
3
Local Polynomial Filters

3.1 Introduction

We mentioned in Sec. 2.4 that there are limits to the applicability of the plain FIR averager
filter—in order to achieve a high degree of noise reduction, its length N may be required
to be so large that the filter’s passband becomes smaller than the signal bandwidth,
causing the removal of useful high frequencies from the desired signal.

In other words, in its attempt to smooth out the noise vn, the filter begins to smooth
out the desired signal xn to an unacceptable degree. For example, if xn contains some
short-duration peaks, corresponding to the higher frequencies present in xn, and the
filter’s length N is longer than the duration of the peaks, the filter will tend to smooth
the peaks too much, broadening them and reducing their height.

Local polynomial smoothing filters [36–99] are generalizations of the FIR averager
filter that can preserve better the higher frequency content of the desired signal, at the
expense of not removing as much noise as the averager. They can be characterized in
three equivalent ways:

1. They are the optimal lowpass filters that minimize the NRR, subject to additional
constraints than the DC unity-gain condition (2.4.1)—the constraints being equiv-
alent to the requirement that polynomial input signals go through the filter un-
changed.

2. They are the optimal filters that minimize the NRR whose frequency response
H(ω) satisfies certain flatness constraints at DC.

3. They are the filters that optimally fit, in a least-squares sense, a set of data points
to polynomials of different degrees.

Local polynomial smoothing (LPSM) filters have a long history and have been redis-
covered repeatedly in different contexts. They were originally derived in 1866 by the
Italian astronomer Schiaparelli [36] who formulated the problem as the minimization
of the NRR subject to polynomial-preserving constraints and derived the filters in com-
plete generality, discussing also the case of even-length filters. They were rederived in
1871 by De Forest [65] who generalized them further to include the case of “minimum-
roughness” or minimum-Rs filters. Subsequently, they were rediscovered many times
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and used extensively in actuarial applications, for example, by Gram, Hardy, Sheppard,
Henderson, and others. See Refs. [68–75] for the development and history of these fil-
ters. In the actuarial context, smoothing is referred to as the process of “graduation.”
They were revived again in the 1960s by Savitzky and Golay [42] and have been applied
widely in chemistry and spectroscopy [42–53] known in that context as Savitzky-Golay fil-
ters. They, and their minimum-Rs versions [65–99] known typically as Henderson filters,
are used routinely for trend extraction in financial, business, and census applications.

Some recent incarnations also include predictive FIR interpolation, differentiation,
fractional-delay, and maximally-flat filters [152–187], and applications to the represen-
tation of speech and images in terms of orthogonal-polynomial moments [137–150].

The least-squares polynomial fitting approach also has a long history. Chebyshev
[104] derived in 1864 the discrete Chebyshev orthogonal polynomials,‡ also known as
Gram polynomials, which provide convenient and computationally efficient bases for
the solution of the least-squares problem and the design of local polynomial filters.
Several applications and reviews of the discrete Chebyshev orthogonal polynomials may
be found in [104–151]. The minimum-Rs Henderson filters also admit similar efficient
representations in terms of the Hahn orthogonal polynomials, a special case of which
are the discrete Chebyshev polynomials. We discuss Henderson filters in Sec. 4.2 and
orthogonal polynomial bases in Sec. 4.3.

3.2 Local Polynomial Fitting

We begin with the least-squares polynomial fitting approach. We assume that the signal
model for the observations is:

yn = xn + vn
where vn is white noise and xn is a smooth signal to be estimated. Fig. 3.2.1 shows five
noisy signal samples [y−2, y−1, y0, y1, y2] positioned symmetrically about the origin.
Later on, we will shift them to an arbitrary position along the time axis. Polynomial
smoothing of the five samples is equivalent to replacing them by the values that lie on
smooth polynomial curves drawn between the noisy samples. In Fig. 3.2.1, we consider
fitting the five data to a constant signal, a linear signal, and a quadratic signal.

The corresponding smoothed values are given by the 0th, 1st, and 2nd degree poly-
nomials defined for m = −2,−1,0,1,2:

ŷm = c0 (constant)

ŷm = c0 + c1m (linear)

ŷm = c0 + c1m+ c2m2 (quadratic)

(3.2.1)

For each choice of the polynomial order, the coefficients ci must be determined
optimally such that the corresponding polynomial curve best fits the given data. This
can be accomplished by a least-squares fit, which chooses the ci that minimize the total
mean-square error. For example, in the quadratic case, we have the performance index:

J =
2∑

m=−2

e2
m =

2∑
m=−2

(
ym − (c0 + c1m+ c2m2)

)2 = min (3.2.2)

‡not to be confused with the ordinary Chebyshev polynomials.
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Fig. 3.2.1 Data smoothing with polynomials of degrees d = 0,1,2.

where the fitting errors are defined as

em = ym − ŷm = ym − (c0 + c1m+ c2m2), m = −2,−1,0,1,2

It proves convenient to express Eqs. (3.2.1) and (3.2.2) in a vectorial form, which
generalizes to higher polynomial orders and to more than five data points. We define
the five-dimensional vectors of data, estimates, and errors:

y =

⎡
⎢⎢⎢⎢⎢⎢⎣

y−2

y−1

y0

y1

y2

⎤
⎥⎥⎥⎥⎥⎥⎦
, ŷ =

⎡
⎢⎢⎢⎢⎢⎢⎣

ŷ−2

ŷ−1

ŷ0

ŷ1

ŷ2

⎤
⎥⎥⎥⎥⎥⎥⎦
, e =

⎡
⎢⎢⎢⎢⎢⎢⎣

e−2

e−1

e0

e1

e2

⎤
⎥⎥⎥⎥⎥⎥⎦
= y− ŷ

Similarly, we define the five-dimensional polynomial basis vectors s0, s1, s2, whose
components are:

s0(m)= 1, s1(m)=m, s2(m)=m2, −2 ≤m ≤ 2

Vectorially, we have:

s0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎦
, s1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−2
−1

0
1
2

⎤
⎥⎥⎥⎥⎥⎥⎦
, s2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

4
1
0
1
4

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.2.3)

In this notation, we may write the third of Eq. (3.2.1) vectorially:

ŷ = c0

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎦
+ c1

⎡
⎢⎢⎢⎢⎢⎢⎣

−2
−1

0
1
2

⎤
⎥⎥⎥⎥⎥⎥⎦
+ c2

⎡
⎢⎢⎢⎢⎢⎢⎣

4
1
0
1
4

⎤
⎥⎥⎥⎥⎥⎥⎦
= c0s0 + c1s1 + c2s2

3.2. Local Polynomial Fitting 121

Therefore,

ŷ = c0s0 + c1s1 + c2s2 = [s0, s1, s2]

⎡
⎢⎣
c0

c1

c2

⎤
⎥⎦ ≡ Sc (3.2.4)

The 5×3 basis matrix S has as columns the three basis vectors s0, s1, s2. It is given
explicitly as follows:

S = [s0, s1, s2]=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.2.5)

Writing e = y− ŷ = y− Sc, we can express the performance index (3.2.2) as the dot
product:

J = eTe = (y− Sc)T(y− Sc)= min (3.2.6)

To minimize this expression with respect to c, we set the gradient ∂J/∂c to zero:

∂J
∂c

= −2STe = −2ST
(
y− Sc

) = −2
(
STy− STSc

) = 0 (3.2.7)

Therefore, the minimization condition gives the so-called orthogonality equations
and the equivalent normal equations:

∂J
∂c

= 0 � STe = 0 � STSc = STy (3.2.8)

with optimal solution:
c = (STS)−1STy ≡ GTy (3.2.9)

where we defined the 5×3 matrix G by

G = S(STS)−1 (3.2.10)

We note that the solution (3.2.9) is none other than the unique least-squares so-
lution of the full-rank overdetermined linear system Sc = y, as given for example by
Eq. (15.4.10), c = S+y, where S+ = (STS)−1ST is the corresponding pseudoinverse.
Inserting the optimal coefficients c into Eq. (3.2.4), we find the smoothed values:†

ŷ = Sc = SGTy = S(STS)−1STy ≡ BTy (3.2.11)

where we defined the 5×5 matrix B by

B = BT = SGT = GST = S(STS)−1ST (3.2.12)

The symmetric 3×3 matrix F = STS, which appears in the expressions for G and
B, has matrix elements that are the dot products of the basis vectors, that is, the ijth
matrix element is Fij = (STS)ij= sTi sj. Indeed, using Eq. (3.2.5), we find:

F = STS =
⎡
⎢⎣

sT0
sT1
sT2

⎤
⎥⎦ [s0, s1, s2]=

⎡
⎢⎣

sT0 s0 sT0 s1 sT0 s2

sT1 s0 sT1 s1 sT1 s2

sT2 s0 sT2 s1 sT2 s2

⎤
⎥⎦ (3.2.13)

†although B is symmetric, we prefer to write ŷ = BTy, which generalizes to the non-symmetric case of
minimum-roughness filters of Sec. 4.2.
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Using Eq. (3.2.5), we calculate F and its inverse F−1:

F =
⎡
⎢⎣

5 0 10
0 10 0
10 0 34

⎤
⎥⎦ , F−1 = 1

35

⎡
⎢⎣

17 0 −5
0 3.5 0
−5 0 2.5

⎤
⎥⎦ (3.2.14)

Then, we calculate the 5×3 matrix G = S(STS)−1= SF−1:

G = SF−1 = 1

35

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

17 0 −5
0 3.5 0

−5 0 2.5

⎤
⎥⎦ or,

G = 1

35

⎡
⎢⎢⎢⎢⎢⎢⎣

−3 −7 5
12 −3.5 −2.5
17 0 −5
12 3.5 −2.5
−3 7 5

⎤
⎥⎥⎥⎥⎥⎥⎦
≡ [g0, g1, g2] (3.2.15)

As we see below, the three columns of G have useful interpretations as differentia-
tion filters. Next, using Eq. (3.2.12), we calculate the 5×5 matrix B:

B = GST = 1

35

⎡
⎢⎢⎢⎢⎢⎢⎣

−3 −7 5
12 −3.5 −2.5
17 0 −5
12 3.5 −2.5
−3 7 5

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

1 1 1 1 1
−2 −1 0 1 2

4 1 0 1 4

⎤
⎥⎦ or,

B = 1

35

⎡
⎢⎢⎢⎢⎢⎢⎣

31 9 −3 −5 3
9 13 12 6 −5

−3 12 17 12 −3
−5 6 12 13 9

3 −5 −3 9 31

⎤
⎥⎥⎥⎥⎥⎥⎦
≡ [b−2, b−1, b0, b1, b2] (3.2.16)

Because B is symmetric, its rows are the same as its columns. Thus, we can write it
either in column-wise or row-wise form:

B = [b−2, b−1, b0, b1, b2]=

⎡
⎢⎢⎢⎢⎢⎢⎣

bT−2

bT−1

bT0
bT1
bT2

⎤
⎥⎥⎥⎥⎥⎥⎦
= BT

The five columns or rows of B are the LPSM filters of length 5 and polynomial order
2. The corresponding smoothed values ŷ can be expressed component-wise in terms of
these filters, as follows:
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⎡
⎢⎢⎢⎢⎢⎢⎣

ŷ−2

ŷ−1

ŷ0

ŷ1

ŷ2

⎤
⎥⎥⎥⎥⎥⎥⎦
= ŷ = BTy =

⎡
⎢⎢⎢⎢⎢⎢⎣

bT−2

bT−1

bT0
bT1
bT2

⎤
⎥⎥⎥⎥⎥⎥⎦

y =

⎡
⎢⎢⎢⎢⎢⎢⎣

bT−2y
bT−1y
bT0 y
bT1 y
bT2 y

⎤
⎥⎥⎥⎥⎥⎥⎦

or, for m = −2,−1,0,1,2:
ŷm = bTmy (3.2.17)

and more explicitly,

⎡
⎢⎢⎢⎢⎢⎢⎣

ŷ−2

ŷ−1

ŷ0

ŷ1

ŷ2

⎤
⎥⎥⎥⎥⎥⎥⎦
= 1

35

⎡
⎢⎢⎢⎢⎢⎢⎣

31 9 −3 −5 3
9 13 12 6 −5

−3 12 17 12 −3
−5 6 12 13 9

3 −5 −3 9 31

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

y−2

y−1

y0

y1

y2

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.2.18)

Thus, the mth filter bm dotted into the data vector y generates the mth smoothed
data sample. In a similar fashion, we can express the polynomial coefficients ci as dot
products. Using the solution Eq. (3.2.9), we have

⎡
⎢⎣
c0

c1

c2

⎤
⎥⎦ = c = GTy =

⎡
⎢⎣

gT0
gT1
gT2

⎤
⎥⎦y =

⎡
⎢⎣

gT0 y
gT1 y
gT2 y

⎤
⎥⎦

or, explicitly,

⎡
⎢⎣
c0

c1

c2

⎤
⎥⎦ = 1

35

⎡
⎢⎣
−3 12 17 12 −3
−7 −3.5 0 3.5 7

5 −2.5 −5 −2.5 5

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

y−2

y−1

y0

y1

y2

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.2.19)

Thus, the coefficients ci can be expressed as the dot products of the columns of G
with the data vector y:

ci = gTi y, i = 0,1,2 (3.2.20)

Of the five columns of B, the middle one, b0, is the most important because it
smooths the value y0, which is symmetrically placed with respect to the other samples
in y, as shown in Fig. 3.2.1.

