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Fig. 5.6.1 Loess smoothing with d = 2, α = 0.4, and different iterations.

alpha=0.4; d=2; % bandwidth parameter and polynomial order

Nit=0; x = loess(t,y,t,alpha,d,Nit); % loess fit at t
figure; plot(t,x0,’--’, t,y,’.’, t,x,’-’); % left graph

Nit=2; x = loess(t,y,t,alpha,d,Nit); % loess fit at t
figure; plot(t,x0,’--’, t,y,’.’, t,x,’-’); % right graph

The loess fit was performed at all t. We observe how successive iterations gradually di-
minish the distorting influence of the outliers. ��

5.7 Problems

5.1 Prove the matrix inversion lemma identity (5.2.8). Using this identity, show that

Hii = H−
ii

1+H−
ii
, where H−

ii = w0uT0 F
−
i u0 , F−i = (STi WiSi)−

then, argue that 0 ≤ Hii ≤ 1.

6
Exponential Smoothing

6.1 Mean Tracking

l
The exponential smoother, also known as an exponentially-weighted moving average

(EWMA) or more simply an exponential moving average (EMA) filter is a simple, effective,
recursive smoothing filter that can be applied to real-time data. By contrast, the local
polynomial modeling approach is typically applied off-line to a block a signal samples
that have already been collected.

The exponential smoother is used routinely to track stock market data and in fore-
casting applications such as inventory control where, despite its simplicity, it is highly
competitive with other more sophisticated forecasting methods [232–279].

We have already encountered it in Sec. 2.3 and compared it to the plain FIR averager.
Here, we view it as a special case of a weighted local polynomial smoothing problem
using a causal window and exponential weights, and discuss some of its generalizations.
Both the exponential smoother and the FIR averager are applied to data that are assumed
to have the typical form:

yn = an + vn (6.1.1)

where an is a low-frequency trend component, representing an average or estimate of
the local level of the signal, and vn a random, zero-mean, broadband component, such
as white noise. If an is a deterministic signal, then by taking expectations of both sides
we see that an represents the mean value of yn, that is, an = E[yn]. If yn is stationary,
then an is a constant, independent of n.

The output of either the FIR or the exponential smoothing filter tracks the signal an.
To see how such filters arise in the context of estimating the mean level of a signal, con-
sider first the stationary case. The mean m = E[yn] minimizes the following variance
performance index (e.g., see Example 1.3.5):

J = E[(yn − a)2] = min ⇒ aopt =m = E[yn] (6.1.2)

with minimized value Jmin = σ2
y . This result is obtained by setting the gradient with

respect to a to zero:
∂J
∂a

= −2E[yn − a]= 0 (6.1.3)
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In general, given a theoretical performance index J, one must replace it in practice
by an experimental one, say Ĵ, expressible in terms of the actual available data. The
minimization of Ĵ provides then estimates of the parameters or signals to be estimated.

Depending on the index Ĵ, the estimates may be calculated in a block processing
manner using an entire block of data, or, on a sample-by-sample basis with the estimate
being updated in real time in response to each new data sample. All adaptive filtering
algorithms follow the latter approach.

We illustrate these ideas with the help of the simple performance index (6.1.2). We
will apply this approach extensively in Chap. 16. Four possible practical definitions for

Ĵ that imitate (6.1.2) are:

Ĵ =
L−1∑
n=0

(yn − â)2= min (6.1.4a)

Ĵ =
n∑
k=0

(yk − â)2= min (6.1.4b)

Ĵ =
n∑

k=n−N+1

(yk − â)2= min (6.1.4c)

Ĵ =
n∑
k=0

λn−k(yk − â)2= min (6.1.4d)

The first assumes a length-L block of data [y0, y1, . . . , yL−1]. The last three are
suitable for real-time implementations, where n denotes the current time. The second
and fourth use the first n+1 data [y0, y1, . . . , yn], while the third uses a length-N sliding
window [yn−N+1, . . . , yn−1, yn]. The third choice leads to the FIR averager, also known
as the simple moving average (SMA), and the fourth, to the exponential smoother, or,
exponential moving average (EMA), where we require that the exponential “forgetting
factor” λ be in the range 0 < λ < 1. These time ranges are depicted below.

In order for the Ĵs to be unbiased estimates of J, the above expressions should
have been divided by the sum of their respective weights, namely, the quantities L,
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(n+1),N, and (1+λ+· · ·+λn), respectively. However, such factors do not affect the
minimization solutions, which are easily found to be:

â = y0 + y1 + · · · + yL−1

L
(6.1.5a)

ân = y0 + y1 + · · · + yn
n+ 1

(6.1.5b)

ân = yn + yn−1 + · · · + yn−N+1

N
(6.1.5c)

ân = yn + λyn−1 + λ2yn−2 + · · ·λny0

1+ λ+ λ2 + · · · + λn (6.1.5d)

We have tacked on a subscript n to the last three to emphasize their dependence
of their performance index on the current time instant n. Eqs. (6.1.4c) and (6.1.5c)
tentatively assume that n ≥ N − 1; for 0 ≤ n < N − 1, one should use the running
average (6.1.4b) and (6.1.5b). Initialization issues are discussed further in Sections 6.6
and 6.19.

All four estimates are unbiased estimators of the true meanm. Their quality as esti-
mators can be judged by their variances, which are (assuming that yn −m are mutually
independent):

σ2
â = E

[
(â−m)2] = σ2

y

L
(6.1.6a)

σ2
ân = E

[
(ân −m)2] = σ2

y

n+ 1
(6.1.6b)

σ2
ân = E

[
(ân −m)2] = σ2

y

N
(6.1.6c)

σ2
ân = E

[
(ân −m)2] = σ2

y
1− λ
1+ λ ·

1+ λn+1

1− λn+1
(6.1.6d)

The first two, corresponding to ordinary sample averaging, are asymptotically con-
sistent estimators having variances that tend to zero as L → ∞ or n → ∞. The last two
are not consistent. However, their variances can be made as small as desired by proper
choice of the parameters N or λ.

The exponential smoothing filter may also be derived from a different point of view.
The estimates (6.1.5) are the exact least-squares solutions of the indices (6.1.4). An
alternative to using the exact solutions is to derive an LMS (least-mean-square) type of
adaptive algorithm which minimizes the performance index iteratively using a steepest-
descent algorithm that replaces the theoretical gradient (6.1.3) by an “instantaneous”
one in which the expectation instruction is ignored:

∂J
∂a

= −2E[yn − a] −→ ∂̂J
∂a

= −2
[
yn − ân−1

]
(6.1.7)

The LMS algorithm then updates the previous estimate by adding a correction in the
direction of the negative gradient using a small positive adaptation parameter μ:

Δa = −μ∂̂J
∂a

, ân = ân−1 +Δa (6.1.8)
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The resulting difference equation is identical to that of the steady-state exponential
smoother (see Eq. (6.1.11) below),

ân = ân−1 + 2μ(yn − ân−1)

In adaptive filtering applications, the use of the exponentially discounted type of
performance index (6.1.4d) leads to the so-called recursive least-squares (RLS) adaptive
filters, which are in general different from the LMS adaptive filters. They happened to
coincide in this particular example because of the simplicity of the problem.

The sample mean estimators (6.1.5a) and (6.1.5b) are geared to stationary data,
whereas (6.1.5c) and (6.1.5d) can track nonstationary changes in the statistics of yn.
If yn is nonstationary, then its mean an = E[yn] would be varying with n and a good
estimate should be able to track it well and efficiently. To see the problems that arise
in using the sample mean estimators in the nonstationary case, let us cast Eqs. (6.1.5b)
and (6.1.5d) in recursive form. Both can be written as follows:

ân = (1−αn)ân−1 +αnyn = ân−1 +αn(yn − ân−1) (6.1.9)

where the gain parameter αn is given by

αn = 1

n+ 1
, αn = 1

1+ λ+ · · · + λn =
1− λ
1− λn+1

(6.1.10)

for (6.1.5b) and (6.1.5d), respectively. The last side of Eq. (6.1.9) is written in a so-
called “predictor/corrector” Kalman filter form, where the first term ân−1 is a tentative
prediction of ân and the second term is the correction obtained by multiplying the
“prediction error” (yn − ân−1) by a positive gain factor αn. This term always corrects
in the right direction, that is, if ân−1 overestimates/underestimates yn then the error
tends to be negative/positive reducing/increasing the value of ân−1.

There is a dramatic difference between the two estimators. For the sample mean,
the gainαn = 1/(n+1) tends to zero rapidly with increasing n. For stationary data, the
estimate ân will converge quickly to the true mean. Once n is fairly large, the correction
term becomes essentially unimportant because the gain is so small. If after converging
to the true mean the statistics of yn were to suddenly change with a new value of the
mean, the sample-mean estimator ân would have a very hard time responding to such
a change and converging to the new value because the new changes are communicated
only through the already very small correction term.

On the other hand, for the exponential smoother case (6.1.5d), the gain tends to a
constant for large n, that is, αn → α = 1 − λ. Therefore, the correction term remains
finite and can communicate the changes in the statistics. The price one pays for that is
that the estimator is not consistent. Asymptotically, the estimator (6.1.5d) becomes the
ordinary exponential smoothing filter described by the difference equation,

ân = λân−1 +αyn = ân−1 +α(yn − ân−1) (6.1.11)

Its transfer function and asymptotic variance are:

H(z)= α
1− λz−1

, σ2
ân = E

[
(ân −m)2] = σ2

y
1− λ
1+ λ (6.1.12)
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The quantity σ2
ân/σ

2
y is the NRR of this filter. The differences in the behavior of

the sample-mean and exponential smoother can be understood by inspecting the corre-
sponding performance indices, which may be written in an expanded form:

Ĵ = (yn − â)2+(yn−1 − â)2+(yn−2 − â)2+· · · + (y0 − â)2

Ĵ = (yn − â)2+λ(yn−1 − â)2+λ2(yn−2 − â)2+· · · + λn(y0 − â)2
(6.1.13)

The first index weighs all terms equally, as it should for stationary data. The second
index emphasizes the terms arising from the most recent observation yn and exponen-
tially forgets, or discounts, the earlier observations and thus can respond more quickly
to new changes. Even though the second index appears to have an ever increasing num-
ber of terms, in reality, the effective number of terms that are significant is finite and
can be estimated by the formula:

n̄ =

∞∑
n=0

nλn

∞∑
n=0

λn
= λ

1− λ (6.1.14)

This expression is only a guideline and other possibilities exist. For example, one
can define n̄ to be the effective time constant of the filter:

λn̄ = ε ⇒ n̄ = ln ε
lnλ

	 ln(ε−1)
1− λ , for λ 
 1 (6.1.15)

where ε is a small user-specified parameter such as ε = 0.01. The sliding window esti-
mator (6.1.5c) is recognized as a length-N FIR averaging filter of the type we considered
in Sec. 2.4. It also can track a nonstationary signal at the expense of not being a consis-
tent estimator. Requiring that it achieve the same variance as the exponential smoother
gives the conditions:

1

N
σ2
y =

1− λ
1+ λσ

2
y ⇒ λ = N − 1

N + 1
⇒ α = 1− λ = 2

N + 1
(6.1.16)

Such conditions are routinely used to set the parameters of FIR and exponential
smoothing filters in inventory control applications and in tracking stock market data. A
similar weighted average as in Eq. (6.1.14) can be defined for any filter by:

n̄ =

∑
n
nhn∑

n
hn

(effective filter lag) (6.1.17)

where hn is the filter’s impulse response. Eq. (6.1.17) may also be expressed in terms
of the filter’s transfer function H(z)= ∑

n hnz−n and its derivative H′(z)= dH(z)/dz
evaluated at DC, that is, at z = 1:

n̄ = − H′(z)
H(z)

∣∣∣∣
z=1

(effective filter lag) (6.1.18)
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Alternatively, n̄ is recognized as the filter’s group delay at DC, that is, given the
frequency response H(ω)=∑

n hne−jωn = |H(ω)|ej argH(ω), we have (Problem 6.1):

n̄ = − d
dω

argH(ω)
∣∣∣∣
ω=0

(group delay at DC) (6.1.19)

The exponential smoother is a special case of (6.1.17) with hn = αλnu(n), where
u(n) is the unit-step function. We may apply this definition also to the FIR averager
filter that has hn = 1/N, for n = 0,1, . . . ,N − 1,

n̄ = 1

N

N−1∑
n=0

n = N − 1

2

The FIR averager can be mapped into an “equivalent” exponential smoother by equat-
ing the n̄ lags of the two filters, that is,

n̄ = N − 1

2
= λ

1− λ (6.1.20)

This condition is exactly equivalent to condition (6.1.16) arising from matching the
NRRs of the two filters. The two equations,

E
[
(ân −m)2] = 1− λ

1+ λσ
2
y =

1

N
σ2
y , n̄ = λ

1− λ =
N − 1

2
(6.1.21)

capture the main tradeoff between variance and speed in using an exponential smoother
or an equivalent FIR averager, that is, the closer λ is to unity or the larger the N, the
smaller the variance and the better the estimate, but the longer the transients and the
slower the speed of response.

We summarize the difference equations for the exact exponential smoother (6.1.5d)
and the steady-state one (6.1.11),

ân = λ− λn+1

1− λn+1
ân−1 + α

1− λn+1
yn = ân−1 + α

1− λn+1
(yn − ân−1)

ân = λân−1 +αyn = ân−1 +α(yn − ân−1)
(6.1.22)

Clearly, the second is obtained in the large-n limit of the first, but in practice the
steady one is often used from the start at n = 0 because of its simplicity.

To start the recursions at n = 0, one needs to specify the initial value â−1. For
the exact smoother, â−1 can have an arbitrary value because its coefficient vanishes at
n = 0. This gives for the first smoothed value â0 = 0 · â−1 + 1 · y0 = y0. For the steady
smoother it would make sense to also require that â0 = y0, which would imply that
â−1 = y0 because then

â0 = λâ−1 +αy0 = λy0 +αy0 = y0

There are other reasonable ways of choosing â−1, for example one could take it to
be the average of a few initial values of yn. The convolutional solution of the steady
smoother with arbitrary nonzero initial conditions is obtained by convolving the filter’s
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impulse responseαλnu(n)with the causal input yn plus adding a transient term arising
from the initial value:

ân = α
n∑
k=0

λn−kyk + λn+1â−1 (6.1.23)

The influence of the initial value disappears exponentially.

Example 6.1.1: Fig. 6.1.1 illustrates the ability of the sample mean and the exponential smoother
to track a sudden level change.
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Fig. 6.1.1 Mean tracking with sample mean, exponential smoother, and FIR averager.

The first 1000 samples of the signal yn depicted on the upper-left graph are independent
gaussian samples of mean and variance m1 = 1, σ1 = 1. The last 1000 samples are
gaussian samples with m2 = 1.5 and σ2 = 0.5.

The upper-right graph shows the sample mean computed recursively using (6.1.9) with
αn = 1/(n + 1) and initialized at â−1 = 0 (although the initial value does not matter
since α0 = 1). We observe that the sample mean converges very fast to the first value
of m1 = 1, with its fluctuations becoming smaller and smaller because of its decreasing
variance (6.1.6b). But it is extremely slow responding to the sudden change in the mean.

The bottom two graphs show the steady-state exponential smoother initialized at â−1 = 0
with the two values of the forgetting factor λ = 0.98 and λ = 0.995. For the smaller λ
the convergence is quick both at the beginning and after the change, but the fluctuations
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quantified by (6.1.21) remain finite and do not improve even after convergence. For the
larger λ, the fluctuations are smaller, but the learning time constant is longer. In the
bottom-right graph, we have also added the equivalent FIR averager withN related to λ by
(6.1.16), which givesN = 399. Its learning speed and fluctuations are comparable to those
of the exponential smoother. ��

Example 6.1.2: Fig. 6.1.2 shows the daily Dow-Jones Industrial Average (DJIA) from Oct. 1, 2007
to Dec. 31, 2009. In the left graph an exponential smoothing filter is used with λ = 0.9.
In the right graph, an FIR averager with an equivalent length of N = (1+λ)/(1−λ)= 19
is used. The data were obtained from http://finance.yahoo.com.
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Fig. 6.1.2 Dow-Jones industrial average from 10-Oct-2007 to 31-Dec-2009.

The following code fragment generates the two graphs:

Y = loadfile(’dow-oct07-dec09.dat’); % data file in OSP toolbox

y = Y(:,4)/1000; % extract closing prices

n = (0:length(y)-1);

la = 0.9; al = 1-la;
s0 = la*y(1); % s0 is the initial state

m = filter(al, [1,-la], y, s0); % filter with initial state

% m = stema(y,0,la, y(1)); % equivalent calculation

figure; plot(n,m,’-’, n,y,’:’);

N = round((1+la)/(1-la));
h = ones(N,1)/N; % FIR averager

x = filter(h,1,y);

figure; plot(n(N:end),x(N:end),’-’, n,y,’:’); % discard first N−1 outputs

The initial value was set such that to get â0 = y0 for the EMA. The built-in function filter

allows one to specify the initial state. Because filter uses the transposed realization, in
order to have â0 = y0, the initial state must be chosen as sin = λy0. This follows from
the sample processing algorithm of the transposed realization for the EMA filter (6.1.12),

6.1. Mean Tracking 229

which reads as follows where s is the state:

for each input sample y do:
â = s+αy
s = λâ

or
ân = sn +αyn
sn+1 = λân

Thus, in order for the first pass to give â0 = y0, the initial state must be such that s0 =
â0 −αy0 = λy0. The FIR averager was run with zero initial conditions and therefore, the
firstN−1 outputs were discarded as transients. After n ≥ N, the EMA and the FIR outputs
are comparable since they have the same n̄. ��

Example 6.1.3: It is evident by inspecting the graphs of the previous example that both the
EMA and the FIR filter outputs are lagging behind the data signal. To see this lag more
clearly, consider a noiseless signal consisting of three straight-line segments defined by,

sn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
20+ 0.8n, 0 ≤ n < 75

80− 0.3(n− 75), 75 ≤ n < 225

35+ 0.4(n− 225), 225 ≤ n ≤ 300

Fig. 6.1.3 shows the corresponding output from an EMA with λ = 0.9 and an equivalent
FIR averager with N = 19 as in the previous example. The dashed line is the signal sn and
the solid lines, the corresponding filter outputs.
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Fig. 6.1.3 Lag introduced by EMA and FIR averager filters.

The EMA was run with initial value â−1 = s0 = 20. The FIR filter was run with zero
initial conditions, and therefore, its firstN−1 outputs are transients. The amount of delay
introduced by the filters is exactly equal to the quantity n̄ of Eq. (6.1.20). ��

The delay n̄ is a consequence of the causality of the filters. Symmetric non-causal
filters, such as the LPSM or LPRS filters, do not introduce a delay, that is, n̄ = 0.

To see how such a delay arises, consider an arbitrary causal filter hn and a causal
input that is a linear function of time, xn = a + bn, for n ≥ 0. The corresponding
convolutional output will be:

yn =
n∑
k=0

hkxn−k =
n∑
k=0

hk
[
a+ b(n− k)] = (a+ bn) n∑

k=0

hk − b
n∑
k=0

khk
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For large n, we may replace the upper limit of the summations by k = ∞,

yn = (a+ bn)
∞∑
k=0

hk − b
∞∑
k=0

khk = (a+ bn)
∞∑
k=0

hk − bn̄
∞∑
k=0

hk =
[
a+ b(n− n̄)] ∞∑

k=0

hk

where we used the definition (6.1.17) for n̄. For filters that have unity gain at DC, the
sum of the filter coefficients is unity, and we obtain,

yn = a+ b(n− n̄)= xn−n̄ (6.1.24)

Such delays are of concern in a number of applications, such as the real-time mon-
itoring of financial data. For FIR filters, the problem of designing noise reducing filters
with a prescribed amount of delay n̄ has already been discussed in Sec. 3.8. However, we
discuss it a bit further in Sec. 6.10 and 6.15 emphasizing its use in stock market trading.
The delay n̄ can also be controlled by the use of higher-order exponential smoothing
discussed in Sec. 6.5.

6.2 Forecasting and State-Space Models

We make a few remarks on the use of the first-order exponential smoother as a forecast-
ing tool. As we already mentioned, the quantity ân−1 can be viewed as a prediction of
yn based on the past observations {y0, y1, . . . , yn−1}. To emphasize this interpretation,
let us denote it by ŷn/n−1 = ân−1, and the corresponding prediction or forecast error by
en/n−1 = yn − ŷn/n−1. Then, the steady exponential smoother can be written as,

ŷn+1/n = ŷn/n−1 +αen/n−1 = ŷn/n−1 +α(yn − ŷn/n−1) (6.2.1)

As discussed in Chapters 1 and 12, if the prediction is to be optimal, then the pre-
diction error en/n−1 must be a white noise signal, called the innovations of the sequence
yn and denoted by εn = en/n−1. It represents that part of yn that cannot be predicted
from its past. This interpretation implies a certain innovations signal model for yn. We
may derive it by working with z-transforms. In the z-domain, Eq. (6.2.1) reads,

zŶ(z)= Ŷ(z)+αE(z)= Ŷ(z)+α(Y(z)−Ŷ(z)) = λŶ(z)+αY(z) (6.2.2)

Therefore, the transfer functions from Y(z) to Ŷ(z) and from Y(z) to E(z) are,

Ŷ(z)=
(

αz−1

1− λz−1

)
Y(z) , E(z)=

(
1− z−1

1− λz−1

)
Y(z) (6.2.3)

In the time domain, using the notation ∇yn = yn − yn−1, we may write the latter as

∇yn = εn − λεn−1 (6.2.4)

Thus, yn is an integrated ARMA process, ARIMA(0,1,1), or more simply an integrated
MA process, IMA(1,1). In other words, if yn is such a process, then the exponential
smoother forecast ŷn/n−1 is optimal in the mean-square sense [242].
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The innovations representation model can also be cast in an ordinary Wiener and
Kalman filter form of the type discussed in Chap. 11. The state and measurement equa-
tions for such a model are:

xn+1 = xn +wn
yn = xn + vn (6.2.5)

where wn, vn are zero-mean white-noise signals that are mutually uncorrelated. This
model is referred to as a “constant level” state-space model, and represents a random-
walk observed in noise. The optimal prediction estimate x̂n/n−1 of the state xn is equiv-
alent to ân−1. The equivalence between EMA and this model results in the following
relationship between the parameters α and q = σ2

w/σ2
v :

q = α2

1−α ⇒ α =
√
q2 + 4q− q

2
(6.2.6)

We defer discussion of such state-space models until chapters 11 and 13.

6.3 Higher-Order Polynomial Smoothing Filters

We recall that in fitting a local polynomial of orderd to a local block of data {yn−M, . . . , yn,
. . . , yn+M}, the performance index was

J =
M∑

k=−M

[
yn+k − p(k)

]2 =
M∑

k=−M

[
yn+k − uTk c

]2 = min

where p(k) is a dth degree polynomial, representing the estimate ŷn+k = p(k),

p(k)= uTkc = [
1, k, . . . , kd

]
⎡⎢⎢⎢⎢⎢⎣
c0

c1

...
cd

⎤⎥⎥⎥⎥⎥⎦ =
d∑
i=0

ciki

and we defined the monomial basis vector uk =
[
1, k, k2, . . . , kd

]T
. The higher-order

exponential smoother is obtained by restricting the data range to {y0, y1, . . . , yn} and
using exponential weights, and similarly, the corresponding FIR version will be restricted
to {yn−N+1, . . . , yn−1, yn}. The resulting performance indices are then,

Jn =
0∑

k=−n
λ−k

[
yn+k − uTk c

]2 = min

Jn =
0∑

k=−N+1

[
yn+k − uTk c

]2 = min

or, replacing the summation index k by −k, the performance indices read,

(EMA) Jn =
n∑
k=0

λk
[
yn−k − uT−kc

]2 = min

(FIR) Jn =
N−1∑
k=0

[
yn−k − uT−kc

]2 = min

(6.3.1)
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In both cases, we may interpret the quantities p(±τ)= uT±τc as the estimates ŷn±τ.
We will denote them by ŷn±τ/n to emphasize their causal dependence only on data up to
the current time n. In particular, the quantity c0 = uT0 c = p(0) represents the estimate
ŷn, or ŷn/n, that is, an estimate of the local level of the signal. Similarly, c1 = ṗ(0)=
u̇Tτc|τ=0 represents the local slope, and 2c2 = p̈(0), the local acceleration. Eqs. (6.1.4d)
and (6.1.4c) are special cases of (6.3.1) corresponding to d = 0.

Both indices in Eq. (6.3.1) can be written in the following compact vectorial form,
whose solution we have already obtained in previous chapters:

J = (y− Sc)TW(y− Sc)= min ⇒ c = (STWS)−1STWy (6.3.2)

where the data vector y is defined as follows in the EMA and FIR cases,

y(n)=

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
y0

⎤⎥⎥⎥⎥⎥⎦ , y(n)=

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−N+1

⎤⎥⎥⎥⎥⎥⎦ (6.3.3)

with the polynomial basis matrices S,

Sn =
[
u0,u−1, . . . ,u−n

]T , SN =
[
u0,u−1, . . . ,u−N+1

]T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uT0
uT−1
...
uT−k
...
uT−N+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.3.4)

with, uT−k =
[
1, (−k), (−k)2, . . . , (−k)d] , and weight matrices W in the two cases,

Wn = diag
(
[1, λ, . . . , λn]

)
, or, W = IN (6.3.5)

The predicted estimates can be written in the filtering form:

ŷn+τ/n = uTτc(n)= hTτ(n)y(n) (6.3.6)

where in the exponential smoothing case,

c(n) = (STnWnSn)−1STnWny(n)

hτ(n) =WnSn(STnWnSn)−1uτ
(EMA) (6.3.7)

We will see in Eq. (6.5.19) and more explicitly in (6.6.5) that c(n) can be expressed
recursively in the time n. Similarly, for the FIR case, we find:

c(n) = (STNSN)−1STNy(n)

hτ = SN(STNSN)−1uτ
(FIR) (6.3.8)
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We note also that the the solution for c in Eq. (6.3.2) can be viewed as the least-squares
solution of the over-determined linear system, W1/2Sc = W1/2y, which is particularly
convenient for the numerical solution using MATLAB’s backslash operation,

c = (
W1/2S

)\(W1/2y
)

(6.3.9)

In fact, this corresponds to an alternative point of view to filtering and is followed
in the so-called “linear regression” indicators in financial market trading, as we discuss
in Sec. 6.18, where the issue of the initial transients, that is, the evaluation of c(n) for
0 ≤ n ≤ N − 1 in the FIR case, is also discussed.

