6z−1
· 1− 0.3z

1− 0.6z

= σ2
εB(z)B(z−1)

Then according to Eq. (11.4.6), we must compute the causal part of

G(z)= Sxy(z)
B(z−1)

=
0.82

(1− 0.6z−1)(1− 0.6z)
1− 0.3z
1− 0.6z

= 0.82

(1− 0.6z−1)(1− 0.3z)

This may be done by partial fraction expansion, but the fastest way is to use the
contour inversion formula to compute gk for k ≥ 0, and then resum the z-transform:

gk =
∮

u.c.
G(z)zk

dz
2πjz

=
∮

u.c.

0.82zk

(1− 0.3z)(z− 0.6)
dz

2πj

= (residue at z = 0.6) = 0.82(0.6)k

1− (0.3)(0.6) = (0.6)
k , k ≥ 0

Resumming, we find the causal part

[
G(z)

]
+ =

∞∑
k=0

gkz−k = 1

1− 0.6z−1

Finally, the optimum Wiener estimation filter is

H(z)= 1

σ2
εB(z)

[ Sxy(z)
B(z−1)

]
+
=
[
G(z)

]
+

σ2
εB(z)

= 0.5
1− 0.3z−1

(11.5.1)
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which can be realized as the difference equation

x̂n = 0.3x̂n−1 + 0.5yn (11.5.2)

The estimation error is also easily computed using the contour formula of Eq. (11.4.8):

E = E[e2
n]= σ2

e =
∮

u.c.

[
Sxx(z)−H(z)Syx(z)

] dz
2πjz

= 0.5

To appreciate the improvement afforded by filtering, this error must be compared
with the error in case no processing is made and yn is itself taken to represent a noisy
estimate of xn. The estimation error in the latter case is yn − xn = vn, so that σ2

v = 1.
Thus, the gain afforded by processing is

σ2
e

σ2
v
= 0.5 or 3 dB

11.6 Wiener Filter as Kalman Filter

We would like to cast this example in a Kalman filter form. The difference equation
Eq. (11.5.2) for the Wiener filter seems to have the “wrong” state transition matrix;
namely, 0.3 instead of 0.6, which is the state matrix for the state model of xn. How-
ever, it is not accidental that the Wiener filter difference equation may be rewritten in
the alternative form

x̂n = 0.6x̂n−1 + 0.5(yn − 0.6x̂n−1)

The quantity x̂n is the best estimate of xn, at time n, based on all the observations
up to that time, that is, Yn = {yi, −∞ < i ≤ n}. To simplify the subsequent notation,
we denote it by x̂n/n. It is the projection of xn on the space Yn. Similarly, x̂n−1 denotes
the best estimate of xn−1, based on the observations up to time n − 1, that is, Yn−1 =
{yi, −∞ < i ≤ n− 1}. The above filtering equation is written in this notation as

x̂n/n = 0.6x̂n−1/n−1 + 0.5(yn − 0.6x̂n−1/n−1) (11.6.1)

It allows the computation of the current best estimate x̂n/n, in terms of the previous
best estimate x̂n−1/n−1 and the new observation yn that becomes available at the current
time instant n.

The various terms of Eq. (11.6.1) have nice interpretations: Suppose that the best
estimate x̂n−1/n−1 of the previous sample xn−1 is available. Even before the next obser-
vation yn comes in, we may use this estimate to make a reasonable prediction as to what
the next best estimate ought to be. Since we know the system dynamics of xn, we may
try to “boost” x̂n−1/n−1 to the next time instant n according to the system dynamics,
that is, we take

x̂n/n−1 = 0.6x̂n−1/n−1 = prediction of xn on the basis of Yn−1 (11.6.2)

Since yn = xn + vn, we may use this prediction of xn to make a prediction of the
next measurement yn, that is, we take

ŷn/n−1 = x̂n/n−1 = prediction of yn on the basis of Yn−1 (11.6.3)
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If this prediction were perfect, and if the next observation yn were noise free, then
this would be the value that we would observe. Since we actually observe yn, the obser-
vation or innovations residual will be

αn = yn − ŷn/n−1 (11.6.4)

This quantity represents that part of yn that cannot be predicted on the basis of
the previous observations Yn−1. It represents the truly new information contained in
the observation yn. Actually, if we are making the best prediction possible, then the
most we can expect of our prediction is to make the innovations residual a white-noise
(uncorrelated) signal, that is, what remains after we make the best possible prediction
should be unpredictable. According to the general discussion of the relationship be-
tween signal models and linear prediction given in Sec. 1.17, it follows that if ŷn/n−1 is
the best predictor of yn then αn must be the whitening sequence that drives the signal
model of yn. We shall verify this fact shortly. This establishes an intimate connection
between the Wiener/Kalman filtering problem and the signal modeling problem. If we
overestimate the observation yn the innovation residual will be negative; and if we un-
derestimate it, the residual will be positive. In either case, we would like to correct our
tentative estimate in the right direction. This may be accomplished by

x̂n/n = x̂n/n−1 +G(yn − ŷn/n−1)= 0.6x̂n−1/n−1 +G(yn − 0.6x̂n−1/n−1) (11.6.5)

where the gain G, known as the Kalman gain, should be a positive quantity. The pre-
diction/correction procedure defined by Eqs. (11.6.2) through (11.6.5) is known as the
Kalman filter. It should be clear that any value for the gain G will provide an estimate,
even if suboptimal, of xn. Our solution for the Wiener filter has precisely the above
structure with a gain G = 0.5. This value is optimal for the given example. It is a very
instructive exercise to show this in two ways: First, withG arbitrary, the estimation filter
of Eq. (11.6.5) has transfer function

