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Fig. 4.5.3 Robust smoothing with outliers.

n1=10; n2=25; m = [-1 0 1 3]; % outlier indices relative to n1 and n2

y(n1+m+1)=1; y(n2+m+1)=0; % outlier values

Nit=4; K=4; x = rlpfilt(y,N,d,s,Nit,K); % robust LP filtering

plot(t,x0,’--’, t,y,’o’, t,x,’-’, n1+m,x(n1+m+1),’.’, n2+m,x(n2+m+1),’.’);

4.6 Problems

4.1 Using binomial identities, prove the equivalence of the three expressions in Eq. (4.4.14) for
the maximally-flat filters. Then, show Eq. (4.4.15) and determine the proportionality con-
stants indicated as (const.).

5
Local Polynomial Modeling

5.1 Weighted Local Polynomial Modeling

The methods of weighted least-squares local polynomial modeling and robust filtering
can be generalized to unequally-spaced data in a straightforward fashion. Such methods
provide enough flexibility to model a wide variety of data, including surfaces, and have
been explored widely in recent years [188–231]. For equally-spaced data, the weighted
performance index centered at time n was:

Jn =
M∑

m=−M

(
yn+m − p(m)

)2w(m)= min , p(m)=
d∑
r=0

cimr (5.1.1)

The value of the fitted polynomial p(m) atm = 0 represents the smoothed estimate
of yn, that is, x̂n = c0 = p(0). Changing summation indices to k = n +m, Eq. (5.1.1)
may be written in the form:

Jn =
n+M∑
k=n−M

(
yk − p(k− n)

)2w(k− n)= min , p(k− n)=
d∑
r=0

ci(k− n)r (5.1.2)

For a set of N unequally-spaced observations
{
tk, y(tk)

}
, k = 0,1, . . . ,N − 1, we

wish to interpolate smoothly at some time instant t, not necessarily coinciding with one
of the observation times tk, but lying in the interval t0 ≤ t ≤ tN−1. A generalization
of the performance index (5.1.2) is to introduce a t-dependent window bandwidth ht,
and use only the observations that lie within that window, |tk − t| ≤ ht, to perform the
polynomial fit:

Jt =
∑

|tk−t|≤ht

(
y(tk)−p(tk − t)

)2w(tk − t)= min , p(tk − t)=
d∑
r=0

cr(tk − t)r (5.1.3)

The estimated/interpolated value at t will be x̂t = c0 = p(0), and the estimated first
derivative, ˆ̇xt = c1 = ṗ(0), and so on for the higher derivatives, with r! cr representing
the rth derivative. As illustrated in Fig. 5.1.1, the fitted polynomial,

p(x− t)=
d∑
r=0

cr(x− t)r , t − ht ≤ x ≤ t + ht

197



198 5. Local Polynomial Modeling

is local in the sense that it fits the observations only within the local window [t−ht, t+ht].
The quantity ŷk = p(tk − t) represents the estimated value of the kth observation yk
within that window.

Fig. 5.1.1 Local polynomial modeling.

The weighting function w(tk − t) is chosen to have bandwidth ±ht. This can be
accomplished by using a functionW(u) with finite support over the standardized range
−1 ≤ u ≤ 1, and setting u = (tk − t)/ht:

w(tk − t)=W
(
tk − t
ht

)
(5.1.4)

Some typical choices for W(u) are as follows [224]:

1. Tricube, W(u)= (1− |u|3)3

2. Bisquare, W(u)= (1− u2)2

3. Triweight, W(u)= (1− u2)3

4. Epanechnikov, W(u)= 1− u2

5. Gaussian, W(u)= e−α2u2/2

6. Exponential, W(u)= e−α|u|
7. Rectangular, W(u)= 1

(5.1.5)

where all types have support |u| ≤ 1 and vanish for |u| > 1. A typical value forα in the
gaussian and exponential cases is α = 2.5. The curve shown in Fig. 5.1.1 is the tricube
function; because it vanishes at u = ±1, the observations that fall exactly at the edges
of the window do not contribute to the fit. The MATLAB function locw generates the
above functions at any vector of values of u:

W = locw(u,type); % local polynomial weighting functions W(u)

where type takes the values 1–7 as listed in Eq. (5.1.5). The bisquare, triweight, and
Epanechnikov functions are special cases of the more general W(u)= (1− u2)s, which
may be thought of as the large-M limit of the Henderson weights; in the limit s → ∞
they tend to a gaussian, as in the Krawtchouk case. The various window functions are
depicted in Fig. 5.1.2.
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Fig. 5.1.2 Window functions.

Because of the assumed finite extent of the windows, the summation in Eq. (5.1.3)
can be extended to run over all N observations, as is often done in the literature:

Jt =
N−1∑
k=0

(
y(tk)−p(tk − t)

)2w(tk − t)= min , p(tk − t)=
d∑
r=0

cr(tk − t)r (5.1.6)

We prefer the form of Eq. (5.1.3) because it emphasizes the local nature of the fitting
window. LetNt be the number of observations that fall within the interval [t−ht, t+ht].
We may cast the performance index (5.1.3) in a compact matrix form by defining the
Nt×1 vector of observations yt, theNt×(d+1) basis matrix St, and theNt×Nt diagonal
matrix of weights by

yt = [· · · , y(tk), · · · ]T , for t − ht ≤ tk ≤ t + ht

St =

⎡
⎢⎢⎢⎣

...
...

...
...

1 (tk − t) · · · (tk − t)r · · · (tk − t)d
...

...
...

...

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

...
uT(tk − t)

...

⎤
⎥⎥⎥⎦

Wt = diag
(
[· · · ,w(tk − t), · · · ]

)
(5.1.7)

where uT(tk− t) is the k-th row of St, defined in terms of the (d+1)-dimensional vector
uT(τ)= [1, τ, τ2, . . . , τd]. For example, if t−ht < t3 < t4 < t5 < t6 < t+ht, thenNt = 4
and for a polynomial order d = 2, we have:

yt =

⎡
⎢⎢⎢⎣
y(t3)
y(t4)
y(t5)
y(t6)

⎤
⎥⎥⎥⎦ , St =

⎡
⎢⎢⎢⎣

1 (t3 − t) (t3 − t)2

1 (t4 − t) (t4 − t)2

1 (t5 − t) (t5 − t)2

1 (t6 − t) (t6 − t)2

⎤
⎥⎥⎥⎦

Wt =

⎡
⎢⎢⎢⎣
w(t3 − t) 0 0 0

0 w(t4 − t) 0 0
0 0 w(t5 − t) 0
0 0 0 w(t6 − t)