In the EMA case, the basis matrices Sn are full rank for n ≥ d. For 0 ≤ n < d, we may
restrict the polynomial order d to to dn = n and thus obtain the first dn coefficients of
the vector c(n), and set the remaining coefficients to zero. For the commonly used case
of d = 1, this procedure amounts to setting c(0)= [y0, 0]T. Similarly, in the FIR case,
we must have N ≥ d+ 1 to guarantee the full rank of SN.

6.4 Linear Trend FIR Filters

The exact solutions of the FIR case have already been found in Sec. 3.8. The d = 1
and d = 2 closed-form solutions were given in Eqs. (3.8.10) and (3.8.11). The same
expressions are valid for both even and odd N. For example, replacing M = (N − 1)/2
in (3.8.10), we may express the solution for the d = 1 case as follows,

hτ(k)= 2(N − 1)(2N − 1− 3k)+6(N − 1− 2k)τ
N(N2 − 1)

, k = 0,1, . . . ,N − 1 (6.4.1)

A direct derivation of (6.4.1) is as follows. From the definition (6.3.4), we find:

STNSN =
N−1∑
k=0

u−kuT−k =
N−1∑
k=0

[
1 −k

−k k2

]

=
[

N −N(N − 1)/2
−N(N − 1)/2 N(N − 1)(2N − 1)/6

]

(STNSN)
−1 = 2

N(N2 − 1)

[
(N − 1)(2N − 1) 3(N − 1)

3(N − 1) 6

]
(6.4.2)

then, from Eq. (6.3.8), because the kth row of SN is uT−k, we obtain the kth impulse
response coefficient:

hτ(k)= uT−k(S
T
NSN)

−1uτ = 2

N(N2 − 1)
[
1, −k][ (N − 1)(2N − 1) 3(N − 1)

3(N − 1) 6

][
1
τ

]

which leads to Eq. (6.4.1). Thus, we obtain,

hτ(k)= ha(k)+hb(k)τ , k = 0,1, . . . ,N − 1 (6.4.3)

with
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ha(k)= 2(2N − 1− 3k)
N(N + 1)

, hb(k)= 6(N − 1− 2k)
N(N2 − 1)

(6.4.4)

These are the FIR filters that generate estimates of the local level and local slope of
the input signal. Indeed, setting c(n)= [an, bn]T, where an, bn represent the local level
and local slope† at time n, we obtain from (6.3.8),[

an
bn

]
= (STNSN)−1STNy(n)= (STNSN)−1

N−1∑
k=0

u−kyn−k

which is equivalent, component-wise, to the filtering equations:

an =
N−1∑
k=0

ha(k)yn−k = local level

bn =
N−1∑
k=0

hb(k)yn−k = local slope

(6.4.5)

Since, ŷn+τ/n = an+bnτ, it is seen that the local level an is equal to ŷn/n. Similarly,
the sum an+bn is the one-step-ahead forecast ŷn+1/n obtained by extrapolating to time
instant n+ 1 by extending the local level an along the straight line with slope bn. This
is depicted in the figure below. The sum, an + bn, can be generated directly by the
predictive FIR filter, h1(k)= ha(k)+hb(k), obtained by setting τ = 1 in (6.4.1):

h1(k)= 2(2N − 2− 3k)
N(N − 1)

, k = 0,1, . . . ,N − 1 (predictive FIR filter) (6.4.6)

The filters ha(k), hb(k), and h1(k) find application in the technical analysis of
financial markets [280]. Indeed, the filter ha(k) is equivalent to the so-called linear
regression indicator, hb(k) corresponds to the linear regression slope indicator, and
h1(k), to the time series forecast indicator. We discuss these in more detail, as well as
other indicators, in Sections 6.14–6.24.

†a,b are the same as the components c0, c1 of the vector c.
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More generally, for order d polynomials, it follows from the solution (6.3.8), that the
FIR filters hτ satisfy the moment constraints STNhτ = uτ, or, component-wise:

N−1∑
k=0

(−k)rhτ(k)= τr , r = 0,1, . . . , d (6.4.7)

In fact, the solution hτ = SN(STNSN)−1uτ is recognized (from Chap. 15) to be the
minimum-norm, pseudoinverse, solution of the under-determined system STNh = uτ,
that is, it has minimum norm, or, minimum noise-reduction ratio, R = hTh = min. A
direct derivation is as follows. Introduce a (d + 1)×1 vector of Lagrange multipliers,
λλλ = [λ0, λ1, . . . , λd]T, and incorporate the constraint into the performance index,

J = hTh+ 2λλλT(uτ − STNh)= min

Then, its minimization leads to,

∂J
∂h

= 2h− 2SNλλλ = 0 ⇒ h = SNλλλ

and, imposing the constraint STNh = uτ leads to the solutions for λλλ and for h,

uτ = STNh = STNSNλλλ ⇒ λλλ = (STNSN)−1uτ ⇒ h = SNλλλ = SN(STNSN)−1uτ

Returning to Eq. (6.4.3) and setting τ = 0, we note that the d = 1 local-level filter
ha(k) satisfies the explicit constraints:

N−1∑
k=0

ha(k)= 1 ,
N−1∑
k=0

kha(k)= 0 (6.4.8)

The latter implies that its lag parameter n̄ is zero, and therefore, straight-line inputs
will appear at the output undelayed (see Example 6.5.1). It has certain limitations as a
lowpass filter that we discuss in Sec. 6.10, but its NRR is decreasing with N:

R = 2(2N − 1)
N(N + 1)

(6.4.9)

A direct consequence of Eq. (6.4.7) is that the filter hτ(k) generates the exact pre-
dicted value of any polynomial of degree d, that is, for any polynomial P(x) with degree
up to d in the variable x, we have the exact convolutional result,

N−1∑
k=0

P(n− k)hτ(k)= P(n+ τ) , with deg(P)≤ d (6.4.10)

6.5 Higher-Order Exponential Smoothing

For any value of d, the FIR filters hτ have length N and act on the N-dimensional data
vector y(n)= [yn, yn−1, . . . , yn−N+1]T. By contrast, the exponential smoother weights
hτ(n) have an ever increasing length. Therefore, it proves convenient to recast them



236 6. Exponential Smoothing

recursively in time. The resulting recursive algorithm bears a very close similarity to the
so-called exact recursive-least-squares (RLS) adaptive filters that we discuss in Chap. 16.
Let us define the quantities,

Rn = STnWnSn =
n∑
k=0

λku−kuT−k = (d+1)×(d+1) matrix

rn = STnWny(n)=
n∑
k=0

λku−kyn−k = (d+1)×1 vector

(6.5.1)

Then, the optimal polynomial coefficients (6.3.7) are:

c(n)= R−1
n rn (6.5.2)

Clearly, the invertibility of Rn requires that n ≥ d, which we will assume from now
on. The sought recursions relate c(n) to the optimal coefficients c(n − 1)= R−1

n−1rn−1

at the previous time instant n−1. Therefore, we must actually assume that n > d.
To proceed, we note that the basis vector uτ = [1, τ, τ2, . . . , τd]T satisfies the time-
propagation property:

uτ+1 = Fuτ (6.5.3)

where F is a (d+1)×(d+1) unit lower triangular matrix whose ith row consists of the
binomial coefficients:

Fij =
(
i
j

)
, 0 ≤ i ≤ d , 0 ≤ j ≤ i (6.5.4)

This follows from the binomial expansion:

(τ+ 1)i=
i∑
j=0

(
i
j

)
τj

Some examples of the F matrices are for d = 0,1,2:

F = [1], F =
[

1 0
1 1

]
, F =

⎡⎢⎣ 1 0 0
1 1 0
1 2 1

⎤⎥⎦ (6.5.5)

It follows from Eq. (6.5.3) that uτ = Fuτ−1, and inverting uτ−1 = F−1uτ. The inverse
matrixG = F−1 will also be unit lower triangular with nonzero matrix elements obtained
from the binomial expansion of (τ− 1)i:

Gij = (−1)i−j
(
i
j

)
, 0 ≤ i ≤ d , 0 ≤ j ≤ i (6.5.6)

For example, we have for d = 0,1,2,

G = [1], G =
[

1 0
−1 1

]
, G =

⎡⎢⎣ 1 0 0
−1 1 0

1 −2 1

⎤⎥⎦ (6.5.7)
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It follows from uτ−1 = Guτ that u−k−1 = Gu−k. This implies the following recursion
for Rn:

Rn =
n∑
k=0

λku−kuT−k = u0uT0 +
n∑
k=1

λku−kuT−k

= u0uT0 + λ
n∑
k=1

λk−1u−kuT−k

= u0uT0 + λ
n−1∑
k=0

λku−k−1uT−k−1

= u0uT0 + λG
⎛⎝n−1∑
k=0

λku−kuT−k

⎞⎠GT = u0uT0 + λGRn−1GT

where in the third line we changed summation variables from k to k−1, and in the fourth,
we used u−k−1 = Gu−k. Similarly, we have for rn,

rn =
n∑
k=0

λku−kyn−k = u0yn +
n∑
k=1

λku−kyn−k

= u0yn + λ
n−1∑
k=0

λku−k−1yn−k−1

= u0yn + λG
⎛⎝n−1∑
k=0

λku−ky(n−1)−k

⎞⎠ = u0yn + λGrn−1

Thus, Rn, rn satisfy the recursions:

Rn = u0uT0 + λGRn−1GT

rn = u0yn + λGrn−1

(6.5.8)

and they may be initialized to zero, R−1 = 0 and r−1 = 0. Using ŷn+τ/n = uTτc(n), we
may define the smoothed estimates, predictions, and the corresponding errors:

ŷn/n = uT0 c(n) , en/n = yn − ŷn/n
ŷn+1/n = uT1 c(n)= uT0FTc(n) , en+1/n = yn+1 − ŷn+1/n

ŷn/n−1 = uT1 c(n− 1)= uT0FTc(n− 1) , en/n−1 = yn − ŷn/n−1

(6.5.9)

where we used u1 = Fu0. In the language of RLS adaptive filters, we may refer to
ŷn/n−1 and ŷn/n as the a priori and a posteriori estimates of yn, respectively. Using the
recursions (6.5.8), we may now obtain a recursion for c(n). Using c(n− 1)= R−1

n−1rn−1

and the matrix relationship GF = I, we have,

Rnc(n) = rn = u0yn + λGrn−1 = u0yn + λGRn−1c(n− 1)

= u0yn + λGRn−1GTFTc(n− 1)= u0yn + (Rn − u0uT0 )FTc(n− 1)

= RnFTc(n− 1)+u0
(
yn − uT0FTc(n− 1)

) = RnFTc(n− 1)+u0(yn − ŷn/n−1)

= RnFTc(n− 1)+u0en/n−1
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where in the second line we used λGRn−1GT = Rn − u0uT0 . Multiplying both sides by
R−1
n , we obtain,

c(n)= FTc(n− 1)+R−1
n u0en/n−1 (6.5.10)

Again, in the language of RLS adaptive filters, we define the so-called a posteriori
and a priori “Kalman gain” vectors kn and kn/n−1,

kn = R−1
n u0 , kn/n−1 = λ−1FTR−1

n−1Fu0 (6.5.11)

and the “likelihood” variables,

νn = uT0 kn/n−1 = λ−1uT0FTR
−1
n−1Fu0 = λ−1uT1R

−1
n−1u1 , μn = 1

1+ νn (6.5.12)

Starting with the recursion Rn = u0uT0 + λGRn−1GT and multiplying both sides by
R−1
n from the left, then by FT from the right, then by R−1

n−1 from the left, and then by F
from the right, we may easily derive the equivalent relationship:

λ−1FTR−1
n−1F = R−1

n u0 λ−1uT0FTR
−1
n−1F +R−1

n (6.5.13)

Multiplying on the right by u0 and using the definitions (6.5.11), we find

kn/n−1 = knνn + kn = (1+ νn)kn , or,

kn = μnkn/n−1 (6.5.14)

Substituting this into (6.5.13), we obtain a recursion for the inverse matrixR−1
n , which

is effectively a variant of the matrix inversion lemma:

R−1
n = λ−1FTR−1

n−1F − μnkn/n−1kTn/n−1 (6.5.15)

This also implies that the parameter μn can be expressed as

μn = 1− uT0R−1
n u0 = 1− uT0 kn (6.5.16)

The a priori and a posteriori errors are also proportional to each other. Using (6.5.16),
we find,

ŷn/n = uT0 c(n)= uT0
(
FTc(n−1)+knen/n−1

) = ŷn/n−1+(1−μn)en/n−1 = yn−μnen/n−1

which implies that
en/n = μnen/n−1 (6.5.17)

The coefficient updates (6.5.10) may now be expressed as:

c(n)= FTc(n− 1)+knen/n−1 (6.5.18)

We summarize the complete set of computational steps for high-order exponential
smoothing. We recall that the invertibility conditions require that we apply the recur-
sions for n > d:
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1. kn/n−1 = λ−1FTR−1
n−1Fu0 = λ−1FTR−1

n−1u1

2. νn = uT0 kn/n−1 , μn = 1/(1+ νn)
3. kn = μnkn/n−1

4. ŷn/n−1 = uT1 c(n− 1) , en/n−1 = yn − ŷn/n−1

5. en/n = μnen/n−1 , ŷn = yn − en/n
6. c(n)= FTc(n− 1)+knen/n−1

7. R−1
n = λ−1FTR−1

n−1F − μnkn/n−1kTn/n−1

(6.5.19)

For 0 ≤ n ≤ d, the fitting may be done with polynomials of varying degree dn = n,
and the coefficient estimate computed by explicit matrix inversion, c(n)= R−1

n rn. The
above computational steps and initialization have been incorporated into the MATLAB
function ema with usage:

C = ema(y,d,lambda); % exponential moving average - exact version

The input y is an L-dimensional vector (row or column) of samples to be smoothed,
with a total number L > d, and C is an L×(d+1)matrix whose nth row is the coefficient
vector c(n)T. Thus, the first column, holds the smoothed estimate, the second column
the estimated first derivative, and so on.

To understand the initialization process, consider an input sequence {y0, y1, y2, . . . }
and the d = 1 smoother. At n = 0, we use a smoother of order d0 = 0, constructing the
quantities R0, r0 using the definition (6.5.1):

R0 = [1] , r0 = [y0] ⇒ c(0)= R−1
0 r0 = y0

Next, at n = 1 we use a d1 = 1 smoother, and definition (6.5.1) now implies,

R1 =
[

1 0
0 0

]
+ λ

[
1 −1

−1 1

]
=
[

1+ λ −λ
−λ λ

]

r1 =
[

1
0

]
y1 + λ

[
1
−1

]
y0 =

[
y1 + λy0

−λy0

] ⇒ c(1)= R−1
1 r1 =

[
y1

y1 − y0

]

Starting with R1, r1, the recursion (6.5.8) may then be continued for n ≥ d+ 1 = 2.
If we had instead d = 2, then there is one more initialization step, giving

R2 =
⎡⎢⎣ 1+ λ+ λ2 −λ− 2λ2 λ+ 4λ2

−λ− 2λ2 λ+ 4λ2 −λ− 8λ2

λ+ 4λ2 −λ− 8λ2 λ+ 16λ2

⎤⎥⎦ , r2 =
⎡⎢⎣ y2 + λy1 + λ2y0

−λy1 − 2λ2y0

λy1 + 4λ2y0

⎤⎥⎦
resulting in

c(2)= R−1
2 r2 =

⎡⎢⎣ y2

1.5y2 − 2y1 + 0.5y0

0.5y2 − y1 + 0.5y0

⎤⎥⎦ (6.5.20)

We note that the first d+ 1 smoothed values get initialized to the first d+ 1 values
of the input sequence.
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Example 6.5.1: Fig. 6.5.1 shows the output of the exact exponential smoother with d = 1 and
λ = 0.9 applied on the same noiseless input sn of Example 6.1.3. In addition, it shows the
d = 1 FIR filter ha(k) designed to have zero lag according to Eq. (6.4.4).

Because d = 1, both filters can follow a linear signal. The input sn (dashed curve) is barely
visible under the filter outputs (solid curves). The length of the FIR filter was chosen
according to the rule N = (1+ λ)/(1− λ).
The following MATLAB code generates the two graphs; it uses the function upulse which
is a part of the OSP toolbox that generates a unit-pulse of prescribed duration

n = 0:300;
s = (20 + 0.8*n) .* upulse(n,75) + ... % upulse is in the OSP toolbox

(80 - 0.3*(n-75)) .* upulse(n-75,150) + ...
(35 + 0.4*(n-225)) .* upulse(n-225,76);

la = 0.9; al = 1-la; d = 1;

C = ema(s,d,la); % exact exponential smoother output

x = C(:,1);

N = round((1+la)/(1-la)); % equivalent FIR length, N=19

k=0:N-1;
ha = 2*(2*N-1-3*k)/N/(N+1); % zero-lag FIR filter

xh = filter(ha,1,s); % FIR filter output

figure; plot(n,s,’--’, n,x,’-’); % left graph

figure; plot(n,s,’--’, n,xh,’-’); % right graph
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Fig. 6.5.1 Exact EMA with order d = 1, and zero-lag FIR filter with equivalent length.

Next, we add some noise yn = sn+4vn, where vn is zero-mean, unit-variance, white noise.
The top two graphs of Fig. 6.5.2 show the noisy signal yn and the response of the exact
EMA with d = 0 and λ = 0.9.

The bottom two graphs show the exact EMA with d = 1 as well as the response of the same
zero-lag FIR filter to the noisy data. ��
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Fig. 6.5.2 EMA with order d = 1, and zero-lag FIR filter with equivalent length.

6.6 Steady-State Exponential Smoothing

Next, we look in more detail at the cases d = 0,1,2, which are the most commonly used
in practice, with d = 1 providing the best performance and flexibility. We denote the
polynomial coefficients by:

c(n)= [an] , c(n)=
[
an
bn

]
, c(n)=

⎡⎢⎣ anbn
cn

⎤⎥⎦ (6.6.1)

Then, with uτ = [1], uτ = [1, τ]T, and uτ = [1, τ, τ2]T, the implied predicted
estimates will be for arbitrary τ:

ŷn+τ/n = uTτc(n)= an
ŷn+τ/n = uTτc(n)= an + bnτ
ŷn+τ/n = uTτc(n)= an + bnτ+ cnτ2

(6.6.2)

Thus, an, bn represent local estimates of the level and slope, respectively, and 2cn
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represents the acceleration. The one-step-ahead predictions are,

ŷn/n−1 = uT1 c(n− 1)= an−1

ŷn/n−1 = uT1 c(n− 1)= an−1 + bn−1

ŷn/n−1 = uT1 c(n− 1)= an−1 + bn−1 + cn−1

(6.6.3)

Denoting the a posteriori gains kn by,

kn = [α(n)] , kn =
[
α1(n)
α2(n)

]
, kn =

⎡⎢⎣α1(n)
α2(n)
α3(n)

⎤⎥⎦ (6.6.4)

then, the coefficient updates (6.5.18) take the forms, where en/n−1 = yn − ŷn/n−1,

an = an−1 +α(n)en/n−1[
an
bn

]
=
[

1 1
0 1

][
an−1

bn−1

]
+
[
α1(n)
α2(n)

]
en/n−1

⎡⎢⎣ anbn
cn

⎤⎥⎦ =
⎡⎢⎣ 1 1 1

0 1 2
0 0 1

⎤⎥⎦
⎡⎢⎣ an−1

bn−1

cn−1

⎤⎥⎦+
⎡⎢⎣α1(n)
α2(n)
α3(n)

⎤⎥⎦en/n−1

(6.6.5)

Since kn = R−1
n u0, the gains depend only on λ and n and converge to steady-state

values for large n. For example, for d = 0, we have,

Rn =
n∑
k=0

λk = 1− λn+1

1− λ ⇒ kn = R−1
n = 1− λ

1− λn+1
→ 1− λ ≡ α

Thus, the steady-state form of the d = 0 EMA smoother is as expected:

en/n−1 = yn − ŷn/n−1 = yn − an−1

an = an−1 + (1− λ)en/n−1
(single EMA, d = 0) (6.6.6)

initialized as usual at a−1 = y0. The corresponding likelihood variable μn = 1 − uT0 kn
tends to μ = 1− (1− λ)= λ. Similarly, we find for d = 1,

Rn =
n∑
k=0

λk
[

1
−k

]
[1,−k]=

n∑
k=0

λk
[

1 −k
−k k2

]
≡
[
R00(n) R01(n)
R10(n) R11(n)

]

where

R00(n)= 1− λn+1

1− λ , R01(n)= R10(n)= −λ+ λn+1
[
1+ n(1− λ)]

(1− λ)2

R11(n)= λ(1+ λ)−λn+1
[
1+ λ− 2n(1− λ)+n2(1− λ)2

]
(1− λ)3
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which have the limit as n→∞,

Rn →R = 1

(1− λ)3

[
(1− λ)2 −λ(1− λ)
−λ(1− λ) λ(1+ λ)

]

R−1 =
[

1− λ2 (1− λ)2

(1− λ)2 λ−1(1− λ)3

] (6.6.7)

It follows that the asymptotic gain vector k = R−1u0 will be the first column of R−1:

kn → k =
[
α1

α2

]
=
[

1− λ2

(1− λ)2

]
(6.6.8)

and the steady-state version of the d = 1 EMA smoother becomes:

en/n−1 = yn − ŷn/n−1 = yn − (an−1 + bn−1)[
an
bn

]
=
[

1 1
0 1

][
an−1

bn−1

]
+
[

1− λ2

(1− λ)2

]
en/n−1

(double EMA, d = 1) (6.6.9)

with estimated level ŷn/n = an and one-step-ahead prediction ŷn+1/n = an + bn. The
corresponding limit of the likelihood parameter is μ = 1 − uT0 k = 1 − (1 − λ2)= λ2.
The difference equation may be initialized at a−1 = 2y0−y1 and b−1 = y1−y0 to agree
with the first outputs of the exact smoother. Indeed, iterating up to n = 1, we find the
same answer for c(1) as the exact smoother:[

a0

b0

]
=
[

1 1
0 1

][
a−1

b−1

]
+
[
α1

α2

]
e0/−1 =

[
y0

y1 − y0

]
[
a1

b1

]
=
[

1 1
0 1

][
a0

b0

]
+
[
α1

α2

]
e1/0 =

[
y1

y1 − y0

]

Of course, other initializations are possible, a common one being to fit a straight line
to the first few input samples and choose the intercept and slope as the initial values.
This is the default method used by the function stema (see below). For the d = 2 case,
the asymptotic matrix R is

R =
∞∑
k=0

λku−kuT−k =
∞∑
k=0

λk

⎡⎢⎣ 1 −k k2

−k k2 −k3

k2 −k3 k4

⎤⎥⎦
which may be summed to

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1− λ − λ
(1− λ)2

λ(1+ λ)
(1− λ)3

− λ
(1− λ)2

λ(1+ λ)
(1− λ)3

−λ(1+ 4λ+ λ2)
(1− λ)4

λ(1+ λ)
(1− λ)3

−λ(1+ 4λ+ λ2)
(1− λ)4

λ(1+ λ)(1+ 10λ+ λ2)
(1− λ)5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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with an inverse

R−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− λ3 3

2
(1+ λ)(1− λ)2 1

2
(1− λ)3

3

2
(1+ λ)(1− λ)2 (1+ λ)(1− λ)3(1+ 9λ)

4λ2

(1− λ)4(1+ 3λ)
4λ2

1

2
(1− λ)3 (1− λ)4(1+ 3λ)

4λ2

(1− λ)5

4λ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
The asymptotic gain vector k = R−1u0 and μ parameter are,

k =
⎡⎢⎣α1

α2

α3

⎤⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

1− λ3

3

2
(1+ λ)(1− λ)2

1

2
(1− λ)3

⎤⎥⎥⎥⎥⎥⎦ , μ = 1−α1 = λ3 (6.6.10)

and the steady-state d = 2 EMA smoother becomes:

en/n−1 = yn − ŷn/n−1 = yn − (an−1 + bn−1 + cn−1)⎡⎢⎣ anbn
cn

⎤⎥⎦ =
⎡⎢⎣ 1 1 1

0 1 2
0 0 1

⎤⎥⎦
⎡⎢⎣ an−1

bn−1

cn−1

⎤⎥⎦+
⎡⎢⎣α1

α2

α3

⎤⎥⎦en/n−1

(triple EMA, d = 2) (6.6.11)

They may be initialized to reach the same values at n = 2 as the exact smoother,
that is, Eq. (6.5.20). This requirement gives:⎡⎢⎣ a−1

b−1

c−1

⎤⎥⎦ =
⎡⎢⎣ y2 − 3y1 + 3y0

−1.5y2 + 4y1 − 2.5y0

0.5y2 − y1 + 0.5y0

⎤⎥⎦ ⇒
⎡⎢⎣ a2

b2

c2

⎤⎥⎦ =
⎡⎢⎣ y2

1.5y2 − 2y1 + 0.5y0

0.5y2 − y1 + 0.5y0

⎤⎥⎦
Alternatively, they may be initialized by fitting a second degree polynomial to the first

few input samples, as is done by default in the function stema, or they may be initialized
to a zero vector, or to any other values, for example, [a−1, b−1, c−1]= [y0,0,0].