In smoothing a long block of data, the filter b0 is used during the steady-state period,
whereas the other columns of B are used only during the input-on and input-off tran-
sients. We will refer to b0 and the other columns of B as the steady-state and transient
LPSM filters.

Setting m = 0 into Eq. (3.2.1), we note that the middle smoothed value ŷ0 is equal to
the polynomial coefficient c0. Using Eqs. (3.2.17) and (3.2.20), we find: ŷ0 = c0 = bT0 y =
gT0 y (the middle column of B and the first column of G are always the same, b0 = g0.)
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To express (3.2.18) as a true filtering operation acting on an input sequence yn, we
shift the group of five samples to be centered around the nth time instant, that is, we
make the substitution:

[y−2, y−1, y0, y1, y2] −→ [yn−2, yn−1, yn, yn+1, yn+2]

The corresponding five smoothed values will be then:
⎡
⎢⎢⎢⎢⎢⎢⎣

ŷn−2

ŷn−1

ŷn
ŷn+1

ŷn+2

⎤
⎥⎥⎥⎥⎥⎥⎦
= 1

35

⎡
⎢⎢⎢⎢⎢⎢⎣

31 9 −3 −5 3
9 13 12 6 −5

−3 12 17 12 −3
−5 6 12 13 9

3 −5 −3 9 31

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

yn−2

yn−1

yn
yn+1

yn+2

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.2.21)

In particular, the middle sample yn is smoothed by the filter b0:

x̂n = 1

35

(−3yn−2 + 12yn−1 + 17yn + 12yn+1 − 3yn+2
)

(3.2.22)

where, in accordance with our assumed model of noisy observations yn = xn + vn, we
denoted ŷn by x̂n, i.e., the estimated value of xn.

The other estimated values {ŷn+m , m = ±1,±2}, are not used for smoothing, ex-
cept, as we see later, at the beginning and end of the signal block yn. They may be used,
however, for prediction and interpolation.

The filter (3.2.22) corresponds to fitting every group of five samples {yn−2, yn−1,
yn, yn+1, yn+2} to a quadratic polynomial and replacing the middle sample yn by its
smoothed value x̂n. It is a lowpass filter and is normalized to unity gain at DC, because
its coefficients add up to one.

Its NRR is the sum of the squared filter coefficients. It can be proved in general that
the NRR of any steady-state filter b0 is equal to the middle value of its impulse response,
that is, the coefficient b0(0). Therefore,

R = bT0 b0 =
2∑

m=−2

b0(m)2= b0(0)= 17

35
= 17/7

5
= 2.43

5
= 0.49

By comparison, the length-5 FIR averager operating on the same five samples is:

x̂n = 1

5

(
yn−2 + yn−1 + yn + yn+1 + yn+2

)
(3.2.23)

with R = 1/N = 1/5. Thus, the length-5 quadratic-polynomial filter performs 2.43
times worse in reducing noise than the FIR averager. However, the higher-order polyno-
mial filters have other advantages to be discussed later.

We saw that the coefficient c0 represents the smoothed value of y0 at m = 0. Simi-
larly, the coefficient c1 represents the slope, the derivative, of y0 at m = 0. Indeed, we
have from Eq. (3.2.1) by differentiating and setting m = 0:

˙̂y0 =
dŷm
dm

∣∣∣∣
0
= c1 , ¨̂y0 =

d2ŷm
dm2

∣∣∣∣∣
0

= 2c2
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Thus, c1 and 2c2 represent the polynomial estimates of the first and second deriva-
tives at m = 0. Using Eq. (3.2.20) we can express them in terms of the second and third
columns of the matrix G:

˙̂y0 = c1 = gT1 y

¨̂y0 = 2c2 = 2gT2 y
(3.2.24)

Shifting these to the nth time sample, and denoting them by ˆ̇xn and ˆ̈xn, we find the
length-5 local polynomial filters for estimating the first and second derivatives of xn:

ˆ̇xn = 1

35

(−7yn−2 − 3.5yn−1 + 3.5yn+1 + 7yn+2
)

ˆ̈xn = 2

35

(
5yn−2 − 2.5yn−1 − 5yn − 2.5yn+1 + 5yn+2

) (3.2.25)

The above designs can be generalized in a straightforward manner to an arbitrary
degree d of the fitted polynomial and to an arbitrary length N of the data vector y. We
require only that d ≤ N − 1, a restriction to be clarified later. Assuming that N is odd,
say, N = 2M+1, the five-dimensional data vector y = [y−2, y−1, y0, y1, y2]T is replaced
by an N-dimensional one, having M points on either side of y0:

y = [y−M, . . . , y−1, y0, y1, . . . , yM]T (3.2.26)

The N data samples in y are then fitted by a polynomial of degree d:

ŷm = c0 + c1m+ · · · + cdmd, −M ≤m ≤M (3.2.27)

In this case, there are d+1 polynomial basis vectors si, i = 0,1, . . . , d, defined to
have components:

si(m)=mi, −M ≤m ≤M (3.2.28)

The corresponding N×(d+1) basis matrix S is defined to have the si as columns:

S = [s0, s1, . . . , sd] (3.2.29)

The smoothed values (3.2.27) can be written in the vector form:

ŷ =
d∑
i=0

cisi = [s0, s1, . . . , sd]

⎡
⎢⎢⎢⎢⎢⎣

c0

c1

...
cd

⎤
⎥⎥⎥⎥⎥⎦ = Sc (3.2.30)

The design steps for the LPSM filters can be summarized then as follows:

F = STS � Fij = sTi sj, i, j = 0,1, . . . , d

G = SF−1 ≡ [g0,g1, . . . ,gd]

B = GST = SF−1ST ≡ [b−M, . . . ,b0, . . . ,bM]

(3.2.31)
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The corresponding coefficient vector c and smoothed data vector ŷ will be:

c = GTy � ci = gTi y, i = 0,1, . . . , d

ŷ = BTy � ŷm = bTmy, −M ≤m ≤M
(3.2.32)

The middle smoothed value ŷ0 is given in terms of the middle LPSM filter b0:

ŷ0 = bT0 y =
M∑

k=−M
b0(k)yk

The N-dimensional vector y = [y−M, . . . , y−1, y0, y1, . . . , yM]T can be shifted to the
nth time instant by the replacement:

[y−M, . . . , y−1, y0, y1, . . . , yM] −→ [yn−M, . . . , yn−1, yn, yn+1, . . . , yn+M]

The resulting length-N, order-d, LPSM filter for smoothing a noisy sequence yn will
be, in its steady-state form (denoting again x̂n = ŷn):

x̂n = ŷn =
M∑

k=−M
b0(k)yn+k =

M∑
k=−M

b0(−k)yn−k (3.2.33)

The second equation expresses the output in convolutional form.† Because the filter
b0 is symmetric about its middle, we can replace b0(−k)= b0(k). The non-central
estimated values are obtained from the bm filters:

ŷn+m =
M∑

k=−M
bm(k)yn+k =

M∑
k=−M

bRm(k)yn−k , −M ≤m ≤M (3.2.34)

These filters satisfy the symmetry property bRm(k)= bm(−k)= b−m(k) and can be
used for prediction, as we discuss later.

The d+1 columns of the N×(d+1)-dimensional matrix G give the LPSM differen-
tiation filters, for derivatives of orders i = 0,1, . . . , d. It follows by differentiating
Eq. (3.2.27) i times and setting m = 0:

ŷ(i)0 = diŷm
dmi

∣∣∣∣∣
0

= i! ci = i! gTi y

Shifting these to time n, gives the differentiation convolutional filtering equations:

x̂(i)n = i!
M∑

m=−M
gRi (m)yn−m, i = 0,1, . . . , d (3.2.35)

where, gRi (m)= gi(−m) and as in Eq. (3.2.33), we reversed the order of writing the
terms, but here the filters gi are not necessarily symmetric (actually, they are symmetric
for even i, and antisymmetric for odd i.)
†We use the notation bR to denote the reverse of a double-sided filter b, that is, bR(k)= b(−k).
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Example 3.2.1: We construct the length-5 LPSM filters for the cases d = 0 and d = 1. For
d = 0, corresponding to the constant ŷm = c0 in Eq. (3.2.1), there is only one basis vector
s0 defined in Eq. (3.2.3). The basis matrix S = [s0] will have just one column, and the
matrix F will be the scalar

F = STS = sT0 s0 = [1,1,1,1,1]

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎦
= 5

The matrix G will then be

G = SF−1 = 1

5
s0 = 1

5
[1,1,1,1,1]T

resulting in the LPSM matrix B:

B = GST = 1

5
s0sT0 =

1

5

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎦
[1,1,1,1,1]= 1

5

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

Thus, the steady-state LPSM filter is the length-5 averager:

b0 = 1

5
[1,1,1,1,1]T

For the case d = 1, corresponding to the linear fit ŷm = c0 + c1m, we have the two basis
vectors s0 and s1, given in Eq. (3.2.3). We calculate the matrices S, F, and F−1:

S = [s0, s1]=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −2
1 −1
1 0
1 1
1 2

⎤
⎥⎥⎥⎥⎥⎥⎦
, F = STS =

[
5 0
0 10

]
, F−1 = 1

5

[
1 0
0 0.5

]

This gives for G and B:

G = SF−1 = 1

5

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1
1 −0.5
1 0
1 0.5
1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, B = GST = 1

5

⎡
⎢⎢⎢⎢⎢⎢⎣

3 2 1 0 −1
2 1.5 1 0.5 0
1 1 1 1 1
0 0.5 1 1.5 2
−1 0 1 2 3

⎤
⎥⎥⎥⎥⎥⎥⎦

Thus, the steady-state LPSM filter b0 is still equal to the length-5 FIR averager. It is a general
property of LPSM filters, that the filter b0 is the same for successive polynomial orders,
that is, for d = 0,1, d = 2,3, d = 4,5, and so on. However, the transient LPSM filters are
different. ��
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Example 3.2.2: Here, we construct the LPSM filters of length N = 5 and order d = 3. The
smoothed estimates are given by the cubic polynomial:

ŷm = c0 + c1m+ c2m2 + c3m3

There is an additional basis vector s3 with components s3(m)= m3. Therefore, the basis
matrix S is:

S = [s0, s1, s2, s3]=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −2 4 −8
1 −1 1 −1
1 0 0 0
1 1 1 1
1 2 4 8

⎤
⎥⎥⎥⎥⎥⎥⎦
⇒ F = STS =

⎡
⎢⎢⎢⎣

5 0 10 0
0 10 0 34

10 0 34 0
0 34 0 130

⎤
⎥⎥⎥⎦

Because of the checkerboard pattern of this matrix, its inverse can be obtained from the
inverses of the two 2×2 interlaced submatrices:

[
5 10

10 34

]−1

= 1

70

[
34 −10
−10 5

]
,

[
10 34
34 130

]−1

= 1

144

[
130 −34
−34 10

]

Interlacing these inverses, we obtain:

F−1 =

⎡
⎢⎢⎢⎣

34/70 0 −10/70 0
0 130/144 0 −34/144

−10/70 0 5/70 0
0 −34/144 0 10/144

⎤
⎥⎥⎥⎦

Then, we compute the derivative filter matrix G:

G = SF−1 = 1

35

⎡
⎢⎢⎢⎢⎢⎢⎣

−3 35/12 5 −35/12
12 −70/3 −2.5 35/6
17 0 −5 0
12 70/3 −2.5 −35/6
−3 −35/12 5 35/12