H(z)= G
1− 0.6(1−G)z−1

Insert this expression into the mean-square estimation error E = E[e2
n], where en =

xn − x̂n/n, and minimize it with respect to the parameter G. This should give G = 0.5.
Alternatively, G should be such that to render the innovations residual (11.6.4) a

white noise signal. In requiring this, it is useful to use the spectral factorization model
for yn, that is, the fact that yn is the output of B(z) when driven by the white noise
signal εn. Working with z-transforms, we have:

α(z) = Y(z)−0.6z−1X̂(z)= Y(z)−0.6z−1H(z)Y(z)

=
[

1− 0.6z−1 G
1− 0.6(1−G)z−1

]
Y(z)=

[
1− 0.6z−1

1− 0.6(1−G)z−1

]
Y(z)

=
[

1− 0.6z−1

1− 0.6(1−G)z−1

][
1− 0.3z−1

1− 0.6z−1

]
ε(z)=

[
1− 0.3z−1

1− 0.6(1−G)z−1

]
ε(z)

Since εn is white, it follows that the transfer function relationship between αn and
εn must be trivial; otherwise, there will be sequential correlations present in αn. Thus,
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we must have 0.6(1−G)= 0.3, or G = 0.5; and in this case, αn = εn. It is also possible
to set 0.6(1−G)= 1/0.3, but this would correspond to an unstable filter.

We have obtained a most interesting result; namely, that when the Wiener filtering
problem is recast into its Kalman filter form given by Eq. (11.6.1), then the innovations
residual αn, which is computable on line with the estimate x̂n/n, is identical to the
whitening sequence εn of the signal model of yn. In other words, the Kalman filter can
be thought of as the whitening filter for the observation signal yn.

To appreciate further the connection between Wiener and Kalman filters and between
Kalman filters and the whitening filters of signal models, we consider a generalized
version of the above example and cast it in standard Kalman filter notation.

It is desired to estimate xn from yn. The signal model for xn is taken to be the
first-order autoregressive model

xn+1 = axn +wn (state model) (11.6.6)

with |a| < 1. The observation signal yn is related to xn by

yn = cxn + vn (measurement model) (11.6.7)

It is further assumed that the state and measurement noises, wn and vn, are zero-
mean, mutually uncorrelated, white noises of variances Q and R, respectively, that is,

E[wnwi]= Qδni , E[vnvi]= Rδni , E[wnvi]= 0 (11.6.8)

We also assume that vn is uncorrelated with the initial value of xn so that vn and xn
will be uncorrelated for all n. The parameters a, c,Q,R are assumed to be known. Let
x1(n) be the time-advanced version of xn :

x1(n)= xn+1

and consider the two related Wiener filtering problems of estimating xn and x1(n) on
the basis of Yn = {yi, −∞ < i ≤ n}, depicted below

The problem of estimating x1(n)= xn+1 is equivalent to the problem of one-step
prediction into the future on the basis of the past and present. Therefore, we will denote
this estimate by x̂1(n)= x̂n+1/n. The state equation (11.6.6) determines the spectral
density of xn :

Sxx(z)= 1

(z− a)(z−1 − a) Sww(z)=
Q

(1− az−1)(1− az)
The observation equation (11.6.7) determines the cross-densities

Sxy(z) = cSxx(z)+Sxv(z)= cSxx(z)
Sx1y(z) = zSxy(z)= zcSxx(z)
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where we used the filtering equation X1(z)= zX(z). The spectral density of yn can be
factored as follows:

Syy(z) = c2Sxx(z)+Svv(z)= c2Q
(1− az−1)(1− az) +R

= c2Q +R(1− az−1)(1− az)
(1− az−1)(1− az) ≡ σ2

ε

(
1− fz−1

1− az−1

)(
1− fz
1− az

)

where f and σ2
ε satisfy the equations

fσ2
ε = aR (11.6.9)

(1+ f2)σ2
ε = c2Q + (1+ a2)R (11.6.10)

and f has magnitude less than one. Thus, the corresponding signal model for yn is

B(z)= 1− fz−1

1− az−1
(11.6.11)

Next, we compute the causal parts as required by Eq. (11.4.6):[ Sxy(z)
B(z−1)

]
+
=
[

cQ
(1− az−1)(1− fz)

]
+
= cQ

1− fa
1

1− az−1

[Sx1y(z)
B(z−1)

]
+
=
[

cQz
(1− az−1)(1− fz)

]
+
= cQa

1− fa
1

1− az−1

Using Eq. (11.4.6), we determine the Wiener filters H(z) and H1(z) as follows:

H(z)= 1

σ2
εB(z)

[ Sxy(z)
B(z−1)

]
+
=

cQ/(1− fa)
(1− az−1)

σ2
ε

(
1− fz−1

1− az−1

) =
(

cQ
σ2
ε(1− fa)

)
1− fz−1

or, defining the gain G by

G = cQ
σ2
ε(1− fa) (11.6.12)

we finally find

H(z)= G
1− fz−1

(11.6.13)

H1(z)= aH(z)= K
1− fz−1

(11.6.14)

where in Eq. (11.6.14) we defined a related gain, also called the Kalman gain, as follows:

K = aG = cQa
σ2
ε(1− fa) (11.6.15)

Eq. (11.6.14) immediately implies that

x̂n+1/n = ax̂n/n (11.6.16)
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which is the precise justification of Eq. (11.6.2). The difference equations of the two
filters are

x̂n+1/n = f x̂n/n−1 +Kyn
x̂n/n = f x̂n−1/n−1 +Gyn

(11.6.17)