For arbitrary polynomial order d, the matrixRn converges to a (d+1)×(d+1)matrix
R that must satisfy the Lyapunov-type equation:

R = u0uT0 + λGRGT (6.6.12)

where G is the backward boost matrix, G = F−1. This follows by considering the limit
of Eq. (6.5.1) as n→∞ and using the property u−k−1 = Gu−k. Multiplying from the left
by F, and noting that Fu0 = u1, we have

FR = u1uT0 + λRGT (6.6.13)

Taking advantage of the unit-lower-triangular nature of F and G, this equation can
be written component-wise as follows:

i∑
k=0

FikRkj = u1(i)u0(j)+λ
j∑
k=0

RikGjk , 0 ≤ i, j ≤ d (6.6.14)
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Noting that u1(i)= 1 and u0(j)= δ(j), and setting first i = j = 0, we find

R00 = 1+ λR00 ⇒ R00 = 1

1− λ (6.6.15)

Then, setting i = 0 and 1 ≤ j ≤ d,

R0j = λ
j∑
k=0

RikGjk = λR0j + λ
j−1∑
k=0

R0kGjk

which can be solved recursively for R0j:

R0j = Rj0 = λ
1− λ

j−1∑
k=0

R0kGjk , j = 1,2, . . . , d (6.6.16)

Next, take i ≥ 1 and j ≥ i, and use the symmetry of R:

Rij +
i−1∑
k=0

FikRkj = λRij + λ
j−1∑
k=0

RikGjk

or, for i = 1,2, . . . , d , j = i, i+ 1, . . . , d,

Rij = Rji = 1

1− λ

⎡⎣λ j−1∑
k=0

RikGjk −
i−1∑
k=0

FikRkj

⎤⎦ (6.6.17)

To clarify the computations, we give the MATLAB code below:

R(1,1) = 1/(1-lambda);
for j=2:d+1,
R(1,j) = lambda * R(1,1:j-1) * G(j,1:j-1)’ / (1-lambda);
R(j,1) = R(1,j);

end
for i=2:d+1,
for j=i:d+1,
R(i,j) = (lambda*R(i,1:j-1)*G(j,1:j-1)’ - F(i,1:i-1)*R(1:i-1,j))/(1-lambda);
R(j,i) = R(i,j);

end
end

Once R is determined, one may calculate the gain vector k = R−1u0. Then, the
overall filtering algorithm can be stated as follows, for n ≥ 0,

ŷn/n−1 = uT1 c(n− 1)

en/n−1 = yn − ŷn/n−1

c(n)= FTc(n− 1)+ken/n−1

(steady-state EMA) (6.6.18)

which requires specification of the initial vector c(−1). The transfer function from the
input yn to the signals c(n) can be determined by taking z-transforms of Eq. (6.6.18):

C(z)= z−1FTC(z)+k
(
Y(z)−z−1uT1 C(z)

)
, or,
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H(z)= C(z)
Y(z)

= [
I − (FT − kuT1 )z−1]−1

k (6.6.19)

The computational steps (6.6.18) have been incorporated in the MATLAB function
stema, with usage,

C = stema(y,d,lambda,cinit); % steady-state exponential moving average

where C,y,d,lambda have the same meaning as in the function ema. The parameter
cinit is a (d+1)×1 column vector that represents the initial vector c(−1). If omitted,
it defaults to fitting a polynomial of order d to the first L input samples, where L is
the effective length corresponding to λ, that is, L = (1 + λ)/(1 − λ). The fitting is
carried out with the help of the function lpbasis from Chap. 3, and is given in MATLAB
notation by:

cinit = lpbasis(L,d,-1) \ y(1:L); % fit order-d polynomial to first L inputs

where the fit is carried out with respect to the time origin n = −1. The length Lmust be
less than the length of the input vector y. If not, another, shorter L can be used. Other
initialization possibilities for cinit are summarized in the help file for stema.

To clarify the fitting operation, we note that fitting the first L samples yn, n =
0,1, . . . , L − 1, to a polynomial of degree d centered at n = −1 amounts to the mini-
mization of the performance index:

J =
L−1∑
n=0

(yn − pn)2= min , pn =
d∑
i=0

(n+ 1)ici = uTn+1c

which can be written compactly as

J = ‖y− Sc‖2 = min , S = [u1,u2, . . . ,un+1, . . . ,uL]T

with solution c = (STS)−1STy = S\y in MATLAB notation.† The actual fitted values
p = [p0, p1, . . . , pL−1]T are then computed by p = Sc.

Selecting n = −1 as the centering time, assumes that the filtering operation will
start at n = 0 requiring therefore the value c(−1). The centering can be done at any
other reference time n = n0, for example, one would choose n0 = L− 1 if the filtering
operation were to start at n = L. The performance index would be then,

J =
L−1∑
n=0

(yn − pn)2= min , pn =
d∑
i=0

(n− n0)ici = uTn−n0
c̄

with another set of coefficients c̄. The MATLAB implementation is in this case,

cinit = lpbasis(L,d,n0) \ y(1:L); % fit order-d polynomial to first L inputs

From un+1 = Fun, we obtain un+1 = Fn0+1un−n0 . By requiring that the fitted poly-
nomials be the same, pn = uTn+1c = uTn−n0

c̄, it follows that,

c̄ = (FT)n0+1c (6.6.20)

†assuming that S has full rank, which requires L > d.
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In Sec. 6.8, we discuss the connection to conventional multiple exponential smooth-
ing obtained by filtering in cascade through d+1 copies of a single exponential smooth-
ing filter H(z)= α/(1− λz−1), that is, through

[
H(z)

]d+1
. Example 6.11.1 illustrates

the above initialization methods, as well as how to map the initial values of c(n) to the
initial values of the cascaded filter outputs.

6.7 Smoothing Parameter Selection

The performance of the steady-state EMA may be judged by computing the covariance of
the estimates c(n), much like the case of thed = 0 smoother. Starting with c(n)= R−1

n rn
and rn = STnWny(n), we obtain for the correlation matrix,

E
[
c(n)cT(n)

] = R−1
n STnWnE

[
y(n)yT(n)

]
WnSnR−1

n

and for the corresponding covariance matrix,

Σcc = R−1
n STnWnΣyyWnSnR−1

n (6.7.1)

Under the typical assumption that yn is white noise, we have Σyy = σ2
yIn+1, where

In+1 is the (n+1)-dimensional unit matrix. Then,

Σcc = σ2
y R−1

n QnR−1
n , Qn = STnW2

nSn (6.7.2)

In the limit n→∞, the matrices Rn,Qn tend to steady-state values, so that

Σcc = σ2
y R−1QR−1 (6.7.3)

where the limit matrices R,Q are given by

R =
∞∑
k=0

λku−ku−k , Q =
∞∑
k=0

λ2ku−ku−k (6.7.4)

Since ŷn/n = uT0 c(n) and ŷn+1/n = uT1 c(n), the corresponding variances will be:

σ2
ŷn/n = uT0 Σccu0 , σ2

ŷn+1/n
= uT1 Σccu1 ≡ σ2

ŷ , (6.7.5)

Because yn was assumed to be an uncorrelated sequence, the two terms in the pre-
diction error en+1/n = yn+1 − ŷn+1/n will be uncorrelated since ŷn+1/n depends only on
data up to n. Therefore, the variance of the prediction error en+1/n will be:

σ2
e = σ2

y +σ2
ŷ = σ2

y
[
1+ uT1R−1QR−1u1

]
(6.7.6)

For the case d = 0, we have

R =
∞∑
k=0

λk = 1

1− λ , Q =
∞∑
k=0

λ2k = 1

1− λ2

which gives the usual results:

σ2
ŷ = Σcc = 1− λ

1+ λσ
2
y , σ2

e = σ2
y +σ2

ŷ =
2

1+ λσ
2
y
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For d = 1, we have as in Eq. (6.6.7),

R = 1

(1− λ)3

[
(1− λ)2 −λ(1− λ)
−λ(1− λ) λ(1+ λ)

]
,

with the Q matrix being obtained from R by replacing λ→ λ2,

Q = 1

(1− λ2)3

[
(1− λ2)2 −λ2(1− λ2)
−λ2(1− λ2) λ2(1+ λ2)

]

It follows then that

Σcc = σ2
y R−1QR−1 = 1− λ

(1+ λ)3

[
1+ 4λ+ 5λ2 (1− λ)(1+ 3λ)

(1− λ)(1+ 3λ) 2(1− λ)2

]
(6.7.7)

The diagonal entries are the variances of the level and slope signals an, bn:

σ2
a =

(1− λ)(1+ 4λ+ 5λ2)
(1+ λ)3

σ2
y , σ2

b =
2(1− λ)3

(1+ λ)3
σ2
y (6.7.8)

For the prediction variance, we find

σ2
ŷ = σ2

y uT1 (R−1QR−1)u1 = (1− λ)(λ2 + 4λ+ 5)
(1+ λ)3

σ2
y (6.7.9)

which gives for the prediction error:

σ2
e = σ2

y +σ2
ŷ =

[
1+ (1− λ)(λ

2 + 4λ+ 5)
(1+ λ)3

]
σ2
y =

2(3+ λ)
(1+ λ)3

σ2
y (6.7.10)

In order to achieve an equivalent smoothing performance with a d = 0 EMA, one
must equate the corresponding prediction variances, or mean-square errors. If λ0, λ1

denote the equivalent d = 0 and d = 1 parameters, the condition reads:

2

1+ λ0
= 2(3+ λ1)
(1+ λ1)3

⇒ λ0 = (1+ λ1)3

3+ λ1
− 1 (6.7.11)

Eq. (6.7.11) may also be solved for λ1 in terms of λ0,

λ1 = 1

3
D0 + 1+ λ0

D0
− 1 , D0 =

[
27(1+ λ0)+

√
27(1+ λ0)2(26− λ0)

]1/3
(6.7.12)

Setting λ0 = 0 givesD0 = (27+3
√

78)1/3 and λ1 = 0.5214. For all λ1 ≥ 0.5214, the
equivalent λ0 is non-negative and the NRR σ2

ŷ/σ2
y of the prediction filter remains less

than unity.
The corresponding FIR averager would have lengthN0 = (1+λ0)/(1−λ0), whereas

an equivalent zero-lag FIR filter should have length N1 that matches the corresponding
NRRs. We have from Eq. (6.4.9):

2(2N1 − 1)
N1(N1 + 1)

= 1− λ0

1+ λ0
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which gives,

λ0 = N2
1 − 3N1 + 2

N2
1 + 5N1 − 2

� N1 =
3+ 5λ0 +

√
33λ2

0 + 30λ0 + 1

2(1− λ0)
(6.7.13)

The MATLAB function emap implements Eq. (6.7.12),

la1 = emap(la0); % mapping equivalent λ’s between d = 0 and d = 1 EMAs

The computed λ1 is an increasing function of λ0 and varies over 0.5214 ≤ λ1 ≤ 1
as λ0 varies over 0 ≤ λ0 ≤ 1.

Example 6.7.1: The lower-right graph of Fig. 6.7.1 shows a zero-lag FIR filter defined by Eq. (6.4.4)
with length N1 = 100 and applied to the noisy signal shown on the upper-left graph. The
noisy signal was yn = 20 + 0.2n + 4vn, for 0 ≤ n ≤ 300, with zero-mean, unit-variance,
white noise vn.
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Fig. 6.7.1 Comparison of two equivalent steady-state EMAs with equivalent zero-lag FIR.

The equivalent EMA parameter for d = 0 was found from (6.7.13) to be λ0 = 0.9242,
which was then mapped to λ1 = 0.9693 of an equivalent d = 1 EMA using Eq. (6.7.12).
The upper-right graph shows the d = 0 EMA output, and the lower-left graph, the d = 1
EMA. The steady-state version was used for both EMAs with default initializations. The
following MATLAB code illustrates the calculations:
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t = 0:300; s = 20 + 0.2*t;
randn(’state’, 1000);
y = s + 4 * randn(size(t)); % noisy input

N1 = 100;
la0 = (N1^2-3*N1+2)/(N1^2+5*N1-2); % equivalent λ0

la1 = emap(la0); % equivalent λ1

C = stema(y,0,la0); x0 = C(:,1); % steady EMA with d = 0, λ = λ0

C = stema(y,1,la1); x1 = C(:,1); % steady EMA with d = 1, λ = λ1

k=0:N1-1; h = 2*(2*N1-1-3*k)/N1/(N1+1); % zero-lag FIR of length N1

% h = lpinterp(N1,1,-(N1-1)/2)’; % alternative calculation

xh = filter(h,1,y);

figure; plot(t,y,’-’, t,s,’-’); figure; plot(t,s,’--’, t,x0,’-’);
figure; plot(t,s,’--’, t,x1,’-’); figure; plot(t,s,’--’, t,xh,’-’);

We observe that all three outputs achieve comparable noise reduction. The d = 0 EMA
suffers from the expected delay. Both the d = 1 EMA and the zero-lag FIR filter follow the
straight-line input with no delay, after the initial transients have subsided. ��

The choice of the parameterλ is more of an art than science. There do exist, however,
criteria that determine an “optimum” value. Given the prediction ŷn/n−1 = uT1 c(n− 1)
of yn, and prediction error en/n−1 = yn− ŷn/n−1, the following criteria, to be minimized
with respect to λ, are widely used:

MSE = mean(e2
n/n−1) , (mean square error)

MAE = mean
(|en/n−1|

)
, (mean absolute error)

MAPE = mean
(
100|en/n−1/yn|

)
, (mean absolute percentage error)

(6.7.14)

where the mean may be taken over the entire data set or over a portion of it. Usually,
the criteria are evaluated over a range of λ’s and the minimum is selected. Typically,
the criteria tend to underestimate the value of λ, that is, they produce too small a λ to
be useful for smoothing purposes. Even so, the optimum λ has been used successfully
for forecasting applications. The MATLAB function emaerr calculates these criteria for
any vector of λ’s and determines the optimum λ in that range:

[err,lopt] = emaerr(y,d,lambda,type); % mean error criteria

where type takes one of the string values ’mse’,’mae’,’mape’ and err is the criterion
evaluated at the vector lambda, and lopt is the corresponding optimum λ.

Example 6.7.2: Fig. 6.7.2 shows the same Dow-Jones data of Example 6.1.2. The MSE criterion
was searched over the range 0.1 ≤ λ ≤ 0.9. The upper-left graph shows the MSE versus λ.
The minimum occurs at λopt = 0.61.

The upper-right graph shows the d = 1 exact EMA run with λ = λopt. The EMA output
is too rough to provide adequate smoothing. The other criteria are even worse. The MAE
and MAPE optima both occur at λopt = 0.56. For comparison, the bottom two graphs show
the d = 1 exact EMA run with the two higher values λ = 0.90 and λ = 0.95. The MATLAB
code generating these graphs was as follows:
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Fig. 6.7.2 MSE criterion for the DJIA data.

Y = loadfile(’dow-oct07-dec09.dat’); % read data

y = Y(:,1)/1000; n = (0:length(y)-1)’;

d = 1; u1 = ones(d+1,1); % polynomial order for EMA

la = linspace(0.1, 0.9, 81); % range of λ’s to search

[err,lopt] = emaerr(y,d,la,’mse’); % evaluate MSE at this range of λ’s

figure; plot(la,err, lopt,min(err),’.’); % upper-left graph

C = ema(y,d,lopt); yhat = C*u1;
figure; plot(n,y,’:’, n,yhat,’-’); % upper-right graph

la=0.90; C = ema(y,d,la); yhat = C*u1; % bottom-left graph

figure; plot(n,y,’:’, n,yhat,’-’); % use la=0.95 for bottom-right

We note that the d = 1 smoother is more capable in following the signal than the d = 0 one.
We plotted the forecasted value ŷn+1/n = cT(n)u1 versus n. Because the output matrix C

from the ema function has the cT(n) as its rows, the entire vector of forecasted values can
be calculated by acting by C on the unit vector u1, that is, yhat = C*u1. ��
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6.8 Single, Double, and Triple Exponential Smoothing

Single exponential smoothing is the same as first-order, d = 0, steady-state exponential
smoothing. We recall its filtering equation and corresponding transfer function:

a[1]n = λa[1]n−1 +αyn , H[1](z)= H(z)= α
1− λz−1

(6.8.1)

where α = 1 − λ. Double smoothing refers to filtering a[1]n one more time through
the same filter H(z); and triple smoothing, two more times. The resulting filtering
equations and transfer functions (from the overall input yn to the final outputs) are:

a[2]n = λa[2]n−1 +αa[1]n , H[2](z)=
(

α
1− λz−1

)2

a[3]n = λa[3]n−1 +αa[2]n , H[3](z)=
(

α
1− λz−1

)3
(6.8.2)

yn −→ H −→ a[1]n −→ H −→ a[2]n −→ H −→ a[3]n
Thus, the filter H(z) acts once, twice, three times, or in general d+1 times, in cas-

cade, producing the outputs,

yn−→ H −→a[1]n −→ H −→a[2]n −→ H −→a[3]n −→· · ·−→a[d]n −→ H −→a[d+1]
n (6.8.3)

The transfer function and the corresponding causal impulse response from yn to the
r-th output a[r]n are, for r = 1,2, . . . , d+1 with u(n) denoting the unit-step function:

H[r](z)= [
H(z)

]r = (
α

1− λz−1

)r
� h[r](n)= αrλn (n+ r − 1)!

n!(r − 1)!
u(n) (6.8.4)

Double and triple exponential smoothing are in a sense equivalent to the d = 1 and
d = 2 steady-state EMA filters of Eq. (6.6.9) and (6.6.11). From Eq. (6.6.19), which in this
case reads H(z)= [Ha(z),Hb(z)]T, we may obtain the transfer functions from yn to
the outputs an and bn:

Ha(z)= (1− λ)(1+ λ− 2λz−1)
(1− λz−1)2

, Hb(z)= (1− λ)2(1− z−1)
(1− λz−1)2

(6.8.5)

It is straightforward to verify that Ha and Hb are related to H and H2 by

Ha = 2H −H2 = 1− (1−H)2

Hb = α
λ
(H −H2)

(local level filter)

(local slope filter)
(6.8.6)

In the time domain this implies the following relationships between thean, bn signals
and the cascaded outputs a[1]n , a[2]n :

an = 2a[1]n − a[2]n = local level

bn = α
λ
(
a[1]n − a[2]n

) = local slope
(6.8.7)
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which can be written in a 2×2 matrix form:[
an
bn

]
=
[

2 −1
α/λ −α/λ

][
a[1]n
a[2]n

]
⇒

[
a[1]n
a[2]n

]
=
[

1 −λ/α
1 −2λ/α

][
an
bn

]
(6.8.8)

Similarly, for the d = 2 case, the transfer functions from yn to an, bn, cn are:

Ha(z) = α
[
1+ λ+ λ2 − 3λ(1+ λ)z−1 + 3λ2z−2

]
(1− λz−1)3

Hb(z) = 1

2

α2(1− z−1)
[
3(1+ λ)−(5λ+ 1)z−1

]
(1− λz−1)3

Hc(z) = 1

2

α3(1− z−1)2

(1− λz−1)3

(6.8.9)

which are related to H,H2,H3 by the matrix transformation:⎡⎢⎣HH2

H3

⎤⎥⎦ =
⎡⎢⎣ 1 −λ/α λ(λ+ 1)/α2

1 −2λ/α 2λ(2λ+ 1)/α2

1 −3λ/α 3λ(3λ+ 1)/α2

⎤⎥⎦
⎡⎢⎣HaHb
Hc

⎤⎥⎦ (6.8.10)

implying the transformation between the outputs:⎡⎢⎢⎣ a
[1]
n

a[2]n
a[3]n

⎤⎥⎥⎦ =
⎡⎢⎣ 1 −λ/α λ(λ+ 1)/α2

1 −2λ/α 2λ(2λ+ 1)/α2

1 −3λ/α 3λ(3λ+ 1)/α2

⎤⎥⎦
⎡⎢⎣ anbn
cn

⎤⎥⎦ (6.8.11)

with corresponding inverse relationships,⎡⎢⎣HaHb
Hc

⎤⎥⎦ = 1

2λ2

⎡⎢⎣ 6λ2 −6λ2 2λ2

α(1+ 5λ) −2α(1+ 4λ) α(1+ 3λ)
α2 −2α2 α2

⎤⎥⎦
⎡⎢⎣HH2

H3

⎤⎥⎦ (6.8.12)

⎡⎢⎣ anbn
cn

⎤⎥⎦ = 1

2λ2

⎡⎢⎢⎣
6λ2 −6λ2 2λ2

α(1+ 5λ) −2α(1+ 4λ) α(1+ 3λ)
α2 −2α2 α2

⎤⎥⎥⎦
⎡⎢⎢⎣ a

[1]
n

a[2]n
a[3]n

⎤⎥⎥⎦ (6.8.13)

In particular, we have:

Ha = 3H − 3H2 +H3 = 1− (1−H)3 (6.8.14)

and
ŷn/n = an = 3a[1]n − 3a[2]n + a[3]n (6.8.15)

More generally, for an order-d polynomial EMA, we have [243],

Ha = 1− (1−H)d+1 (6.8.16)

ŷn/n = an = −
d+1∑
r=1

(−1)r
(
d+ 1

r

)
a[r]n (6.8.17)
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6.9 Exponential Smoothing and Tukey’s Twicing Operation

There is an interesting interpretation [255] of these results in terms of Tukey’s twic-
ing operation [257] and its generalizations to thricing, and so on. To explain twicing,
consider a smoothing operation, which for simplicity we may assume that it can be rep-
resented by the matrix operation ŷ = Hy, or if so preferred, in the z-domain as the
multiplication of z-transforms Ŷ(z)= H(z)Y(z).

The resulting residual error is e = y− ŷ = (I −H)y. In the twicing procedure, the
residuals are filtered through the same smoothing operation, which will smooth them
further, ê = He = H(I−H)y, and the result is added to the original estimate to get an
improved estimate:

ŷimpr = ŷ+ ê = [
H +H(I −H)]y = [

2H −H2]y (6.9.1)

which is recognized as the operation (6.8.6). The process can be continued by repeating
it on the residuals of the residuals, and so on. For example, at the next step, one would
compute the new residual r = e − ê = (I −H)e = (I −H)2y, then filter it through H,
r̂ = Hr = H(I −H)2y, and add it to get the “thriced” improved estimate:

ŷimpr = ŷ+ ê+ r̂ = [
H +H(I −H)+H(I −H)2]y = [

3H − 3H2 +H3]y (6.9.2)

which is Eq. (6.8.14). The process can be continued d times, resulting in,

ŷimpr = H
[
I + (I −H)+(I −H)2+· · · + (I −H)d]y = [

I − (I −H)d+1]y (6.9.3)

Twicing and its generalizations can be applied with benefit to any smoothing oper-
ation, for example, if we used an LPRS filter designed by B = lprs(N,d, s), the compu-
tational steps for twicing would be:

ŷ = lpfilt(B,y) ⇒ e = y− ŷ ⇒ ê = lpfilt(B, e) ⇒ ŷimpr = ŷ+ ê

A limitation of twicing is that, while it drastically improves the passband of a lowpass
smoothing filter, it worsens its stopband. To see this, we write for the improved transfer
function,Himpr(z)= 1−(1−H(z))d+1

. In the passband,H is near unity, sayH ≈ 1−ε,
with |ε| � 1, then,

Himpr = 1− (1− (1− ε))d+1 = 1− εd+1

thus, making the passband ripple (d+1) orders of magnitude smaller. On the other
hand, in the stopband, H is near zero, say H ≈ ±ε, resulting in a worsened stopband,

Himpr = 1− (1∓ ε)d+1≈ 1− (1∓ (d+ 1)ε
) = ±(d+ 1)ε

The twicing procedure has been generalized by Kaiser and Hamming [258] to the
so-called “filter sharpening” that improves both the passband and the stopband. For
example, the lowest-order filter combination that achieves this is,

Himpr = H2(3− 2H)= 3H2 − 2H3 (6.9.4)
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where now both the passband and stopband ripples are replaced by ε → ε2. More
generally, it can be shown [258] that the filter that achieves pth order tangency atH = 0
and qth order tangency at H = 1 is given by

Himpr = Hp+1
q∑
k=0

(p+ k)!
p!k!

(1−H)k (6.9.5)

The multiple exponential moving average case corresponds to p = 0 and q = d,
resulting in Himpr = 1− (1−H)d+1, whereas Eq. (6.9.4) corresponds to p = q = 1.

6.10 Twicing and Zero-Lag Filters

Another advantage of twicing and, more generally, filter sharpening is that the resulting
improved smoothing filter always has zero lag, that is, n̄ = 0.