⎤
⎥⎥⎥⎥⎥⎥⎦

and the LPSM matrix B:

B = SGT = 1

35

⎡
⎢⎢⎢⎢⎢⎢⎣

34.5 2 −3 2 −0.5
2 27 12 −8 2
−3 12 17 12 −3

2 −8 12 27 2
−0.5 2 −3 2 34.5

⎤
⎥⎥⎥⎥⎥⎥⎦

As mentioned above, the steady-state LPSM filter b0 is the same as that of case d = 2. But,
the transient and differentiation filters are different. ��

3.3 Exact Design Equations

In practice, the most common values of d are 0,1,2,3,4. For these ds and arbitrary filter
lengths N, the LPSM matrix B can be constructed in closed form; see references [36–99],
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as well as the extensive tables in [54]. Denoting the inverse of the (d+1)×(d+1) matrix
F = STS by Φ = F−1, we can write

B = SF−1ST = SΦST =
d∑
i=0

d∑
j=0

sis
T
j Φij (3.3.1)

which gives for the mkth matrix element

Bmk =
d∑
i=0

d∑
j=0

si(m)sj(k)Φij =
d∑
i=0

d∑
j=0

mikjΦij , −M ≤m,k ≤M (3.3.2)

Because of symmetry, Bmk = Bkm, these matrix elements represent the kth compo-
nent of the LPSM filter bm or the mth component of the filter bk, that is,

Bmk = Bkm = bm(k)= bk(m)=
d∑
i=0

d∑
j=0

mikjΦij (3.3.3)

The matrix Φ can be determined easily for the cases 0 ≤ d ≤ 4. The matrix F is a
Hankel matrix, that is, having the same entries along each antidiagonal line. Therefore,
its matrix elements Fij depend only on the sum i+ j of the indices. To see this, we write
Fij as the inner product:

Fij = (STS)ij= sTi sj =
M∑

m=−M
si(m)sj(m)=

M∑
m=−M

mi+j , or,

Fij =
M∑

m=−M
mi+j ≡ Fi+j , 0 ≤ i, j ≤ d (3.3.4)

Note that because of the symmetric limits of summation, Fi+j will be zero whenever
i+ j is odd. This leads to the checkerboard pattern of alternating zeros in F that we saw
in the above examples. Also, because d ≤ 4, the only values of i + j that we need are:
i+ j = 0,2,4,6,8. For those, the summations over m can be done in closed form:

F0 =
M∑

m=−M
m0 = N = 2M + 1

F2 =
M∑

m=−M
m2 = 1

3
M(M + 1)(2M + 1)

F4 =
M∑

m=−M
m4 = 1

5
(3M2 + 3M − 1)F2

F6 =
M∑

m=−M
m6 = 1

7
(3M4 + 6M3 − 3M + 1)F2

F8 =
M∑

m=−M
m8 = 1

15
(5M6 + 15M5 + 5M4 − 15M3 −M2 + 9M − 3)F2

(3.3.5)
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We can express F in terms of these definitions for various values of d. For example,
for d = 0,1,2,3, the F matrices are:

[F0] ,
[
F0 0
0 F2

]
,

⎡
⎢⎣
F0 0 F2

0 F2 0
F2 0 F4

⎤
⎥⎦ ,

⎡
⎢⎢⎢⎣
F0 0 F2 0
0 F2 0 F4

F2 0 F4 0
0 F4 0 F6

⎤
⎥⎥⎥⎦

The corresponding inverse matricesΦ = F−1 are obtained by interlacing the inverses
of the checkerboard submatrices, as in Example 3.2.2. For d = 0,1,2, we have for Φ:

[1/F0] ,
[

1/F0 0
0 1/F2

]
,

⎡
⎢⎣

F4/D4 0 −F2/D4

0 1/F2 0
−F2/D4 0 F0/D4

⎤
⎥⎦ ,

and for d = 3:

Φ = F−1 =

⎡
⎢⎢⎢⎣

F4/D4 0 −F2/D4 0
0 F6/D8 0 −F4/D8

−F2/D4 0 F0/D4 0
0 −F4/D8 0 F2/D8

⎤
⎥⎥⎥⎦

where the D4 and D8 are determinants of the interlaced submatrices:

D4 = F0F4 − F2
2 =

1

45
M(M + 1)(2M + 1)(2M + 3)(4M2 − 1)

D8 = F2F6 − F2
4 =

3

35
M(M + 2)(M2 − 1)D4

(3.3.6)

Inserting the above expressions for Φ into Eq. (3.3.3), we determine the correspond-
ing LPSM filters. For d = 0, we find for −M ≤m,k ≤M:

bm(k)= Bmk = 1

F0
= 1

N
(3.3.7)

For d = 1:

bm(k)= Bmk = 1

F0
+ mk

F2
(3.3.8)

For d = 2:

bm(k)= Bmk = F4

D4
+ 1

F2
mk− F2

D4
(m2 + k2)+ F0

D4
m2k2 (3.3.9)

For d = 3:

bm(k)= Bmk = F4

D4
+ F6

D8
mk− F2

D4
(m2 + k2)+ F0

D4
m2k2

− F4

D8
(km3 +mk3)+ F2

D8
m3k3

(3.3.10)
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The required ratios are given explicitly as follows:

F4

D4
= 3(3M2 + 3M − 1)
(2M + 3)(4M2 − 1)

F2

D4
= 15

(2M + 3)(4M2 − 1)

F0

D4
= 45

M(M + 1)(2M + 3)(4M2 − 1)

F6

D8
= 25(3M4 + 6M3 − 3M + 1)
M(M + 2)(M2 − 1)(2M + 3)(4M2 − 1)

F4

D8
= 35(3M2 + 3M − 1)
M(M + 2)(M2 − 1)(2M + 3)(4M2 − 1)

F2

D8
= 175

M(M + 2)(M2 − 1)(2M + 3)(4M2 − 1)

(3.3.11)

In a similar fashion, we also find for the case d = 4:

bm(k)= Bmk =D12

D
+ F6

D8
mk− D10

D
(m2 + k2)+E8

D
m2k2

− F4

D8
(km3 +mk3)+ F2

D8
m3k3 + D8

D
(m4 + k4)

− D6

D
(m2k4 + k2m4)+D4

D
m4k4

(3.3.12)

where
D6 = F0F6 − F2F4

D10 = F2F8 − F4F6

D = F0D12 − F2D10 + F4D8

E8 = F0F8 − F2
4

D12 = F4F8 − F2
6 (3.3.13)

These are given explicitly as follows:

D6 = 1

7
(6M2 + 6M − 5)D4

D10 = 1

21
M(M + 2)(M2 − 1)(2M2 + 2M − 3)D4

E8 = 1

5
(4M4 + 8M3 − 4M2 − 8M + 1)D4

D12 = 1

735
M(M + 2)(M2 − 1)(15M4 + 30M3 − 35M2 − 50M + 12)D4

D = 4

11025
M(M + 2)(M2 − 1)(2M + 5)(4M2 − 9)(4M2 − 1)D4

(3.3.14)
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and the required ratios are:

D12

D
= 15(15M4 + 30M3 − 35M2 − 50M + 12)

4(2M + 5)(4M2 − 1)(4M2 − 9)

D10

D
= 525(2M2 + 2M − 3)

4(2M + 5)(4M2 − 1)(4M2 − 9)

E8

D
= 2205(4M4 + 8M3 − 4M2 − 8M + 5)

4M(M + 2)(M2 − 1)(2M + 5)(4M2 − 1)(4M2 − 9)

D8

D
= 945

4(2M + 5)(4M2 − 1)(4M2 − 9)

D6

D
= 1575(6M2 + 6M − 5)

4M(M + 2)(M2 − 1)(2M + 5)(4M2 − 1)(4M2 − 9)

D4

D
= 11025

4M(M + 2)(M2 − 1)(2M + 5)(4M2 − 1)(4M2 − 9)

(3.3.15)

In this case, the matrix F and its two interlaced submatrices are:

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

F0 0 F2 0 F4

0 F2 0 F4 0
F2 0 F4 0 F6

0 F4 0 F6 0
F4 0 F6 0 F8

⎤
⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎣
F0 F2 F4

F2 F4 F6

F4 F6 F8

⎤
⎥⎦ ,

[
F2 F4

F4 F6

]

Its inverse—obtained by interlacing the inverses of these two submatrices—can be
expressed in terms of the determinant quantities of Eq. (3.3.13):

Φ = F−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

D12/D 0 −D10/D 0 D8/D
0 F6/D8 0 −F4/D8 0

−D10/D 0 E8/D 0 −D6/D
0 −F4/D8 0 F2/D8 0

D8/D 0 −D6/D 0 D4/D

⎤
⎥⎥⎥⎥⎥⎥⎦

Eqs. (3.3.5)–(3.3.15) provide closed-form expressions for the LPSM filters bm(k) of
orders d = 0,1,2,3,4. Setting m = 0, we obtain the explicit forms of the steady-state
filters b0(k), −M ≤ k ≤M. For d = 0,1:

b0(k)= 1

2M + 1
(3.3.16)

for d = 2,3:

b0(k)= 3(3M2 + 3M − 1− 5k2)
(2M + 3)(4M2 − 1)

(3.3.17)

and for d = 4,5:

b0(k)= 15
(
15M4 + 30M3 − 35M2 − 50M + 12− 35(2M2 + 2M − 3)k2 + 63k4

)
4(2M + 5)(4M2 − 1)(4M2 − 9)

(3.3.18)
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Example 3.3.1: Determine the quadratic/cubic LPSM filters of lengthsN = 5,7,9. Using (3.3.17)
with M = 2,3,4, we find (for −M ≤ k ≤M):

b0(k)= 17− 5k2

35
= 1

35
[−3,12,17,12,−3]

b0(k)= 7− k2

21
= 1

21
[−2,3,6,7,6,3,−2]

b0(k)= 59− 5k2

231
= 1

231
[−21,14,39,54,59,54,39,14,−21]

where the coefficients have been reduced to integers as much as possible. ��

Example 3.3.2: Determine the quartic and quintic LPSM filters of length N = 7,9. Using
Eq. (3.3.18) with M = 3,4, we find:

b0(k)= 131− 61.25k2 + 5.25k4

231
= 1

231
[5,−30,75,131,75,−30,5]

b0(k)= 179− 46.25k2 + 2.25k4

429
= 1

429
[15,−55,30,135,179,135,30,−55,15]

3.4 Geometric Interpretation

The LPSM filters admit a nice geometric interpretation, which is standard in least-squares
problems. Let Y be the vector space of the N-dimensional real-valued vectors y, that
is, the space RN, and let S be the (d+1)-dimensional subspace spanned by all linear
combinations of the basis vectors si, i = 0,1, . . . , d.

Thus, the matrix S = [s0, s1, . . . , sd] is a (non-orthogonal) basis of the subspace S.
The smoothed vector ŷ, being a linear combination of the si, belongs to the subspace
S. Moreover, because of the orthogonality equations (3.2.8), ŷ is orthogonal to the error
vector e:

ŷTe = (Sc)Te = cTSTe = 0

Then, the equation e = y− ŷ can be rewritten as the orthogonal decomposition:

y = ŷ+ e (3.4.1)

which expresses y as a sum of a part that belongs to the subspace S and a part that
belongs to the orthogonal complement subspace S⊥. The decomposition is unique and
represents the direct sum decomposition of the full vector space Y:

Y = S⊕ S⊥

This geometric interpretation requires that the dimension of the subspace S not
exceed the dimension of the full space Y, that is, d + 1 ≤ N. The component ŷ that
lies in S is the projection of y onto S. The matrix B in Eq. (3.2.11) is the corresponding
projection matrix. As such, it will be symmetric, BT = B, and idempotent :

B2 = B (3.4.2)
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The proof is straightforward:

B2 = (
SF−1ST

)(
SF−1ST

) = SF−1(STS)F−1ST = SF−1ST = B

The matrix (I−B), where I is the N-dimensional identity matrix, is also a projection
matrix, projecting onto the orthogonal subspace S⊥. Thus, the error vector e belonging
to S⊥ can be obtained from y by the projection:

e = y− ŷ = (I − B)y

Because (I−B) is also idempotent and symmetric, (I−B)2= (I−B), we obtain for
the minimized value of the performance index J of Eq. (3.2.6):

Jmin = eTe = yT(I − B)2y = yT(I − B)y = yTy− yTBy (3.4.3)

3.5 Orthogonal Polynomial Bases

Computationally, the non-orthogonal basis S = [s0, s1, . . . , sd] is not the most conve-
nient one. The Gram-Schmidt orthogonalization process may be applied to the columns
of S to obtain an orthogonal basis. This procedure amounts to performing the QR-
factorization† on S, that is,

S = QR (3.5.1)

where Q is an N×(d+1) matrix with orthonormal columns, that is, QTQ = I, and R is
a (d+1)×(d+1) non-singular upper-triangular matrix.