Using the results of Problem 1.50, we may express all the quantities f , σ2
ε , K, and G

in terms of a single positive quantity P which satisfies the algebraic Riccati equation:

Q = P− PRa2

R+ c2P
(11.6.18)

Then, we find the interrelationships

K = aG = acP
R+ c2P

, σ2
ε = R+ c2P , f = a− cK = Ra

R+ c2P
(11.6.19)

It is left as an exercise to show that the minimized mean-square estimation errors
are given in terms of P by

E[e2
n/n−1]= P , E[e2

n/n]=
RP

R+ c2P

where

en/n−1 = xn − x̂n/n−1 , en/n = xn − x̂n/n
are the corresponding estimation errors for the optimally predicted and filtered esti-
mates, respectively. Using Eq. (11.6.19)), we may rewrite the filtering equation (11.6.17)
in the following forms:

x̂n+1/n = (a− cK)x̂n/n−1 +Kyn , or,

x̂n+1/n = ax̂n/n−1 +K(yn − cx̂n/n−1) , or,

x̂n+1/n = ax̂n/n−1 +K(yn − ŷn/n−1)

(11.6.20)

where we set
ŷn/n−1 = cx̂n/n−1 (11.6.21)

A realization of the estimation filter based on (11.6.20) is shown below:

Replacing K = aG and using Eq. (11.6.16) in (11.6.20), we also find

x̂n/n = x̂n/n−1 +G(yn − ŷn/n−1) (11.6.22)

The quantity ŷn/n−1 defined in Eq. (11.6.21) is the best estimate of yn based on its
past Yn−1. This can be seen in two ways: First, using the results of Problem 1.7 on the
linearity of the estimates, we find

ŷn/n−1 = !cxn + vn = cx̂n/n−1 + v̂n/n−1 = cx̂n/n−1
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where the term v̂n/n−1 was dropped. This term represents the estimate of vn on the
basis of the past ys; that is, Yn−1. Since vn is white and also uncorrelated with xn, it
follows that it will be uncorrelated with all past ys; therefore, v̂n/n−1 = 0. The second
way to show that ŷn/n−1 is the best prediction of yn is to show that the innovations
residual

αn = yn − ŷn/n−1 = yn − cx̂n/n−1 (11.6.23)

is a white-noise sequence and coincides with the whitening sequence εn of yn. Indeed,
working in the z-domain and using Eq. (11.6.17) and the signal model of yn we find

α(z) = Y(z)−cz−1X̂1(z)= Y(z)−cz−1H1(z)Y(z)

=
[

1− cz−1 K
1− fz−1

]
Y(z)=

[
1− (f + cK)z−1

1− fz−1

]
Y(z)

=
[

1− az−1

1− fz−1

]
Y(z)= 1

B(z)
Y(z)= ε(z)

which implies that
αn = εn

Finally, we note that the recursive updating of the estimate of xn given by Eq. (11.6.22)
is identical to the result of Problem 1.11.

Our purpose in presenting this example was to tie together a number of ideas from
Chapter 1 (correlation canceling, estimation, Gram-Schmidt orthogonalization, linear
prediction, and signal modeling) to ideas from this chapter on Wiener filtering and its
recursive reformulation as a Kalman filter.

We conclude this section by presenting a simulation of this example defined by the
following choice of parameters:

a = 0.95 , c = 1 , Q = 1− a2 , R = 1

The above choice for Q normalizes the variance of xn to unity. Solving the Riccati
equation (11.6.18) and using Eq. (11.6.19), we find

P = 0.3122 , K = 0.2261 , G = 0.2380 , f = a− cK = 0.7239

Fig. 11.6.1 shows 100 samples of the observed signal yn together with the desired
signal xn. The signal yn processed through the Wiener filter H(z) defined by the above
parameters is shown in Fig. 11.6.2 together with xn. The tracking properties of the filter
are evident from the graph. It should be emphasized that this is the best one can do by
means of ordinary causal linear filtering.

11.7 Construction of the Wiener Filter by the Gapped Function

Next, we would like to give an alternative construction of the optimal Wiener filter based
on the concept of the gapped function. This approach is especially useful in linear pre-
diction. The gapped function is defined as the cross-correlation between the estimation
error en and the observation sequence yn, as follows:

g(k)= Rey(k)= E[enyn−k] , for −∞ < k <∞ (11.7.1)
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Fig. 11.6.1 Desired signal and its noisy observation.
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Fig. 11.6.2 Best estimate of desired signal.

This definition is motivated by the orthogonality equations which state that the
prediction error en must be orthogonal to all of the available observations; namely,
Yn = {yi , −∞ < i ≤ n} = {yn−k , k ≥ 0}. That is, for the optimal set of filter weights
we must have

g(k)= Rey(k)= E[enyn−k]= 0 , for k ≥ 0 (11.7.2)

and g(k) develops a right-hand side gap. On the other hand, g(k) may be written in
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the alternative form

g(k)= E[enyn−k]= E
[(
xn −

∞∑
i=0

hiyn−i
)
yn−k

] = Rxy(k)− ∞∑
i=0

hiRyy(k− i) , or,

g(k)= Rey(k)= Rxy(k)−
∞∑
i=0

hiRyy(k− i) (11.7.3)

Taking z-transforms of both sides we find

G(z)= Sey(z)= Sxy(z)−H(z)Syy(z)

Because of the gap conditions, the left-hand side contains only positive powers of
z, whereas the right-hand side contains both positive and negative powers of z. Thus,
the non-positive powers of z must drop out of the right side. This condition precisely
determines H(z). Introducing the spectral factorization of Syy(z) and dividing both
sides by B(z−1) we find

G(z) = Sxy(z)−H(z)Syy(z)= Sxy(z)−H(z)σ2
εB(z)B(z−1)

G(z)
B(z−1)

= Sxy(z)
B(z−1)

−σ2
εH(z)B(z)

The z-transform B(z−1) is anticausal and, because of the gap conditions, so is the
ratio G(z)/B(z−1). Therefore, taking causal parts of both sides and noting that the
product H(z)B(z) is already causal, we find

0 =
[ Sxy(z)
B(z−1)

]
+
−σ2

εH(z)B(z)

which may be solved for H(z) to give Eq. (11.4.6).