⎤
⎥⎥⎥⎦
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With these definitions, Eq. (5.1.3) can be written as

Jt = (yt − Stc)TWt(yt − Stc)= min (5.1.8)

with solution for the coefficient vector c = [c0, c1, . . . , cd]T:

c = (STt WtSt)−1STt Wtyt (5.1.9)

The quantity ŷt = Stc represents the polynomial estimate of the local observation
vector yt. It can be written as

ŷt = BTt yt , Bt =WtSt(STt WtSt)−1STt (5.1.10)

where theNt×Nt matrixBt generalizes (4.1.5), and satisfies a similar polynomial-preserving
property as (4.1.6),

BTt St = St (5.1.11)

Defining the usual (d+1)-dimensional unit vector u0 = [1,0, . . . ,0]T, we obtain the
estimated value at time t by x̂t = c0 = uT0 c, and the first derivative by ˆ̇xt = c1 = uT1 c,
where u1 = [0,1,0, . . . ,0]T,

x̂t = uT0 (STt WtSt)−1STt Wtyt

ˆ̇xt = uT1 (STt WtSt)−1STt Wtyt
(5.1.12)

Thus, the effective estimation weights are:

h(t)=WtSt(STt WtSt)−1u0 , x̂t = hT(t)yt (5.1.13)

Component-wise, we can write:

x̂t = hT(t)yt =
∑

|tk−t|≤ht
hk(t)yk (5.1.14)

where yk = y(tk) and

hk(t)= w(tk − t)uT(tk − t)(STt WtSt)−1u0 (5.1.15)

We note that u0,u1 are related to the vector u(τ) and its derivative by u0 = u(0)
and u1 = u̇(0). We also have,

STt WtSt =
∑

|tk−t|≤ht
u(tk − t)uT(tk − t)w(tk − t) (5.1.16)

or, component-wise,

(STt WtSt)ij=
∑

|tk−t|≤ht
(tk − t)i+j w(tk − t) , i, j = 0,1, . . . , d (5.1.17)

The solution is particularly easy in the special cases d = 0, corresponding to local
constant fitting, and d = 1, corresponding to local linear fits. The case d = 0 leads to the
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so-called kernel smoothing approach first proposed by Nadaraya and Watson [188,189].
In this case u(τ)= [1] and we find:

STt WtSt =
∑

|tk−t|≤ht
w(tk − t) , hk(t)= w(tk − t)∑

|tk−t|≤ht
w(tk − t)

x̂t =
∑

|tk−t|≤ht
hk(t)yk =

∑
|tk−t|≤ht

w(tk − t)yk
∑

|tk−t|≤ht
w(tk − t)

(kernel smoothing) (5.1.18)

For d = 1, we have u(τ)= [1, τ]T, and we obtain

STt WtSt =
∑

|tk−t|≤ht

[
1 (tk − t)

(tk − t) (tk − t)2

]
w(tk − t)≡

[
s0(t) s1(t)
s1(t) s2(t)

]

(STt WtSt)−1= 1

s0(t)s2(t)−s2
1(t)

[
s2(t) −s1(t)
−s1(t) s0(t)

]

which gives for the filter weights hk(t):

hk(t)= w(tk − t)s2(t)−(tk − t)s1(t)
s0(t)s2(t)−s2

1(t)
(locally linear fits) (5.1.19)

In general, the invertibility of STt WtSt requires thatNt ≥ d+1. The QR factorization
can be used to implement the above computations efficiently. If the weight function
W(u) vanishes at the end-points u = ±1, as in the tricube case, then the window interval
must exclude those end-points. In other words, the diagonal entries ofWt are assumed
to be strictly positive. DefiningU to be the diagonal square root factor ofWt and carrying
out the QR factorization of the matrix USt, we obtain the efficient algorithm:

U = sqrt(Wt) , U is diagonal so that UT = U and Wt = UTU = U2

USt = QR , QTQ = Id+1 , R = (d+1)×(d+1) upper-triangular

c = R−1QTUyt

(5.1.20)

The above steps are equivalent to reducing the problem to an ordinary unweighted
least-squares problem, that is, c is recognized to be the unique least-squares solution of
the full-rank, overdetermined, Nt×(d+1)-dimensional system (USt)c = Uyt. Indeed,
it follows from Eq. (15.4.10) of Chap. 15 that c is given by:

c = [
(USt)T(USt)

]−1(USt)T(Uyt)= (STt WtSt)−1STt Wtyt (5.1.21)

where
[
(USt)T(USt)

]−1(USt)T is the pseudoinverse of USt. The corresponding per-
formance indices are equivalent:

Jt = (yt − Stc)TWt(yt − Stc)= ‖Uyt −UStc‖2 = min
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In MATLAB the least-squares solution (5.1.21) can be obtained by the backslash oper-
ation: c = (USt)\(Uyt). The construction of the quantities yt, St,Wt is straightforward.
Given the column vectors of observation times and observations,

tobs = [t0, t1, . . . , tN−1]T , yobs =
[
y(t0), y(t1), . . . , y(tN−1)

]T
(5.1.22)

we may determine, with the help of locw, the column vector of indices k for which tk
lies in the local window, and then carry out the procedure (5.1.21):

w = locw((tobs - t)/h_t, type); % weights of all observation times relative to a given t and ht
k = find(w); % column vector of indices of nonzero weights within window

yt = yobs(k); % column vector of corresponding local observations yt
Wt = diag(w(k)); % diagonal matrix of nonzero local weights Wt
St = [];
for r=0:d,

St = [St, (tobs(k) - t).^r]; % construct local polynomial basis St column-wise

end
U = sqrt(Wt); % diagonal square root of Wt
c = (U*St)\(U*yt); % least-squares solution

Most of thew’s obtained from the first line of code are zero, except for those tk that
lie within the local window t±ht. The second line, k = find(w), finds the latter. These
steps have been incorporated into the MATLAB function locpol:

[xhat,C] = locpol(tobs,yobs,t,h,d,type); % local polynomial modeling

where tobs,yobs are as in (5.1.22), t,h are L-dimensional vectors of times and band-
widths at which to carry out the fit, and d,type are the polynomial order and window
type, with default values d = 1, type = 1. The output xhat is the L-dimensional vector
of estimates x̂t, and C is an L×(d+1)matrix, whose ith row is the vector [c0, c1, . . . , cd]
of polynomial coefficients corresponding to the ith fitting time and bandwidth t(i), h(i).
Thus, the first column of C is the same as xhat, while the second column contains the
first derivatives. Separating the first column of C into xhat is done only for convenience
in using the function.

