Applied Optimum
Signal Processing

Sophocles J. Orfanidis

http://www.ece.rutgers.edu/~orfanidi/aosp

2018

Applied Optimum
Signal Processing

Applied Optimum
Signal Processing

A MATLAB-based Introduction

Sophocles J. Orfanidis

Rutgers University

2018

http://www.ece.rutgers.edu/~orfanidi/aosp

To my parents
John and Clio Orfanidis

And To
Monica, John, Anna, and Owen

Copyright © 1996-2018 by Sophocles J. Orfanidis
Copyright © 1988 by McGraw-Hill Publishing Company

This book is an updated and enlarged 2018 edition of Optimum Signal Processing, which
was published in 2007 as a republication of the second edition published by McGraw-Hill
Publishing Company, New York, NY, in 1988 (ISBN 0-07-047794-9), and also published
earlier by Macmillan, Inc., New York, NY, 1988 (ISBN 0-02-389380-X). All copyrights to
this work reverted to Sophocles J. Orfanidis in 1996.

All rights reserved. No parts of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopy-
ing, recording or otherwise, without the prior written permission of the author.

Software tools:
MATLAB® is a registered trademark of The MathWorks, Inc.

OSP Toolbox - © S. J. Orfanidis 2018

CVX software by Michael Grant and Stephen Boyd, CVX: Matlab software for disciplined
convex programming, version 2.0 beta, September 2013, http://cvxr.com/cvx.

Vi
Contents
4

1 Review of Random Signals 1

1.1 Probability Density, Mean, Variance, 1

1.2 Chebyshev’s Inequality, 3

1.3 Joint and Conditional Densities, and Bayes’ Rule, 4 5

1.4 Correlation Canceling and Optimum Estimation, 8

1.5 Regression Lemma, 12

1.6 Gram-Schmidt Orthogonalization, 13

1.7 Partial Correlations, 22

1.8 Forward/Backward Prediction and LU/UL Factorization, 27

1.9 Random Signals, 44

1.10 Power Spectrum and Its Interpretation, 46

1.11 Sample Autocorrelation and the Periodogram, 48

1.12 Filtering of Stationary Random Signals, 51

1.13 Random Signal Models and Their Uses, 56 6

1.14 Filter Model of First Order Autoregressive Process, 63

1.15 Stability and Stationarity, 65

1.16 Parameter Estimation, 66

1.17 Linear Prediction and Signal Modeling, 70

1.18 Cramér-Rao Bound and Maximum Likelihood, 71

1.19 Minimum-Phase Signals and Filters, 77

1.20 Spectral Factorization Theorem, 82

1.21 Minimum-Phase Property of the Prediction-Error Filter, 83

1.22 Computer Project - Adaptive AR(1) and AR(2) Models, 86

1.23 Problems, 91
2 Signal Extraction Basics 104

2.1 Introduction, 104

2.2 Noise Reduction and Signal Enhancement, 105

2.3 First-Order Exponential Smoother, 109

2.4 FIR Averaging Filters, 112

2.5 Problems, 116
3 Local Polynomial Filters 118

3.1 Introduction, 118

3.2 Local Polynomial Fitting, 119

3.3 Exact Design Equations, 128

3.4
3.5
3.6
3.7
3.8
3.9

Geometric Interpretation, 133

Orthogonal Polynomial Bases, 134

Polynomial Predictive and Interpolation Filters, 135
Minimum Variance Filters, 142

Predictive Differentiation Filters, 148

Filtering Implementations, 153

Minimum Roughness Filters 164

4.1
4.2
4.3
4.4
4.5
4.6

Weighted Local Polynomial Filters, 164

Henderson Filters, 169

Hahn Orthogonal Polynomials, 179

Maximally-Flat Filters and Krawtchouk Polynomials, 187
Missing Data and Outliers, 191

Problems, 196

Local Polynomial Modeling 197

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Weighted Local Polynomial Modeling, 197
Bandwidth Selection, 204

Local Polynomial Interpolation, 206
Variable Bandwidth, 211

Repeated Observations, 217

Loess Smoothing, 218

Problems, 220

Exponential Smoothing 221

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23

Mean Tracking, 221

Forecasting and State-Space Models, 230
Higher-Order Polynomial Smoothing Filters, 231
Linear Trend FIR Filters, 233

Higher-Order Exponential Smoothing, 235
Steady-State Exponential Smoothing, 241

Smoothing Parameter Selection, 247

Single, Double, and Triple Exponential Smoothing, 252
Exponential Smoothing and Tukey’s Twicing Operation, 254
Twicing and Zero-Lag Filters, 255

Basis Transformations and EMA Initialization, 259
Holt’s Exponential Smoothing, 264

State-Space Models for Holt’s Method, 265

Filtering Methods in Financial Market Trading, 267
Moving Average Filters - SMA, WMA, TMA, EMA, 267
Predictive Moving Average Filters, 270

Single, Double, and Triple EMA Indicators, 273
Linear Regression and R-Square Indicators, 275
Initialization Schemes, 280

Butterworth Moving Average Filters, 285

Moving Average Filters with Reduced Lag, 288
Envelopes, Bands, and Channels, 294

Momentum, Oscillators, and Other Indicators, 303

CONTENTS

CONTENTS

10

6.24
6.25

MATLAB Functions, 309
Problems, 311

Smoothing Splines 315

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

Whittaker-Henderson Smoothing 341

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Interpolation versus Smoothing, 315
Variational Approach, 316

Natural Cubic Smoothing Splines, 319
Optimality of Natural Splines, 325
Generalized Cross Validation, 327
Repeated Observations, 329
Equivalent Filter, 329

Stochastic Model, 331

Computational Aspects, 335
Problems, 340

Whittaker-Henderson Smoothing Methods, 341

Regularization Filters, 346
Hodrick-Prescott Filters, 348
Poles and Impulse Response, 351
Wiener Filter Interpretation, 352

Regularization and Kernel Machines, 353
Sparse Whittaker-Henderson Methods, 358
Computer Project - US GDP Macroeconomic Data, 363

Problems, 366

Periodic Signal Extraction 368

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10

Notch and Comb Filters for Periodic Signals, 369
Notch and Comb Filters with Fractional Delay, 375

Signal Averaging, 385

Ideal Seasonal Decomposition Filters, 391

Classical Seasonal Decomposition, 393
Seasonal Moving-Average Filters, 400
Census X-11 Decomposition Filters, 407
Musgrave Asymmetric Filters, 412

Seasonal Whittaker-Henderson Decomposition, 417

Problems, 424

Wavelets 425

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

Multiresolution Analysis, 425
Dilation Equations, 430

Wavelet Filter Properties, 436
Multiresolution and Filter Banks, 441
Discrete Wavelet Transform, 446
Multiresolution Decomposition, 458
Wavelet Denoising, 459

Undecimated Wavelet Transform, 463

vii

viil

11

12

13

CONTENTS

10.9 MATLAB Functions, 472
10.10 Problems, 473

Wiener Filtering 475

11.1 Linear and Nonlinear Estimation of Signals, 476

11.2 Orthogonality and Normal Equations, 480

11.3 Stationary Wiener Filter, 484

11.4 Construction of the Wiener Filter by Prewhitening, 487

11.5 Wiener Filter Example, 488

11.6 Wiener Filter as Kalman Filter, 490

11.7 Construction of the Wiener Filter by the Gapped Function, 495
11.8 Construction of the Wiener Filter by Covariance Factorization, 497
11.9 The Kalman Filter, 500

11.10 Problems, 504

Linear Prediction 509

12.1 Pure Prediction and Signal Modeling, 509

12.2 Autoregressive Models, 513

12.3 Linear Prediction and the Levinson Recursion, 514

12.4 Levinson’s Algorithm in Matrix Form, 524

12.5 Autocorrelation Sequence Extensions, 528

12.6 Split Levinson Algorithm, 532

12.7 Analysis and Synthesis Lattice Filters, 535

12.8 Alternative Proof of the Minimum-Phase Property, 539

12.9 Orthogonality of Backward Prediction Errors—Cholesky Factorization, 542
12.10 Schur Algorithm, 547

12.11 Lattice Realizations of FIR Wiener Filters, 553

12.12 Autocorrelation, Covariance, and Burg’s Methods, 561

12.13 Dynamic Predictive Deconvolution—Waves in Layered Media, 568
12.14 Least-Squares Waveshaping and Spiking Filters, 585

12.15 Computer Project - ARIMA Modeling, 594

12.16 Problems, 599

Kalman Filtering 609

13.1 State-Space Models, 609

13.2 Kalman Filter, 614

13.3 Derivation, 616

13.4 Forecasting and Missing Observations, 624

13.5 Kalman Filter with Deterministic Inputs, 625
13.6 Time-Invariant Models, 626

13.7 Steady-State Kalman Filters, 631

13.8 Continuous-Time Kalman Filter, 641

13.9 Equivalence of Kalman and Wiener Filtering, 645
13.10 Fixed-Interval Smoothing, 650

13.11 Square-Root Algorithms, 657

13.12 Maximum Likelihood Parameter Estimation, 663
13.13 Parameter Estimation with the EM Algorithm, 667

CONTENTS

14

15

Spectrum Estimation and Array Processing 678

14.1 Spectrum Estimation by Autoregressive Modeling, 678
14.2 Spectral Analysis of Sinusoids in Noise, 680

14.3 Superresolution Array Processing, 694

14.4 Eigenvector Methods, 706

14.5 MUSIC method, 709

14.6 Minimum-Norm Method, 713

14.7 Reduced-Order Method, 715

14.8 Maximum Likelihood Method, 719

14.9 ESPRIT Method, 721

14.10 Spatial Smoothing, 723

14.11 Asymptotic Properties, 726

14.12 Computer Project - LCMV Beamforming and GSC, 735
14.13 Computer Project - Markowitz Portfolio Theory, 746
14.14 Problems, 757

SVD and Signal Processing 765

15.1 Vector and Matrix Norms, 765

15.2 Subspaces, Bases, and Projections, 766
15.3 The Fundamental Theorem of Linear Algebra, 770
15.4 Solving Linear Equations, 770

15.5 The Singular Value Decomposition, 776
15.6 Moore-Penrose Pseudoinverse, 781

15.7 Least-Squares Problems and the SVD, 783
15.8 Condition Number, 785

15.9 Reduced-Rank Approximation, 786

15.10 Regularization of Ill-Conditioned Problems, 792
15.11 Sparse Regularization, 793

15.12 SVD and Signal Processing, 805

15.13 Least-Squares Linear Prediction, 810
15.14 MA and ARMA modeling, 812

15.15 Karhunen-Loéve Transform, 819

15.16 Principal Component Analysis, 820

15.17 SVD Signal Enhancement, 825

15.18 Structured Matrix Approximations, 830
15.19 Matrix Pencil Methods, 833

15.20 QR Factorization, 837

15.21 Canonical Correlation Analysis, 840
15.22 Problems, 846

16 Adaptive Filters 850

16.1 Adaptive Implementation of Wiener Filters, 850
16.2 Correlation Canceler Loop (CCL), 853

16.3 The Widrow-Hoff LMS Adaptation Algorithm, 855
16.4 Adaptive Linear Combiner, 859

16.5 Adaptive FIR Wiener Filter, 862

16.6 Speed of Convergence, 865

16.7 Adaptive Channel Equalizers, 868

16.8 Adaptive Echo Cancelers, 869

16.9 Adaptive Noise Canceling, 870

16.10 Adaptive Line Enhancer, 872

16.11 Adaptive Linear Prediction, 874

16.12 Adaptive Implementation of Pisarenko’s Method, 876
16.13 Gradient Adaptive Lattice Filters, 881

16.14 Adaptive Gram-Schmidt Preprocessors, 889

16.15 Rank-One Modification of Covariance Matrices, 893
16.16 RLS Adaptive Filters, 904

16.17 Fast RLS Filters, 907

16.18 RLS Lattice Filters, 911

16.19 Computer Project - Adaptive Wiener Filters, 916
16.20 Problems, 918

17 Appendices 923

A Matrix Inversion Lemma, 923
B MATLAB Functions, 924

References 930

Index 985

1

Review of Random Signals

1.1 Probability Density, Mean, Variance

In this section, we present a short review of probability concepts. It is assumed that the
reader has some familiarity with the subject on the level of Papoulis’ book [1].

Let x be a random variable having probability density p (x). Its mean, variance, and
second moment are defined by the expectation values

)

m=E[x] = [Xxp (x) dx = mean

)

0% = Var(x)= E[(x — m)?] =J. (x —m)?p(x) dx = variance

E[x?] = J x?p (x) dx = second moment

These quantities are known as second-order statistics of the random variable x. Their
importance is linked with the fact that most optimal filter design criteria require knowl-
edge only of the second-order statistics and do not require more detailed knowledge,
such as probability densities. It is necessary, then, to be able to extract such quantities

from the actual measured data.
The probability that the random variable x will assume a value within an interval of

values [a, b] is given by

px)

b
Probla < x < b]= J p (x) dx = shaded area
a

The probability density is always normalized to unity by

'[io p(x)dx =1

2 1. Review of Random Signals

which states that the probability of x taking a value somewhere within its range of
variation is unity, that is, certainty. This property also implies

02 =E[(x—m)?] = E[x*]-m?

Example 1.1.1: Gaussian, or normal, distribution

p(x)
p(x)= 1 exp[—(x —m)?/207]
\2TTOo
X
Example 1.1.2: Uniform distribution
P)
1/0
1/Q, for-Q/2<x=<Q/2
p(x)= i
0, otherwise
X
-0 0 02
Its variance is 02 = Q?/12. O

Both the gaussian and the uniform distributions will prove to be important examples.
In typical signal processing problems of designing filters to remove or separate noise
from signal, it is often assumed that the noise interference is gaussian. This assumption
is justified on the grounds of the central limit theorem, provided that the noise arises
from many different noise sources acting independently of each other.

The uniform distribution is also important. In digital signal processing applications.
the quantization error arising from the signal quantization in the A/D converters, or the
roundoff error arising from the finite accuracy of the internal arithmetic operations in
digital filters, can often be assumed to be uniformly distributed.

Every computer provides system routines for the generation of random numbers.
For example, the routines RANDU and GAUSS of the IBM Scientific Subroutine Package
generate uniformly distributed random numbers over the interval [0, 1], and gaussian-
distributed numbers, respectively. GAUSS calls RANDU twelve times, thus generating
twelve independent uniformly distributed random numbers X1, Xy, ..., X12. Then, their
sumXx = X1 +Xp + - - - +X12, will be approximately gaussian, as guaranteed by the central
limit theorem. It is interesting to note that the variance of x is unity, as it follows from
the fact that the variance of each x;, is 1/12:

Or =03 +05,+ 405, = 112 112 ST

The mean of x is 12/2 = 6. By shifting and scaling x, one can obtain a gaussian-

distributed random number of any desired mean and variance.

1.2. Chebyshev’s Inequality 3

1.2 Chebyshev’s Inequality

The variance 02 of a random variable x is a measure of the spread of the x-values
about their mean. This intuitive interpretation of the variance is a direct consequence
of Chebyshev’s inequality, which states that the x-values tend to cluster about their
mean in the sense that the probability of a value not occurring in the near vicinity of the
mean is small; and it is smaller the smaller the variance.

More precisely, for any probability density p (x) and any A > 0, the probability that
x will fall outside the interval of values [m — A, m + A] is bounded by 02/A2. Thus, for
fixed A, as the variance o2 becomes smaller, the x-values tend to cluster more narrowly
about the mean. In the extreme limiting case of a deterministic variable x = m, the
density becomes infinitely narrow, p (x) = 6 (x — m), and has zero variance.

()
0-2
PI'Ob[lX* ml = A] =< E

(Chebyshev’s Inequality)

X
m—-A m m+A
Chebyshev’s inequality is especially important in proving asymptotic convergence
results for sample estimates of parameters. For example, consider N independent sam-
ples {Xx1,X2,...,xy} drawn from a gaussian probability distribution of mean m and
variance o2, The sample estimate of the mean is

N 1
M=N(X1+X2+"'+XN) (1.2.1)

Being a sum of N gaussian random variables, 1 will itself be a gaussian random
variable. Its probability density is completely determined by the corresponding mean
and variance. These are found as follows.

E[m]= %(E[x1]+E[x2]+---+E[xN]) = %(m+m+---+m)=m

Therefore, m is an unbiased estimator of m. However, the goodness of m as an es-
timator must be judged by how small its variance is—the smaller the better, by Cheby-
shev’s inequality. By the assumption of independence, we have

2
var(m)=E[(i - m)?] = %(O’%l + 0%, 4+ 08, = %(NO’Z) = % (1.2.2)

Thus, m is also a consistent estimator of m in the sense that its variance tends to
zero as the number of samples N increases. The values of 1 will tend to cluster more
and more closely about the true value of m as N becomes larger. Chebyshev’s inequality
implies that the probability of #1 falling outside any fixed neighborhood of m will tend
to zero for large N. Equivalently, 1 will converge to m with probability one. This can
also be seen from the probability density of 1, which is the gaussian

N N1/2 N)
P = o iy exp[— 5 5 (i —m)*]

4 1. Review of Random Signals

In the limit of large N, this density tends to the infinitely narrow delta function
density p(m)= 6 (m — m). In addition to the sample mean, we may also compute
sample estimates of the variance o2 by

N
> (xi—m)? (1.2.3)

It is easily shown [2,3] that this estimator is slightly biased. But for large N, it is
asymptotically unbiased and consistent as can be seen from its mean and variance:
_N-1,

A2 A2\ _
E[6°] N o°, var(o°)= N2

-1
204

(1.2.4)

An unbiased and consistent estimator of ¢ is the standard deviation defined by

1y
e E i — 11)? 1.2.
S N_]‘izl(XI m) (5)

It has E[s?]= 0?2 and var(s?)= 20*/(N — 1) . In addition to the requirements of
asymptotic unbiasedness and consistency, a good estimator of a parameter must also
be judged in terms of its efficiency [2,3], which determines how closely the estimator
meets its Cramér-Rao bound. This is discussed in Sec. 1.18. We will see there that the es-
timators (1.2.1) and (1.2.3)—being maximum likelihood estimators—are asymptotically
efficient.

1.3 Joint and Conditional Densities, and Bayes’ Rule

Next, we discuss random vectors. A pair of two different random variables x = (x1,X2)
may be thought of as a vector-valued random variable. Its statistical description is more
complicated than that of a single variable and requires knowledge of the joint probability
density p(x1,x2). The two random variables may or may not have any dependence on
each other. It is possible, for example, that if X, assumes a particular value, then this
fact may influence, or restrict, the possible values that x; can then assume.

A quantity that provides a measure for the degree of dependence of the two variables
on each other is the conditional density p (x; |x2) of x; given x»; and p (x2|x;) of X, given
X1. These are related by Bayes’ rule

p(x1,x2) = p(x11x2) p(x2) = p(x2]x1) p (x1)
More generally, Bayes’ rule for two events A and B is
p(A,B)=p(A|B)p(B)=p(B|A)p(A)

The two random variables x; and x, are independent of each other if they do not
condition each other in any way, that is, if

p(xilx2)=p(x1) or p(xz21x1)=p(x2)

1.3. Joint and Conditional Densities, and Bayes’ Rule 5

In other words, the occurrence of x, does not in any way influence the variable x;.
When two random variables are independent, their joint density factors into the product
of single (marginal) densities:

p(X1,Xx2)= p(x1)p(x2)

The converse is also true. The correlation between x; and X, is defined by the expectation
value

E[xi1x2]= ﬂ X1X2p (X1, X2) dx1dXx»
When x; and x; are independent, the correlation also factors as E[x;x>]= E[Xx1]E[Xx>].
Example 1.3.1: Suppose x; is related to x, by

X1 =5X2 +V

where Vv is a zero-mean, unit-variance, gaussian random variable assumed to be indepen-
dent of x,. Determine the conditional density and conditional mean of x; given X,.

Solution: The randomness of x; arises both from the randomness of x, and the randomness of
v. But if x, takes on a particular value, then the randomness of x; will arise only from v.
Identifying elemental probabilities we have

. 1 .
p(xilx2)dx; = p(v)dv = (211')’”2exp(—§v3)dv
But, dx; = dv and v = X; — 5x». Therefore,
-1/2 1 2
p(xilx2)= (2m0) " Pexp[—5 (xi = 5x2)°]
The conditional mean is the mean of x; with respect to the density p (x;]x2). It is evident

from the above gaussian expression that the conditional mean is E[x; |x2]= 5x,. This can
also be found directly as follows.

E[x11x2]1= E[(5X%2 + V) |X2] = 5X2 + E[VIX2]= 5x2

where we used the independence of v and X, to replace the conditional mean of v with its
unconditional mean, which was given to be zero, that is, E[V|x2]= E[v]= 0. O

The concept of a random vector generalizes to any dimension. A vector of N random
variables

X1
X2
X =
XN
requires knowledge of the joint density
p (%)= p(x1,X2,...,XN) (1.3.1)

6 1. Review of Random Signals

for its complete statistical description. The second-order statistics of x are its mean, its
correlation matrix, and its covariance matrix, defined by

m=E[x], R=E[xx"], X=E[(x-m)(x-m)T] (1.3.2)

where the superscript T denotes transposition, and the expectation operations are de-
fined in terms of the joint density (1.3.1); for example,

E[x]= pr(x) dNx

where dVx = dx;dx; - - - dxy denotes the corresponding N-dimensional volume ele-
ment. The ijth matrix element of the correlation matrix R is the correlation between
the ith random variable x; with the jth random variable x;, that is, Rj; = E[x;x;] . It is
easily shown that the covariance and correlation matrices are related by

> =R-mm’

When the mean is zero, R and X coincide. Both R and X are symmetric positive semi-
definite matrices.

Example 1.3.2: The probability density of a gaussian random vector X = [X;,X2,...,Xy]7 is
completely specified by its mean m and covariance matrix 3, that is,
1

p(x)= exp[—%(x—m)TZ’l(x—m)]

(2mT)N/2 (det 3) /2

Example 1.3.3: Under alinear transformation, a gaussian random vector remains gaussian. Let
x be a gaussian random vector of dimension N, mean my, and covariance . Show that
the linearly transformed vector

& =Bx where B is a nonsingular N XN matrix
is gaussian-distributed with mean and covariance given by
mg = Bmy, 3g=BXBT (1.3.3)

The relationships (1.3.3) are valid also for non-gaussian random vectors. They are easily
derived as follows:

E[E]= E[Bx]=BE[x], E[EE"1=E[Bx(Bx)T]=BE[xx"]BT

The probability density pg (§) is related to the density px(x) by the requirement that,
under the above change of variables, they both yield the same elemental probabilities:

pe (8) dVE = px(x) d¥x (1.3.4)
Since the Jacobian of the transformation from x to & is dVE = | detB|dNx, we obtain
pe (§) = px(x) /| det B|. Noting the invariance of the quadratic form

(E-mg) 2" (§ —mg) = (x—my)"BT(BZBT) 'B(x — my)
= (x-my) S (x —my)

and that detXg = det (BZxBT)= (det B)2det X, we obtain

1

1 —
OV etz L5 € - me) 2! (€ - mp)]

pe(8) =

1.3. Joint and Conditional Densities, and Bayes’ Rule 7

Example 1.3.4: Consider two zero-mean random vectors x and y of dimensions N and M, re-
spectively. Show that if they are uncorrelated and jointly gaussian, then they are also
independent of each other. That x and y are jointly gaussian means that the (N+M)-

dimensional joint vector z = is zero-mean and gaussian, that is,

1 1 .4
(277) (N+M)/2 (det R,,) /2 eXp[7§Z R;.7]

p(z)=

where the correlation (covariance) matrix R, is
X E[xx"] E [XYT] Rix Ry
R, =E Xyl | = = 4
z Hy][y]] [E[yxf] Elyy'] Ry Ry

If x and y are uncorrelated, that is, Ry, = E[xy”]= 0, then the matrix R, becomes block
diagonal and the quadratic form of the joint vector becomes the sum of the individual
quadratic forms:

TRz = [xT,y7] Ry 0 X | _gTR-! TR-1
Z Ky;z= 11X,y 0 R;)} y =X KXty wY

Since Ry, = 0 also implies that detR,, = (detRyxy) (detRy,), it follows that the joint
density p(z) = p(x,y) factors into the marginal densities:

px,y)=pxp(y)
which shows the independence of x and y.

Example 1.3.5: Given a random vector x with mean m and covariance X, show that the best
choice of a deterministic vector X which minimizes the quantity

Ree = E[ee’]= minimum, wheree =x — %,
is the mean m itself, that is, X = m. Also show that for this optimal choice of X, the actual

minimum value of the quantity R, is the covariance X. This property is easily shown by
working with the deviation of X from the mean m, that is, let

X=m+A
Then, the quantity R., becomes
Ree =Elee’ = E[(x-m—-A)(x-m—A)T]
=E[x-m)(x-m)T] —AE[xT —m"]-E[x —m] A + AAT
=3 +AAT
where we used the fact that E[x—m] = E[x]—m = 0. Since the matrix AAT is nonnegative-

definite, it follows that R, will be minimized when A = 0, and in this case the minimum
value will be RN = 3.

Since R, is a matrix, the sense in which it is minimized must be clarified. The statement
that R, is greater than RT4" means that the difference R,, — RTi" is a positive semi-definite
(and symmetric) matrix, and therefore we have for the scalar quantities: a’ Reea > aTRre“eina
for any vector a. m]

8 1. Review of Random Signals

1.4 Correlation Canceling and Optimum Estimation

The concept of correlation canceling plays a central role in the development of many
optimum signal processing algorithms, because a correlation canceler is also the best
linear processor for estimating one signal from another.

Consider two zero-mean random vectors x and y of dimensions N and M, respec-
tively. If x and y are correlated with each other in the sense that Ry, = E [xyT]+# 0, then
we may remove such correlations by means of a linear transformation of the form

e=x- Hy (1.4.1)

where the N XM matrix H must be suitably chosen such that the new pair of vectors e,y
are no longer correlated with each other, that is, we require

Rey = E[ey’]=0 (1.4.2)
Using Eq. (1.4.1), we obtain
Rey = Eley" 1= E[(x - Hy)y"] = E[xy"1-HE[yy" 1= Ry, — HRyy

Then, the condition R, = 0 immediately implies that

H =RyRy) = Elxy"]E[yy"]™! (1.4.3)

Using R,y = 0, the covariance matrix of the resulting vector e is easily found to be
Ree = E[ee]= E[e(x” —yTH)] = Rex — ReyH' = Ry = E[(x — Hy)x"], or,

Ree = Ryx — HRyx = Ryx — RxyRyy Ryx (1.4.4)

The vector
% = Hy = RyR;)y = Elxy" 1E[yy" 1"y (1.4.5)

obtained by linearly processing the vector y by the matrix H is called the linear regres-
sion, or orthogonal projection, of x on the vector y. In a sense to be made precise later,
X also represents the best “copy,” or estimate, of x that can be made on the basis of the
vector y. Thus, the vector e = x — Hy = x — X may be thought of as the estimation error.

Actually, it is better to think of X = Hy not as an estimate of x but rather as an
estimate of that part of x which is correlated with y. Indeed, suppose that x consists of
two parts

X=X +Xp

such that x; is correlated with y, but x; is not, that is, Rx,y = E[x2yT]= 0. Then,
ny = E[XYT] = E[(x1 + XZ)YT] = Rxly + szy = Rxly
and therefore,

% = RyR;)y = RuyRy by = %

1.4. Correlation Canceling and Optimum Estimation 9
+ A A
X e=x-x=(x-X;)+x,
y H A A
\—1 X ='x1 = Hy

Fig. 1.4.1 Correlation canceler.

The vectore = X —X = X; +X» — X = (X1 — X1) +X» consists of the estimation error
(x1 —X;) of the x;-part plus the x,-part. Both of these terms are separately uncorrelated
from y. These operations are summarized in block diagram form in Fig. 1.4.1.

The most important feature of this arrangement is the correlation cancellation prop-
erty which may be summarized as follows: If x has a part x; which is correlated with y,
then this part will tend to be canceled as much as possible from the output e. The linear
processor H accomplishes this by converting y into the best possible copy X, of x; and
then proceeds to cancel it from the output. The output vector e is no longer correlated
with y. The part X, of x which is uncorrelated with y remains entirely unaffected. It
cannot be estimated in terms of y.

The correlation canceler may also be thought of as an optimal signal separator. In-
deed, the output of the processor H is essentially the x; component of x, whereas the
output e is essentially the x, component. The separation of x into x; and x» is optimal
in the sense that the x; component of x is removed as much as possible from e.

Next, we discuss the best linear estimator property of the correlation canceler. The
choice H = nyR;)}, which guarantees correlation cancellation, is also the choice that
gives the best estimate of x as a linear function of y in the form X = Hy. It is the best
estimate in the sense that it produces the lowest mean-square estimation error. To see
this, express the covariance matrix of the estimation error in terms of H, as follows:

Ree = E[ee’ 1= E[(x — Hy) (X" —y"HT)] = Rxx — HRyx — RxyH' + HR,yHT (1.4.6)
Minimizing this expression with respect to H yields the optimum choice of H:
Hopt = RyR;,,
with the minimum value for R.. given by:
RU™ = Rux — Ry R}y Ryx

Any other value will result in a larger value for R... An alternative way to see this is
to consider a deviation AH of H from its optimal value, that is, in (1.4.5) replace H by

H =Hgp + AH = nyR;)} +AH
Then Eq. (1.4.6) may be expressed in terms of AH as follows:
Ree = RI™ + AHR,y AHT

Since Ry is positive definite, the second term always represents a nonnegative con-
tribution above the minimum value RIU", so that (R, — RTI") is positive semi-definite.
In summary, there are three useful ways to think of the correlation canceler:

10 1. Review of Random Signals

1. Optimal estimator of x from vy.
2. Optimal canceler of that part of x which is correlated with y.
3. Optimal signal separator

The point of view is determined by the application. The first view is typified by
Kalman filtering, channel equalization, and linear prediction applications. The second
view is taken in echo canceling, noise canceling, and sidelobe canceling applications.
The third view is useful in the adaptive line enhancer, which is a method of adaptively
separating a signal into its broadband and narrowband components. All of these appli-
cations are considered later on.

Example 1.4.1: If x and y are jointly gaussian, show that the linear estimate X = Hy is also
the conditional mean E[x|y] of the vector x given the vector y. The conditional mean is
defined in terms of the conditional density p (x|y) of x given y as follows:

Elxlyl= jxp(xw) dVx

Instead of computing this integral, we will use the results of Examples 1.3.3 and 1.3.4.
The transformation from the jointly gaussian pair (x,y) to the uncorrelated pair (e,y) is

linear: M-

where Iy and Iy are the unit matrices of dimensions N and M, respectively. Therefore,
Example 1.3.3 implies that the transformed pair (e,y) is also jointly gaussian. Further-
more, since e and y are uncorrelated, it follows from Example 1.3.4 that they must be
independent of each other. The conditional mean of x can be computed by writing

x=%X+e=Hy+e
and noting that if y is given, then Hy is no longer random. Therefore,
El[x|y]= E[(Hy +e)|y] = Hy + E[ely]

Since e and y are independent, the conditional mean E[e|y] is the same as the uncondi-
tional mean E[e], which is zero by the zero-mean assumption. Thus,

E[x|y]= Hy = RXyR;)}y (jointly gaussian x and y) (1.4.7)

Example 1.4.2: Show that the conditional mean E[x|y] is the best unrestricted (i.e., not neces-
sarily linear) estimate of x in the mean-square sense. The best linear estimate was obtained

by seeking the best linear function of y that minimized the error criterion (1.4.6), that is,

we required a priori that the estimate was to be of the form X = Hy. Here, our task is more

general: find the most general function of y, X = X(y), which gives the best estimate of x,
in the sense of producing the lowest mean-squared estimation error e = x — X(y),

Ree = E[eeT]= E[(x —%(y)) (x" —%(y)T)] = min

The functional dependence of X(y) ony is not required to be linear a priori. Using p (x,y) =
p (x]y)p(y), the above expectation may be written as

Ree = [(x=%(y) (7 = %)) px,3) AV

- [pmr [[- 20) &7 =20 D) pxly) @

1.4. Correlation Canceling and Optimum Estimation 11

Since p (y) is nonnegative for all y, it follows that R,, will be minimized when the quantity
[=2) &7 = x0T (xly) ¥

is minimized with respect to X. But we know from Example 1.3.5 that this quantity is
minimized when X is chosen to be the corresponding mean; here, this is the mean with
respect to the density p (x|y). Thus,

X(y)= E[xly] (1.4.8)

To summarize, we have seen that
X =Hy = nyR;)}y = best linear mean-square estimate of x
X = E[x]y] = best unrestricted mean-square estimate of x

and Example 1.4.1 shows that the two are equal in the case of jointly gaussian vectors
x and y.