11.8 Construction of the Wiener Filter by Covariance Factor-

ization

In this section, we present a generalization of the gapped-function method to the more
general non-stationary and/or finite-past Wiener filter. This is defined by the Wiener-
Hopf equations (11.2.7), which are equivalent to the orthogonality equations (11.2.5).
The latter are the non-stationary versions of the gapped function of the previous section.
The best way to proceed is to cast Eqs. (11.2.5) in matrix form as follows: Without loss
of generality we may take the starting point na = 0. The final point nb is left arbitrary.
Introduce the vectors

x =

⎡⎢⎢⎢⎢⎢⎣
x0

x1

...
xnb

⎤⎥⎥⎥⎥⎥⎦ , y =

⎡⎢⎢⎢⎢⎢⎣
y0

y1

...
ynb

⎤⎥⎥⎥⎥⎥⎦



498 11. Wiener Filtering

and the corresponding correlation matrices

Rxy = E[xyT] , Ryy = E[yyT]

The filtering equation (11.2.4) may be written in vector form as

x̂ = Hy (11.8.1)

where H is the matrix of optimal weights {h(n, i)}. The causality of the filtering oper-
ation (11.8.1), requires H to be lower-triangular. The minimization problem becomes
equivalent to the problem of minimizing the mean-square estimation error subject to
the constraint that H be lower-triangular. The minimization conditions are the normal
equations (11.2.5) which, in this matrix notation, state that the matrix Rey has no lower-
triangular (causal) part; or, equivalently, that Rey is strictly upper-triangular (i.e., even
the main diagonal of Rey is zero), therefore

Rey = strictly upper triangular (11.8.2)

Inserting Eq. (11.8.1) into Rey we find

Rey = E[eyT]= E[(x−Hy)yT
]
, or,

Rey = Rxy −HRyy (11.8.3)

The minimization conditions (11.8.2) require H to be that lower-triangular matrix
which renders the combination (11.8.3) upper-triangular. In other words, H should
be such that the lower triangular part of the right-hand side must vanish. To solve
Eqs. (11.8.2) and (11.8.3), we introduce the LU Cholesky factorization of the covariance
matrix Ryy given by

Ryy = BRεεBT (11.8.4)

where B is unit lower-triangular, and Rεε is diagonal. This was discussed in Sec. 1.6.
Inserting this into Eq. (11.8.3) we find

Rey = Rxy −HRyy = Rxy −HBRεεBT (11.8.5)

Multiplying by the inverse transpose of B we obtain

ReyB−T = RxyB−T −HBRεε (11.8.6)

Now, the matrix B−T is unit upper-triangular, but Rey is strictly upper, therefore,
the product RxyB−T will be strictly upper. This can be verified easily for any two such
matrices. Extracting the lower-triangular parts of both sides of Eq. (11.8.6) we find

0 = [
RxyB−T

]
+ −HBRεε

where we used the fact that the left-hand side was strictly upper and that the term
HBRεε was already lower-triangular. The notation [ ]+ denotes the lower triangular
part of a matrix including the diagonal. We find finally

H = [
RxyB−T

]
+R

−1
εε B−1 (11.8.7)
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This is the most general solution of the Wiener filtering problem [18, 19]. It includes
the results of the stationary case, as a special case. Indeed, if all the signals are station-
ary, then the matricesRxy, B, andBT become Toeplitz and have a z-transform associated
with them as discussed in Problem 1.51. Using the results of that problem, it is easily
seen that Eq. (11.8.7) is the time-domain equivalent of Eq. (11.4.6).

The prewhitening approach of Sec. 11.4 can also be understood in the present matrix
framework. Making the change of variables

y = Bεεε

we find that Rxy = E[xyT]= E[xεεεT]BT = RxεBT, and therefore, RxyB−T = Rxε and the
filter H becomes H = [Rxε]+R−1

εε B−1. The corresponding estimate is then

x̂ = Hy = HBεεε = Fεεε , where F = HB = [Rxε]+R−1
εε (11.8.8)

This is the matrix equivalent of Eq. (11.4.5). The matrix F is lower-triangular by
construction. Therefore, to extract the nth component x̂n of Eq. (11.8.8), it is enough to
consider the n×n submatrices as shown below:

The nth row of F is f(n)T= E[xnεεεTn]E[εεεnεεεTn]−1. Therefore, the nth estimate be-
comes

x̂n = f(n)Tεεεn = E[xnεεεTn]E[εεεnεεεTn]−1εεεn

which may also be written in the recursive form

x̂n/n =
n∑
i=0

E[xnεi]E[εiεi]−1εi =
n−1∑
i=0

E[xnεi]E[εiεi]−1εi +Gnεn , or,

x̂n/n = x̂n/n−1 +Gnεn (11.8.9)

where we made an obvious change in notation, and Gn = E[xnεn]E[εnεn]−1. This is
identical to Eq. (11.6.22); in the stationary case, Gn is a constant, independent of n.
We can also recast the nth estimate in “batch” form, expressed directly in terms of the
observation vector yn = [y0, y1, . . . , yn]T. By considering the n×n subblock part of the
Gram-Schmidt construction, we may write yn = Bnεεεn, where Bn is unit lower-triangular.
Then, x̂n can be expressed as

x̂n = E[xnεεεTn]E[εεεnεεεTn]−1εεεn = E[xnyTn]E[ynyTn]−1yn

which is identical to Eq. (11.2.8).
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11.9 The Kalman Filter