Indeed, assuming unity DC gain for the original filter, H(z)
∣∣
z=1 = 1, it is straight-

forward to show that the general formula (6.9.5) gives for the first derivative:

H′impr(z)
∣∣
z=1 = 0 (6.10.1)

which implies that its lag is zero, n̄ = 0, by virtue of Eq. (6.1.18). The twicing procedure,
or its generalizations, for getting zero-lag filters is not limited to the exponential moving
average. It can be applied to any other lowpass filter. For example, if we apply it to an
ordinary length-N FIR averager, we would obtain:

H(z)= 1

N

N−1∑
n=0

z−n = 1

N
1− z−N
1− z−1

⇒ Ha(z)= 2H(z)−H2(z) (6.10.2)

The impulse response of Ha(z) can be shown to be, where 0 ≤ n ≤ 2(N − 1),

ha(n)=
(

2N − 1− n
N2

)[
u(n)−2u(n−N)+u(n− 2N + 1)

]
(6.10.3)

It is straightforward to show that n̄a = 0 and that its noise-reduction ratio is

R = 8N2 − 6N + 1

3N3
(6.10.4)

Because of their zero-lag property, double and triple EMA filters are used as trend
indicators in the financial markets [297,298]. The application of twicing to the modified
exponential smoother of Eq. (2.3.5) gives rise to a similar indicator called the instanta-
neous trendline [285], and further discussed in Problem 6.8. We discuss such market
indicators in Sections 6.14–6.24.

The zero-lag property for a causal lowpass filter comes at a price, namely, that al-
though its magnitude response is normalized to unity atω = 0 and has a flat derivative
there, it typically bends upwards developing a bandpass peak near DC before it attenu-
ates to smaller values at higher frequencies. See, for example, Fig. 6.10.1.

This behavior might be deemed to be objectionable since it tends to unevenly amplify
the low-frequency passband of the filter.
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To clarify these remarks, consider a lowpass filter H(ω) (with real-valued impulse
response hn) satisfying the gain and flatness conditions H(0)= 1 and H′(0)= 0 at
ω = 0. The flatness condition implies the zero-lag property n̄ = 0. Using these two
conditions, it is straightforward to verify that the second derivative of the magnitude
response at DC is given by:

d2

dω2

∣∣H(ω)∣∣2
ω=0 = 2 Re

[
H′′(0)

]+ 2|H′(0)|2 = 2 Re
[
H′′(0)

] = −2
∞∑
n=0

n2hn

(6.10.5)
Because n̄ = ∑

n nhn = 0, it follows that some of the coefficients hn must be nega-
tive, which can cause (6.10.5) to become positive, implying thatω = 0 is a local minimum
and hence the response will rise for ωs immediately beyond DC. This is demonstrated
for example in Problem 6.7 by Eq. (6.25.1), so that,

d2

dω2

∣∣H(ω)∣∣2
ω=0 = −2

∞∑
n=0

n2hn = 4λ2

(1− λ)2

A similar calculation yields the result,

d2

dω2

∣∣H(ω)∣∣2
ω=0 = −2

∞∑
n=0

n2hn = 1

3
(N − 1)(N − 2)

for the optimum zero-lag FIR filter of Eq. (6.4.4),

ha(k)= 2(2N − 1− 3k)
N(N + 1)

, k = 0,1, . . . ,N − 1 (6.10.6)

We note that the first derivative of the magnitude response |H(ω)|2 is always zero at
DC, regardless of whether the filter has zero lag or not. Indeed, it follows fromH(0)= 1
and the reality of hn that,

d
dω

∣∣H(ω)∣∣2
ω=0 = 2 Re

[
H′(0)

] = 0 (6.10.7)

Example 6.10.1: Zero-Lag Filters. In Problem 6.7, we saw that the double EMA filter has transfer
function and magnitude response:

Ha(z) = (1− λ)(1+ λ− 2λz−1)
(1− λz−1)2

|Ha(ω)|2 = (1− λ)2
[
1+ 2λ+ 5λ2 − 4λ(1+ λ)cosω

][
1− 2λ cosω+ λ2

]2

and that a secondary peak develops at,

cosωmax = 1+ 4λ− λ2

2(1+ λ) , |Ha(ωmax)|2 = (1+ λ)2

1+ 2λ

The left graph of Fig. 6.10.1 shows the magnitude responses for the two cases of λ = 0.8
and λ = 0.9. The calculated peak frequencies are ωmax = 0.1492 and ωmax = 0.0726
rads/sample, corresponding to periods of 2π/ωmax = 42 and 86 samples/cycle. The peak
points are indicated by black dots on the graph.

6.10. Twicing and Zero-Lag Filters 257

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

ω in units of π

|H
a(ω

)|
2

double EMA filters

 

 
 λ = 0.8
 λ = 0.9
 max

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

ω in units of π

|H
0(ω

)|
2

zero−lag FIR filters

 

 
 N = 15
 N = 33

Fig. 6.10.1 Double EMA and zero-lag FIR filter responses.

The right graph shows the magnitude responses of the optimum zero-lag FIR filter ha(k)
of Eq. (6.10.6) for the two lengths N = 15 and N = 33. The lengths N were calculated to
achieve equivalent behavior in the vicinity of DC, i.e., equal second derivatives at ω = 0,

4λ2

(1− λ)2
= 1

3
(N − 1)(N − 2) ⇒ N = 3

2
+
√

12λ2

(1− λ)2
+ 1

4

The magnitude responses were computed from the above formulas for the double EMA
cases, and by the following MATLAB code in the FIR cases:

w = linspace(0,1,1001); % ω in units of π
N = 15; k = (0:N-1);
h = 2*(2*N-1-3*k)/N/(N+1);
H2 = abs(freqz(h,1,pi*w)).^2; % magnitude response squared

We observe from these examples that the zero-lag filters have less than desirable pass-
bands. However, they do act as lowpass filters, attenuating the high frequencies and
thereby smoothing the input signal. ��

Local Level, Local Slope, and Local Acceleration Filters

Since the twicing operation can be applied to any lowpass filter H(z) resulting in the
zero-lag local-level filter,Ha(z)= 2H(z)−H2(z), it raises the question as to what would
be the corresponding local-slope filterHb(z), in other words, what is the generalization
of Eqs. (6.8.6) for an arbitrary filter H(z), and similarly, what is the generalization of
Eq. (6.8.12) for the thricing operations.

Starting with an arbitrary causal lowpass filter H(z), with impulse response h(n),
and assuming that it has unity gain at DC, the local level, slope, and acceleration filters
depend on the following two filter moments:

μ1 = n̄ =
∞∑
n=0

nh(n) , μ2 =
∞∑
n=0

n2h(n) (6.10.8)
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In terms of these parameters, the generalization of Eq. (6.8.6) is then,

Ha(z) = 2H(z)−H2(z)

Hb(z) = 1

μ1

[
H(z)−H2(z)

] (local level filter)

(local slope filter)
(6.10.9)

while the generalization of (6.8.12) is,⎡⎢⎣Ha(z)Hb(z)
Hc(z)

⎤⎥⎦ = 1

2μ3
1

⎡⎢⎣ 6μ3
1 −6μ3

1 2μ3
1

μ2 + 4μ2
1 −2(μ2 + 3μ2

1) μ2 + 2μ2
1

μ1 −2μ1 μ1

⎤⎥⎦
⎡⎢⎣H(z)H2(z)
H3(z)

⎤⎥⎦ (6.10.10)

and in particular,
Ha = 3H − 3H2 +H3 = 1− (1−H)3 (6.10.11)

For an EMA filter, h(n)= (1− λ)λnu(n), we have,

μ1 = λ
1− λ , μ2 = λ(1+ λ)

(1− λ)2

and Eqs. (6.10.9) and (6.10.10) reduce to (6.8.6) and (6.8.12), respectively. To justify
(6.10.9), consider a noiseless straight-line input signal, yn = a+ bn. Since it is linearly
rising and noiseless, the local-level will be itself, and the local-slope will be constant,
that is, we may define,

an ≡ a+ bn , bn ≡ b
Following the calculation leading to Eq. (6.1.24), we can easily verify that the two

successive outputs, a[1]n , a[2]n , from the twice-cascaded filter h(n), will be,

a[1]n = a+ b(n− μ1)= (a− μ1b)+bn = a+ bn− μ1b = an − μ1bn

a[2]n = (a− μ1b− μ1b)+bn = (a− 2μ1b)+bn = an − 2μ1bn

These may be solved for an, bn in terms of a[1]n , a[2]n , leading to the following time-
domain relationships, which are equivalent to Eqs. (6.10.9),

an = 2a[1]n − a[2]n

bn = 1

μ1

(
a[1]n − a[2]n

)
For the thricing case, consider a noiseless input that is quadratically varying with

time, yn = a + bn + cn2, so that its local level, local slope, and local acceleration may
be defined as,†

an ≡ a+ bn+ cn2 , bn ≡ b+ 2cn , cn ≡ c
†true acceleration would be represented by 2c.
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Upon passing through the first stage of h(n), the output will be,

a[1]n =
∑
k

[
a+ b(n− k)+c(n− k)2]h(k)

=
∑
k

[
a+ b(n− k)+c(n2 − 2nk+ k2)

]
h(k)

= a+ b(n− μ1)+c(n2 − 2nμ1 + μ2)

= (a− bμ1 + cμ2)+(b− 2cμ1)n+ cn2

and applying the same formula to the second and third stages of h(n), we find the
outputs,

a[1]n = (a− bμ1 + cμ2)+(b− 2cμ1)n+ cn2

a[2]n = (a− 2bμ1 + 2cμ2 + 2cμ2
1)+(b− 4cμ1)n+ cn2

a[3]n = (a− 3bμ1 + 3cμ2 + 6cμ2
1)+(b− 6cμ1)n+ cn2

which can be re-expressed in terms of the an, bn, cn signals,

a[1]n = an − μ1bn + μ2cn

a[2]n = an − 2μ1bn + 2(μ2 + μ2
1)cn

a[3]n = an − 3μ1bn + 3(μ2 + 2μ2
1)cn

Solving these for an, bn, cn leads to the time-domain equivalent of Eq. (6.10.10),⎡⎢⎣ anbn
cn

⎤⎥⎦ = 1

2μ3
1

⎡⎢⎣ 6μ3
1 −6μ3

1 2μ3
1

μ2 + 4μ2
1 −2(μ2 + 3μ2

1) μ2 + 2μ2
1

μ1 −2μ1 μ1

⎤⎥⎦
⎡⎢⎢⎣ a

[1]
n

a[2]n
a[3]n

⎤⎥⎥⎦
and in particular,

an = 3a[1]n − 3a[2]n + a[3]n

6.11 Basis Transformations and EMA Initialization

The transformation matrix between the c(n)= [c0(n), c1(n), . . . , cd(n)]T basis and
the cascaded basis a(n)= [a[1]n , a[2]n , . . . , a[d+1]

n ]T can be written in the general form:

a(n)=Mc(n) ⇒ a[r]n =
d∑
i=0

Mrici(n) , r = 1,2, . . . , d+1 (6.11.1)

The matrix elementsMri can be found by looking at the special case when the input
is a polynomial of degree d,

xn+τ =
d∑
i=0

τici(n)
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The convolutional output of the filter H[r](z) is then,

a[r]n =
∞∑
k=0

h[r](k)xn−k =
∞∑
k=0

h[r](k)
d∑
i=0

(−k)ici(n)

It follows that,

Mri =
∞∑
k=0

h[r](k)(−k)i=
∞∑
k=0

αrλk
(k+ r − 1)!
k!(r − 1)!

(−k)i (6.11.2)

with 1 ≤ r ≤ d+ 1 and 0 ≤ i ≤ d. The matrices for d = 1 and d = 2 in Eqs. (6.8.8) and
(6.8.11) are special cases of (6.11.2). The function emat calculates M numerically,

M = emat(d,lambda); % polynomial to cascaded basis transformation matrix

One of the uses of this matrix is to determine the initial condition vector in the a[r]n
basis, a init =Mc init, where c init is more easily determined, for example, using the default
method of the function stema.

The function mema implements the multiple exponential moving average in cascade
form, generating the individual outputs a[r]n :

[a,A] = mema(y,d,la,ainit); % multiple exponential moving average

where A is anN×(d+1)matrix whose nth row is a(n)T= [
a[1]n , a[2]n , . . . , a[d+1]

n
]
, and a

is the an output of Eq. (6.8.17). The (d+1)×1 vector ainit represents the initial values
of a(n), that is, a init =

[
a[1]init , a

[2]
init , . . . , a

[d+1]
init

]T
. If the argument ainit is omitted, it

defaults to the following least-squares fitting procedure:

L = round((1+la)/(1-la)); % effective length of single EMA

cinit = lpbasis(L,d,-1) \ y(1:L); % fit order-d polynomial to first L inputs

M = emat(d,la); % transformation matrix to cascaded basis

ainit = M*cinit; % (d+1)×1 initial vector

The function mema calculates the filter outputs using the built-in function filter
to implement filtering by the single EMA filter H(z)= α/(1 − λz−1) and passing each
output to the next stage, for example, with a[0]n = yn,

a[r] = filter
(
α, [1,−λ], a[r−1], λa[r]init

)
, r = 1,2, . . . , d+ 1 (6.11.3)

The last argument of filter imposes the proper initial state on the filtering op-
eration (the particular form is dictated from the fact that filter uses the transposed
realization.) Eq. (6.11.3) is equivalent to the operations:

a[r]n = λa[r]n−1 +αa[r−1]
n , r = 1,2, . . . , d+ 1 (6.11.4)

Example 6.11.1: EMA Initialization. To clarify these operations and the initializations, we con-
sider a small example using d = 1 (double EMA) and λ = 0.9, α = 1− λ = 0.1. The data
vector y has length 41 and is given in the code segment below.

The top two graphs in Fig. 6.11.1 show the default initialization method in which a linear
fit (because d = 1) is performed to the first L = (1+λ)/(1−λ)= 19 data samples. In the
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bottom two graphs, the initialization is based on performing the linear fit to just the first
L = 5 samples.

In all cases, the linearly-fitted segments are shown on the graphs (short dashed lines). In
the left graphs, the initialization parameters c init, a init were determined at time n = −1
and processing began at n = 0. In the right graphs, the c init, a init were recalculated to
correspond to time n = L−1 (i.e., n = 18 and n = 4 for the top and bottom graphs), and
processing was started at n = L. The table below displays the computations for the left
and right bottom graphs.

For both the left and right tables, the same five data samples {yn,0 ≤ n ≤ 4} were used to
determine the initialization vectors c init, which were then mapped into a init =Mc init. The
transformation matrix M is in this example (cf. Eq. (6.8.8)):

M =
[

1 −λ/α
1 −2λ/α

]
=
[

1 −9
1 −18

]
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initialize at n = −1,  filter for n ≥ 0

 double EMA
 linear fit, L = 19
 data
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 double EMA
 linear fit, L = 19
 data
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initialize at n = −1,  filter for n ≥ 0

 double EMA
 linear fit, L = 5
 data
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initialize at n = L−1,  filter for n ≥ L

 double EMA
 linear fit, L = 5
 data

Fig. 6.11.1 Double-EMA initialization examples.



262 6. Exponential Smoothing

n yn a[1]n a[2]n
−1 −5.2000 −18.7000

0 7 −3.9800 −17.2280
1 14 −2.1820 −15.7234
2 12 −0.7638 −14.2274
3 19 1.2126 −12.6834
4 12 2.2913 −11.1860

5 14 3.4622 −9.7211
6 16 4.7160 −8.2774
...

...
...

...
39 44 39.2235 30.5592
40 47 40.0011 31.5034

n yn a[1]n a[2]n
−1

0 7
1 14
2 12
3 19
4 12 2.3000 −11.2000

5 14 3.4700 −9.7330
6 16 4.7230 −8.2874
...

...
...

...
39 44 39.2237 30.5596
40 47 40.0013 31.5037

For the left table, the data fitting relative to n = −1 gives:

c init =
[

8.3
1.5

]
⇒ a init =Mc init =

[
1 −9
1 −18

][
8.3
1.5

]
=
[
−5.2
−18.7

]

obtained from cinit = S\y(1:L), indeed, with S = lpbasis(L, d,−1), we find

S =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1
1 2
1 3
1 4
1 5

⎤⎥⎥⎥⎥⎥⎥⎦ ⇒ c init = (STS)−1STy1:L =
[

0.8 0.5 0.2 −0.1 −0.4
−0.2 −0.1 0.0 0.1 0.2

]
⎡⎢⎢⎢⎢⎢⎢⎣

7
14
12
19
12

⎤⎥⎥⎥⎥⎥⎥⎦ =
[

8.3
1.5

]

These initial values are shown at the top of the left table. The rest of the table entries are
computed by cranking the difference equations for n ≥ 0,

a[1]n = λa[1]n−1 +αyn
a[2]n = λa[2]n−1 +αa[1]n

for example,

a[1]0 = λa[1]−1 +αy0 = (0.9)(−5.2)+(0.1)(7)= −3.980

a[2]0 = λa[2]−1 +αa[1]0 = (0.9)(−18.7)+(0.1)(−3.98)= −17.228

For the right table, the initialization coefficients relative ton = L−1 = 4 may be determined
by boosting those for n = −1 by L = 5 time units:

c̄ init = (FT)Lc init =
[

1 1
0 1

]5 [
8.3
1.5

]
=
[

1 5
0 1

][
8.3
1.5

]
=
[

15.8
1.5

]

ā init =Mc̄ init =
[

1 −9
1 −18

][
15.8
1.5

]
=
[

2.3
−11.2

]
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Alternatively, c̄ init can be computed from cinit = lpbasis(L,d,L-1)\y(1:L), i.e.,

S =

⎡⎢⎢⎢⎢⎢⎢⎣
1 −4
1 −3
1 −2
1 −1
1 0

⎤⎥⎥⎥⎥⎥⎥⎦ ⇒ c̄ init = (STS)−1STy1:L =
[
−0.2 0.0 0.2 0.4 0.6
−0.2 −0.1 0.0 0.1 0.2

]
⎡⎢⎢⎢⎢⎢⎢⎣

7
14
12
19
12

⎤⎥⎥⎥⎥⎥⎥⎦ =
[

15.8
1.5

]

The ā init values are shown on the right table at the n = 4 line. The rest of the table is
computed by cranking the above difference equations starting at n = 5. For example,

a[1]5 = λa[1]4 +αy5 = (0.9)(2.3)+(0.1)(14)= 3.47

a[2]5 = λa[2]4 +αa[1]5 = (0.9)(−11.2)+(0.1)(3.47)= −9.733

We note that the filtered values at n = L− 1 = 4 on the left table and the initial values on
the right table are very close to each other, and therefore, the two initialization methods
produce very comparable results for the output segments n ≥ L. The following MATLAB
code illustrates the generation of the bottom graphs in Fig. 6.11.1:

y = [ 7 14 12 19 12 14 16 26 24 22 13 22 26 15 22 28 28 29 34 23 26 ...
39 29 34 32 38 40 40 40 35 32 41 45 41 41 48 42 44 52 44 47 ]’;

n = (0:length(y)-1)’;

d=1; F=binmat(d,1); L=5; % F = boost matrix - not needed

la = 0.9; al = 1-la;
% L = round((1+la)/(1-la)); % use this L for the top two graphs

cinit = lpbasis(L,d,-1)\y(1:L); % fit relative to n = −1

M = emat(d,la); % transformation matrix

ainit = M*cinit; % initial values for cascade realization

C = stema(y,d,la,cinit); % needed for testing purposes only

[a,A] = mema(y,d,la,ainit); % filter for n ≥ 0

N1 = norm(A-C*M’) + norm(a-C(:,1)); % compare stema and mema outputs

t = (0:L-1)’; p = lpbasis(L,d,-1)*cinit; % initial L fitted values

figure; plot(n,y,’.’, n,a,’-’, t,p,’--’, n,y,’:’); % bottom left graph

cinit = lpbasis(L,d,L-1)\y(1:L); % fit relative to n = L− 1

% or, multiply previous cinit by (F’)^L

ainit = M*cinit; % initial values for cascade realization

nL = n(L+1:end); yL = y(L+1:end); % restrict input to n ≥ L

C = stema(yL,d,la,cinit); % needed for testing purposes only

[a,A] = mema(yL,d,la,ainit); % filter for n ≥ L

N2 = norm(A-C*M’) + norm(a-C(:,1)); % compare stema and mema outputs

t = (0:L-1)’; p = lpbasis(L,d,L-1)*cinit; % initial L fitted values

figure; plot(n,y,’.’, nL,a,’-’, t,p,’--’, n,y,’:’); % bottom right graph

Ntot = N1 + N2 % overall test – should be zero
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The first initialization scheme (finding c init, a init at n = −1 and starting filtering at n = 0)
is generally preferable because it produces an output of the same length as the input. ��

An alternative initialization scheme that is more common in financial market trading
applications of EMA is discussed in Sec. 6.17.

6.12 Holt’s Exponential Smoothing

We recall that the d = 1 steady-state EMA was given by[
an
bn

]
=
[

1 1
0 1

][
an−1

bn−1

]
+
[
α1

α2

]
(yn − an−1 − bn−1) (6.12.1)

with asymptotic gain factorsα1 = 1−λ2 andα2 = (1−λ)2, which are both computable
from a single λ parameter.

Holt [240] has generalized (6.12.1) to allow arbitrary values for α1,α2. The addi-
tional flexibility has been found to be effective in applications. There is an alternative
way of writing (6.12.1). From the first equation, we have

an = an−1+bn−1+α1(yn−an−1−bn−1) ⇒ yn−an−1−bn−1 = 1

α1
(an−an−1−bn−1)

and substituting into the second,

bn = bn−1 +α2(yn − an−1 − bn−1)= bn−1 + α2

α1
(an − an−1 − bn−1)

Defining ᾱ2 = α2/α1, we may write the new system as follows:

an = an−1 + bn−1 +α1(yn − an−1 − bn−1)

bn = bn−1 + ᾱ2(an − an−1 − bn−1)
(6.12.2)

and defining the effective λ-parameters λ1 = 1−α1 and λ̄2 = 1− ᾱ2,

an = λ1(an−1 + bn−1)+α1yn

bn = λ̄2bn−1 + ᾱ2(an − an−1)
(Holt’s exponential smoothing) (6.12.3)

Eq. (6.12.1) is referred to a exponential smoothing with “local trend”. The first equa-
tion tracks the local level an, and the second, the local slope bn, which is being deter-
mined by smoothing the first-order difference of the local level an − an−1.

The predicted value is as usual ŷn/n−1 = an−1 + bn−1, and for the next time instant,
ŷn+1/n = an + bn, and τ steps ahead, ŷn+τ/n = an + bnτ. The MATLAB function holt
implements Eq. (6.12.1):

C = holt(y,a1,a2,cinit); % Holt’s exponential smoothing
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where C has the same meaning as stema, its nth row cT(n)= [an, bn] holding the local
level and slope at time n. The initialization vector cinit can be chosen as in stema by
a linear fit to the first L samples of y, where L = (1 + λ)/(1 − λ), with λ determined
from α1 from the relationship α1 = 1 − λ2 or λ = √1−α1. Another possibility is to
choose c init = [y0,0]T, or, [y0, y1 − y0]T.

Like emaerr, the MATLAB function holterr evaluates the MSE/MAE/MAPE errors over
any set of parameter pairs (α1,α2) and produces the corresponding optimum pair
(α1,opt,α2,opt):

[err,a1opt,a2opt] = holterr(y,a1,a2,type,cinit); % mean error measures

By taking z-transforms of Eq. (6.12.1), we obtain the transfer functions from yn to
the two outputs an, bn:

Ha(z) = α1 + (α2 −α1)z−1

1+ (α1 +α2 − 2)z−1 + (1−α1)z−2

Hb(z) = α2(1− z−1)
1+ (α1 +α2 − 2)z−1 + (1−α1)z−2

(6.12.4)

The transfer function from yn to the predicted output ŷn+1/n isH(z)= Ha(z)+Hb(z).
Making the usual assumption that yn is a white noise sequence, the variance of ŷn+1/n
will be σ2

ŷ =Rσ2
y , where R is the NRR of H(z):

R =
∞∑
n=0

h2(n)= 2α2
1 +α1α2 + 2α2

α1(4− 2α1 −α2)
(6.12.5)

This reduces to Eq. (6.7.9) in the EMA case of α1 = 1 − λ2 and α2 = (1 − λ)2,
while Eq. (6.12.4) reduces to (6.8.5). It can be shown that R remains less than unity
for 0 ≤ α1 ≤ 1 and 0 ≤ α2 ≤ 2α1(1 − α1)/(1 + α1), with R reaching unity at α1 =√

2− 1 = 0.4142 and α2 = 2α1(1−α1)/(1+α1)= 2(3− 2
√

2)= 0.3431.