The choice of the bandwidth ht is an important consideration that influences the
quality of the estimate x̂t. Too large an ht will oversmooth the signal but reduce the
noise (i.e., increasing bias but lowering variance), and too small an ht will undersmooth
the signal and not reduce the noise as much (i.e., reducing bias and increasing variance).

Two simple bandwidth choices are the fixed and the nearest-neighbor bandwidths.
In the fixed case, one chooses the same bandwidth at each fitting time, that is, ht = h, for
all t. In the nearest-neighbor case, one chooses a fixed number, sayK, of observations to
lie within each local window, whereK is a fraction of the total number of observationsN,
that is,K = �αN	, truncated to an integer, whereα ≤ 1. Typical values areα = 0.2–0.8.
Given K, one calculates the distances of all the observation times from t, that is, |tk− t|,
k = 0,1, . . . ,N − 1, then sorts them in increasing order, and picks ht to be the Kth
shortest distance, and therefore, there will be K observations satisfying |tk− t| ≤ ht. In
summary, the fixed case selects ht = h but with varying Nt, and the nearest-neighbor
case selects varying ht but with fixed Nt = K.

The MATLAB function locband may be used to calculate the bandwidths ht at each
t, using either the fixed method, or the nearest-neighbor method:
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h = locband(tobs,t,alpha,h0); % bandwidth for local polynomial regression

where if α = 0, the fixed bandwidth h0 is selected, and if 0 < α < 1, the K-nearest
bandwidths are selected, where t is a length-L vector of fitting times.

Example 5.1.1: As an example, consider the following 16 observation times tobs, and 5 fitting
times t, and choose α = 0.25 so that K = αN = 0.25×16 = 4:

tobs = [0.5, 0.8, 1.1, 1.2, 1.8, 2.4, 2.5, 3.4, 3.5, 3.7, 4.0, 4.2, 4.9, 5.0, 5.1, 6.2]

t = [0.5, 1.5, 2.9, 3.6, 5.1]

then one finds the corresponding bandwidths for each of the five t’s

h = locband(tobs,t,0.25,0) = [0.7, 0.7, 0.6, 0.6, 0.9]

and the corresponding local intervals, each containing K = 4 observation times:

ht t − ht t t + ht included tks
0.7 −0.2 0.5 1.2 0.5, 0.8, 1.1, 1.2
0.7 0.8 1.5 2.2 0.8, 1.1, 1.2, 1.8
0.6 2.3 2.9 3.5 2.4, 2.5, 3.4, 3.5
0.6 3.5 4.1 4.7 3.5, 3.7, 4.0, 4.2
0.9 4.2 5.1 6.0 4.2, 4.9, 5.0, 5.1

By contrast, had we chosen a fixed bandwidth, say h = 0.7 (the average of the above five),
then the corresponding intervals and included observation times would have been:

ht t − ht t t + ht included tks
0.7 −0.2 0.5 1.2 0.5, 0.8, 1.1, 1.2
0.7 0.8 1.5 2.2 0.8, 1.1, 1.2, 1.8
0.7 2.2 2.9 3.6 2.4, 2.5, 3.4, 3.5
0.7 2.9 3.6 4.3 3.4, 3.5, 3.7, 4.0, 4.2
0.7 4.4 5.1 5.8 4.9, 5.0, 5.1

where now the number Nt of included observations depends on t. As can be seen from
this example, both the nearest-neighbor and fixed bandwidth choices adapt well at the
end-points of the available observations. 
�

Choosing t to be one of the observation times, t = ti, Eq. (5.1.12) can be written in
the simplified notation:

x̂i = uT0 (S
T
i WiSi)−1STi Wiyi ≡ hTi yi , hTi = uT0 (S

T
i WiSi)−1STi Wi (5.1.23)

where x̂i, Si,Wi,yi are the quantities x̂t, St,Wt,yt evaluated at t = ti. Component-wise,

x̂i =
∑

|tj−ti|≤hi
uT0 (S

T
i WiSi)−1u(tj − ti)w(tj − ti)yj =

∑
|tj−ti|≤hi

Hij yj (5.1.24)

where the matrix elements Hij are,

Hij = hj(ti)= uT0 (S
T
i WiSi)−1u(tj − ti)w(tj − ti) (5.1.25)
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Similarly, one may express STi WiSi and STi Wiyi as,

STi WiSi =
∑

|tj−ti|≤hi
u(tj − ti)uT(tj − ti)w(tj − ti)

STi Wiyi =
∑

|tj−ti|≤hi
u(tj − ti)w(tj − ti)yj

(5.1.26)

Because the factor w(tj − ti) vanishes outside the local window ti ± hi, the sum-
mations in (5.1.24) and (5.1.26) over tj can be extended to run over all N observations.
Defining theN-dimensional vectors x̂ = [x̂0, x̂1, . . . , x̂N−1]T and y = [y0, y1, . . . , yN−1]T,
we may write (5.1.24) in the compact matrix form:

x̂ = Hy (5.1.27)

The filtering matrix H is also known as the “hat” matrix or the “smoothing” matrix.
Its diagonal elementsHii play a special role in bandwidth selection, where w0 = w(0),†

Hii = hi(ti)= w0 uT0 (S
T
i WiSi)−1 u0 (5.1.28)

5.2 Bandwidth Selection

There exist various automatic schemes for choosing the bandwidth. Such schemes may
at best be used as guidelines. Ultimately, one must rely on one’s judgment in making
the final choice.

A popular bandwidth selection method is the so-called cross-validation criterion that
selects the bandwidth h that minimizes the sum of squared prediction errors:

CV(h)= 1

N

N−1∑
i=0

(yi − x̂−i )2= min (5.2.1)

where x̂−i is the estimate or prediction of the sample xi = x(ti) obtained by deleting the
ith observation yi and basing the estimation on the remaining observations, where we
are assuming the usual additive-noise model y(ti)= x(ti)+v(ti)with x(ti) representing
the desired signal to be extracted from y(ti). We show below that the predicted estimate
x̂−i is related to the estimate x̂i based on all observations by the relationship:

x̂−i =
x̂i −Hii yi

1−Hii (5.2.2)

where Hii is given by (5.1.28). It follows from (5.2.2) that the corresponding estimation
errors will be related by:

yi − x̂−i =
yi − x̂i
1−Hii (5.2.3)

†w0 = 1 for all the windows in Eq. (5.1.5), but any other normalization can be used.
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and therefore, the CV index can be expressed as:

CV(h)= 1

N

N−1∑
i=0

(yi − x̂−i )2= 1

N

N−1∑
i=0

(
yi − x̂i
1−Hii

)2

= min (5.2.4)

A related selection criterion is based on the generalized cross-validation index, which
replaces Hii by its average over i, that is,

GCV(h)= 1

N

N−1∑
i=0

(
yi − x̂i
1− H̄

)2

= min , H̄ = 1

N

N−1∑
i=0

Hii = 1

N
tr(H) (5.2.5)

If the bandwidth is to be selected by the nearest-neighbor method, then, the CV
and GCV indices may be regarded as functions of the fractional parameter α and min-
imized. Similarly, one could consider minimizing with respect to the polynomial order
d, although in practice d is usually chosen to be 1 or 2.