The concept of correlation canceling and its application to signal estimation prob-
lems will be discussed in more detail in Chap. 11. The adaptive implementation of the
correlation canceler will be discussed in Chap. 16. In a typical signal processing applica-
tion, the processor H would represent a linear filtering operation and the vectors x and
y would be blocks of signal samples. The design of such processors requires knowledge
of the quantities Ry, = E[xy”] and Ry, = E[yy”]. How does one determine these?
Basically, applications fall into two classes:

1. Both x and y are available for processing and the objective is to cancel the corre-
lations that may exist between them.

2. Only the signal y is available for processing and the objective is to estimate the
signal x on the basis of y.

In the first class of applications, there exist two basic design approaches:

a. Block processing (off-line) methods. The required correlations Ry, and Ry, are
computed on the basis of two actual blocks of signal samples x and y by replacing
statistical averages by time averages.

b. Adaptive processing (on-line) methods. The quantities Ry, and Ry, are “learned”
gradually as the data x and y become available in real time. The processor H is
continually updated in response to the incoming data, until it reaches its optimal
value.

Both methods are data adaptive. The first is adaptive on a block-by-block basis,
whereas the second on a sample-by-sample basis. Both methods depend heavily on the
assumption of stationarity. In block processing methods, the replacement of ensemble
averages by time averages is justified by the assumption of ergodicity, which requires
stationarity. The requirement of stationarity can place serious limitations on the allowed
length of the signal blocks x and y.

12 1. Review of Random Signals

Similarly, in adaptive processing methods, convergence to the optimal value of the
processor H again requires stationarity. Adaptive methods offer, however, the possibil-
ity of tracking nonstationary changes of the environment, as long as such changes occur
slowly enough to allow convergence between changes. Thus, the issue of the speed of
convergence of adaptation algorithms is an important one.

In the second class of applications where x is not available for processing, one must
have a specific model of the relationship between x and y from which Ry, and Ry, may
be calculated. This is, for example, what is done in Kalman filtering.

Example 1.4.3: As an example of the relationship that might exist between x and vy, let
Yn=XCh+Vy,, n=12,....M
where x and v, are zero-mean, unit-variance, random variables, and ¢, are known coef-
ficients. It is further assumed that v, are mutually uncorrelated, and also uncorrelated
with x, so that E[V,Vin]= 0nm, E[xVy]= 0. We would like to determine the optimal linear
estimate (1.4.5) of x, and the corresponding estimation error (1.4.4). In obvious matrix

notation we have y = ¢x + v, with E[xv]= 0 and E[vvT]= I, where I is the MxM unit
matrix. We find

Elxy"] =E[x(xc +V)T] = TE[X*]+E[xv]= T

Elyy'] = E[(xc + V) (x¢ + V)] = cc"E[X*]+E[vv!]=ccT + 1

and therefore, H = E[xyT1E[yy"] '= ¢’ (I + cc’) ~'. Using the matrix inversion lemma
we may write (I +ccT)'=T-c(1+c’c)"'cT, so that

H=c"[I-c(1+co)'cT]=1+cTo)" T
The optimal estimate of x is then

X=Hy=(1Q+clc) Ity (1.4.9)

The corresponding estimation error is computed by

E[e?]=Ree = Rix —HRyy =1 - (1 +cfo)cfe= (1 +cfo)7!

1.5 Regression Lemma

The regression lemma is a key result in the derivation of the Kalman filter. The optimum
estimate and estimation error of a (zero-mean) random vector x based on a (zero-mean)
vector of observations y; are given by

o -1 T T1-1

X; = Ry Ry, v1 = Elxy IElyiyi] v

e =X— f(l

Relel = E[ele{] = Rxx — nylR;llleylx

1.6. Gram-Schmidt Orthogonalization 13

If the observation set is enlarged by adjoining to it a new set of observations y,, so

y

that the enlarged observation vector is y = yl , the corresponding estimate of x will
2

given by,

RYZY] Ryz)’z Y2

The regression lemma states that X can be obtained by the following alternative
expression of updating X; by the addition of a correction term,

-1
S - R R
X= RXYRY)}y = [nyl styz] [yin Yiye :| |:Y1]

X=X+ RxszRe_zlsz ‘ (regression lemma) (1.5.1)

where &; is the innovations residual obtained by removing from y, that part which is
predictable from y,, that is,

& =Y, —V21=Y2— Ry, R;IIVIY1

The improvement in using more observations is quantified by the following result,
which shows that the mean-square error is reduced:

e=X-% = Ree=Ree, — Rue,R;5Renx (1.5.2)

where we defined,
Rxgz = Rstx = E[XEZT] , Rszsz = E[Ezsz]

The proof of Eq. (1.5.1) is straightforward and is left as an exercise. As a hint, the
following property may be used,

T
Y| _ I o Y1 Ry Ry, _ I 0 Ryy, 0 I 0
V2 H I||& | |Ru, Ry, H I 0 Ree ||H I

where H = Ry, R A special case of this lemma is discussed next.

-1
Yiyr*

1.6 Gram-Schmidt Orthogonalization

In the previous section, we saw that any random vector x may be decomposed relative to
another vector y into two parts, X = X + e, one part which is correlated with y, and one
which is not. These two parts are uncorrelated with each other since R,3 = E [eﬁT] =
Eley’HT]= E[eyT]HT = 0. In a sense, they are orthogonal to each other. In this
section, we will briefly develop such a geometrical interpretation.

The usefulness of the geometrical approach is threefold: First, it provides a very
simple and intuitive framework in which to formulate and understand signal estimation
problems. Second, through the Gram-Schmidt orthogonalization process, it provides
the basis for making signal models, which find themselves in a variety of signal process-
ing applications, such as speech synthesis, data compression, and modern methods of
spectrum estimation. Third, again through the Gram-Schmidt construction, by decor-
relating the given set of observations it provides the most convenient basis to work

14 1. Review of Random Signals

with, containing no redundancies. Linear estimates expressed in the decorrelated basis
become computationally efficient.

Geometrical ideas may be introduced by thinking of the space of random variables
under consideration as a linear vector space [7]. For example, in the previous section we
dealt with the multicomponent random variables x and y consisting, say, of the random
variables {x;,X2,...,xn} and {y1,Y2,...,Yum}, respectively. In this case, the space of
random variables under consideration is the set

{X1,X2,..., XN, Y1,V2,..., YM} (1.6.1)

Since any linear combination of random variables from this set is itself a random
variable, the above set may be enlarged by adjoining to it all such possible linear combi-
nations. This is the linear vector space generated or spanned by the given set of random
variables. The next step is to convert this vector space into an inner-product space (a
Hilbert space) by defining an inner product between any two random variables u and v
as follows:

(u,v)= El[uv] (1.6.2)

With this definition of an inner product, “orthogonal” means “uncorrelated.” The
distance between u and v is defined by the norm |[u — V|| induced by the above inner
product:

lu—-vi?=E[(u-v)?] (1.6.3)

Mutually orthogonal (i.e., uncorrelated) random variables may be used to define
orthogonal bases. Consider, for example, M mutually orthogonal random variables
{€1,€2,...,€Mm}, such that

(€i,€j)= El€i€jl=0, if i +j (1.6.4)

and let Y = {€1,€,...,€m} be the linear subspace spanned by these M random vari-
ables. Without loss of generality, we may assume that the €;s are linearly independent;
therefore, they form a linearly independent and orthogonal basis for the subspace Y.
One of the standard results on linear vector spaces is the orthogonal decomposition
theorem [8], which in our context may be stated as follows: Any random variable x may
be decomposed uniquely, with respect to a subspace Y, into two mutually orthogonal
parts. One part is parallel to the subspace Y (i.e., it lies in it), and the other is perpen-
dicular to it. That is,
X=X+e withXeYande L Y (1.6.5)

The component X is called the orthogonal projection of X onto the subspace Y. This
decomposition is depicted in Fig. 1.6.1. The orthogonality condition e L Y means that
e must be orthogonal to every vector in Y; or equivalently, to every basis vector €;,

(e,€i)= Ele€i]=0, i=1,2,....M (1.6.6)

Since the component X lies in Y, it may be expanded in terms of the orthogonal basis
in the form

1.6. Gram-Schmidt Orthogonalization 15

- 6

Fig. 1.6.1 Orthogonal decomposition with respectto Y = {€1,€»}.

The coefficients a; can be determined using the orthogonality equations (1.6.6), as
follows,

(x,€) = R+e,6)= (R, &)+ (e,)= (R €)
M M
= (,Z ajej, ei) = > aj(ej, €)= ai(€;, €)
=1 Jj=1
where in the last equality we used Eq. (1.6.4). Thus, a; = (x,¢;) (€;,€;) 7. or, a; =

E[xeilE[€i€i]1~!, and we can write Eq. (1.6.5) as
M
x=R%+e=> E[xe]E[ei€] e +e (1.6.7)
i=1

Eq. (1.6.7) may also be written in a compact matrix form by introducing the M-vector,

the corresponding cross-correlation M-vector,

E[xeq]

E[xe]

E[xe]l=

E[xepm]

and the correlation matrix Rec = E[€€T], which is diagonal because of Eq. (1.6.4):
Rec = E[ee” = diag{E[€]],E[€3],..., E[€3,]}

Then, Eq. (1.6.7) may be written as

x=X+e=E[xeT|E[ee’] e +e (1.6.8)

16 1. Review of Random Signals

The orthogonality equations (1.6.6) can be written as
Rec = E[e€T]=0 (1.6.9)

Equations (1.6.8) and (1.6.9) represent the unique orthogonal decomposition of any
random variable x relative to a linear subspace Y of random variables. If one has a
collection of N random variables {Xi,X,...,Xn}, then each one may be orthogonally
decomposed with respect to the same subspace Y, giving x; = 8; + e;, 1 = 1,2,...,N.
These may be grouped together into a compact matrix form as

x=%+e=F[xeT|E[ee’] e +e (1.6.10)

where x stands for the column N-vector x = [x1,X2,...,Xn]7, and so on. This is iden-
tical to the correlation canceler decomposition of the previous section.

Next, we briefly discuss the orthogonal projection theorem. In Sec. 1.4, we noted
the best linear estimator property of the correlation canceler decomposition. The same
result may be understood geometrically by means of the orthogonal projection theorem,
which states: The orthogonal projection X of a vector x onto a linear subspace Y is that
vector in Y that lies closest to x with respect to the distance induced by the inner product
of the vector space.

The theorem is a simple consequence of the orthogonal decomposition theorem and
the Pythagorean theorem. Indeed, let x = X + e be the unique orthogonal decomposition
of x with respect to Y, so that € Y and e L Y and let y be an arbitrary vector in Y;
noting that (X — y) € Y and therefore e L (% —y), we have

Ix=ylI> =1 R=y)+el®> = IR = ylI* + lle]|®
or, in terms of Eq. (1.6.3),
E[(x=y)?] = E[(R =¥)°] + E[e’]

€

Xy

=>

€]

Since the vector y varies over the subspace Y, it follows that the above quantity
will be minimized when y = X. In summary, X represents the best approximation of
X that can be made as a linear function of the random variables in Y in the minimum
mean-square sense.

Above, we developed the orthogonal decomposition of a random variable relative to
alinear subspace Y which was generated by means of an orthogonal basis €1, €2, ..., €.
In practice, the subspace Y is almost always defined by means of a nonorthogonal basis,
such as a collection of random variables

Y = {y11y2!-"!YM}

1.6. Gram-Schmidt Orthogonalization 17

which may be mutually correlated. The subspace Y is defined again as the linear span
of this basis. The Gram-Schmidt orthogonalization process is a recursive procedure of
generating an orthogonal basis {€1, €2,...,€p} from {y1,y2,...,Ym}.

The basic idea of the method is this: Initialize the procedure by selecting €; = y;.
Next, consider ¥, and decompose it relative to €;. Then, the component of y, which is
perpendicular to €; is selected as €, so that (€1, €2) = 0. Next, take y3 and decompose it
relative to the subspace spanned by {€1, €>} and take the corresponding perpendicular
component to be €3, and so on. For example, the first three steps of the procedure are

€1 =01
€ =y, — Ely.e1]1E[e161] e
€3 =y3 — Elyse1)lE[e1e1] 'e1 — E[yse1E[€262] e

€3
Y3
€3
A N €
Yan NN <
Yin /g
/ € 2
€1=)1
At the nth iteration step
n-1
€n=yn— > ElyncilEl€i€i] e, n=2,3,....M (1.6.11)
i=1
The basis {€1, €2,...,€p} generated in this way is orthogonal by construction. The

Gram-Schmidt process may be understood in terms of the hierarchy of subspaces:

Y, ={e1} = {1}
Yo = {€1,€2} = {y1,y2!}
Y3 = {e€1, 6,63} = {y1,¥2,y3}

Yn=1{€,€2,...,n} = {¥1,¥2,...,Vn}

forn =1,2,..., M, where each is a subspace of the next one and differs from the next by
the addition of one more basis vector. The second term in Eq. (1.6.11) may be recognized
now as the component of y, parallel to the subspace Y,_;. We may denote this as

n-1

Pnm-1 = Elyn€ilE[€i€i] € (1.6.12)
i-1

Then, Eq. (1.6.11) may be written as

€n=Y¥Yn—Ynm-1 OF Yn=Ynin-1+E€n (1.6.13)

18 1. Review of Random Signals

which represents the orthogonal decomposition of y;, relative to the subspace Y;,_;.
Since, the term y,,/,-1 already lies in Y,,_1, we have the direct sum decomposition

Yn=Yn1®{yn} =Yn1® {en}
Introducing the notation
bni = E[yn€ilEleie]™, 1<i<n-1 (1.6.14)

and b, = 1, we may write Eq. (1.6.13) in the form

n n-1
Yn = Zb”iei =€n+ Z bni€i = €n + Yn/n—1 (1.6.15)
i=1 i=1
for 1 < n < M. And in matrix form,
1 €1
Y2 €2
y =Be€, where y= . , €= . (1.6.16)
Ym €M

and B is a lower-triangular matrix with matrix elements given by (1.6.14). Its main
diagonal is unity. For example, for M = 4 we have

Y1 1 0 0 0 €1
y2o| | ba 1 0 O0ffe
vs | | ba b3z 1 0 €3
V4 by by by 1 €4

Both the matrix B and its inverse B~! are unit lower-triangular matrices. The in-
formation contained in the two bases y and € is the same. Going from the basis y to
the basis € removes all the redundant correlations that may exist in y and “distills” the
essential information contained in y to its most basic form. Because the basis € is un-
correlated, every basis vector €;, i = 1,2,..., M will represent something different, or
new. Therefore, the random variables €; are sometimes called the innovations, and the
representation (1.6.16) of y in terms of €, the innovations representation.

Since the correlation matrix Rec = E[€€”] is diagonal, the transformation (1.6.16)
corresponds to an LU (lower-upper) Cholesky factorization of the correlation matrix of
y, that is,

Ry, = E[yyT1= BE[e€T BT = BRcBT (1.6.17)

We note also the invariance of the projected vector X of Eq. (1.6.10) under such linear
change of basis:
% =E[xeT]E[eeT] ‘e = E[xyT1E[yyT] 'y (1.6.18)

This shows the equivalence of the orthogonal decompositions (1.6.10) to the corre-
lation canceler decompositions (1.4.1). The computational efficiency of the € basis over
the y basis is evident from the fact that the covariance matrix E[€€] is diagonal, and

1.6. Gram-Schmidt Orthogonalization 19

therefore, its inverse is trivially computed. We may also apply the property (1.6.18) to
y itself. Defining the vectors

€1 Y1
€2 Y2
€n-1 = : Yn-1 =
€n-1 Yn-1

we may write the projection Y,,,—1 of y,, on the subspace Y,,_; given by Eq. (1.6.12) as
follows:

)A/n/n—l = E[Ynezl‘fl]E[En—leyTlfl]ilen—l = E[eryzfl]E[Ynflyzl‘fl] 71Yn71 (1.6.19)
Eq. (1.6.13) is then written as
€n=Yn—Ynin-1=Yn—EWnyh 1 JElyn1¥h 1] 'y (1.6.20)

which provides a construction of €, directly in terms of the y,s. We note that the
quantity y,/n—1 is also the best linear estimate of y, that can be made on the basis of
the previous y,s, Yn-1 = {¥V1,¥2,...,Yn-1}. If the index n represents the time index, as
it does for random signals, then y,,/,-1 is the best linear prediction of y, on the basis
of its past; and €, is the corresponding prediction error.

The Gram-Schmidt process was started with the first element y; of y and proceeded
forward to y»;. The process can just as well be started with y; and proceed backward to
V1 (see Problem 1.15). It may be interpreted as backward prediction, or postdiction, and
leads to the UL (rather than LU) factorization of the covariance matrix Ry,. In Sec. 1.8,
we study the properties of such forward and backward orthogonalization procedures in
some detail.

Example 1.6.1: Consider the three zero-mean random variables {1, y»,y3} andletR;; = E[y;y;]
for i,j = 1,2, 3, denote their correlation matrix. Then, the explicit construction indicated
in Eq. (1.6.20) can be carried out as follows. The required vectors y,,_; are:

yi = 1l, YfBl]

and hence
Ely2y!T] = Ely2y1]= R

Ely,v11=Eliyil=Ru
Elysy5] = E[ys[y1,y21] = [R31, R3]

Y1 Ri1 Ripz
E 1= FE , =
[ya2y2 1] |:|: V2] [)’2]] |:R21 Ro»]
Therefore, Eq. (1.6.20) becomes
€1 =)1

€ =y2— Vo1 =2 — RaRiiw

-1
A R R
63:)/3—)/3/2=y3—[R31yR32][Ri le] [;]

20 1. Review of Random Signals

Example 1.6.2: The zero-mean random vector y = [y1,y2,¥3]7 has covariance matrix

1 -1 1
Ry=|-1 3 3
1 3 12

Determine the innovations representation of y in two ways: using the Gram- Schmidt
construction and using the results of Example 1.6.1.

Solution: Starting with €, = y;, we find E[y»€;]= R2; = —1 and E[€3]= Ry, = 1. Therefore,

€2 =Y. —Ely:€1]E[€]] 'er = y2 + €1 = y2 +)1

with a mean-square value E[€3]= E[y3]+2E[y,y1]+E[y?]=3 — 2 + 1 = 2. Similarly, we
find E[)/3€]] = R3] =1 and

Elyse]=E[ys(y2+y1)] =Rp2+R31 =3+1=4
Thus,
€3 = y3 — Elyse1lE[ere1] ey — E[ys€e:]E[e2€2] 'e2 = y3 — €1 — 262

or,
€3=y3-y1—2(y2+Y1)=Yy3 —2y2 =3y

Solving for the ys and writing the answer in matrix form we have

V1 1 0 O €
y=|Y2|=[-1 1 0 € | =Be
V3 1 2 1 €3

The last row determines E [e%]. Using the mutual orthogonality of the €;s, we have

E[y3]=E[(e3 + 26, + €1)%] = E[€3]1+4E[€3]+E[e3] = 12=E[€3]+8+1

which gives E [e%] = 3. Using the results of Example 1.6.1, we have

1 -1
R R 1 -1
] il I P B I

The indicated matrix operations are computed easily and lead to the same expression for
€3 found above. [}

The innovations representation Eq. (1.6.16) and the Cholesky factorization (1.6.17)
are also very useful for the purpose of simulating a random vector having a prescribed
covariance matrix. The procedure is as follows: given R = E[yy”], find its Cholesky
factor B and the diagonal matrix R¢; then, using any standard random number genera-
tor, generate M independent random numbers € = [€1,€2,...,€p]7 of mean zero and
variances equal to the diagonal entries of R¢¢, and perform the matrix operation y = B€
to obtain a realization of the random vector y.

Conversely, if anumber of independent realizations of y are available, {y;,y>,...,Yn},

we may form an estimate of the covariance matrix by the following expression, referred
to as the sample covariance matrix

1 N
R== > yuvih (1.6.21)
N n=1

1.6. Gram-Schmidt Orthogonalization 21

Example 1.6.3: In typical array processing applications, a linear array of, say, M equally spaced
sensors measures the incident radiation field. This field may consist of a number of plane
waves incident from different angles on the array plus background noise. The objective is
to determine the number, angles of arrival, and strengths of the incident plane waves from
measurements of the field at the sensor elements. At each time instant, the measurements
at the M sensors may be assembled into the M-dimensional random vector vy, called an
instantaneous snapshot. Thus, the correlation matrix R = E [ny] measures the correla-
tions that exist among sensors, that is, spatial correlations. In Chap. 14, we will consider
methods of extracting the angle-of-arrival information from the covariance matrix R. Most
of these methods require an estimate of the covariance matrix, which is typically given by
Eq. (1.6.21) on the basis of N snapshots. |

How good an estimate of R is R? First, note that it is an unbiased estimate:

1

E[R]=N

N 1
> Ely,ynl= - (NR)=R
— N
n=1
Second, we show that it is consistent. The correlation between the various matrix
elements of R is obtained as follows:

N N
PN 1
E[RjjRk]= N2 Z Z E[yniynjymkymi]
n=1m=1
where y,; is the ith component of the nth vector y,,. To get a simple expression for
the covariance of R, we will assume thaty,,n = 1,2,...,N are independent zero-mean
gaussian random vectors of covariance matrix R. This implies that [4,5]

E[Yniynjymkymil= RijRki + Snm (RikRji + RiRjk)
It follows that
E[R;jRi]1= R;jRjx + %(R,-kRﬂ + RiRjx) (1.6.22)
Writing AR = R — E[R]= R — R, we obtain for the covariance

1
E[AR;jjARk]= N (RixRj1 + RiiRjx) (1.6.23)

Thus, R is a consistent estimator. The result of Eq. (1.6.23) is typical of the asymp-
totic results that are available in the statistical literature [4,5]. It will be used in Chap. 14
to obtain asymptotic results for linear prediction parameters and for the eigenstructure
methods of spectrum estimation.

The sample covariance matrix (1.6.21) may also be written in an adaptive, or recursive
form,

N N-1

N1 1 1 R

Ry=+D yayh == | > vyl +yavk | = < [(N = DRy—1 + ynyh]
Nn:l N n=1 N

where we wrote Ry to explicitly indicate the dependence on N. A more intuitive way of
writing this recursion is in the “predictor/corrector” form

.) 1 .
RNy =Rn-1 + N (ynY& — Rn-1) (1.6.24)

22 1. Review of Random Signals

The term Ry_1 may be thought of as a prediction of R based on N — 1 observations,
the Nth observation yNyj{, may be thought of as an instantaneous estimate of R, and
the term in the parenthesis as the prediction error that is used to correct the prediction.
The function sampcov takes as input the old matrix Ry_;, and the new observation yy,
and outputs the updated matrix Rn, overwriting the old one.

Example 1.6.4: Consider the 3x3 random vector y defined in Example 1.6.2. Using the inno-
vations representation of y, generate N = 200 independent vectors y,, n = 1,2,...,N
and then compute the estimated sample covariance matrix (1.6.21) and compare it with
the theoretical R. Compute the sample covariance matrix R recursively and plot its matrix
elements as functions of the iteration number N.

Solution: Generate N independent 3-vectors €,, and compute y,, = B€,. The estimated and
theoretical covariance matrices are

0.995 —1.090 0.880 1 -1 1
R=| -1.090 3.102 2858 |, R=|-1 3 3
0.880 2.858 11.457 1 3 12

Can we claim that this is a good estimate of R? Yes, because the deviations from R are
consistent with the expected deviations given by Eq. (1.6.23). The standard deviation of
the ijth matrix element is

S8Ry = \/E[(ARU)z] = \/(RiiRJli +Ri2j)/N

The estimated values Rj; fall within the intervals Rj; — SR < Rjj < R;; + SRyj, as can be
verified by inspecting the matrices

0.901 -1.146 0.754 1.099 -0.854 1.246
R-0R=| —1.146 2.691 2.534 |, R+0R=| —0.854 3.309 3.466
0.754 2.534 10.857 1.246 3.466 13.143

The recursive computation Eq. (1.6.24), implemented by successive calls to the function
sampcov, is shown in Fig. 1.6.2, where only the matrix elements Ry, R;2, and Ry, are
plotted versus N. Such graphs give us a better idea of how fast the sample estimate Ry
converges to the theoretical R. m]

1.7 Partial Correlations

A concept intimately connected to the Gram-Schmidt orthogonalization is that of the
partial correlation. It plays a central role in linear prediction applications.

Consider the Gram-Schmidt orthogonalization of a random vector y in the formy =
Be, where B is a unit lower-triangular matrix, and € is a vector of mutually uncorrelated
components. Inverting, we have

€= Ay (1.7.1)

1.7. Partial Correlations 23

Sample Covariance Matrix

I

[5

matrix elements
=

0 50 100 150 200
iterations N

Fig. 1.6.2 Recursive computation of the sample covariance matrix.

where A = B~L. Now, suppose the vector vy is arbitrarily subdivided into three subvec-
tors as follows:
Yo
y=|1"
Y2
where yq, y1,Y> do not necessarily have the same dimension. Then, the matrix equation
(1.7.1) may also be decomposed in a block-compatible form:

€o Agg O 0 Yo
€1 |=[An Aw O Y1 (1.7.2)
€ Ap A A Y2

where Ao, A19, A2o are unit lower-triangular matrices. Since y has components that are
generally correlated with each other, it follows that y, will be correlated with y,, and
y; will be correlated with y,. Thus, through the intermediate action of y;, the vector
yo Will be indirectly coupled with the vector y,. The question we would like to ask is
this: Suppose the effect of the intermediate vector y; were to be removed, then what
would be the correlation that is left between y, and y,? This is the partial correlation.
It represents the “true” or “direct” influence of y, on y,, when the indirect influence via
y; is removed. To remove the effect of y;, we project both y, and y, on the subspace
spanned by y; and then subtract these parts from both, that is, let

ey = yo — (projection of y, on y;)
ep =y, — (projection of y, on y;)
or,
e =yo — RotR1l'y;

. (1.7.3)
e =Yy, —RaRy1y;

24 1. Review of Random Signals

where we defined R;; = E[y,-ij], for i,j = 0,1,2. We define the partial correlation
(PARCOR) coefficient between y, and y,, with the effect of the intermediate y, removed,
as follows:

I' = E[e;el]E[epel 17! (1.7.4)

Then, I' may be expressed in terms of the entries of the matrix A as follows:
I'=-A31Az (1.7.5)
To prove this result, we consider the last equation of (1.7.2):
€ = Axyo + Anyr + A2y (1.7.6)

By construction, €; is orthogonal to y;, so that E [ezle] = 0. Thus we obtain the
relationship:
Elexyl] = AnElyoyl 1+AnEly y] 1+Az0E[y,y]]

= A2Ro1 + A21R11 + A2oR21 =0

(1.7.7)

Using Egs. (1.7.3) and (1.7.7), we may express €, in terms of e, and e», as follows:
€2 = Azx(eo + Ro1Ri1'y1) +Aa1y; + Azo (€2 + RotRyyy)
= Apeg + Aez + (A2Ro1 + A21R11 + A2R21) Rty (1.7.8)
= Axep + Aoer

Now, by construction, €; is orthogonal to both y, and y;, and hence also to ey, that
is, E[ezeg] = 0. Using Eq. (1.7.8) we obtain

Elezel]l= AnElejel1+AxE[eel]1=0
from which (1.7.5) follows. It is interesting also to note that (1.7.8) may be written as
€ = Axpe
where e = e, — I'eq is the orthogonal complement of e; relative to ey.

Example 1.7.1: Animportant special case of Eq. (1.7.5) is when y, and y, are selected as the first
and last components of y, and therefore y, consists of all the intermediate components.
For example, suppose y = [Yo,Y1,2,V3,Y4]T. Then, the decomposition (1.7.2) can be
written as follows:

o] T 110 0 01]07[y]
€ an 1 0 0 0 Vi
€2 = | dx | d2 1 0 0 Yo (1.7.9)
€3 asz |ax am 1 |0 V3

| €4 | | Qaa | A3 A2 as |1]| ya |

where y,,y;,y> are chosen as the vectors

Y1
Yo=[ol, vi=| Y2 |, y2=1[yal
Y3

1.7. Partial Correlations 25

The matrices Ay and Aj, are in this case the scalars Ao = [1] and A»» = [d44]. There-
fore, the corresponding PARCOR coefficient (1.7.5) is

I'=—au
Clearly, the first column [1, a1, d»2,ass, dss] of A contains all the lower order PARCOR
coefficients, that is, the quantity
Yp=—app, p=12,3,4

represents the partial correlation coefficient between y, and y), with the effect of all the
intermediate variables y1,Y2,...,Yp-1 removed. [}

We note the backward indexing of the entries of the matrix A in Egs. (1.7.2) and
(1.7.9). It corresponds to writing €, in a convolutional form

n n
€n = Z aniyn-i = Z Ann-iYi =¥Yn + An1Yn-1 + An2Yn-2 + - - - + Ann)o (1.7.10)

i=0 i=0
and conforms to standard notation in linear prediction applications. Comparing (1.7.10)
with (1.6.13), we note that the projection of y, onto the subspace Y,_; may also be
expressed directly in terms of the correlated basis Y,-1 = {yo,V1,...,Vn-1} as follows:

)A’n/n—l = _[anl)’n—l + dn2Yn-2 + -+ + annyo] (1.7.11)

An alternative expression was given in Eq. (1.6.19). Writing Eq. (1.7.10) in vector
form, we have

Yo Yn
: Yn-1
€n = lann,...,am,1] : = [1,an1,...,ann] . (1.7.12)
Yn-1 :
Yn Yo

Thus, there are two possible definitions for the data vector y and corresponding
weight vector a. According to the first definition—which is what we used in Egs. (1.7.1)
and (1.7.9)—the vector y is indexed from the lowest to the highest index and the vector a
is indexed in the reverse way. According to the second definition, y and a are exactly the
reverse, or upside-down, versions of the first definition, namely, y is indexed backward
from high to low, whereas a is indexed forward. If we use the second definition and
write Eq. (1.7.12) in matrix form, we obtain the reverse of Eq. (1.7.9), that is

€4 1 as as aisz Qs Ya
€3 0 1 ax as ass Y3
€ev=|€ |=[0 0 1 axn az || Y2 | =Uye (1.7.13)
€] 0 0 0 1 an V1
€0 0 O 0 0 1 Yo

Thus, the transformation between the correlated and decorrelated bases is now by
means of a unit upper-triangular matrix U. It corresponds to the UL (rather than LU) fac-
torization of the covariance matrix of the reversed vector Yyy. Writing Rrey = E [Viev Vit
and Drey = E [€rev€L,], it follows from Eq. (1.7.13) that

Drev = URrevUT (1.7.14)

26 1. Review of Random Signals

The precise connection between the original basis and its reverse, and between their
respective Cholesky factorizations, can be seen as follows. The operation of reversing
a vector is equivalent to a linear transformation by the so-called reversing matrix J,
consisting of ones along its antidiagonal and zeros everywhere else; for example, in the
5X%5 case of Example 1.7.1,

0000 1
00010
J=|0 01 0 0
01000
1 0000

The reversed vectors will be y,., = Jy and €y = J€. Using the property J = J7, it
follows that Ryey = JRyyJ and Dyey = JReeJ. Comparing Eq. (1.7.9) and Eq. (1.7.13) and
using the property J2 = I, we find,

erev:JE:JAy: (JAJ) (JY): (JAJ)Yrer or,
U=JAJ] (1.7.15)

Note that J acting on a matrix from the left reverses each column, whereas acting
from the right, it reverses each row. Thus, U is obtained from A by reversing all its
columns and then all its rows. Regardless of the choice of the vector y, the Gram-
Schmidt construction proceeds from the lowest to the highest index of y, and therefore,
it can be interpreted as predicting the present from the past. But whether this process
leads to LU or UL factorization depends on whether y or its reverse is used as the basis.
Of course, the choice of basis does not affect the computation of linear estimates. As
we saw in Eq. (1.6.18), linear estimates are invariant under any linear change of basis; in
particular,

X=E [XYT]E[YYT] 71Y = E[XYITQV]E[YreVYrTev] 71Yrev

In this book, we use both representations y and y,.,, whichever is the most conve-
nient depending on the context and application. For example, in discussing the classical
Wiener filtering problem and Kalman filtering in Chap. 11, we find the basis y more
natural. On the other hand, the basis y,,, is more appropriate for discussing the lattice
and direct-form realizations of FIR Wiener filters.