The columns of Q = [q0,q1, . . . ,qd], correspond to the (orthonormalized) discrete
Chebyshev or Gram polynomials qi(n), i = 0,1, . . . , d, constructed from the monomial
basis si(n)= ni by the Gram-Schmidt process. Noting that STS = RT(QTQ)R = RTR,
the design of the filter matrices B,G can be formulated more efficiently as follows:

F = STS = RTR

G = SF−1 = QR−T

B = SF−1ST = QQT

(3.5.2)

which lead to the explicit construction of the differentiation and LPSM filters in terms
of the Chebyshev polynomials qi(n):

gi =
i∑

j=0

qj (R−1)ij ⇒ gi(n)=
i∑

j=0

qj(n) (R−1)ij

B =
d∑
i=0

qi q
T
i ⇒ bm(k)= Bkm =

d∑
i=0

qi(k)qi(m)

(3.5.3)

The expression for bm(k) can be simplified further using the Christoffel-Darboux
identity for orthogonal polynomials. We discuss these matters further in Sec. 4.3. The
MATLAB function lpsm implements (3.5.2). Its inputs are N,d and its outputs B,G:

†see Sec. 15.20.

3.6. Polynomial Predictive and Interpolation Filters 135

[B,G] = lpsm(N,d); % local polynomial smoothing and differentiation filter design

The function constructs the basis matrix Swith the help of the function lpbasis and
carries out its QR-factorization with the help of the built-in function qr. The following
code fragment illustrates the computational steps:

S = lpbasis(N,d); % construct polynomial basis
[Q,R] = qr(S, 0); % economy form, R is (d+1)x(d+1) upper triangular
G = Q/R’; % differentiation filters
B = Q*Q’; % smoothing filters

3.6 Polynomial Predictive and Interpolation Filters

The case d + 1 = N or d = N − 1 is of special interest, corresponding to ordinary
polynomial Lagrange interpolation. Indeed, in this case, the basis matrix S becomes a
square non-singular N×N matrix with an ordinary inverse S−1, which implies that B
becomes the identity matrix,

B = S(STS)−1ST = S(S−1S−T)ST = I

or, equivalently, the subspace S becomes the full space Y. The optimal polynomial of
degree d = N− 1 fits through all the sample points of the N-dimensional vector y, that
is, e = 0 or ŷ = y = Sc, with solution c = S−1y, and interpolates between those samples.
This polynomial is defined for any independent variable t by:

ŷt =
N−1∑
i=0

citi = cTu t = yTS−Tu t ≡ yTb t =
M∑

k=−M
bt(k)yk (3.6.1)

where we set,

u t =

⎡
⎢⎢⎢⎢⎢⎣

1
t
...
tN−1

⎤
⎥⎥⎥⎥⎥⎦ , b t = S−Tu t ⇒ bt(k)=

N−1∑
i=0

(S−1)ik ti (3.6.2)

The polynomials bt(k) of degree (N−1) in t are the ordinary Lagrange interpolation
polynomials, interpolating through the points yk. To see this, we note that at each
discrete value of t, say t =m with −M ≤m ≤M, we have:

bm(k)=
N−1∑
i=0

(S−1)ik mi =
N−1∑
i=0

(S−1)ik Smi = (SS−1)mk= Imk = δ(m− k) (3.6.3)

so that the polynomial passes through the signal values at the sampling instants:

ŷt
∣∣
t=m =

M∑
k=−M

bm(k)yk =
M∑

k=−M
δ(m− k)yk = ym
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It is straightforward to show using the property (3.6.3) that bt(k) is given by the
usual Lagrange interpolation formula:

bt(k)=
M∏

m=−M
m
=k

(
t −m
k−m

)
, −M ≤ k ≤M (3.6.4)

Indeed, Eq. (3.6.4) states that the (2M) roots of bt(k) are the points t = m, for
−M ≤ m ≤ M and m 
= k, which fixes the polynomial up to a constant. That constant
is determined by the condition bk(k)= 1.

Example 3.6.1: For N = 5 and d = N − 1 = 4, the fourth degree Lagrange polynomials, con-
structed from Eq. (3.6.4), can be expanded in powers of t :

⎡
⎢⎢⎢⎢⎢⎢⎣

bt(−2)
bt(−1)
bt(0)
bt(1)
bt(2)

⎤
⎥⎥⎥⎥⎥⎥⎦
= 1

24

⎡
⎢⎢⎢⎢⎢⎢⎣

0 2 −1 −2 1
0 −16 16 4 −4

24 0 −30 0 6
0 16 16 −4 −4
0 −2 −1 2 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1
t1

t2

t3

t4

⎤
⎥⎥⎥⎥⎥⎥⎦

The coefficient matrix is recognized as the inverse transposed of the basis matrix S:

S =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −2 4 −8 16
1 −1 1 −1 1
1 0 0 0 0
1 1 1 1 1
1 2 4 8 16

⎤
⎥⎥⎥⎥⎥⎥⎦

⇒ S−T = 1

24

⎡
⎢⎢⎢⎢⎢⎢⎣

0 2 −1 −2 1
0 −16 16 4 −4

24 0 −30 0 6
0 16 16 −4 −4
0 −2 −1 2 1

⎤
⎥⎥⎥⎥⎥⎥⎦

which verifies Eq. (3.6.2). ��

We note that bt(k) can be written in the following analytical form, which shows the
relation of the Lagrange interpolation filter to the ideal sinc-interpolation filter:

bt(k)= Γ(M + 1+ t)Γ(M + 1− t)
Γ(M + 1+ k)Γ(M + 1− k)

· sin
(
π(t − k)

)
π(t − k)

(3.6.5)

Some alternative expressions are as follows:

bt(k)= (−1)M+k
2M∑

m=M+k

(
M + t
m

)(
m

M + k

)
(−1)m (3.6.6)

bt(k)= (−1)M+1−kΓ(M + 1− t)
(t − k)Γ(−M − t)Γ(M + 1+ k)Γ(M + 1− k)

(3.6.7)

and since the bt(k) sum up to one, we also have [156]:

bt(k)=
⎡
⎣ M∑
n=−M

bt(n)
bt(k)

⎤
⎦
−1

=
⎡
⎣ M∑
n=−M

(−1)k−n
(M + k)! (M − k)!
(M + n)! (M − n)!

t − k
t − n

⎤
⎦
−1

(3.6.8)
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For polynomial ordersd < N−1, one can still interpolate approximately and smoothly
between the samples ym. In this case, using c = GTy = (STS)−1STy, we have:

ŷt =
d∑
i=0

citi = cTu t = yTGu t ≡ yTb t =
M∑

k=−M
bt(k)yk (3.6.9)

where now

u t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
t1

t2

...
td

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, b t = Gu t = S(STS)−1u t ⇒ bt(k)=

d∑
i=0

Gki ti (3.6.10)

and shifting the origin k = 0 to the arbitrary time instant n, we obtain the interpolation
formula for a shift t relative to the time instant n:

ŷn+t =
M∑

k=−M
bt(k)yn+k =

M∑
k=−M

bRt (k)yn−k (3.6.11)

where bRt (k)= bt(−k). Such formulas can also be used for prediction by choosing
t > M so that n+ t > n+M, that is, it lies beyond the end of the filter range.

We can obtain closed-form expressions for the interpolation filters bt(k) for d =
0,1,2,3,4 and arbitrary M, by replacing in Eqs. (3.3.7)–(3.3.12) the variable m in bm(k)
by the variable t. For example, for d = 1,2,3,4, we have, respectively:

bt(k) = 1

F0
+ tk
F2

bt(k) = F4

D4
+ 1

F2
tk− F2

D4
(t2 + k2)+ F0

D4
t2k2

bt(k) = F4

D4
+ F6

D8
tk− F2

D4
(t2 + k2)+ F0

D4
t2k2 − F4

D8
(kt3 + tk3)+ F2

D8
t3k3

bt(k) = D12

D
+ F6

D8
tk− D10

D
(t2 + k2)+E8

D
t2k2 − F4

D8
(kt3 + tk3)

+ F2

D8
t3k3 + D8

D
(t4 + k4)−D6

D
(t2k4 + k2t4)+D4

D
t4k4

(3.6.12)

where the required coefficient ratios are given by Eqs. (3.3.11) and (3.3.15). The inter-
polation filter (3.6.10) may be written in terms of the columns of G = [g0,g1, . . . ,gd]:

bt(k)=
d∑
i=0

Gkiti =
d∑
i=0

gi(k)ti ⇒ b t =
d∑
i=0

giti (3.6.13)

This representation admits a convenient realization, known as a Farrow structure,
which allows the changing of the parameter t on the fly without having to redesign the
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filter. It is essentially a block-diagram realization of Eq. (3.6.13) written in nested form
using Hörner’s rule. For example, if d = 3, we have

b t = g0 + g1t + g2t2 + g3t3 = (
(g3t + g2)t + g1

)
t + g0 (3.6.14)

Fig. 3.6.1 shows this realization where we replaced gi by their reversed versions gRi ,
which appear in the convolutional filtering equations. The parameter t appears only in
the lower multipliers and can be independently controlled.

Fig. 3.6.1 Farrow structure for interpolating or predictive FIR filter.

The filtering equation (3.6.11) can also be written in a causal manner by setting
t =M + τ and defining the causal filter, where N = 2M + 1:

hτ(k)= bM+τ(M − k) , k = 0,1, . . . ,N − 1 (3.6.15)

Replacing n→ n−M and k→ k−M, Eq. (3.6.11) is transformed into a causal filtering
operation that predicts the future sample yn+τ from the present and past samples yn−k,
k = 0,1, . . . ,N − 1. The mapping of the time indices is explained in Fig. 3.6.2. The
resulting filtering operation reads:

ŷn+τ =
N−1∑
k=0

hτ(k)yn−k , τ ≥ 0 (3.6.16)

Fig. 3.6.2 Double-sided and causal predictive FIR filters, with n′ = n−M and t =M + τ.

Since τ is any real number, the notation n+τ corresponds to the actual time instant
(n+τ)T in seconds, where T is the sampling time interval. The filter h−τ(k) may also
be used for implementing a fractional delay as opposed to prediction, that is,

ŷn−τ =
N−1∑
k=0

h−τ(k)yn−k (fractional delay) (3.6.17)
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The filters bt(k) and hτ(k) satisfy the following polynomial-preserving moment
constraints (being equivalent to STb t = u t), where i = 0,1, . . . , d:

M∑
k=−M

kibt(k)= ti ⇒
N−1∑
k=0

kihτ(k)= (−τ)i ,
N−1∑
k=0

kih−τ(k)= τi (3.6.18)

These constraints imply that Eqs. (3.6.16) and (3.6.17) are exact for polynomials of
degree r ≤ d. For any such polynomial P(n), we have:

N−1∑
k=0

h−τ(k)P(n− k)= P(n− τ) (3.6.19)

For example, we have for the monomial P(n)= nr with r ≤ d:

N−1∑
k=0

h−τ(k)(n− k)r=
N−1∑
k=0

h−τ(k)
r∑
i=0

(
r
i

)
nr−i(−1)iki

=
r∑
i=0

(
r
i

)
nr−i(−1)i

N−1∑
k=0

kih−τ(k)=
r∑
i=0

(
r
i

)
nr−i(−1)iτi = (n− τ)r

It is in the sense of Eq. (3.6.19) that we may think of the transfer function of the filter
h−τ(k) as approximating the ideal fractional delay z−τ:

N−1∑
k=0

h−τ(k)z−k 
 z−τ (3.6.20)

Further insight into the nature of the approximation (3.6.20) can be gained by con-
sidering the Lagrange interpolation case, d = N − 1. From the definition of h−τ(k)=
bM−τ(M − k) and Eqs. (3.6.4) and (3.6.6), we obtain, for k = 0,1, . . . ,N − 1:

h−τ(k)=
N−1∏
i=0
i
=k

(
τ− i
k− i

)
=

N−1∑
i=N−1−k

(
N−1−τ

i

)(
i

N−1−k

)
(−1)i−(N−1−k) (3.6.21)