Eq. (5.2.2) can be shown as follows. If the tj = ti observation is deleted from
Eq. (5.1.23), the corresponding optimum polynomial coefficients and optimum estimate
will be given by

c− = (STi WiSi)−1− (S
T
i Wiyi)− , x̂−i = uT0 c−

where the minus subscripts indicate that the tj = ti terms are to be omitted. It follows
from Eq. (5.1.26) that

STi WiSi = (STi WiSi)−+w0u0uT0

STi Wiyi = (STi Wiyi)−+w0u0yi
(5.2.6)

and then,
c− =

[
STi WiSi −w0u0uT0 ]−1[STi Wiyi −w0u0yi

]
(5.2.7)

Setting Fi = STi WiSi and noting that c = F−1
i S

T
i Wiyi or STi Wiyi = Fic, we may write,

c− =
[
Fi −w0u0uT0 ]−1[Fi c−w0u0yi

]
Using the matrix inversion lemma, we have,

[
Fi −w0u0uT0 ]−1= F−1

i + w0F−1
i u0uT0F

−1
i

1−w0uT0F
−1
i u0

(5.2.8)

Noting that Hii = w0uT0F
−1
i u0, we obtain,

c− =
[
F−1
i + w0F−1

i u0uT0F
−1
i

1−Hii

][
Fi c−w0u0yi

]

=
[
I + w0F−1

i u0uT0
1−Hii

][
c−w0F−1

i u0yi
]

= c−w0F−1
i u0yi + w0F−1

i u0
[
uT0 c−w0uT0F

−1
i u0yi

]
1−Hii

and since x̂i = uT0 c, we find,

c− = c−w0F−1
i u0yi + w0F−1

i u0
[
x̂i −Hiiyi

]
1−Hii = c+w0F−1

i u0
x̂i − yi
1−Hii
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from which we find for x̂−i = uT0 c−,

x̂−i = x̂i +
Hii(x̂i − yi)

1−Hii = x̂i −Hiiyi
1−Hii (5.2.9)

In practice, the CV and GCV indices are evaluated over a certain range of the smooth-
ing parameter h or α to look for a minimum. The MATLAB function locgcv evaluates
these indices at any vector of parameter values:

[GCV,CV] = locgcv(tobs,yobs,d,type,b,btype); % CV and GCV evaluation

where type is the window type, b is either a vector of hs or a vector of αs at which
to evaluate CV and GCV, and the string btype takes the values ’f’ or ’nn’ specifying
whether the parameter vector b corresponds to a fixed or nearest-neighbor bandwidth.

5.3 Local Polynomial Interpolation

The primary advantage of local polynomial modeling is its flexibility and ease of smooth-
ing unequally-spaced data. Its main disadvantage is the potentially high computational
cost, that is, the calculations (5.1.12) must be performed for each t, and generally a
dense set of such t’s might be required in order to get a visually smooth curve.

One way to cut down the cost is to evaluate the smoothed values x̂t at a less dense
grid of ts, and then interpolate smoothly between the computed points. This is akin
to what plotting programs do by connecting the dots by straight-line segments (linearly
interpolating)—the result being a visually continuous curve. But here, we can do better
than just connecting the dots because we have available the slopes at each grid point.
These slopes are contained in the second column of the fitting matrix C resulting from
locpol, assuming of course that d ≥ 1.

Consider two time instants t1, t2 at which the fitted signal values are a1, a2 with
corresponding slopes b1, b2, as shown below. The lowest-degree polynomial P(t) inter-
polating between the two points t1, t2 that matches the fitted values and their slopes at
t1 and t2 is a cubic polynomial—the method being known as cubic Hermite interpolation.
The four polynomial coefficients are fixed uniquely by the four conditions:

P(t1) = a1 , Ṗ(t1)= b1

P(t2) = a2 , Ṗ(t2)= b2

which result into the cubic polynomial, where T = t2 − t1,

P(t)=
(
t − t2
T

)2 [
a1 + (Tb1 + 2a1)

(
t − t1
T

)]

+
(
t − t1
T

)2 [
a2 + (Tb2 − 2a2)

(
t − t2
T

)] (5.3.1)
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For local-polynomial orders d ≥ 1, we use Eq. (5.3.1) to interpolate at a denser grid
of points between the less dense grid of fitted points. For the special case, d = 0, the
slopes are not available and we can only use linear interpolation, that is,

P(t)= a1 + (a2 − a1)
(
t − t1
T

)
(5.3.2)

The MATLAB function locval takes the output matrix C from locpol corresponding
to a grid of fitting points t, and computes the interpolated points ygrid at the denser grid
of points tgrid:

ygrid = locval(C,t,tgrid); % interpolating local polynomial fits

The auxiliary function locgrid helps establish a uniform grid between the t points:

tgrid = locgrid(t, Ngrid); % uniform grid with respect to t

which is simply a shorthand for,

tgrid = linspace(min(t), max(t), Ngrid);

Example 5.3.1: The motorcycle acceleration dataset [231] has served as a benchmark in many
studies of local polynomial modeling and spline smoothing. The ordinate represents head
acceleration (in units of g) during impact, and the abscissa is the time (in msec).

Fig. 5.3.1 shows a plot of the GCV index as a function of the nearest-neighbor fractional
parameter α on the left, and as a function of the fixed bandwidth h on the right, for the
two polynomial orders d = 1,2.
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Fig. 5.3.1 GCV score for nearest-neighbor (left) and fixed bandwidths (right).