The ideas discussed in the last three sections are basic in the development of opti-
mum signal processing algorithms, and will be pursued further in subsequent chapters.
However, taking a brief look ahead, we point out how some of these concepts fit into
the signal processing context:

1. The correlation canceling/orthogonal decompositions of Egs. (1.4.1) and (1.6.10)
for the basis of optimum Wiener and Kalman filtering.

2. The Gram-Schmidt process expressed by Egs. (1.6.13) and (1.6.20) forms the basis
of linear prediction and is also used in the development of the Kalman filter.

3. The representation y = B€ may be thought of as a signal model for synthesizing
vy by processing the uncorrelated (white noise) vector € through the linear filter
B. The lower-triangular nature of B is equivalent to causality. Such signal models
have a very broad range of applications, among which are speech synthesis and
modern methods of spectrum estimation.

1.8. Forward/Backward Prediction and LU/UL Factorization 27

4. The inverse representation € = Ay of Egs. (1.7.1) and (1.7.10) corresponds to the
analysis filters of linear prediction. The PARCOR coefficients will turn out to be
the reflection coefficients of the lattice filter realizations of linear prediction.

5. The Cholesky factorization (1.6.17) is the matrix analog of the spectral factor-
ization theorem. It not only facilitates the solution of optimum Wiener filtering
problems, but also the making of signal models of the type of Eq. (1.6.16).

1.8 Forward/Backward Prediction and LU/UL Factorization

The Gram-Schmidt orthogonalization procedure discussed in the previous sections was
a forward procedure in the sense that the successive orthogonalization of the compo-
nents of a random vector y proceeded forward from the first component to the last. It
was given a linear prediction interpretation, that is, at each orthogonalization step, a
prediction of the present component of y is made in terms of all the past ones. The
procedure was seen to be mathematically equivalent to the LU Cholesky factorization of
the covariance matrix R = E[yy”] (or, the UL factorization with respect to the reversed
basis). We remarked in Sec. 1.6 (see also Problem 1.15) that if the Gram-Schmidt con-
struction is started at the other end of the random vector y then the UL factorization of
R is obtained (equivalently, the LU factorization in the reversed basis).

In this section, we discuss in detail such forward and backward Gram-Schmidt con-
structions and their relationship to forward and backward linear prediction and to LU
and UL Cholesky factorizations, and show how to realize linear estimators in the forward
and backward orthogonal bases.

Our main objective is to gain further insight into the properties of the basis of ob-
servations y and to provide a preliminary introduction to a large number of concepts
and methods that have become standard tools in modern signal processing practice,
namely, Levinson’s and Schur’s algorithms; fast Cholesky factorizations; lattice filters
for linear prediction; lattice realizations of FIR Wiener filters; and fast recursive least
squares adaptive algorithms. Although these concepts are fully developed in Chapters
12 and 16, we would like to show in this preliminary discussion how far one can go
toward these goals without making any assumptions about any structural properties of
the covariance matrix R, such as Toeplitz and stationarity properties, or the so-called
shift-invariance property of adaptive least squares problems.

Forward/Backward Normal Equations

Lety = [Va,...,Vp]T be a random vector whose first and last components are y, and
Yp. Let Pp, be the best linear estimate of y}, based on the rest of the vector vy, that is,

Vb = Elypy"1E[yyT 1"y (1.8.1)
where V is the upper part of y, namely,

Ya

N P N
Y= . |:Yb :| (1.8.2)
Vb

28 1. Review of Random Signals

Similarly, let Y, be the best estimate of y, based on the rest of y, namely,

Va = Elyay" 1E[y9"17'y (1.8.3)
where ¥ is the lower part of y, that is,
Ya v
y=|: =[;] (1.8.4)
Vb

The decompositions (1.8.2) and (1.8.4) imply analogous decompositions of the co-
variance matrix R = E[yy’] as follows

R 1 Pa rZ
R = = = 1.8.5
|:I‘£ Pb } [r, R ()

R=E[WT]a rq = E[y.v], Pa=E[Y5]
R=E[yy"], w=Elywyl, p»=Ely;l

We will refer to y,; and y}, as the forward and backward predictors, respectively. Since
we have not yet introduced any notion of time in our discussion of random vectors, we
will employ the terms forward and backward as convenient ways of referring to the
above two estimates. In the present section, the basis y will be chosen according to the
reversed-basis convention. As discussed in Sec. 1.7, LU becomes UL factorization in the
reversed basis. By the same token, UL becomes LU factorization. Therefore, the term
forward will be associated with UL and the term backward with LU factorization. The
motivation for the choice of basis arises from the time series case, where the consistent
usage of these two terms requires that y be reverse-indexed from high to low indices. For
example, a typical choice of y, relevant in the context of Mth order FIR Wiener filtering
problems, is

where

(1.8.6)

Yn
Yn-1
Y= .

Yn-M

where n represents the time index. Therefore, estimating the first element, y,, from
the rest of y will be equivalent to prediction, and estimating the last element, y,_u,
from the rest of y will be equivalent to postdiction. Next, we introduce the forward and
backward prediction coefficients by

1 . _
a= [(x} , b= [113} , where ¢ =-R7'ry, B=-R'rp (1.8.7)
In this notation, the predictors (1.8.1) and (1.8.3) are written as
Va=-a'y, yp=-By (1.8.8)

1.8. Forward/Backward Prediction and LU/UL Factorization 29

The corresponding prediction errors are
ea=Ya—YVa=Ya+ta&'y=aly, ep=yp-Vp=yp+B'y=by (1.8.9)
with mean square values

E,=Ele2]=E[@"y)(yTa)] =a’Ra
. (1.8.10)
Ep = Elej]=E[(b"y) (y"b)] =b'Rb

Because the estimation errors are orthogonal to the observations that make up the
estimates, thatis, E[epy]= 0 and E[e,;¥]= 0, it follows that E[Y,e,]= 0 and E[Ypep]=
0. Therefore, we can write E[eé] = E[yqeq] and E[ei] = E[ypep]. Thus, the minimized
values of the prediction errors (1.8.10) can be written as

Eq = E[yaqeql= E[Ya (Ya + OlT?)] =pPa+ leI'a = Pa — I‘Z;Rilra
) (1.8.11)
Ep =E[yvep]=E[yr (b + B"Y)] = po + Bty = pp — 1) R '1p

By construction, the mean square estimation errors are positive quantities. This
also follows from the positivity of the covariance matrix R. With respect to the block
decompositions (1.8.5), it is easily shown that a necessary and sufficient condition for R
to be positive definite is that R be positive definite and pp — 1} R ', > 0; alternatively,
that R be positive definite and p, — rfR~'r, > 0.

Equations (1.8.7) and (1.8.11) may be combined now into the more compact forms,
referred to as the forward and backward normal equations of linear prediction,

1
Ra=Ez;u, Rb=Epv, where u=[0], v=[(1)} (1.8.12)

For example,
R 1y B) i RB +1p 0
Rb = = = =F
[rZ Pb}[l_ | ©2B + pp Ep bV

T 7 r T
| Pa 14 1| |patrge | | Eq|
rac 0 % | o] e []

and similarly,

Backward Prediction and LU Factorization

Next, we discuss the connection of the forward and backward predictors to the Gram-
Schmidt procedure and to the Cholesky factorizations of the covariance matrix R. Con-
sider an arbitrary unit lower triangular matrix L of the same dimension as R and form
the larger unit lower triangular matrix whose bottom row is b’ = [BT,1]

I [BLT (1’] (1.8.13)

30 1. Review of Random Signals
Then, it follows from Eq. (1.8.12) that

(1.8.14)

LRIT o
T _
LRL _[of Eb:|

Indeed, we have

L o R 1 LR Lry LR Ir
T _ T _ T _ T
LR 7[BT IMfZ Pb}L 7[BTR+rZ 5Trb+Pb:|L *[OT Eb]L

[LRLT Lr, +LRB| [LRLT o
| of Ep 1 oT E

Defining the transformed random vector e, = Ly, we have

LRI AR P R

where &, = Ly. It follows that LRL” is the covariance matrix of the transformed vector
ep. The significance of Eq. (1.8.14) is that by replacing the y basis by e, we have achieved
partial decorrelation of the random vector y. The new basis e, is better to work with
because it contains less redundancy than y. For example, choosing L to be the identity
matrix, L = I, Egs. (1.8.14) and (1.8.15) become

R o y
T _ —
LRL" = |:0T Ep :| , ep= |:eb :| (1.8.16)

This represents the direct sum decomposition of the subspace spanned by y into
the subspace spanned by ¥ and an orthogonal part spanned by ey, that is,

iy} =V, yp} = v} @ {ep}

The advantage of the new basis may be appreciated by considering the estimation
of a random variable x in terms of y. The estimate X may be expressed either in the y
basis, or in the new basis e} by

X =E[xy"1E[yy"1 'y = E[xel 1E[eve] 1 'ep

Using the orthogonality between y and ep, or the block-diagonal property of the
covariance matrix of e, given by Eq. (1.8.16), we find

& = E[xyT1E[yyT17'y + E[xep]E[e3]tep = X + Ry

1.8. Forward/Backward Prediction and LU/UL Factorization 31

The two terms in X are recognized as the estimates of x based on the two orthogonal
parts of the y basis. The first term still requires the computation of a matrix inverse,
namely, R~! = E[yy7]~, but the order of the matrix is reduced by one as compared
with the original covariance matrix R. The same order-reduction procedure can now
be applied to R itself, thereby reducing its order by one. And so on, by repeating the
order-reduction procedure, the original matrix R can be completely diagonalized. This
process is equivalent to performing Gram-Schmidt orthogonalization on y starting with
ya and ending with y,. It is also equivalent to choosing L to correspond to the LU
Cholesky factorization of R. Then, the matrix L will correspond to the LU factorization
of R. Indeed, if L is such that LRLT = Dy, that is, a diagonal matrix, then

LRIT o D, 0
T _ _ —
LRLT = [ol Eh] = [OT Eb:| =Dy (1.8.17)

will itself be diagonal. The basis e, = Ly will be completely decorrelated, having diago-
nal covariance matrix E [ebeg] = Dy. Thus, by successively solving backward prediction
problems of lower and lower order we eventually orthogonalize the original basis y and
obtain the LU factorization of its covariance matrix. By construction, the bottom row
of L is the backward predictor bT. Similarly, the bottom row of L will be the backward
predictor of order one less, and so on. In other words, the rows of L are simply the
backward predictors of successive orders. The overall construction of L is illustrated by
the following example.

Example 1.8.1: The random vector y = [ya4, Ve, Y»]’ has covariance matrix

1 1 0
R=]1 3 2
0 2 3

By successively solving backward prediction problems of lower and lower order construct
the LU factorization of R.

Solution: The backward prediction coefficients for predicting y} are given by Eq. (1.8.7):

-1
_ 1 1 0 1 3 -1 0 1
- _p-lp = - _= =
R R (R
Thus, b! = [BT,1]=[1,—1,1]. The estimation error is given by Eq. (1.8.11):

Eb:Ph+BTrb:3+[1‘—1]|:g:|:1

Repeating the procedure on R =], we find for the corresponding backward pre-

1 1
1 3
diction coefficients, satisfying Rb = E,v, v = [0,1]7

T

B=-111""[11=[-1], B =[B",11=[-1,1]

32 1. Review of Random Signals

and E, = pp + Bbe = 3—1x1 = 2. The rows of L are the backward predictor coefficients,
and the diagonal entries of D, are the Ej. Thus,

1 00 1 00
L=|-1 1 0|, Db=|0 2 0
1 -1 1 0 0 1

It is easily verified that LRLT = Dj. Note that the first entry of D}, is always equal to pg.
Next, we obtain the same results by carrying out the Gram-Schmidt construction starting
at y,; and ending with yj. Starting with €; = y, and E[€?]= 1, define

€2 =Yc— E[yc€1]5[6§]7161 =Yc—Ya

having E[€3]= E[y2]-2E[y:ya]+E[y3]= 2. Thus, the &, portion of the Gram-Schmidt

construction will be
_ | € | _ 1 0 Ya | _ 7.
R P R B

The last step of the Gram-Schmidt construction is
ep =yp — Elvper1E[€]] 7 €1 — Elype]E[€3] 7' €2 = Yb — (Ve = Va) = Ya — Ve + Vb
giving for the last row of L, b = [1, -1, 1]. In the above step, we used
Elype2]=E[ys Ve = ya)] = Elypycl-Elypyal=2-0=2

and E[ype1]= E[ypyal=0. a

Linear Estimation in the Backward Basis
Equation (1.8.17) may be written in the form
R=L"'D,LT (1.8.18)

where LT is the inverse of the transpose of L. Thus, L~! and L~T correspond to the con-
ventional LU Cholesky factors of R. The computational advantage of this form becomes
immediately obvious when we consider the inverse of R,

R =LTD,'L (1.8.19)

which shows that R~! can be computed without any matrix inversion (the inverse of the
diagonal matrix Dy, is trivial). The design of linear estimators is simplified considerably
in the ej basis. The estimate of x is

% =hTy (1.8.20)

where h = E[yy!] 'E[xy]= R~!r. Writing y = L~'e, and defining a new vector of
estimation weights by g = L~Th, we can rewrite Eq. (1.8.20) as

X=hTy=gle, (1.8.21)

1.8. Forward/Backward Prediction and LU/UL Factorization 33

The block diagram representations of the two realizations are shown below:

s e=Xx-% o e=x-%
X X
T | e [.7]
y h P y IR et IS

There are three major advantages of the representation of Eq. (1.8.21) over Eq. (1.8.20).
First, to get the estimate X using (1.8.20), the processor has to linearly combine a lot of
redundant information because the y basis is correlated, whereas the processor (1.8.21)
linearly combines only the non-redundant part of the same information. This has im-
portant implications for the adaptive implementations of such processors. An adap-
tive processor that uses the representation (1.8.20) will tend to be slow in learning the
statistics of the data vector y because it has to process all the redundancies in the data.
Moreover, the more the redundancies, or equivalently, the higher the correlations in the
data y, the slower the speed of adaptation. On the other hand, an adaptive processor
based on (1.8.21) should adapt very quickly. The preprocessing operation, e, = Ly,
that decorrelates the data vector y can also be implemented adaptively. In time series
applications, it is conveniently realized by means of a lattice structure. In adaptive array
applications, it gives rise to the so-called Gram-Schmidt preprocessor implementations.

Second, the computation of g can be done efficiently without any matrix inversion.
Given the LU factors of R as in Eq. (1.8.19) and the cross correlation vector r, we may
compute g by

g=L"Th=L"TRr=L"T(L"D,'L)r = D, 'Lr (1.8.22)

If so desired, the original weights h may be recovered from g by
h=1"g (1.8.23)

The third advantage of the form Eq. (1.8.21) is that any lower-order portion of the
weight vector g is already optimal for that order. Thus, the order of the estimator can
be increased without having to redesign the lower-order portions of it. Recognizing that
Lr = LE[xy]= E[xep], we write Eq. (1.8.22) as

. [Dy'Elxep] | _[8
g = Dy Elxes]= [Ey 'Elxep]] = [g}

where we used the diagonal nature of D} given in Eq. (1.8.17) and the decomposition
(1.8.15). The estimate (1.8.21) can be written as

A _ € T o
x=glep = [g7,9] [eZ] =glep +gep =X+ Rp (1.8.24)
It is clear that the two terms
% =gle, = E[xé&}1D,'ey, Ry =gep = E[xeplE[e3] ey (1.8.25)

are the optimal estimates of x based on the two orthogonal parts of the subspace of
observations, namely,

vyl =1{ylelep}, or, {ep} ={&}®{ep}

34 1. Review of Random Signals

The first term, X, is the same estimate of x based on y that we considered earlier but
now it is expressed in the diagonal basis &, = Ly. The second term, Rp, represents the
improvement in that estimate that arises by taking into account one more observation,
namely, yp. It represents that part of x that cannot be estimated from y. And, it is
computable only from that part of the new observation y} that cannot be predicted
from y, that is, ep. The degree of improvement of X over X, as measured by the mean-
square estimation errors, can be computed explicitly in this basis. To see this, denote
the estimation errors based on y and y by

T

e=x-%=x-gle,, e=x-x=x-g"T¢
Then, Eq. (1.8.24) impliese = x — X = (x — X) —Xp, or
e=¢e—gep (1.8.26)

Because e and vy, or ey, are orthogonal, we have E[Xe]= 0, which implies that
E=E[e’]=E[xe]=E[x(x —gTey)] = E[x*]-gTE[xep]
Similarly, £ = E[é2]= E[x2]-gTE[xép]. It follows that
E=E—-gE[xep]=E - g°Fp (1.8.27)

where we used g = E[xeb]Eb‘l. The subtracted term represents the improvement ob-
tained by including one more observation in the estimate. It follows from the above
discussion that the lower-order portion g of g is already optimal. This is not so in the y
basis, that is, the lower-order portion of h is not equal to the lower-order optimal weights
h = R'F, where ¥ = E[xy]. The explicit relationship between the two may be found
as follows. Inserting the block decomposition Eq. (1.8.13) of L into Eq. (1.8.19) and us-
ing the lower-order result R~ = LTD, 'L, we may derive the following order-updating
expression for R~!

of o Ep

Noting that ¥ is the lower-order part of r, r = [¥,r,]7, where r, = E[xyp], we
obtain the following order-updating equation for the optimal h

- i _
h=R'r= [IZT g] [:b} + Eib(bbT)r = [g] +cpb (1.8.29)

where ¢, = (bTr)/Ey = (BTF + 1) /Ep. A block diagram realization that takes into
account the order-recursive construction of the estimate (1.8.24) and estimation error
(1.8.26) is shown below.

X

p-1
Rl = [R 0] + ibbT (1.8.28)

+ e +7

+ +
r

— A

X Xp

Kl

&)
€

y—— L b
€p

=>

1.8. Forward/Backward Prediction and LU/UL Factorization 35

In Chap. 12, we discuss in greater detail the design procedure given by Eq. (1.8.22)
and show how to realize Egs. (1.8.21), or (1.8.24) and (1.8.26), by means of a lattice
structure. In Chap. 16, we discuss the corresponding adaptive versions, leading to the
so-called adaptive lattice filters for linear prediction and Wiener filtering, such as the
gradient lattice and RLS lattice.

Forward Prediction and UL Factorization

Next, we turn our attention to the forward predictors defined in Eq. (1.8.12). They lead
to UL (rather than LU) factorization of the covariance matrix. Considering an arbitrary
unit upper-triangular matrix U of the same dimension as R, we may form the larger unit
upper-triangular matrix whose top row is the forward predictor al = [1,xT]

1 T
o-[1 o] 1530
Then, it follows from Eq. (1.8.12) that
E T
URUT = [0 U}gUT} (1.8.31)

It follows that URUT is the covariance matrix of the transformed vector

o[y e[yal [yat+ta®y | [ea
e; =Uy= |:0 U :||: v :| = |: Ui’ = &, (1.8.32)

Choosing U to correspond to the UL factor of R, that is, URUT = D,, where D, is
diagonal, then Eq. (1.8.31) implies that U will correspond to the UL factor of R:

T
URUT = [% ga } =D, (1.8.33)

This is equivalent to Eq. (1.7.14). The basis e; = Uy is completely decorrelated,
with covariance matrix E [eaeg] = Dg,. Itis equivalent to Eq. (1.7.13). The rows of U are
the forward predictors of successive orders. And therefore, the UL factorization of R
is equivalent to performing the Gram-Schmidt construction starting at the endpoint y},
and proceeding to y,;. The following example illustrates the method.

Example 1.8.2: By successively solving forward prediction problems of lower and lower order,
construct the UL factorization of the covariance matrix R of Example 1.8.1.

Solution: Using Eq. (1.8.7), we find

e [2 3])22) 2)

Thus, al = [1,&T]= [1,-3/5,2/5]. The estimation error is

1
Ei=pa+alr,=1+ [—3/5,2/5][0] =§

36 1. Review of Random Signals

~ 3 2
Repeating the procedure on R = { > 3], we find the corresponding forward prediction

. . 1
coefficients, satisfying Ra = E,Q, where @ = [0],

& =—[3]"'[2]= —%, al = [1,&"1=[1,-2/3]

and E; = pa + & F, = 3 - (2/3)x2 = 5/3. The rows of U are the forward predictor
coefficients and the diagonal entries of D, are the Egs:

1 =3/5 2/5 2/5 0 0
U=|0 1 -2/3 |, Dg;= 0 5/3 0
0 0 1 0 0 3

It is easily verified that URUT = D,. Note that the last entry of D, is always equal to
Pb-]

Equation (1.8.33) can be used to compute the inverse of R:
R =U"D;'U (1.8.34)

Using the lower-order result R~! = UT D;!' U and the decomposition (1.8.30), we find
the following order-updating equation for R~!, analogous to Eq. (1.8.28):

0o of 1
-1 _ L T
R = [0 R-1 :| + Eﬂaa (1.8.35)

Denoting ¥ = E[xy] and r, = E[Xy,], we obtain the alternative order-update equa-
tion for h, analogous to Eq. (1.8.29):

T
h:R‘lr:[g g_l}[?]+%(aTr)a:[g}+caa (1.8.36)
a

where ¢, = (@'r)/E; = (rqa + «'F)/E,, and h = R7'F is the lower-order optimal
estimator for estimating x from y. By analogy with Eq. (1.8.21), we could also choose to
express the estimates in the e, basis

R=hTy=hTU"'e, = gle, (1.8.37)

where g, = U"Th. A realization is shown below.

The most important part of the realizations based on the diagonal bases e, or e, is
the preprocessing part that decorrelates the y basis, namely, e, = Ly, or e; = Uy. We
will see in Chapters 12 and 16 that this part can be done efficiently using the Levinson
recursion and the lattice structures of linear prediction. The LU representation, based on
the backward predictors, e, = Ly, is preferred because it is somewhat more conveniently
realized in terms of the lattice structure than the UL representation e, = Uy.

1.8. Forward/Backward Prediction and LU/UL Factorization 37

Order Updates

So far, we studied the problems of forward and backward prediction separately from
each other. Next, we would like to consider the two problems together and show how to
construct the solution of the pair of equations (1.8.12) from the solution of a similar pair
of lower order. This construction is the essence behind Levinson’s algorithm for solving
the linear prediction problem, both in the stationary and in the adaptive least squares
cases. Consider the following pair of lower-order forward and backward predictors,
defined in terms of the block decompositions (1.8.5) of R:

Ra=E;a, Rb=E,v (1.8.38)

where 01 and V are unit vectors of dimension one less than those of Eq. (1.8.12). They
are related to u and v through the decompositions

u=[g}, v=[g} (1.8.39)

The basic result we would like to show is that the solution of the pair (1.8.12) may
be constructed from the solution of the pair (1.8.38) by

[i]]2
SHR

This result is motivated by Eq. (1.8.39), which shows that the right-hand sides of
Egs. (1.8.38) are already part of the right-hand sides of Eq. (1.8.12), and therefore, the
solutions of Eq. (1.8.38) may appear as part of the solutions of (1.8.12). The prediction
errors are updated by

(1.8.40)

Eqs=Q-Yayp)Ea, Ep=(1-yayp)Ep (1.8.41)
where A A
a b

=22 ==° 1.8.42

Yb 2 Ya i, ()

The ys are known as the reflection or PARCOR coefficients. The quantities A, and
Ay are defined by

Ag=aTry, Ap=h'r, (1.8.43)

The two As are equal, A; = Ay, as seen from the following considerations. Using
the decompositions (1.8.5), we find

SERERIHREAR
<[o)-[n R Ls]- []

~

38 1. Review of Random Signals

They may be written more conveniently as

a Equ - | o 0 -
R[g]=[A“:]=Ea[g}+Aa[l}=Eau+Aav (1.8.44a)
0 A 1 _[o "
R[B:|=[E.b}i_,:|=Ab|:0]+Eb[V}=Ahu+Ebv (1.8.44b)

Noting that dTuand d”v are equal to the first and last components of a vector d, we
have [0,b’ Ju = 0 and [0,b"]v = 1 because the first and last components of [0,] are
zero and one, respectively. Similarly, [aT,0]u = 1 and [aT,0]v = 0. Thus, multiplying
Eq. (1.8.44a) from the left by [0,b"] and Eq. (1.8.44b) by [aT, 0], we find

- a 0
[o,bT]R[g] = Aa, [aT,()]R[B] = Ay (1.8.45)
The equality of the As follows now from the fact that R is a symmetric matrix. Thus,
Ag=Ap=A (1.8.46)

An alternative proof, based on partial correlations, will be given later. Equations
(1.8.40) and (1.8.41) follow now in a straightforward fashion from Eq. (1.8.44). Multiply-
ing the first part of Eq. (1.8.40) by R and using Egs. (1.8.12) and (1.8.44), we find

a 0
Eau=Ra=R[0]—be[B]

Equ = (Equ+ Agv) —yp (Apu + Epv)= (Eq — ypAp)u+ (Ap — ypEp)v

or,

which implies the conditions
Eqa=Eq—ypAp, Aqa—ypEr =0 (1.8.47)
Similarly, multiplying the second part of the Eq. (1.8.40) by R, we obtain
Epv = (Apu + Epv) —ya(Equ+ Apv) = (Ap — yaEa)u+ (Ep — yada)V

which implies
Ep =Ep — YalAa, Ab—YaEa=0 (1.8.48)
Equations (1.8.41) and (1.8.42) follow now from (1.8.47) and (1.8.48). By analogy with
Eq. (1.8.9), we may now define the prediction errors corresponding to the lower-order
predictors a and b by

=a'y, é,=b ¥y (1.8.49)

Using Egs. (1.8.9) and (1.8.40), we find the following updating equations for the pre-
diction errors

aTy=[aT,01[} y6[0,B][V;]=aTV—be ¥

Ty: [O'BT][YG:|

1.8. Forward/Backward Prediction and LU/UL Factorization 39

or,
€q=€4—Yvép, €p=~Ep—Yaly (1.8.50)

A lattice type realization ofEq. (1.8.50) is shown below. It forms the basis of the

lattice structures of linear prediction discussed in Chapters 12 and 16.
N
e e

a a

€ D €

The order-updating procedure is illustrated by the following example.

Example 1.8.3: Using Eq. (1.8.40), construct the forward and backward predictors a and b found
previously in Examples 1.8.1 and 1.8.2.

Solution: The first part of Eq. (1.8.38), Ra = E,u is solved as follows:

1][] L[I R
[1 3][&}=E"[0} v &= k=g

Therefore, a = [B 11 /3] Similarly, Ry = Ep¥, is solved by
BRI
Hence, b= [_21/3] Next, we determine
A:éTrb:[l,—l/S][g]:—g, yb:%:—é, yr?—a:—l

It follows from Eq. (1.8.40) that

[2]l2]
(i) [o) 2]

and the prediction errors are found from Eq. (1.8.41)

Il
| —
|
—
o+
w
_
|
—
|
vl N
~—
| —
|
NN
= o
w
| S
| —
o |
\f»—t
UG
—_

_ 2 2 N 5
Eq=E;(1 -Yayp)= 5(172/5): = Ep =Ep(1 = yayp)= 5(172/5):1

40 1. Review of Random Signals

Partial Correlation Interpretation

Next, we show that y,; and y}, are partial correlation coefficients in the sense of Sec. 1.7.
Let y. denote all the components of y that lie between y,; and yp, so that

Ya
_ Ya - Ye
= .y = , V= 1.8.51
Yy Ye y [Yc] y [yb] ()

Vb

The forward predictor a was defined as the best estimator of y,; based on the rest
of the vector y. By the same token, a is the best estimator of y,; based on the rest of y,
that is, y.. Similarly, the backward predictor b defines the best estimator of y;, based
on the rest of the vector y; again, y.. Decomposing a and b as

SHRSH

we may write the best estimates of y, and yp based on y, as

~ _ _ N _ ~T
Vare = ElYayr 1ELycyi 1 'ye = =&"ye, Vbre = Elvpye JElyeyl 1 'ye = =B ye

and the estimation errors
_ ST - - ST A
Ca=aly=Ya—Vaic, € =b¥=yp— Ve (1.8.52)

Thus, €, and éj, represent what is left of y; and y}, after we project out their depen-
dence on the intermediate vector y.. The direct influence of y, on yj, with the effect
of y. removed, is measured by the correlation E[&,€,]. This correlation is equal to the
quantity A defined in Eq. (1.8.46). This follows from Eq. (1.8.43)

a=a'ty, =a’Elypy]=E[y»(@"y)] = E[ypéal

similarly,
Ap=b'1, =B Elyay1= E[ya (6 $)] = E[yaép]

Now, because &, is orthogonal to y. and yp. is a linear combination of y., it follows
that E[Yp,c€4]= 0. Similarly, because éj, is orthogonal to y. and Y/, is linearly related
to y,, it follows that E[y,4,.€p]= 0. Thus,

Aa = Elypeal=E[(yp — Pp/c)al= E[épéql
Ap = E[yaépl= E[(Va = Yasc)ép]= E[24ép]
Therefore, A, and Ap, are equal
Aq = Ap = E[é46p] (1.8.53)

This is an alternative proof of Eq. (1.8.46). It follows that y, and y} are normalized
PARCOR coefficients in the sense of Sec. 1.7:

E[eqép] _ E[épeq]

) YT B (1.8.54)

Y =

1.8. Forward/Backward Prediction and LU/UL Factorization 41

Using the Schwarz inequality for the inner product between two random variables,
namely, |E[uv] |2 < E[u?]E[Vv?], we find the inequality

E[éaéb]z

E[&]E[e3] ~ (1.8.55)

0<yaypr =
This inequality also follows from Eq. (1.8.41) and the fact that E, and E, are positive
quantities, both being mean square errors.

Example 1.8.4: For Example 1.8.1, compute the estimates y,,. and yj,. directly and compare
them with the results of Example 1.8.3.