The z-transform of h−τ(k) is then,

N−1∑
k=0

h−τ(k)z−k =
N−1∑
k=0

N−1∑
i=N−1−k

(
N−1−τ

i

)(
i

N−1−k

)
(−1)i−(N−1−k)z−k

= z−(N−1)
N−1∑
i=0

N−1∑
k=N−1−i

(
N−1−τ

i

)(
i

N−1−k

)
(−1)i−(N−1−k)zN−1−k

Changing summation variables and using the binomial expansion of (z−1)i, we obtain,

N−1∑
k=0

h−τ(k)z−k = z−(N−1)
N−1∑
i=0

m∑
j=0

(
N−1−τ

i

)(
i
j

)
(−1)i−jzj

= z−(N−1)
N−1∑
i=0

(
N−1−τ

i

)
(z− 1)i

(3.6.22)
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Applying the binomial identity,

(1+ x)α=
∞∑

m=0

(
α
i

)
xi (3.6.23)

with x = z− 1 and α = N − 1− τ, we have,

zN−1−τ = (1+ z− 1)N−1−τ=
∞∑
i=0

(
N−1−τ

i

)
(z− 1)i (3.6.24)

We recognize the sum in Eq. (3.6.22) to be the first N terms of (3.6.24). Thus, taking
that sum to approximately represent zN−1−τ, we have,

N−1∑
k=0

h−τ(k)z−k 
 z−(N−1) zN−1−τ = z−τ (3.6.25)

This approximation becomes exact whenever τ is an integer, say τ = m, with m =
0,1, . . . ,N−1. Indeed in this case, the summation range 0 ≤ i ≤ N−1 in Eq. (3.6.22) can
be restricted to 0 ≤ i ≤ N−1−m because the binomial coefficient vanishes whenever its
(integer) arguments satisfy N − 1−m < i ≤ N − 1. We then have an ordinary binomial
expansion for an integer power:

N−1∑
k=0

h−m(k)z−k = z−(N−1)
N−1−m∑
i=0

(
N−1−m

i

)
(z−1)i= z−(N−1)(1+z−1)N−1−m= z−m

which implies the expected result h−m(k)= δ(k−m). Eq. (3.6.22) is equivalent to New-
ton’s forward interpolation formula. To see this, let us introduce the forward difference
operator Δ = z− 1, or, Δfn = fn+1 − fn, and apply (3.6.22) in the time domain:

ŷn−τ =
N−1∑
k=0

h−τ(k)yn−k =
N−1∑
i=0

(
N−1−τ

i

)
Δiyn−(N−1) (3.6.26)

This interpolates between the points [yn−(N−1), . . . , yn−1, yn]with τmeasured back-
wards from the end-point yn. We may measure the interpolation distance forward from
the first point yn−(N−1) by defining x = N−1−τ. Then, Eq. (3.6.26) reads,

ŷn−(N−1)+x =
N−1∑
i=0

(
x
i

)
Δiyn−(N−1) (3.6.27)

and setting n = N − 1 so that the data range is [y0, y1, . . . , yN−1], we obtain the usual
way of writing Newton’s polynomial interpolation formula:

ŷx =
N−1∑
i=0

(
x
i

)
Δiy0 =

N−1∑
i=0

x(x− 1)· · · (x− i+ 1)
i!

Δiy0 (3.6.28)

We note also that Eq. (3.6.21) is valid for either even or odd values of N. For N =
2,3,4, we obtain for the corresponding filter coefficients:
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[
h−τ(0)
h−τ(1)

]
=

[
1− τ
τ

]
,

⎡
⎢⎣
h−τ(0)
h−τ(1)
h−τ(2)

⎤
⎥⎦ = 1

2

⎡
⎢⎣
(τ− 1)(τ− 2)
−2τ(τ− 2)

τ(τ− 1)

⎤
⎥⎦

⎡
⎢⎢⎢⎣
h−τ(0)
h−τ(1)
h−τ(2)
h−τ(3)

⎤
⎥⎥⎥⎦ = 1

6

⎡
⎢⎢⎢⎣
−(τ− 1)(τ− 2)(τ− 3)

3τ(τ− 2)(τ− 3)
−3τ(τ− 1)(τ− 3)

τ(τ− 1)(τ− 2)

⎤
⎥⎥⎥⎦

(3.6.29)

and the corresponding interpolation formulas:

ŷn−τ = (1− τ)yn + τyn−1

ŷn−τ = 1

2
(τ− 1)(τ− 2)yn − τ(τ− 2)yn−1 + 1

2
τ(τ− 1)yn−2

ŷn−τ = −1

6
(τ− 1)(τ− 2)(τ− 3)yn + 1

2
τ(τ− 2)(τ− 3)yn−1

− 1

2
τ(τ− 1)(τ− 3)yn−2 + 1

6
τ(τ− 1)(τ− 2)yn−3

(3.6.30)

Example 3.6.2: Fig. 3.6.3 shows in the top row an example of a Lagrange fractional-delay filter
with N = 3 and polynomial order d = N − 1 = 2 for the delay values τ = m/10, m =
1,2, . . . ,10.

The bottom row is the case N = 5 and d = N− 1 = 4 with delays τ extending over the in-
terval 0 ≤ τ ≤ 2. This filter interpolates between the samples [yn−4, yn−3, yn−2, yn−1, yn].
The chosen range of τ’s spans the gaps between [yn−2, yn−1, yn]. For the subrange 0 ≤
τ ≤ 1 which spans [yn−1, yn], the magnitude response is greater than one, while it is less
than one for the more central range 1 ≤ τ ≤ 2 which spans [yn−2, yn−1]. The following
MATLAB code segment illustrates the generation of the upper two graphs:

f = linspace(0,1,1001); w= pi*f; % frequencies 0 ≤ω ≤ π
N=3; d=N-1; M = floor(N/2); % d = N−1 for Lagrange interpolation

Hmag = []; Hdel = [];
for m=1:10,

tau = m/10; % desired delays

h = flip(lpinterp(N,d,M-tau)); % lpinterp is discussed in Sec. 3.8

H = freqz(h,1,w);
Hmag = [Hmag; 10*log10(abs(H))]; % magnitude responses in dB

Delay = -angle(H)./w; Delay(1) = tau;
Hdel = [Hdel; Delay]; % phase delays

end

figure; plot(f,Hmag); figure; plot(f,Hdel);

The filters were calculated with the function lpinterp (from Sec. 3.8) with arguments d =
N−1, t =M−τ, with reversed output to account for the definition h−τ(k)= bM−τ(M−k).
In both cases, we observe that the useful bandwidth of operation, within which both the
phase delays have the correct values and the magnitude response is near unity, is fairly
narrow extending to about ω = 0.2π, or f = fs/10 in units of the sampling rate fs. ��
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Fig. 3.6.3 Lagrange fractional-delay filters with N = 3.

References [152–173] contain further information on predictive FIR and fractional-
delay filters. See also [174–187] for alternative implementations of fractional delay
using maximally-flat and allpass filters. Ref. [162] provides a nice review of various
approaches to the fractional-delay problem.

3.7 Minimum Variance Filters

Next we discuss the equivalence of the least-square polynomial fitting approach to the
minimization of the NRR subject to linear moment constraints. In the actuarial context,
such designs are referred to as “minimum R0” or “minimum variance” filters, as op-
posed to the “minimum Rs” or “minimum roughness” filters— the nomenclature being
explained in Sec. 4.2.

The projection properties of B may be used to calculate the NRR. For example, the
property mentioned previously that the NRR of the filter b0 is the equal to the middle
value b0(0) follows from Eq. (3.4.2). Using the symmetry of B, we have

BT = B = B2 = BTB
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Taking matrix elements, we have Bkm = (BT)mk= (BTB)mk. But, Bkm is the kth
component of the mth column bm. Using a similar argument as in Eq. (3.2.13), we also
have (BTB)mk= bTmbk. Therefore,

bTmbk = bm(k)

For k =m, we have the diagonal elements of BTB = B:

R = bTmbm = bm(m) (3.7.1)

These are recognized as the NRRs of the filters bm. In particular, for m = 0, we have
R = bT0 b0 = b0(0). Setting k = 0 in Eqs. (3.3.16)–(3.3.18), we find that the NRRs of the
cases d = 0,1, d = 2,3, and d = 4,5 are given by the coefficient ratios 1/F0, F4/D4, and
D12/D. Therefore:

(d = 0,1) R = 1

N

(d = 2,3) R = 3(3M2 + 3M − 1)
(2M + 3)(4M2 − 1)

(d = 4,5) R = 15(15M4 + 30M3 − 35M2 − 50M + 12)
4(2M + 5)(4M2 − 1)(4M2 − 9)

(3.7.2)

In the limit of large N or M, we have the approximate asymptotic expressions:

(d = 0,1) R = 1

N

(d = 2,3) R 
 9/4

N
= 2.25

N

(d = 4,5) R 
 225/64

N
= 3.52

N

(3.7.3)

Thus, the noise reductions achieved by the quadratic/cubic and quartic/quintic cases
are 2.25 and 3.52 times worse than that of the plain FIR averager of the same length N.
Another consequence of the projection nature of B is:

BTS = S, STB = ST (3.7.4)

Indeed, BTS = BS = S(STS)−1STS = S. Column-wise the first equation states that:

BT[s0, s1, . . . , sd]= [s0, s1, . . . , sd] ⇒ BTsi = si, i = 0,1, . . . , d

Thus, the basis vectors si remain invariant under projection, but that is to be ex-
pected because they already lie in S. In fact, any other linear combination of them, such
as Eq. (3.2.30), remains invariant under B, that is, BTŷ = ŷ.

This property answers the question: When are the smoothed values equal to the
original ones, ŷ = y, or, equivalently, when is the error zero, e = 0? Because e = y−BTy,
the error will be zero if and only if BTy = y, which means that y already lies in S, that is,
it is a linear combination of si. This implies that the samples ym are already dth order
polynomial functions of m, as in Eq. (3.2.27).
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The second equation in (3.7.4) implies certain constraints on the filters bm, which
can be used to develop an alternative approach to the LPSM filter design problem in
terms of minimizing the NRR subject to constraints. To see this, we write the (d+1)×N
transposed matrix ST column-wise:

ST = [u−M, . . . ,u−1,u0,u1, . . . ,uM] (3.7.5)

For example, in the N = 5, d = 2 case, we have:

ST =
⎡
⎢⎣

1 1 1 1 1
−2 −1 0 1 2

4 1 0 1 4

⎤
⎥⎦ ≡ [u−2, u−1, u0, u1, u2]

It is easily verified that the mth column um is simply

um =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
m
m2

...
md

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, −M ≤m ≤M (3.7.6)

which is the same as u t at t =m, in terms of the definition (3.6.10). Using B = GST, we
can express the LPSM filters bm in terms of um, as follows:

[b−M, . . . ,b−1,b0,b1, . . . ,bM]= B = GST = G[u−M, . . . ,u−1,u0,u1, . . . ,uM]

which implies:
bm = Gum = SF−1um (3.7.7)

Multiplying by ST, we find STbm = STSF−1um = um, or,

STbm = um ⇒

⎡
⎢⎢⎢⎢⎢⎣

sT0 bm
sT1 bm

...
sTdbm

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

1
m
...
md

⎤
⎥⎥⎥⎥⎥⎦ (3.7.8)

These relationships are the column-wise equivalent of STB = ST. Thus, each LPSM
filter bm satisfies (d+1) linear constraints:

sTi bm =mi, i = 0,1, . . . , d (3.7.9)

Writing the dot products explicitly, we have equivalently:

M∑
n=−M

nibm(n)=mi , i = 0,1, . . . , d (3.7.10)
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In particular, for the steady-state LPSM filter b0, we have u0 = [1,0,0, . . . ,0]T, with
ith component δ(i). Therefore, the constraint STb0 = u0 reads component-wise:

M∑
n=−M

nib0(n)= δ(i), i = 0,1, . . . , d (3.7.11)

For i = 0, this is the usual DC constraint:

M∑
n=−M

b0(n)= 1 (3.7.12)

and for i = 1,2, . . . , d:
M∑

n=−M
nib0(n)= 0 (3.7.13)

The quantity in the left-hand side of Eq. (3.7.11) is called the ith moment of the
impulse response b0(n). Because of the symmetric limits of summation over n and the
symmetry of b0(n) about its middle, the moments (3.7.13) will be zero for odd i, and
therefore are not extra constraints. However, for even i, they are nontrivial constraints.