The Kalman filter discussion of Sec. 11.6 and its equivalence to the Wiener filter was
based on the asymptotic Kalman filter for which the observations were available from
the infinite past to the present, namely, {yi , −∞ < i ≤ n}. In Sec. 11.7, we solved the
most general Wiener filtering problem based on the finite past for which the observation
space was

Yn = {y0, y1, . . . , yn} (11.9.1)

Here, we recast these results in a time-recursive form and obtain the time-varying
Kalman filter for estimating xn based on the finite observation subspace Yn. We also
discuss its asymptotic properties for large n and show that it converges to the steady-
state Kalman filter of Sec. 11.6.

Our discussion is based on Eq. (11.8.9), which is essentially the starting point in
Kalman’s original derivation [852]. To make Eq. (11.8.9) truly recursive, we must have a
means of recursively computing the required gain Gn from one time instant to the next.
As in Sec. 11.8, we denote by x̂n/n and x̂n/n−1 the optimal estimates of xn based on the
observation subspaces Yn and Yn−1, defined in Eq. (11.9.1), with the initial condition
x̂0/−1 = 0. Iterating the state and measurement models (11.6.6) and (11.6.7) starting at
n = 0, we obtain the following two results, previously derived for the steady-state case

x̂n+1/n = ax̂n/n , ŷn/n−1 = cx̂n/n−1 (11.9.2)

The proof of both is based on the linearity property of estimates; for example,

x̂n+1/n = !axn +wn = ax̂n/n + ŵn/n = ax̂n/n
where ŵn/n was set to zero because wn does not depend on any of the observations
Yn. This is seen as follows. The iteration of the state equation (11.6.6) leads to the
expression xn = anx0 + an−1w0 + an−2w1 + · · · + awn−2 +wn−1. It follows from this
and Eq. (11.6.7) that the observation subspace Yn will depend only on

{x0,w0,w1, . . . ,wn−1, v0, v1, . . . , vn}
Making the additional assumption that x0 is uncorrelated with wn it follows that

wn will be uncorrelated with all random variables in the above set, and thus, with Yn.
The second part of Eq. (11.9.2) is shown by similar arguments. Next, we develop the
recursions for the gain Gn. Using Eq. (11.8.9), the estimation and prediction errors may
be related as follows

en/n = xn − x̂n/n = xn − x̂n/n−1 −Gnεn = en/n−1 −Gnεn
Taking the correlation of both sides with xn we find

E[en/nxn]= E[en/n−1xn]−GnE[εnxn] (11.9.3)

Using the orthogonality properties E[en/nx̂n/n]= 0 and E[en/n−1x̂n/n−1]= 0, which
follow from the optimality of the two estimates x̂n/n and x̂n/n−1, we can write the mean-
square estimation and prediction errors as

Pn/n = E[e2
n/n]= E[en/nxn] , Pn/n−1 = E[e2

n/n−1]= E[en/n−1xn] (11.9.4)
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We find also

εn = yn − ŷn/n−1 = (cxn + vn)−cx̂n/n−1 = cen/n−1 + vn
Using the fact that en/n−1 depends only on xn andYn−1, it follows that the two terms

in the right-hand side are uncorrelated with each other. Thus,

E[ε2
n]= c2E[e2

n/n−1]+E[v2
n]= c2Pn/n−1 +R (11.9.5)

also
E[εnxn]= cE[en/n−1xn]+E[vnxn]= cPn/n−1 (11.9.6)

Therefore, the gain Gn is computable by

Gn = E[εnxn]
E[ε2

n]
= cPn/n−1

R+ c2Pn/n−1
(11.9.7)

Using Eqs. (11.9.4), (11.9.6), and (11.9.7) into Eq. (11.9.3), we obtain

Pn/n = Pn/n−1 −GncPn/n−1 = Pn/n−1 − c2Pn/n−1

R+ c2Pn/n−1
= RPn/n−1

R+ c2Pn/n−1
(11.9.8)

The subtracted term in (11.9.8) represents the improvement in estimating xn using
x̂n/n over using x̂n/n−1. Equations (11.9.3), (11.9.7), and (11.9.8) admit a nice geometrical
interpretation [867]. The two right-hand side terms in εn = cen/n−1+vn are orthogonal
and can be represented by the orthogonal triangle

where the prediction error en/n−1 has been scaled up by the factor c. Thus, Eq. (11.9.5)
is the statement of the Pythagorean theorem for this triangle. Next, write the equation
en/n = en/n−1 −Gnεn as

en/n−1 = en/n +Gnεn
Because en/n is orthogonal to all the observations inYn and εn is a linear combination

of the same observations, it follows that the two terms in the right-hand side will be
orthogonal. Thus, en/n−1 may be resolved in two orthogonal parts, one being in the
direction of εn. This is represented by the smaller orthogonal triangle in the previous
diagram. Clearly, the length of the side en/n is minimized at right angles at point A. It
follows from the similarity of the two orthogonal triangles that

Gn
√
E[ε2

n]√
E[e2

n/n−1]
= c

√
E[e2

n/n−1]√
E[ε2

n]

which is equivalent to Eq. (11.9.7). Finally, the Pythagorean theorem applied to the
smaller triangle impliesE[e2

n/n−1]= E[e2
n/n]+G2

nE[ε2
n], which is equivalent to Eq. (11.9.8).
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To obtain a truly recursive scheme, we need next to find a relationship between
Pn/n and the next prediction error Pn+1/n. It is found as follows. From the state model
(11.6.6) and (11.9.2), we have

en+1/n = xn+1 − x̂n+1/n = (axn +wn)−ax̂n/n = aen/n +wn
Because en/n depends only on xn and Yn, it follows that the two terms in the right-

hand side will be uncorrelated. Therefore, E[e2
n+1/n]= a2E[e2

n/n]+E[w2
n], or,

Pn+1/n = a2Pn/n +Q (11.9.9)

The first term corresponds to the propagation of the estimate x̂n/n forward in time
according to the system dynamics; the second term represents the worsening of the
estimate due to the presence of the dynamical noise wn. The Kalman filter algorithm is
now complete. It is summarized below:

0. Initialize by x̂0/−1 = 0 and P0/−1 = E[x2
0].

1. At time n, x̂n/n−1, Pn/n−1, and the new measurement yn are available.

2. Compute ŷn/n−1 = cx̂n/n−1, εn = yn − ŷn/n−1, and the gain Gn using Eq. (11.9.7).

3. Correct the predicted estimate x̂n/n = x̂n/n−1+Gnεn and compute its mean-square
error Pn/n, using Eq. (11.9.8).

4. Predict the next estimate x̂n+1/n = ax̂n/n, and compute the mean-square predic-
tion error Pn+1/n, using Eq. (11.9.9).

5. Go to the next time instant, n→ n+ 1.

The optimal predictor x̂n/n−1 satisfies the Kalman filtering equation

x̂n+1/n = ax̂n/n = a(x̂n/n−1 +Gnεn)= ax̂n/n−1 + aGn(yn − cx̂n/n−1) , or,

x̂n+1/n = fnx̂n/n−1 +Knyn (11.9.10)

where we defined
Kn = aGn , fn = a− cKn (11.9.11)

These are the time-varying analogs of Eqs. (11.6.17) and (11.6.19). Equations (11.9.8)
and (11.9.9) may be combined into one updating equation for Pn/n−1, known as the
discrete Riccati difference equation

Pn+1/n = a2RPn/n−1

R+ c2Pn/n−1
+Q (11.9.12)

It is the time-varying version of Eq. (11.6.18). We note that in deriving all of the
above results, we did not need to assume that the model parameters {a, c,Q,R} were
constants, independent of time. They can just as well be replaced by time-varying model
parameters:

{an, cn,Qn,Rn}
The asymptotic properties of the Kalman filter depend, of course, on the particular

time variations in the model parameters. In the time-invariant case, with {a, c,Q,R}
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constant, we expect the solution of the Riccati equation (11.9.12) to converge, for large
n, to some steady-state value Pn/n−1 → P. In this limit, the Riccati difference equation
(11.9.12) tends to the steady-state algebraic Riccati equation (11.6.18), which determines
the limiting value P. The Kalman filter parameters will converge to the limiting values
fn → f , Kn → K, and Gn → G given by Eq. (11.6.19).

It is possible to solve Eq. (11.9.12) in closed form and explicitly demonstrate these
convergence properties. Using the techniques of [871,872], we obtain

Pn/n−1 = P+ f2nE0

1+ SnE0
, for n = 0,1,2, . . . , (11.9.13)

where E0 = P0/−1 − P and

Sn = B 1− f2n

1− f2
, B = c2

R+ c2P

We have already mentioned (see Problem 1.50) that the stability of the signal model
and the positivity of the asymptotic solution P imply the minimum phase condition
|f| < 1. Thus, the second term of Eq. (11.9.13) converges to zero exponentially with a
time constant determined by f .

Example 11.9.1: Determine the closed form solutions of the time-varying Kalman filter for the
state and measurement models:

xn+1 = xn +wn , yn = xn + vn

with Q = 0.5 and R = 1. Thus, a = 1 and c = 1. The Riccati equations are

Pn+1/n = Pn/n−1

1+ Pn/n−1
+ 0.5 , P = P

1+ P + 0.5

The solution of the algebraic Riccati equation is P = 1. This implies that f = aR/(R +
c2P)= 0.5. To illustrate the solution (11.9.13), we take the initial condition to be zero
P0/−1 = 0. We find B = c2/(R+ c2P)= 0.5 and

Sn = 2

3

[
1− (0.5)2n]

Thus,

Pn/n−1 = 1− (0.5)2n

1− 2

3

[
1− (0.5)2n] = 1− (0.5)2n

1+ 2(0.5)2n

The first few values calculated from this formula are

P1/0 = 1

2
, P2/1 = 5

6
, P3/2 = 21

22
, . . .

and quickly converge to P = 1. They may also be obtained by iterating Eq. (11.9.12). ��
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11.10 Problems

11.1 Let x = [xna , . . . , xnb]T and y = [yna , . . . , ynb]T be the desired and available signal vectors.
The relationship between x and y is assumed to be linear of the form

y = Cx+ v

whereC represents a linear degradation and v is a vector of zero-mean independent gaussian
samples with a common variance σ2

v . Show that the maximum likelihood (ME) estimation
criterion is in this case equivalent to the following least-squares criterion, based on the
quadratic vector norm:

E = ‖y−Cx‖2 = minimum with respect to x

Show that the resulting estimate is given by

x̂ = (CTC)−1CTy

11.2 Let x̂ = Hy be the optimal linear smoothing estimate of x given by Eq. (11.1.5). It is obtained
by minimizing the mean-square estimation error En = E[e2

n] for each n in the interval
[na, nb].