6.13 State-Space Models for Holt’s Method

Just like the d = 0 local level case could be represented by an innovations model, so
can the linear trend model. We may define the model by assuming that the prediction
is perfect and thus, the prediction error en/n−1 = yn − ŷn/n−1 ≡ εn is a white noise
signal. The state vector may be defined as xn = [an, bn]T, leading to the innovations
state-space model,

yn = [1,1]xn−1 + εn

xn =
[

1 1
0 1

]
xn−1 +

[
α1

α2

]
εn

(6.13.1)

Eliminating the state vector, we may obtain the transfer function from the innova-
tions sequence εn to the observation yn,

Y(z)
E(z) =

1+ (α1 +α2 − 2)z−1 + (1−α1)z−2

(1− z−1)2
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which leads to an ARIMA(0,2,2) or IMA(2,2) equivalent signal model:

∇2yn = yn − 2yn−2 + yn−2 = εn + (α1 +α2 − 2)εn−1 + (1−α1)εn−2 (6.13.2)

For α1 = 1− λ2 and α2 = (1− λ)2, we obtain the special case [253],

Y(z)
E(z) =

(1− λz−1)2

(1− z−1)2
, ∇2yn = εn − 2λεn−1 + λ2εn−2 (6.13.3)

The following more conventional formulation of the linear trend state-space model
has steady-state Kalman filtering equations that are equivalent to Holt’s method:[

an+1

bn+1

]
=
[

1 1
0 1

][
an
bn

]
+
[
wn
un

]
, yn = [1,0]

[
an
bn

]
+ vn (6.13.4)

where an, bn represent the local level and local slope, respectively, and wn,un, vn are
zero-mean, mutually uncorrelated, white-noise signals of variances σ2

w,σ2
u,σ2

v . Denot-
ing the state vector and its filtered and predicted estimates by,

xn =
[
an
bn

]
, x̂n/n =

[
ân
b̂n

]
, x̂n+1/n =

[
1 1
0 1

][
ân
b̂n

]

it turns out that the steady-state Kalman filtering equations take exactly the innovations
form of Eq. (6.13.1):

εn = yn − (ân−1 + b̂n−1) ,
[
ân
b̂n

]
=
[

1 1
0 1

][
ân−1

b̂n−1

]
+
[
α1

α2

]
εn (6.13.5)

where α1,α2 are related to the noise variances by:

σ2
w

σ2
v
= α2

1 +α1α2 − 2α2

1−α1
,
σ2
u

σ2
v
= α2

2

1−α1
(6.13.6)

State-space models provide a modern way of thinking about exponential smoothing
and will be explored further in Chap. 13.

There is an extensive literature on exponential smoothing, a small subset of which
is [232–279]. There are many other variants (no less than 15), such as multiplicative,
seasonal, adaptive versions. A recent review of all cases that emphasizes the state-space
point of view is found in [239].

We finish by mentioning the Holt-Winters generalization [241] of Holt’s method to
seasonal data. In addition to tracking the level and slope signals an, bn the method also
tracks the local seasonal component, say sn. For the additive version, we have:

an = λ1(an−1 + bn−1)+α1(yn − sn−D)
bn = λ̄2bn−1 + ᾱ2(an − an−1)

sn = λ3sn−D +α3(yn − an−1 − bn−1)

(Holt-Winters) (6.13.7)

whereD is the assumed periodicity of the seasonal data, andα3 and λ3 = 1−α3 are the
smoothing parameters associated with the seasonal component. The predicted estimate
is obtained by ŷn+1/n = an + bn + sn−D.
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6.14 Filtering Methods in Financial Market Trading

Technical analysis of financial markets refers to a family of signal processing methods
and indicators used by stock market traders to make sense of the constantly fluctuating
market data and arrive at successful “buy” or “sell” decisions.

Both linear and nonlinear filtering methods are used. A comprehensive reference on
such methods is the Achelis book [280]. Some additional references are [281–347].

Here, we look briefly at some widely used indicators arising from FIR or EMA filters,
and summarize their properties and their MATLAB implementation. In order to keep
the discussion self-contained, some material from the previous sections is repeated.

6.15 Moving Average Filters – SMA, WMA, TMA, EMA

Among the linear filtering methods are smoothing filters that are used to smooth out
the daily fluctuations and bring out the trends in the data. The most common filters are
the simple moving average (SMA) and the exponentially weighted moving average (EMA),
and variations, such as the weighted or linear moving average (WMA) and the triangular
moving average (TMA). The impulse responses of these filters are:

(SMA) h(n)= 1

N
, 0 ≤ n ≤ N − 1

(WMA) h(n)= 2(N − n)
N(N + 1)

, 0 ≤ n ≤ N − 1

(TMA) h(n)= N − ∣∣n−N + 1
∣∣

N2
, 0 ≤ n ≤ 2N − 2

(EMA) h(n)= (1− λ)λn , 0 ≤ n <∞

(6.15.1)

with transfer functions,

(SMA) H(z)= 1+ z−1 + z−2 + · · · + z−N+1

N
= 1

N
1− z−N
1− z−1

(WMA) H(z)= 2

N(N + 1)
N − (N + 1)z−1 + z−N−1

(1− z−1)2

(TMA) H(z)=
[

1

N
1− z−N
1− z−1

]2

(EMA) H(z)= α
1− λz−1

, α = 1− λ

(6.15.2)

whereN denotes the filter span for the SMA and WMA cases, while for the EMA case, λ is
a forgetting factor such that 0 < λ < 1, which is usually specified in terms an equivalent
FIR length N given by the following condition, which implies that the SMA and the EMA
filters have the same lag and the same noise reduction ratio, as discussed in Sec. 6.1,

N = 1+ λ
1− λ ⇒ λ = N − 1

N + 1
⇒ α = 1− λ = 2

N + 1
(6.15.3)
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The TMA filter has length 2N − 1 and is evidently the convolution of two length-N
SMAs. Denoting by yn the raw data, where n represents the nth trading day (or, weekly,
monthly, or quarterly sample periods), we will denote the output of the moving average
filters by an representing the smoothed local level of yn. The corresponding I/O filtering
equations are then,

(SMA) an = yn + yn−1 + yn−2 + · · · + yn−N+1

N

(WMA) an = 2

N(N + 1)

N−1∑
k=0

(N − k)yn−k

(TMA) an = 1

N2

2N−2∑
k=0

(
N − |k−N + 1|)yn−k

(EMA) an = λan−1 + (1− λ)yn

(6.15.4)

The typical trading rule used by traders is to “buy” when an is rising and yn lies
above an, and to “sell” when an is falling and yn lies below an.

Unfortunately, these widely used filters have an inherent lag, which can often result
in false buy/sell signals. The basic tradeoff is that longer lengths N result in longer
lags, but at the same time, the filters become more effective in smoothing and reducing
noise in the data. The noise-reduction capability of any filter is quantified by its “noise-
reduction ratio” defined by,

R =
∞∑
n=0

h2(n) (6.15.5)

with smaller R corresponding to more effective noise reduction. By construction, the
above filters are lowpass filters with unity gain at DC, therefore, satisfying the constraint,

∞∑
n=0

h(n)= 1 (6.15.6)

The “lag” is defined as the group delay at DC which, after using Eq. (6.15.6), is given by,

n̄ =
∞∑
n=0

nh(n) (6.15.7)

One can easily verify that the noise-reduction ratios and lags of the above filters are:

(SMA) R = 1

N
, n̄ = N − 1

2

(WMA) R = 4N + 2

3N(N + 1)
, n̄ = N − 1

3

(TMA) R = 2N2 + 1

3N3
, n̄ = N − 1

(EMA) R = 1− λ
1+ λ =

1

N
, n̄ = λ

1− λ =
N − 1

2
, for equivalent N

(6.15.8)

6.15. Moving Average Filters – SMA, WMA, TMA, EMA 269

The tradeoff is evident, with R decreasing and n̄ increasing with N.
We include one more lowpass smoothing filter, the integrated linear regression slope

(ILRS) filter [307] which is developed in Sec. 6.16. It has unity DC gain and its impulse
response, transfer function, lag, and NRR are given by,

(IRLS) h(n)= 6(n+ 1)(N − 1− n)
N(N2 − 1)

, n = 0,1, . . . ,N − 1

H(z)= 6

N(N2 − 1)
N(1− z−1)(1+ z−N)−(1− z−N)(1+ z−1)

(1− z−1)3

n̄ = N − 2

2
, R = 6(N2 + 1)

5N(N2 − 1)

(6.15.9)

Fig. 6.15.1 compares the frequency responses of the above filters. We note that
the ILRS has similar bandwidth as the WMA, but it also has a smaller NRR and more
suppressed high-frequency range, thus, resulting in smoother output.
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Fig. 6.15.1 Frequency responses of SMA, WMA, TMA, ILRS, and EMA filters.

As a small example, we also give for comparison the impulse responses, h = [h0, h1, . . . ],
of the SMA, WMA, TMA, and ILRS filters for the case N = 5,

(SMA) h = 1

5

[
1, 1, 1, 1, 1

]
(WMA) h = 1

15

[
5, 4, 3, 2, 1

]
(TMA) h = 1

25

[
1, 2, 3, 4, 5, 4, 3, 2, 1

]
(ILRS) h = 1

10

[
2, 3, 3, 2, 0

]
with the SMA having constant weights, the WMA having linearly decreasing weights, the
TMA has triangular weights, and the last coefficient hN−1 of the ILRS always being zero.
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The following MATLAB functions implement the SMA, WMA, TMA, and ILRS moving
averages. The input array y represents the financial data to be filtered.

a = sma(y,N,yin); % simple moving average

a = wma(y,N,yin); % weighted moving average

a = tma(y,N,yin); % triangular moving average

a = ilrs(y,N,yin); % integrated linear regression slope

The string variable yin specifies the way the filters are initialized and can take on
the following values as explained further in Sec. 6.19,

yin = ’f’, % progressive filtering (default method)

yin = ’n’, % initial transients are NaNs (facilitates plotting)

yin = ’c’, % standard convolutional transients

Some comparisons of these and other moving average indicators are presented in
Figures 6.18.2 and 6.21.1.

6.16 Predictive Moving Average Filters

The predictive FIR and double EMA filters discussed in Sects. 6.4 and 6.8 find application
in stock market trading. Their main property is the elimination or shortening of the
lag, which is accomplished by tracking both the local level and the local slope of the
data. More discussion of these filters and their application in the trading context may
be found in Refs. [297–308].

The local-level and local-slope FIR filters ha(k) and hb(k) were given in Eq. (6.4.4),
and their filtering equations by (6.4.5). They define the following market indicators:

an =
N−1∑
k=0

ha(k)yn−k = linear regression indicator

bn =
N−1∑
k=0

hb(k)yn−k = linear regression slope indicator

an + bn =
N−1∑
k=0

h1(k)yn−k = time-series forecast indicator

(6.16.1)

where h1(k)= ha(k)+hb(k). The quantity an + bn, denoted by ŷn+1/n, represents the
one-step ahead forecast or prediction to time n+1 based on the data up to time n. More
generally, the prediction τ steps ahead from time n is given by the following indicator,
which we will refer to as the predictive moving average (PMA),

ŷn+τ/n = an + τbn =
N−1∑
k=0

hτ(k)yn−k (PMA) (6.16.2)

where, as follows from Eq. (6.4.4), we have for n = 0,1, . . . ,N − 1,
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hτ(n)= ha(n)+τhb(n)= 2(2N − 1− 3n)
N(N + 1)

+ τ 6(N − 1− 2n)
N(N2 − 1)

(6.16.3)

The time “advance” τ can be non-integer, positive, or negative. Positive τs corre-
spond to forecasting, negative τs to delay or lag. In fact, the SMA and WMA are special
cases of Eq. (6.16.3) for the particular choices of τ = −(N− 1)/2 and τ = −(N− 1)/3,
respectively.

The phrase “linear regression indicators” is justified in Sec. 6.18. The filters hτ(n)
are very flexible and useful in the trading context, and are actually the optimal filters that
have minimum noise-reduction ratio subject to the two constraints of having unity DC
gain and lag equal to −τ, that is, for fixed N, hτ(n) is the solution of the optimization
problem (for N = 1, we ignore the lag constraint to get, hτ(n)= 1, for n = 0, and all τ):

R =
N−1∑
n=0

h2(n)= min, subject to
N−1∑
n=0

h(n)= 1 ,
N−1∑
n=0

nhτ(n)= −τ (6.16.4)

This was solved in Sec. 6.4. The noise-reduction-ratio of these filters is,

Rτ =
N−1∑
n=0

h2
τ(n)=

1

N
+ 3(N − 1+ 2τ)2

N(N2 − 1)
(6.16.5)

We note the two special cases, first for the SMA filter having τ = −(N − 1)/2, and
second, for the zero-lag filter ha(n) having τ = 0,

RSMA = 1

N
, Ra = 4N − 2

N(N + 1)

The transfer functions of the FIR filters ha(n), hb(n) are not particularly illuminat-
ing, however, they are given below in rational form,

Ha(z) =
N−1∑
n=0

ha(n)z−n = 2

N(N + 1)
N(1− z−1)(2+ z−N)−(1+ 2z−1)(1− z−N)

(1− z−1)2

Hb(z) =
N−1∑
n=0

hb(n)z−n = 6

N(N2 − 1)
N(1− z−1)(1+ z−N)−(1+ z−1)(1− z−N)

(1− z−1)2

By a proper limiting procedure, one can easily verify the unity-gain and zero-lag
properties, Ha(z)

∣∣
z=1 = 1, and, n̄ = −H′a(z)

∣∣
z=1 = 0.

The ILRS filter mentioned in the previous section is defined as the integration, or
cumulative sum, of the slope filter, which can be evaluated explicitly resulting in (6.15.9),

h(n)=
n∑
k=0

hb(k)=
n∑
k=0

6(N − 1− 2k)
N(N2 − 1)

= 6(n+ 1)(N − 1− n)
N(N2 − 1)

(6.16.6)

where 0 ≤ n ≤ N − 1. For n > N, since hb(k) has duration N, the above sum remains
constant and equal to zero, i.e., equal to its final value,

N−1∑
k=0

hb(k)= 0
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The corresponding transfer function is the integrated (accumulated) form of Hb(z)
and is easily verified to be as in Eq. (6.15.9),

H(z)= Hb(z)
1− z−1

The following MATLAB function, pma, implements Eq. (6.16.2) and the related indi-
cators, where the input array y represents the financial data to be filtered. The function,
pmaimp, implements the impulse response of Eq. (6.16.3).

at = pma(y,N,tau,yin); % at = a + tau*b, prediction distance tau

a = pma(y,N,0,yin); % local-level indicator
b = pma(y,N,1,yin)-pma(y,N,0,yin); % local-slope indicator

af = pma(y,N,1,yin); % time-series forecast indicator, af = a + b

ht = pmaimp(N,tau); % impulse response of predictive filter
ha = pmaimp(N,0); % impulse response of local level filter
hb = pmaimp(N,1)-pmaimp(N,0); % impulse response of local slope filter

and again, the string variable yin specifies the way the filters are initialized and can take
on the following values,

yin = ’f’, % progressive filtering (default method)

yin = ’n’, % initial transients are NaNs (facilitates plotting)

yin = ’c’, % standard convolutional transients

A few examples of impulse responses are as follows, for N = 5,8,11,

N = 5 , ha = 1

5

[
3 , 2 , 1 , 0 , −1

]
(local level)

hb = 1

10

[
2 , 1 , 0 , −1 , −2

]
(local slope)

h1 = 1

10

[
8 , 5 , 2 , −1 , −4

]
(time-series forecast)

N = 8 , ha = 1

12

[
5 , 4 , 3 , 2 , 1 , 0 , −1 , −2

]
hb = 1

84

[
7 , 5 , 3 , 1 , −1 , −3 , −5 , −7

]
h1 = 1

28

[
14 , 11 , 8 , 5 , 2 , −1 , −4 , −7

]
N = 11 , ha = 1

22

[
7 , 6 , 5 , 4 , 3 , 2 , 1 , 0 , −1 , −2 , −3

]
hb = 1

110

[
5 , 4 , 3 , 2 , 1 , 0 , −1 , −2 , −3 , −4 , −5

]
h1 = 1

55

[
20 , 17 , 14 , 11 , 8 , 5 , 2 , −1 , −4 , −7 , −10

]
Some comparisons of PMA with other moving average indicators are shown in Figures

6.18.2 and 6.21.1.
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6.17 Single, Double, and Triple EMA Indicators

As discussed in Sec. 6.6, the single EMA (SEMA), double EMA (DEMA), and triple EMA
(TEMA) steady-state exponential smoothing recursions are as follows,

en/n−1 = yn − ŷn/n−1 = yn − an−1

an = an−1 + (1− λ)en/n−1
(SEMA) (6.17.1)

en/n−1 = yn − ŷn/n−1 = yn − (an−1 + bn−1)[
an
bn

]
=
[

1 1
0 1

][
an−1

bn−1

]
+
[

1− λ2

(1− λ)2

]
en/n−1

(DEMA) (6.17.2)

en/n−1 = yn − ŷn/n−1 = yn − (an−1 + bn−1 + cn−1)⎡⎢⎣ anbn
cn

⎤⎥⎦ =
⎡⎢⎣ 1 1 1

0 1 2
0 0 1

⎤⎥⎦
⎡⎢⎣ an−1

bn−1

cn−1

⎤⎥⎦+
⎡⎢⎣α1

α2

α3

⎤⎥⎦en/n−1

(TEMA) (6.17.3)

where

α1 = 1− λ3 , α2 = 3

2
(1− λ)(1− λ2) , α3 = 1

2
(1− λ)3

and ŷn/n−1 represents the forecast of yn based on data up to time n−1. More generally,
the forecast ahead by a distance τ is given by,

(SEMA) ŷn+τ/n = an
(DEMA) ŷn+τ/n = an + bnτ
(TEMA) ŷn+τ/n = an + bnτ+ cnτ2

⇒
ŷn/n−1 = an−1

ŷn/n−1 = an−1 + bn−1

ŷn/n−1 = an−1 + bn−1 + cn−1

(6.17.4)

We saw in Sec. 6.8 that an alternative way of computing the local level and local slope
signals an, bn in the DEMA case is in terms of the outputs of the cascade of two single
EMAs, that is, with α = 1− λ,

a[1]n = λa[1]n−1 +αyn
a[2]n = λa[2]n−1 +αa[1]n

(6.17.5)

an = 2a[1]n − a[2]n = local level DEMA indicator

bn = α
λ
(
a[1]n − a[2]n

) = local slope DEMA indicator
(6.17.6)

The transfer functions from yn to the signals an, bn were given in Eq. (6.8.5), and
are expressible as follows in terms of the transfer function of a single EMA, H(z)=
α/(1− λz−1),
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Ha(z) = α(1+ λ− 2λz−1)
(1− λz−1)2

= 2H(z)−H2(z)= 1− [1−H(z)]2

Hb(z) = α2(1− z−1)
(1− λz−1)2

= α
λ
[
H(z)−H2(z)

] (6.17.7)

Similarly, in the TEMA case, the signals an, bn, cn can be computed from the outputs
of three successive single EMAs via the following relationships,

a[1]n = λa[1]n−1 +αyn
a[2]n = λa[2]n−1 +αa[1]n
a[3]n = λa[3]n−1 +αa[2]n

(6.17.8)

⎡⎢⎣ anbn
cn

⎤⎥⎦ = 1

2λ2

⎡⎢⎢⎣
6λ2 −6λ2 2λ2

α(1+ 5λ) −2α(1+ 4λ) α(1+ 3λ)
α2 −2α2 α2

⎤⎥⎥⎦
⎡⎢⎢⎣ a

[1]
n

a[2]n
a[3]n

⎤⎥⎥⎦ (6.17.9)

where α = 1− λ. See also Eqs. (6.8.9)–(6.8.13). In particular, we have,

an = 3a[1]n − 3a[2]n + a[3]n (local level TEMA indicator) (6.17.10)

Initialization issues for the single EMA, DEMA, and TEMA recursions are discussed
in Sec. 6.19. The following MATLAB functions implement the corresponding filtering
operations, where the input array y represents the financial data to be filtered.

a = sema(y,N,yin); % single exponential moving average
[a,b,a1,a2] = dema(y,N,yin); % double exponential moving average

[a,b,c,a1,a2,a3] = tema(y,N,yin); % triple exponential moving average

The variable yin specifies the way the filters are initialized and can take on the
following possible values,

yin = y(1) % default for SEMA
yin = ’f’ % fits polynomial to first N samples, default for DEMA, TEMA
yin = ’c’ % cascaded initialization for DEMA, TEMA, described in Sect. 6.19
yin = any vector of initial values of [a], [a;b], or [a;b;c] at n=-1
yin = [0], [0;0], or [0;0;0] for standard convolutional output

Even though the EMA filters are IIR filters, traders prefer to specify the parameter λ
of the EMA recursions through the SMA-equivalent length N defined as in Eq. (6.1.16),

λ = N − 1

N + 1
� N = 1+ λ

1− λ (6.17.11)

The use of DEMA and TEMA as market indicators with less lag was first advocated
by Mulloy [297,298]. Some comparisons of these with other moving average indicators
are shown in Fig. 6.18.2.

6.18. Linear Regression and R-Square Indicators 275

6.18 Linear Regression and R-Square Indicators

In the literature of technical analysis, the PMA indicators of Eq. (6.16.1) are usually not
implemented as FIR filters, but rather as successive fits of straight lines to the past N
data from the current data point, that is, over the time span, [n−N+ 1, n], for each n.
This is depicted Fig. 6.18.1 below.

Fig. 6.18.1 Local linear regression and prediction.

They have been rediscovered many times in the past and different names given to
them. For example, Lafferty [300] calls them “end-point moving averages”, while Rafter
[303] refers to them as “moving trends.” Their application as a forecasting tool was
discussed first by Chande [299].

Because of the successive fitting of straight lines, the signals an, bn are known as
the “linear regression” indicator and the “linear regression slope” indicator, respectively.
The an indicator is also known as “least-squares moving average” (LSMA).

For each n ≥ N − 1, the signals an, bn can be obtained as the least-squares solution
of the following N×2 overdetermined system of linear equations in two unknowns:

an − kbn = yn−k , k = 0,1, . . . ,N − 1 (6.18.1)

which express the fitting of a straight line, a + bτ, to the data [yn−N+1, . . . , yn−1, yn],
that is, over the time window, [n−N+ 1, n], where a is the intercept at the end of the
line. The overdetermined system (6.18.1) can be written compactly in matrix form by
defining the length-N column vectors,

u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
...
1
...
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
2
...
k
...

N − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, yn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yn
yn−1

yn−2

...
yn−k

...
yn−N+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ [

u,−k
][ an

bn

]
= yn (6.18.2)

with the least-squares solution expressed in the following MATLAB-like vectorial nota-
tion using the backslash operator,
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[
an
bn

]
= [

u,−k
] \yn (6.18.3)

Indeed, this is the solution for the local level and local slope parameters a,b that
minimize the following least-squares performance index, defined for each n,

Jn =
N−1∑
k=0

(
a− bk− yn−k

)2 = min (6.18.4)

In order to account also for the initial transient period, 0 ≤ n ≤ N − 1, we may
change the upper limit of summation in Eq. (6.18.4) to,

Jn =
min(n,N−1)∑

k=0

(
a− bk− yn−k

)2 = min (6.18.5)

which amounts to fitting a straight line to a progressively longer and longer data vector
until its length becomes equal to N, that is, starting with a0 = y0 and b0 = 0,† we fit a
line to [y0, y1] to get a1, b1, then fit a line to [y0, y1, y2] to get a2, b2, and so on until
n = N − 1, and beyond that, we continue with a length-N data window.

Thus, we may state the complete solution for all 0 ≤ n ≤ L−1, where L is the length
of the data vector yn, using the backslash notation,‡

for each, n = 0,1,2, . . . , L− 1, do:

Kn = min(n,N − 1)+1 = fitting length, Kn = N when n ≥ N − 1

k = [
0 : Kn − 1

]′ = column vector, length Kn

yn = y(n− k)= column vector, [yn, yn−1, . . . , yn−Kn+1]T

u = ones(Kn,1)= column vector[
an
bn

]
= [

u,−k
] \yn = linear regression indicators

R2(n)= (
corr(−k,yn)

)2 = 1− det
(
corrcoef(−k,yn)

) = R2 indicator

(6.18.6)

where we also included the so-called R-square indicator,∗ which is the coefficient of
determination for the linear fit, and quantifies the strength of the linear relationship,
that is, higher values of R2 suggest that the linear fit is statistically significant with a
certain degree of confidence (usually taken to be at the 95% confidence level).

The MATLAB function, r2crit in the OSP toolbox, calculates the critical values R2
c of

R2 for a given N and given confidence level p, such that if R2(n)> R2
c , then the linear

fit is considered to be statistically significant for the nth segment. Some typical critical
values of R2

c at the p = 0.95 and p = 0.99 levels are listed below in Eq. (6.18.7), and
were computed with the following MATLAB commands (see also [280]),

†b0 = 0 is an arbitrary choice since b0 is indeterminate for N = 1.
‡the backslash solution also correctly generates the case n = 0, i.e., a0 = y0 and b0 = 0.
∗where, corr, det, and corrcoef, are built-in MATLAB functions.
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N = [5, 10, 14, 20, 25, 30, 50, 60, 120];

R2c = r2crit(N,0.95);

R2c = r2crit(N,0.99);

N p = 0.95 p = 0.99
5 0.7711 0.9180

10 0.3993 0.5846
14 0.2835 0.4374
20 0.1969 0.3152
25 0.1569 0.2552
30 0.1303 0.2143
50 0.0777 0.1303
60 0.0646 0.1090

120 0.0322 0.0549

(6.18.7)

The standard errors for the successive linear fits, as well as the standard errors
for the quantities an, bn, can be computed by including the following lines within the
for-loop in Eq. (6.18.6),

en = yn −
[
u,−k

][ an
bn

]
= fitting error, column vector

σe(n) =
√

eTnen
Kn − 2

= standard error

σa(n) =
√

2(2Kn − 1)
Kn(Kn + 1)

σe(n)= standard error for an

σb(n) =
√

12

Kn(K2
n − 1)

σe(n)= standard error for bn

(6.18.8)

The derivation of the expressions for σe,σa,σb follows from the standard theory
of least-squares linear regression. For example, linear regression based on the K pairs,
(xk, yk), k = 0,1, . . . , K− 1, results in the estimates, ŷk = a+ bxk, and error residuals,
ek = yk − ŷk, from which the standard errors can be calculated from the following
expressions [349],

σ2
e =

1

K − 2

N−1∑
k=0

e2
k , σ2

a = σ2
e
x2

Kσ2
x
, σ2

b =
σ2
e

Kσ2
x

(6.18.9)

For our special case of equally-spaced data, xk = −k, we easily find,

x = −k = − 1

K

K−1∑
k=0

k = −K − 1

2

x2 = k2 = 1

K

K−1∑
k=0

k2 = (K − 1)(2K − 1)
6

σ2
x = σ2

k = k2 − k2 = K2 − 1

12

⇒
σ2
a =

2(2K − 1)
K(K + 1)

σ2
e

σ2
b =

12

K(K2 − 1)
σ2
e



278 6. Exponential Smoothing

Standard error bands [329], as well as other types of bands and envelopes, and their
use as market indicators, are discussed further in Sec. 6.22. The MATLAB function, lreg,
implements Eqs. (6.18.6) and (6.18.8) with usage,

[a,b,R2,se,sa,sb] = lreg(y,N,init); % linear regression indicators

y = data a = local level se = standard error
N = window length b = local slope sa = standard error for a
init = initialization R2 = R-square sb = standard error for b

where init specifies the initialization scheme and takes on the following values,

init = ’f’, progressive linear fitting of initial N-1 samples, default

init = ’n’, replacing initial N-1 samples of a,b,R2,se,sa,sb by NaNs

The local level and local slope outputs an, bn are identical to those produced by the
function pma of Sec. 6.16.

Generally, these indicators behave similarly to the DEMA indicators, but both indica-
tor types should be used with some caution since they are too quick to respond to price
changes and sometimes tend to produce false buy/sell signals. In other words, some
delay may miss the onset of a trend but provides more safety.

Example 6.18.1: Fig. 6.18.2 compares the SMA, EMA, WMA, PMA/linear regression, DEMA, TEMA
indicators. The data are from [305] and represent daily prices for Nicor-Gas over 130
trading days starting on Sept. 1, 2006. The included excel file, nicor.xls, contains the
open-high-low-close prices in its first four columns. The left graphs were produced by
the following MATLAB code, in which the function, ohlc, from the OSP toolbox, makes an
OHLC† bar chart,

Y = xlsread(’nicor.xls’); % read Nicor-Gas data
Y = Y(1:130,:); % keep only 130 trading days
y = Y(:,4); % closing prices
t = 0:length(y)-1; % trading days

N = 20; % filter length

figure; % SMA, EMA, WMA
plot(t,sma(y,N),’r-’, t,sema(y,N),’k--’, t,wma(y,N),’g-.’); hold on;
ohlc(t,Y(:,1:4)); % add OHLC bar chart

figure; % PMA/lreg, DEMA, TEMA
plot(t,pma(y,N,0),’r-’, t,dema(y,N),’k--’, t,tema(y,N),’g-.’); hold on;
ohlc(t,Y(:,1:4)); % add OHLC bar chart

The filter length wasN = 20. The right graphs are an expanded view of the range [45,90]
days and show more clearly the reduced lag of the PMA, DEMA, and TEMA indicators. At
about the 57th trading day, these indicators turn downwards but still lie above the data,
therefore, they would correctly issue a “sell” signal. By contrast, the SMA, EMA, and WMA
indicators are rising and lie below the data, and they would issue a “buy” signal.

†Open–High–Low–Close
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Fig. 6.18.2 Comparison of SMA, EMA, WMA with PMA/LREG, DEMA, TEMA indicators.

Fig. 6.21.1 in Sec. 6.21 compares the PMA with two other indicators of reduced lag, namely,
the Hull moving average (HMA), and the exponential Hull moving average (EHMA).

The R-squared and slope indicators are also useful in determining the direction of trend.
Fig. 6.18.3 shows the PMA/linear regression indicator, an, for the same Nicor data, together
with the corresponding R2(n) signal, and the slope signal bn, using again a filter length
of N = 20. They were computed with the MATLAB code:

[a,b,R2] = lreg(y,N); % local level, local slope, and R-squared

% equivalent calculation:
% a = pma(y,N,0);
% b = pma(y,N,1)-pma(y,N,0);

ForN = 20, the critical value of R2 at the 95% confidence level is R2
c = 0.1969, determined

in Eq. (6.18.7), and is displayed as the horizontal dashed line on the R2 graph.



280 6. Exponential Smoothing

0 20 40 60 80 100 120
42

44

46

48

50

52
linear regression indicator,  N = 20

 

 
 lreg
 data

0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

R−squared,  N = 20

0 20 40 60 80 100 120
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

trading days

linear regression slope,  N = 20

Fig. 6.18.3 PMA/linear regression, R-squared, and linear regression slope indicators.

When R2(n) is small, below R2
c , it indicates lack of a trend with the data moving sideways,

and corresponds to slope bn near zero.

When R2(n) rises near unity, it indicates a strong trend, but it does not indicate the direc-
tion, upwards or downwards. This is indicated by the slope indicator bn, which is positive
when the signal is rising, and negative, when it is falling. More discussion on using these
three indicators in conjunction may be found in [305]. ��

6.19 Initialization Schemes

In Eq. (6.18.6), one solves a shorter linear fitting problem of progressively increasing
length during the transient period, 0 ≤ n < N − 1, and then switches to fixed length N
for n ≥ N − 1.
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The same idea can be applied to all FIR filters, such as the SMA, WMA, TMA, and the
PMA filter, hτ(n), that is, to use the same type of filter, but of progressively increasing
length, during the period 0 ≤ n < N − 1, and then switch to using the filters of fixed
length N for n ≥ N − 1. The first N − 1 outputs computed in this manner are not the
same as the standard convolutional outputs obtained from the built-in function filter,
because the latter uses the same length-N filter and assumes zero initial internal states.

To clarify this, consider the SMA case with N = 5, then the above procedure and
the standard convolutional one compute the outputs in the following manner, agreeing
only after n ≥ N − 1 = 4,

progressive convolutional

a0 = y0 a0 = 1

5
y0

a1 = 1

2
(y1 + y0) a1 = 1

5
(y1 + y0)

a2 = 1

3
(y2 + y1 + y0) a2 = 1

5
(y2 + y1 + y0)

a3 = 1

4
(y3 + y2 + y1 + y0) a3 = 1

5
(y3 + y2 + y1 + y0)

a4 = 1

5
(y4 + y3 + y2 + y1 + y0) a4 = 1

5
(y4 + y3 + y2 + y1 + y0)

a5 = 1

5
(y5 + y4 + y3 + y2 + y1) a5 = 1

5
(y5 + y4 + y3 + y2 + y1)

· · · · · ·
Similarly, the local level PMA filters, ha, of lengths up to N = 5 can be determined

from Eq. (6.16.3), leading to the following progressive initializations,

N = 1 , ha = [1] , a0 = y0

N = 2 , ha = [1,0] , a1 = y1

N = 3 , ha = 1

6
[5,2,−1] , a2 = 1

6
(5y2 + 2y1 − y0)

N = 4 , ha = 1

10
[7,4,1,−2] , a3 = 1

10
(7y3 + 4y2 + y1 − 2y0)

N = 5 , ha = 1

5
[3,2,1,0,−1] , a4 = 1

5
(3y4 + 2y3 + y2 − y0)

and for the local slope filters hb,

N = 1 , hb = [0] , b0 = 0

N = 2 , hb = [1,−1] , b1 = y1 − y0

N = 3 , hb = 1

2
[1,0,−1] , b2 = 1

2
(y2 − y0)

N = 4 , hb = 1

10
[3,1,−1,−3] , b3 = 1

10
(3y3 + y2 − y1 − 3y0)

N = 5 , hb = 1

10
[2,1,0,−1,−2] , b4 = 1

10
(2y4 + y3 − y1 − 2y0)
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where, we arbitrarily set hb = [0] for the case N = 1, since the slope is meaningless
for a single data point. To see the equivalence of these with the least-square criterion
of Eq. (6.18.5) consider, for example, the case N = 5 and n = 2,

J2 = (a− y2)2+(a− b− y1)2+(a− 2b− y0)2= min

with minimization conditions,

∂J2

∂a
= 2(a− y2)+2(a− b− y1)+2(a− 2b− y0)= 0

∂J2

∂b
= −2(a− b− y1)−4(a− 2b− y0)= 0

⇒
3a− 3b = y2 + y1 + y0

3a− 5b = y1+ 2y0

resulting in the solution,

a = 1

6
(5y2 + 2y1 − y0) , b = 1

2
(y2 − y0)

Similarly we have for the cases n = 0 and n = 1,

J0 = (a− y0)2= min ⇒ a = y0 , b = indeterminate

J1 = (a− y1)2+(a− b− y0)2= min ⇒ a = y1 , b = y1 − y0

EMA Initializations

The single, double, and triple EMA difference equations (6.17.1)–(6.17.3), also need to
be properly initialized at n = −1. For the single EMA case, a good choice is a−1 = y0,
which leads to the same value at n = 0, that is,

a0 = λa−1 +αy0 = λy0 +αy0 = y0 (6.19.1)

This is the default initialization for our function, sema. Another possibility is to
choose the mean of the first N data samples, a−1 = mean

(
[y0, y1, . . . , yN−1]

)
.

For DEMA, if we initialize both the first and the second EMAs as in Eq. (6.19.1), then
we must choose, a[1]−1 = y0, which leads to a[1]0 = y0, which then would require that,

a[2]−1 = a[1]0 = y0, thus, in this scheme, we would choose,⎡⎣ a[1]−1

a[2]−1

⎤⎦ =
⎡⎣ y0

y0

⎤⎦ ⇒
⎡⎣ a−1

b−1

⎤⎦ =
⎡⎣ 2 −1

α/λ −α/λ

⎤⎦⎡⎣ a[1]−1

a[2]−1

⎤⎦ =
⎡⎣ y0

0

⎤⎦ (6.19.2)

This is the default initialization method for our function, dema. Another possibility
is to fit a straight line to a few initial data [297,348], such as the first N data, where
N is the equivalent SMA length, N = (1 + λ)/(1 − λ), and then extrapolate the line
backwards to n = −1. This can be accomplished in MATLAB-like notation as follows,

n = [
1 : N

]′ = column vector

y = [y0, y1, . . . , yN−1]′= column vector

u = ones
(
size(n)

)
[
a−1

b−1

]
= [

u,n
] \y

(6.19.3)

6.19. Initialization Schemes 283

If one wishes to use the cascade of two EMAs, then the EMA signals, a[1]n , a[2]n , must
be initialized by first applying Eq. (6.19.3), and then using the inverse matrix relationship
of Eq. (6.17.6), i.e., ⎡⎣ a[1]−1

a[2]−1

⎤⎦ =
⎡⎣ 1 −λ/α

1 −2λ/α

⎤⎦⎡⎣ a−1

b−1

⎤⎦ (6.19.4)

A third possibility [280] is to initialize the first EMA with a[1]−1 = y0, then calculate
the output at the time instant n = N − 1 and use it to initialize the second EMA at
n = N, that is, define a[2]N−1 = a[1]N−1. This value can be iterated backwards to n = −1 to

determine the proper initial value a[2]−1 such that, if iterated forward, it would arrive at

the chosen value a[2]N−1 = a[1]N−1. Thus, the steps in this scheme are as follows,

a[1]−1 = y0

for n = 0,1, . . . ,N − 1,

a[1]n = λa[1]n−1 +αyn
end

⇒

a[2]N−1 = a[1]N−1

for n = N−1, . . . ,1,0,

a[2]n−1 =
1

λ
(
a[2]n −αa[1]n

)
end

(6.19.5)

Upon exit from the second loop, one has a[2]−1 , then, one can transform the calculated

a[1]−1 , a
[2]
−1 to the an, bn basis in order to get the DEMA recursion started,⎡⎣ a−1

b−1

⎤⎦ =
⎡⎣ 2 −1

α/λ −α/λ

⎤⎦⎡⎣ a[1]−1

a[2]−1

⎤⎦
Such cascaded initialization scheme for DEMA (and TEMA below) is somewhat ad

hoc since the EMA filters are IIR and there is nothing special about the time n = N;
one, could just as well wait until about n = 6N when typically all transient effects have
disappeared. We have found that the schemes described in Eqs. (6.19.2) and (6.19.3)
work the best.

Finally, we note that for ordinary convolutional output, one would choose zero initial
values, ⎡⎣ a−1

b−1

⎤⎦ =
⎡⎣ 0

0

⎤⎦ ⇒
⎡⎣ a[1]−1

a[2]−1

⎤⎦ =
⎡⎣ 0

0

⎤⎦
All of the above initialization choices are incorporated in the function, dema. For

TEMA, the default initialization is similar to that of Eq. (6.19.2), that is,⎡⎢⎢⎢⎣
a[1]−1

a[2]−1

a[3]−1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
y0

y0

y0

⎤⎥⎥⎥⎦ ⇒

⎡⎢⎢⎢⎣
a−1

b−1

c−1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
y0

0

0

⎤⎥⎥⎥⎦ (6.19.6)

Alternatively, one can fit a second-order polynomial to the first few data samples,
such as the first 2N samples [297], and extrapolate them back to n = −1. The fitting
can be done with the following MATLAB-like code,
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n = [
1 : 2N − 1

]′ = column vector

y = [y0, y1, . . . , y2N−1]′= column vector

u = ones
(
size(n)

)
⎡⎢⎣ a−1

b−1

c−1

⎤⎥⎦ = [
u, n, n2] \y

The cascaded initialization scheme is also possible in which the output of the first
EMA at time n = N − 1 serves to initialize the second EMA at n = N, and the output
of the second EMA at n = 2N − 1 serves to initialize the third EMA at n = 2N. This,
as well as the second-order polynomial fitting initialization schemes are incorporated
in the function, tema.

A special case of the EMA indicator is “Wilder’s Exponential Moving Average” [281],
known as WEMA. It is used widely and appears in several other indicators, such as the
“Relative Strength Index” (RSI), the “Average True Range” (ATR), and the “Directional
Movement System” (±DMI and ADX), discussed in Sec. 6.23. AnN-point WEMA is defined
to be an ordinary EMA with λ,α parameters,

α = 1

N
, λ = 1−α = 1− 1

N
(WEMA parameters) (6.19.7)

It is equivalent to an EMA with effective length, Ne, determined as follows,

λ = Ne − 1

Ne + 1
= 1− 1

N
⇒ Ne = 2N − 1 (6.19.8)

The corresponding filtering equation for calculating the smoothed local-level signal
an from the input data yn, will be,

an = λan−1 +αyn = an−1 +α(yn − an−1)

or, for n ≥ 0,

an = an−1 + 1

N
(yn − an−1) (WEMA) (6.19.9)

The required initial value a−1 can be chosen in a variety of ways, just as in EMA.
However, by convention [281], the default way of fixing it is similar to that in Eq. (6.19.5).
It is defined by choosing the value of an at time n = N−1 to be the mean of firstN input
values, then, aN−1 is back-tracked to time n = −1, thus, we have,

aN−1 = 1

N
(y0 + y1 + · · · + yN−1)

for n = N−1, . . . ,1,0,

an−1 = 1

λ
(
an −αyn

)
end

(6.19.10)
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Upon exit from the loop, one has the proper starting value of a−1. The following
MATLAB function, wema, implements WEMA with such default initialization scheme,

a = wema(y,N,ain); % Wilder’s EMA

y = signal to be smoothed

N = effective length, (EMA alpha = 1/N, lambda = 1-1/N)

ain = any initial value

= ’m’, default, as in Eq.(6.19.10)

= 0, for standard convolutional output

a = smoothed version of y

6.20 Butterworth Moving Average Filters

Butterworth moving average (BMA) lowpass filters, are useful alternatives [285] to the
first-order EMA filters, and have comparable smoothing properties and shorter lag. Here,
we summarize their properties and filtering implementation, give explicit design equa-
tions for orders M = 1,2,3, and derive a general expression for their lag.

Digital Butterworth filters are characterized by two parameters, the filter order M,
and the 3-dB cutoff frequency f0 in Hz, or, the corresponding digital frequency in units
of radians per sample, ω0 = 2πf0/fs, where fs is the sampling rate in Hz. We may also
define the period of f0 in units of samples/cycle, N = fs/f0, so that, ω0 = 2π/N.

We follow the design method of Ref. [30] based on the bilinear transformation, al-
though the matched z-transform method has also been used [285]. If the filter order is
even, say,M = 2K, then, there are K second-order sections, and if it is odd,M = 2K+1,
there is an additional first-order section. Both cases can be combined into one by writing,

M = 2K + r , r = 0,1 (6.20.1)

Then, the transfer function can be expressed in the following cascaded and direct forms,

H(z) =
[
G0(1+ z−1)
1+ a01z−1

]r K∏
i=1

[
Gi(1+ z−1)2

1+ ai1z−1 + ai2z−2

]

= G(1+ z−1)M

1+ a1z−1 + a2z−2 + · · · + aMz−M

(6.20.2)

where the notation [ ]r means that the first-order factor is absent if r = 0 and present
if r = 1. The corresponding first-order coefficients are,

G0 = Ω0

Ω0 + 1
, a01 = Ω0 − 1

Ω0 + 1
(6.20.3)

The second-order coefficients are , for i = 1,2, . . . , K,
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Gi = Ω2
0

1− 2Ω0 cosθi +Ω0
2

ai1 = 2(Ω2
0 − 1)

1− 2Ω0 cosθi +Ω0
2 , ai2 = 1+ 2Ω0 cosθi +Ω2

0

1− 2Ω0 cosθi +Ω0
2

(6.20.4)

where the angles θi are defined by,

θi = π
2M

(M − 1+ 2i) , i = 1,2, . . . , K (6.20.5)

and the quantity Ω0 is the equivalent analog 3-dB frequency defined as,

Ω0 = tan
(
ω0

2

)
= tan

(
πf0
fs

)
= tan

(
π
N

)
(6.20.6)

We note that the filter sections have zeros at z = −1, that is, at the Nyquist frequency,
f = fs/2, or, ω = π. Setting Ω = tan(ω/2), the magnitude response of the designed
digital filter can be expressed simply as follows:

|H(ω)|2 = 1

1+ (Ω/Ω0
)2M = 1

1+ (tan(ω/2)/Ω0
)2M (6.20.7)

Each section has unity gain at DC. Indeed, setting z = 1 in Eq. (6.20.2), we obtain the
following condition, which can be verified from the given definitions,

4Gi
1+ ai1 + ai2 = 1 and

2G0

1+ a01
= 1

Moreover, the filter lag can be shown to be (cf. Problem 6.12), for anyM ≥ 1 andN > 2,

n̄ = 1

2Ω0 sin
(
π

2M

) = 1

2 tan
(
π
N

)
sin

(
π

2M

) (lag) (6.20.8)

For M � 2 and N � 5, it can be approximated well by [284],

n̄ = MN
π2

The overall numerator gain in the direct form is the product of gains,

G = Gr0G1G2 · · ·GK
and the direct-form numerator coefficients are the coefficients of the binomial expansion
of (1 + z−1)M times the overall gain G. The direct-form denominator coefficients are
obtained by convolving the coefficients of the individual sections, that is, setting, a = [1]
if M is even, and, a = [1, a01] if M is odd, then the vector, a = [1, a1, a2, . . . , aM], can
be constructed recursively by,

for i = 1,2, . . . , K
a = conv

(
a, [1, ai1, ai2]

) (6.20.9)
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For example, we have,

M = 2 , a = [1, a11, a12]
M = 3 , a = conv

(
[1, a01], [1, a11, a12]

)= [1, a01 + a11, a12 + a01a11, a01a12]

From these, we obtain the following explicit expressions, for M = 2,

G = Ω2
0

Ω2
0 +

√
2Ω0 + 1

, a1 = 2(Ω2
0 − 1)

Ω2
0 +

√
2Ω0 + 1

, a2 = Ω2
0 −

√
2Ω0 + 1

Ω2
0 +

√
2Ω0 + 1

H(z)= G(1+ 2z−1 + z−2)
1+ a1z−1 + a2z−2

, n̄ = 1√
2Ω0

(6.20.10)

and, for M = 3,

G = Ω3
0

(Ω0 + 1)(Ω2
0 +Ω0 + 1)

, a1 = (Ω0 − 1)(3Ω2
0 + 5Ω0 + 3)

(Ω0 + 1)(Ω2
0 +Ω0 + 1)

a2 = 3Ω2
0 − 5Ω0 + 3

Ω2
0 +Ω0 + 1

, a3 = (Ω0 − 1)(Ω2
0 −Ω0 + 1)

(Ω0 + 1)(Ω2
0 +Ω0 + 1)

H(z)= G(1+ 3z−1 + 3z−2 + z−3)
1+ a1z−1 + a2z−2 + a3z−3

, n̄ = 1

Ω0

(6.20.11)

We note also that the M = 1 case has lag, n̄ = 1/(2Ω0), and is equivalent to the
modified EMA of Eq. (2.3.5). This can be seen by rewriting H(z) in the form,

H(z)= G0(1+ z−1)
1+ a01z−1

=
1
2(1− λ)(1+ z−1)

1− λz−1
, λ = −a01 = 1−Ω0

1+Ω0

where 0 < λ < 1 for Ω0 < 1, which requires N > 4.
The MATLAB function, bma, implements the design and filtering operations for any

filter order M and any period N > 2,† with usage,

[y,nlag,b,a] = bma(x,N,M,yin); % Butterworth moving average
[y,nlag,b,a] = bma(x,N,M);

where

x = input signal

N = 3-dB period, need not be integer, but N>2

M = filter order

yin = any Mx1 vector of initial values of the output y

default, yin = repmat(x(1),M,1)

yin = ’c’ for standard convolutional output

y = output signal

nlag = filter lag

b = [b0, b1, b2, ..., bM], numerator filter coefficients

a = [ 1, a1, a2, ..., aM], denominator filter coefficients

†the sampling theorem requires, f0 < fs/2, or, N = fs/f0 > 2
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Fig. 6.20.1 shows the BMA output for Butterworth orders M = 2,3 applied to the
same Nicor-Gas data of Fig. 6.18.2. It has noticeably shorter lag than SMA. The graphs
were produced by the MATLAB code,

Y = xlsread(’nicor.xls’); % load Nicor-Gas data
Y = Y(1:130,1:4); % 130 trading days, and [O,H,L,C] prices
y = Y(:,4); % closing prices
t = 0:length(y)-1; % trading days

N = 20; % period, SMA lag = (N-1)/2 = 9.50
[y2,n2] = bma(y,N,2); % order-2 Butterworth, lag n2 = 4.46
[y3,n3] = bma(y,N,3); % order-3 Butterworth, lag n3 = 6.31

figure; plot(t,sma(y,N), t,y2, t,y3); % plot SMA, y2, y3
hold on; ohlc(t,Y,’color’,’b’); % add OHLC bar chart
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Fig. 6.20.1 Comparison of SMA and Butterworth filters of orders M = 2,3.

6.21 Moving Average Filters with Reduced Lag

The PMA/linear regression and the DEMA/TEMA indicators have zero lag by design.
There are other useful indicators that are easily implemented and have zero or very
much reduced lag. Examples are twicing and Kaiser-Hamming (KH) filter sharpening
[60], the Hull moving average (HMA) [309], the zero-lag EMA indicator (ZEMA) [284],
the generalized DEMA (GDEMA) [307], and their variants. Here, we discuss a general
procedure for constructing such reduced-lag filters, including the corresponding local-
slope filters.

Consider three lowpass filters H1(z),H2(z),H3(z) with unity DC gains and lags,
n̄1, n̄2, n̄2, respectively, and define the following filters for estimating the local level and
local slope of the data, generalizing the twicing operations of Eq. (6.10.9),
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Ha(z) = H1(z)
[
(1+ v)H2(z)−vH3(z)

] = local level

Hb(z) = 1

n̄3 − n̄2
H1(z)

[
H2(z)−H3(z)

] = local slope
(6.21.1)

where v is a positive constant. One may viewHa(z) as the smoothed, byH1(z), version
of (1 + v)H2(z)−vH3(z). The filter Ha(z) will still have unity DC gain as follows by
evaluating Eq. (6.21.1) at z = 1, that is,

Ha(1)= (1+ v)H1(1)H2(1)−vH1(1)H3(1)= (1+ v)−v = 1

Using the fact that the lag of a product of filters is the sum of the corresponding
lags (cf. Problem 6.2), we find that the lag of Ha(z) is,

n̄a = (1+ v)(n̄1 + n̄2)−v(n̄1 + n̄3) , or,

n̄a = n̄1 + (1+ v)n̄2 − vn̄3 (6.21.2)

By appropriately choosing the parameters v, n̄1, n̄2, n̄3, the lag n̄a can be made very
small, even zero. Indeed, the following choice for v will generate any particular n̄a,

v = n̄1 + n̄2 − n̄a
n̄3 − n̄2

(6.21.3)

Below we list a number of examples that are special cases of the above constructions.
In this list, the filterH(z), whose lag is denoted by n̄, represents any unity-gain lowpass
filter, such as WMA, EMA, or SMA and similarly,HN(z) represents either a length-N FIR
filter such as WMA or SMA, or an EMA filter with SMA-equivalent length N. Such filters
have a lag related to N via a relationship of the form, n̄ = r · (N − 1), for example,
r = 1/3, for WMA, and, r = 1/2, for EMA and SMA.

reduced-lag filters lag

(twicing) Ha(z)= 2H(z)−H2(z) , n̄a = 0

(GDEMA) Ha(z)= (1+ v)H(z)−vH2(z) , n̄a = (1− v)n̄
(KH) Ha(z)= (1+ v)H2(z)−vH3(z), n̄a = (2− v)n̄

(HMA) Ha(z)= H√N(z)
[
2HN/2(z)−HN(z)

]
, n̄a = r

[√
N − 2

]
(ZEMA) Ha(z)= 2H(z)−z−dH(z) , n̄a = n̄− d
(ZEMA) Ha(z)= (1+ v)H(z)−vz−dH(z) , n̄a = n̄− vd

(6.21.4)

The corresponding local-slope filters are as follows (they do not depend on v),
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local-slope filters

(DEMA/GDEMA) Hb(z)= 1

n̄
[
H(z)−H2(z)

]
(KH) Hb(z)= 1

n̄
[
H2(z)−H3(z)

]
(HMA) Hb(z)= 2

rN
H√N(z)

[
HN/2(z)−HN(z)

]
(ZEMA) Hb(z)= 1

d
[
H(z)−z−dH(z)]

(6.21.5)

The standard twicing method, Ha(z)= 2H(z)−H2(z), coincides with DEMA if we
choose H(z) to be a single EMA filter,

HEMA(z)= α
1− λz−1

, α = 1− λ , λ = N − 1

N + 1
, n̄ = N − 1

2
(6.21.6)

but the filterH(z) can also be chosen to be an SMA, WMA, or BMA filter, leading to what
may be called, “double SMA,” or, “double WMA,”, or, ‘double BMA.”

The generalized DEMA, HGDEMA(z)= (1 + v)H(z)−vH2(z), also has, H = HEMA,
and is usually operated in practice with v = 0.7. It reduces to standard DEMA for v = 1.
The so-called Tillson’s T3 indicator [307] is obtained by cascading GDEMA three times,

HT3(z)=
[
HGDEMA(z)

]3
(T3 indicator) (6.21.7)

The Kaiser-Hamming (KH) filter sharpening case is not currently used as an indicator,
but it has equally smooth output as GDEMA and T3. It reduces to the standard filter
sharpening case with zero lag for v = 2.

In the original Hull moving average [309],Ha(z)= H√N(z)
[
2HN/2(z)−HN(z)

]
, the

filterHN is chosen to be a length-N weighted moving average (WMA) filter, as defined in
Eqs. (6.15.1) and (6.15.2), and similarly, HN/2 and H√N are WMA filters of lengths N/2
and

√
N respectively. Assuming for the moment that these filter lengths are integers,

then the corresponding lags of the three WMA filters, H√N,HN/2,HN, will be,

n̄1 =
√
N − 1

3
, n̄2 = N/2− 1

3
, n̄3 = N − 1

3
,

and setting v = 1 in Eq. (6.21.2), we find,

n̄a = n̄1 + 2n̄2 − n̄3 =
√
N − 1

3
+ N − 2

3
− N − 1

3
=
√
N − 2

3
(6.21.8)

Thus, for larger Ns, the lag is effectively reduced by a factor of
√
N. The extra

filter factor H√N(z) provides some additional smoothing. In practice, the filter lengths
N1 =

√
N and N2 = N/2 are replaced by their rounded values. This changes the lag

n̄a somewhat. If one wishes to maintain the same lag as that given by Eq. (6.21.8), then
one can compensate for the replacement of N1,N2 by their rounded values by using a
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slightly different value for v. It is straightforward to show that the following procedure
will generate the desired lag value, where the required v is evaluated from Eq. (6.21.3),

N1 = round
(√
N
)
, ε1 = N1 −

√
N = rounding error

N2 = round
(
N
2

)
, ε2 = N2 − N

2
= rounding error

v = n̄1 + n̄2 − n̄a
n̄3 − n̄2

= N/2+ ε1 + ε2

N/2− ε2

n̄a = N1 − 1

3
+ (1+ v)N2 − 1

3
− vN − 1

3
=
√
N − 2

3

n̄3 − n̄2 = N −N2

3

(6.21.9)

with transfer functions,

Ha(z)= HN1(z)
[
(1+ v)HN2(z)−vHN(z)

] = local level

Hb(z)= 1

n̄3 − n̄2
HN1(z)

[
HN2(z)−HN(z)

] = local slope
(6.21.10)

The WMA filters in the HMA indicator can be replaced with EMA filters resulting in
the so-called “exponential Hull moving average” (EHMA), which has been found to be
very competitive with other indicators [347]. Because N does not have to be an integer
in EMA, it is not necessary to round the lengths N1 =

√
N and N2 = N/2, and one can

implement the indicator as follows, where HN denotes the single EMA of Eq. (6.21.6),

n̄a =
√
N − 2

2
, n̄3 − n̄2 = N

4

Ha(z)= H√N(z)
[
2HN/2(z)−HN(z)

]
Hb(z)= 4

N
H√N(z)

[
HN/2(z)−HN(z)

]
One can also replace the WMA filters by SMAs leading to the “simple Hull moving

average” (SHMA). The filter HN now stands for a length-N SMA filter, resulting in n̄a =
(
√
N − 1)/2, and n̄3 − n̄2 = (N −N2)/2. Except for these changes, the computational

procedure outlined in Eq. (6.21.9) remains the same.
The following MATLAB code illustrates the computation of the local-level output

signal an from the data yn, for the three versions of HMA and a given value of N > 1,

N1 = round(sqrt(N)); e1 = N1 - sqrt(N);

N2 = round(N/2); e2 = N2 - N/2;

v = (N/2 + e1 + e2) / (N/2 - e2);

a = wma((1+v)*wma(y,N2) - v*wma(y,N), N1); % HMA

a = sma((1+v)*sma(y,N2) - v*sma(y,N), N1); % SHMA

a = sema(2*sema(y,N/2) - sema(y,N), sqrt(N); % EHMA
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The functions, hma, shma, ehma, which are discussed below, implement these op-
erations but offer more options, including the computation of the slope signals.

In the zero-lag EMA (ZEMA or ZLEMA) indicator [284], Ha(z)= 2H(z)−z−dH(z),
the filter H(z) is chosen to be a single EMA filter of the form of Eq. (6.21.6), and the
delay d is chosen to coincide with the filter lag, that is, d = n̄ = (N − 1)/2 . It follows
from Eq. (6.21.4) that the lag will be exactly zero, n̄a = n̄− d = 0. This assumes that n̄
is an integer, which happens only for odd N. For even N, the delay d may be chosen as
the rounded-up version of n̄, that is,

d = round(n̄)= round
(
N − 1

2

)
= N

2
, N = even

Then, the lag n̄a can still be made to be zero by choosing the parameter v such that
n̄a = n̄− vd = 0, or, v = n̄/d = n̄/round(n̄). Thus, the generalized form of the ZEMA
indicator is constructed by,

n̄ = N − 1

2
, d = round(n̄) , v = n̄

d

Ha(z)= (1+ v)H(z)−vz−dH(z)

Hb(z)= 1

d
[
H(z)−z−dH(z)]

(6.21.11)

The code segment below illustrates the computation of the local-level ZEMA signal.
It uses the function, delay, which implements the required delay.

nbar = (N-1)/2;

d = round(nbar);

v = nbar/d;

a = (1+v)*sema(y,N) - v*delay(sema(y,N), d); % ZEMA

The following MATLAB functions implement the reduced-lag filters discussed above,
where the input array y represents the financial data to be filtered, and the outputs a,b
represent the local-level and local-slope signals.

[a,b] = hma(y,N,yin); % Hull moving average
[a,b] = ehma(y,N,yin); % exponential Hull moving average
[a,b] = shma(y,N,yin); % simple Hull moving average
[a,b] = zema(y,N,yin); % zero-lag EMA

y = delay(x,d); % d-fold delay, y(n) = x(n-d)
a = gdema(y,N,v,yin); % generalized DEMA
a = t3(y,N,v,yin); % Tillson’s T3

The input variable yin defines the initialization and defaults to progressive filtering
for hma, shma, and zema, yin=’f’, and to, yin = y0, for ehma.

Fig. 6.21.1 compares the PMA/linear regression indicator with HMA, EHMA, and
ZEMA on the same Nicor-Gas data, with filter length N = 20. Fig. 6.21.2 compares the
corresponding slope indicators. The MATLAB code below illustrates the computation.
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Fig. 6.21.1 Comparison of PMA/LREG, HMA, EHMA, and ZEMA indicators.

Y = xlsread(’nicor.xls’); % load Nicor-Gas data
Y = Y(1:130,1:4); % keep 130 trading days, and [O,H,L,C] prices
y = Y(:,4); % closing prices
t = 0:length(y)-1; % trading days

N = 20; % filter length

[al,bl] = lreg(y,N); % PMA/LREG
[ah,bh] = hma(y,N); % HMA
[ae,be] = ehma(y,N); % EHMA
[az,bz] = zema(y,N); % ZEMA

figure; plot(t,al, t,ae, t,ah); % PMA/LREG, EHMA, HMA
hold on; ohlc(t,Y); % add OHLC chart

figure; plot(t,az, t,ae); % ZEMA, EHMA
hold on; ohlc(t,Y); % add OHLC chart
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figure; plot(t,bh, t,be); hold on; % HMA, EHMA slopes
stem(t,bl,’marker’,’none’); % plot LREG slope as stem

figure; plot(t,bh, t,bz); hold on; % HMA, ZEMA slopes
stem(t,bl,’marker’,’none’);

We note that the reduced-lag HMA, EHMA, and ZEMA local-level and local-slope filters
have comparable performance as the PMA/linear regression and DEMA/TEMA filters,
with a comparable degree of smoothness.
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Fig. 6.21.2 Slope indicators, linear regression (stem) vs. HMA, EHMA, ZEMA.

6.22 Envelopes, Bands, and Channels

Moving averages help market traders discern trends by smoothing out variations in
the data. However, such variations can provide additional useful information, such as
gauging volatility, or, identifying extremes in the data that provide trading opportunities,
or observing how prices settle into their trends.

Trading envelopes or bands or channels consist of two curves drawn above and below
a moving average trendline. The two bounds define a zone of variation, or volatility,
about the average, within which most of the price fluctuations are expected to lie.

The typical trading rule is that when a price closes near or above the upper bound,
it signals that the stock is overbought and suggests trading in the opposite direction.
Similarly, if a price moves below the lower bound it signals that the stock is oversold
and suggests an opposite reaction.
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In this section we discuss the following types of bands and their computation,

– Bollinger bands – Standard-error bands

– Projection bands – Donchian channels

– Fixed-width bands – Keltner bands

– Starc bands – Parabolic SAR

Examples of these are shown in Figs. 6.22.1 and 6.22.2 applied to the same Nicor
data that we used previously. Below we give brief descriptions of how such bands are
computed. We use our previously discussed MATLAB functions, such as SMA, LREG,
etc., to summarize the computations. Further references are given in [323–334].

Bollinger Bands

Bollinger bands [323–327] are defined relative to an N-day SMA of the closing prices,
where typically, N = 14. The two bands are taken to be two standard deviations above
and below the SMA. The following MATLAB code clarifies the computation,

M = sma(y,N); % N-point SMA of closing prices y

S = stdev(y,N); % std-dev relative to M

L = M - 2*S; % lower bound

U = M + 2*S; % upper bound

where the function, stdev, uses the built-in function std to calculate the standard devi-
ation over each length-N data window, and its essential code is,

for n=1:length(y),

S(n) = std(y(max(1,n-N+1):n));

end

where the data window length isN for n ≥ N, and n during the initial transients n < N.

Standard-Error Bands

Standard-error bands [329] use the PMA/linear-regression moving average as the middle
trendline and shift it by two standard errors up and down. The calculation is summa-
rized below with the help of the function lreg, in which the quantities, y, a, se, represent
the closing prices, the local level, and the standard error,

[a,~,~,se] = lreg(y,N); % N-point linear regression

L = a - 2*se; % lower bound

U = a + 2*se; % upper bound
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Fig. 6.22.1 Bollinger bands, standard-error bands, projection bands, and Donchian channels.

Projection Bands

Projection bands [328] also use the linear regression function lreg to calculate the local
slopes for the high and low prices,H,L. The value of the upper (lower) band at the n-th
time instant is determined by considering the values of the highs H (lows L) over the
look-back period, n −N + 1 ≤ t ≤ n, extrapolating each of them linearly according to
their slope to the current time instant n, and taking the maximum (minimum) among
them. The following MATLAB code implements the procedure,
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Fig. 6.22.2 Fixed-width bands, Keltner bands, STARC bands, and parabolic SAR.

[~,bL] = lreg(L,N); % linear regression slope for Low

[~,bH] = lreg(H,N); % linear regression slope for High

for n=0:length(H)-1,

t = (max(0,n-N+1) : n)’; % look-back interval

Lo(n+1) = min(L(t+1) + bL(n+1)*(n-t)); % lower band

Up(n+1) = max(H(t+1) + bH(n+1)*(n-t)); % upper band

end

Donchian Channels

Donchian channels [331] are constructed by finding, at each time instant n, the highest
high (resp. lowest low) over the past time interval, n−N ≤ t ≤ n− 1, that is, the value
of the upper bound at the n-th day, is the maximum of the highs over the previous N
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days, not including the current day, i.e., max
[
Hn−1,Hn−2, . . . ,Hn−N

]
. The code below

describes the procedure,

for n = 2:length(H) % n is MATLAB index

t = max(1,n-N) : n-1; % past N days

Lo(n) = min(L(t)); % lower band

Up(n) = max(H(t)); % upper band

end

Mid = (Up + Lo)/2; % middle band

Fixed-Width Bands

Fixed-width bands or envelopes [330] shift an N-point SMA of the closing prices by a
certain percentage, such as, typically, 3 percent,

M = sma(C,N); % N-point SMA of closing prices C

L = M - p*M; % lower band, e.g., p = 0.03

U = M + p*M; % upper band

Keltner Bands

Keltner bands or channels [330], use as the middle trendline an N-point SMA of the
average of the high, low, and closing prices, (H+L+C)/3, and use an N-point SMA of
the difference (H−L) as the bandwidth, representing a measure of volatility. The code
below implements the operations,

M = sma((H+L+C)/3,N); % SMA of (H+L+C)/3

D = sma(H-L,N); % SMA of (H-L)

L = M - D; % lower band

U = M + D; % upper band

The typical value of N is 10, and the trading rule is that a “buy” signal is generated
when the closing priceC lies above the upper band, and a “sell” signal whenC lies below
the lower band.

Starc Bands

In Starc† bands [330] all three prices, high, low, and closing, H,L,C, are used. The
middle band is an N -point SMA of the closing prices C, but the bandwidth is defined
in terms of an Na-point of the so-called “average true range” (ATR), which represents
another measure of volatility. The code below describes the computation,

M = sma(C,N); % SMA of closing prices

R = atr([H,L,C],Na); % ATR = average true range

L = M - 2*R; % lower and

U = M + 2*R; % upper band

†Stoller Average Range Channels
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The ATR [281] is an Na -point WEMA of the “true range”, defined as follows, at each
time n,

Tn = max
[
Hn − Ln, Hn −Cn−1, Cn−1 − Ln

] = true range in n-th day

Rn = wema(Tn,Na)= ATR
(6.22.1)

and is implemented by the function atr, with the help of the delay function. Its essential
MATLAB code is as follows, where H,L,C are column vectors,

T = max([H-L, H-delay(C,1), delay(C,1)-L], [], 2); % row-wise max

R = wema(T,N);

MATLAB Functions

The following MATLAB functions implement the band indicators discussed above, where
the various parameters are fully explained in the help files for these functions,

[L,U,M] = bbands(y,N,d); % Bollinger bands
[L,U,a] = sebands(y,N,d,init); % standard-error bands
[L,U,R,Rs] = pbands(Y,N,Ns); % projection bands & oscillator
[L,U,M] = donch(Y,N); % Donchian channels
[L,U,M] = fbands(Y,N,p); % fixed-width bands
[L,U,M] = kbands(Y,N); % Keltner bands
[L,U,M] = stbands(Y,N,Na); % Starc bands

S = stdev(y,N,flag); % standard deviation
[R,TR] = atr(Y,N); % average true range

The essential MATLAB code for generating Figs. 6.22.1 and 6.22.2 is as follows,

Y = xlsread(’nicor.xls’); % load Nicor-Gas data
Y = Y(1:130,1:4); % 130 trading days, and [O,H,L,C] prices
y = Y(:,4); % closing prices
t = 0:length(y)-1; % trading days

N = 20; % used in Fig.6.22.1

[L,U,M] = bbands(y,N); % Bollinger
figure; ohlc(t,Y); hold on; % make OHLC bar chart
plot(t,M,’g-’, t,U,’r--’, t,L,’r--’);

[L,U,a] = sebands(y,N); % standard-error
figure; ohlc(t,Y); hold on;
plot(t,a,’g-’, t,U,’r--’, t,L,’r--’);

a = lreg(y,N);
[L,U] = pbands(Y,N); % projection
figure; ohlc(t,Y); hold on;
plot(t,a,’g-’, t,U,’r--’, t,L,’r--’);

[L,U,M] = donch(Y,N); % Donchian
figure; ohlc(t,Y); hold on;
plot(t,M,’r--’, t,L,’r--’, t,U,’r--’);
plot(t,sma(y,N),’g-’);
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N=10; % used in Fig.6.22.2

p=0.03;
[L,U,M] = fbands(Y,N,p); % fixed-width
figure; ohlc(t,Y); hold on;
plot(t,M,’g-’, t,U,’r--’, t,L,’r--’);

[L,U,M] = kbands(Y,N); % Keltner
figure; ohlc(t,Y); hold on;
plot(t,M,’g-’, t,U,’r--’, t,L,’r--’);

[L,U,M] = stbands(Y,N); % Starc
figure; ohlc(t,Y); hold on;
plot(t,M,’g-’, t,U,’r--’, t,L,’r--’);

H = Y(:,2); L = Y(:,3); ni=1; Ri=1; % parabolic SAR
S = psar(H,L,Ri,ni);
figure; ohlc(t,Y); hold on;
plot(t,S,’r.’);

Parabolic SAR

Wilder’s parabolic stop & reverse (SAR) [281] is a trend-following indicator that helps a
trader to switch positions from long to short or vice versa.

While holding a long position during a period of increasing prices, the SAR indicator
lies below the prices and is also increasing. When the prices begin to fall and touch the
SAR from above, then a “sell” signal is triggered with a reversal of position from long
to short, and the SAR switches sides and begins to fall, lying above the falling prices. If
subsequently, the prices begin to rise again and touch the SAR from below, then a “buy”
signal is triggered and the position is reversed from short to long again, and so on.

The indicator is very useful as it keeps a trader constantly in the market and works
well during trending markets with steady periods of increasing or decreasing prices,
even though it tends to recommend buying relatively high and selling relatively low—
the opposite of what is the ideal. It does not work as well during “sideways” or trading
markets causing so-called “whipsaws.” It is usually used in conjunction with other indi-
cators that confirm trend, such as the RSI or DMI. Some further references on the SAR
are [335–340].

The SAR is computed in terms of the high and low price signalsHn,Ln and is defined
as the exponential moving average of the extreme price reached within each trending
period, but it uses a time-varying EMA parameter, λn = 1 − αn, as well as additional
conditions that enable the reversals. Its basic EMA recursion from day n to day n+1 is,

Sn+1 = λnSn +αnEn = (1−αn)Sn +αnEn , or,

Sn+1 = Sn +αn(En − Sn) (SAR) (6.22.2)

where En is the extreme price reached during the current trending position, that is, the
highest high reached up to day n during an up-trending period, or the lowest low up to
day n during a down-trending period. At the beginning of each trending period, Sn is
initialized to be the extreme price of the previous trending period.
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The EMA factor αn increases linearly with time, starting with an initial value, αi, at
the beginning of each trending period, and then increasing by a fixed incrementΔα, but
only every time a new extreme value is reached, that is,

αn+1 =
⎧⎨⎩αn +Δα , if En+1 �= En
αn , if En+1 = En

(6.22.3)

where we note that En+1 �= En happens when En+1 is strictly greater than En during an
up-trend, or, En+1 is strictly less than En during a down-trend. Moreover, an additional
constraint is that αn is not allowed to exceed a certain maximum value, αm. The values
recommended by Wilder [281] are,

αi = 0.02 , Δα = 0.02 , αm = 0.2

Because of the increasingαn parameter, the EMA has a time-varying decreasing lag,†

thus, tracking more quickly the extreme prices as time goes by. As a result, Sn has a
particular curved shape that resembles a parabola, hence the name “parabolic” SAR.

The essential steps in the calculation of the SAR are summarized in the following
MATLAB code, in which the inputs are the quantities, H,L, representing the high and low
price signals, Hn,Ln, while the output quantities, S,E,a,R, represent, Sn, En,αn,Rn,
where Rn holds the current position and is equal to ±1 for long/short.

Hi = max(H(1:ni)); % initial highest high, default
Li = min(L(1:ni)); % initial lowest low

R(ni) = Ri; % initialize outputs at starting time n=ni
a(ni) = ai;
S(ni) = Li*(Ri==1) + Hi*(Ri==-1);
E(ni) = Hi*(Ri==1) + Li*(Ri==-1);

for n = ni : length(H)-1

S(n+1) = S(n) + a(n) * (E(n) - S(n)); % SAR update

r = R(n); % current position

if (r==1 & L(n+1)<=S(n+1)) | (r==-1 & H(n+1)>=S(n+1)) % reversal
r = -r; % reverse r
S(n+1) = E(n); % reset new S
E(n+1) = H(n+1)*(r==1) + L(n+1)*(r==-1); % reset new E
a(n+1) = ai; % reset new a

else % no reversal
if n>2 % new S
S(n+1) = min([S(n+1), L(n-1), L(n)])*(r==1) ... % additional

+ max([S(n+1), H(n-1), H(n)])*(r==-1); % conditions
end

E(n+1) = max(E(n),H(n+1))*(r==1) ... % new E
+ min(E(n),L(n+1))*(r==-1);

a(n+1) = min(a(n) + (E(n+1)~=E(n)) * Da, am); % new a
end

R(n+1) = r; % new R

end % for-loop

†The EMA equivalent length decreases from, Ni = 2/αi − 1 = 99, down to, Nm = 2/αm − 1 = 9.
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If the current trading position is long (r = 1), corresponding to an up-trending
market, then, a reversal of position to short (r = −1) will take place at time n+1 if the
low price Ln+1 touches or becomes less than the SAR, that is, if, Ln+1 ≤ Sn+1. Similarly, if
the current position is short, corresponding to a down-trending market, then, a reversal
of position to long will take place at time n+1 if the high priceHn+1 touches or becomes
greater than the SAR, that is, if, Hn+1 ≥ Sn+1. At such reversal time points, the SAR is
reset to be equal to the extreme price of the previous trend, that is, Sn+1 = En, and the
En+1 is reset to be either Ln+1 if reversing to short, orHn+1 if reversing to long, and the
EMA parameter is reset to, αn+1 = αi.

An additional condition is that during an up-trend, the SAR for tomorrow, Sn+1, is
not allowed to become greater that either today’s or yesterday’s lows, Ln, Ln−1, and in
such case it is reset to the minimum of the two lows. Similarly, during a down-trend, the
Sn+1 is not allowed to become less that either today’s or yesterday’s highs, Hn,Hn−1,
and is reset to the maximum of the two highs. This is enforced by the code line,

Sn+1 = min
(
[Sn+1, Ln−1, Ln]

)·(r==1)+ max
(
[Sn+1,Hn−1,Hn]

)·(r==−1)

The parabolic SAR is implemented with the MATLAB function psar, with usage,

[S,E,a,R] = psar(H,L,Ri,ni,af,Hi,Li); % parabolic SAR

H = vector of High prices, column
L = vector of Low prices, column, same length as H
Ri = starting position, long Ri = 1, short Ri = -1
ni = starting time index, default ni = 1, all outputs are NaNs for n<ni
af = [ai,da,am] = [initial EMA factor, increment, maximum factor]

default, af = [0.02, 0.02, 0.2]
Hi,Li = initial high and low used to initialize S(n),E(n) at n=ni,

default, Hi = max(H(1:ni)), Li = min(L(1:ni))

S = parabolic SAR, same size as H
E = extremal price, same size as H
a = vector of EMA factors, same size as H
R = vector of positions, R = +1/-1 for long/short, same size as H

The SAR signal Sn is usually plotted with dots, as shown for example, in the bottom
right graph of Fig. 6.22.2. Fig. 6.22.3 shows two more examples.

The left graph reproduces Wilder’s original example [281] and was generated by the
following MATLAB code,

Y = xlsread(’psarexa.xls’); % data from Wilder [281]
t = Y(:,1); H = Y(:,2); L = Y(:,3); % extract H,L signals

Ri = 1; ni = 4; % initialize SAR
[S,E,a,R] = psar(H,L,Ri,ni);

num2str([t, H, L, a, E, S, R], ’%8.2f’); % reproduces table on p.13 of [281]

figure; ohlc(t,[H,L], t,S,’r.’); % make OHLC plot, including SAR

The right graph is from Achelis [280]. The SAR is plotted with filled dots, but at the
end of each trending period and shown with open circles are the points that triggered
the reversals. The MATLAB code for this example is similar to the above,
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Fig. 6.22.3 Parabolic SAR examples from Wilder [281] and Achelis [280].

Y = xlsread(’psarexb.xls’); % data from Ref.[208]
t = Y(:,1); H = Y(:,2); L = Y(:,3);

Ri = 1; ni = 1; % initialize
[S,E,a,R] = psar(H,L,Ri,ni); % compute SAR

num2str([t ,H, L, a, E, S, R], ’%9.4f’); % reproduces table from Ref.[280]
figure; ohlc(t,[H,L], t,S,’r.’); % make OHLC plot, including SAR

The first up-trending period ends at day n = 9 at which the would be SAR, shown
as an opened-circle, lies above the low of that day, thus, causing a reversal to short
and that SAR is then replaced with the filled-circle value that lies above the highs, and
corresponds to the highest high of the previous period that had occurred on day n = 6.