Solution: From the matrix elements of R we have E[y,ypl= 1, E[ypyc]= 2, and E[y?]= 3.
Thus,

N _ 1 . _ 2
)/a/c=E[)/aYc]E[Y§] 1)’(': §Yc; Yb/c:E[thC]E[yg] 1YC:§YC

The corresponding errors will be

) 1 o 2 .
€a=Ya= 3¥e= [1,-1/3]y, ép=yp— 3Ve = [-2/3,1]y

The results are identical to those of Example 1.8.3. O

Conventional Cholesky Factorizations

Equation (1.8.18) shows that the conventional Cholesky factor of R is given by the inverse
matrix L~!. A direct construction of the conventional Cholesky factor that avoids the
computation of this inverse is as follows. Define

Gy = Elye}] (1.8.56)
If we use e, = Ly and E[eheg] = Dy, it follows that
LGy = LE[ye;] = E[ebeg] =Dy

or,
Gp =L7'Dy (1.8.57)

Thus, Gy is a lower-triangular matrix. Its main diagonal consists of the diagonal
entries of Dy. Solving for L=! = GbD;1 and inserting in Eq. (1.8.18), we find the con-
ventional LU factorization of R:

R = (GyDpY) Dy (DG = G,D, 1G] (1.8.58)

Similarly, the conventional UL factorization of R is obtained from Eq. (1.8.33) by
defining the upper-triangular matrix

Ga = E[yel] (1.8.59)
Using e, = Uy and E[ezel]= D,, we find

UG,=D, = G,=U"'D, (1.8.60)

42 1. Review of Random Signals

which yields the conventional UL factorization of R:
R=U"'D,UT =G,D;'GY

The columns of the matrices G, and Gp will be referred to as the forward and back-
ward gapped functions. This terminology will be justified in Chap. 12. The decompo-
sition of Gy into its columns can be done order-recursively using the decomposition
(1.8.15). We have

Gp = Elyle]l,ep]]= [Gp,gp] (1.8.61)

where G = E[yég] and g, = E[yep]. Similarly, using Eq. (1.8.23) we find
Ga = Elylea, ;1] = [84,Gal (1.8.62)

where G, = E[yé!] and g, = E[ye,]. Motivated by the lattice recursions (1.8.50), we
are led to define the lower-order gapped functions

gy = Elyép], 8,=Elyéal

It follows that the gapped functions g, = E[ye,] and g, = E[yep] can be con-
structed order-recursively by the lattice-type equations
82 =82~ Yb8p
5) (1.8.63)
8p = 8p — Ya8a
The proof is straightforward. For example, E[ye,]= E[y(é; — ¥pép)]. In Chap. 12
we will see that these equations are equivalent to the celebrated Schur algorithm for
solving the linear prediction problem. In recent years, the Schur algorithm has emerged
as an important signal processing tool because it admits efficient fixed-point and parallel
processor implementations. Equations (1.8.63) are mathematically equivalent to the
Levinson-type recursions (1.8.40). In fact, Eq. (1.8.40) can be derived from Eq. (1.8.63)
as follows. Using e, = aly and e, = b'y, it follows that

g, = Elyeal=E[y(y'a)] =Ra, g, =E[yep]=E[y(y'b)] =Rb

ga:R|:

These are easily shown. For example,

Similarly, we have

(1.8.64)

S
| —
-1

S
Il
=
1
Th O
| I

a _ a T - _ _
R [0} =E[yly",ypl] [0] = Elyy'la=Elyéal= g,
Therefore, the first part of Eq. (1.8.63) is equivalent to

weal3] o]

Equation (1.8.40) follows now by canceling out the matrix factor R. One of the es-
sential features of the Schur algorithm is that the reflection coefficients can also be

1.8. Forward/Backward Prediction and LU/UL Factorization 43
computed from the knowledge of the lower-order gapped functions g, and g, as fol-
lows. Using Eq. (1.8.64) and dotting Eq. (1.8.44) with the unit vectors u and v, we find

E,=u'g,, E,=vTg,, A=ulg,=vg, (1.8.65)
Thus, Eq. (1.8.42) may be written as

- vig, - u’g,
vlg,’ u’g,

(1.8.66)

Summary

We have argued that the solution of the general linear estimation problem can be made
more efficient by working with the decorrelated bases e, or ey, which contain no re-
dundancies. Linear prediction ideas come into play in this context because the linear
transformations U and L that decorrelate the data vector y are constructible from the
forward and backward linear prediction coefficients a and b. Moreover, linear predic-
tion was seen to be equivalent to the Gram-Schmidt construction and to the Cholesky
factorization of the covariance matrix R. The order-recursive solutions of the linear pre-
diction problem and the linear estimation problem, Egs. (1.8.24) through (1.8.26), give
rise to efficient lattice implementations with many desirable properties, such as robust-
ness under coefficient quantization and modularity of structure admitting parallel VLSI
implementations.

In this section, we intentionally did not make any additional assumptions about
any structural properties of the covariance matrix R. To close the loop and obtain the
efficient computational algorithms mentioned previously, we need to make additional
assumptions on R. The simplest case is to assume that R has a Toeplitz structure. This
case arises when vy is a block of successive signal samples from a stationary time series.
The Toeplitz property means that the matrix elements along each diagonal of R are the
same. Equivalently, the matrix element R;; depends only on the difference of the indices,
that is, Rjj = R(i — j). With respect to the subblock decomposition (1.8.5), it is easily
verified that a necessary and sufficient condition for R to be Toeplitz is that

R =R

This condition implies that the linear prediction solutions for R and R must be the

same, that is,
b=b, a=a

Thus, from the forward and backward linear prediction solutions a and b of the
lower-order Toeplitz submatrix R, we first obtain b = b and then use Eq. (1.8.40) to get
the linear prediction solution of the higher order matrix R. This is the essence behind
Levinson’s algorithm. It will be discussed further in Chap. 12.

In the nonstationary time series case, the matrix R is not Toeplitz. Even then one can
obtain some useful results by means of the so-called shift-invariance property. In this
case, the data vector y consists of successive signal samples starting at some arbitrary

44 1. Review of Random Signals

sampling instant n

Yn
Yn-1 o(n)
. yn Yn
n)= . = = ~
y(m . |:)’n—M:| [y(n)]
Yn-M+1
Yn-M
It follows that
Yn Yn-1
y(n)= : , vim)= : , or, y(n)=y(n-1)
Yn-M+1 Yn-M

This implies that R (n)= R(n — 1), and therefore

a(n)=an-1), bn)=bn-1)

Thus, order updating is coupled with time updating. These results are used in the
development of the fast recursive least-squares adaptive filters, discussed in Chap. 16.

1.9 Random Signals

A random signal (random process, or stochastic process) is defined as a sequence of
random variables {xg, X1,X2,...,Xn, ...} where the index n is taken to be the time. The
statistical description of so many random variables is very complicated since it requires
knowledge of all the joint densities

p(X0,X1,X2,...,Xn), forn=0,1,2,...

If the mean E[x,] of the random signal is not zero, it can be removed by redefining
a new signal x, — E[x,]. From now on, we will assume that this has been done, and
shall work with zero-mean random signals. The autocorrelation function is defined as

Rxx(n,m)= E[xpxm], n,m=0,1,2,...

Sometimes it will be convenient to think of the random signal as a (possibly infinite)
random vector X = [Xg,X1,X2,...,Xn,... 11, and of the autocorrelation function as a
(possibly infinite) matrix Ryx = E[xxT]. Rxx is positive semi-definite and symmetric.
The autocorrelation function may also be written as

Ryxx(n+k,n)= E[XpkXn] (1.9.1)

It provides a measure of the influence of the sample x,, on the sample X+, which
lies in the future (if k > 0) by k units of time. The relative time separation k of the two
samples is called the lag.

1.9. Random Signals 45

If the signal x, is stationary (or wide-sense stationary), then the above average is
independent of the absolute time n, and is a function only of the relative lag k; abusing
somewhat the above notation, we may write in the case:

Rxx (k)= E[xnskXnl= E[Xn +xXn'] (autocorrelation) (1.9.2)

In other words, the self-correlation properties of a stationary signal x,, are same on
the average, regardless of when this average is computed. In a way, the stationary ran-
dom signal x, looks the same for all times. In this sense, if we take two different blocks
of data of length N, as shown in Fig. 1.9.1, we should expect the average properties,
such as means and autocorrelations, extracted from these blocks of data to be roughly
the same. The relative time separation of the two blocks as a whole should not matter.

Wbt Lttt LA i
R A e

o N i
Fig. 1.9.1 Blocks of data from a stationary signal.

A direct consequence of stationarity is the reflection-invariance of the autocorrela-
tion function Ry (k) of Eq. (1.9.2):

Rxx (k)= E[Xn+kXnl= Rxx (—k) (1.9.3)

One way to introduce a systematization of the various types of random signals is
the Markov classification into zeroth-order Markov, first-order Markov, and so on. The
simplest possible random signal is the zeroth-order Markov, or purely random signal,
defined by the requirement that all the (zero-mean) random variables x,, be independent
of each other and arise from a common density p (x); this implies

p (X0, X1,X2,...,Xn) =P (Xo)p(X1)p(x2) - - - p(Xpn) - - -

Ryx(n,m)= E[XyXm]=0, for n#m

Such a random signal is stationary. The quantity Ry (n, n) is independent of n, and
represents the variance of each sample:

R (0)= E[x;]= 0%
In this case, the autocorrelation function Rxx (k) may be expressed compactly as
Rux (K) = E[Xn+kXn]= 058 (k) (1.9.4)
A purely random signal has no memory, as can be seen from the property

P (Xn, Xn-1)= P (Xn)p(xn-1) or, p(XnlXn-1)=p(Xn)

46 1. Review of Random Signals

that is, the occurrence of x,_; at time instant n — 1 does not in any way affect, or
restrict, the values of x, at the next time instant. Successive signal values are entirely
independent of each other. Past values do not influence future values. No memory is
retained from sample to sample; the next sample will take a value regardless of the
value that the previous sample has already taken. Since successive samples are random,
such a signal will exhibit very rapid time variations. But it will also exhibit slow time
variations. Such time variations are best discussed in the frequency domain. This will
lead directly to frequency concepts, power spectra, periodograms, and the like. It is
expected that a purely random signal will contain all frequencies, from the very low to
the very high, in equal proportions (white noise).

The next least complicated signal is the first-order Markov signal, which has memory
only of one sampling instant. Such a signal remembers only the previous sample. It is
defined by the requirement that

P (XnlXn-1,Xn-1,...,X0) = P (Xn|Xn-1)

which states that x, may be influenced directly only by the previous sample value x,,_1,
and not by the samples x,_», ..., X(that are further in the past. The complete statistical
description of such random signal is considerably simplified. It is sufficient to know
only the marginal densities p (x,) and the conditional densities p (X, |X,-1). Any other
joint density may be constructed in terms of these. For instance,

p(x3,X2,X1,X0) = p(x3]x2,X1,X0) p (X2, X1,X0) (by Bayes’ rule)
= p(x3lx2) p(x2,X1,X0) (by the Markov property)

= p(x31x2) p (x21X1,X0) p (X1, X0)

= p(X31x2) p (X21x1) p (X1, X0)

= p(x3lx2) p(x21x1) p (X11x0) P (X0)

1.10 Power Spectrum and Its Interpretation

The power spectral density of a stationary random signal x,, is defined as the double-
sided z-transform of its autocorrelation function

Sw(z)= > R (k)zk (1.10.1)
k=—o

where Ry (k)is given by Eq. (1.9.2). If Ryx (k) is strictly stable, the region of convergence
of Sxx(z) will include the unit circle in the complex z-plane. This allows us to define

the power spectrum Sxx (w) of the random signal x, by setting z = e/* in Eq. (1.10.1).
Abusing the notation somewhat, we have in this case

Sxx(w)= > Ryx(k)e @k (1.10.2)

k=—o00

This quantity conveys very useful information. It is a measure of the frequency
content of the signal x,, and of the distribution of the power of x, over frequency. To

1.10. Power Spectrum and Its Interpretation 47

see this, consider the inverse z-transform

Rxx(k):§ Sxx(z)zk dz (1.10.3)

2TTjz
where, since Ryy (k) is stable, the integration contour may be taken to be the unit circle.
Using z = ¢/, we find for the integration measure

dz _duw
2mjz 2m

Thus, Eq. (1.10.3) may also be written as an inverse Fourier transform

m ord
Ra(0)= [S()ere* (1.10.4)
i 21T
In particular, the variance of x,, can be written as
™ dw
Rw(0)= 0% = E[x3]= J S () =—— (1.10.5)
- 21T

Since the quantity E[x2] represents the average total power contained in Xy, it fol-
lows that Sxx () will represent the power per unit frequency interval. A typical power
spectrum is depicted in Fig. 1.10.1. As suggested by this figure, it is possible for the
power to be mostly concentrated about some frequencies and not about others. The
area under the curve represents the total power of the signal x,,.

Ser(w)

Fig. 1.10.1 Typical power spectrum.

If x,, is an uncorrelated (white-noise) random signal with a delta-function autocorre-
lation, given by Eq. (1.9.4), it will have a flat power spectrum with power level equal to
the variance o2

Sex(w)

o?

Sxx(w) = Oy

0 T w

Another useful concept is that of the cross-correlation and cross-spectrum between
two stationary random sequences X, and y,. These are defined by

Ryx (k)= E[ynskxn], Syx(2)= > Ryx(k)z ™k (1.10.6)

k=—o00

48 1. Review of Random Signals

Using stationarity, it is easy to show the reflection symmetry property
Ryx (k) = Ryy (=k) (1.10.7)

that is analogous to Eq. (1.9.3). In the z-domain, the reflection symmetry properties
(1.9.3) and (1.10.7) are translated into:

Sxx(z):Sxx(Z_l) , Syx(z):Sxy(Z_l) (1.10.8)
respectively; and also

Sxx (W)= Sxx(—w), Syx(w)= Sxy(—w) (1.10.9)

1.11 Sample Autocorrelation and the Periodogram

From now on we will work mostly with stationary random signals. If a block of N signal
samples is available, we will assume that it is a segment from a stationary signal. The
length N of the available data segment is an important consideration. For example, in
computing frequency spectra, we know that high resolution in frequency requires a long
record of data. However, if the record is too long the assumption of stationarity may no
longer be justified. This is the case in many applications, as for example in speech and
EEG signal processing. The speech waveform does not remain stationary for long time
intervals. It may be assumed to be stationary only for short time intervals. Such a signal
may be called piece-wise stationary. If it is divided into short segments of duration of
approximately 20-30 milliseconds, then the portion of speech within each segment may
be assumed to be a segment from a stationary signal. A typical piece-wise stationary
signal is depicted in Fig. 1.11.1.

Fig. 1.11.1 Piece-wise stationary signal.

The main reason for assuming stationarity, or piece-wise stationarity, is that most
of our methods of handling random signals depend heavily on this assumption. For
example, the statistical autocorrelations based on the ensemble averages (1.9.2) may
be replaced in practice by time averages. This can be justified only if the signals are
stationary (actually, they must be ergodic). If the underlying signal processes are not
stationary (and therefore definitely are not ergodic) we cannot use time averages. If a
signal is piece-wise stationary and divided into stationary blocks, then for each such
block, ensemble averages may be replaced by time averages. The time average approxi-
mation of an autocorrelation function is called the sample autocorrelation and is defined

1.11. Sample Autocorrelation and the Periodogram 49

as follows: Given a block of length N of measured signal samples

‘YOyYLYZ,---,YNfl‘

define
N

-1-k
Ryy (k)= N > Vnikyn, for 0<k<N-1 (1.11.1)
n=0
and

Ryy (k)= Ry, (=k), for —(N-1)<k=<-1
The function acf takes as inputs two length-N signal blocks y,, x,, n = 0,1,...,N—1,
and computes their sample cross-correlation defined as
N

-1-k
Iéyx(k)zf Z Yn+kXn, k=0,1,...,N—1
N k=0

This function may be used to compute either auto-correlations or cross-correlations.
The periodogram is defined as the (double-sided) z-transform of the sample autocorre-

lation
N-1

Sy(z)= > Ryyk)z* (1.11.2)
k=—(N-1)
It may be thought of as an approximation (estimate) of the true power spectral den-
sity Syy (z). It is easily shown that the periodogram may be expressed in terms of the
z-transform of the data sequence itself, as

Syy(2)=]%Y(z)Y(z”) (1.11.3)

where N
Y(2)= > ynz " (1.11.4)

n=0

As a concrete example, consider a length-3 signal y = [yo,V1,¥2]7. Then,
Y(2)Y(z7') = Vo +y127 ' +Y227%) (Yo + Y12 + y22°)
= (V5 + Y5 + ¥+ oy +yiy2) (271 + 2)+ (voy2) (272 + 2%)

from which we extract the inverse z-transform

A 1
Rxx(o) = §(Y(2] +Y% +)/§)

. ~ 1
Rux(=1)= Rxx (1) = §()’0)’1 +y1y2)

R (-2)= R (2) = 5 (v072)

50 1. Review of Random Signals

These equations may also be written in a nice matrix form, as follows

Yo 0 O
I:zxx(o) I:exx(l) Rxx(z) Yo Y1 Y2 0 0 Y1 Yo 0
R (1) Rxx(0) Rux(1) | =210 Yo yi y2 0 [f¥Y2 ¥ Yo
Rxx(2) Rxx(1) Rxx(0) 0 0 Yo yi ¥ 0 y2 »
R
Y

or,
. 1
Ry, = §YTY

The matrix Ry, on the left is called the sample autocorrelation matrix. It is a Toeplitz
matrix, that is, it has the same entry in each diagonal. The right hand side also shows
that the autocorrelation matrix is positive definite. In the general case of a length-N
sequence Y, the matrix Y has N columns, each a down-shifted (delayed) version of the
previous one, corresponding to a total of N — 1 delays. This requires the length of each
column to be N + (N — 1), that is, there are 2N — 1 rows. We will encounter again this
matrix factorization in the least-squares design of waveshaping filters.

The sample autocorrelation may also be thought of as ordinary convolution. Note
that Y (z7!) represents the z-transform the original signal y = [yo,y1,...,¥n-1]7 re-
flected about the time origin. The reflected signal may be made causal by a delay of
N — 1 units of time. The reflected-delayed signal has some significance, and is known
as the reversed signal. Its z-transform is the reverse polynomial of Y (z)

YR(z)= 2z N-Dy(z71)

[O o -+ 0 yo Y -+ ¥YN-2 ¥YN-1] = original
[Y1 Yyn2 - Y1 Yo 0 S 0 0 1 = reflected
[O 0 -+ 0 ¥YN-1 YN2 - W Yo 1 = reversed

The periodogram is expressed then in the form
o 1 1
Sxx(z)= NY(Z) Y(Zil) = NY(Z) YR (Z)ZN71

which implies that ﬁyy(k) may be obtained by convolving the original data sequence
with the reversed sequence and then advancing the result in time by N — 1 time units.
This is seen by the following convolution table.
B % %
W | WAy N T R

R W w0
) /yoyo///yoyl///yoyz

The periodogram spectrum is obtained by substituting z = e/®

2
. 1 , 1
Sy (w)= Y (@) |? = N (1.11.5)

N-1
Z yne—jwn
n=0

1.12. Filtering of Stationary Random Signals 51

The periodogram spectrum (1.11.5) may be computed efficiently using FFT methods.
The digital frequency w in units of [radians/sample] is related to the physical frequency
f in [Hz] by

w =27mfT =

fs

where fs is the sampling rate, and T = 1/f5, the time interval between samples. The
frequency resolution afforded by a length-N sequence is

21T fs 1 1

Aw = N’ or, Af—N—NT—TR [Hz]
where Tgr = NT is the duration of the data record in seconds. The periodogram spec-
trum suffers from two major drawbacks. First, the rectangular windowing of the data
segment introduces significant sidelobe leakage. This can cause misinterpretation of
sidelobe spectral peaks as being part of the true spectrum. And second, it is well-known
that the periodogram spectrum is not a good (consistent) estimator of the true power
spectrum Sy, (w).

The development of methods to improve on the periodogram is the subject of clas-
sical spectral analysis [9-19]. We just mention, in passing, one of the most popular of
such methods, namely, Welch’s method [20]. The given data record of length N is subdi-
vided into K shorter segments which may be overlapping or non-overlapping. If they are
non-overlapping then each will have length M = N/K; if they are 50% overlapping then
M = 2N/(K + 1). Each such segment is then windowed by a length-M data window,
such as a Hamming window. The window reduces the sidelobe frequency leakage at the
expense of resolution. The window w (n) is typically normalized to have unit average
energy, that is, (1/M) Z.Ir\,tol w?(n) = 1. The periodogram of each windowed segment is
then computed by FFT methods and the K periodograms are averaged together to obtain
the spectrum estimate

1 K
S(w)= E;Si(w)

where S;(w) is the periodogram of the ith segment. The above subdivision into seg-
ments imitates ensemble averaging, and therefore, it results in a spectrum estimate of
improved statistical stability. However, since each periodogram is computed from a
length-M sequence, the frequency resolution is reduced from Aw = 27r/N to roughly
Aw = 211/M (for a well-designed window). Therefore, to maintain high frequency reso-
lution (large M), as well as improved statistical stability of the spectrum estimate (large
K), along data record N = MK is required—a condition that can easily come into con-
flict with stationarity. The so-called “modern methods” of spectrum estimation, which
are based on parametric signal models, can provide high resolution spectrum estimates
from short data records.

1.12 Filtering of Stationary Random Signals

In this section, we discuss the effect of linear filtering on random signals. The results
are very basic and useful in suggesting guidelines for the design of signal processing

52 1. Review of Random Signals

systems for many applications, such as noise reduction, signal extraction, parametric
spectrum estimation, and so on.

Suppose a stationary random signal x;, is sent into a linear filter defined by a transfer
function H (z), resulting in the the output random signal y,

Xn H(Z) Yn

H(z)= Zhnz‘"

We would like to derive relationships between the autocorrelation functions of the in-
put and output signals, and also between the corresponding power spectra. We assume,
for now, that the signals x,, yn, h, are real-valued. Using the input/output filtering
equation in the z-domain,

Y(z)=H(z)X(z) (1.12.1)

we determine first a relationship between the periodograms of the input and output sig-
nals. From the factorization of Eq. (1.11.3) and dropping the factor 1/N for convenience,
we find

Syy(2) =YY (z)
=H@2)X(2)H(zHWX(z HY=H@2)H((Zz)X (2)X(z™h) (1.12.2)
=H(2)H(z7) 8 (2)= Shn (2) Sxx (2)

where we used the notation Spn (z) = H (z)H (z71). This quantity is the z-transform of
the autocorrelation function of the filter, that is,

Swn(z)=H(z)H(z"")= > Run(k)z™* (1.12.3)

k=—00

where Rpup (k) is defined as

Run (k)= Z hpixhn | (filter autocorrelation function) (1.12.4)
n

Equation (1.12.3) is easily verified by writing,

Run (k)= > hihjs (k — (i - j))
i,j

and taking z-transforms, or by writing R, (k)= >, hksnhn = X, hk—nh—pn, which is
recognized as the convolution between the signals h, and h_, whose z-transforms are
H(z) and H(z™ 1), respectively.

Taking inverse z-transforms of Eq. (1.12.2), we obtain the time-domain equivalent
relationships between the input and output sample autocorrelations

Ryy(k) = Z Run (k) Ryx (k — m) = convolution of Ry, with R (1.12.5)

m=—oo

1.12. Filtering of Stationary Random Signals 53

Similarly, we find for the cross-periodograms
S (2)=Y(2)X(zH)=H((2)X(2)X(z 7)) = H(2)Sx (2) (1.12.6)
and also, replacing z by z7!,
Sy (2)=Sw(2)H(z ™) (1.12.7)

The above relationships between input and output periodogram spectra and sample
autocorrelations remain the same for the statistical autocorrelations and power spectra.
In the z-domain the power spectral densities are related by

Syy(z2) = H(z)H(z7") Sxx (2)
Syx (z) = H(z)Sxx(2) (1.12.8)
Sxy(z) = Sxx (Z)H(Z_l)

Setting z = e/®, we may also write Eq. (1.12.8) in terms of the corresponding power
spectra:

Sy () = [H() [2Sx(@0)
Syx (W) = H(w)Sxx (w) (1.12.9)
Sxy (W) = Sxx (W)H (—w) = Sxx (w)H (w) *

In the time domain the correlation functions are related by

Ryy(k) = > Riun(m)Ryx(k — m)

. (1.12.10)
Ryx(k) = Z hmex(k - m)

m=—oo

The proofs of these are straightforward. For example, to show Eq. (1.12.10), we may
use stationarity and the I/0 convolutional equation,

Yn = Z hmXn-m
m

to find
Ryy (k) = Elyn+kynl=E |:Z hixnik-i z hjxnj:|
i J

= ZhihjE[anrk—ixn—j] = Z hihjRxx (k — (i—Jj))
i,j i,J

> hihis(m — (i —j)) Ry (k — m)= > Rpn (m)Ryx (k — m)

i,j,m

54 1. Review of Random Signals

The proof assumes that the transients introduced by the filter have died out and
that the output signal is stationary. For a strictly stable filter, the stationarity of the
output yj, (i.e., the fact that E[y,+x)yn] is independent of the absolute time n), becomes
valid for large times n. To see the effect of such transients, consider a causal filter and
assume that the input x, is applied starting at n = 0. Then, the I/0 equation reads:

n
Yn = Z hmXn-m

m=0

and the corresponding output autocorrelation function becomes (for n, k > 0):

n+k n n+k n
E[Yn+k)/n]=E|:Z hixn k- hjxn—j:| = Z Zhithxx(k +Jj-1)
i=0 j=0 i=0 j=0

which does have an explicit n dependence. Assuming that the filter is strictly stable, the
above expression will converge to Eq. (1.12.10) in the limit of large n. A further example
of this property is discussed in Sec. 1.15.

The above filtering results can be applied to the special case of a zero-mean white-
noise signal x, of variance (T,% , which has a delta-function autocorrelation and a flat
power spectrum, as shown in Fig. 1.12.1:

Ryx (k)= E[Xn1kXn]= 056 (k), Sw(2)= 0 (1.12.11)
Ruk) = 032 5(k) Sur(@)
o?
w
-3 2 -1 0 1 2 3 -Tr 0 ™
Fig. 1.12.1 Autocorrelation function and power spectrum of white noise.
Then, Egs. (1.12.8) through (1.12.10) simplify as follows
Syy(z) =H(2)H(z ") 0?2
(1.12.12)
Syx(z) = H(z)03
Syy(w) = ‘H((D) |20—§
) (1.12.13)
Syx(w) = H(w) o2
Ryy (k) = 03 > hpixhn = 03 Run (k)
n (1.12.14)

Ryx (k) = 0_;3 hk

1.12. Filtering of Stationary Random Signals 55

The filtering operation reshapes the flat white-noise spectrum of the input signal into
a shape defined by the magnitude response |H (w) { % of the filter, and introduces self-
correlations in the output signal given by the autocorrelation of the filter. The variance
0‘5 of the output noise signal y,, is obtained from Eq. (1.10.5), that is,

1 (™ 1 (™ 2
05 = Elyal= Ry, (0)= o Jﬁn Syy(w) dw = ot J‘ﬂT |H(w)|“c?dw (1.12.15)
The ratio 0')2,/ 02 is a measure of whether the filter attenuates or amplifies the input

noise. We will refer to it as the noise reduction ratio (NRR). Using Eq. (1.12.15) and
Parseval’s identity, we may express it in the equivalent forms:

X

o’ 1 (™
R=-%=>hi=_— J |H(w)|*dw| (noise reduction ratio) (1.12.16)
[0 n 27T)1t

Example 1.12.1: As an example, consider the first-order Markov signal y,, defined as the output
of the filter

Yn = aYn-1 + €n, H(Z)=1 lal <1

—az1’
driven by white noise €, of variance ¢’2. The impulse response of the filter is

h, =a"u(n), u(n)= unitstep

The output autocorrelation Ry, (k) may be computed in two ways. First, in the time domain
(assuming first that k > 0):

0

© © 2k
ola
2 2 k 2 -k 2
Ryy (k)= 02 > hpikhn = 02 > a™*a" = gta Za":ljaz
n=0 n=0 n=0

And second, in the z-domain using power spectral densities and inverse z-transforms
(again take k > 0):

2
B g2 %
Sy(2) =H(Z)H(2")0e = 5= 20 0~ ag)
dz oez* dz
_ k_ 22 = T
Ryy (k) = %u.c Syy(2)z 2mjz £_c_ (z—-a) (1~ az) 2mj
2 gk
= (Residue at z = a) = TeZ
1-a?

In particular, we verify the following results to be used later:
2

o? ota
Ryy(o): ﬁ) Ryy(l): ﬁ = aRyy(O)
_ Ry ()
Ry (0)

It is interesting to note the exponentially decaying nature of Ry, (k) with increasing lag k,
as shown in Fig. 1.12.2.

02 = (1 —a®)Ryy(0)

Correlations exist between successive samples due the indirect influence of a given sample
yn on all future samples, as propagated by the difference equation. In going from one
sampling instant to the next, the difference equation scales y, by a factor a; therefore, we
expect the correlations to decrease exponentially with increasing lag.]

56 1. Review of Random Signals

Ryy (k) = Ry(0) a¥

Fig. 1.12.2 Exponentially decaying autocorrelation.

Whenever the autocorrelation drops off very fast with increasing lag, it can be taken
as an indication that there exists a stable difference equation model for the random
signal. However, not all random signals have exponentially decaying autocorrelations.
For example, a pure sinusoid with random phase

Yn = Acos(won + ¢)

where ¢ is a uniformly-distributed random phase, has autocorrelation
1,2
Ryy (k)= §A cos (wok)

which never dies out. A particular realization of the random variable ¢ defines the
entire realization of the time series y,. Thus, as soon as ¢ is fixed, the entire y, is
fixed. Such random signals are called deterministic, since a few past values—e.g., three
samples—of y;, are sufficient to determine all future values of yy,.

Finally we note that all of the filtering equations in Eqgs. (1.12.8)-(1.12.10) can be
considered to be special cases of the following more general result involving two filters
H,(z) and H,(z) and two stationary input random signals x; (1) and x, (n), resulting
in the output signals y; (n) and y, (n) as shown below:

x,(n) H,(2) »1(n)

X,(n) H,(z) Yy(n)

Then, the corresponding cross-power spectral density of the output signals is given by:

Syiy, (2)=H1 (2)H2(271) Sxyx, (2) ‘ (1.12.17)

where Sy, x, (z) is the z-transform of Ry,x, (k)= E[x; (n + k) x2 (n)], etc.

1.13 Random Signal Models and Their Uses

Models that provide a characterization of the properties and nature of random signals
are of primary importance in the design of optimum signal processing systems. This
section offers an overview of such models and outlines their major applications. Many
of the ideas presented here will be developed in greater detail in later chapters.

1.13. Random Signal Models and Their Uses 57

One of the most useful ways to model a random signal [21] is to consider it as
being the output of a causal and stable linear filter B(z) that is driven by a stationary
uncorrelated (white-noise) sequence €,

o} o

where R (k) = E[€n1k€n]= 025 (k). Assuming a causal input sequence €y, the output
random signal y, is obtained by convolving €, with the filter’s impulse response by:

B(z)= > bpz ™"
n=0

n
Yn = bn_i€ (1.13.1)
i=0

The stability of the filter B(z) is essential as it guarantees the stationarity of the
sequence yy,. This point will be discussed later on. By readjusting, if necessary, the
value of 0'3 we may assume that by = 1. Then Eq. (1.13.1) corresponds exactly to the
Gram-Schmidt form of Egs. (1.6.15) and (1.6.16), where the matrix elements by,; are given
in terms of the impulse response of the filter B (z):

bni = bn-i (1.13.2)

In this case, the structure of the matrix B is considerably simplified. Writing the
convolutional equation (1.13.1) in matrix form

Yo 1 0 0 0 0 €o
Vi by 1 0 0 0 €1
Yo | = bz bl 1 0 0 € (1.13.3)
Y3 by b b1 1 0]] €3
V4 by by b, by 1 €4

we observe that the first column of B is the impulse response b, of the filter. Each
subsequent column is a down-shifted (delayed) version of the previous one, and each
diagonal has the same entry (i.e., B is a Toeplitz matrix). The lower-triangular nature of
B is equivalent to the assumed causality of the filter B(z).

Such signal models are quite general. In fact, there is a general theorem by Wold that
essentially guarantees the existence of such models for any stationary signal y,, [22,23].
Wold’s construction of B(z) is none other than the Gram-Schmidt construction of the
orthogonalized basis €,. However, the practical usage of such models requires further
that the transfer function B (z) be rational, that is, the ratio of two polynomials in z~!.
In this case, the I/O convolutional equation (1.13.1) is most conveniently expressed as
a difference equation.

Example 1.13.1: Suppose
1+cz7 ' + 272

B(z)= C2Z © 1.13.4
2) 1+dyz7' +dyz2 (1.134)

Then Eqg. (1.13.1) is equivalent to the difference equation
Yn = —d1yn-1 —d2yn-2 + €n + C1€p-1 + C2€n—2 (1.13.5)

58 1. Review of Random Signals

which may be realized as follows

The filter B(z) is called a synthesis filter and may be thought of as a random signal
generator, or a signal model, for the random signal y,,. The numerator and denominator
coefficients of the filter B(z), and the variance ag of the input white noise, are referred
to as the model parameters. For instance, in Example 1.13.1 the model parameters are
{Cl,Cz,dl,dz, 0'62-}

Such parametric models have received a lot of attention in recent years. They are
very common in speech and geophysical signal processing, image processing, EEG sig-
nal processing, spectrum estimation, data compression, and other time series analysis
applications.

How are such models used? One of the main objectives in such applications has
been to develop appropriate analysis procedures for extracting the model parameters
on the basis of a given set of samples of the signal y,. This is a system identification
problem. The analysis procedures are designed to provide effectively the best fit of the
data samples to a particular model. The procedures typically begin with a measured
block of signal samples {yo,y1,...,yn}—also referred to as an analysis frame—and
through an appropriate analysis algorithm extract estimates of the model parameters.
This is depicted in Fig. 1.13.1.

filter
block of data analysis coefficients model | to
Yos V1o - Ynt algorithm parameters | memory
variance 0¢&

Fig. 1.13.1 Analysis procedure.