These moments are related to the derivatives of the frequency response at ω = 0.
Indeed, defining,

B0(ω)=
M∑

n=−M
b0(n)e−jωn

and differentiating it i times, we have:

jiB(i)0 (ω)= ji
diB0(ω)
dωi =

M∑
n=−M

nib0(n)e−jωn

Setting ω = 0, we obtain:

jiB(i)0 (0)= ji
diB0(ω)
dωi

∣∣∣∣∣
ω=0

=
M∑

n=−M
nib0(n) (3.7.14)

Thus, the moment constraints (3.7.12) and (3.7.13) are equivalent to the DC con-
straint and the flatness constraints on the frequency response at ω = 0:

B0(0)= 1, B(i)0 (0)= 0, i = 1,2, . . . , d (3.7.15)

The larger the d, the more derivatives vanish at ω = 0, and the flatter the response
B0(ω) becomes. This effectively increases the cutoff frequency of the lowpass filter—
letting through more noise, but at the same time preserving more of the higher frequen-
cies in the desired signal.

Figure 3.7.1 shows the magnitude response |B0(ω)| for the cases N = 7,15 and
d = 0,2,4. The quadratic filters are flatter at DC than the plain FIR averager because
of the extra constraint B′′0 (0)= 0. Similarly, the quartic filters are even flatter because
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Fig. 3.7.1 LPSM filters of lengths N = 7,15, and orders d = 0,2,4.

they satisfy two flatness conditions: B′′0 (0)= B(4)0 (0)= 0. The cutoff frequencies are
approximately doubled and tripled in the cases d = 2 and d = 4, as compared to d = 0.

A direct consequence of the moment constraints (3.7.11) is that the moments of the
input signal y(n) are preserved by the filtering operation (3.2.33), that is,

∑
n
nix̂(n)=

∑
n
niy(n), i = 0,1, . . . , d (3.7.16)

This can be proved easily working in the frequency domain. Differentiating the
filtering equation X̂(ω)= B0(ω)Y(ω) i times, and using the product rules of differ-
entiation, we obtain:

X̂(i)(ω)=
i∑

j=0

(
i
j

)
B(j)0 (ω)Y(i−j)(ω)

Setting ω = 0 and using the moment constraints satisfied by the filter, B(j)0 (0)=
δ(j), we observe that only the j = 0 term will contribute to the above sum, giving:

X̂(i)(0)= B0(0)Y(i)(0)= Y(i)(0), i = 0,1, . . . , d

which implies Eq. (3.7.16), by virtue of Eq. (3.7.14) as applied to x(n) and y(n).
The preservation of moments is a useful property in applications, such as spectro-

scopic analysis or ECG processing, in which the desired signal has one or more sharp
peaks, whose widths must be preserved by the smoothing operation. In particular, the
second moment corresponding to i = 2 in Eq. (3.7.16) is a measure of the square of the
width [42–52,56,58,178].

The above moment constraints can be used in a direct way to design the LPSM filters.
We consider first the more general problem of designing an optimum length-N filter that
minimizes the NRR subject to d+ 1 arbitrary moment constraints. That is, minimize

R = bTb =
M∑

n=−M
b(n)2= min (3.7.17)

3.7. Minimum Variance Filters 147

subject to the d+ 1 constraints, with a given u = [u0, u1, . . . , ud]T:

sTi b =
M∑

n=−M
nib(n)= ui, i = 0,1, . . . , d ⇒ STb = u (3.7.18)

The minimization of Eq. (3.7.17) subject to (3.7.18) can be carried out with the help
of Lagrange multipliers, that is, adding the constraint terms to the performance index:

J = bTb+ 2
d∑
i=0

λi(ui − sTi b)= bTb+ 2λλλT(u− STb) (3.7.19)

The gradient of J with respect to the unknown filter b is:

∂J
∂b

= 2b− 2Sλλλ

Setting the gradient to zero, and solving for b gives:

b = Sλλλ = [s0, s1, . . . , sd]

⎡
⎢⎢⎢⎢⎢⎣

λ0

λ1

...
λd

⎤
⎥⎥⎥⎥⎥⎦ =

d∑
i=0

λisi

Component-wise this means that b(n) has the polynomial form:

b(n)=
d∑
i=0

λisi(n)=
d∑
i=0

λini, −M ≤ n ≤M

The Lagrange multiplier vector λλλ is determined by imposing the desired constraint:

u = STb = STSλλλ = Fλλλ ⇒ λλλ = F−1u

resulting in the optimum b:

b = Sλλλ = SF−1u = S(STS)−1u = Gu (3.7.20)

Since the solution minimizes the norm bTb, it is recognized to be the minimum-norm
solution of the (d+1)×N full-rank under-determined linear system STb = u, which
can be obtained by the pseudoinverse of ST, that is, b = (ST)+u, where according to
Eq. (15.4.10), (ST)+= S(STS)−1. In MATLAB, we can simply write b = pinv(ST)u.

Comparing this solution with Eqs. (3.7.7) and (3.7.8), we conclude that the LPSM filters
bm can be thought of as the optimum filters that have minimum NRR with constraint
vectors u = um, that is, the minimization problems,

R = bTmbm = min , subject to STbm = um (3.7.21)

have solutions,
bm = SF−1um = Gum , −M ≤m ≤M (3.7.22)
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and putting these together as the columns of B, we obtain Eq. (3.2.31):

B = [. . . ,bm, . . . ]= G[. . . ,um, . . . ]= GST = SF−1ST (3.7.23)

In particular, the steady-state LPSM filter b0 minimizes the NRR with the constraint
vector u = u0 = [1,0, . . . ,0]T. This was precisely the problem first formulated and
solved using Lagrange multipliers by Schiaparelli [36].

Similarly, the interpolating filter b t = Gu t of Eq. (3.6.10) can be thought of as the
solution of the constrained minimization problem:

R = bTb = min , subject to STb = u t , where u t = [1, t, t2, . . . , td]T

3.8 Predictive Differentiation Filters

Going back to the polynomial fit of Eq. (3.6.9), that is,

ŷt =
d∑
i=0

citi = cTu t = yTGu t = yTb t , where b t = Gu t , (3.8.1)

we recall that the differentiation filters (3.2.24) were derived by differentiating (3.8.1) at
t = 0, and therefore, they correspond to the center of the data vector y:

ŷt
∣∣
t=0 = c0 = bT0 y = gT0 y

˙̂yt
∣∣
t=0 = c1 = gT1 y

¨̂yt
∣∣
t=0 = 2c2 = gT2 y , etc.,

The first derivative at an arbitrary value of t is given by:

˙̂yt = yTḃ t , ḃ t = Gu̇ t

where the differentiation operation can be expressed as matrix multiplication:

u t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
t
t2

...
td

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
⇒ u̇ t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
1
2t
...
dtd−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 2 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0
0 0 0 · · · d 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
t
t2

...
td−1

td

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≡ Du t (3.8.2)

where D is the (d+1)×(d+1) matrix with the sequence of numbers {1,2, . . . , d} along
its first subdiagonal and zeros everywhere else. Such a matrix can be constructed triv-
ially in MATLAB, for example, by:

D = diag(1:d, -1);
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It follows that the first-order differentiation filter is ḃ t = GDu t. In particular, the
differentiation filter at the sample point t = m is ḃm = GDum and the corresponding
estimated derivative:

˙̂ym = ḃ
T
my = uTmDTGTy , −M ≤m ≤M (3.8.3)

Stacking these together into a column vector, we obtain:

˙̂y = SDTGTy = ḂTy , where Ḃ = GDST = SF−1DST (3.8.4)

so that Ḃ has the ḃm as columns. Higher-order derivatives correspond to higher powers
of the matrix D, for example, ü t = D2u t, and so on, with the highest non-trivial power
beingDd, becauseDd+1 = 0, or equivalently, because the elements of u t are monomials
up to td. Therefore, the order-i differentiation matrix will be:

B(i) = SF−1DiST , i = 0,1, . . . , d (3.8.5)

Centering the data vector y at time n and denoting the m-th column of B(i) by b(i)m ,
we obtain the filtering equation for the i-th estimated derivative:

ŷ(i)n+m =
M∑

k=−M
b(i)m (k)yn+k =

M∑
k=−M

b(i)m (−k)yn−k (3.8.6)

We note that at the data-vector center m = 0, we have b(i)0 = gi. For arbitrary t, we

have b(i)t = GDiu t and we obtain the estimated/interpolated derivative:

ŷ(i)n+t =
M∑

k=−M
b(i)t (k)yn+k =

M∑
k=−M

b(i)t (−k)yn−k (3.8.7)

As in Eq. (3.6.15), the redefinition h(i)τ (k)= b(i)M+τ(M − k) will result into a causal
version of the predictive differentiator filter, with Eq. (3.8.7) transforming into:

ŷ(i)n+τ =
N−1∑
k=0

h(i)τ (k)yn−k (causal predictive differentiator) (3.8.8)

One can easily obtain closed-form expressions for the differentiation filters b(i)t (k)
for d = 0,1,2,3,4 and arbitraryM, by replacing the variablem in Eqs. (3.3.7)–(3.3.12) by
the variable t and differentiating i-times with respect to t. For example, for d = 1,2,3,
4, we differentiate Eqs. (3.6.12) once to get the first derivative:
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ḃt(k) = k
F2

ḃt(k) = 1

F2
k− F2

D4
(2t)+ F0

D4
(2tk2)

ḃt(k) = F6

D8
k− F2

D4
(2t)+ F0

D4
(2tk2)− F4

D8
(3t2k+ k3)+ F2

D8
(3t2k3)

ḃt(k) = F6

D8
k− D10

D
(2t)+E8

D
(2tk2)− F4

D8
(k3t2 + k3)

+ F2

D8
(3t2k3)+D8

D
(4t3)−D6

D
(2tk4 + k24t3)+D4

D
(4t3k4)

(3.8.9)

For the causal versions, we have for d = 1:

hτ(k) = 1

F0
+ (M + τ)(M − k)

F2
= M(M + 1)+3(M + τ)(M − k)

M(M + 1)(2M + 1)

ḣτ(k) = M − k
F2

= 3(M − k)
M(M + 1)(2M + 1)

(3.8.10)

where k = 0,1, . . . ,N − 1. We note that ḣτ can be obtained by differentiating hτ with
respect to τ. The derivative filter is independent of τ because it corresponds to fitting
a first-order polynomial. For d = 2, we have similarly,

hτ(k) = F4

D4
+ 1

F2
(M + τ)(M − k)− F2

D4

(
(M + τ)2+(M − k)2)+ F0

D4
(M + τ)2(M − k)2

ḣτ(k) = 1

F2
(M − k)− F2

D4
2(M + τ)+ F0

D4
2(M + τ)(M − k)2

(3.8.11)
where, we recall from Eq. (3.3.11),

F4

D4
= 3(3M2 + 3M − 1)
(2M + 3)(4M2 − 1)

,
F2

D4
= 15

(2M + 3)(4M2 − 1)

F0

D4
= 45

M(M + 1)(2M + 3)(4M2 − 1)
,

1

F2
= 3

M(M + 1)(2M + 1)

Example 3.8.1: For the case N = 5, d = 2, we had found in Eqs. (3.2.5) and (3.2.16) that:

S = [s0, s1, s2]=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4

⎤
⎥⎥⎥⎥⎥⎥⎦
, G = 1

35

⎡
⎢⎢⎢⎢⎢⎢⎣

−3 −7 5
12 −3.5 −2.5
17 0 −5
12 3.5 −2.5
−3 7 5

⎤
⎥⎥⎥⎥⎥⎥⎦
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The corresponding first- and second-order differentiation matrices will be:

Ḃ = GD1ST = 1

35

⎡
⎢⎢⎢⎢⎢⎢⎣

−27 −17 −7 3 13
6.5 1.5 −3.5 −8.5 −13.5
20 10 0 −10 −20

13.5 8.5 3.5 −1.5 −6.5
−13 −3 7 17 27

⎤
⎥⎥⎥⎥⎥⎥⎦
, D1 =

⎡
⎢⎣

0 0 0
1 0 0
0 2 0

⎤
⎥⎦

B̈ = GD2ST = 1

35

⎡
⎢⎢⎢⎢⎢⎢⎣

10 10 10 10 10
−5 −5 −5 −5 −5
−10 −10 −10 −10 −10
−5 −5 −5 −5 −5
10 10 10 10 10

⎤
⎥⎥⎥⎥⎥⎥⎦
, D2 =

⎡
⎢⎣

0 0 0
0 0 0
2 0 0

⎤
⎥⎦

The central columns agree with Eq. (3.2.25). The interpolating smoothing and first-order
differentiation filters are given by:

b t = Gu t = 1

35

⎡
⎢⎢⎢⎢⎢⎢⎣

−3 −7 5
12 −3.5 −2.5
17 0 −5
12 3.5 −2.5
−3 7 5

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

1
t
t2

⎤
⎥⎦ = 1

35

⎡
⎢⎢⎢⎢⎢⎢⎣

−3− 7t + 5t2

12− 3.5t − 2.5t2

17− 5t2

12+ 3.5t − 2.5t2

−3+ 7t + 5t2

⎤
⎥⎥⎥⎥⎥⎥⎦

ḃ t = GDu t = 1

35

⎡
⎢⎢⎢⎢⎢⎢⎣

−3 −7 5
12 −3.5 −2.5
17 0 −5
12 3.5 −2.5
−3 7 5

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

0 0 0
1 0 0
0 2 0

⎤
⎥⎦
⎡
⎢⎣

1
t
t2

⎤
⎥⎦ = 1

35

⎡
⎢⎢⎢⎢⎢⎢⎣

−7+ 10t
−3.5− 5t
−10t

3.5− 5t
7+ 10t

⎤
⎥⎥⎥⎥⎥⎥⎦

where ḃ t can be obtained either by the indicated matrix multiplication or by simply differ-
entiating b t with respect to t. ��

The MATLAB function lpdiff implements the design of the differentiation matrices:

B = lpdiff(N,d,i); % differentiation filters

Like lpsm, it carries out a Gram-Schmidt QR-transformation on the monomial basis
S and constructs the B(i) by:

S = QR , QTQ = I, R = upper triangular

G = S(STS)−1= QR−T

B(i) = GDiST = Q(R−TDiRT)QT

The predictive/interpolating differentiation filters b(i)t are the minimum-norm solu-
tion of the under-determined linear system STb = Diu t, or, equivalently the solution
of the constrained minimization problem:

R = bTb = min , subject to STb = Diu t

The MATLAB function lpinterp implements the design of predictive and interpo-
lating differentiation filters, essentially carrying out the operation b = pinv(ST)Diu t:
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b = lpinterp(N,d,t,i); % local polynomial interpolation and differentiation filters

The case i = 0 corresponds to the predictive interpolation filters of Sec. 3.6. For the
integer values t =m, −M ≤m ≤M, the filter b agrees with the columns of B(i).

Example 3.8.2: Fig. 3.8.1 illustrates the performance of the local polynomial differentiation
filters on noiseless and noisy signals.
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Fig. 3.8.1 Differentiating noisy signals.

The noiseless signal is a raised cosine s(t)= 0.5 − 0.5 cos(ωt), with 0 ≤ t ≤ T and
ω = 2π/T, so that it spans one cycle. Choosing a sampling time interval Δt = T/L, we
can construct a noisy signal sampled at time instants tn = nΔt = nT/L, n = 0,1, . . . , L,
by adding zero-mean white gaussian noise vn of variance, say σ2, so that the noisy obser-
vations are:

yn = s(tn)+vn , n = 0,1, . . . , L

The first derivative of s(t) is ṡ(t)= 0.5ω sin(ωt) and its samples, ṡ(tn)= 0.5ω sin(ωtn).
The upper-left graph shows s(tn) versus tn, with T = 10 and L = 50. The upper-right
graph shows ṡ(tn) (dashed line) together with the estimated derivative (solid line) of the
original signal s(tn) filtered through an LPSM differentiation filter designed with N = 31
and polynomial order d = 3. The output of the filter is divided by Δt in order to adjust its
dimensions.
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The bottom-left graph shows the noisy signal yn. In the bottom-right graph, the output
(solid line) of the same differentiation filter applied to the noisy signal yn is compared with
the true noiseless differentiated signal ṡn, as well as to the differenced signal diff(y)/Δt.
The following MATLAB code illustrates the generation of the bottom-right graph:

T = 10; L = 50; Dt =T/L; w = 2*pi/T; sigma = 0.1;
t = 0:Dt:T;
s = 0.5 - 0.5*cos(w*t); % noiseless signal

seed=100; randn(’state’,seed);
y = s + sigma * randn(1,length(s)); % noisy signal

N = 31; d = 3; B1 = lpdiff(N,d,1); % first-order differentiation filter

sd = 0.5*w*sin(w*t); % derivative of s(t)
xd = lpfilt(B1,s)/Dt; % estimated derivative of s(t)
x1 = lpfilt(B1,y)/Dt; % estimated derivative from the noisy signal

yd = diff(y)/Dt; td = t(2:end); % differenced signal estimates the derivative

plot(t,sd,’--’, td,yd,’:’, t,x1,’-’);

The differencing operation amplifies the noise and renders the estimated derivative use-
less, whereas the local-polynomial derivative is fairly accurate. The filtering operation is
carried out by the function lpfilt, which is explained in the next section. ��

3.9 Filtering Implementations

In smoothing a length-L signal block yn, n = 0,1, . . . , L − 1, with a double-sided filter
hm, −M ≤m ≤M, the output signal x̂n is given by the convolutional form:

x̂n =
min(n,M)∑

m=max(−M,n−L+1)
hmyn−m , −M ≤ n ≤ L+M − 1 (3.9.1)

The length of x̂n is L+2M, and the first 2M and last 2M output samples correspond
to the input-on and input-off transients, while the central L − 2M points, M ≤ n ≤
L−M−1, correspond to the steady-state output computed from the steady-state version
of Eq. (3.9.1):

x̂n =
M∑

m=−M
hmyn−m , M ≤ n ≤ L−M − 1 (3.9.2)

The range of the output indexn and the limits of summation in (3.9.1) are determined
from the inequalities −M ≤m ≤M and 0 ≤ n−m ≤ L−1 that must be satisfied by the
indices of hm and yn−m. However, only the subrange {x̂n , 0 ≤ n ≤ L− 1} is of interest
since these output samples represent the smoothed values of the corresponding input
samples {yn , n = 0,1, . . . , L− 1}. This is illustrated in Fig. 3.9.1.

The first and last M samples in the subrange 0 ≤ n ≤ L − 1 are still parts of the
input-on and input-off transients. To clarify these remarks, we consider the case L = 8,
M = 2. The full output (3.9.1) may be represented by the usual convolution matrix of
the filter acting on the input signal block:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂−2

x̂−1

. . .
x̂0

x̂1

. . .
x̂2

x̂3

x̂4

x̂5

. . .
x̂6

x̂7

. . .
x̂8

x̂9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h−2 0 0 0 0 0 0 0
h−1 h−2 0 0 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
h0 h−1 h−2 0 0 0 0 0
h1 h0 h−1 h−2 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
h2 h1 h0 h−1 h−2 0 0 0
0 h2 h1 h0 h−1 h−2 0 0
0 0 h2 h1 h0 h−1 h−2 0
0 0 0 h2 h1 h0 h−1 h−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 h2 h1 h0 h−1

0 0 0 0 0 h2 h1 h0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 0 h2 h1

0 0 0 0 0 0 0 h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

. . .
y2

y3

y4

y5

. . .
y6

y7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 3.9.1 Input and output signal blocks from a double-sided filter.

This matrix can be constructed in MATLAB with the built-in function convmtx, or
with its sparse version convmat, or with the function datamat, the latter two being part
of the OSP toolbox. Defining h = [h−M, . . . , h0, . . . , hM]T, we have the syntax:

H = convmtx(h,L); % built-in convolution matrix

H = convmat(h,L); % sparse version of convmtx

H = datamat(h,L-1); % used extensively in Chap. 15
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Dropping the first and last two outputs, we obtain the outputs in the subrange 0 ≤ n ≤ 7:

x̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂0

x̂1

. . .
x̂2

x̂3

x̂4

x̂5

. . .
x̂6

x̂7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 h−1 h−2 0 0 0 0 0
h1 h0 h−1 h−2 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
h2 h1 h0 h−1 h−2 0 0 0
0 h2 h1 h0 h−1 h−2 0 0
0 0 h2 h1 h0 h−1 h−2 0
0 0 0 h2 h1 h0 h−1 h−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 h2 h1 h0 h−1

0 0 0 0 0 h2 h1 h0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

. . .
y2

y3

y4

y5

. . .
y6

y7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≡ Hy (3.9.3)

The first two and last two of these outputs are still transient and are being com-
puted with only a subset of the filter coefficients, and therefore, may not adequately
represent the corresponding smoothed values. This so-called “end-point problem” has
been addressed repeatedly with a number of solutions.

One method that is widely used by the government to process census and business-
cycle data (e.g., the X12-ARIMA method) is to backcast and forecast M estimated values
at the beginning and end of the length-L input block, so that yn is now defined over
−M ≤ n ≤ L− 1+M, and the desired output samples over the subrange 0 ≤ n ≤ L− 1
will be steady-state outputs being computed with the full filter.

Another method is to use different filters for the first M and last M outputs. For
example, one can take the outputs ŷn+m of the LPSM filters bm(k) to estimate the initial
and final M transients, while using the central filter b0(k) for the steady-state outputs.
Indeed, the first time index when one can use the steady-state filter b0(k) is n =M:

x̂M = ŷM =
M∑

k=−M
b0(k)yM+k

Instead of calculating the previous output x̂M−1 using the transient version of b0(k),

x̂M−1 =
M∑

k=−(M−1)
b0(k)yM−1+k

one could estimate x̂M−1 using ŷM+m with m = −1, that is, using b−1(k), and using
b−2(k), b−3(k), . . . , b−M(k) for the other initial M outputs:

x̂M−1 = ŷM−1 =
M∑

k=−M
b−1(k)yM+k

x̂M−2 = ŷM−2 =
M∑

k=−M
b−2(k)yM+k

...

x̂0 = ŷM−M =
M∑

k=−M
b−M(k)yM+k

(3.9.4)
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Similarly, one can use the filters bm(k) for m = 1,2, . . . ,M to calculate the last
M smoothed outputs, starting with the last steady-state output at n = L − 1 −M and
proceeding to the end n = L− 1:

x̂L−M = ŷL−1−M+1 =
M∑

k=−M
b1(k)yL−1−M+k

x̂L−M+1 = ŷL−1−M+2 =
M∑

k=−M
b2(k)yL−1−M+k

...

x̂L−1 = ŷL−1−M+M =
M∑

k=−M
bM(k)yL−1−M+k

(3.9.5)

The following example illustrates the computational steps for the input-on, steady,
and input-off output samples, where we denoted bm,k = bm(k) for simplicity:

x̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂0

x̂1

. . .
x̂2

x̂3

x̂4

x̂5

. . .
x̂6

x̂7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b−2,−2 b−2,−1 b−2,0 b−2,1 b−2,2 0 0 0
b−1,−2 b−1,−1 b−1,0 b−1,1 b−1,2 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b0,−2 b0,−1 b0,0 b0,1 b0,2 0 0 0
0 b0,−2 b0,−1 b0,0 b0,1 b0,2 0 0
0 0 b0,−2 b0,−1 b0,0 b0,1 b0,2 0
0 0 0 b0,−2 b0,−1 b0,0 b0,1 b0,2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 b1,−2 b1,−1 b1,0 b1,1 b1,2
0 0 0 b2,−2 b2,−1 b2,0 b2,1 b2,2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

. . .
y2

y3

y4

y5

. . .
y6

y7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Hy

In particular, for N = 5 and d = 2, the convolutional filtering matrix will be:

x̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂0

x̂1

. . .
x̂2

x̂3

x̂4

x̂5

. . .
x̂6

x̂7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

35

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

31 9 −3 −5 3 0 0 0
9 13 12 6 −5 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−3 12 17 12 −3 0 0 0

0 −3 12 17 12 −3 0 0
0 0 −3 12 17 12 −3 0
0 0 0 −3 12 17 12 −3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 −5 6 12 13 9
0 0 0 3 −5 −3 9 31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

. . .
y2

y3

y4

y5

. . .
y6

y7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Hy

with entries obtained from the matrix B of Eq. (3.2.16):

B = 1

35

⎡
⎢⎢⎢⎢⎢⎢⎣

31 9 −3 −5 3
9 13 12 6 −5

−3 12 17 12 −3
−5 6 12 13 9

3 −5 −3 9 31

⎤
⎥⎥⎥⎥⎥⎥⎦
= [b−2, b−1, b0, b1, b2]

More generally, given any smoothing (or differentiation) matrix B whose central col-
umn contains the (reversed) steady-state filter, and its other columns, the (reversed)
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filters to be used for the initial and final transients, one can uniquely construct the
corresponding L×L convolutional matrix H for filtering a length-L block of data y.