The “optimal” values of these parameters that minimize the GCV (and indicated by dots
on the graphs) are as follows, where the subscripts indicate the value of d:

α1 = 0.16 , α2 = 0.33 , h1 = 3.9 , h2 = 7.8

The graphs (for d = 1) were produced by the MATLAB code:
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Y = loadfile(’mcyc.dat’); % file included in the OSP toolbox

tobs = Y(:,1); yobs = Y(:,2); % 133 data points

alpha = linspace(0.1, 0.5, 51); % vary over 0.1 ≤ α ≤ 0.5

d=1; type=1;
gcv = locgcv(tobs,yobs,d,type,alpha,’nn’); % GCV as function of α
[F,i] = min(gcv); alpha1 = alpha(i); % minimum at α = α1

figure; plot(alpha,gcv); % left graph

h = linspace(2, 10, 51); % vary over 2 ≤ h ≤ 10

gcv = locgcv(tobs,yobs,d,type,h,’f’); % GCV as function of h
[F,i] = min(gcv); h1 = h(i); % minimum at h = h1

Fig. 5.3.2 shows the local polynomial fits corresponding to the above optimal parameter
values. The left graph shows the nearest-neighbor cases for d = 1,2, and the right graph,
the fixed bandwidth cases. The tricube window was used (type=1).
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Fig. 5.3.2 Nearest-neighbor (left) and fixed bandwidths (right).

In all cases, the actual fitting was performed at 100 equally-spaced points t within the
observation range tobs and were connected by straight-line segments by the plotting pro-
gram, instead of being interpolated by locval. Continuing with the above MATLAB code,
the graphs were generated by

t = locgrid(tobs,101); % equally-spaced fitting times

h = locband(tobs, t, alpha1, 0); % NN bandwidths at each t
x1 = locpol(tobs,yobs,t,h,1,type); % fit at times t with d = 1

h = locband(tobs, t, alpha2, 0);
x2 = locpol(tobs,yobs,t,h,2,type); % fit at times t with d = 2

figure; plot(tobs,yobs,’.’, t,x1,’-’, t,x2,’--’); % left graph

h = locband(tobs, t, 0, h1); % fixed bandwidths at each t
x1 = locpol(tobs,yobs,t,h,1,type); % fit at times t with d = 1

h = locband(tobs, t, 0, h2);
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x2 = locpol(tobs,yobs,t,h,2,type); % fit at times t with d = 2

figure; plot(tobs,yobs,’.’, t,x1,’-’, t,x2,’--’); % right graph

Fig. 5.3.3 demonstrates the Hermite interpolation procedure. The fitting times are 20
equally-spaced points spanning the observation interval tobs. The 20 fitted points are then
interpolated at 100 equally-spaced points over tobs. The interpolated curves are essentially
identical to those fitted earlier at 100 points.
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Fig. 5.3.3 Nearest-neighbor (left) and fixed bandwidths (right).

The polynomial order was d = 1 and the bandwidth parameters wereα1 = 0.21 for the left
graph and h1 = 4.4 for the right one. The left graph was generated by the code segment:

tf = locgrid(tobs,21); % fitting times

h = locband(tobs, tf, alpha1, 0); % NN bandwidths at tf

[xf,C] = locpol(tobs,yobs,tf,h,1,type); % fitted values and derivatives

tint = locgrid(tf,101); % interpolation times

xint = locval(C, tf, tint); % interpolated values

figure; plot(tobs,yobs,’.’, tf,xf,’o’, tint,xint,’-’);

Example 5.3.2: The ethanol dataset [230] is also a benchmark example for smoothing tech-
niques. The ordinate NOx represents nitric oxide concentrations in the engine exhaust
gases, and the abscissa E is the equivalence ratio, which is a measure of the richness of
the ethanol/air mixture.

The GCV and CV bandwidth selection criteria tend sometimes to result in undersmoothed
signals. This can be seen in Fig. 5.3.4 in which the GCV criterion for fixed bandwidth selects
the values h1 = 0.039 and h2 = 0.058, for orders d = 1,2.

As can be seen, the resulting fits are jagged, and can benefit form increasing the fitting
bandwidth somewhat. The minima of the GCV plot are fairly broad and any neighboring
values of the bandwidth would be just as good in terms of the GCV value. A similar effect
happens in this example for the nearest-neighbor bandwidth method, in which the GCV
criterion selects the value α = 0.19 corresponding to jagged graph (not shown). Fig. 5.3.5
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Fig. 5.3.4 GCV and local polynomial fits with d = 1,2.
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Fig. 5.3.5 Fits with fixed (left) and nearest-neighbor (right) bandwidths.

shows the fits when the fixed bandwidth is increased to h = 0.08 and the nearest-neighbor
one to α = 0.3. The resulting fits are much smoother.

The MATLAB code for generating the graphs of Fig. 5.3.4 is as follows:

Y = loadfile(’ethanol.dat’); % file available in OSP toolbox

tobs = Y(:,1); yobs = Y(:,2); % data

t = locgrid(tobs,101); % uniform grid of 101 fitting points

h = linspace(0.02, 0.08, 41); % vary h over 0.02 ≤ h ≤ 0.08

gcv1 = locgcv(tobs,yobs,1,1,h,’f’); % GCV as function of h
gcv2 = locgcv(tobs,yobs,2,1,h,’f’);

figure; plot(h,gcv1,’-’, h,gcv2,’--’); % left graph

h = locband(tobs, t, 0, h1); % fixed bandwidths at t
x1 = locpol(tobs,yobs,t,h,1,1); % fit with d = 1 and tricube window

h = locband(tobs, t, 0, h2);
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x2 = locpol(tobs,yobs,t,h,2,1); % fit with d = 2 and tricube window

figure; plot(tobs,yobs,’.’, t,x1,’-’, t,x2,’--’); % right graph

The MATLAB code for generating Fig. 5.3.5 is as follows:

h0 = 0.08; h = locband(tobs, t, 0, h0); % fixed bandwidth case

x1 = locpol(tobs,yobs,t,h,1,1); % order d = 1, tricube window

figure; plot(tobs,yobs,’.’, t,x1,’-’); % left graph

alpha = 0.3; h = locband(tobs, t, alpha, 0); % nearest-neighbor bandwidth case

x1 = locpol(tobs,yobs,t,h,1,1); x1 = C(:,1); % order d = 1, tricube windowm
figure; plot(tobs,yobs,’.’, t,x1,’-’); % right graph

Fig. 5.3.6 shows a fit at 10 fitting points and interpolated over 101 points. The fitting
parameters are as in the right graph of Fig. 5.3.5. The following code generates Fig. 5.3.6:

tf = locgrid(tobs,10); % fitting points

alpha = 0.3; h = locband(tobs, tf, alpha, 0); % nearest-neighbor bandwidths

[xf,C] = locpol(tobs,yobs,tf,h,1,1); % order 1, tricube window

ti = locgrid(tf,101); yi = locval(C,tf,ti); % interpolated points

figure; plot(tobs,yobs,’.’, ti,yi,’-’, tf,xf,’o’);

0.6 0.8 1 1.2
0

1

2

3

4

5
ethanol data,  d = 1,  α = 0.3

E

N
O

x

 

 

 data
 interp
 fitted

Fig. 5.3.6 Interpolated fits.