(a) Show that the solution for H also minimizes the error covariance matrix

Ree = E[eeT]

where e is the vector of estimation errors e = [ena , . . . , enb]T .

(b) Show thatH also minimizes every quadratic index of the form, for any positive semi-
definite matrix Q:

E[eTQe]= min

(c) Explain how the minimization of each E[e2
n] can be understood in terms of part (b).

11.3 Consider the smoothing problem of estimating the signal vector x from the signal vector y.
Assume that x and y are linearly related by

y = Cx+ v

and that v and x are uncorrelated from each other, and that the covariance matrices of x
and v, Rxx and Rvv, are known. Show that the smoothing estimate of x is in this case

x̂ = RxxCT[CRxxCT +Rvv]−1y

11.4 A stationary random signal has autocorrelation function Rxx(k)= σ2
xa|k|, for all k. The

observation signal is yn = xn + vn , where vn is a zero-mean, white noise sequence of
variance σ2

v , uncorrelated from xn.

(a) Determine the optimal FIR Wiener filter of order M = 1 for estimating xn from yn.

(b) Repeat for the optimal linear predictor of orderM = 2 for predicting xn on the basis
of the past two samples yn−1 and yn−2.

11.5 A stationary random signal x(n) has autocorrelation function Rxx(k)= σ2
xa|k|, for all k.

Consider a time interval [na, nb]. The random signal x(n) is known only at the end-points
of that interval; that is, the only available observations are

y(na)= x(na), y(nb)= x(nb)
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Determine the optimal estimate of x(n) based on just these two samples in the form

x̂(n)= h(n,na)y(na)+h(n,nb)y(nb)

for the following values of n: (a) na ≤ n ≤ nb, (b) n ≤ na, (c) n ≥ nb.

11.6 A stationary random signal xn is to be estimated on the basis of the noisy observations

yn = xn + vn
It is given that

Sxx(z)= 1

(1− 0.5z−1)(1− 0.5z)
, Svv(z)= 5, Sxv(z)= 0

(a) Determine the optimal realizable Wiener filter for estimating the signal xn on the
basis of the observations Yn = {yi , i ≤ n}. Write the difference equation of this filter.
Compute the mean-square estimation error.

(b) Determine the optimal realizable Wiener filter for predicting one step into the future;
that is, estimate xn+1 on the basis of Yn.

(c) Cast the results of (a) and (b) in a predictor/corrector Kalman filter form, and show
explicitly that the innovations residual of the observation signal yn is identical to the corre-
sponding whitening sequence εn driving the signal model of yn.

11.7 Repeat the previous problem for the following choice of state and measurement models

xn+1 = xn +wn , yn = xn + vn
where wn and vn have variances Q = 0.5 and R = 1, respectively.

11.8 Consider the state and measurement equations

xn+1 = axn +wn , yn = cxn + vn
as discussed in Sec. 11.6. For any value of the Kalman gain K, consider the Kalman predic-
tor/corrector algorithm defined by the equation

x̂n+1/n = ax̂n/n−1 +K(yn − cx̂n/n−1)= f x̂n/n−1 +Kyn (P.1)

where f = a− cK. The stability requirement of this estimation filter requires further that K
be such that |f| < 1.

(a) Let en/n−1 = xn − x̂n/n−1 be the corresponding estimation error. Assuming that all
signals are stationary, and working with z-transforms, show that the power spectral density
of en/n−1 is given by

See(z)= Q +K2R
(1− fz−1)(1− fz)

(b) Integrating See(z) around the unit circle, show that the mean-square value of the
estimation error is given by

E = E[e2
n/n−1]=

Q +K2R
1− f2

= Q +K2R
1− (a− cK)2

(P.2)

(c) To select the optimal value of the Kalman gain K, differentiate E with respect to K
and set the derivative to zero. Show that the resulting equation for K can be expressed in
the form

K = caP
R+ c2P
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where P stands for the minimized value of E; that is, P = Emin.

(d) Inserting this expression for K back into the expression (P.2) for E, show that the
quantity P must satisfy the algebraic Riccati equation

Q = P− a2RP
R+ c2P

Thus, the resulting estimator filter is identical to the optimal one-step prediction filter dis-
cussed in Sec. 11.6.

11.9 Show that Eq. (P.2) of Problem 11.8 can be derived without using z-transforms, by using only
stationarity, as suggested below: Using the state and measurement model equations and
Eq. (P. l), show that the estimation error en/n−1 satisfies the difference equation

en+1/n = fen/n−1 +wn −Kvn

Then, invoking stationarity, derive Eq. (P.2). Using similar methods, show that the mean-
square estimation error is given by

E[e2
n/n]=

RP
R+ c2P

where en/n = xn − x̂n/n is the estimation error of the optimal filter (11.6.13).

11.10 Consider the general example of Sec. 11.6. It was shown there that the innovations residual
was the same as the whitening sequence εn driving the signal model of yn

εn = yn − ŷn/n−1 = yn − cx̂n/n−1

Show that it can be written as
εn = cen/n−1 + vn

where en/n−1 = xn − x̂n/n−1 is the prediction error. Then, show that

σ2
ε = E[ε2

n]= R+ c2P

11.11 Computer Experiment. Consider the signal and measurement model defined by Eqs. (11.6.6)
through (11.6.8), with the choices a = 0.9, c = 1, Q = 1 − a2, and R = 1. Generate 1500
samples of the random noises wn and vn. Generate the corresponding signals xn and yn
according to the state and measurement equations. Determine the optimal Wiener filter of
the form (11.6.13) for estimating xn on the basis of yn. Filter the sequence yn through the
Wiener filter to generate the sequence x̂n/n.

(a) On the same graph, plot the desired signal xn and the available noisy version yn for
n ranging over the last 100 values (i.e., n = 1400–1500.)

(b) On the same graph, plot the recovered signal x̂n/n together with the original signal
xn for n ranging over the last 100 values.

(c) Repeat (a) and (b) using a different realization of wn and vn.

(d) Repeat (a), (b), and (c) for the choice a = −0.9.

11.12 Consider the optimal Wiener filtering problem in its matrix formulation of Sec. 11.8. Let
e = x − x̂ = x − Hy be the estimation error corresponding to a particular choice of the
lower-triangular matrix H. Minimize the error covariance matrix Ree = E[eeT] with respect
to H subject to the constraint that H be lower-triangular. These constraints are Hni = 0
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for n < i. To do this, introduce a set of Lagrange multipliers Λni for n < i, one for each
constraint equation, and incorporate them into an effective performance index

J = E[eeT]+ΛHT +HΛT = min

where the matrix Λ is strictly upper-triangular. Show that this formulation of the minimiza-
tion problem yields exactly the same solution as Eq. (11.8.7).

11.13 Exponential Moving Average as Wiener Filter. The single EMA filter for estimating the local
level of a signal that we discussed in Chap. 6 admits a nice Wiener-Kalman filtering interpre-
tation. Consider the noisy random walk signal model,

xn+1 = xn +wn
yn = xn + vn

(11.10.1)

wherewn, vn are mutually uncorrelated, zero-mean, white noise signals of variancesQ = σ2
w

and R = σ2
v . Based on the material in Section 12.6, show that the optimum Wiener/Kalman

filter for predicting xn from yn is equivalent to the exponential smoother, that is, show that
it is given by,

x̂n+1/n = f x̂n/n−1 + (1− f)yn (11.10.2)

so that the forgetting-factor parameter λ of EMA is identified as the closed-loop parameter
f of the Kalman filter, and show further that f is given in terms of Q,R as follows,

1− f =
√
Q2 + 4QR−Q

2R

Show also the x̂n+1/n = x̂n/n.

a. For the following values σw = 0.1 and σv = 1, generate N = 300 samples of xn, yn
from Eq. (11.10.1) and run yn through the equivalent Kalman filter of Eq. (11.10.2)
to compute x̂n/n−1. On the same graph, plot all three signals yn, xn, x̂n/n−1 versus
0 ≤ n ≤ N − 1. An example graph is shown at the end.

b. A possible way to determine λ or f from the data yn is as follows. Assume a tentative
value for λ, compute x̂n/n−1, then the error en/n−1 = xn− x̂n/n−1, and the mean-square
error:

MSE(λ)=
∑
n
e2
n/n−1

Repeat the calculation of MSE(λ) over a range of λs, for example, 0.80 ≤ λ ≤ 0.95,
chosen such that the interval [0.80,0.95] contain the true λ. Then find that λ that
minimizes MSE(λ), which should be close to the true value.

Because the estimated λ depends on the particular realization of the model (11.10.1),
generate 20 different realizations of the pair xn, yn with the same Q,R, and for each
realization carry out the estimate of λ as described above, and finally form the average
of the 20 estimated λs. Discuss if this method generates an acceptable estimate of λ
or f .

c. Repeat part (b), by replacing the MSE by the mean-absolute-error:

MAE(λ)=
∑
n
|en/n−1|
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12
Linear Prediction

12.1 Pure Prediction and Signal Modeling

In Sec. 1.17, we discussed the connection between linear prediction and signal modeling.
Here, we rederive the same results by considering the linear prediction problem as a
special case of the Wiener filtering problem, given by Eq. (11.4.6). Our aim is to cast
the results in a form that will suggest a practical way to solve the prediction problem
and hence also the modeling problem. Consider a stationary signal yn having a signal
model

Syy(z)= σ2
εB(z)B(z−1) (12.1.1)

as guaranteed by the spectral factorization theorem. Let Ryy(k) denote the autocorre-
lation of yn :

Ryy(k)= E[yn+kyn]
The linear prediction problem is to predict the current value yn on the basis of all the

past values Yn−1 = {yi , −∞ < i ≤ n− 1}. If we define the delayed signal y1(n)= yn−1,
then the linear prediction problem is equivalent to the optimal Wiener filtering problem
of estimating yn from the related signal y1(n). The optimal estimation filter H(z) is
given by Eq. (11.4.6), where we must identify xn and yn with yn and y1(n) of the present
notation. Using the filtering equation Y1(z)= z−1Y(z), we find that yn and y1(n) have
the same spectral factor B(z)

Sy1y1(z)= (z−1)(z)Syy(z)= Syy(z)= σ2
εB(z)B(z−1)

and also that
Syy1(z)= Syy(z)z = zσ2

εB(z)B(z−1)

Inserting these into Eq. (11.4.6), we find for the optimal filter H(z)

H(z)= 1

σ2
εB(z)

[Syy1(z)
B(z−1)

]
+
= 1

σ2
εB(z)

[
zσ2

εB(z)B(z−1)
B(z−1)

]
+
, or,

H(z)= 1

B(z)
[
zB(z)

]
+ (12.1.2)