The procedure is straightforward. First construct the ordinary full (L+2M)×L con-
volution matrix for the central filter, then delete its first M and last M rows, and finally,
replace the first M and last M rows of the result by the transient filters.

The following MATLAB code segment illustrates the procedure, where the matrix B
is assumed to have size N×N, with N = 2M + 1, with the central column being the
reversed steady-state filter and the other columns, the reversed transient filters:

H = convmat(flip(B(:,M+1)), L); % ordinary (L+2M)×L convolution matrix

H = H(M+1:L+M,:); % extract the L×L convolution submatrix

H(1:M, 1:N) = B(:,1:M)’; % redefine upper-left M×L corner

H(L-M+1:L, L-N+1:L) = B(:,M+2:N)’; % redefine lower-right M×L corner

The function flip reverses the central column of B because convmat expects as
input the actual filter, not its reverse. The above steps have been incorporated into the
function lpmat with syntax:

H = lpmat(B,L); % local polynomial filter matrix of size L×L

Once the L×L matrix H is constructed, the actual filtering of a length-L input block
y is straightforward, that is, x̂ = Hy, and efficient because H is defined as sparse.

An alternative way to structure the filtering operation is to directly use Eqs. (3.9.4)
and (3.9.5) for the transient parts and the following equation for the steady part:

x̂n =
M∑

k=−M
b0(k)yn+k , M ≤ n ≤ L− 1−M (3.9.6)

The following MATLAB code illustrates this approach:

y = B(:,1:M)’ * x(1:N); % first M transient outputs

for n = M+1:L-M, % middle L−2M steady-state outputs

y = [y; B(:,M+1)’ * x(n-M:n+M)]; % filtered by central column of B
end
y = [y; B(:,M+2:N)’ * x(L-N+1:L)]; % last M transient outputs

These steps are implemented in the MATLAB function lpfilt2. A faster version
is the function lpfilt, which uses MATLAB’s built-in filtering functions. Thus, three
possible ways of computing the filtered output x̂ given a smoothing matrix B are as
follows (assuming that y is a length-L column vector):

x_hat = lpmat(B,L)*y; % use L×L convolution matrix constructed from B

x_hat = lpfilt2(B,y); % use directly the filtering equations (3.9.4)–(3.9.6)

x_hat = lpfilt(B,y); % fast version using the function filtdbl

The function lpfilt internally calls the function filtdbl, which uses the built-in
function conv to implement the FIR filtering by the steady-state double-sided central
filter. The following code segment shows the essential part of lpfilt:

x_hat = filtdbl(flip(B(:,M+1)), y); % filter with the central column of B
x_hat(1:M) = B(:,1:M)’ * y(1:N); % correct the first M transient outputs

x_hat(end-M+1:end) = B(:,M+2:N)’ * y(end-N+1:end); % correct the last M transient outputs
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where the function filtdbl has usage:

y = filtdbl(h,x); % filtering by double-sided FIR filter

The function filtdbl is essentially the ordinary convolution of the length-(2M+1)
filter h and the length-L signal x, with the first M and last M output points discarded.
The result is equivalent to that obtained using the convolution submatrix, as for example,
in Eq. (3.9.3). We note, in particular, that the B matrix that gives rise to (3.9.3) is:

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

h0 h1 h2 0 0
h−1 h0 h1 h2 0
h−2 h−1 h0 h1 h2

0 h−2 h−1 h0 h1

0 0 h−2 h−1 h0

⎤
⎥⎥⎥⎥⎥⎥⎦

and contains the reversed filter h in the central column and the transient subfilters in
the other columns.

There are other methods of handling the end-point problem, most notably Mus-
grave’s minimum-revision method that uses end-point asymmetric filters constructed
from a given central filter h. We will discuss it in detail in Sec. 9.8. Here, we note that
the output of this method is a B matrix, which can be passed directly into the filtering
function lpfilt. The MATLAB function minrev implements Musgrave’s method:

B = minrev(h,R); % Musgrave’s minimum revision asymmetric filters

where R is a scalar parameter to be explained in Sec. 9.8. The method is widely used in
the X-11 method of seasonal adjustment and trend extraction.

Example 3.9.1: Schiaparelli was the first one to systematically pose and solve the minimum-
NRR filtering problem. He gave the solution to many specific cases, such as filter lengths
N = 5–13, and polynomial orders d = 3,4.

Here, we reproduce the example from Schiaparelli’s paper on smoothing lunar obser-
vations, the signal yn being a measure of the moon’s influence on atmospheric effects.
Fig. 3.9.2 shows 30 noisy observations (one for each lunar day) and their smoothed ver-
sions produced with an LPSM filter of length N = 13 and polynomial order d = 3 on the
left, and d = 4 on the right (Schiaparelli’s case).

The central filters for the d = 3 and d = 4 cases are:

b0 = 1

143

[−11, 0, 9, 16, 21, 24, 25, 24, 21, 16, 9, 0, −11
]

b0 = 1

2431

[
110, −198, −135, 110, 390, 600, 677, 600, 390, 110, −135, −198, 110

]

The following program segment illustrates the computations:

Y = loadfile(’schiaparelli.dat’); % data file available in the OSP toolbox

n = Y(:,1); y = Y(:,2); % extract n and yn from the columns of Y

N=13; d=3; M=floor(N/2); % filter length and polynomial order

B = lpsm(N,d); % construct LPSM matrix B
x = lpfilt(B,y); % filter noisy observations

b0 = B(:,M+1); % middle column of B
x0 = filtdbl(b0,y); % filter with b0 only

plot(n,y,’.’, n,x,’-’, n,x0,’--’);
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Fig. 3.9.2 Schiaparelli’s smoothing example.

where the function loadfile extracts only the numerical data from the data file. In the
left graph, we have also added the result of filtering with the steady-state filter b0, which
illustrates the end-point problem. The two filtered curves differ only in their first 6 and
last 6 points. ��

Example 3.9.2: Global Warming Trends. Fig. 3.9.3 shows the annual average temperature anoma-
lies (i.e., the differences with respect to the average of the period 1961–90) over the pe-
riod 1856–2005 in the northern hemisphere. The data are available from the web site:
https://crudata.uea.ac.uk/cru/data/crutem2/.

Five trend extraction methods are compared. In the upper left, a local polynomial smooth-
ing filter was used of length N = 65 and polynomial order d = 3. The following MATLAB
code illustrates the generation of that graph:

Y = loadfile(’tavenh2v.dat’); % data file available in the OSP toolbox

n = Y(:,1); y = Y(:,14); % extract n and yn from Y

N = 65; d = 3; B = lpsm(N,d); % design the LPSM matrix B
x = lpfilt(B,y); % smooth the data vector y

figure; plot(n,y,’:’, n,x,’-’);

In the upper-right graph, a minimum-roughness, or minimum-Rs, Henderson filter was
used with length N = 65, polynomial order d = 3, and smoothing order s = 2. Such filters
are discussed in Sec. 4.2. The resulting trend is noticeably smoother than that of the LPSM
filter on the upper-left.

The middle-left graph uses the SVD signal enhancement method, described in Chap. 15,
with embedding order M = 10 and rank r = 2, with K = 40 iterations. The middle-
right graph uses the Whittaker-Henderson smoothing method, discussed in Sec. 8.1, with
smoothing order s = 2 and smoothing parameter λ = 104.

The lower left and right graphs use the Whittaker-Henderson method with the L1 criterion
with differentiation orders s = 2 and s = 3 and smoothing parameterλ = 10, implemented
with the CVX package.† The s = 2 case represents the smoothed signal in piece-wise linear
form, and the s = 3 case, in piece-wise parabolic form. This is further discussed in Sec. 8.7.

†http://cvxr.com/cvx/
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Fig. 3.9.3 Temperature trends determined by five methods.

The following MATLAB code segment illustrates the computation of the corresponding
smoothed signals for these four methods:

N=65; d=3; s=2; x = lpfilt(lprs(N,d,s), y); % minimum-Rs Henderson filter

M=10; r=2; K=40; x = svdenh(y,M,r,K); % SVD enhancement method

la = 10000; s=2; x = whsm(y,la,s); % Whittaker-Henderson smoothing

s = 2; la = 10; N = length(y); % Whittaker-Henderson with L1

D = diff(eye(N),s); % s-fold differentiation matrix
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cvx_begin % use CVX package

variable x(N)
minimize( sum_square(y-x) + la * norm(D*x,1) )

cvx_end

All methods adequately handle the end-point problem. Repeating the same filtering oper-
ation several times results in even smoother trend signals. For example, Fig. 3.9.4 shows
the result of repeating the filtering operation two additional times. The following MATLAB
code illustrates the generation of the left graph:

N = 65; d=3; B = lpsm(N,d); x = y;
for i=1:3, x = lpfilt(B,x); end
figure; plot(n,y,’:’, n,x,’-’);
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Fig. 3.9.4 Filtering repeated two additional times.

For the steady-state filtersB0(ω), filtering a total ofK times is equivalent to an overall filter[
B0(ω)

]K
, an operation which makes a flat passband even flatter and a small stopband

even smaller. The properties of iterated smoothing by local polynomial filters has been
studied by De Forest, Schoenberg, and Greville [67,83,86].

Fig. 3.9.5 shows the estimated derivatives (solid line) of the temperature signal obtained
by filtering it with the LPSM derivative filters, and compares them with the ordinary differ-
encing operation, diff(y), in MATLAB notation. Clearly, differencing is simply too noisy
to give any usable results.

The upper two graphs compute the first derivative of the input by ˙̂x = lpfilt(B1, y) with
the differentiator matrix obtained from B1 = lpdiff(N,d, i) with N = 65 and i = 1, and
with d = 1 in the upper-left, and d = 2 in the upper-right graph. During the two periods
of almost linear growth from 1910–1940 and 1970-2005, the derivative signal becomes an
almost flat positive constant (i.e., the slope). During the other periods, the temperature
signal has a very slow upward or downward trend and the derivative signal is almost zero.

We note the flat end-points in the the case d = 1, which are due to the fact that the
asymmetric derivative filters are the same at the end-points ranges as shown in the first
equation of (3.8.9). The case d = 2 estimates the end-point derivatives better and possibly
indicates a faster than linear growth in recent years.
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The lower-left graph uses a minimum-Rs derivative filter with N = 65, d = 2, and smooth-
ness order s = 3, resulting in a noticeably smoother estimated derivative than the LPSM
case (theW input in lpdiff is discussed in the next section.) Finally, the lower-right graph
shows the second derivative computed with the filter B2 = lpdiff(N,d, i) with i = 2, and
compares it with the second difference signal, diff

(
diff(y)

)
, which is even more noisy than

the first difference. The following MATLAB code illustrates the computations:

d=1; i=1; B1 = lpdiff(N,d,i); % LPSM differentiation filters

plot(n, lpfilt(B1,y), n(2:end), diff(y),’:’); % upper-left graph

d=2; i=1; B1 = lpdiff(N,d,i);
plot(n, lpfilt(B1,y), n(2:end), diff(y),’:’); % upper-right graph

s=3; W = diag(hend(N,s)); % Henderson weighting matrix

d=2; i=1; B1 = lpdiff(N,d,i,W); % LPRS differentiation filters

plot(n, lpfilt(B1,y), n(2:end), diff(y),’:’); % lower-left graph

d=2; i=2; B2 = lpdiff(N,d,i); % second derivative filters

plot(n, lpfilt(B2,y), n(3:end), diff(y,2),’:’); % lower-right graph
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Fig. 3.9.5 Differentiated temperature signal.

The second derivative is essentially zero, being consistent with piecewise linear trends.
Derivative signals can also be estimated for the SVD and Whittaker-Henderson methods.
Since the outputs x̂n of these methods are smooth signals, the corresponding derivatives
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can be simply computed as the difference signals, diff(x̂n), with comparable results as the
local polynomial methods. ��


