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7.10 Problems

7.1 Show that the matrices Q,S defined in Eqs. (7.3.13) and (7.3.30) satisfy the orthogonality
property QTS = 0. Assuming that the weighting diagonal matrix W has positive diagonal
entries, argue that the N×N matrix A = [W−1/2Q,W1/2S] is non-singular. Using this fact,
prove the projection matrix property (7.3.31). [Hint: work with A(ATA)−1AT .]

7.2 Show that the Euler-Lagrange equation for the variational problem (7.6.1) is:

....
x (t)= λ−1

N−1∑
n=0

mn∑
i=1

wni
(
yni − x(tn)

)
δ(t − tn)

and show that it is equivalent to

....
x (t)= λ−1

N−1∑
n=0

w̄n
(
ȳn − x(tn)

)
δ(t − tn)

where w̄n, ȳn were defined in (7.6.2). This is an alternative way to establish the equivalence
of the variational problems (7.6.1) and (7.6.3).

7.3 First prove the following Fourier transform pair:

exp
(−b|t|)←→ 2b

b2 +ω2

where b is any complex number with Re(b)> 0. Then, use it to prove that Eqs. (7.7.4) and
(7.7.5) are a Fourier transform pair. Show the same for the pair in Eq. (7.7.8).

8
Whittaker-Henderson Smoothing

8.1 Whittaker-Henderson Smoothing Methods

Whittaker-Henderson smoothing is a discrete-time version of spline smoothing for equa-
lly spaced data. Some of the original papers by Bohlmann, Whittaker, Henderson and
others,† and their applications to trend extraction in the actuarial sciences, physical
sciences, and business and finance, are given in [405–438], including Hodrick-Prescott
filters in finance [439–467], and recent realizations in terms of the �1 norm [468–478],
as well as extensions to seasonal data [622–625,636,638]. The performance index was
defined in Eq. (7.1.2),

J =
N−1∑
n=0

wn
∣∣yn − xn∣∣2 + λ

N−1∑
n=s

∣∣∇sxn∣∣2 = min (8.1.1)

where ∇sxn represents the backward-difference operator ∇xn = xn − xn−1 applied s
times. We encountered this operation in Sec. 4.2 on minimum-Rs Henderson filters. The
corresponding difference filter and its impulse response are

Ds(z)= (1− z−1)s

ds(k)= (−1)k
(
s
k

)
, 0 ≤ k ≤ s

(8.1.2)

For example, we have for s = 1,2,3,

d1 =
[

1
−1

]
, d2 =

⎡
⎢⎣

1
−2

1

⎤
⎥⎦ , d3 =

⎡
⎢⎢⎢⎣

1
−3

3
−1

⎤
⎥⎥⎥⎦

Because Ds(z) is a highpass filter, the performance index attempts, in its second
term, to minimize the spectral energy of xn at the high frequency end, while attempt-
ing to interpolate the noisy observations with the first term. The result is a lowpass,

†Bohlmann considered the case s = 1, Whittaker and Henderson, s = 3, and Hodrick-Prescott, s = 2.
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342 8. Whittaker-Henderson Smoothing

smoothing, operation. In fact, the filter Ds(z) may be replaced by any other (causal)
FIR highpass filter D(z), or dn in the time domain, with a similar result. Thus, a more
general version of (8.1.1) would be:

J =
N−1∑
n=0

wn
∣∣yn − xn∣∣2 + λ

N−1∑
n=s

∣∣dn ∗ xn∣∣2 = min (8.1.3)

where dn ∗ xn denotes convolution and s is the filter order, that is, we assume that the
impulse response is dn =

[
d0, d1, . . . , ds

]
. The criteria (8.1.1) and (8.1.3) are examples

of the method of regularization, which we discuss in more general terms in Sec. 8.6 and
for ill-conditioned linear systems in particular in Sec. 15.10.

The summation limits of the second terms in Eqs. (8.1.1) and (8.1.3) restrict the
convolutional operations to their steady-state range. For example, for a length-N causal
input {x0, x1, . . . , xN−1}, the s-difference filter has the full convolutional output:

gn = ∇sxn =
min(s,n)∑

k=max(0,n−N+1)
ds(k)xn−k , 0 ≤ n ≤ N − 1+ s (8.1.4)

and the steady-state output (assuming N > s):

gn = ∇sxn =
s∑
k=0

ds(k)xn−k , s ≤ n ≤ N − 1 (8.1.5)

Similarly, we have in the more general case,

gn = dn ∗ xn =
min(s,n)∑

k=max(0,n−N+1)
dkxn−k , 0 ≤ n ≤ N − 1+ s

gn = dn ∗ xn =
s∑
k=0

dkxn−k , s ≤ n ≤ N − 1

(8.1.6)

In Sec. 4.2 we worked with the full convolutional form (8.1.4) and implemented it in
a matrix form using the convolution matrix. We recall that the MATLAB functions binom
and diffmat can be used to compute the impulse response ds(k) and the corresponding
(N+s)×N full convolutional matrix Ds.

The filtering operation gn = ∇sxn, 0 ≤ n ≤ N−1+s, can be expressed vectorially as
g = Dsx, where x is the N-dimensional input vector x = [x0, x1, . . . , xN−1]T, and g =
[g0, g1, . . . , gN−1+s]T, the (N+s)-dimensional output vector. Similarly, the operation
gn = dn ∗ xn can be expressed as g = Dfull x, where the (N+s)×N full convolution
matrix can be constructed using convmat—the sparse version of convmtx,

Dfull = convmat(d,N); % sparse full convolution matrix

where d = [d0, d1, . . . , ds]T. The steady-state versions of the full convolution matrices
are obtained by extracting their middle N−s rows, and therefore, they have dimension
(N−s)×N. For example, we have for N = 5 and s = 2, with d = [d0, d1, d2]T,
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Dfull =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0 0 0 0 0
d1 d0 0 0 0

d2 d1 d0 0 0
0 d2 d1 d0 0
0 0 d2 d1 d0

0 0 0 d2 d1

0 0 0 0 d2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒ D =
⎡
⎢⎣
d2 d1 d0 0 0
0 d2 d1 d0 0
0 0 d2 d1 d0

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

d2 0 0
d1 d2 0
d0 d1 d2

0 d0 d1

0 0 d0

⎤
⎥⎥⎥⎥⎥⎥⎦

T

The last expression shows that the steady matrix can also be viewed as the trans-
posed of the convolution matrix of the reversed filter with N−s columns. Thus, in
MATLAB two possible ways of constructing D are:

1) Dfull = convmat(d,N); D = Dfull(s+ 1 : N, : )
2) D = convmat(flip(d),N − s)′; (8.1.7)

For the s-difference filter, we can use the equivalent (sparse) constructions:

1) Dfull = diffmat(s,N); D = Dfull(s+ 1 : N, : )
2) D = (−1)s∗diffmat(s,N − s)′;
3) D = diff(speye(N), s);

(8.1.8)

where the second method is valid because the reversed binomial filter is (−1)s times
the unreversed one. The third method is the fastest [428], but does not generalize to an
arbitrary filter d. As an example, we have for N = 7, s = 2, and d = [1,−2,1]T:

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −2 1 0 0 0 0
0 1 −2 1 0 0 0
0 0 1 −2 1 0 0
0 0 0 1 −2 1 0
0 0 0 0 1 −2 1