5.4 Variable Bandwidth

The issue of selecting the right bandwidth has been studied extensively, with approaches
ranging from finding an optimum bandwidth that minimizes a selection criterion such as
the GCV to using a locally-adaptive criterion that allows the bandwidth to automatically
adapt to the local nature of the signal with different bandwidths being used in different
parts of the signal [188–231].
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There is no selection criterion that is universally successful or universally agreed
upon and one must use one’s judgment and visual inspection to decide how much
smoothing is satisfactory. The basic idea is always to reduce the bandwidth in regions
where the curvature of the signal is high in order not to oversmooth.

The function locpol can accept a different bandwidth ht for each fitting time t. As
we saw in the above examples, the function locband generates such bandwidths for
input to locpol. However, locband generates either fixed or or nearest-neighbor band-
widths and is not adaptive to the local nature of the signal. One could manually, divide
the range of the signal in non-overlapping regions and use a different fixed bandwidth
in each region. In some cases, as in the Doppler example below, this is possible but in
other cases a more automatic way of adapting is desirable.

A naive, but as we see in the examples below, quite effective way is to estimate the
curvature, sayκt, of the signal and define the bandwidth in terms of a suitable decreasing
function ht = f(κt). We may define the curvature in terms of the estimate of the second
derivative of the signal and normalize it to its maximum value:

κt = |ˆ̈xt|
max
t
|ˆ̈xt| (5.4.1)

The second derivative ˆ̈xt can be estimated by performing a local polynomial fit with
polynomial order d ≥ 2 using a fixed bandwidth h0 or a nearest-neighbor bandwidth α.
If one could determine a bandwidth range [hmin, hmax] such that hmax would provide
an appropriate amount of smoothing in certain parts of the signal and hmin would be
appropriate in regions where the signal appears to have larger curvature, then one may
choose hmin ≤ h0 ≤ hmax, with h0 = hmax as an initial trial value. An ad hoc but very
simple choice for the bandwidth function f(κt) then could be

ht = hmax

(
hmin

hmax

)κt
(5.4.2)

Other simple choices are possible, for example,

ht = hmaxhmin

hmin + (hmax − hmin)κ
p
t

for some power p. Since κt varies in 0 ≤ κt ≤ 1, these choices interpolate between hmax

at κt = 0 when the curvature is small, and hmin at κt = 1 when the curvature is large.
We illustrate the use of (5.4.2) with the three examples in Figs. 5.4.1–5.4.3, and we

make a different bandwidth choice for Fig. 5.4.4. All four examples have been used
as benchmarks in studying wavelet denoising methods [821] and we will be discussing
them again in that context in Sec. 10.7.

In all cases, we use a second-order polynomial to determine the curvature, and then
perform a locally linear fit (d = 1) using the variable bandwidth. Fig. 5.4.1 illustrates
the test function “bumps” defined by

s(t)=
11∑
i=1

ai[
1+ |t − ti|/wi

]4 , 0 ≤ t ≤ 1
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Fig. 5.4.1 Bumps function.

with the parameter values:

ti = [10,13,15,23,25,40,44,65,76,78,81]/100

ai = [40,50,30,40,50,42,21,43,31,51,42]·1.0523

wi = [5,5,6,10,10,30,10,10,5,8,5]/1000

The function s(t) is sampled at N = 2048 equally-spaced points tn in the interval
[0,1) and zero-mean white gaussian noise of variance σ2 = 1 is added so that the noisy
signal is yn = sn+vn, where sn = s(tn). The factor 1.0523 in the amplitudes ai ensures
that the signal-to-noise ratio has the standard benchmark value σs/σv = 7, where σs
is the standard deviation of sn, that is, σs = std(s). The bandwidth range is defined
by hmax = 0.01 and hmin = 0.00025. The value for hmax was chosen so that the flat
portions of the signal between peaks are adequately smoothed.

The curvature κt, estimated using the bandwidth h0 = hmax, is shown in the upper
right graph. The corresponding variable bandwidth ht derived from Eq. (5.4.2) is shown
in the bottom-right graph. The bottom-left graph shows the resulting local linear fit
using the variable bandwidth ht, while the bottom-middle graph shows the fit using
the fixed bandwidth hmax. Although hmax is adequate for smoothing the valleys of the
signal, it is too large for the peaks and results in broadened peaks of reduced heights. On
the other hand, the variable bandwidth preserves the peaks fairly well, while achieving
comparable smoothing of the valleys. The MATLAB code for this example was as follows:

N=2048; t=linspace(0,1,N); s=zeros(size(t));
F = inline(’1./(1 + abs(t)).^4’); % bumps function
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ti = [10 13 15 23 25 40 44 65 76 78 81]/100;
ai = [40,50,30,40,50,42,21,43,31,51,42] * 1.0523;
wi = [5,5,6,10,10,30,10,10,5,8,5]/1000;

for i=1:length(ai), % construct signal

s = s + ai(i)*F((t-ti(i))/wi(i));
end

hmax=10e-3; hmin=2.5e-4; h0=hmax; % bandwidth limits

seed=2009; randn(’state’,seed); % noisy signal

y = s + randn(size(t));

d=2; type=1; % fit with d = 2 and tricube window

[x,C] = locpol(t,y,t,h0,d,type); % using fixed bandwidth h0

kt = abs(C(:,3)); kt = kt/max(kt); % curvature, κt
ht = hmax * (hmin/hmax).^kt; % bandwidth, ht

d=1; type=1; % fit with d = 1

xv = locpol(t,y,t,ht,d,type); % use variable bandwidth ht
xf = locpol(t,y,t,h0,d,type); % use fixed bandwidth h0

figure; plot(t,s); figure; plot(t,y); figure; plot(t,kt); % upper graphs

figure; plot(t,xv); figure; plot(t,xf); figure; plot(t,ht/hmax); % lower graphs

Fig. 5.4.2 shows the “blocks” function defined by

s(t)=
11∑
i=1

aiF(t − ti) , F(t)= 1

2
(1+ sign t) , 0 ≤ t ≤ 1

with the same delays ti as above and amplitudes:

ai = [40,−50,30,−40,50,−42,21,43,−31,21,−42]·0.3655

The noisy signal is yn = sn + vn with zero-mean unit-variance white noise. The
amplitude factor 0.3655 in ai is adjusted to give the same SNR as above, std(s)/σ = 7.
The MATLAB code generating the six graphs is identical to the above, except for the part
that defines the signal and the bandwidth limits hmax = 0.03 and hmin = 0.0015:

N=2048; t=linspace(0,1,N); s=zeros(size(t));

ti = [10 13 15 23 25 40 44 65 76 78 81]/100;
ai = [40,-50,30,-40,50,-42,21,43,-31,21,-42] * 0.3655;

for i=1:length(ai),
s = s + ai(i) * (1 + sign(t - ti(i)))/2; % blocks signal

end

hmax=0.03; hmin=0.0015; h0=hmax; % bandwidth limits

We observe that the flat parts of the signal are smoothed equally well by the variable
and fixed bandwidth choices, but in the fixed case, the edges are smoothed too much.
The “HeaviSine” signal shown in Fig. 5.4.3 is defined by

s(t)= [
4 sin(4πt)−sign(t − 0.3)−sign(0.72− t)] · 2.357 , 0 ≤ t ≤ 1
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Fig. 5.4.2 Blocks function.

where the factor 2.357 is adjusted to give std(s)= 7. The graphs shown in Fig. 5.4.3 are
again generated by the identical MATLAB code, except for the parts defining the signal
and bandwidths:

s = (4*sin(4*pi*t)-sign(t-0.3)-sign(0.72-t))*2.357; % HeaviSine signal

hmax=0.035; hmin=0.0035; h0=hmax; % bandwidth limits

We note that the curvature κt is significantly large—and the bandwidth ht is signif-
icantly small—only near the discontinuity points. The fixed bandwidth case smoothes
the discontinuities too much, whereas the variable bandwidth tends to preserve them
while reducing the noise equally well in the rest of the signal.

In the “doppler” example shown in Fig. 5.4.4, noticing that the curvature κt is sig-
nificantly large only in the range 0 ≤ t ≤ 0.2, we have followed a simpler strategy to
define a variable bandwidth (although the choice (5.4.2) still works well). We took a fixed
but small bandwidth over the range 0 ≤ t ≤ 0.2 and transitioned gradually to a larger
bandwidth for 0.2 ≤ t ≤ 1. The signal is defined by

s(t)= 24
√
t(1− t) sin

(
2.1π
t + 0.05

)
, 0 ≤ t ≤ 1

The auxiliary unit-step function ustep was used to define the two-step bandwidth
with a given rise time. The MATLAB code generating the six graphs was as follows:

N = 2048; t = linspace(0,1,N);

s = 24*sqrt(t.*(1-t)) .* sin(2.1*pi./(t+0.05)); % doppler signal



216 5. Local Polynomial Modeling

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

t

noise free

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

t

noisy signal

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

curvature,  κt

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

t

smoothed with adaptive bandwidth

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

t

smoothed with fixed bandwidth,  hmax

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

adaptive bandwidth,  ht /hmax

Fig. 5.4.3 HeaviSine function.

seed=2009; randn(’state’,seed); % noisy signal

y = s + randn(size(t));
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Fig. 5.4.4 Doppler function.
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hmax=0.02; hmin=0.002; h0=hmax; % bandwidth limits

d=2; type=1; % fit with d = 2 and tricube window

[x,C] = locpol(t,y,t,h0,d,type); % using fixed bandwidth h0

kt = abs(C(:,3)); kt = kt/max(kt); % curvature, κt
ht = hmin + (hmax-hmin) * ustep(t-0.2, 0.1); % two-step bandwidth, ht

% ustep is in the OSP toolbox

d=1; type=1;
xv = locpol(t,y,t,ht,d,type); % fixed bandwidth h0

xf = locpol(t,y,t,h0,d,type); % fixed bandwidth h0

figure; plot(t,s); figure; plot(t,y); figure; plot(t,kt); % upper graphs

figure; plot(t,xv); figure; plot(t,xf); figure; plot(t,ht/hmax); % lower graphs

The local polynomial fitting results from these four benchmark examples are very
comparable with the wavelet denoising approach discussed in Sec. 10.7.

5.5 Repeated Observations

Until now we had implicitly assumed that the observations were unique, that is, one
observation y(tk) at each time tk. However, in experimental data one often has repeated
observations at a given tk, all of which are listed as part of the data set. This is in fact
true of both the motorcycle and the ethanol data sets. For example, in the motorcycle
data, we have six repeated observations at t = 14.6,

k tk yk
...

...
...

22 14.6 −13.3
23 14.6 −5.4
24 14.6 −5.4
25 14.6 −9.3
26 14.6 −16.0
27 14.6 −22.8

...
...

...

and there other similar instances within the data set. In fact, among the 133 given
observations, only 94 correspond to unique observation times.

To handle repeated observations one possibility is to simply keep one and ignore the
rest—but which one? A better possibility is to allow all of them to be part of the least-
squares performance index. It is easy to see that this is equivalent to replacing each
group of repeated observations by their average and modifying the weighting function
by the corresponding multiplicity of the group.

Let nk denote the multiplicity of the observations at time tk, that is, let yi(tk), i =
1,2, . . . , nk be the observation values that are given at the unique observation time tk.
Then, the performance index (5.1.3) must be modified to include all of the yi(tk):

Jt =
∑

|tk−t|≤ht

nk∑
i=1

[
yi(tk)−uT(tk − t)c

]2w(tk − t)= min (5.5.1)
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Setting the gradient with respect to c to zero, gives the normal equations:

∑
|tk−t|≤ht

nk∑
i=1

w(tk − t)u(tk − t)uT(tk − t) c =
∑

|tk−t|≤ht
w(tk − t)u(tk − t)

nk∑
i=1

yi(tk)

Defining the average of the nk observations,

ȳ(tk)= 1

nk

nk∑
i=1

yi(tk)

and noting that the left-hand side has no dependence on i, we obtain:

∑
|tk−t|≤ht

nkw(tk − t)u(tk − t)uT(tk − t)c =
∑

|tk−t|≤ht
nkw(tk − t)u(tk − t)ȳ(tk) (5.5.2)

This is recognized to be the solution of an equivalent least-squares local polyno-
mial fitting problem in which each unique tk is weighted by nkwk(tk − t) with the kth
observation replaced by the average ȳ(tk), that is,