The given frame of samples {yq,1,...,VYn} is represented now by the set of model
parameters extracted from it. Following the analysis procedure, the resulting model
may be used in a variety of ways. The four major uses of such models are in:

1. Signal synthesis

2. Spectrum estimation
3. Signal classification
4. Data compression

We will discuss each of these briefly. To synthesize a particular realization of the
random signal y,, it is only necessary to recall from memory the appropriate model
parameters, generate a random uncorrelated sequence €, having variance 0’2, and send
it through the filter B(z). Such uncorrelated sequence may be computer-generated using
a standard random number generator function. The synthetic signal will appear at the
output of the filter. This is shown in Fig. 1.13.2.

1.13. Random Signal Models and Their Uses 59
filter coefficients
from)
memory | model synthesis Y
— filter +—»
parameters random B(z) | synthesized
number — signal
variance 02 | generator | input
€n

Fig. 1.13.2 Signal synthesis.

This is the basic principle behind most speech synthesis systems. In speech, the
synthesis filter B (z) represents a model of the transfer characteristics of the vocal tract
considered as an acoustic tube. A typical analysis frame of speech has duration of
20 msec. If sampled at a 10-kHz sampling rate, it will consist of N = 200 samples.
To synthesize a particular frame of 200 samples, the model parameters representing
that frame are recalled from memory, and the synthesis filter is run for 200 sampling
instances generating 200 output speech samples, which may be sent to a D/A converter.
The next frame of 200 samples can be synthesized by recalling from memory its model
parameters, and so on. Entire words or sentences can be synthesized in such a piece-
wise, or frame-wise, manner.

A realistic representation of each speech frame requires the specification of two
additional parameters besides the filter coefficients and O'E, namely, the pitch period
and a voiced/unvoiced (V/UV) decision. Unvoiced sounds, such as the “sh” in the word
“should”, have a white-noise sounding nature, and are generated by the turbulent flow
of air through constrictions of the vocal tract. Such sounds may be represented ade-
quately by the above random signal models. On the other hand, voiced sounds, such as
vowels, are pitched sounds, and have a pitch period associated with them. They may be
assumed to be generated by the periodic excitation of the vocal tract by a train of im-
pulses separated by the pitch period. The vocal tract responds to each of these impulses
by producing its impulse response, resulting therefore in a quasi-periodic output which
is characteristic of such sounds. Thus, depending on the type of sound, the nature of
the generator of the excitation input to the synthesis filter will be different, namely, it
will be a random noise generator for unvoiced sounds, and a pulse train generator for
voiced sounds. A typical speech synthesis system that incorporates the above features
is shown in Fig. 1.13.3.

filter coefficients
. . synthesis t
memory pitch period " . yﬁlter D DIA)
VUV excitation generator B(2)
- 3 1. pulse train -
variance O¢ 2. random noise | MPut
6I‘I

Fig. 1.13.3 Typical speech synthesis system.

Another major application of parametric models is to spectrum estimation. This is

60 1. Review of Random Signals

based on the property that
Syy(w)= 02| B(w) | (1.13.6)

which will be proved later. It states that the spectral shape of the power spectrum
Syy (w) of the signal y; arises only from the spectral shape of the model filter B(w).
For example, the signal y, generated by the model of Example 1.13.1 will have

> 1+C1e7jw+C2272jw
€1+ dle—fw + dze_zjw

Sy ()= 0

This approach to spectrum estimation is depicted in Fig. 1.13.4. The parametric ap-
proach to spectrum estimation must be contrasted with the classical approach which is
based on direct computation of the Fourier transform of the available data record, that
is, the periodogram spectrum, or its improvements. The classical periodogram method
is shown in Fig. 1.13.5. As we mentioned in the previous section, spectrum estimates
based on such parametric models tend to have much better frequency resolution prop-
erties than the classical methods, especially when the length N of the available data
record is short.

from model filter coefficients spectrum

memory | parameters - estimate _ 2
variance 02 L | S, (w) = 0¢|B(w)]

—

Fig. 1.13.4 Spectrum estimation with parametric models.

block of data compute FFT

periodogram or
yoayl, ~-~,yN_1 Y((L))

. . | E—
its improvements

8yy() = - V(@)

Fig. 1.13.5 Classical spectrum estimation.

In signal classification applications, such as speech recognition, speaker verification,
or EEG pattern classification, the basic problem is to compare two available blocks of
data samples and decide whether they belong to the same class or not. One of the two
blocks might be a prestored and preanalyzed reference template against which the other
block is to be compared. Instead of comparing the data records sample by sample, what
are compared are the corresponding model parameters extracted from these blocks.
In pattern recognition nomenclature, the vector of model parameters is the “feature
vector.” The closeness of the two sets of model parameters to each other is decided
on the basis of an appropriate distance measure. We will discuss examples of distance
measures for speech and EEG signals in Chap. 12. This approach to signal classification
is depicted in Fig. 1.13.6.

Next, we discuss the application of such models to data compression. The signal
synthesis method described above is a form of data compression because instead of
saving the N data samples y, as such, what are saved are the corresponding model
parameters which are typically much fewer in number than N. For example, in speech

1.13. Random Signal Models and Their Uses 61

block of data analysis model

Yor Vis s Vi T algorithm 7 parameters l

compute Yes/No

distance | decision
block of data analysis model f

VoVl Vi 7 algorithm 7 parameters

Fig. 1.13.6 Signal classification with parametric models.

synthesis systems a savings of about a factor of 20 in memory may be achieved with
this approach. Indeed, as we discussed above, a typical frame of speech consists of 200
samples, whereas the number of model parameters typically needed to represent this
frame is about 10 to 15. The main limitation of this approach is that the reproduction
of the original signal segment is not exact but depends on the particular realization of
the computer-generated input sequence €, that drives the model. Speech synthesized
in such manner is still intelligible, but it has lost some of its naturalness. Such signal
synthesis methods are not necessarily as successful or appropriate in all applications.
For example, in image processing, if one makes a parametric model of an image and
attempts to “synthesize” it by driving the model with a computer-generated uncorrelated
sequence, the reproduced image will bear no resemblance to the original image.

For exact reproduction, both the model parameters and the entire sequence €, must
be stored. This would still provide some form of data compression, as will be explained
below. Such an approach to data compression is widely used in digital data transmission
or digital data storage applications for all types of data, including speech and image
data. The method may be described as follows: the given data record {yo, Y1,...,YN-1}
is subjected to an appropriate analysis algorithm to extract the model parameters, and
then the segment is filtered through the inverse filter,

1
A@= s Ynol @) |- (1.13.7)

to provide the sequence €,. The inverse filter A(z) is also known as the whitening
filter, the prediction-error filter, or the analysis filter. The resulting sequence €, has
a compressed dynamic range relative to y, and therefore it requires fewer number of
bits for the representation of each sample €,. A quantitative measure for the data
compression gain is given by the ratio G = 0')2,/ (TS, which is always greater than one.
This can be seen easily using Egs. (1.13.6) and (1.10.5)

m dw m 2 dw >
oy = J_"SY)’((U) Pyl o¢ J_"|B(w)| o oz > by

Since by = 1, we find

2
a.
_ Y _
G=3 =
€

Me

n=0

The entire sequence €, and the model parameters are then transmitted over the
data link, or stored in memory. At the receiving end, the original sequence y, may be

62 1. Review of Random Signals

reconstructed exactly using the synthesis filter B(z) driven by €,. This approach to data
compression is depicted in Fig. 1.13.7. Not shown in Fig. 1.13.7 are the quantization and
encoding operations that must be performed on €,, in order to transmit it over the digital
channel.

analysis € digital data € synthesis
Y, — filter " » link or 1 filter | ——,
A(z) memory B(z)

Fig. 1.13.7 Data compression.
Filtering the sequence y, through the inverse filter requires that A (z) be stable and
causal. If we write B(z) as the ratio of two polynomials

_N(2)
T D(z)

B(z) (1.13.9)
then the stability and causality of B(z) requires that the zeros of the polynomial D (z)
lie inside the unit circle in the complex z-plane; whereas the stability and causality of
the inverse A (z)= D(z)/N (z) requires the zeros of N (z) to be inside the unit circle.
Thus, both the poles and the zeros of B(z) must be inside the unit circle. Such filters
are called minimal phase filters. When A (z) is stable and causal it may be expanded in
the form

AZ)= > anz "=1+a1z ' +az 2+ - (1.13.10)
n=0

and the I/0 equation of Eq. (1.13.7) becomes

n

€n = Z AiYn-i =Yn + A1Yn-1 + Q2yn-2 + - - - (1.13.11)
i=0
forn =0,1,2,.... It may be written in matrix form € = Ay as
€0 1 0O 0 O Yo
€1 a 1 0O 0 O V1
€ |=|a a 1 0 0 Vo
€3 a a ar 1 0| Vys
€4 as asz d» a; 1 V4

Both this matrix form and Eq. (1.13.11) are recognized as special cases of Egs. (1.7.1)
and (1.7.10). According to Eq. (1.7.11), the quantity

VYnin-1 = —[@1Yn-1 + @Q2¥Yn—2 + - - - + anyo] (1.13.12)

is the projection of y, on the subspace spanned by Y,,-1 = {¥n-1,Vn-2,...,Y0}. There-
fore, it represents the best linear estimate of y;, on the basis of (all) its past values Y1,
that is, Y,;/n—1 is the best prediction of y, from its (entire) past. Equation (1.13.11) gives
the corresponding prediction error €, = ¥, — Yn/n-1. We note here an interesting con-
nection between linear prediction concepts and signal modeling concepts [21-25], that

1.14. Filter Model of First Order Autoregressive Process 63

is, that the best linear predictor (1.13.12) determines the whitening filter A (z) which,
in turn, determines the generator model B(z)= 1/A(z) of y,. In other words, solving
the prediction problem also solves the modeling problem.

The above modeling approach to the representation of stationary time series, and
its relationship to the Gram-Schmidt construction and linear prediction was initiate by
Wold and developed further by Kolmogorov [22,24].

The most general model filter B(z) given in Eq. (1.13.9) is called an autoregressive
moving average (ARMA), or a pole-zero model. Two special cases of interest are the
moving average (MA), or all-zero models, and the autoregressive (AR), or all-pole models.
The MA model has a nontrivial numerator only, B(z)= N (z), so that B(z) is a finite
polynomial:

B(z)=1+b1zV+boz 2+ - +byz™M (MA model)

The AR model has a nontrivial denominator only, B(z)= 1/D (z), so that its inverse
A(z)= D(z) is a polynomial:

1
Bz) = (AR model)
l+az ' +arz2+---+ayz M
AZ)=1+az ' v+az %+ +auz™

Autoregressive models are the most widely used models, because the analysis algo-
rithms for extracting the model parameters {ai, az, ..., dy; ag} are fairly simple. In the
sequel, we will concentrate mainly on such models.

1.14 Filter Model of First Order Autoregressive Process

To gain some understanding of filter models of the above type, we consider a very simple
example of a first-order recursive filter B(z) driven by a purely random sequence of

variance o2
1
o Q) [B@= g

This serves also as a simple model for generating a first order Markov signal. The
signal y, is generated by the difference equation of the filter:

Yn =ayYn-1+ €n (1.14.1)
Let the probability of the nth sample €, be f (€,;). We would like to show that
PWnlYn-1,Yn-2,--,¥1,¥0) = P (Ynlyn-1) = f(€n) = f (yn — ayn-1)

which not only shows the Markov property of y,, but also how to compute the related
conditional density. Perhaps the best way to see this is to start at n = 0:

Yo = €9 (assuming zero initial conditions)
Y1 =ayop+ €1

Y2 =ay: + €, etc

64 1. Review of Random Signals

To compute p (y2|y1,Y0), suppose that y; and y, are both given. Since y; is given,
the third equation above shows that the randomness left in y» arises from €, only. Thus,
p(21y1) = f (€2). From the first two equations it follows that specifying y, and y; is
equivalent to specifying €y and €,. Therefore, p(y21y1,Y0)= f(€21€1,€0) = f (€2), the
last equation following from the purely random nature of the sequence €,. We have
shown that

p(2ly1,Y0) = p(V2ly1) =f(€2)=f(y2 — ay1)

Using the results of Sec. 1.9, we also note
p(y2,¥1,¥0) = p(yaly1) p(Y1lyo) p (yo)
= f(e2)f (e1)f (eo0)
=f(2—ay))f 1 —ayo)f Vo)

The solution of the difference equation (1.14.1) is obtained by convolving the impulse
response of the filter B(z)

by =a"u(n), u (n) = unit step

with the input sequence €, as follows:

n n
Yn = bi€n_i= > d'en (1.14.2)
i=0 i=0
for n = 0,1,2,.... This is the innovations representation of y, given by Egs. (1.6.15),

(1.6.16), and (1.13.1). In matrix form it reads:

Yo 1 0 0 07[e
yil [a 1 00 €1
ol la a1 olle (1.14.3)
V3 a a® a 1] e

The inverse equation, € = B~ly = Ay, is obtained by writing Eq. (1.14.1) as €, =
Yn — aYn-1. In matrix form, this reads

€o 1 0 0 07[yo
€| | —a 1 0 0 V1
o1~ 0 —a 1 ol (1.14.4)
€3 0 0 —-a 1 V3

According to the discussion of Example 1.7.1, the partial correlation coefficients
can be read off from the first column of this matrix. We conclude, therefore, that all
partial correlation coefficients of order greater than two are zero. This property is in
accordance with our intuition about first order Markov processes; due to the recursive
nature of Eq. (1.14.1) a given sample, say y,, will have an indirect influence on all future
samples. However, the only direct influence is to the next sample.

Higher order autoregressive random signals can be generated by sending white noise
through higher order filters. For example, the second-order difference equation

Yn = a1¥Yn-1 + A2Yn-2 + €n (1.14.5)

1.15. Stability and Stationarity 65

will generate a second-order Markov signal. In this case, the difference equation di-
rectly couples two successive samples, but not more than two. Therefore, all the partial
correlations of order greater than three will be zero. This may be seen also by writing
Eg. (1.14.5) in matrix form and inspecting the first column of the matrix A:

€o 1 0 0 0 0 Yo
€1 —d) 1 0 0 0 V1
€ | =] —a —a 1 0 0 V2
€3 0 -a -an 1 0]y
€4 0 0 —-d; —a; 1 V4

1.15 Stability and Stationarity

In this section we discuss the importance of stability of the signal generator filter B(z).
We demonstrate that the generated signal y, will be stationary only if the generating
filter is stable. And in this case, the sequence y, will become stationary only after the
transient effects introduced by the filter have died out.

To demonstrate these ideas, consider the lag-O autocorrelation of our first order
Markov signal

Ryy(n,n) = E[yal=E[(ayn-1 + €n)?]
(1.15.1)
= a’E[y:_,1+2aE[yn-1€n] +E[€3]= a’Ryy(n — 1,n — 1) +0?

where we set 0¢ = E[ef,] and E[y,-1€,]= 0, which follows by using Eq. (1.14.2) to get

n-1

Yn-1 = €p-1 +A€p—p + -+ +a €o

and noting that €, is uncorrelated with all these terms, due to its white-noise nature.
The above difference equation for Ry, (n, n) can now be solved to get

R =F 27— O—g 2 _
wnn)=Ely,l=17"75 +0¢ (1

2n
1=)a (1.15.2)

1-a?
where the initial condition was taken to be E [yg] =FE [6(2)] = 0'3. If the filter is stable and
causal, thatis, |a| < 1, then the second term in (1.15.2) tends to zero exponentially, and
Ryy (n,n) eventually loses its dependence on the absolute time n. For large n, it tends
to the steady-state value

o¢

Ry (0)= Elypl= 03 = 1= (1.15.3)

The same result is obtained, of course, by assuming stationarity from the start. The
difference equation (1.15.1) can be written as

Ely2]l= a’Ely;_,1+0?

If y, is assumed to be already stationary, then E[y2]= E[y3_;]. This implies the
same steady-state solution as Eq. (1.15.3).

66 1. Review of Random Signals

If the filter is unstable, that is, |a| > 1, then the second term of Eq. (1.15.2) diverges
exponentially. The marginal case a = 1 is also unacceptable, but is of historical interest
being the famous Wiener process, or random walk. In this case, the signal model is

Yn =Yn-1+t€n
and the difference equation for the variance becomes
Ryy(n,n)=Ryy(n—1,n—1)+02

with solution
Ryy(n,n)=E[y3]= (n+1)0?

In summary, for true stationarity to set in, the signal generator filter B(z) must be
strictly stable (all its poles must be strictly inside the unit circle).

1.16 Parameter Estimation

One of the most important practical questions is how to extract the model parameters,
such as the above filter parameter a, from the actual data values. As an introduction to
the analysis methods used to answer this question, let us suppose that the white noise
input sequence €, is gaussian

f(e)= L e (—i)
W= e CPV 202

and assume that a block of N measured values of the signal y, is available

Y0,Y1,¥Y25-++, YN-1

Can we extract the filter parameter a from this block of data? Can we also extract
the variance o? of the driving white noise €,? If so, then instead of saving the N mea-
sured values {yo, Y1, Y2,...,VYN—1}, We can save the extracted filter parameter a and the
variance o2. Whenever we want to synthesize our original sequence y,, we will simply
generate a white-noise input sequence €, of variance og, using a pseudorandom num-
ber generator routing, and then drive with it the signal model whose parameter a was
previously extracted from the original data. Somehow, all the significant information
contained in the original samples, has now been packed or compressed into the two
numbers a and 2.

One possible criterion for extracting the filter parameter a is the maximum likelihood
(ML) criterion: The parameter a is selected so as to maximize the joint density

P o, Y1, ¥N-1)=[f(€0)f (€1)- - - f(en-1)

N-1

1 1
=———exp|——5 > Wn—ayn-1)? |exp[-yi/20?
(Vamag™ | 2oz 2V [Firzod]

1.16. Parameter Estimation 67

that is, the parameter a is selected so as to render the actual measured values {yg, y1, Y2,
..,YN-1} most likely. The criterion is equivalent to minimizing the exponent with
respect to a:

N-1 N-1
@)= > (yn—ayn-1)?+y3 = > €% =min (1.16.1)
n=1 n=0

where we set e, = Yy, — ayn-1, and ey = yo. The minimization of Eq. (1.16.1) gives

o&(a) !

5q = 2 > n—ayn-1)yn1=0, or,
a n=1

N-1

Z YnYn-1

- + V1Yo + -+ YN-2VN-

a= anl _ YoY1 2)’1)’22)’1;/ 2YN-1 (1.16.2)

—_ Yotyit---+tVNo2
Z Yn-1

n=1

There is a potential problem with the above ML criterion for extracting the filter
parameter a, namely, the parameter may turn out to have magnitude greater than one,
which will correspond to an unstable filter generating the sequence y,. This is easily
seen from Eq. (1.16.2); whereas the numerator has dependence on the last sample yn_1,
the denominator does not. Therefore it is possible, for sufficiently large values of yny_1,
for the parameter a to be greater than one. There are other criteria for extracting the
Markov model parameters that guarantee the stability of the resulting synthesis filters,
such as the so-called autocorrelation method, or Burg’s method. These will be discussed
later on.

An alternative parameter estimation method is the autocorrelation or Yule-Walker
method of extracting the model parameters from a block of data. We begin by expressing
the model parameters in terms of output statistical quantities and then replace ensemble
averages by time averages. Assuming stationarity has set in, we find

Ryy(1)= E[ynyn-1l= E[(a)’n—l + €n))"n—1] = aE[Y%q]*‘E[enYn—l]: aRyy (0)
from which

_ Ry ()
Ry (0)

The input parameter o2 can be expressed as

a

0 =(1-a%) o} = (1-a*)R,,(0)

These two equations may be written in matrix form as

Ryy(0) Ryy(1) 1 _ o?
Ryy (1) Ryy(0) -a 0
These are called the normal equations of linear prediction. Their generalization will
be considered later on. These results are important because they allow the extraction

of the signal model parameters directly in terms of output quantities, that is, from
experimentally accessible quantities.

68 1. Review of Random Signals

We may obtain estimates of the model parameters by replacing the theoretical auto-
correlations by the corresponding sample autocorrelations, defined by Eq. (1.11.1):

1 N-1-1
. N Z Yn+1YVn
4o Ryy (1) _ n=0 _Yoyi+Yiya+ -+ YN-2YN-1
Ryy (0) 1N71 YS+Y%+"'+yIZ\I—Z+y12\J—1
N Z Yn¥n
n=0

62 = (1 —a%)Ryy(0)

It is easily checked that the parameter 4, defined as above, is always of magnitude
less than one; thus, the stability of the synthesis filter is guaranteed. Note the difference
with the ML expression. The numerators are the same, but the denominators differ by
an extra term. It is also interesting to note that the above expressions may be obtained
by a minimization criterion; known as the autocorrelation method, or the Yule-Walker

method:
N

N
E@)= > ei= > (Yn—ayn-1)’=min (1.16.3)
n=0 n=0
This differs from the ML criterion (1.16.1) only in the range of summation for n.
Whereas in the ML criterion the summation index n does not run off the ends of the
data block, it does so in the Yule-Walker case. We may think of the block of data as
having been extended to both directions by padding it with zeros

0,...,0,¥0,Y1,.-+,¥N-1,0,0,...,0

The difference between this and the ML criterion arises from the last term in the sum

N) N-1) N-1
E@= > er=> ei+el =D (Yn—ayn1)?+(0-ayn-1)*
n=0 n=1 n=1

The Yule-Walker analysis algorithm for this first order example is summarized in
Fig. 1.16.1.

A
Ry(0)

D>

block of data compute sample

A solve normal , | memory
Yos Vi = Vno autocorrelation

A
Ryy(D) equations O¢

Fig. 1.16.1 Yule-Walker analysis method.

How good are d and 6’3 as estimates of the model parameters a and O'g? It can
be shown that they, and the maximum likelihood estimates of the previous section, are
asymptotically unbiased and consistent. The corresponding variances are given for large
N by [4-6]

1-a? 20
N "’ N
where Aa = d — a and Ao? = §2 — 02. Such asymptotic properties are discussed in
greater detail in Chap. 14. Here, we present some simulation examples showing that

(1.16.4) are adequate even for fairly small N.

E[(Aa)?] = E[(A0?)?] = (1.16.4)

1.16. Parameter Estimation 69

Example 1.16.1: The following N = 30 signal samples of y,, have been generated by passing
zero-mean white noise through the difference equation y, = ay,-1 + €,, with a = 0.8 and
ot =1

yn = {2.583, 2.617, 2.289, 2.783, 2.862, 3.345, 2.704, 1.527, 2.096, 2.050, 2.314,
0.438, 1.276, 0.524, —0.449, —1.736, —2.599, —1.633, 1.096, 0.348, 0.745,
0.797, 1.123, 1.031, —0.219, 0.593, 2.855, 0.890, 0.970, 0.924}

Using the Yule-Walker method, we obtain the following estimates of the model parameters

a=0.806, o2=1.17

Both estimates are consistent with the theoretically expected fluctuations about their means
given by Eq. (1.16.4), falling within the one-standard deviation intervals a + §a and 02 +
802, where §a and §0? are the square roots of Eq. (1.16.4). For N = 30, the numerical
values of these intervals are: 0.690 < d@ < 0.910 and 0.742 < ¢? < 1.258. Given the
theoretical and estimated model parameters, we can obtain the theoretical and estimated
power spectral densities of y, by

A
[1-ae-iw|?’

¢

Syw(w)= I E—
|1—aeJw|

Sth(w)=
The periodogram spectrum based on the given length-N data block is

N-1 2
Z yne—jnw

n=0

1
Sper (W) = N

The three spectra are plotted in Fig. 1.16.2, in units of decibels; that is, 10log;, S, over
the right half of the Nyquist interval 0 < w < 71. Note the excellent agreement of the
Yule-Walker spectrum with the theoretical spectrum and the several sidelobes of the peri-
odogram spectrum caused by the windowing of y,,.

Yule-Walker vs. Periodogram Spectra

20

0 0.2 0.4 0.6 0.8 1
digital frequency w in units of 7

Fig. 1.16.2 Comparison of Yule-Walker and periodogram spectrum estimates.

70 1. Review of Random Signals

Example 1.16.2: The purpose of this example is to demonstrate the reasonableness of the
asymptotic variances, Eq. (1.16.4). For the first-order model defined in the previous exam-
ple, we generated 100 different realizations of the length-30 signal block y,. From each
realization, we extracted the Yule-Walker estimates of the model parameters d and G2
They are shown in Figs. 1.16.3 versus realization index, together with the corresponding
asymptotic one-standard deviation intervals that were computed in the previous example.

Estimated Filter Parameter Estimated Input Variance

1.2 2

variance
—

0.5r

0 20 40 60 80 100 0 20 40 60 80 100
realization index realization index

Fig. 1.16.3 Parameters a, 0? estimated from 100 realizations of the length-30 data block y,.

1.17 Linear Prediction and Signal Modeling

Linear prediction ideas are introduced in the context of our simple example by noting
that the least-squares minimization criteria (1.16.1) and (1.16.3)

E(a)= > e = minimum (1.17.1)

n

essentially force each e, to be small. Thus, if we reinterpret
Yn = ayn-1

as the linear prediction of the sample y,, made on the basis of just the previous sample
Yn-1, then e, = y, — ayn-1 = Yn — Yn may be thought of as the prediction error. The
minimization criterion (1.17.1) essentially minimizes the prediction error in an average
least-squares sense, thus attempting to make the best prediction possible.

As we mentioned in Sec. 1.13, the solution of the linear prediction problem provides
the corresponding random signal generator model for y,, which can be used, in turn,
in a number of ways as outlined in Sec. 1.13. This is the main reason for our interest in
linear prediction.

A more intuitive way to understand the connection between linear prediction and
signal models is as follows: Suppose we have a predictor ¥, of y, which is not necessarily
the best predictor. The predictor Y, is given as a linear combination of the past values
Wn-1,Yn-2,... }:

Yn=—[ayn1+ayno+---] (1.17.2)

1.18. Cramér-Rao Bound and Maximum Likelihood 71

The corresponding prediction error will be
en=Yn—Yn=Yn+d1yYn-1 +a2yn-o+--- (1.17.3)

and it may be considered as the output of the prediction-error filter A(z) (which is
assumed to be stable and causal):

o}

Suppose further that A (z) has a stable and causal inverse filter

2

AZ)=1+mz +arz2+ - -

1 1
ep—= Bl Yn B(z)= = E
2) A(z) l+amzl+az2+---

so that y, may be expressed causally in terms of e, that is,
Yn=2¢€n+ bien_1 +breno+ - (1.17.4)

Then, Egs. (1.17.3) and (1.17.4) imply that the linear spaces generated by the random
variables

Wn-1,Yn-—2,...} and {en-1,en 2,...}

are the same space. One can pass from one set to the other by a causal and causally
invertible linear filtering operation.

Now, if the prediction y, of ¥, is the best possible prediction, then what remains after
the prediction is made—namely, the error signal e,—should be entirely unpredictable
on the basis of the past values {y,_1,Yn-2,...}. Thatis, e, must be uncorrelated with
all of these. But this implies that e, must be uncorrelated with all {e,-1,e,-2,...}, and
therefore e, must be a white-noise sequence. It follows that A(z) and B(z) are the
analysis and synthesis filters for the sequence y,.

The least-squares minimization criteria of the type (1.17.1) that are based on time
averages, provide a practical way to solve the linear prediction problem and hence also
the modeling problem. Their generalization to higher order predictors will be discussed
in Chap. 12.

1.18 Cramér-Rao Bound and Maximum Likelihood

The Crameér-Rao inequality [2-5,27] provides a lower bound for the variance of unbi-
ased estimators of parameters. Thus, the best any parameter estimator can do is to
meet its Cramér-Rao bound. Such estimators are called efficient. Parameter estimators
based on the principle of maximum likelihood, such as the one presented in Sec. 1.16,
have several nice properties, namely, as the number of observations becomes large,
they are asymptotically unbiased, consistent, efficient, and are asymptotically normally
distributed about the theoretical value of the parameter with covariance given by the
Cramér-Rao bound.

In this section, we present a derivation of the Cramér-Rao inequality using correla-
tion canceling methods and discuss its connection to maximum likelihood. Consider

72 1. Review of Random Signals

N observations Y = {y;,¥»,...,Yn}, where each observation is assumed to be an M-
dimensional random vector. Based on these observations, we would like to estimate a
number of (deterministic) parameters, assembled into a parameter vector A. We will
write p(Y,A) to indicate the dependence of the joint probability density on A. As a
concrete example, consider the case of N independent scalar observations drawn from
a normal distribution with mean m and variance o2. The joint density is

N
p(Y,A)= (2mro?) N2exp {—22_2 > (vn— m)z} (1.18.1)
n=1

For the parameter vector we may choose A = [m, 02]7, if we want to estimate both
the mean and variance.

The dependence of p(Y,A) on A may be expressed in terms of the gradient with
respect to A of the log-likelihood function

12p

_0 1
YY,A)= ——~Inp(Y,A)= b oA

A (1.18.2)

Expectation values with respect to the joint density will, in general, depend on the
parameter A. We have the following result for the expectation value of an arbitrary
function F (Y,A):

iE[F]=E[8—F]+L’~"[F([J] (1.18.3)
0A 0A o

Writing dY = dMy,dMy, - - - dMyy for the volume element over the space of obser-

vations, the proof of Eq. (1.18.3) follows from

Olnp

B ay

0 0 OF
ﬁJdeY’ a(pF)dejpadYJerF

Applying this property to F = 1, we find E[@]= 0. Applying it to g itself, that is,
F =y, we find

J=E[lpyT]=E[Y] (1.18.4)
where ow
Y= _ﬁ

Eq. (1.18.4) is known as the Fisher information matrix based on Y. Component-wise,
we have
Jij = Elyip;]= E[¥]
where .
dlnp oy o’Inp
Yi=—1 > = Ay T T Ay Aax
OA; 0Aj 0Ai0OA;

Next, we derive the Cramér-Rao bound. Let A (Y) be any estimator of A based on Y.
Because A (Y) and Y (Y,A) both depend on Y, they will be correlated with each other.
Using the correlation canceling methods of Sec. 1.4, we can remove these correlations
by writing

e=A-E[A¢TIE[pyT] 'y

1.18. Cramér-Rao Bound and Maximum Likelihood 73

AThen, e will not be correlated with . Because ¢ has zero mean, it follows that
E[A] = E [e].A Working with the deviations about the corresponding means, namely,
AAX = A — E[A] and Ae = e — E[e], we have

Ae=AA -MJ 'y (1.18.5)

where we denoted M = E [f\wT]. Following Eq. (1.4.4), we obtain for the covariance of
Ae
E[AeAeT]= E[AAAAT]-MJ'MT (1.18.6)

Thus, the difference of terms in the right-hand side is a positive semi-definite matrix.
This may be expressed symbolically as E[AeAe!][> 0, or, E[AAAAT]= MJ~'MT. The
quantity M depends on the bias of the estimator. For an unbiased estimator, M is the
identity matrix, M = I, and we obtain the Cramér-Rao inequality

cov(A)= E[AAAAT]> J°! (Cramér-Rao) (1.18.7)

The dependence of M on the bias can be seen as follows. Because A (Y) has no
explicit dependence on A, it follows from property (1.18.3) that

M =E[AgT]= %Em

Define the bias of the estimator as the deviation of the mean from the true value of
the parameter, that is, E[A]= A + b(A), where b(A) is the bias
ob
M=I1+_—-=I+8B
oA
For an unbiased estimator, B = 0 and M = I. It follows from Eq. (1.18.6) that for
the Cramér-Rao inequality to be satisfied as an equality, it is necessary that Ae = 0
in Eq. (1.18.5), i.e., AA = MJ~ 'y and in the unbiased case, we obtain the condition
Y = JAA:
0

SAImp(Y,2)=JAA = JIA(Y)-A] (1.18.8)

Estimators that satisfy this condition and thus, meet their Cramér-Rao bound, are
called efficient.

Example 1.18.1: The log-likelihood function of Eq. (1.18.1) is

N
N N ., 1)
lnpzfgln(ZTr)fgan 7ﬁn§1(y,,fm)

The gradients with respect to the parameters m and o are

olnp 1 g
=— D> (yn—m)
om o2 50"

(1.18.9)

dlnp N 1 ¥)
002 202+204n;(y" ")

74 1. Review of Random Signals

The second derivatives are the matrix elements of the matrix ¥:

v _ _%mmp N
mme o omom - o?

2%Inp 1 ¥
Y’mozz_amao_z :FZ()’n_m)

y,,__Omp N
vt = T 302002 T 204 0b

Taking expectation values, we find the matrix elements of J

N
a?

Jmm = y Jme2 =0, Jg2p2 =

204
Therefore, the Cramér-Rao bound of any unbiased estimator of m and o2 will be

E[AmAm] E[AmAc?] - o?/N 0
E[Ac?Am] E[Ao?Ac?] 0 20%4/N

Example 1.18.2: We note that the sample mean 1 defined by Eq. (1.2.1) has variance equal to
its Cramér-Rao bound, and therefore, it is an efficient estimator. It also satisfies condition
(1.18.8). Writing zﬂzl vn = N, we obtain from Eq. (1.18.9)

alnp 1| ¥
Z(Yn m)—o_2|:ZYnNm:|—
n=1

(Nt~ Nm) = Jy (71—)
g

We also note that the sample variance s* having variance 20/ (N — 1) meets its Cramér-
Rao bound only asymptotically. The biased definition of the sample variance, Eq. (1.2.3),
has variance given by Eq. (1.2.4). It is easily verified that it is smaller than its Cramér-Rao
bound (1.18.7). But this is no contradiction because Eq. (1.18.7) is valid only for unbiased
estimators. For a biased estimator, the lower bound MJ~'M” must be used. Equation
(1.2.4) does satisfy this bound. [}

Next, we discuss the principle of Ir}aximum likelihood. The maximum likelihood
estimator of a parameter A is the value A that maximizes the joint density p(Y,A); i.e.,

p(Y,A) |,_i = maximum (1.18.10)

Equivalently,
w(?\)— lnn(Y A) =0 (1.18.11)

In general, this equation is dlfﬁcult to solve. However, the asymptotic properties of
the solution for large N are simple enough to obtain. Assuming that A is near the true
value of the parameter A we may expand the gradient ¢ about the true value:

op(d)
oA

where we used the matrix ¥ defined in Eq. (1.18.4). Fpr the maximum likelihood solution,
the left-hand side is zero. Thus, solving for AA = A — A, we obtain

yA) =y + A-D=@p-¥YA-2A)

AA =Yy (1.18.12)

1.18. Cramér-Rao Bound and Maximum Likelihood 75

Assuming that the N observations are independent of each other, the joint density
p(Y,A) factors into the marginal densities]_[1,\[]:1 p(yn,A). Therefore, the gradient ¢
will be a sum of gradients

M=

7iln 7%iln (y,,A) =
W*aA p*nﬂaA P \Yn,A)= WYn

n=1

Similarly,

N
Z aWn z lI,n
N=1

Individual terms in these sums are mutually independent. Thus, from the law of
large numbers, we can replace ¥ by its mean ¥ ~ E[¥]= J, and Eq. (1.18.12) becomes

AN =]y (1.18.13)

This asymptotic equation contains essentially all the nice properties of the mz}xi—
mum likelihood estimator. First, from E[¥]= 0, it follows that E[AA]= 0, or that A is
asymptotically unbiased. Second, its asymptotic covariance agrees with the Cramér-Rao
bound

E[AAAAT = J 'E[wyT1j =gyt =77}

Thus, Ais asymptotically efficient. The same conclusion can be reached by noting
that Eq. (1.18.13) is the same as condition (1.18.8). Third, Ais asymptotically consistent,
in the sense that its covariance tends to zero for large N. This follows from the fact
that the information matrix for N independent observations is equal to N times the
information matrix for one observation:

J=E[¥]= ZE[YH NE[¥,]=NJ,

n=1

Therefore, J~1 = Jfl/N tends to zero for large N. Fourth, because ¢ is the sum
of N independent terms, it follows from the vector version of the central limit theorem
that ¢ will be asymptotically normally distributed. Thus, so will be A, with mean A and
covariance J L.

Example 1.18.3: Setting the gradients (1.18.9) to zero, we obtain the maximum likelihood esti-
mates of the parameters m and o2. It is easily verified that they coincide with the sample
mean and sample variance defined by Egs. (1.2.1) and (1.2.3). m]

Example 1.18.4: In many applications, the mean is known to be zero and only the variance
needs to be estimated. For example, setting m = 0 in Eq. (1.18.1) we obtain the log-
likelihood

Inp = —Nln(ZTr)——an - Zyn

The maximum likelihood estimate of ¢ is obtained from

olnp N 1 >
e e s =0
o002 202 204,,;))”

76 1. Review of Random Signals

with solution
N5

It is easily verified that this is an unbiased estimate. It is the scalar version of Eq. (1.6.21).
Using E[y2y2,]1= 0% + 28,m0*, which is valid for independent zero-mean gaussian y,s,
we find for the variance of ¢
2 p 27 20° 2 _ 2 2
E[Ao°Aoc]= N where Ao =0°-0 (1.18.14)

This agrees with the corresponding Cramér-Rao bound. Thus, 62 is efficient. Equation
(1.18.14) is the scalar version of Eq. (1.6.23). m]

Example 1.18.5: Show that the multivariate sample covariance matrix, R, given by Eq. (1.6.21)
is the maximum likelihood estimate of R, assuming the mean is zero.

Solution: The log-likelihood function is, up to a constant

1

N
N
Inp(y1, ¥z, yy)= =5 In(detR) -5 > yIR 'y,

n=1
The second term may be written as the trace:

N N
> iRy, =uw[R™ Y yyh] = Nuw[RT'R]

n=1 n=1

where we used Z{L] YayYh = NR. Using the matrix property In(detR) = tr(InR), we may
write the log-likelihood in the form

N N
Inp =-= tr[InR + R7'R]
The maximum likelihood solution for R satisfies 0 Inp/0R = 0. To solve it, we find it more
convenient to work with differentials. Using the two matrix properties

dtr(InR)=tr(R"'dR), dR'=-R'(dR)R™! (1.18.15)
we obtain,

dinp = 7%tr[R’1dR ~ R (R)R'R] = f% w[R(dR)R™ (R -R)] (1.18.16)

Because dR is arbitrary, the vanishing of dInp implies R = R. An alternative proof is
to show that f(R) > f(R), where f(R)= tr(InR + R-'R). This is shown easily using the
inequality x — 1 — Inx > 0, for x > 0, with equality reached at x = 1. O

In many applications, the desired parameter A to be estimated appears only through
the covariance matrix R of the observations y, that is, R = R(A). For example, we will
see in Chap. 14 that the covariance matrix of a plane wave incident on an array of two
sensors in the presence of noise is given by

R_| P+’ Pelk
T | Pe* P+o?

1.19. Minimum-Phase Signals and Filters 77

where possible parameters to be estimated are the power P and wavenumber k of the
wave, and the variance o2 of the background noise. Thus, A = [P, k, 02]7.

In such cases, we have the following general expression for the Fisher information
matrix J, valid for independent zero-mean gaussian observations:

N g1 9ROk
Jij = 2tr[R K aAj] (1.18.17)

Writing 0; = 0/0A; for brevity, we have from Eq. (1.18.16)
N -1 -1 5
Jdilnp =) tr[R'0,RR Y (R-R)]
Differentiating once more, we find
N -1 -1 5 -1 -1
‘I/U = —al'ajhll’} = E ’[I‘[aj(R 0iRR')(R-R)+R'0;RR 8J-R]

Equation (1.18.17) follows now by taking expectation values J;j; = E[¥;;] and noting
that the expectation value of the first term vanishes. This follows from the fact that R
is an unbiased estimator of R and therefore, E[tr(F (R — R))] = 0, for any matrix F.
1.19 Minimum-Phase Signals and Filters

A minimum-phase sequence a = [ag,a,...,dy] has a z-transform with all its zeros
inside the unit circle in the complex z-plane

AZ)=ap+a1z '+ +ayzM=ag(1-2,27Y) 1=2z22"Y) -+ - (1—zyz™ ") (1.19.1)

with |z;| < 1,i=1,2,...,M. Such a polynomial is also called a minimum-delay polyno-
mial. Define the following related polynomials:

A*(z) =af +afz' + - -- + a}f;z~™ = complex-conjugated coefficients
A(z) =af +afz+ - -+ a}z" = conjugated and reflected
AR(z) = afy +aj;_,z7' + -+ - + afz™™ = reversed and conjugated
We note the relationships:
A(z)=A*(z"") and AR(z)=zMA(z)=2zMA*(z") (1.19.2)

We also note that when we set z = e/ to obtain the corresponding frequency re-
sponses, A (w) becomes the complex conjugate of A (w)

A(w)=A(w)* (1.19.3)
It is easily verified that all these polynomials have the same magnitude spectrum:

[A(w)]? = [A(w)|? = |[A* (w) |? = |AR (w) |2 (1.19.4)

78 1. Review of Random Signals

For example, in the case of a doublet a = (ag, a;) and its reverse ak = (af, ay), we
verify explicitly

JA(w) > = A(w)A(w)* = (ap + a1e ™ ®) (af + afel®)
= (af +ate™) (a, + ape’™)
= AR (w) AR (w)* = |AR (w) |?

Thus, on the basis the magnitude spectrum, one cannot distinguish the doublet
a = (do,a;) from its reverse ak = (af, af). In the more general case of a polynomial
of degree M, factored into doublets as in Eq. (1.19.1), we note that each doublet can be
replaced by its reverse

(1,-z))— (=zF,1) or (1-ziz Y- (-zf +z71)

without affecting the overall magnitude spectrum |A (w)|2. Since there are M such
factors, there will be a total of 2™ different Mth degree polynomials, or equivalently,
2M different length- (M + 1) sequences, all having the same magnitude spectrum. Every
time a factor (1 — z;z™!) is reversed to become (—z} + z~1), the corresponding zero
changes from z = z; to z = 1/zf. If z; is inside the unit circle, the 1/z}" is outside, as
shown

t

1/z}

Zi

unit circle

To enumerate all these sequences, start by taking all zeros z; to be inside the unit
circle and successively keep reversing each factor until all 2M possibilities have been
exhausted. At the last step, all the factors will have been flipped, corresponding to
all the zeros being outside the unit circle. The resulting polynomial and sequence are
referred to as having maximal phase, or maximal delay. As an example consider the two
doublets

a=(2,1) and b= (3,2)

and form the four different sequences, where * denotes convolution:
co=axb =(2,1)%(3,2)=(6,7,2), Co(z)=A(2)B(2)
a=alxb =(1,2)%(3,2) = (3,8,4), Ci(2)=AR(2)B(2)
c=axb® =(2,1)%(2,3)=(4,8,3), C:(z)=A(z2)BR(2)
cs =afk bR = (1,2)%(2,3) = (2,7,6), C3(2)=A(2)B(2)

All four sequences have the same magnitude spectrum.

1.19. Minimum-Phase Signals and Filters 79

Partial Energy and Minimal Delay

Since the total energy of a sequence a = (ag, a,...,day) is given by Parseval’s equality

M ™

dw
S Jaml? =j Aw) P 58
m=0 -n m

it follows that all of the above 2™ sequences, having the same magnitude spectrum, will
also have the same total energy. However, the distribution of the total energy over time
may be different. And this will allow an alternative characterization of the minimum
phase sequences, first given by Robinson. Define the partial energy by

n
Pa(m)= > laml® = laol* + la1|* + - - + |anl>, n=0,1,....M
m=0

then, for the above example, the partial energies for the four different sequences are
given in the table

Co C C2 C3

P(0) |36] 9 |16 4

P(1) | 85|73 |80]53

P(2) | 89|89 |89 |89

We note that ¢y which has both its zeros inside the unit circle (i.e., minimal phase) is
also the sequence that has most of its energy concentrated at the earlier times, that is,
it makes its impact as early as possible, with minimal delay. In contrast, the maximal-
phase sequence c3 has most of its energy concentrated at its tail thus, making most of
its impact at the end, with maximal delay.

Invariance of the Autocorrelation Function

This section presents yet another characterization of the above class of sequences. It
will be important in proving the minimum-phase property of the linear prediction filters.

The sample autocorrelation of a (possibly complex-valued) sequencea = (ag, dy,...,dy)
is defined by
M-k
Raa(k) = > apwkaj, for 0<k=M
n=0 (1195)

Raa(k) =Rga(=k)*, for -M<k<-1
It is easily verified that the corresponding power spectral density is factored as

M
Saa(z)= > Raa(k)z X =A(2)A(2) (1.19.6)
k=—M
The magnitude response is obtained by setting z = e/®

Saa(w)=1A(w)|? (1.19.7)

80 1. Review of Random Signals

with an inversion formula

Raa (k) = J 1A (w) [2eiok 49 (1.19.8)

_ 21T
It follows from Eq. (1.19.8) that the above 2™ different sequences having the same
magnitude spectrum, also have the same sample autocorrelation. They cannot be distin-
guished on the basis of their autocorrelation. Therefore, there are 2™ different spectral
factorizations of S;,(z) of the form

Saa(z)=A(2)A(2) (1.19.9)

but there is only one with minimum-phase factors. The procedure for obtaining it is
straightforward: Find the zeros of S44(2), which come in pairs z; and 1/z}, thus, there
are 2M such zeros. And, group those that lie inside the unit circle into a common factor.
This defines A (z) as a minimum phase polynomial.

Minimum-Delay Property

Here, we discuss the effect of flipping a zero from the inside to the outside of the unit
circle, on the minimum-delay and minimum-phase properties of the signal. Suppose
A(z) is of degree M and has a zero z; inside the unit circle. Let B(z) be the polynomial
that results by flipping this zero to the outside; that is, z; — 1/zF

A(z) = (1 -z1zHYF(2)
(1.19.10)
B(z) = (=zf + z) F(2)

where F(z) is a polynomial of degree M — 1. Both A(z) and B(z) have the same mag-
nitude spectrum. We may think of this operation as sending A (z) through an allpass

filter
1

-z +z-
1-2z7z71

In terms of the polynomial coefficients, Eq. (1.19.10) becomes

B(z)= A(z)

an = fn— Z1fn1

(1.19.11)
by = —z{fn + fn
forn =0,1,...,M, from which we obtain
anl® = 1bnl? = (1= 1z11?) (Ifal® = Ifn-11?) (1.19.12)
Summing to get the partial energies, P, (n) = Z"m:() |am|?, we find
Pa(n)—Pyp(n)= (1 -1z1°)Ifal*, n=0,1,....M (1.19.13)

Thus, the partial energy of the sequence a remains greater than that of b for all times
n; that is, A(z) is of earlier delay than B(z). The total energy is, of course, the same

1.19. Minimum-Phase Signals and Filters 81

as follows from the fact that F(z) is of degree M — 1, thus, missing the Mth term or
fum = 0. We have then
P,(n)>P,(n), n=0,1,...,.M

and in particular
Pa(M)=Pp(M) and Pg(0)= Pp(0)

The last inequality can also be stated as |ag| = |bg|, and will be important in our
proof of the minimum-phase property of the prediction-error filter of linear prediction.

Minimum-Phase Property

The effect of reversing the zero z; on the phase responses of A (z) and B(z) of Eq.(1.19.10)
can be seen as follows. For z = ¢/®, define the phase lag as the negative of the phase
response

A(w) = |A(w)| /e

04 (w) = —Arg(w) = phase-lag response

and similarly for B(z). Since A (w) and B (w) have the same magnitude, they will differ
only by a phase

Alw) = ¢/(05=04) _ 1- Zleij.w = e/ - 21 _ id(w)

B(w) —zf +eJw 1 -zfelw
where ¢ (w) is the phase-response of the all-pass factor (e/® —z;) /(1 -z} e/?), so that
Op(w)—04(w)= ¢ (w). By taking derivatives with respect to w in the above definition
of ¢ (w), it can be easily shown that

dp(w) _ 1-|z

= 0
dw |ej(u_zl|2>

which shows that ¢ (w) is an increasing function of . Thus, over the frequency interval
0 < w < 11, we have ¢p(w) = ¢ (0). It can be verified easily that ¢ (0) = —2¢g, where
¢y is the angle with the x-axis of the line between the points z; and 1, as shown in the
figure below.

unit circle

Thus, we have 0p — 04 > ¢ > —2¢(. The angle ¢ is positive, if z; lies within the
upper half semi-circle, and negative, if it lies in the lower semi-circle; and, ¢ is zero
if z; lies on the real axis. If z; is real-valued, then 0 = 04 for 0 < w < m. If 23

82 1. Review of Random Signals

is complex valued and we consider the combined effect of flipping the zero z; and its
conjugate z¥, that is, A (z) and B(z) are given by

A(z) =1 -z1zH (A -zFzH)F(z)
B(z) = (~zf +z Y (~z1 + z7H)F(2)
then, for the phase of the combined factor

j j *
v —z; &P —z]

1-zfelw 1-2zel®

ej¢((U) —

we will have ¢ (w) = (—2¢¢) +(2¢g) = 0, so that Op(w) -0 (w)= ¢ (w)= 0.

Thus, the phase lag of A (z) remains smaller than that of B(z). The phase-lag curve
for the case when A (z) has all its zeros inside the unit circle will remain below all the
other phase-lag curves. The term minimum-phase strictly speaking means minimum
phase lag (over 0 < w <).

1.20 Spectral Factorization Theorem

We finish our digression on minimum-phase sequences by quoting the spectral factor-
ization theorem [5].

Any rational power spectral density Sy, (z) of a (real-valued) stationary signal yy
can be factored in a minimum-phase form

Syy(z)=02B(2)B(z 1) (1.20.1)
where N(2)
zZ

B(z)= 15 (1.20.2)

with both D (z) and N (z) being minimum-phase polynomials; that is, having all their
zeros inside the unit circle. By adjusting the overall constant 02, both D (z) and N (z)
may be taken to be monic polynomials. Then, they are unique.

This theorem guarantees the existence of a causal and stablerandom signal generator
filter B(z) for the signal y, of the type discussed in Sec. 1.13:

o} o

with €, white noise of variance 2. The minimum-phase property of B(z) also guaran-
tees the stability and causality of the inverse filter 1/B(z), that is, the whitening filter

Vn 1/B(z) €, = white noise

The proof of the spectral factorization theorem is straightforward. Since Sy, (z) is
the power spectral density of a (real-valued) stationary process y,, it will satisfy the
symmetry conditions Sy, (z)= Sy, (z7!). Therefore, if z; is a zero then 1/z; is also
a zero, and if z; is complex then the reality of Ry, (k) implies that z;* will also be a

1.21. Minimum-Phase Property of the Prediction-Error Filter 83

zero. Thus, both z; and 1/z}* are zeros. Therefore, the numerator polynomial of Syy (2)
is of the type of Eq. (1.19.9) and can be factored into its minimum phase polynomials
N(z)N(z7!). This is also true of the denominator of Sy, ().

All sequential correlations in the original signal y,, arise from the filtering action of
B(z) on the white-noise input €,. This follows from Eq. (1.12.14):

Ryy (k)= 02> buikbn, B(2)= > bpz ™" (1.20.3)
n n=0

Effectively, we have modeled the statistical autocorrelation Ry, (k) by the sample au-
tocorrelation of the impulse response of the synthesis filter B(z). Since B(z) is causal,
such factorization corresponds to an LU, or Cholesky, factorization of the autocorrela-
tion matrix.

This matrix representation can be seen as follows: Let B be the lower triangular
Toeplitz matrix defined exactly as in Eq. (1.13.2)

bni = bn-i
and let the autocorrelation matrix of y, be
Ryy (i,J) = Ryy (i — j)
Then, the transposed matrix BT will have matrix elements
(BT) ni= bi-n
and Eq. (1.20.3) can be written in the form

Ryy (i,J) = Ryy (i = j) = 02 > bnsijbn = 02 > birbj«
n k

S B B 02 BB,
k

Thus, in matrix notation
Ry, = 0?BBT (1.20.4)

This equation is a special case of the more general LU factorization of the Gram-
Schmidt construction given by Eq. (1.6.17). Indeed, the assumption of stationarity im-
plies that the quantity

o2 =E[€e3]

is independent of the time n, and therefore, the diagonal matrix R of Eq. (1.6.17)
becomes a multiple of the identity matrix.

1.21 Minimum-Phase Property of the Prediction-Error Filter

The minimum-phase property of the prediction-error filter A (z) of linear prediction is
an important property because it guarantees the stability of the causal inverse synthesis
filter 1/A(z). There are many proofs of this property in the literature [6-10]. Here, we

84 1. Review of Random Signals

would like to present a simple proof [11] which is based directly on the fact that the
optimal prediction coefficients minimize the mean-square prediction error. Although
we have only discussed first and second order linear predictors, for the purposes of this
proof we will work with the more general case of an Mth order predictor defined by

Yn=—laiyn-1+ayn>+---+amyn-ml

which is taken to represent the best prediction of y, based on the past M samples
Yn = {Yn-1,Yn-2,...,¥Yn-m}. The corresponding prediction error is

en=Yn—Yn=Yn+d1yn-1+doyn2+ -+ +AaAuYn-m

The best set of prediction coefficients {a;, ds,...apy} is found by minimizing the
mean-square prediction error

M
Eay, a,...am) = Elefenl= > ahElyy myn-klax
m,k=0
(1.21.1)
M M
= > apRy(k—-m)ax= > aiRy, (m-k)ax
m,k=0 m,k=0

where we set ap = 1. For the proof of the minimum phase property, we do not need
the explicit solution of this minimization problem; we only use the fact that the optimal
coefficients minimize Eq. (1.21.1). The key to the proof is based on the observation that
(3.7.1) can be written in the alternative form

M
E@)= > Ryy(k)Raa(k) (1.21.2)
k=—M
where R, (k) is the sample autocorrelation of the prediction-error filter sequence a =
[1,a1,az,...,am]T as defined in Eq. (1.19.5). The equivalence of Egs. (1.21.1) and
(1.21.2) can be seen easily, either by rearranging the summation indices of (1.21.1), or
by using the results of Problems 1.37 and 1.39.

Example 1.21.1: We demonstrate this explicitly for the M = 2 case. Using the definition (1.19.5)

we have) 5)))
Raa(0) = laol® + lail* + |az2| = 1 + |ai|* + |az|

Raa(1) = Raa (1) *= ayal + azaf = a1 + aaf
Raa(2) = Rga(=2)*= @yaf = ay

Since yy, is real-valued stationary, we have Ry, (k) = Ry, (—k). Then, Eq. (1.21.1) becomes

explicitly
M Ryy(0) Ry, (1) Ry, (2) 1
5(3): Z a;knRyy(mfk)ak = [llafia?] R)’Y(l) Ryy(o) Ryy(l) ax
mk=0 Ryy(0) Ryy(1) Ryy(2) a

=R,y (0)[1 +afar + asa:1+Ryy, (1) [(a1 + aza}) +(af + afa1)] + Ryy(2)[az + a3]

= Ryy(O)Raa(O) +Ryy(1) [Raa (1) +Raa(_1)] + Ryy(z) [Raa(2)+Raa(_2)] O

1.21. Minimum-Phase Property of the Prediction-Error Filter 85

Leta = [1,a1,d>,...,am]” be the optimal set of coefficients that minimizes £(a)
and let z;,i = 1,2..., M, be the zeros of the corresponding prediction-error filter:

ChiitauzM=Q-z1zH(A=-2zz7Y)- - (1=2zyz™H) (1.21.3)

1+ 01271 +darz-
Reversing any one of the zero factors in this equation, thatis, replacing (1—z;z"!) by
its reverse (—z; + z~1), results in a sequence that has the same sample autocorrelation
as a. As we have seen, there are 2™ such sequences, all with the same sample autocorre-
lation. We would like to show that among these, a is the one having the minimum-phase
property.
To this end, let b = [bg, b1,...bu]1T be any one of these 2™ sequences, and define
the normalized sequence

c=b/by = [1,b1/bo,b2/bo,...by/bo]T (1.21.4)

Using the fact that b has the same sample autocorrelation as a, we find for the sample
autocorrelation of c:

Rec (k)= Rpp (k) /1bo|? = Raa (k) /b |? (1.21.5)

The performance index (1.21.2) evaluated at c is then

M M
(@)= D> Ryy(k)Rec(k)= > Ryy(k)Raqa(k)/|bol? (1.21.6)
k=—M k=—M
or,
E(c)=E(a)/|bol? (1.21.7)

Since a minimizes &, it follows that £(c) > £(a). Therefore, Eq. (1.21.7) implies that
|bg|l <1 (1.21.8)

This must be true of all bs in the above class. Eq. (1.21.8) then, immediately implies the
minimum-phase property of a. Indeed, choosing b to be that sequence obtained from
(1.21.3) by reversing only the ith zero factor (1 — z;z~') and not the other zero factors,
it follows that

— *
bo = —Z

and therefore Eq. (1.21.8) implies that
lzil <1 (1.21.9)

which shows that all the zeros of A(z) are inside the unit circle and thus, A(z) has
minimum phase. An alternative proof based on the Levinson recursion and Rouche’s
theorem of complex analysis will be presented in Chap. 12.

86 1. Review of Random Signals

1.22 Computer Project - Adaptive AR(1) and AR(2) Models

This computer project, divided into separate parts, deals with adaptive AR models that
are capable of tracking time-varying systems. Itis also applied to the benchmark sunspot
data, comparing the results with Yule’s original application of an AR(2) model.

1. Time-varying AR(1) model. Consider the following AR(1), first-order, autoregressive
signal model with a time-varying parameter:

Yn=a(n)yn_1+ €y (1.22.1)

where €, is zero-mean, unit-variance, white noise. The filter parameter a(n) can
be tracked by the following adaptation equations (which are equivalent to the exact
recursive least-squares order-1 adaptive predictor):

Ro(n) = ARp(n — 1)+ y?_,
Ri(n) =AR1(n — 1)+ & ynyn-1

_Ri(n)

atn) = ¢

where o = 1 — A. The two filtering equations amount to sending the quantities y2_,
and y,yn-1 through an exponential smoother. To avoid possible zero denominators,
initialize Ry to some small positive constant, Rg(—1)= &, such as § = 1073,

(a) Show that d(n) satisfies the recursion:

amy=an-1)+ Yn-1€n/n-1| €nm-1=yn—Aad(n—-1)y,1 (1.22.2)

_x
Ro(n)

where e,,n-1 is referred to as the a priori estimation (prediction) error.

(b) Using Eq. (1.22.1), generate a data sequence y,, h = 0,1,...,N — 1 using the
following time varying coefficient, sinusoidally switching from a positive value
to a negative one (the synthesis filter switches from lowpass to highpass):

0.75, 0<n=<N;-1
— Nga
=4 0.75 (7) Ng<n <N,
a(n) cos TrNb_Na a<n b
-0.75, Ny+1l<n<N-1

Use the following numerical values:
Ng =500, Np=1500, N =2000

Calculate the estimated d(n) using the recursion (1.22.2) and plot it versus n
together with the theoretical a (n) using the parameter value A = 0.980. Repeat
using the value A = 0.997. Comment on the tracking capability of the algorithm
versus the accuracy of the estimate.

1.22. Computer Project - Adaptive AR(1) and AR(2) Models 87

(c) Study the sensitivity of the algorithm to the initialization parameter &.

AR(1) case, A =0.980

AR(1) case, A =0.997

0.5

-0.5. _0.4 "
— a(n) estimated -0.6f|— a(n) estimated \\\
- - - a(n) theoretical - - - a(n) theoretical e Lol T
o 500 1000 1500 2000 _0'00 500 1000 1500 2000
time samples, n time samples, n

2. Tine-varying AR(2) model. Next, consider an AR(2), second-order, model with time-
varying coefficients:

Yn=—a1(N)yn-1—a(n)yn-2 + €y (1.22.3)

If the coefficients were stationary, then the theoretical Wiener solution for the pre-
diction coefficients a; and a, would be:

a, _ R() R1 ! R1 _ 1 ROR1 —R1R2 (1.22.4)

a Ri Ro R R3—-R}| RoR:-Rj o
where Ry = E[ynYn-k]. For a time-varying model, the coefficients can be tracked by
replacing the theoretical autocorrelation lags Rx with their recursive, exponentially

smoothed, versions:
Ro(n) =ARo(n—1)+xya

Ri(n) =AR1(n—1)+&ynyn-1
R>(n) = AR2(n — 1)+ X Ynyn-2

(a) Using Eq. (1.22.3), generate a non-stationary data sequence y, by driving the
second-order model with a unit-variance, zero-mean, white noise signal €, and
using the following theoretical time-varying coefficients:

-1.3, 0<n<Ng-1
n—-Np

= 1.3 , Nao<n<N

ax (n) Ny — N, a<n=<Np
0, Npy+l<nsN-1
0.4, 0<n=<Ng;-1

- N,

ax(n)= O.65—0.25cos(nm>, Ng <n<Np

0.9, Npy+l<=n=<N-1

88 1. Review of Random Signals

Thus, the signal model for y, switches continuously between the synthesis filters:

1 1

B = T 311 0az2 B2)= 10072

(b) Compute the adaptive coefficients d; (n) and d» (n) using the two forgetting fac-
tors A = 0.980 and A = 0.997. Plot the adaptive coefficients versus n, together
with the theoretical time-varying coefficients and discuss the tracking capability
of the adaptive processor.

AR(2) case, A =0.980
0.5 1.2
J— al(n) estimated

AR(2) case, A =0.980

— a,(n) estimated

--- al(n) theoretical

- az(n) theoretical

0.8
-0.5 0.6

0.4

0.2

0 500 1000 1500 2000 0 500 1000 1500 2000

time samples, n time samples, n

AR(2) case, A =0.997 AR(2) case, A =0.997

0.5

— a,(n) estimated — a,(n) estimated

---a,(n) theoretical ---ay(n) theoretical

500 1000 1500 2000 0 500 1000 1500 2000
time samples, n time samples, n

3. AR(2) modeling of sunspot data. Next, we will apply the adaptive method of part-2 to
some real data. The file sunspots.dat contains the yearly mean number of sunspots
for the years 1700-2008. To unclutter the resulting graphs, we will use only the data
for the last 200 years, over 1809-2008. These can be read into MATLAB as follows:

Y = Toadfile(’sunspots.dat’);

i = find(Y(:,1)==1809);

y = Y(i:end,2); % number of sunspots
N = length(y); % here, N=200

m

= mean(y); y = y-m; % zero-mean data

where the last line determines the mean of the data block and subtracts it from the
data. The mean m will be restored at the end.

1.22. Computer Project - Adaptive AR(1) and AR(2) Models 89

Yule was the first to introduce the concept of an autoregressive signal model and
applied it to the sunspot time series assuming a second-order model. The so-called
Yule-Walker method is a block processing method in which the entire (zero-mean)
data block is used to estimate the autocorrelation lags Ry, R, R» using sample au-
tocorrelations:

1 N-1 1 N-2 1 N-3
Ro=~ > yvi, Ri== > Yniivn, Ro=— D Yniovn
N n=0 " N n=0 N n=0

Then, the model parameters a,, a, are estimated using Eq. (1.22.4):

A N -1 A
ﬁl _ Ro Rl Rl
[ﬁz] =— [R1 R] [Rz] (Yule-Walker method)

(a) First, compute the values of 4, d» based on the given length-200 data block.

(b) Then, apply the adaptive algorithm of the part-2 with A = 0.99 to determine the
adaptive versions a; (n), a (n) and plot them versus n, and add on these graphs
the straight lines corresponding to the Yule-Walker estimates dy, dz.

a, coefficient a, coefficient

— adaptive
- - - Yule-Walke:

0.5
-1

-1.5¢ A
— adaptive
- - - Yule-Walke:

9 . . . 9 . .
0 50 100 150 200 0 50 100 150 200
years years

(c) At each time instant n, the value of y, can be predicted by either of the two
formulas: .
Ynm-1=—a1(M)¥n-1 - az(n)yn-2
Yn/n-1 = —A1Yn-1 — d2Yn-2

On the same graph, plot y,; and yy,,-1 for the above two alternatives. The case
of the adaptive predictor is shown below.

90

1. Review of Random Signals

Sunspot Numbers 1809 - 2008

200

data
— prediction

0 50 100 150 200
years

(d) Repeat the above questions using A = 0.95 and discuss the effect of reducing A.