⎤
⎥⎥⎥⎥⎥⎥⎦

The corresponding steady-state output vector g = [gs, gs+1, . . . , gN−1]T is given by
g = Dx, with squared norm,

N−1∑
n=s
[dn ∗ xn]2=

N−1∑
n=s

g2
n = gTg = xT(DTD)x

Therefore, the performance index (8.1.1) or (8.1.3) can be written compactly as:

J = (y− x)TW(y− x)+λxT(DTD)x = min (8.1.9)

where W is the diagonal matrix of the weights, W = diag
(
[w0,w1, . . . ,wN−1]

)
. The

optimum solution is obtained by setting the gradient with respect to x to zero,

∂J
∂x

= −2W(y− x)+2λ(DTD)x = 0 ⇒ (W + λDTD)x =Wy
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with solution, which may be regarded as the estimate of x in the signal model y = x+v,

x̂ = (W + λDTD)−1Wy (8.1.10)

The matrix D plays the same role as the matrix QT in the spline smoothing case,
but for equally-spaced data. As was the case in Sec. 4.2, the matrix DTD is essentially
equivalent to the (2s)-differencing operator ∇2s, after ignoring the first s and last s
rows. For example, we have for N = 7 and s = 2,

DTD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 1 0 0 0 0
−2 5 −4 1 0 0 0

1 −4 6 −4 1 0 0
0 1 −4 6 −4 1 0
0 0 1 −4 6 −4 1

0 0 0 1 −4 5 −2
0 0 0 0 1 −2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where we recognize the expansion coefficients (1−z−1)4= 1−4z−1+6z−2−4z−3+z−4.
The N×N matrix (W + λDTD) is sparse and banded with bandwidth 2s + 1, and

therefore, MATLAB solves Eq. (8.1.10) very efficiently by default (as long as it is imple-
mented by the backslash operator). The function whsm implements Eq. (8.1.10):

x = whsm(y,lambda,s,w); % Whittaker-Henderson smoothing

where method (2) is used internally to compute D, and w is the vector of weights, which
defaults to unity. The function whgen is the generalized version that uses an arbitrary
highpass filter d, whose steady convolution matrix D is also computed by method (2):

x = whgen(y,lambda,d,w); % generalized Whittaker-Henderson smoothing

Denoting the “hat” filtering matrixH = (W+λDTD)−1W, and defining the error e =
y− x̂ = (I−H)y, we may define a generalized cross-validation criterion for determining
the smoothing parameter λ, which is analogous to that of Eq. (7.5.5):

GCV(λ)= eTWe[
tr(I −H)]2 = min (8.1.11)

The function whgcv calculates it at any vector of λ’s and finds the corresponding
optimum:

[gcv,lopt] = whgcv(y,la,s,w); % Whittaker-Henderson GCV evaluation

The GCV criterion should be used with some caution because it suffers from the
same problem, as in the spline case, of typically underestimating the proper value of λ.

The Whittaker-Henderson method was compared to the local polynomial and mini-
mum roughness filters in Examples 3.9.2 and 4.2.1. Some additional examples are dis-
cussed below.
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Example 8.1.1: NIST ENSO data. We apply the Whittaker-Henderson (WH) smoothing method
to the ENSO data which are another benchmark example in the NIST Statistical Reference
Dataset Archives, and original reference [1240]. The data file ENSO.dat is available online
from the NIST web sites:

http://www.itl.nist.gov/div898/strd/nls/nls_main.shtml

http://www.itl.nist.gov/div898/strd/nls/data/enso.shtml

The data represent the monthly averaged atmospheric pressure differences between Easter
Island and Darwin, Australia. In the nonlinear NIST fit, the data are fitted to three sinusoids
of unknown amplitudes and frequencies, except that one of the sinusoids is kept at the
annual frequency. There are three significant cycles at 12, 26, and 44 months.

The upper-left graph of Fig. 8.1.1 compares the NIST fit with the Whittaker-Henderson
method. We used s = 3 and smoothing parameter λopt = 6.6. which was determined by
the GCV function whgcv.

The lower-left graph shows the corresponding periodogram spectra plotted versus period
in units of months/cycle. The three dominant peaks are evident. In the spectrum graphs,
the digital frequency isω = 2πf rads/month, with f measured in cycles/month, and with
the corresponding period p = 1/f measured in months/cycle.
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Fig. 8.1.1 Smoothed ENSO signal and spectra.
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The time-domain WH signal agrees fairly well with the NIST fit. We note that in the places
where the two disagree, the WH fit appears to be a better representation of the noisy data.

The upper-right graph shows the application of the SVD enhancement method, which typ-
ically works well for sinusoids in noise. The embedding dimension was M = 20 and
the assumed rank r = 6 (three real sinusoids are equivalent to six complex ones.) The
lower-right graph shows the corresponding spectral peaks. The following MATLAB code
illustrates the generation of the four graphs:

Y = loadfile(’ENSO.dat’); % data file in OSP toolbox

y = Y(:,1); t = Y(:,2); % extract data signal

b1 = 1.0510749193E+01; b2 = 3.0762128085E+00; b3 = 5.3280138227E-01;
b4 = 4.4311088700E+01; b5 =-1.6231428586E+00; b6 = 5.2554493756E-01;
b7 = 2.6887614440E+01; b8 = 2.1232288488E-01; b9 = 1.4966870418E+00;

yf = b1 + b2*cos(2*pi*t/12) + b3*sin(2*pi*t/12) + b5*cos(2*pi*t/b4) ...
+ b6*sin(2*pi*t/b4) + b8*cos(2*pi*t/b7) + b9*sin(2*pi*t/b7);

s=3; la = linspace(2,10,100); % search range for λ
[gcv,lopt]=whgcv(y,la,s); % λopt = 6.6

yw = whsm(y,lopt,s); % WH smoothing method

M=20; r=6; ye = svdenh(y,M,r); % SVD enhancement method

figure; plot(t,y,’.’, t,yw,’-’, t,yf,’:’); % upper-left graph

figure; plot(t,y,’.’, t,ye,’-’, t,yf,’:’); % upper-right graph

p = linspace(6,54, 481); w = 2*pi./p; % period in months/cycle

Sy = abs(freqz(zmean(y), 1, w)).^2; Sy = Sy/max(Sy); % spectra

Sf = abs(freqz(zmean(yf), 1, w)).^2; Sf = Sf/max(Sf);
Sw = abs(freqz(zmean(yw), 1, w)).^2; Sw = Sw/max(Sw);
Se = abs(freqz(zmean(ye), 1, w)).^2; Se = Se/max(Se);

figure; plot(p,Sw, p,Sy,’:’, p,Sf,’--’); % lower-left graph

figure; plot(p,Se, p,Sy,’:’, p,Sf,’--’); % lower-right graph

The bi parameters and the signal yf represent the NIST fit. Anticipating the three relevant
peaks, the spectra were computed only over the period range 6 ≤ p ≤ 54 months. The
function zmean removes the mean of the signal so that the spectrum is not masked by the
DC component. 	