J̄t =
∑

|tk−t|≤ht

[
ȳ(tk)−uT(tk − t)c

]2nkw(tk − t)= min (5.5.3)

Internally, the function locpol calls the function avobs, which takes in the raw data
tobs,yobs and determines the unique observation times ta, averaged observations ya,
and their multiplicities na:

[ta,ya,na] = avobs(tobs,yobs); % average repeated observations

For example, if

tobs = [ 1 1 1 3 3 5 5 3 4 7 9 9 9 9];
yobs = [20 22 21 11 12 13 15 19 21 25 28 29 31 32];

the function first sorts the ts in increasing order,

tobs = [ 1 1 1 3 3 3 4 5 5 7 9 9 9 9];
yobs = [20 21 22 11 12 19 21 13 15 25 28 29 31 32];

and then returns the output,

ta = [ 1 3 4 5 7 9];
ya = [21 14 21 14 25 30];
na = [ 3 3 1 2 1 4];

5.6 Loess Smoothing

Loess, which is a shorthand for local regression, is a method proposed by Cleveland
[192] for handling data with outliers. A version of it was discussed in Sec. 4.5. The
method carries out a local polynomial regression using a nearest-neighbor bandwidth
and the tricube window function, and then uses the resulting error residuals to iteratively
readjust the window weights giving less importance to the outliers.
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The method is described as follows [192]. Given theN-dimensional vectors of obser-
vation times and observations tobs, yobs, the nearest-neighbor bandwidth parameter α,
and the polynomial order d, the method begins by performing a preliminary fit to all the
observation times. For example, in the notation of the locband and locpol functions:

h = locband(tobs, tobs,α,0); (find local bandwidths at tobs)

x̂ = locpol(tobs, yobs, tobs, h, d,1); (perform fit at all tobs)
(5.6.1)

where the last argument of locpol designates the use of the tricube window. From the
resulting N-dimensional signal x̂k, k = 0,1, . . . ,N − 1, we calculate the corresponding
error residuals ek and use their median to calculate “robustness” weights rk:

ek = yk − x̂k , k = 0,1, . . . ,N − 1

μ = median
0≤k≤N−1

(|ek|)

rk =W
(
ek
6μ

) (5.6.2)

where W(u) is the bisquare function defined in (5.1.5). The local polynomial fitting is
now repeated at all observation points tobs, but instead of using the weights w(tk −
tobs) for the kth observation’s contribution to the fit, one uses the modified weights
rkw(tk − tobs). The new residuals are then computed as in (5.6.2) and the process is
repeated a few more times or until convergence (i.e., until the estimated signal x̂k no
longer changes).

After the final iteration resulting in the final values of the rks, one can carry out the
fit at any other time point t, but again using weights rkw(tk− t) for the contribution of
the kth observation, that is, the weight matrix Wt in Eq. (5.1.7) is replaced by

Wt = diag
([· · · , rkw(tk − t), · · · ])

The MATLAB function loess implements these steps:

[xhat,C] = loess(tobs,yobs,t,alpha,d,Nit); % Loess smoothing

where t are the final fitting times and xhat and C have the same meaning as in locpol.
This function is similar in spirit to the robust local polynomial filtering function rlpfilt
that was discussed in Sec. 4.5.

Example 5.6.1: Fig. 5.6.1 shows the same example as that of Fig. 4.5.3, with nearest-neighbor
bandwidth parameter α = 0.4 and an order-2 polynomial. The graphs show the results of
Nit = 0,2,4,6 iterations—the first one corresponding to ordinary fitting with no robust-
ness iterations. The MATLAB code for the top two graphs was:

t = (0:50); x0 = (1 - cos(2*pi*t/50))/2; % desired signal

seed=2005; randn(’state’,seed);
y = x0 + 0.1 * randn(size(x0)); % noisy signal

m = [-1 0 1 3]; % outlier indices

n0=25; y(n0+m+1) = 0; % outlier values

n1=10; y(n1+m+1) = 1;
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Fig. 5.6.1 Loess smoothing with d = 2, α = 0.4, and different iterations.

alpha=0.4; d=2; % bandwidth parameter and polynomial order

Nit=0; x = loess(t,y,t,alpha,d,Nit); % loess fit at t
figure; plot(t,x0,’--’, t,y,’.’, t,x,’-’); % left graph

Nit=2; x = loess(t,y,t,alpha,d,Nit); % loess fit at t
figure; plot(t,x0,’--’, t,y,’.’, t,x,’-’); % right graph

The loess fit was performed at all t. We observe how successive iterations gradually di-
minish the distorting influence of the outliers. 
�

5.7 Problems

5.1 Prove the matrix inversion lemma identity (5.2.8). Using this identity, show that

Hii = H−
ii

1+H−
ii
, where H−

ii = w0uT0 F
−
i u0 , F−i = (STi WiSi)−

then, argue that 0 ≤ Hii ≤ 1.

6
Exponential Smoothing

6.1 Mean Tracking

l
The exponential smoother, also known as an exponentially-weighted moving average

(EWMA) or more simply an exponential moving average (EMA) filter is a simple, effective,
recursive smoothing filter that can be applied to real-time data. By contrast, the local
polynomial modeling approach is typically applied off-line to a block a signal samples
that have already been collected.

The exponential smoother is used routinely to track stock market data and in fore-
casting applications such as inventory control where, despite its simplicity, it is highly
competitive with other more sophisticated forecasting methods [232–279].

We have already encountered it in Sec. 2.3 and compared it to the plain FIR averager.
Here, we view it as a special case of a weighted local polynomial smoothing problem
using a causal window and exponential weights, and discuss some of its generalizations.
Both the exponential smoother and the FIR averager are applied to data that are assumed
to have the typical form:

yn = an + vn (6.1.1)

where an is a low-frequency trend component, representing an average or estimate of
the local level of the signal, and vn a random, zero-mean, broadband component, such
as white noise. If an is a deterministic signal, then by taking expectations of both sides
we see that an represents the mean value of yn, that is, an = E[yn]. If yn is stationary,
then an is a constant, independent of n.

The output of either the FIR or the exponential smoothing filter tracks the signal an.
To see how such filters arise in the context of estimating the mean level of a signal, con-
sider first the stationary case. The mean m = E[yn] minimizes the following variance
performance index (e.g., see Example 1.3.5):

J = E[(yn − a)2] = min ⇒ aopt =m = E[yn] (6.1.2)

with minimized value Jmin = σ2
y . This result is obtained by setting the gradient with

respect to a to zero:
∂J
∂a

= −2E[yn − a]= 0 (6.1.3)
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