The second down-trending period ends at n = 15 at which point the SAR, shown
as an opened-circle, is breached by the high on that day, thus causing a reversal to
long, and the SAR is reset to the filled-circle value on that day lying below the data, and
corresponds to the lowest low during the previous period that had been reached on day
n = 12. Finally, another such reversal takes place on day n = 27 and the SAR is reset to
the highest high that had occurred on day n = 18. To clarify, we list below the values
of the SAR at the reversal points before and after the reversal takes place,

n Sbefore(n) Safter(n)
9 91.5448 95.1875 = H6

15 92.3492 85.0625 = L12

27 89.8936 95.2500 = H18

6.23 Momentum, Oscillators, and Other Indicators

There exist several other indicators that are used in technical analysis, many of them
built on those we already discussed. The following MATLAB functions implement some
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of the more popular ones, several are also included in MATLAB’s financial toolbox. Ad-
ditional references can be found in the Achelis book [280] and in [281–347].

R = rsi(y,N,type); % relative strength index, RSI

R = cmo(y,N); % Chande momentum oscillator, CMO

R = vhfilt(y,N); % Vertical Horizontal Filter, VHF

[Dp,Dm,DX,ADX] = dirmov(Y,N); % directional movement system, +-DI,DX,ADX

------------------------------------------------------------------------------

[y,yr,ypr] = mom(x,d,xin); % momentum and price rate of change

[y,ys,ypr] = prosc(x,N1,N2,N3); % price oscillator & MACD

[pK,pD] = stoch(Y,K,Ks,D,M); % stochastic, %K, %D oscillators

------------------------------------------------------------------------------

R = accdist(Y); % accumulation/distribution line

R = chosc(Y,N1,N2); % Chaikin oscillator

R = cmflow(Y,N); % Chaikin money flow

R = chvol(Y,N); % Chaikin volatility

------------------------------------------------------------------------------

[P,N] = pnvi(Y,P0); % positive/negative volume indices, PVI/NVI

R = cci(Y,N); % commodity channel index, CCI

R = dpo(Y,N); % detrended price oscillator, DPO

[R,N] = dmi(y,Nr,Ns,Nm); % dynamic momentum index, DMI

[R,Rs] = forosc(y,N,Ns); % forecast oscillator

------------------------------------------------------------------------------

[R,Rs] = trix(y,N,Ns,yin); % TRIX oscillator

a = vema(y,N,Nv); % variable-length EMA

Below we discuss briefly their construction. Examples of their use are included in
their respective help files. Several online examples can be found in the Fidelity Guide
[345] and in the TradingView Wiki [346].

Relative Strength Index, RSI

The relative strength index (RSI) was introduced by Wilder [281] to be used in conjunction
with the parabolic SAR to confirm price trends. It is computed as follows, where y is the
column vector of daily closing prices,

x = diff(y); % price differences

xu = +x.*(x>0); % upward differences

xd = -x.*(x<=0); % downward differences

su = wema(xu,N); % smoothed differences

sd = wema(xd,N);

RSI = 100*su/(su+sd); % RSI

Chande Momentum Oscillator, CMO

If the wema function is replaced by sma, one obtains the Chande momentum oscillator,
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x = diff(y); % price differences

xu = +x.*(x>0); % upward differences

xd = -x.*(x<=0); % downward differences

su = sma(xu,N); % smoothed differences

sd = sma(xd,N);

CMO = 100*(su-sd)/(su+sd); % CMO

Thus, the SMA-based RSI is related to CMO via,

CMO = 2 RSI− 100 � RSI = CMO+ 100

2

Vertical Horizontal Filter, VHF

The vertical horizontal filter (VHF) is similar to the RSI or CMO and helps to confirm a
trend in trending markets. It is computed as follows, where the firstN outputs are NaNs,

x = [NaN; diff(y)]; % y = column of closing prices

% x = price differences

for n=N+1:length(y),

yn = y(n-N+1:n); % length-N look-back window

xn = x(n-N+1:n);

R(n) = abs(max(yn)-min(yn)) / sum(abs(xn)); % VHF

end

Directional Movement System

The directional movement system was also proposed by Wilder [281] and consists of
several indicators, the plus/minus directional indicators, (±DI), the directional index
(DX), and the average directional index (ADX). These are computed as follows,

R = atr(Y,N); % average true range

DH = [0; diff(H)]; % high price differences

DL = [0; -diff(L)]; % low price differences

Dp = DH .* (DH>DL) .* (DH>0); % daily directional movements

Dm = DL .* (DL>DH) .* (DL>0); %

Dp = wema(Dp,N); % averaged directional movements

Dm = wema(Dm,N); %

Dp = 100 * Dp ./ R; % +DI,-DI directional indicators

Dm = 100 * Dm ./ R;

DX = 100*abs(Dp - Dm)./(Dp + Dm); % directional index, DI

ADX = wema(DX,N); % average directional index, ADX

Momentum and Price Rate of Change

In its simplest form a momentum indicator is the difference between a price today,
x(n), and the price d days ago, x(n−d), but it can also be expressed as a ratio, or as a
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percentage, referred to as price rate of change,

y(n) = x(n)−x(n− d)= momentum

yr(n) = 100 · x(n)
x(n− d) = momentum as ratio

yp(n) = 100 · x(n)−x(n− d)
x(n− d) = price rate of change

It can be implemented simply with the help of the function, delay,

y = x - delay(x,d);

yr = x/delay(x,d) * 100;

yp = (x-delay(x,d))/delay(x,d) * 100;

Price Oscillator and MACD

The standard moving average convergence/divergence (MACD) indicator is defined as
the difference between two EMAs of the daily closing prices: a length-12 shorter/faster
EMA and a length-26 longer/slower EMA. A length-9 EMA of the MACD difference is also
computed as a trigger signal.

Typically, a buy (sell) signal is indicated when the MACD rises above (falls below)
zero, or when it rises above (falls below) its smoothed signal line.

The MACD can also be represented as a percentage resulting into the price oscillator,
and also, different EMA lengths can be used. The following code segment illustrates the
computation, where x are the closing prices,

y1 = sema(x,N1); % fast EMA, default N1=12

y2 = sema(x,N2); % slow EMA, default N2=26

y = y1 - y2; % MACD

ys = sema(y,N3); % smoothed MACD signal, default N3=9

ypr = 100 * y./y2; % price oscillator

Stochastic Oscillator

H = Y(:,1); L = Y(:,2); C = Y(:,3); % extract H,L,C inputs

Lmin = NaN(size(C)); Hmax = NaN(size(C)); % NaNs for n<K

for n = K:length(C), % look-back period K

Lmin(n) = min(L(n-K+1:n)); % begins at n=K

Hmax(n) = max(H(n-K+1:n));

end

pK = 100 * sma(C-Lmin, Ks) ./ sma(Hmax-Lmin, Ks); % percent-K

pD = sma(Pk, D); % percent-D

Fast Stochastic has Ks = 1, i.e., no smoothing, and Slow Stochastic has, typically, Ks = 3.
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Accumulation/Distribution

H=Y(:,1); L=Y(:,2); C=Y(:,3); V=Y(:,4); % extract H,L,C,V

R = cumsum((2*C-H-L)./(H-L).*V); % ACCDIST

Chaikin Oscillator

y = accdist(Y); % Y = [H,L,C,V] data matrix

R = sema(y,N1) - sema(y,N2); % CHOSC, default, N1=3, N2=10

Chaikin Money Flow

H=Y(:,1); L=Y(:,2); C=Y(:,3); V=Y(:,4); % extract H,L,C,V

R = sma((2*C-H-L)./(H-L).*V, N) ./ sma(V,N); % CMFLOW

Chaikin Volatility

S = sema(H-L,N); % H,L given

R = (S - delay(S,N)) ./ delay(S,N) * 100; % volatility

Positive/Negative Volume Indices, PNVI

These are defined recursively as follows, in MATLAB-like notation, where Cn,Vn are the
closing prices and the volume,

Pn = Pn−1 + (Vn > Vn−1)·Cn −Cn−1

Cn−1
· Pn−1 = Pn−1

(
Cn
Cn−1

)(Vn>Vn−1)
= PVI

Nn = Nn−1 + (Vn < Vn−1)·Cn −Cn−1

Cn−1
·Nn−1 = Nn−1

(
Cn
Cn−1

)(Vn<Vn−1)
= NVI

and initialized to some arbitrary initial value, such as, P0 = N0 = 1000. The MATLAB
implementation uses the function, delay,

P = P0 * cumprod( (C./delay(C,1)) .^ (V>delay(V,1)) ); % PNVI

N = P0 * cumprod( (C./delay(C,1)) .^ (V<delay(V,1)) );

Commodity Channel Index, CCI

T = (H+L+C)/3; % H,L,C given

M = sma(T,N);

for n=N+1:length(C),

D(n) = mean(abs(T(n-N+1:n) - M(n))); % mean deviation

end

R = (T-M)./D/0.015; % CCI
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Detrended Price Oscillator, DPO

S = sma(y,N,’n’); % y = column of closing prices

M = floor(N/2) + 1; % advancing time

R = y - delay(S,-M,’n’); % DPO, i.e., R(n) = y(n) - S(n+M)

Dynamic Momentum Index, DMI

x = [NaN; diff(y)]; % y = column of closing prices

xu = x .* (x>0); % updward differences

xd = -x .* (x<=0); % downward differences

S = stdev(y,Ns); % Ns-period stdev

V = S ./ sma(S,Nm); % volatility measure

N = floor(Nr ./ V); % effective length

N(N>Nmax) = Nmax; % restrict max and min N

N(N<Nmin) = Nmin;

Nstart = Nr + Ns + Nm;

su1 = mean(xu(2:Nstart)); % initialize at start time

sd1 = mean(xd(2:Nstart));

switch lower(type)

case ’wema’ % WEMA type

for n = Nstart+1:length(y),

su(n) = su1 + (xu(n) - su1) / N(n); su1 = su(n);

sd(n) = sd1 + (xd(n) - sd1) / N(n); sd1 = sd(n);

end

case ’sma’ % SMA type

for n = Nstart+1:length(y),

su(n) = mean(xu(n-N(n)+1:n));

sd(n) = mean(xd(n-N(n)+1:n));

end

end

R = 100 * su./(su+sd); % DMI

Forecast Oscillator

yp = pma(y,N,1); % time series forecast

x = y - delay(yp,1);

R = 100 * x./y; % forecast oscillator

Rs = sma(R,Ns); % trigger signal
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TRIX Oscillator

[~,~,~,~,~,a3] = tema(y,N,cin); % triple EMA

R = 100*(a3 - delay(a3,1))./a3; % TRIX

Rs = sma(R,Ns); % smoothed TRIX

Variable-Length EMA

la = (N-1)/(N+1); al = 1-la; % EMA parameter

switch lower(type)

case ’cmo’ % CMO volatility

V = abs(cmo(y,Nv))/100;

case ’r2’ % R^2 volatility

[~,~,V] = lreg(y,Nv);

end

for n=Nv+1:length(y), % default si=y(Nv)

s(n) = si + al*V(n)*(y(n)-si); % EMA recursion

si = s(n);

end

6.24 MATLAB Functions

We summarize the MATLAB functions discussed in this chapter:

% ------------------------------------
% Exponential Moving Average Functions
% ------------------------------------
% ema - exponential moving average - exact version
% stema - steady-state exponential moving average
% lpbasis - fit order-d polynomial to first L inputs
% emap - map equivalent lambdas’s between d=0 and d=1 EMAs
% emaerr - MSE, MAE, MAPE error criteria
% emat - transformation matrix from polynomial to cascaded basis
% mema - multiple exponential moving average
% holt - Holt’s exponential smoothing
% holterr - MSE, MAE, MAPE error criteria for Holt

The technical analysis functions are:

% ----------------------------
% Technical Analysis Functions
% ----------------------------
% accdist - accumulation/distribution line
% atr - true range & average true range
% cci - commodity channel index
% chosc - Chaikin oscillator
% cmflow - Chaikin money flow
% chvol - Chaikin volatility
% cmo - Chande momentum oscillator
% dirmov - directional movement system, +-DI, DX, ADX
% dmi - dynamic momentum index (DMI)
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% dpo - detrended price oscillator
% forosc - forecast oscillator
% pnvi - positive and negative volume indices, PVI, NVI
% prosc - price oscillator & MACD
% psar - Wilder’s parabolic SAR
% rsi - relative strength index, RSI
% stdev - standard deviation index
% stoch - stochastic oscillator, %K, %D oscillators
% trix - TRIX oscillator
% vhfilt - Vertical Horizontal Filter
%
% ------------ moving averages ---------------------------
%
% bma - Butterworth moving average
% dema - steady-state double exponential moving average
% ehma - exponential Hull moving average
% gdema - generalized dema
% hma - Hull moving average
% ilrs - integrated linear regression slope indicator
% delay - delay or advance by d samples
% mom - momentum and price rate of change
% lreg - linear regression, slope, and R-squared indicators
% pma - predictive moving average, linear fit
% pmaimp - predictive moving average impulse response
% pma2 - predictive moving average, polynomial order d=1,2
% pmaimp2 - predictive moving average impulse response, d=1,2
% sema - single exponential moving average
% shma - SMA-based Hull moving average
% sma - simple moving average
% t3 - Tillson’s T3 indicator, triple gdema
% tema - triple exponential moving average
% tma - triangular moving average
% vema - variable-length exponential moving average
% wema - Wilder’s exponential moving average
% wma - weighted or linear moving average
% zema - zero-lag EMA
%
% --------------- bands ----------------------------------
%
% bbands - Bollinger bands
% donch - Donchian channels
% fbands - fixed-envelope bands
% kbands - Keltner bands or channels
% pbands - Projection bands and projection oscillator
% sebands - standard-error bands
% stbands - STARC bands
%
% --------------- misc ----------------------------------
%
% ohlc - make Open-High-Low-Close bar chart
% ohlcyy - OHLC with other indicators on the same graph
% yylim - adjust left/right ylim
%
% r2crit - R-squared critical values
% tcrit - critical values of Student’s t-distribution
% tdistr - cumulative t-distribution
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6.25 Problems

6.1 Consider a filter with a real-valued impulse response hn. Let H(ω)= M(ω)e−jθ(ω) be
its frequency response, where M(ω)= |H(ω)| and θ(ω)= − argH(ω). First, argue that
θ(0)= 0 and M′(0)= 0, where M′(ω)= dM(ω)/dω. Then, show that the filter delay n̄ of
Eq. (6.1.18) is the group delay at DC, that is, show Eq. (6.1.19),

n̄ = dθ(ω)
dω

∣∣∣∣
ω=0

6.2 The lag of a filter was defined by Eqs. (6.1.17) and (6.1.18) to be,

n̄ =

∑
n
nhn∑

n
hn

= − H′(z)
H(z)

∣∣∣∣
z=1

If the filter H(z) is the cascade of two filters, H(z)= H1(z)H2(z), with individual lags,
n̄1, n̄2, then show that, regardless of whether H1(z),H2(z) are normalized to unity gain at
DC, the lag of H(z) will be the sum of the lags,

n̄ = n̄1 + n̄2

6.3 Consider a low-frequency signal s(n) whose spectrum S(ω) is limited within a narrow band
around DC, |ω| ≤ Δω, and therefore, its inverse DTFT representation is:

s(n)= 1

2π

∫ Δω
−Δω

S(ω)ejωn dω

For the purposes of this problem, we may think of the above relationship as defining s(n)
also for non-integer values of n. Suppose that the signal s(n) is filtered through a filter
H(ω) with real-valued impulse response whose magnitude response |H(ω)| is approxi-
mately equal to unity over the ±Δω signal bandwidth. Show that the filtered output can be
written approximately as the delayed version of the input by an amount equal to the group
delay at DC, that is,

y(n)= 1

2π

∫ Δω
−Δω

H(ω)S(ω)ejωn dω ≈ s(n− n̄)

6.4 Show that the general filter-sharpening formula (6.9.5) results in the following special cases:

p = 0, q = d ⇒ Himpr = 1− (1−H)d+1

p = 1, q = d ⇒ Himpr = 1− (1−H)d+1
[
1+ (d+ 1)H

]
6.5 Prove the formulas in Eqs. (6.10.5) and (6.10.7).

6.6 Prove Eq. (6.4.10).

6.7 Consider the single and double EMA filters:

H(z)= 1− λ
1− λz−1

, Ha(z)= 2H(z)−H2(z)= (1− λ)(1+ λ− 2λz−1)
(1− λz−1)2

a. Show that the impulse response of Ha(z) is:

ha(n)= (1− λ)
[
1+ λ− (1− λ)n]λnu(n)
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b. Show the relationships:

∞∑
n=0

nha(n)= 0,
∞∑
n=0

n2ha(n)= − 2λ2

(1− λ)2
(6.25.1)

c. Show that the NRR of the filter Ha(z) is:

R =
∞∑
n=0

h2
a(n)=

(1− λ)(1+ 4λ+ 5λ2)
(1+ λ)3

d. Show that the magnitude response squared of Ha(z) is:

|Ha(ω)|2 = (1− λ)2
[
1+ 2λ+ 5λ2 − 4λ(1+ λ)cosω

][
1− 2λ cosω+ λ2

]2 (6.25.2)

e. Show that Eq. (6.25.2) has local minima at ω = 0 and ω = π, and a local maximum at
ω =ωmax:

cosωmax = 1+ 4λ− λ2

2(1+ λ) (6.25.3)

and that the corresponding extremal values are:

|Ha(0)|2 = 1 , |Ha(π)|2 = (1− λ)2(1+ 3λ)2

(1+ λ)4

|Ha(ωmax)|2 = (1+ λ)2

1+ 2λ

(6.25.4)

6.8 Consider the modified EMA of Eq. (2.3.5) and its twicing,

H(z)= (1− λ)(1+ z−1)
2(1− λz−1)

, Ha(z)= 2H(z)−H2(z)= (1− λ)(1+ z−1)(3+ λ− z−1(1+ 3λ)
)

4(1− λz−1)2

a. Show the relationships:

∞∑
n=0

nha(n)= 0,
∞∑
n=0

n2ha(n)= − (1+ λ)2

2(1− λ)2

b. Show that the NRR of the filter Ha(z) is:

R =
∞∑
n=0

h2
a(n)=

1

8
(1− λ)(3λ+ 7)

6.9 Consider the optimum length-N predictive FIR filter hτ(k) of polynomial order d = 1 given
by Eq. (6.4.1).

a. Show that its effective lag is related to the prediction distance τ by n̄ = −τ.

b. Show that its NRR is given by

R =
N−1∑
k=0

h2
τ(k)=

1

N
+ 3(N − 1+ 2τ)2

N(N2 − 1)

Thus, it is minimized when τ = −(N − 1)/2. What is the filter hτ(k) in this case?
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c. Show that the second-derivative of its frequency response at DC is given by:

d2

dω2
H(ω)ω=0= −

∞∑
n=0

k2hτ(k)= 1

6
(N − 1)(N − 2+ 6τ)

Determine the range of τs for which
∣∣H(ω)∣∣2

is sloping upwards or downwards in
the immediate vicinity of ω = 0.

d. It is evident from the previous question that the value τ = −(N − 2)/6 corresponds
to the vanishing of the second-derivative of the magnitude response. Show that in this
case the filter is simply,

h(k)= 3N(N − 1)−2k(2N − 1)
N(N2 − 1)

, k = 0,1, . . . ,N − 1

and verify explicitly the results:

N−1∑
k=0

h(k)= 1 ,
N−1∑
k=0

kh(k)= N − 2

6
,

N−1∑
k=0

k2h(k)= 0 ,
N−1∑
k=0

h2(k)= 7N2 − 4N − 2

3N(N2 − 1)

e. Show that hτ(k) interpolates linearly between the τ = 0 and τ = 1 filters, that is,
show that for k = 0,1, . . . ,N − 1,

hτ(k)= (1− τ)ha(k)+τh1(k)= ha(k)+
[
h1(k)−ha(k)

]
τ

f. Another popular choice for the delay parameter is τ = −(N − 1)/3. Show that,

h(k)= 2(N − k)
N(N + 1)

, k = 0,1, . . . ,N − 1

and that,

N−1∑
k=0

h(k)= 1 ,
N−1∑
k=0

kh(k)= N − 1

3
,

N−1∑
k=0

k2h(k)= N(N − 1)
6

,
N−1∑
k=0

h2(k)= 2(2N + 1)
3N(N + 1)

In financial market trading, the cases τ = −(N−1)/2 and τ = −(N−1)/3 correspond,
respectively, to the so-called “simple” and “weighted” moving average indicators. The
case τ = −(N − 2)/6 is not currently used, but it provides a useful compromise
between reducing the lag while preserving the flatness of the passband. By comparison,
the relative lags of three cases are:

1

6
(N − 2)<

1

3
(N − 1)<

1

2
(N − 1)

6.10 Computer Experiment: Response of predictive FIR filters. Consider the predictive FIR filter
hτ(k) of the previous problem. For N = 9, compute and on the same graph plot the magni-
tude responses |H(ω)|2 for the following values of the prediction distance:

τ = −N − 1

2
, τ = −N − 2

6
, τ = 0 , τ = 1

Using the calculated impulse response values hτ(k), 0 ≤ k ≤ N−1, and for each value of τ,
calculate the filter lag, n̄, the NRR, R, and the “curvature” parameter of Eq. (6.10.5). Recall
from part (d) of the Problem 6.9 that the second τ should result in zero curvature.

Repeat all the questions for N = 18.
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6.11 Moving-Average Filters with Prescribed Moments. The predictive FIR filter of Eq. (6.16.3) has
lag equal to n̄ = −τ by design. Show that its second moment is not independently specified
but is given by,

n2 =
N−1∑
n=0

n2h(n)= −1

6
(N − 1)(N − 2+ 6τ) (6.25.5)

The construction of the predictive filters (6.16.3) can be generalized to allow arbitrary spec-
ification of the first and second moments, that is, the problem is to design a length-N FIR
filter with the prescribed moments,

n0 =
N−1∑
n=0

h(n)= 1 , n1 =
N−1∑
n=0

nh(n)= −τ1 , n2 =
N−1∑
n=0

n2h(n)= τ2 (6.25.6)

Show that such filter is given by an expression of the form,

h(n)= c0 + c1n+ c2n2 , n = 0,1, . . . ,N − 1

where the coefficients c0, c1, c2 are the solutions of the linear system,⎡⎢⎣ S0 S1 S2

S1 S2 S3

S2 S3 S4

⎤⎥⎦
⎡⎢⎣ λ0

λ1

λ2

⎤⎥⎦ =
⎡⎢⎣ 1
−τ1

τ2

⎤⎥⎦
where

Sp =
N−1∑
n=0

np , p = 0,1,2,3,4

Then, show that the Sp are given explicitly by,

S0 = N , S1 = 1

2
N(N − 1) , S2 = 1

6
N(N − 1)(2N − 1)

S3 = 1

4
N2(N − 1)2 , S4 = 1

30
N(N − 1)(2N − 1)(3N2 − 3N − 1)

and that the coefficients are given by,

c0 = 3(3N2 − 3N + 2)+18(2N − 1)τ1 + 30τ2

N(N + 1)(N + 2)

c1 = −18(N − 1)(N − 2)(2N − 1)+12(2N − 1)(8N − 11)τ1 + 180(N − 1)τ2

N(N2 − 1)(N2 − 4)

c2 = 30(N − 1)(N − 2)+180(N − 1)τ1 + 180τ2

N(N2 − 1)(N2 − 4)

Finally, show that the condition c2 = 0 recovers the predictive FIR case of Eq. (6.16.3) with
second moment given by Eq. (6.25.5).

6.12 Consider the Butterworth filter of Eq. (6.20.2). Show that the lag of the first-order section
and the lag of the ith second-order section are given by,

n̄0 = 1

2Ω0
, n̄i = − cosθi

Ω0
, i = 1,2, . . . , K

Using these results, prove Eq. (6.20.8) for the full lag n̄, and show that it is valid for both
even and odd filter orders M.

7
Smoothing Splines

7.1 Interpolation versus Smoothing

Besides their extensive use in drafting and computer graphics, splines have many other
applications. A large online bibliography can be found in [350]. A small subset of
references on interpolating and smoothing splines and their applications is [351–404].

We recall from Sec. 4.2 that the minimum-Rs filters had the property of maximizing
the smoothness of the filtered output signal by minimizing the mean-square value of
the s-differenced output, that is, the quantity E

[
(∇sx̂n)2

]
in the notation of Eq. (4.2.11).

Because of their finite span, minimum-Rs filters belong to the class of local smoothing
methods. Smoothing splines are global methods in the sense that their design criterion
involves the entire data signal to be smoothed, but their objective is similar, that is, to
maximize smoothness.

We assume an observation model of the form y(t)= x(t)+v(t), where x(t) is a
smooth trend to be estimated on the basis ofN noisy observations yn = y(tn)measured
at N time instants tn, for n = 0,1, . . . ,N − 1, as shown below.

The times tn, called the knots, are not necessarily equally-spaced, but are in increas-
ing order and are assumed to lie within a slightly larger interval [ta, tb], that is,

ta < t0 < t1 < t2 < · · · < tN−1 < tb

A smoothing spline fits a continuous function x(t), taken to be the estimate of the
underlying smooth trend, by solving the optimization problem:

J =
N−1∑
n=0

wn
(
yn − x(tn)

)2 + λ
∫ tb
ta

[
x(s)(t)

]2dt = min (7.1.1)

where x(s)(t) denotes the s-th derivative of x(t), λ is a positive “smoothing parameter,”
and wn are given non-negative weights.
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