8.2 Regularization Filters

Most of the results of the spline smoothing case carry over to the discrete case. For
example, we may obtain an equivalent digital filter by taking the signals to be double-
sided and infinite. Using the Parseval identity, the performance index (8.1.3) becomes:

J =
∞∑

n=−∞
|yn − xn|2 + λ

∞∑
n=−∞

|dn ∗ xn|2 =

=
∫ π
−π

∣∣Y(ω)−X(ω)∣∣2 dω
2π

+ λ
∫ π
−π

∣∣D(ω)X(ω)∣∣2 dω
2π

= min

(8.2.1)
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whereD(ω) is the frequency response† of the filter dn, and we assumed unity weights,
wn = 1. The vanishing of the functional derivative of J with respect to X∗(ω),

δJ
δX∗(ω)

= X(ω)−Y(ω)+λ|D(ω)|2X(ω)= 0 (8.2.2)

gives the effective equivalent smoothing filter H(ω)= X(ω)/Y(ω):

H(ω)= 1

1+ λ|D(ω)|2 (8.2.3)

The corresponding z-domain transfer function is obtained by noting that for real-
valued dn, we have |D(ω)|2 = D(z)D(z−1), where z = ejω, so that,

H(z)= 1

1+ λD(z)D(z−1)
(8.2.4)

Such “recursive regularization filters” have been considered in [440]. In particular,
for the s-difference filter Ds(z)= (1− z−1)s, we have:

H(z)= 1

1+ λ(1− z−1)s(1− z)s (Whittaker-Henderson filter) (8.2.5)

Similarly, Eq. (8.2.2) can be written in the z-domain and converted back to the time do-
main. Noting thatDs(z)Ds(z−1)= (1−z−1)s(1−z)s= (−1)szs(1−z−1)2s= (−1)szsD2s(z),
we have:

X(z)−Y(z)+λ(−1)szs(1− z−1)2sX(z)= 0 , or,

(−1)szsD2s(z)X(z)= λ−1(Y(z)−X(z)),
resulting in the time-domain (2s)-difference equation:

(−1)s∇2sxn+s = λ−1(yn − xn) (8.2.6)

In the early years, some ingenious methods were developed for solving this type of
equation [407–416]. Noting that |Ds(ω)| = |1 − e−jω|s = 2s

∣∣sin(ω/2)
∣∣s, we obtain

the frequency response of (8.2.5):

H(ω)= 1

1+ λ
∣∣∣∣2 sin

ω
2

∣∣∣∣2s (8.2.7)

The complementary highpass filter Hc(z)= 1 − H(z) extracts the error residual
component from the observations yn, that is, en = yn − xn, or in the z-domain, E(z)=
Y(z)−X(z)= Y(z)−H(z)Y(z)= Hc(z)Y(z). Its transfer function and frequency re-
sponse are given by:

Hc(z)= λ(1− z−1)s(1− z)s
1+ λ(1− z−1)s(1− z)s , Hc(ω)=

λ
∣∣∣∣2 sin

ω
2

∣∣∣∣2s

1+ λ
∣∣∣∣2 sin

ω
2

∣∣∣∣2s (8.2.8)

Fig. 8.2.1 shows a plot of H(ω) and Hc(ω) for s = 1,2,3 and the two values of
the smoothing parameter λ = 5 and λ = 50. Increasing λ narrows the response of the
lowpass filter and widens the response of the highpass one.

†Here, ω is the digital frequency in units of radians per sample.
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Fig. 8.2.1 Frequency responses of Whittaker-Henderson filters.

8.3 Hodrick-Prescott Filters

In macroeconomic applications such as extracting business cycles from GDP data, the
standard signal model yn = xn + vn is interpreted to consist of a long-term trend rep-
resented by xn and a shorter-term cyclical component vn. The filters H(z) and Hc(z)
extract the trend and cyclical components, respectively.

The use of Whittaker-Henderson smoothing with s = 2 has been advocated by Ho-
drick and Prescott [439] and has become standard in such applications. The Whittaker-
Henderson filters are referred to as Hodrick-Prescott filters and there is a very large
literature on the subject and on the use of other types of bandpass filters for extracting
business cycles, a subset of which is [439–465].

As is the case in typical filter design, the filter parameter λ can be fixed by specifying
a desired value for the filter’s cutoff frequencyωc corresponding to some standardized
value of the gain. For the lowpass filter we have for general s, the condition:

1

1+ λ
∣∣∣∣2 sin

ωc

2

∣∣∣∣2s = Gc (8.3.1)

whereGc is desired value of the gain. The 3-dB cutoff frequencyωc corresponds toGc =
1/
√

2. In macroeconomic applications, the 6-dB frequency is often used, corresponding
to the choice Gc = 1/2. For the highpass case, measuring the gain Gc relative to that at
the Nyquist frequency ω = π, we have the condition:

λ
∣∣∣∣2 sin

ωc

2

∣∣∣∣2s

1+ λ
∣∣∣∣2 sin

ωc

2

∣∣∣∣2s = Gc
22sλ

1+ 22sλ
(8.3.2)

Typically, business cycles are defined [446] as having frequency components with
periods between 6 and 32 quarters (1.5 to 8 years). A bandpass filter with a passband
[ω1,ω2]= [2π/32, 2π/6] radians/quarter would extract such cycles.
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The Hodrick-Prescott highpass filterHc(ω)must therefore have a cutoff frequency
of about ωc = ω1 = 2π/32. Hodrick-Prescott advocate the use of λ = 1600 for
quarterly data. Interestingly, the values of λ = 1600 and ωc = 2π/32 rads/quarter,
correspond to almost a 3-dB gain. Indeed, the gain calculated from Eq. (8.3.2) with s = 2
turns out to be Gc = 0.702667 ≡ −3.065 dB.

Using the same ωc and Gc, but different values of s requires adjusting the value of
λ. For example, solving Eq. (8.3.2) for λ with s = 1,2,3 gives:

λ = 1600 (s = 2), λ = 60.654 (s = 1), λ = 41640 (s = 3) (8.3.3)

Similarly, the value of λmust be adjusted if the sampling frequency is changed. For
example, the same cutoff frequency expressed in different units is:

ωc = 2π
32

radians

quarter
= 2π

8

radians

year
= 2π

96

radians

month
(8.3.4)

The above value Gc = 0.702667 used in (8.3.2) with s = 2 then gives the following
values of λ for quarterly, yearly, and monthly sampled data:

λ = 1600 (quarterly) , λ = 6.677 (yearly) , λ = 128878 (monthly) (8.3.5)

Similarly, using the slightly more exact value Gc = 1/
√

2 and s = 2 gives:

λ = 1634.5 (quarterly) , λ = 6.822 (yearly) , λ = 131659 (monthly) (8.3.6)

There is not much agreement as to the values of λ to be used for annual and monthly
data. Two other sets of values are as follows, with the first being used by the European
Central Bank and the second recommended by [456,463],

λ = 1600/42 = 100 (yearly) , λ = 1600× 32 = 14400 (monthly)
λ = 1600/44 = 6.25 (yearly) , λ = 1600× 34 = 129600 (monthly)

(8.3.7)

The latter choice is essentially the same as that of Eq. (8.3.5) based on the criterion
(8.3.2). Indeed, for small ωc, we may make the approximation 2 sin(ωc/2)≈ωc. Since
22sλ is typically much larger than unity, the right-hand side of Eq. (8.3.2) can be replaced
by Gc, resulting in the following approximate solution, which turns out to be valid up
to about ωc ≤ 0.3π,

λω2s
c

1+ λω2s
c
= Gc ⇒ λ = Gc

(1−Gc)ω2s
c

(8.3.8)

If in this formula, we adjust Gc to get λ = 1600 at ωc = 2π/32, we find Gc =
0.70398 ≡ −3.049 dB, which in turn generates the second set of values in Eq. (8.3.7).

Example 8.3.1: US GDP for investment. A protypical example is the application of the Hodrick-
Prescott filter to the US GDP. Fig. 8.3.1 shows the real gross domestic product in chained
(2000) dollars from private domestic investment, seasonally adjusted at annual rates. The
data can be retrieved (as Table 1.1.6) from the BEA web sites:

http://www.bea.gov/
http://www.bea.gov/national/nipaweb/Index.asp
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The signal to be smoothed is the log of the GDP, that is, y = log10(GDP), and the ordinate
units are such that y = 12 corresponds to GDP = 1012, or, one trillion dollars. The data
are quarterly and span the years 1947–2008.

The upper-left graph shows the raw data and the WH-smoothed signal computed with s = 2
and λ = 1600, which as we mentioned above correspond to an approximate 3-dB cutoff
frequency of 32 quarters. The upper-right graph shows the residual cyclical component.
Its deviations above or below zero indicate the business cycles.
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Fig. 8.3.1 U.S. quarterly GDP in private investment, 1947–2008.

For comparison, the left-bottom graph shows the WH-smoothed signal with s = 3 and
λ = 41640 adjusted to match the same 3-dB cutoff frequency as the s = 2 case, see
Eq. (8.3.3). The lower-right graph shows the smoothed trend from the SVD enhancement
method applied with embedding dimensionM = 9 and rank r = 1. The following MATLAB
code illustrates the generation of the four graphs:

Y = loadfile(’USGDP_Inv.dat’); % data file in OSP toolbox

y = log10(Y(:,2) * 1e9); % Y was in billions

t = taxis(y,4,1947); % t-axis in quarters since 1947

s = 2; la = 1600; yt = whsm(y,la,s); % WH smoothing with s = 2

figure; plot(t,yt,’-’, t,y,’--’); % upper-left graph
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yc = y-yt; % cyclical component

figure; plot(t,yc, ’-’); % upper-right graph

s = 3; la = 41640.16; yt = whsm(y,la,s); % WH smoothing with s = 3

figure; plot(t,yt,’-’, t,y,’--’); % bottom-left graph

M=9; r=1; ye = svdenh(y,M,r); % SVD enhancement method

figure; plot(t,ye,’-’, t,y,’--’); % bottom-right graph

Except near the end-points, the smoothed trend for s = 3 is virtually indistinguishable
from the s = 2 case, and therefore, it would lead to the same prediction of business cycles.
The SVD trend is also very comparable. 	


8.4 Poles and Impulse Response

Because of the invariance under the substitution z→ z−1, the 2s poles of the filterH(z)
of Eq. (8.2.5) come in two groups with s poles inside the unit circle and their reciprocals
outside. It follows that H(z) can be expressed in the factored form:

H(z)= 1

1+ λ(1− z−1)s(1− z)s =
s∏
k=1

[
(1− zk)2

(1− zkz−1)(1− zkz)

]
(8.4.1)

where zk, k = 1,2, . . . , s, denote the s poles inside the unit circle. The numerator factors
(1 − zk)2 ensure that the right-hand side has unity gain at DC (z = 1), as does the
left-hand side. The stable impulse response is double-sided and can be obtained by
performing an inverse z-transform with the unit circle as the inversion contour [12]:

hn =
∮

u.c.
H(z)zn

dz
2πjz

, −∞ < n <∞ (8.4.2)

Inserting the factored form (8.4.1) into (8.4.2), we find

hn =
s∑
k=1

Akz
|n|
k , −∞ < n <∞ (8.4.3)

where the coefficients Ak are given by

Ak =
(

1− zk
1+ zk

) s∏
i=1
i �=k

[
(1− zi)2

(1− ziz−1
k )(1− zizk)

]
, k = 1,2, . . . , s (8.4.4)

The poles can be obtained in the form zk = ejωk , where ωk are the complex fre-
quencies of the denominator, that is, the frequencies that are solutions of the equation:

1+ λ
[

2 sin
ω
2

]2s
= 0 (8.4.5)

where we note that even thoughω is complex, we still have (1−z−1)(1−z)= 4 sin2(ω/2)
for z = ejω. The solution of Eq. (8.4.5) is straightforward. The s frequencies ωk that
lead to poles zk that are inside the unit circle can be parametrized as follows:[

2 sin
ω
2

]2s
= −1

λ
= ejπ(2k−1)

λ
⇒ sin

ωk

2
= ejπ(2k−1)/(2s)

2λ1/(2s) , k = 1,2, . . . , s
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Thus, the desired set of poles are:

zk = ejωk , ωk = 2 arcsin

[
ejθk

2λ1/(2s)

]
, θk = π(2k− 1)

2s
, k = 1,2, . . . , s (8.4.6)

If s is even, then the zk (and the coefficients Ak) come in conjugate pairs. If s is odd,
then the zero at k = (s+1)/2 is real and the rest come in conjugate pairs. In either case,
hn given by (8.4.3) is real-valued and decays exponentially from either side of the time
axis. The MATLAB function whimp calculates hn at any vector of ns and also produces
the poles and residues zk,Ak, k = 1,2, . . . , s,

[h,z,A] = whimp(lambda,s,n); % Whittaker-Henderson impulse response and poles

Fig. 8.4.1 shows the impulse responses for s = 1,2,3 with λs chosen as in (8.3.3)
so that the (complementary) filters have the same 3-dB cutoff frequency. The impulse
response of the complementary filter is hc(n)= δ(n)−h(n). Therefore, the three re-
sponses will have roughly the same time width.
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Fig. 8.4.1 Impulse responses of Whittaker-Henderson filters.

8.5 Wiener Filter Interpretation

Finally, we note that, as in the spline smoothing case, the equivalent filter H(z) can be
regarded as the optimum unrealizable Wiener filter for estimating xn from the observa-
tions yn in the signal model:

yn = xn + vn , ∇sxn = wn (8.5.1)

where vn,wn are mutually uncorrelated white noise signals with variances σ2
v,σ2

w. In-
deed, the transformed signals

x̄n = ∇sxn = wn , ȳn = ∇syn = wn +∇svn
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are stationary and it follows from the results of [643–649] that the optimum Wiener
filter will be in this case:

H(z)= Sx̄ȳ(z)
Sȳȳ(z)

= Sww(z)
Sww(z)+Ds(z)Ds(z−1)Svv(z)

= σ2
w

σ2
w +σ2

vDs(z)Ds(z−1)
(8.5.2)

Thus, we may identify λ = σ2
v/σ2

w. Using such a model, the optimum estimation
filter based on a finite, length-N, set of observations yn can be implemented efficiently
as a Kalman filter smoother requiringO(N) operations. On the other hand, the solution
of the matrix equation (8.1.10) is just as efficient due to the sparse and banded nature
of the linear system.

8.6 Regularization and Kernel Machines

Regularization was initially invented as a method for solving ill-posed, inconsistent,
overdetermined, and ill-conditioned inverse problems. Recently it has been applied also
to support-vector machines and kernel methods for machine learning. There is a huge
literature on the subject, a small subset of which is [480–519]. Here, we present a short
discussion with particular emphasis on deconvolution and kernel regression methods.

Both spline and Whittaker-Henderson smoothing are examples of regularization. The
performance index Eq. (8.1.3) can be generalized further to cover the case of deconvo-
lution, or inverse filtering,

J =
∑
n
|yn − fn ∗ xn|2 + λ

∑
n
|dn ∗ xn|2 = min (8.6.1)

where fn anddn are FIR filters. This attempts to solve yn = fn∗xn for xn by deconvolving
the effect of fn. We may write (8.6.1) in a compact matrix form using the convolution
matrices F,D of the two filters:

J = ‖y− Fx‖2 + λ‖Dx‖2 = (y− Fx)T(y− Fx)+λxT(DTD)x = min (8.6.2)

The solution is obtained from the gradient,

∂J
∂x

= −2FT(y− Fx)+2λDTDx = 0 , or,

x̂ = (FTF + λDTD)−1FTy (8.6.3)

The problem (8.6.2) is of course much more general than inverse filtering. The
method is known as Tikhonov regularization and as ridge regression. The linear sys-
tem y = Fx may in general be overdetermined, or underdetermined, or rank defective.
We discuss such cases in Chap. 15. To simplify the discussion, we assume here that the
linear system is either square and invertible or overdetermined but F having full rank.
For λ = 0, we obtain x̂ = (FTF)−1FTy, which is recognized as the unique pseudoin-
verse least-squares solution. In the square case, we have x̂ = F−1y. We are envisioning
a signal model of the form y = Fx+ v and the objective is to determine an estimate of
x. We have then,

x̂ = F−1y = F−1(Fx+ v)= x+ F−1v (8.6.4)
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A potential problem with this estimate is that if F is ill-conditioned with a large con-
dition number—a common occurrence in practice—the resulting inverse-filtered noise
component u = F−1v may be magnified to such an extent that it will mask the desired
term x, rendering the estimate x̂ useless. The same can happen in the overdetermined
case. The presence of the regularization term helps in this regard by providing a more
well-conditioned inverse. For the deconvolution problem, one typically selects D to be
the unit matrix, D = I, leading to the solution,

x̂ = (FTF + λI)−1FTy (8.6.5)

To see how regularization improves the condition number, let λmax, λmin be the max-
imum and minimum eigenvalues of FTF. Then, the condition numbers of FTF and
FTF + λI are λmax/λmin and (λmax + λ)/(λmin + λ). A highly ill-conditioned problem
would have λmin � λmax. It is straightforward to verify that the larger the λ, the more
the condition number of the regularized matrix is reduced:

λ� 1 ⇒ λmax + λ
λmin + λ �

λmax

λmin

For example, if λmin = 10−3 and λmax = 103, we have λmax/λmin = 106, but the
regularized version (λmax + λ)/(λmin + λ) takes approximately the values 11, 2, 1.1,
for λ = 102,103,104, respectively.

Regularization is not without problems. For noisy data the basic tradeoff is that
improving the condition number by increasing λ causes more distortion and smoothing
of the desired signal component x. As usual, choosing the proper value of λ is more of
an art than science and requires some trial-and-error experimentation. The method of
cross-validation can also be applied [368] as a guide.

Other choices forD, for example differencing matrices, are used in applications such
as edge-preserving deblurring of images. We discuss deconvolution and inverse filter
design further in Sections 12.14 and 15.11.

Next, we consider briefly the connection of regularization to machine learning and
reproducing kernel Hilbert spaces. We recall that the objective of the spline smoothing
performance index,

J =
N−1∑
n=0

[
yn − f(tn)

]2 + λ
∫ tb
ta

[
f̈ (t)

]2dt = min (8.6.6)

was to “learn” the unknown function f(t) from a finite subset of N noisy observations
yn = f(tn)+vn, n = 0,1, . . . ,N − 1. The concept can be generalized from functions
of time to multivariable functions of some independent variable, say x, such as three-
dimensional space. The observed data samples are of the form yn = f(xn)+vn, and the
objective is to learn the unknown function f(x). The performance index is replaced by,

J =
N−1∑
n=0

[
yn − f(xn)

]2 + λ‖f‖2 = min (8.6.7)

where ‖f‖ is an appropriate norm that depends on the approach one takes to the mini-
mization problem. One possible and very successful approach is to use a neural network
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to model the unknown function f(x). In this case the regularization norm depends
on the parameters of the neural network and its assumed structure (typically a single-
hidden layer is sufficient.)

The reproducing kernel approach that we discuss here is to assume that f(x) can be
represented as a linear combination of a finite or infinite set of nonlinear basis functions
φi(x), i = 1,2, . . . ,M, where for now we will assume that M is finite,

f(x)=
M∑
i=1

φi(x)ci =φφφT(x)c , φφφ(x)=

⎡
⎢⎢⎢⎢⎢⎣

φ1(x)
φ2(x)

...
φM(x)

⎤
⎥⎥⎥⎥⎥⎦ , c =

⎡
⎢⎢⎢⎢⎢⎣

c1

c2

...
cM

⎤
⎥⎥⎥⎥⎥⎦ (8.6.8)

This is analogous to the approach of Chap. 3 where f(t) was modeled as a polyno-
mial in t and expanded in the monomial basis functions si(t)= ti. Here, we define the
regularization norm in terms of the coefficients ci as follows:

‖f‖2 =
M∑
i=1

c2
i
λi
= cTΛ−1c (8.6.9)

where λi is a set of some given positive coefficients, and Λ = diag
(
[λ1, λ2, . . . , λM]

)
.

The function values at the N observation points are f(xn)= φφφT(xn)c , and can be ar-
ranged into an N-dimensional column vector:

f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(x0)
...
f(xn)

...
f(xN−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Φc , Φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

φφφT(x0)
...
φφφT(xn)

...
φφφT(xN−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.6.10)

where Φ has dimension N×M. Thus, the performance index can be written compactly,

J = (y−Φc)T(y−Φc)+λcTΛ−1c = min (8.6.11)

The solution for the optimum coefficients c is obtained by setting the gradient to zero:

∂J
∂c

= −2ΦT(y−Φc)+2λΛ−1c = 0 ⇒ (λΛ−1 +ΦTΦ)c = ΦTy (8.6.12)

c = (λΛ−1 +ΦTΦ)−1ΦTy (8.6.13)

Using the matrix-inversion lemma, we have:

(λΛ−1 +ΦTΦ)−1= 1

λ
[
Λ−ΛΦT(λI +ΦΛΦT)−1ΦΛ

]
(8.6.14)

from which it follows that:

(λΛ−1 +ΦTΦ)−1ΦT = ΛΦT(λI +ΦΛΦT)−1 (8.6.15)
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where I is the N×N identity matrix. Thus, the optimal coefficients are given by

c = ΛΦT(λI +ΦΛΦT)−1y (8.6.16)

The observation vector f = Φc and estimated function value f(x)=φφφT(x)c are then,

f = ΦΛΦT(λI +ΦΛΦT)−1y

f(x)=φφφT(x)ΛΦT(λI +ΦΛΦT)−1y
(8.6.17)

The appearance of the bilinear products of the basis functions suggests that we
define the kernel function:

K(x,x′)=φφφT(x)Λφφφ(x′)=
M∑
i=1

λiφi(x)φi(x′) (8.6.18)

Let us also define the N×N symmetric positive-definite kernel matrix K and N-
dimensional coefficient vector a = [a0, a1, . . . , aN−1]T by

K = ΦΛΦT
a = (λI +K)−1y

(8.6.19)

so that c = ΛΦTa and f = Φc = ΦΛΦTa = Ka and f(x)= φφφT(x)ΛΦTa. The matrix
elements of K can be expressed in terms of the kernel function:

Knm =
(
ΦΛΦT

)
nm =φφφT(xn)Λφφφ(xm)= K(xn,xm) (8.6.20)

for n,m = 0,1, . . . ,N − 1. Similarly, we have for f(x),

f(x) =φφφT(x)ΛΦTa =φφφT(x)Λ[φφφ(x0), . . . ,φφφ(xn), . . . ,φφφ(xN−1)
]
a

= [
K(x,x1), . . . , K(x,xn), . . . , K(x,xN−1

]
a =

N−1∑
n=0

K(x,xn)an
(8.6.21)

Thus, we may express (8.6.17) directly in terms of the kernel function and the coef-
ficient vector a ,

f = Ka , f(x)=
N−1∑
n=0

K(x,xn)an (8.6.22)

Moreover, since c = ΛΦTa , the norm ‖f‖2 can also be expressed in terms of K and
the vector a as follows, ‖f‖2 = cTΛ−1c = (aTΦΛ)Λ−1(ΛΦTa)= aT(ΦΛΦT)a , or,

‖f‖2 = aTKa (8.6.23)

Thus, the knowledge of the kernel function K(x,x′)—rather than the knowledge of
the possibly infinite set of basis functions φi(x)—is sufficient to formulate and solve
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the regularization problem. Indeed, an equivalent optimization problem to (8.6.11) is
the following, with the performance index to be minimized with respect to a:

J = (y−Ka)T(y−Ka)+λaTKa = min (8.6.24)

The vanishing of gradient with respect to a leads to the same solution as (8.6.19),

∂J
∂a

= −2KT(y−Ka)+2λKa = 0 ⇒ (λK +KTK)a = KTy ⇒ a = (λI +K)−1y

where we used the symmetry property KT = K and assumed that K was invertible.
The linear vector space of functions of the form f(x)=φφφT(x)c , spanned by the set

of basis functions {φi(x), i = 1,2, . . . ,M}, can be turned into an inner-product space
(a Hilbert space if M = ∞) by endowing it with the inner product induced by the norm
(8.6.9). That is, for any two functions f1(x)= φφφT(x)c1 and f2(x)= φφφT(x)c2, we define
the inner product:

〈f1, f2〉 = cT1Λ−1c2 (8.6.25)

The resulting vector space, sayH, is referred to as a reproducing kernel Hilbert space.
By writing the kernel function in the form, K(x,x′)=φφφT(x)Λφφφ(x′)≡φφφT(x)c(x′), with
c(x′)= Λφφφ(x′), we see that, as a function of x for each fixed x′, it lies in the space H,
and satisfies the two reproducing-kernel properties:

f(x′)= 〈
f(·),K(·,x′)〉 , K(x,x′)= 〈

K(·,x),K(·,x′)〉 (8.6.26)

These follow from the definition (8.6.25). Indeed, given f(x)=φφφT(x)c , we have,〈
f(·),K(·,x′)〉= cTΛ−1c(x′)= cTΛ−1Λφφφ(x′)= cTφφφ(x′)= f(x′)

〈
K(·,x),K(·,x′)〉 = c(x)TΛ−1c(x′)=φφφT(x)ΛΛ−1Λφφφ(x′)=φφφT(x)Λφφφ(x′)= K(x,x′)

One can re-normalize the basis functions by defining φ̄i(x)= λ−1/2
i φi(x), or, vec-

torially φ̄φφ(x)= Λ−1/2φφφ(x), which imply the renormalized basis matrix Φ̄ = ΦΛ1/2 and
coefficient vector c̄ = Λ−1/2c . We obtain then the alternative expressions:

c̄ = Φ̄Ta

f = Φc = Φ̄c̄

K = ΦΛΦT = Φ̄Φ̄T
‖f‖2 = cTΛ−1c = c̄Tc̄

(8.6.27)

and kernel function,

K(x,x′)=φφφT(x)Λφφφ(x′)= φ̄φφT(x)φ̄φφ(x′) (8.6.28)

Eq. (8.6.28) expresses the kernel function as the dot product of two vectors and is
known as the kernel trick. Given a kernel functionK(x,x′) that satisfies certain positive-
definiteness conditions, the existence of basis functions satisfying Eq. (8.6.28) is guar-
anteed by Mercer’s theorem [512]. The remarkable property of the kernel regularization
approach is Eq. (8.6.22), which is known as the representer theorem [512],

f(x)=
N−1∑
n=0

K(x,xn)an (8.6.29)
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It states that even though the original least-squares problem (8.6.11) was formulated
in a possibly infinite-dimensional Hilbert space, the resulting solution is represented by
a finite number of terms in Eq. (8.6.29). This property is more general than the above
case and it applies to a performance index of the form:

J = L(y−Φc)+λcTΛ−1c = min (8.6.30)

where L(z) is an arbitrary (convex, increasing, and differentiable) scalar function that
replaces the quadratic norm L(z)= zTz. Indeed, the vanishing of the gradient gives,

∂J
∂c

= −ΦT ∂L
∂y

+ 2λΛ−1c = 0 ⇒ c = ΛΦT 1

2λ
∂L
∂y

which implies for f = Φc and f(x)=φφφT(x)c ,

f = Ka , f(x)=
N−1∑
n=0

K(x,xn)an , with a = 1

2λ
∂L(y−Ka)

∂y
(8.6.31)

where the last equation is a nonlinear equation for the N-vector a. Of course, in the
quadratic-norm case, L(z)= zTz, we obtain the equivalent of (8.6.19),

a = 1

λ
(y−Ka)

Kernels and the above representation property are used widely in machine learning
applications, such as support vector machines [499]. Some typical kernels that satisfy
the representation property (8.6.28) are polynomial and gaussian of the type:

K(x,x′) = (c+ x · x′)p

K(x,x′) = exp
(
−‖x− x′‖2

2σ2

) (8.6.32)

By mapping nonlinear problems into linear ones, kernel methods offer a new paradigm
for solving many of the classical problems of estimation and classification, including the
“kernelization” of methods such as principal component analysis [513], canonical cor-
relation analysis, array processing [516], and adaptive filtering [519]. Some accessible
overviews of kernel methods with emphasis on regularization are [504,510,515]. For
more details, the reader may consult the references [480–519].

8.7 Sparse Whittaker-Henderson Methods

Several variations of the Whittaker-Henderson method have been proposed in the lit-
erature that use different norms for the two terms of Eq. (8.1.1), such as the following
criterion based on the �q and the �p norms, and using unity weights wn for simplicity,

Jqp =
N−1∑
n=0

∣∣yn − xn∣∣q + λ
N−1∑
n=s

∣∣∇sxn∣∣p = min (8.7.1)
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Such criteria are capable of handling outliers in the data more effectively. Eq. (8.7.1)
can be written vectorially with the help of the s-differencing matrix D of Eq. (8.1.8),

Jqp =
∥∥y− x

∥∥q
q + λ

∥∥Dx
∥∥p
p = min (8.7.2)

where ‖x‖p denotes the �p norm of the vector x = [x0, x1, · · · , xN−1]T,

‖x‖p =
⎡
⎣N−1∑
n=0

|xn|p
⎤
⎦

1
p

⇒ ∥∥x
∥∥p
p =

N−1∑
n=0

|xn|p

For p = ∞, we have instead,
‖x‖∞ = max

0≤n≤N−1

∣∣xn∣∣
For p = 0, we define ‖x‖0 as the cardinality of the vector x, that is, the number of
nonzero elements of x. We note that ‖x‖p is a proper norm only for p ≥ 1, however, the
cases 0 ≤ p < 1 have also been considered.

The case J11 was studied in [422,426] and formulated as a linear programming prob-
lem, the case Jpp, including the �∞ norm case, p = ∞, was studied in [424], and the
more general case, Jqp, in [425]. More recently, the case J21, called �1 trend filtering,
has been considered in [468] and has received a lot of attention [469–478].

Generally, the cases J2p are examples of so-called �p-regularized least-squares prob-
lems, which have been studied very extensively in inverse problems, with renewed inter-
est in sparse modeling, statistical learning, compressive sensing applications—a small
and very incomplete set of references on regularization and sparse regularization meth-
ods is [479–590]. We discuss such regularization issues in more detail in Chap. 15. Next,
we concentrate on the original J22 criterion, and the J21 and J20 criteria,

J22 =
∥∥y− x

∥∥2
2 + λ

∥∥Dx
∥∥2

2 = min

J21 =
∥∥y− x

∥∥2
2 + λ

∥∥Dx
∥∥

1 = min

J20 =
∥∥y− x

∥∥2
2 + λ

∥∥Dx
∥∥

0 = min

(8.7.3)

The J21 and J20 criteria tend to promote the sparsity of the regularizing term Dx,
that is, Dx will be a sparse vector consisting mostly of zeros with a few nonzero entries.
Since Dx represents the s-differenced signal, ∇sxn, its piecewise vanishing implies that
the trend xn will be a piecewise polynomial of order s − 1, with the polynomial pieces
joining continuously at few break (or, kink) points where ∇sxn is nonzero.

This is similar to the spline smoothing case, except here the locations of the break
points are determined dynamically by the solution of the optimization problem, whereas
in the spline case they are at prescribed locations.

For differencing order s = 2, used in Hodrick-Prescott and �1-trend-filtering cases,
the trend signal xn will be a piecewise linear function of n, with a sparse number of
slope changes. The case s = 3, used originally by Whittaker and Henderson, would
correspond to piecewise parabolic segments in n. The case s = 1, corresponding to
the original Bohlmann choice, results in a piecewise constant trend signal xn. This case
is known also as total variation minimization method and has been applied widely in
image processing.
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The J21 problem can be implemented easily in MATLAB with the CVX package.†

The J20 problem, which produces the sparsest solution, can be solved by an itera-
tive reweighted �1-regularized method [468], or alternatively, by an iterative reweighted
least-squares method, and can also be used to solve the J21 and the J2p problems.

There are several variants of the iterative reweighted least-squares (IRLS) method,
[520–528,532,553,557,560,565,566], but the basic idea is to replace the �p norm with a
weighted �2 norm, which can be solved iteratively. Given any real number 0 ≤ p ≤ 2,
let q = 2− p, and note that for any real number x �= 0, we can write,

|x|p = |x|2
|x|q ≈

|x|2
|x|q + ε

where ε is a sufficiently small positive number needed to also allow the case x = 0.
Similarly, we can write for the �p-norm of a vector x ∈ RN,

‖x‖pp =
N−1∑
i=0

|xi|p ≈
N−1∑
i=0

|xi|2
|xi|q + ε = xTW(x)x

W(x) = diag
[

1

|x|q + ε
]
= diag

[
1

|x0|q + ε ,
1

|x1|q + ε , . . . ,
1

|xN−1|q + ε
] (8.7.4)

Then, the �p-regularized problem J2p can be written in the form,

J = ∥∥y− x
∥∥2

2 + λ
∥∥Dx

∥∥p
p =

∥∥y− x
∥∥2

2 + λxTDTW(Dx)Dx = min (8.7.5)

which leads to to the following iterative algorithm,

for k = 1,2, . . . , K, do:

Wk−1 =W
(
Dx(k−1))

x(k) = arg min
x

∥∥y− x
∥∥2

2 + λxTDTWk−1Dx

(IRLS) (8.7.6)

with the algorithm initialized to the ordinary least-squares solution of criterion J22,

x(0) = (
I + λDTD)−1

y

The solution of the optimization problem in (8.7.6) at the kth step is:

x(k) = (
I + λDTWk−1D

)−1
y

Thus, the choices p = 0 and p = 1 should resemble the solutions of the �0 and �1

regularized problems.

Example 8.7.1: Global Warming Trends. This is a continuation of Example 3.9.2 in which
we compared several smoothing methods. Fig. 8.7.1 compares the Whittaker-Henderson
trends for the �2, �1, and �0 cases, with s = 2, as well as the corresponding regularizing
differenced signals, ∇sxn.

†http://cvxr.com/cvx/
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The �1 case was computed with the CVX package. The corresponding IRLS implementation
is not shown since it produces virtually indistinguishable graphs from CVX.

The �0 case was implemented with the IRLS method and produced slightly sparser differ-
enced signals as can be observed in the graphs. The MATLAB code used to generate these
graphs is summarized below.
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Fig. 8.7.1 Comparison of �2, �1, and �0 trends, and differenced signals for s = 2.
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Fig. 8.7.2 Comparison of �2, �1, and �0 trends, and differenced signals for s = 3.

Y = loadfile(’tavenh2v.dat’); % load temperature data file

n = Y(:,1); y = Y(:,14); N = length(y); % extract dates and data

s = 2; Ds = diff(speye(N),s); % (N-s)xN differencing matrix
ns = n(s:end-1);
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la = 10000; x = whsm(y,la,s); % Whittaker-Henderson with L2 norm

figure; plot(n,y,’r:’, n,x,’b-’); % plot trend
figure; plot(ns, Ds*x,’b-’); % plot differenced trend

la = 10; % Whittaker-Henderson with L1 norm
cvx_quiet(true); % CVX package, http:/cvxr.com/cvx/
cvx_begin

variable x(N)
minimize( sum_square(y-x) + la * norm(Ds*x,1) )

cvx_end

figure; plot(n,y,’r:’, n,x,’b-’); % plot trend
figure; plot(ns, Ds*x,’b-’); % plot differenced trend

p = 0; q = 2 - p; epsilon = 1e-8; % Whittaker-Henderson with L0 norm
I = speye(N); K = 10; % using K=10 IRLS iterations
la = 0.05;

x = (I + la*Ds’*Ds) \ y; % initialize iteration

for k=1:K, % IRLS iteration
W = diag(1./(abs(Ds*x).^q + epsilon));
xk = (I + la*Ds’*W*Ds) \ y;
x = xk;

end

figure; plot(n,y,’r:’, n,x,’b-’); % plot trend
figure; plot(ns, Ds*x,’b-’); % plot differenced trend

Fig. 8.7.2 compare the �2, �1, �0 cases for s = 3, which fits piecewise quadratic polynomials
to the data. The �0 case is again the sparsest. (Color graphs online). 	


8.8 Computer Project – US GDP Macroeconomic Data

In this project you will study the Whittaker-Henderson smoothing method formulated
with the L2 and L1 norms, and apply it to the US GDP macroeconomic data. For a
length-N signal, yn, 0 ≤ n ≤ N−1, the optimization criteria for determining a length-N
smoothed signal xn are,

(L2): J =
N−1∑
n=0

∣∣yn − xn∣∣2 + λ
N−1∑
n=s

∣∣∇sxn∣∣2 = ∥∥y− x
∥∥2

2 + λ
∥∥Dsx∥∥2

2 = min

(L1): J =
N−1∑
n=0

∣∣yn − xn∣∣2 + λ
N−1∑
n=s

∣∣∇sxn∣∣ = ∥∥y− x
∥∥2

2 + λ
∥∥Dsx∥∥1 = min

(8.8.1)

where Ds is the (N − s)×N convolution matrix corresponding the s-difference op-
erator ∇s. It can be constructed in MATLAB by,

Ds = diff(eye(N),s); % or, in sparse form, Ds = diff(speye(N),s);

The solution of problem (L2) is straightforward:

x = (I + λDTs Ds)−1y (8.8.2)
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The solution of problem (L1) can be obtained with the CVX package as follows:

cvx_begin
variable x(N)
minimize( sum_square(x-y) + lambda * norm(Ds*x,1) );

cvx_end

It can also be solved with the iterative reweighted least-squares (IRLS) algorithm, as
discussed in Sec. 8.7.

The second column of the OSP data file, USGDP_Inv.dat, represents the quarterly
US GDP for private investment in billions of dollars. Read this column with the help of
the function loadfile and then take its log:

Y = loadfile(’USGDP_Inv.dat’);
y = log10(Y(:,2) * 1e9);

These data represent a prototypical example for the application of Whittaker-Henderson
filters, referred to in this context as Hodrick-Prescott filters.

a. Choose difference order s = 2 and regularization parameter λ = 1600. Solve the
Whittaker-Henderson problem (L2) and plot the solution x together with the actual
data y.

b. Calculate the SVD enhanced version of y, by the following steps: (i) remove and save
the mean from y, (ii) form its forward/backward data matrix using an embedding
order ofM = 9, (iii) subject it to K = 8 SVD enhancement iterations using rank r = 1,
(iv) extract the enhanced signal from the enhanced data matrix, and (v) add the mean
that was removed. Plot the resulting enhanced signal together with y. The MATLAB
steps are summarized in Sec. 15.17 (use, type=2, for the F/B case).

c. For the value λ1 = λ/480 = 1600/480 and difference order s = 2, solve problem
(L1), and plot the solution x together with the actual data y. Moreover, on a separate
graph, plot the differenced signal Dsx using a stem plot and observe its sparseness,
which means that x is piece-wise linear. The particular choice for λ1 was made in
order for the (L2) and (L1) problems to have comparable RMS errors.

d. Repeat parts (a) and (c) for s = 1 and regularization parameter λ = 60.65 for the (L2)
problem (justified in Sec. 8.3), and λ1 = 1 for the (L1) problem, chosen to achieve
comparable RMS errors. Notice how the (L1) problem results in a piece-wise constant
fit. But Dsx is not as sparse because s = 1 is not really a good choice.

The s = 1 case is an example of the so-called total-variation minimization method,
used widely in image processing.

e. Repeat parts (a) and (c) for s = 3 and regularization parameter λ = 41640.16 for the
(L2) problem (justified in Sec. 8.3), and λ1 = λ/1000 for the (L1) problem, chosen
to achieve comparable RMS errors. Here, the (L1) problem will result in piece-wise
quadratic polynomial fits. Some example graphs are shown below.

8.8. Computer Project – US GDP Macroeconomic Data 365

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

WH smoothing with L
2
,  s = 2

 

 
 trend
 data

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

SVD ehancement,  M = 9,  r = 1

 

 
 trend
 data

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

WH smoothing with L
1
,  s = 2

 

 
 trend
 data

1950 1960 1970 1980 1990 2000 2010
−8

−6

−4

−2

0

2

4

6
x 10

−3 sparse s−differenced signal,  s = 2

years in quarters

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

WH smoothing with L
2
,  s = 1

 

 
 trend
 data

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

WH smoothing with L
2
,  s = 3

 

 
 trend
 data



366 8. Whittaker-Henderson Smoothing

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

WH smoothing with L
1
,  s = 1

 

 
 trend
 data

1950 1960 1970 1980 1990 2000 2010
−0.01

0

0.01

0.02

0.03

0.04

0.05

years in quarters

sparse s−differenced signal,  s = 1

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

WH smoothing with L
1
,  s = 3

 

 
 trend
 data

1950 1960 1970 1980 1990 2000 2010
−4

−3

−2

−1

0

1

2
x 10

−4

years in quarters

sparse s−differenced signal,  s = 3

8.9 Problems

8.1 For the case s = 1, show that the Whittaker-Henderson filter has poles z1, 1/z1, where

z1 = e−α , α = 2 asinh
(

1

2
√
λ

)

For the case s = 2, show that the filter has poles {z1, z∗1 , 1/z1, 1/z∗1 }, where

z1 =
(√

1− ja2 + jaejπ/4
)2

= 1

2
D2

(
1− a

D

)2 (
1+ j a

D

)2

, D =
√

1+
√

1+ a4 , a = 1

2λ1/4

Show that in both cases |z1| < 1.

8.2 Determine explicit expressions in terms of λ for the quantities σ2 and z1 that appear in the
factorization of the denominator of the Hodrick-Prescott filter:

1+ λ(1− z−1)2(1− z)2= σ2(1− z1z−1)(1− z∗1 z−1)(1− z1z)(1− z∗1 z)

What are the numerical values ofσ2, z1 for λ = 1600? What are the values of the coefficients
of the second-order filter

(
1− 2 Re(z1)z−1 + |z1|2z−2

)
?
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8.3 Consider the performance index (8.6.1) for a regularized deconvolution problem. Making the
enough assumptions, show that the performance index can be written in terms of frequency
responses as follows,

J =∑
n
|yn − fn ∗ xn|2 + λ

∑
n
|dn ∗ xn|2

=
∫ π
−π

[∣∣Y(ω)−F(ω)X(ω)∣∣2 + λ∣∣D(ω)X(ω)∣∣2
] dω

2π
= min

Determine the optimumX(ω) that minimizes this index. Then, show that the corresponding
optimum deconvolution filter H(z)= X(z)/Y(z) is given by:

H(z)= F(z−1)
F(z)F(z−1)+λD(z)D(z−1)

What would be the stochastic state-space model for xn, yn that has thisH(z) as its optimum
double-sided (unrealizable) Wiener filter for estimating xn from yn?