(e) Applyalength-200 Hamming window w, to the (zero-mean) data y, and calculate
the corresponding periodogram spectrum,

1[Nz _
Sper (W) = N Z Wnyne /"
n=0
as a function of the yearly period p = 217/ w, over the range 2 < p < 20 years.
For the same p’s or w’s calculate also the AR(2) spectrum using the Yule-Walker
coefficients dy, d»:

2
(TE

- { 1+ dle—f‘“ + dze‘21w|2

Sar (w)

where 02 can be calculated by
O'E = 1%() + dlﬁl + azﬁz
Normalize the spectra Sper (W), Sar (@) to unity maxima and plot them versus

period p on the same graph. Note that both predict the presence of an approxi-
mate 11-year cycle, which is also evident from the time data.

power spectra in dB

power spectra

10 T T T T T
— periodogram — periodogram
--- AR(2) --- AR(2)
1F
0.8f b3
! S
0.6 s o
!
0.4F 2
0.2f /,
B
0 o 50,

0 2 4 6 8 10 12 14 16 18 20 2 4 6 8 100 12 14 16 18 20
period in years period in years

1.23. Problems 91

We will revisit this example later on by applying SVD methods to get sharper
peaks. An example of the improved results is shown below.

power spectra in dB

10
— enhanced Burg
- -- enhanced LSQ

standard Burg]

4 6 8§ 10 12 14 16 18 20
period in years

1.23 Problems

1.1

1.2

1.3

Two dice are available for throwing. One is fair, but the other bears only sixes. One die is
selected as follows: A coin is tossed. If the outcome is tails then the fair die is selected, but if
the outcome is heads, the biased die is selected. The coin itself is not fair, and the probability
of bearing heads or tails is 1/3 or 2/3, respectively. A die is now selected according to this
procedure and tossed twice and the number of sixes is noted.

Let x be a random variable that takes on the value 0 when the fair die is selected or 1 if the
biased die is selected. Let y be a random variable denoting the number of sixes obtained in
the two tosses; thus, the possible values of y are 0, 1, 2.

(a) For all possible values of x and y, compute p(y|x), that is, the probability that the
number of sixes will be y, given that the x die was selected.

(b) For each y, compute p(y), that is, the probability that the number of sixes will be y,
regardless of which die was selected.

(c) Compute the mean number of sixes E[y].
(d) For all values of x and y, compute p (x|y), that is, the probability that we selected die X,
given that we already observed a y number of sixes.

Inversion Method. Let F(x) be the cumulative distribution of a probability density p(x).
Suppose u is a uniform random number in the interval [0, 1). Show that the solution of the
equation F (x) = u, or equivalently, x = F~!(u), generates a random number x distributed
according to p(x). This is the inversion method of generating random numbers from uni-
form random numbers.

Computer Experiment. Let x be a random variable with the exponential probability density

1
(x)= e
PR

Show that x has mean p and variance p?. Determine the cumulative distribution function
F(x) of x. Determine the inverse formula x = F~!(u) for generating X from a uniform

92

1.4

1.5

1.6

1.7

1.8

1.9

1. Review of Random Signals

u. Take p = 2. Using the inversion formula and a uniform random number generator
routine, generate a block of 200 random numbers x distributed according to p (x). Compute
their sample mean and sample variance, Eqs. (1.2.1) and (1.2.3), and compare them with
their theoretical values. Do the estimated values fall within the standard deviation intervals
defined by Egs. (1.2.2) and (1.2.4)?

The Rayleigh probability density finds application in fading communication channels

Vo 2552
D(r):ge RS r=0

Using the inversion method, ¥ = F~! (u), show how to generate a Rayleigh-distributed ran-
dom variable ¥ from a uniform u.
(a) Following the notation of Sec. 1.4, show the matrix identity, where H = RXyR;)}

[Iv | ~H][Rw [Ry [Iv | ~H]" [Ru=RoRyiRy | 0]

LOT Dn [[R [Ry J[O]In]| | 0 | Ryy |

(b) Rederive the correlation canceling results of Egs. (1.4.3) and (1.4.4) using this identity.

Using the matrix identity of Problem 1.5, derive directly the result of Example 1.4.1, that is,
E[x|y]= RX),R;)}y. Work directly with probability densities;

Show that the orthogonal projection X of a vector x onto another vector y, defined by
Eq. (1.4.5) or Eq. (1.6.18), is a linear function of x, that is, show

A1Xi + A2X2 = A1X; + A%

Suppose x consists of two components x = s + nj, a desired component s, and a noise
component n;. Suppose that y is a related noise component n, to which we have access,
Y = ny. The relationship between n; and n, is assumed to be linear, n; = Fn,. For exam-
ple, s might represent an electrocardiogram signal which is contaminated by 60 Hz power
frequency pick-up noise n;; then, a reference 60 Hz noise y = n,, can be obtained from the
wall outlet.

(a) Show that the correlation canceler is H = F, and that complete cancellation of n; takes
place.

(b) If n; = Fny + v, where v is uncorrelated with n, and s, show that H = F still, and n; is
canceled completely. The part v remains unaffected.

Signal Cancellation Effects. In the previous problem, we assumed that the reference signal y
did not contain any part related to the desired component s. There are applications, however,
where both the signal and the noise components contribute to both x and y, as for example in
antenna sidelobe cancellation. Since the reference signal y contains part of s, the correlation
canceler will act also to cancel part of the useful signal s from the output. To see this effect,
consider a simple one-dimensional example

signal S~ X ha e
source [\ A
N/

=n, +e€s VAN A
Y 2 noise |- g~ Y H X
source ny,

with n; = Fn»,, where we assume that y contains a small part proportional to the desired
signal s. Assume that n, and s are uncorrelated. Show that the output e of the correlation

X=8+m

1.23. Problems 93

1.10

canceler will contain a reduced noise component n; as well as a partially canceled signal s,
as follows:
Fe(1 + FeG)

where a=1- ——————-,

1+ Feg = ekoa

e=as+bn;,

and G is a signal to noise ratio G = E[s?] /E[n%]. Note that when € = 0, then a = 1 and
b = 0, as it should.

Consider a special case of Example 1.4.3 defined by ¢, = 1, so that y, = x +v,, n =
1,2,...,M. This represents the noisy measurement of a constant x. By comparing the
corresponding mean-square estimation errors E[e?], show that the optimal estimate of x
given in Eq. (1.4.9) is indeed better than the straight average estimate:

)n(':Y1+Y2+"'+YM
av M

Recursive Estimation. Consider the subspace Y, = {y1,y2,...,¥n} forn = 1,2,...,M, as
defined in Sec. 1.6. Eq. (1.6.18) defines the estimate X of a random vector x based on the
largest one of these subspaces, namely, Y.

(a) Show that this estimate can also be generated recursively as follows:
Xn = f{n—l + Gy (YH -)A}n/n—])

forn = 1,2,...,M, and initialized by X, = 0 and y;1,o = 0, where X,, denotes the best
estimate of x based on the subspace Y, and G, is a gain coefficient given by G, =
E[xen]E[€n€n]". (Hint: Note %, = .1, E[x€;]E[€i€i] '€

(b) Show that the innovations €, = Y, — Yn/n-1 is orthogonal to X,_1, that is, show that
E[Xp_1€x]=0forn=1,2,..., M.

(c) Let e, = X — X, be the corresponding estimation error of x with respect to the subspace
Y. Using Eq. (1.4.4), show that its covariance matrix can be expressed in the €-basis as
follows

n
Reye, = Rux — ZE[XGi]E[GiGi]ilE[EiXT]
i=1

(d) The above recursive construction represents a successive improvement of the estimate
of x, as more and more y,s are taken into account; that is, as the subspaces Y, are suc-
cessively enlarged. Verify that X, is indeed a better estimate than X,,—; by showing that
the mean-square estimation error Re,, is smaller than the mean-square error Re,,_e,,_; -
This is a very intuitive result; the more information we use the better the estimate.

Such recursive updating schemes are the essence of Kalman filtering. In that context,
Gy, is referred to as the “Kalman gain.”

The recursive updating procedure given in Problem 1.11 is useful only if the gain coefficient
Gy can be computed at each iteration n. For that, a knowledge of the relationship between
x and y, is required. Consider the case of Example 1.4.3 where y,, = cyX + Vy; define the
vectors

cn =1l coeescnl™y Yo = 1y, yal”, for m=1,2,...,M
and let X, and e, = X — X, be the estimate of x on the basis of Y, and the corresponding
estimation error.

94

1.13

1.14

1. Review of Random Signals

(a) Using Eq. (1.4.9), show that

1
1+chcn

. 1
T 2
c,Yn, and Ele;]= E[xe,]=
nan Len] [xen] 1+C3;Cn

Xn =
(b) Using Eq. (1.6.19), compute Y,,,-1 and show that it may be expressed in the form
Cn

T
Ch-1Yn-1
1+ck jcpy ™8

Yn/n-1 = CnRp-1 =

(c) Let ey—1 = X — X;—1 be the estimation error based on Y,_;. Writing
€n =¥Yn—VYnin-1= (CnX + Vn) —CnXn-1 = Cpen-1 + Vp

show that
Elenen] = (1 +cley) (1+c_jcpoy) ™!

E[xe€n] = cn(1 +cl_jcn_1)7!
(d) Show that the estimate X,, of X can be computed recursively by
Rn=Rn 1 +GnWn—Vum1), where Gp=cn(1+chen)™
Rederive the recursive updating equation given in Problem 1.12(d), without any reference to

innovations or projections, by simply manipulating Eq. (1.4.9) algebraically, and writing it in
recursive form.

Computer Experiment. A three-component random vector y has autocorrelation matrix

1 2 3 Y1
R=Elyyll=2 6 14|, y=|»
3 14 42 V3

Carry out the Gram-Schmidt orthogonalization procedure to determine the innovations rep-
resentation y = B€, where € = [€1,€»,€3]7 is a vector of uncorrelated components. The
vector y can be simulated by generating a zero-mean gaussian vector of uncorrelated com-
ponents € of the appropriate variances and constructing y = B€. Generate N = 50 such
vectors y,, h = 1,2,...,N and compute the corresponding sample covariance matrix R
given by Eq. (1.6.21). Compare it with the theoretical R. Is R consistent with the standard
deviation intervals (1.6.23)? Repeat for N = 100.

The Gram-Schmidt orthogonalization procedure for a subspace Y = {y1,y2,...,Vum} is ini-
tialized at the leftmost random variable y; by €; = y; and progresses to the right by suc-
cessively orthogonalizing y», y3, and so on. It results in the lower triangular representation
vy = Be. The procedure can just as well be started at the rightmost variable y); and proceed
backwards as follows:

nM =YMm
Nm-1 = Ym-1 — (projection of yp—_; on ny)
NM-2 = Ym-2 — (projection of yy—» on {nm, Nm-1})

and so on. Show that the resulting uncorrelated vector n = [n1,n2,...,Nm]7 is related to

v = [yn,Y2,...,yu1" by alinear transformation

y=Un

where U is a unit upper-triangular matrix. Show also that this corresponds to a UL (rather
than LU) Cholesky factorization of the covariance matrix Ry .

1.23. Problems 95

1.16

1.18

1.19

1.20

Since “orthogonal” means “uncorrelated,” the Gram-Schmidt orthogonalization procedure
can also be understood as a correlation canceling operation. Explain how Eq. (1.6.20) may
be thought of as a special case of the correlation canceler defined by Egs. (1.4.1) and (1.4.2).
What are x,y, e, and H, in this case? Draw the correlation canceler diagram of Fig. 1.4.1 as
it applies here, showing explicitly the components of all the vectors.

Using Eq. (1.7.11), show that the vector of coefficients [dn;, dn2,...,dnm]" can be expressed

explicitly in terms of the y-basis as follows:

am Yn-1
An2 T 1 Yn-2
= —E[yn-1Yn-11" E[Ynyn-1], where y, ;=

Ann Yo
Show that the mean-square estimation error of y,, on the basis of Y,,_; —that is, E[€2], where
€n = ¥Yn — Yn/n-1—can be expressed as

E[€2]= El€nyn]= EIV21-Elynyt J1E[YVu_1VE 117 ElYnYn_1]

Leta, = [1,an1,anz,...,ann]T for n = 1,2,...,M. Show that the results of the last two
problems can be combined into one enlarged matrix equation

E[Ynyz;]an = E[ei]un

where uy, is the unit-vector u, = [1,0,0,...,0]7 consisting of one followed by n zeros, and
¥n = n Yoty 001" = Wa, v 17

The quantity y,,/,—1 of Eq. (1.6.19) is the best estimate of y,, based on all the previous ys,
namely, Y,-1 = {)0,Y1,..-,Vn-1}. This can be understood in three ways: First, in terms
of the orthogonal projection theorem as we demonstrated in the text. Second, in terms of
the correlation canceler interpretation as suggested in Problem 1.16. And third, it may be
proved directly as follows. Let ¥,,,,—1 be given as a linear combination of the previous ys as in
Eq. (1.7.11); the coefficients [an1, dnz,...,dnn] " are to be chosen optimally to minimize the
estimation error €, given by Eq. (1.7.10) in the mean-square sense. In terms of the notation
of Problem 1.19, Eq. (1.7.10) and the mean-square error E [eﬁ] can be written in the compact
vectorial form
en=any,, E(an)=Elei]=alEly,y}la,

The quantity £(ay,) is to be minimized with respect to a,. The minimization must be sub-
ject to the constraint that the first entry of the vector a, be unity. This constraint can be
expressed in vector form as

alu, =1

where u, is the unit vector defined in Problem 1.19. Incorporate this constraint with a
Lagrange multiplier A and minimize the performance index

E(ay)=alEly,yrla, + A(1 —aluy,)

with respect to ay, then fix A by enforcing the constraint, and finally show that the resulting
solution of the minimization problem is identical to that given in Problem 1.19.

Show that the normal equations (1.8.12) can also be obtained by minimizing the performance
indices (1.8.10) with respect to a and b, subject to the constraints that the first element of
a and the last element of b be unity. (Hint: These constraints are expressible in the form
u’a=1andv’b=1)

96

1.22

1.23
1.24

1.25

1.26

1.27

1. Review of Random Signals

Using Eq. (1.8.16), show that E}, can be expressed as the ratio of the two determinants Ej, =
detR/ detR.

Show Egs. (1.8.28) and (1.8.35).

A random signal x (n) is defined as a linear function of time by
x(n)=an+>b

where a and b are independent zero-mean gaussian random variables of variances o2 and

o3, respectively.

(a) Compute E[x(n)?].

(b) Is x(n) a stationary process? Is it ergodic? Explain.

(c) For each fixed n, compute the probability density p (x(n)).
)

(d) For each fixed n and m (n # m), compute the conditional probability density function
p(x(n)|x(m)) of x(n) given x(m). (Hint: x(n) —x(m)= (n — m)b.)

Compute the sample autocorrelation of the sequences

(@ yn=1,for0<n<10.

(b) ypn=(-1)",for 0 <n < 10.

in two ways: First in the time domain, using Eq. (1.11.1), and then in the z-domain, using
Eq. (1.11.3) and computing its inverse z-transform.

FFT Computation of Autocorrelations. In many applications, a fast computation of sample
autocorrelations or cross-correlations is required, as in the matched filtering operations in
radar data processors. A fast way to compute the sample autocorrelation ﬁyy (k) of alength-
N data segment y = [Yo,Y1,...,¥~-1]17 is based on Eq. (1.11.5) which can be computed
using FFTs. Performing an inverse FFT on Eq. (1.11.5), we find the computationally efficient
formula

Ry, (k)= %IFFT[[FFT(y) |°] (P.1)

To avoid wrap-around errors introduced by the IFFT, the length N’ of the FFT must be se-
lected to be greater than the length of the function Ry, (k). Since R,y (k) is double-sided with
an extent —(N — 1)< k < (N — 1), it will have length equal to 2N — 1. Thus, we must select
N’ = 2N — 1. To see the wrap-around effects, consider the length-4 signaly = [1,2,2,1]7.

(a) Compute R,y (k) using the time-domain definition.
(b) Compute Ryy (k) according to Eq. (P.1) using 4-point FFTs.
(c) Repeat using 8-point FFTs.

Computer Experiment.

(a) Generate 1000 samples x(n), n = 0,1,..
gaussian noise sequence.

.,999, of a zero-mean, unit-variance, white

(b) Compute and plot the first 100 lags of its sample autocorrelation, that is, l?yy (k), for
k=0,1,...,99. Does Ry,, (k) look like a delta function 6 (k)?

1.23. Problems 97

1.29

1.30

(c) Generate 10 different realizations of the length-1000 sequence x(n), and compute 100
lags of the corresponding sample autocorrelations. Define an average autocorrelation
by

10
RK)= =S Rik), k=0,1,...,9,
105

where R; (k) is the sample autocorrelation of the ith realization of x(n). Plot R (k)
versus k. Do you notice any improvement?

A 500-millisecond record of a stationary random signal is sampled at a rate of 2 kHz and
the resulting N samples are recorded for further processing. What is N? The record of N
samples is then divided into K contiguous segments, each of length M, so that M = N/K.
The periodograms from each segment are computed and averaged together to obtain an
estimate of the power spectrum of the signal. A frequency resolution of Af = 20 Hz is
required. What is the shortest length M that will guarantee such resolution? (Larger M's will
have better resolution than required but will result in a poorer power spectrum estimate
because K will be smaller.) What is K in this case?

A random signal y,, is generated by sending unit-variance zero-mean white noise €, through
the filters defined by the following difference equations:

Yn=—-09yn-1 + €

Yn = 0-9)’;1—] + €n + €En-1

Yn = €n + 2€n-1 + €n—2

Yn =—-0.81yn-2+ €n

Yn =0.1yn_1 + 0.72yp_2 + €n — 2€n_1 + €n—2

Ul s W N

(a) For each case, determine the transfer function B (z) of the filter and draw its canonical
implementation form, identify the set of model parameters, and decide whether the
model is ARMA, MA, or AR.

(b) Write explicitly the power spectrum Sy, (w) using Eq. (1.13.6).
(c) Based on the pole/zero pattern of the filter B(z), draw a rough sketch of the power

spectrum Sy, (w) for each case.

Computer Experiment.

98

1.31

1.32

1. Review of Random Signals

Two different realizations of a stationary random signal n|ym | yn)
y(n), n = 0,1,...,19 are given. It is known that this 0| 3.848 | 5.431
signal has been generated by a model of the form 1] 3.025 | 5.550
2 | 5.055 | 4.873

y(n)=ay(n-1)+e(n) 3| 4.976 | 5.122

_ _ o _ 416599 | 5.722

where € (n) is gaussian zero-mean white noise of variance 5 16.217 | 5.860
o¢. 6 |6.572 | 6.133
(2) Estimate the model parameters a and o? using the 716.388 | 5.628
maximum likelihood criterion for both realizations. 8] 6.500 | 6.479
(The exact values were a = 0.95 and 0?2 = 1.) 9]5.564 | 4321

. 10 | 5.683 | 5.181

(b) Repeat using the Yule-Walker method. 11 | 5255 | 4279
This type of problem might, for example, arise in speech 12 | 4.523 | 5.469
processing where y (n) might represent a short segment 13 | 3.952 | 5.087
of sampled unvoiced speech from which the filter parame- 14 | 3.668 | 3.819
ters (model parameters) are to be extracted and stored for 15 | 3.668 | 2.968
future regeneration of that segment. A realistic speech 16 | 3.602 | 2.751
model would of course require a higher-order filter, typi- 17 | 1.945 | 3.306
cally, of order 10 to 15. 18 | 2.420 | 3.103
19 | 2.104 | 3.694

Computer Experiment.

(a) Using the Yule-Walker estimates {d, %} of the model parameters extracted from the
first realization of y (n) given in Problem 1.30, make a plot of the estimate of the power
spectrum following Eq. (1.13.6), that is,

52
A~ _ 0-6
Syy(w) = 1— de-Jw|2

versus frequency w in the interval 0 < w < .

g

Also, plot the true power spectrum

¢

Syy (W)= 1= aeJo2

defined by the true model parameters {a, 0?} = {0.95,1}.

(c) Using the given data values y (n) for the first realization, compute and plot the corre-
sponding periodogram spectrum of Eq. (1.11.5). Preferably, plot all three spectra on the
same graph. Compute the spectra at 100 or 200 equally spaced frequency points in the

interval [0, 1]. Plot all spectra in decibels.

(d) Repeat parts (a) through (c) using the second realization of y (n).

Better agreement between estimated and true spectra can be obtained using Burg’s analysis
procedure instead of the Yule-Walker method. Burg’s method performs remarkably well
on the basis of very short data records. The Yule-Walker method also performs well but it
requires somewhat longer records. These methods will be compared in Chap. 14.

In addition to the asymptotic results (1.16.4) for the model parameters, we will show in
Chap. 14 that the estimates of filter parameter and the input variance are asymptotically

1.23. Problems 99

1.34

1.36

uncorrelated, E[Aa Acrg] = 0. Using this result and Eq. (1.16.4), show that the variance of
the spectrum estimate is given asymptotically by

2
25 (w) [1

E[AS(w) AS(w)] = N

2(1 —a?) (cosw — a)?
(1 -2acosw + a?)?

where AS (w) = S (w)—S (w), with the theoretical and estimated spectra given in terms of
the theoretical and estimated model parameters by

ot
|1 —ae-jw|2’

¢

S(@)= 1 apiwp

S(w)=
For any positive semi-definite matrix B show the inequality tr(B —I —In B) > 0 with equality
achieved for B = I. Using this property, show the inequality f (R)> f(R), where f(R)=
tr(InR + R~'R). This implies the maximum likelihood property of R, discussed in Sec. 1.18.

Show the following three matrix properties used in Sec. 1.18:

In(detR)=tr(InR), dtrnR)=tr(R'dR), dR'=-R'dRR7!
(Hints: for the first two, use the eigenvalue decomposition of R; for the third, start with

R'R=1)

Let x(n) be a zero-mean white-noise sequence of unit variance. For each of the following
filters compute the output autocorrelation R, (k) for all k, using z-transforms:

y(n)=x(n)-x(n-1)
yn)=xn)-2x(n—-1)+x(n-2)
y(n)=-0.5y(n—-1)+x(n)
y(n)=0.25y(n —2)+x(n)

B w N

Also, sketch the output power spectrum Sy, (w) versus frequency w.

Let y, be the output of a (stable and causal) filter H (z) driven by the signal x,, and let w,,
be another unrelated signal. Assume all signals are stationary random signals. Show the
following relationships between power spectral densities:

(a) Syw (Z) = H(Z)wa (Z)

() Swy(2)= Swx (z)H(z™Y)

A stationary random signal y;, is sent through a finite filter A (z) = ap+a,z ' +- - - +ayz ™
to obtain the output signal ey, :

Yn Hen

Show that the average power of the output e, can be expressed in the two alternative forms:

o

=S

I
M=

AmYn-m

m=0

2 i edw _ 1
Ele;]l= Syy (W) |[A(w)|"—— =a’R,,a
— 27T
where a = [a9,a1,...,am]T and R, is the (M + 1) x (M + 1) autocorrelation matrix of y,
having matrix elements Ry, (i,j) = E[yiy;j1= Ryy (i — j).

100 1. Review of Random Signals

1.38 Consider the two autoregressive random signals y, and y,, generated by the two signal
models:

1 M

AZ)=1+aiz'+---+ayz™ and A'(z)=1+ajzt+---+ayz

€n— 1/A(z) Vn €n 1/4(2) Vh

(@) Suppose yp, is filtered through the analysis filter A’ (z) of y,, producing the output signal

ey; that is,
o

If y,, were to be filtered through its own analysis filter A (z), it would produce the inno-
vations sequence €,. Show that the average power of e,, compared to the average power
of €, is given by

M
en = Z a;HYn—m
m=0

A (W) 2

A(w)

2 'T Y ™
og; a ' Rya J
T
a’Ryya

5 = =

=N
o A

om

=TT

where a,a” and Ry, have the same meaning as in Problem 1.37. This ratio can be taken as
a measure of similarity between the two signal models. The log of this ratio is Itakura’s
LPC distance measure used in speech recognition.

(b) Alternatively, show that if y;, were to be filtered through y,,’s analysis filter A (z) result-
inginel, = XM _ amyl_m then
oy _ a'Rya J” Alw) |*dw _ Hé ’
o2 T aTRpya A (w)| 2m A

1.39 The autocorrelation function of a complex-valued signal is defined by
Ryy (k) = E[yn-#ky:]

(a) Show that stationarity implies Ry, (=k) = R, (k) *.

(b) If y, is filtered through a (possibly complex-valued) filter A(z)= ag + a1z™' + - - - +
ayz M, show that the average power of the output signal e,, can be expressed as

Elejen]=a'Rya
where at denotes the hermitian conjugate of a and R, has matrix elements
Ryy (l,_]) = Ryy (1 _.])

1.40 (a) Let y, = Ajexp[j(win + ¢1)] be a complex sinusoid of amplitude A; and frequency
w1. The randomness of y, arises only from the phase ¢; which is assumed to be a random
variable uniformly distributed over the interval 0 < ¢b; < 27r. Show that the autocorrelation
function of y, is

Ryy (k)= A1 |* exp (jew:1 k)

(b) Let ¥, be the sum of two sinusoids
Yn = Arexp[j(win + ¢1)] + Az explj(wzn + ¢2)]

with uniformly distributed random phases ¢; and ¢, which are also assumed to be inde-
pendent of each other. Show that the autocorrelation function of y,, is

Ryy (k)= A% exp (jow k) +]Az|? exp (jowok)

1.23. Problems 101

1.41 Sinusoids in Noise. Suppose y, is the sum of L complex sinusoids with random phases, in
the presence of uncorrelated noise:

L
Yn=Vn+ > Ajexp[jlwin+ ¢;)]

i=1

where ¢;, i = 1,2,...,L are uniformly distributed random phases which are assumed to be
mutually independent, and vy, is zero-mean white noise of variance o2. Also, assume that
v, is independent of ¢;.

(a) Show that E[e/®ie~/¢k]= 5y, for i,k =1,2,...,L.
(b) Show that the autocorrelation of y, is

L
Ry (k)= 025 (K)+ > |A;]? exp (jok)

i=1

(c) Suppose yy, is filtered through a filter A(z)= ag + a1z + - - - + ayz ™™ of order M,
producing the output signal e,. Show that the average output power is expressible as

L
E=Elefeq]=a'Rya=o02ata+ > A2 A(w)]|’
i=1
where a, af, Ry, have the same meaning as in Problem 1.39, and A (w;) is the frequency
response of the filter evaluated at the sinusoid frequency wj, that is,
M .
Alw)= D ame™@m j=1,2,...,M

m=0

(d) If the noise vy, is correlated with autocorrelation Q (k), so that E[v,.x V1= Q (k), show
that in this case
L
E=Elejes]=a'Rya=atQa+ > |A;1*|A(w)) |2
i=1
where Q is the noise covariance matrix, Q (i,j)= Q (i —j).

1.42 A filter is defined by y (n)= —0.64y (n — 2) +0.36x(n).

(a) Suppose the input is zero-mean, unit-variance, white noise. Compute the output spectral
density Syy (z) and power spectrum Sy, (w) and plot it roughly versus frequency.
(b) Compute the output autocorrelation Ry, (k) for all lags k.

c

Compute the noise reduction ratio of this filter.

(d) What signal s(n) can pass through this filter and remain entirely unaffected (at least in
the steady-state regime)?

(e) How can the filter coefficients be changed so that (i) the noise reduction capability of
the filter is improved, while at the same time (ii) the above signal s(n) still goes through
unchanged? Explain any tradeoffs.

102

1.43

1.44
1.45
1.46

1.47

1.48

1.49

1.50

1. Review of Random Signals

Computer Experiment. (a) Generate 1000 samples of a zero-mean, unit-variance, white gaus-
sian noise sequence x(n), n = 0,1,...,999, and filter them through the filter defined by the
difference equation:

y(n)=ayn-1)+(1-a)x(n)

with a = 0.95. To avoid the transient effects introduced by the filter, discard the first 900
output samples and save the last 100 samples of y (n). Compute the sample autocorrelation
of y(n) from this length-100 block of samples.

(b) Determine the theoretical autocorrelation Ry (k), and on the same graph, plot the
theoretical and sample autocorrelations versus k. Do they agree?

Prove Eq. (1.19.6).
Using Eq. (1.19.10), show Egs. (1.19.12) and (1.19.13).

A random signal y, has autocorrelation function
Ryy (k)= (0.5)X, for all k

Find a random signal generator model for y,,.

Repeat Problem 1.46 when
Ry, (k)= (0.5) ¥+ (~0.5)X, for all k
The autocorrelation function of a stationary random signal y (n) is

_1-RE g
Ryy(k)—1+R2R cos(trk/2), forallk, where0O <R <1

(a) Compute the power spectrum Sy, (w) of y (n) and sketch it versus frequency for various
values of R.

(b) Find the signal generator filter for y (n) and determine its difference equation and its
poles and zeros.

A stationary random signal y, has a rational power spectral density given by

2.18—-0.6(z+z 1)

S = s o5z +zD)

Determine the signal model filter B(z) and the parameter og. Write the difference equation
generating yy.

Let y, = cx, + vj. It is given that

Q

R e Y

’ va(z):R, SXV(Z)=O

where a, ¢, Q, R are known constants (assume |a| < 1) for the stability of x,,.)
(a) Show that the filter model for y, is of the form

1-fz!

B(z)= 1-az!

where f has magnitude less than one and is the solution of the algebraic quadratic
equation

aR(1+f%)=[c*Q+R1 +a*>]f

and show that the other solution has magnitude greater than one.

1.23. Problems 103

1.52

(b) Show that f can alternatively be expressed as
Ra
f= s
R +c?P
where P is the positive solution of the quadratic equation
PRa?

R + c2p
known as the algebraic Riccati equation. Show that the other solution is negative. Show
that the positivity of P is essential to guarantee that f has magnitude less than one.

Q=pP-

(c) Show that the scale factor o2 that appears in the spectral factorization (1.20.1) can also
be expressed in terms of P as
o2 =R+ %P

The above method of solution of the spectral factorization problem by reducing it to the
solution of an algebraic Riccati equation is quite general and can be extended to the multi-
channel case.

Consider a stable (but not necessarily causal) sequence b,, —c0 < n < co with a z-transform
B(z)

B(z)= > bpz "

n=—oco

Define an infinite Toeplitz matrix B by
Bni=by-i, for —co <n,i <o

This establishes a correspondence between stable z-transforms or stable sequences and
infinite Toeplitz matrices.

(a) Show that if the sequence b, is causal, then B is lower triangular, as shown here

i

n

In the literature of integral operators and kernels, such matrices are rotated by 90°
degrees as shown:

n

so that the n axis is the horizontal axis. For this reason, in that context they are called
“right Volterra kernel,” or “causal kernels.”

g

Show that the transposed B” corresponds to the reflected (about the origin) sequence
b_, and to the z-transform B(z~1).

B

Show that the convolution of two sequences a, and b,
cn=an*xb, or C(z)=A(z)B(2)
corresponds to the commutative matrix product
C=AB=BA

Prove Eq. (1.21.2) for any M.

2

Signal Extraction Basics

2.1 Introduction

One of the most common tasks in signal processing is to extract a desired signal, say
X, from an observed signal:
Yn =Xn+ Vn (2.1.1)

where v, is an undesired component. The nature of v,, depends on the application. For
example, it could be a white noise signal, which is typical of the background noise picked
up during the measurement process, or it could be any other signal—not necessarily
measurement noise—that must be separated from x,.

The desired signal x,, often represents a smooth trend that conveys useful infor-
mation about the underlying dynamics of the evolving time series. Trend extraction is
carried out routinely on financial, business, census, climatic, and other applications.

An estimate, X, of the desired signal x,, is obtained by processing the observed sig-
nal y, through a processor designed according to some optimization criterion. There
exist a large variety of signal extraction methods, most of them based on a least-squares
minimization criterion, falling into two basic classes: (a) model-based parametric meth-
ods, such as those based on Wiener and Kalman filtering, and (b) non-parametric meth-
ods based on a variety of approaches, such as local polynomial modeling, exponential
smoothing, splines, regularization filters, wavelets, and SVD-based methods. Some of
the non-parametric methods (exponential smoothing, splines, regularization filters) can
also be cast in a state-space Kalman filtering form.

We discuss the Wiener and Kalman approaches in chapters 11 and 13, and the
SVD-based methods in chapter 15. In this chapter, we concentrate primarily on non-
parametric methods.

We consider also the problem of “de-seasonalizing” a time series, that is, estimating
and removing a periodic component. Many physical and financial time series have a nat-
ural periodicity built into them, such as daily, monthly, quarterly, yearly. The observed
signal can be decomposed into three components: a periodic (or nearly periodic) sea-
sonal part s, a smooth trend t,, and aresidual irregular part v, that typically represents
noise,

Yn=8n+ly+Vy (2.1.2)

104

2.2. Noise Reduction and Signal Enhancement 105

In such cases, the signal processing task is to determine both the trend and the
seasonal components, t, and s,. Often, economic data are available only after they
have been de-seasonalized, that is, after the seasonal part s, has been removed. Further
processing of the de-seasonalized trend, t,, can provide additional information such as
identifying business cycles. Moreover, modeling of the trend can be used for forecasting
purposes.

The particular methods of smoothing, trend extraction, and seasonal decomposition
that we consider in this and the next few chapters are:

¢ local polynomial smoothing filters (Savitzky-Golay filters) — Chap. 3

e minimum-roughness filters (Henderson filters) — Chap. 4

e local polynomial modeling and LOESS — Chap. 5

e exponential smoothing — Chap. 6

e smoothing splines — Chap. 7

e regularization filters (Whittaker-Henderson, Hodrick-Prescott) — Chap. 8
» wavelet denoising — Chap. 10

 seasonal decomposition (classical, moving average, census X-11) — Chap. 9
¢ bandpass and other filters in business and finance — Chap. 8

2.2 Noise Reduction and Signal Enhancement

A standard method of extracting the desired signal x, from y, is to design an appro-
priate filter H(z) that removes the noise component v, and at the same time lets X,
go through unchanged. It is useful to view the design specifications and operation of
such filter both in the time and frequency domains. Using linearity, we can express the
output signal due to the input of Eq. (2.1.1) in the form:

P =Rn + Vn (2.2.1)

where X, is the output due to x, and vV, the output due to v,. The two design conditions
for the filter are that X, be as similar to x, as possible and that V,, be as small as possible;
that is, ideally we require:*

Yn)A’n Xn = Xn
—— > H(2) — . (2.2.2)
Xp TV Xp TV Vn=0

In general, these conditions cannot be satisfied simultaneously. To determine when
they can be satisfied, we may express them in the frequency domain in terms of the
corresponding frequency spectra as follows: X (w)= X (w) and V (w) = 0.

Applying the filtering equation Y(w)= H(w)Y (w) separately to the signal and
noise components, we have the conditions:

X(w) = Hw)X(w)= X (w)

N (2.2.3)
V(w) =H(w)V(w)=0

T An overall delay in the recovered signal is often acceptable, that is, X, = Xn—p.

106 2. Signal Extraction Basics

The first requires that H (w)= 1 at all w at which the signal spectrum is nonzero,
X (w) =+ 0. The second requires that H (w) = 0 at all cw for which the noise spectrum is
nonzero, V (w) # 0.

These two conditions can be met simultaneously only if the signal and noise spectra
do not overlap, as shown in Fig. 2.2.1.¥ In such cases, the filter H (w) must have a pass-
band that coincides with the signal band, and a stopband that coincides with the noise
band. The filter removes the noise spectrum and leaves the signal spectrum unchanged.

signal
spectrum P . A N "
w noise w
Xy O R e Koy H) |
’/ v ’/ ’/ filtered noise
—————————— ‘ (w) S spectrum
| | A
! | "w)
- @ . w D . w
0 We T 0 We ™
signal noise signal noise
e band e band ™1 e band el band ™1

Fig. 2.2.1 Signal and noise spectra before and after filtering.

If the signal and noise spectra overlap, as is the typical case in practice, the above
conditions cannot be satisfied simultaneously. In such cases, we must compromise
between the two design conditions and trade off one for the other. Depending on the
application, we may decide to design the filter to remove as much noise as possible, but
at the expense of distorting the desired signal. Alternatively, we may decide to leave
the desired signal as undistorted as possible, but at the expense of having some noise
in the output.

The latter alternative is depicted in Fig. 2.2.2 where a low-frequency signal x,, exists
in the presence of a broadband noise component, such as white noise, having a flat
spectrum extending over the entire! Nyquist interval, —77 < w < TT.

The filter H (w) is chosen to be an ideal lowpass filter with passband covering the
signal bandwidth, say 0 < w < w.. The noise energy in the filter’s stopband w, < w <
1T is removed completely by the filter, thus reducing the strength (i.e., the rms value) of
the noise. The spectrum of the desired signal is not affected by the filter, but neither is
the portion of the noise spectrum that falls within the signal band. Thus, some noise
will survive the filtering process.

A measure of the amount of noise reduction achieved by a filter is given by the noise
gain, or noise reduction ratio (NRR) of the filter, defined in Eq. (1.12.16), which is valid
for white noise input signals. Denoting the input and output mean-square noise values
by 02 = E[v2] and 62 = E[V3], we have:

R_QZ_LI" |H (w)?dw = > h? (2.2.4)
o2 2m)oan i -

#Here, w is in units of radians per sample, i.e., w0 = 277f/fs, with f in Hz, and f; is the sampling rate.
IFor discrete-time signals, the spectra are periodic in w with period 27, or in f with period f5.

2.2. Noise Reduction and Signal Enhancement 107

signal
spectrum noise .
X(w) H(w) spectrum 4 X(w) H(w)

L_ ,p/ ,,,,,,, '/ Nw) | 71 7777777 filtered noise

! spectrum
i P/ / V(w) \‘
J w

________________ w
0 We ™ 0 We 1
signal signal
e band — [band —
noise noise
band [band —>

Fig. 2.2.2 Signal enhancement filter with partial noise reduction.

For the case of an ideal lowpass filter, with frequency and impulse responses given
by [29],

and hp=——"—, —c0o<n<o (22.5)

1, if Jw| < w¢ sin(wcn)
H(w)= .
0, fwe=<|w|l=Tm ™

the integration range in Eq. (2.2.4) collapses to the filter’s passband, thatis, —w, < w <
w¢, and over this range the value of H (w) is unity, giving:
ch We

= —_— = 2.2.6
(72 21 J we 21T T ()

Thus, the NRR is the proportion of the signal bandwidth with respect to the Nyquist
interval. The same conclusion also holds when the desired signal is a high-frequency
or a mid-frequency signal. For example, if the signal spectrum extends only over the
mid-frequency band w, < [w| < wp, then H (w) can be designed to be unity over this
band and zero otherwise. A similar calculation yields in this case:

=——=—— (2.2.7)

The noise reduction/signal enhancement capability of a filter can also be expressed
in terms of the signal-to-noise ratio. The SNRs at the input and output of the filter are
defined in terms of the mean-square values as:

E[x2] E[R2]
, SNRou = ——5
E[V#] T ER]
Therefore, the relative improvement in the SNR introduced by the filter will be:
SNRow: E[R3] E[V3] ! E[R2]

SNRin =

SNRn — E[Vi] E[x3] R E[x3]
If the desired signal is not changed by the filter, X,, = x,,, then

SNRout 1
= = 2.2.8
SNRin R ()

108 2. Signal Extraction Basics

Thus, minimizing the noise reduction ratio is equivalent to maximizing the signal-
to-noise ratio at the filter’s output.

The NRRs computed in Egs. (2.2.6) or (2.2.7) give the maximum noise reductions
achievable with ideal lowpass or bandpass filters that do not distort the desired signal.
Such ideal filters are not realizable because they have double-sided impulse responses
with infinite anticausal tails. Thus, in practice, we must use realizable approximations
to the ideal filters, such as FIR filters, or causal IIR filters. The realizable filters may
meet the two design goals approximately, for example, by minimizing the NRR subject
to certain constraints that help sustain the signal passband. Examples of this approach
are discussed in Sections 2.3, 2.4, and generalized in Sections 3.1 and 4.2.

The use of realizable filters introduces two further design issues that must be dealt
with in practice: One is the transient response of the filter and the other, the amount
of delay introduced into the output. The more closely a filter approximates the sharp
transition characteristics of an ideal response, the closer to the unit circle its poles
get, and the longer its transient response becomes. Stated differently, maximum noise
reduction, approaching the ideal limit (2.2.6), can be achieved only at the expense of
introducing long transients in the output.

The issue of the delay introduced into the output has to do with the steady-state
response of the filter. After steady-state has set in, different frequency components
of an input signal suffer different amounts of delay, as determined by the phase delay
d(w)= —Arg H (w) /w of the filter [29].

In particular, if the filter has linear phase, then it causes an overall delay in the out-
put. Indeed, assuming that the filter has nearly unity magnitude, |H (w)| =~ 1, over its
passband (i.e., the signal band) and is zero over the stopband, and assuming a constant
phase delay d (w) = D, we have for the frequency response

H(w)=[H(w)|e 7@ ~ gD

over the passband, and we find for the filtered version of the desired signal:

1 (™ . ; 1 (™ ;
Xn = —J X(w)e'*"dw = —J H(w)X(w)e!*"dw
21T —TT 21T —TT

1 (e ;
= — X(w)e/*"=D) duy = x(n - D)
27T J -,
the last equation following from the inverse DTFT of the desired signal:

1 (@ ;
Xp=— X(w)e’*"dw
210 J -,

Many smoothing filters used in practice (e.g., see Chapters 3 and 4) are double-sided
filters, hp,, —M < n < M, with a symmetric impulse response, h,, = h_p, and therefore,
they introduce no delay in the output (D = 0). On the other hand, if such filters are
made causal by a delay (D = M), then they will introduce a delay in the output. Such
delays are of concern in some applications such as monitoring and filtering real-time
data in the financial markets.

Next, we consider some noise reduction examples based on simple filters, calcu-
late the corresponding noise reduction ratios, discuss the tradeoff between transient
response and noise reduction, and present some simulation examples.

2.3. First-Order Exponential Smoother 109

2.3 First-Order Exponential Smoother
It is desired to extract a constant signal X, = s from the noisy measured signal
Yn=Xn+Vp=S+V,

where v, is zero-mean white Gaussian noise of variance 2. To this end, the following
IIR lowpass filter may be used, where b = 1 — q,
b > b?

H(w)= ———, [Hw)|"=————- (23.1)

H(z)= L
1-az 1—aeJjw’ 1—2acosw + a?

-1
where the parameter a is restricted to the range 0 < a < 1. Because the desired signal
Xp is constant in time, the signal band will be just the DC frequency w = 0. We require
therefore that the filter have unity gain at DC. This is guaranteed by the above choice of
the parameter b, that is, we have at w = 0, or equivalently at z = 1,

b
H(z)|,0q=7——=1
() |zfl 1-a
The NRR can be calculated from Eq. (2.2.4) by summing the impulse response squared.
Here, h,, = ba™uy, therefore, using the geometric series, we find

52 o 2 2
o b (1-a) 1-a
R=—=>hy=b*> a"= = = 2.3.2
o? % n Z 1-a? 1-a? l+a ()
n=0
The filter’s magnitude response, pole-zero pattern, and the corresponding input and
output noise spectra are shown in Fig. 2.3.1. The shaded area under the |H (w) |? curve
(including its negative-frequency portion) is equal as the NRR computed above.

A input noise
’/ spectrum | V(OU)|2 i e
w unit
1 ; | circle
L H(w) |
output noisi: 3 -1 1
1/2 —» We spectrum \V(w)|2 L (1-a\2
§’/ (1+a)
e (0

Fig. 2.3.1 Lowpass exponential smoothing filter.

The NRR is always less than unity because a is restricted to 0 < a < 1. To achieve
high noise reduction, a must be chosen near one. But, then the filter’s effective time
constant will become large:t

ne
— = © as a—1
Ina

TThe values € = 0.01 and € = 0.001 correspond to the so-called 40-dB and 60-dB time constants [30].

Neff =

110 2. Signal Extraction Basics

The filter’s 3-dB cutoff frequency w, can be calculated by requiring that |H (w¢) |?
drops by 1/2, that is,
. b? 1
Hw)|?= —7——— ==
IH (we) 1-2acoswe+a? 2
which can be solved to give cos w. = 1 — (1 — a)?/2a. If a is near one, a < 1, we can
use the approximation cosx = 1 — x2/2 and solve for w, approximately:*

Wwe=1-a

This shows that as a — 1, the filter becomes a narrower lowpass filter, removing
more noise from the input, but at the expense of increasing the time constant.

The tradeoff between noise reduction and speed of response is illustrated in Fig. 2.3.2,
where 200 samples of a simulated noisy signal y, were filtered using the difference equa-
tion of the filter, that is, replacing b = 1 — a

Yn=8S+Vn, Xpn=aXp-1+ (1—a)yn (2.3.3)

and initialized at X_; = 0. The value of the constant was s = 5, and the input noise
variance, 02 = 1. The random signal v, was generated by the built-in MATLAB function
randn. The figure on the left corresponds to a = 0.90, which has a 40-dB time constant,
NRR, and SNR improvement in dB:

In(0.01)
In(0.90)

1-0.90 1 1
44, R=_—T""=" 101ogw<—> =12.8dB

Meft = T 15090 19’ R

The right figure has a = 0.98, with a longer time constant of nep; = 228, a smaller
R = 1/99, and bigger SNR improvement, 101log,,(1/R)= 20 dB.

a=0.90 a=0.98

0 50 100 150 200 0 50 100 150 200
time samples, n time samples, n

Fig. 2.3.2 Noisy input and smoothed output.

TThe full 3-dB width of the interval [—cw¢, wc] is 2we = 2(1 — a). This is a special case of a more
general result [30] that the 3-dB width due to a filter pole with radius r near the unit circle, r < 1, is given
by Aw =2(1-r).

2.3. First-Order Exponential Smoother 111

To understand how this filter works in the time domain and manages to reduce the
noise, we rewrite the difference equation (2.3.3) in its convolutional form:

n
Rn=b D> a"Vu-m=b(Yn+ayn-1+a’yn2+---+a"y)
m=0

The sum represents a weighted average of all the past samples up to the present
time instant. As a result, the rapid fluctuations of the noise component v, are averaged
out. The closer a is to 1, the more equal weighting the terms get, and the more effective
the averaging of the noise. The exponential weighting de-emphasizes the older samples
and causes the sum to behave as though it had effectively a finite number of terms, thus,
safeguarding the mean-square value of X, from diverging (see, for example, Sec. 1.15.)
Because of the exponential weighting, this filter is also called an exponential smoother.

This filter can be applied to the smoothing of any low-frequency signal, not just
constants. One must make sure that the bandwidth of the desired signal x,, is narrower
than the filter’s lowpass width w¢, so that the filter will not remove any of the higher
frequencies present in xj,.

The exponential smoother is a standard tool in many applications requiring the
smoothing of data in signal processing, statistics, economics, physics, and chemistry. It
is also widely used in forecasting applications, for example in inventory control, where
the quantity X, is interpreted as the one-step ahead forecast. More precisely, the fore-
casting filter and its I/0 difference equation are given by:

-1
Hi(z)=z'H(z)= 1 bz Fpnii =aFn,+ (1 —a)yn (2.3.4)

—_az-1’
where F . is the predicted value of x,;, based on the available data y, up to time n.

We discuss the exponential smoother further in Sec. 6.1, where we rederive it from
an optimization criterion and generalize it to higher orders.

A slight variation of Eq. (2.3.1) which improves the NRR without affecting the speed
of response can be derived by adding a zero in the transfer function at z = —1 or
equivalently, at w = 11. The resulting first-order filter will be:

_b(1+2zYH

girve) 2 _
Hz= 120 5 Hw)

2b? (1 + cos w)

2.3.5
1-2acosw + a? ()

where b is fixed by requiring unity gain at DC:

2b 1-a
H(Z)}Z:1:1,a=1 = b= 5

The zero at w = 11 suppresses the high-frequency portion of the input noise spec-
trum even more than the filter of Eq. (2.3.1), thus, resulting in smaller NRR for the same
value of a. The impulse response of this filter can be computed using partial fractions:

-1
H(Z)=M=AO+L, where A0=—Q, Al:M
1-az! 1-az! a a

Therefore, its (causal) impulse response will be:

hn = Agd (n)+A1a"u(n)

112 2. Signal Extraction Basics

Note, in particular, that hg = Ay + A; = b. It follows that

00 oo 2 _
R=Shi=nd+>Sh=p+a-2 __1-4
n=0 n=1

1-a? 2

This is slightly smaller than that of Eq. (2.3.2), because of the inequality:
1—-a 1—a
<
2 1+a

The 3-dB cutoff frequency can be calculated easily in this example. We have

H(wp)|? = 220+ coswe) 1
¢ 1-2acoswe+a? 2

which can be solved for w. in terms of a:

2a 1—-a
COS W, = T+a? = tan<&> = (2.3.6)

Conversely, we can solve for a in terms of o.:

_ 1 — sin w, _ 1 —tan(w¢/2) (2.3.7)
€OS ¢ 1+ tan(wc/2)

It is easily checked that the condition 0 < a < 1 requires that w, < 11/2. We note
also that the substitution z — —z changes the filter into a highpass one.

Such simple first-order lowpass or highpass filters with easily controllable widths
are useful in many applications, such as the low- and high-frequency shelving filters of
audio equalizers [30].

2.4 FIR Averaging Filters

The problem of extracting a constant or a low-frequency signal x, from the noisy signal
Yn = Xp + vV, can also be approached with FIR filters. Consider, for example, the third-
order filter:

H(z)=ho+hz ' +hyz?+h3z73

The condition that the constant signal x,, go through the filter unchanged is the

condition that the filter have unity gain at DC, which gives the constraint among the
filter weights:

H(z)|,oy =ho+hy+hy+hs =1 (2.4.1)

The NRR of this filter will be simply:
R => h%=hj+hi+h3+h3 (2.4.2)
n
The optimum third-order FIR filter will be the one that minimizes this NRR, subject

to the lowpass constraint (2.4.1). To solve this minimization problem, we introduce a
Lagrange multiplier A and incorporate the constraint (2.4.1) into the performance index:

3 3 3
j=R+A<1—Zhn>=Zhgm(l—ZhH) (2.4.3)
n=0 n=0 n=0

2.4. FIR Averaging Filters 113

The minimization can be carried out easily by setting the partial derivatives of 7 to
zero and solving for the h’s:

oJ
ohn

=2h,-A=0 = hn:%, n=0,12,3

Thus, all four h’s are equal, hg = h; = hy = hy = A/2. The constraint (2.4.1) then
fixes the value of A to be 1/2 and we find the optimum weights:

1
ho=hi=hy=hs =

and the minimized NRR becomes:

1\2 (1\2 [(1)\? (1) 1\2 1
n=(=) +(=) +{(=) +(=) =4(-) ==
Rain (4) (4) (4) (4) (4) 4
The I/0 equation for this optimum smoothing filter becomes:

A 1
Xn = Z(Vn +VYn-1+¥Yn-3 +Yn-3)

More generally, the optimum length-N FIR filter with unity DC gain and minimum
NRR is the filter with equal weights:

1
H(z)= 14z 427 4oz (V1] (24.4)
and I/0 equation:
. 1
anﬁ()/n+ynfl+"'+yl’l*N+l) (245)
with minimized NRR:
2 2 2 1\ _ 1
R:h0+h1+...+hN71:N. N :N (2.4.6)

Thus, by choosing N large enough, the NRR can be made as small as desired. Again,
as the NRR decreases, the filter’s time constant (ness = N) increases.

How does the FIR smoother compare with the IIR smoother of Eq. (2.3.1)? First, we
note the IIR smoother is very simple computationally, requiring only 2 MACs' per output
sample, whereas the FIR requires N MACs.

Second, the FIR smoother typically performs better in terms of both the NRR and
the transient response, in the sense that for the same NRR value, the FIR smoother has
shorter time constant, and for the same time constant, it has a smaller NRR. We illustrate
these remarks below.

Given a time constant Nepf = In€/Ina for an IIR smoother, the “equivalent” FIR
smoother should be chosen to have the same length N = ne¢f, thus,

_ e _an (2.4.7)
Ina

Tmultiplication-accumulations

114 2. Signal Extraction Basics

For example, if a = 0.90 and € = 0.01, then N = nei = 44. But then, the NRR of
the FIR smoother will be R = 1/N = 1/44, which is better than that of the IIR filter,
R = (1-a)/(1+a)=1/19. This case is illustrated in the left graph of Fig. 2.4.1, where
the FIR output was computed by Eq. (2.4.5) with N = 44 for the same noisy input of
Fig. 2.3.2. The IIR output is the same as in that figure.

equal time constants equal NRRs

— FIR
1 IIR 1 1t IIR

0 50 100 150 200 0 50 100 150 200
time samples, n time samples, n

Fig. 2.4.1 Comparison of FIR and IIR smoothing filters.

Similarly, if an IIR smoother achieves a certain NRR value, the “equivalent” FIR filter
with the same NRR should have length N such that:

1—-a 1 1+a N-1
= = = N = =
R l1+a N = 1-a’ a N+1

(2.4.8)

For example, if a = 0.98, then we get N = 99, which is much shorter than the IIR time
constant nepr = 228 computed with € = 0.01. The right graph of Fig. 2.4.1 illustrates
this case, where the FIR output was computed by Eq. (2.4.5) with N = 99.

An approximate relationship between the IIR time constant negr and N can be derived
in this case as follows. Using the small-x approximation In((1 + x)/(1 — X)) = 2x, we
have for large N:

1n<1/a)=1n(w> 2

1-(1/N))° N
It follows that n(1/e) 1 1
n(l/e
=—— " ~N-In(—
/e =N
Typically, the factor (In(1/€)/2) is greater than one, resulting in a longer IIR time

constant negr than N. For example, we have:

Neff

Nef = 1.15N, if € = 107! (10% time constant)

Neif = 1.50N, if €=5-10"2 (5% time constant)

Netf = 2.30N, if € =102 (1% or 40-dB time constant)
Netf = 3.45N, if e=1073 (0.1% or 60-dB time constant)

Finally, we note that a further advantage of the FIR smoother is that it is a linear
phase filter. Indeed, using the finite geometric series formula, we can write the transfer

2.4. FIR Averaging Filters 115

function of Eq. (2.4.5) in the form:

H(z)=l(1+z’1+z’2+---+2’(N7”)=l71_[N (2:4.9)
N N1-2z1 o
Setting z = e/®, we obtain the frequency response:
11-e/N® 1sin(Nw/2) _;
H(w)= — = JoN-D2 2.4.10
(@) N 1-eJ® N sin(w/2) ()

which has a linear phase response. The transfer function (2.4.9) has zeros at the Nth
roots of unity, except at z = 1, that is,

_2mk

k=12,...,N-1
N’ y Ly

Zr = /Ky
The zeros are distributed equally around the unit circle and tend to suppress the
noise spectrum along the Nyquist interval, except at z = 1 where there is a pole/zero
cancellation and we have H (z) = 1.
Fig. 2.4.2 shows the magnitude and phase response of H (w) for N = 16. Note that
the phase response is piece-wise linear with slope (N — 1) /2. It exhibits 180° jumps at
w = Wk, where the factor sin(Nw/2)/ sin(w/2) changes algebraic sign.

A A
1 s

L H()

ArgH(o)

—» |a— W,

21t/N
Fig. 2.4.2 Magnitude and phase responses of FIR smoother, for N = 16.

The 3-dB cutoff frequency of the filter is somewhat less than half the base of the
mainlobe, that is,

~ 0.886T
- N

We (2.4.11)

It corresponds to a drop of the magnitude response squared by a factor of 1/2.
Indeed, setting w/2 = w./2 = 0.44377/N in (2.4.10), we have

2

sin(0.443) |2

0.443 1T

1 sin(N 0.44311/N)
N sin(0.4431/N)

® | 1 sin(0.443m)
~ [N (0.4431/N)

-1
T2

where we used the approximation sin(1r/2N) ~ 11/2N, for large N. In decibels, we have
—201og;((sin(0.44377) /0.4431T) = 3.01 dB, hence, the name “3-dB frequency.”

116 2. Signal Extraction Basics

Like its IIR counterpart of Eq. (2.3.1), the FIR averaging filter (2.4.5) can be applied to
any low-frequency signal x,—not just a constant signal. The averaging of the N succes-
sive samples in Eq. (2.4.5) tends to smooth out the highly fluctuating noise component
Vn, while it leaves the slowly varying component x, almost unchanged.

However, if x, is not so slowly varying, the filter will also tend to average out these
variations, especially when the averaging operation (2.4.5) reaches across many time
samples when N is large. In the frequency domain, the same conclusion follows by
noting that as N increases, the filter’s cutoff frequency w. decreases, thus removing
more and more of the higher frequencies that might be present in the desired signal.

Thus, there is a limit to the applicability of this type of smoothing filter: Its length
must be chosen to be large enough to reduce the noise, but not so large as to start
distorting the desired signal by smoothing it too much.

A rough quantitative criterion for the selection of the length N is as follows. If it
is known that the desired signal x, contains significant frequencies up to a maximum
frequency, say wmax, then we may choose N such that wpax < W = 0.8867T/N, which
gives N < 0.8867T/ (Wmax-

The FIR averaging filter can also be implemented in a recursive form based on the
summed version of the transfer function (2.4.9). For example, the direct-form realization
of H(z) is described by the I/0 difference equation:

S 1
Rn = Rn-1 + [Vn = Yn-N] (2.4.12)

Because of the pole-zero cancellation implicit in (2.4.12) such implementation is
prone to roundoff accumulation errors and instabilities, and therefore, not recommended
for continuous real-time processing even though it is efficient computationally.

The FIR smoothing filter will be considered in further detail in Sec. 3.1, generalized
to local polynomial smoothing filters that minimize the NRR subject to additional linear
constraints on the filter weights. In Sec. 4.2, it is generalized to minimum-roughness
filters that minimize a filtered version of the NRR subject to similar constraints.

Like the IIR smoother, the FIR smoother and its generalizations are widely used in
many data analysis applications. It is also useful in de-seasonalizing applications, where
if N is chosen to be the seasonal period, the filter’s Nth root of unity zeros coincide with
the harmonics of the seasonal component so that the filter will extract the smooth trend
while eliminating the seasonal part.

2.5 Problems

2.1 Show that the z-domain transformation, z — —z, maps a lowpass filter into a highpass one.
Show that under this transformation, the impulse response of the lowpass filter h, gets
mapped into (—1)"h,,.

2.2 Given the real-valued impulse response h, of a lowpass filter, show that the filter with the
complex-valued impulse response e/“0"h, defines a bandpass filter centered at w,. What
sort of filter is defined by the real-valued impulse response cos(won)h,? Explain how the
previous problem is a special case of this problem.

2.5. Problems 117

2.3 Highpass Signal Extraction. Design a first-order IIR filter to extract the high-frequency x, =
(—1)"s from the noisy signal

Yn=Xn+Vp=(-1)"s+v,

where s is a constant amplitude and v,, is zero-mean, white Gaussian noise with variance 0"2,.
Start by converting the two lowpass filters given in Sec. 2.3 into highpass filters. For each
of the resulting filters, plot the corresponding magnitude response and calculate the NRR in
terms of the pole parameter a.

For the values of the parameters s = 2 and a = 0.99, compute 200 samples of the signal y,
and process it through your filters and plot the output. Discuss the transient effect vs. the
signal extraction ability of the filters.

2.4 Bandpass Signal Extraction. A noisy sinusoid of frequency f, = 500 Hz is sampled at a rate
of fs = 10 kHz:
Yn = Xn + Vp = cos(woh) +Vvy

where wqo = 21tf/fs and v, is a zero-mean, unit-variance, white Gaussian noise signal. The
sinusoid can be extracted by a bandpass resonator-like filter of the form:

G G

H(z)= - - =
(2) (1 — Rejwoz=1)(1 — Re-Jwoz-1) 1—-2Rcoswyz 1 +R2z2

Its poles are at z = Re*/®0 with 0 < R < 1. For R near unity, the 3-dB width of this filter is
given approximately by Aw = 2(1 — R).

Fix the gain factor G by requiring that the filter have unity gain at w, that is, |[H (wo) | = 1.
Then, show that the NRR of this filter is given by:

&, (1-R)(1+R?) (1 - 2R cos(2w0) +R?)
R= 2 M= (1 R) (1 — 2R? cos (200) +R)

n=0

For the values of the parameters R = 0.99 and w, = 0.1, plot the magnitude response of
this filter and indicate on the graph its 3-dB width. Calculate the corresponding NRR.
Then, calculate and plot 300 samples of the noisy signal y,, and process it through the filter.
On a separate graph, plot the resulting estimate X, together with the desired signal xy,.
Discuss the signal extraction capability of this filter vs. the transient effects vs. the delay
shift introduced by the filter’s phase delay d («w) = —Arg H (w) / w, and calculate the amount
of delay d (wg) at wy and indicate it on the graph.

3

Local Polynomial Filters

3.1 Introduction

We mentioned in Sec. 2.4 that there are limits to the applicability of the plain FIR averager
filter—in order to achieve a high degree of noise reduction, its length N may be required
to be so large that the filter’'s passband becomes smaller than the signal bandwidth,
causing the removal of useful high frequencies from the desired signal.

In other words, in its attempt to smooth out the noise v, the filter begins to smooth
out the desired signal x,, to an unacceptable degree. For example, if x,, contains some
short-duration peaks, corresponding to the higher frequencies present in x,, and the
filter’s length N is longer than the duration of the peaks, the filter will tend to smooth
the peaks too much, broadening them and reducing their height.

Local polynomial smoothing filters [36-99] are generalizations of the FIR averager
filter that can preserve better the higher frequency content of the desired signal, at the
expense of not removing as much noise as the averager. They can be characterized in
three equivalent ways:

1. They are the optimal lowpass filters that minimize the NRR, subject to additional
constraints than the DC unity-gain condition (2.4.1)—the constraints being equiv-
alent to the requirement that polynomial input signals go through the filter un-
changed.

2. They are the optimal filters that minimize the NRR whose frequency response
H (w) satisfies certain flatness constraints at DC.

3. They are the filters that optimally fit, in a least-squares sense, a set of data points
to polynomials of different degrees.

Local polynomial smoothing (LPSM) filters have a long history and have been redis-
covered repeatedly in different contexts. They were originally derived in 1866 by the
Italian astronomer Schiaparelli [36] who formulated the problem as the minimization
of the NRR subject to polynomial-preserving constraints and derived the filters in com-
plete generality, discussing also the case of even-length filters. They were rederived in
1871 by De Forest [65] who generalized them further to include the case of “minimum-
roughness” or minimum-R; filters. Subsequently, they were rediscovered many times

118

3.2. Local Polynomial Fitting 119

and used extensively in actuarial applications, for example, by Gram, Hardy, Sheppard,
Henderson, and others. See Refs. [68-75] for the development and history of these fil-
ters. In the actuarial context, smoothing is referred to as the process of “graduation.”
They were revived again in the 1960s by Savitzky and Golay [42] and have been applied
widely in chemistry and spectroscopy [42-53] known in that context as Savitzky-Golay fil-
ters. They, and their minimum-R; versions [65-99] known typically as Henderson filters,
are used routinely for trend extraction in financial, business, and census applications.

Some recent incarnations also include predictive FIR interpolation, differentiation,
fractional-delay, and maximally-flat filters [152-187], and applications to the represen-
tation of speech and images in terms of orthogonal-polynomial moments [137-150].

The least-squares polynomial fitting approach also has a long history. Chebyshev
[104] derived in 1864 the discrete Chebyshev orthogonal polynomials,* also known as
Gram polynomials, which provide convenient and computationally efficient bases for
the solution of the least-squares problem and the design of local polynomial filters.
Several applications and reviews of the discrete Chebyshev orthogonal polynomials may
be found in [104-151]. The minimum-R Henderson filters also admit similar efficient
representations in terms of the Hahn orthogonal polynomials, a special case of which
are the discrete Chebyshev polynomials. We discuss Henderson filters in Sec. 4.2 and
orthogonal polynomial bases in Sec. 4.3.

3.2 Local Polynomial Fitting

We begin with the least-squares polynomial fitting approach. We assume that the signal
model for the observations is:
Yn =Xn + Vn

where v, is white noise and x,, is a smooth signal to be estimated. Fig. 3.2.1 shows five
noisy signal samples [y_»,Y_1, Y0, V1,Y2] positioned symmetrically about the origin.
Later on, we will shift them to an arbitrary position along the time axis. Polynomial
smoothing of the five samples is equivalent to replacing them by the values that lie on
smooth polynomial curves drawn between the noisy samples. In Fig. 3.2.1, we consider
fitting the five data to a constant signal, a linear signal, and a quadratic signal.

The corresponding smoothed values are given by the Oth, 1st, and 2nd degree poly-
nomials defined for m = -2,-1,0, 1, 2:

Ym = Co (constant)
Ym = Co +C1m (linear) (3.2.1)
Ym = Co + c1m + coam? (quadratic)

For each choice of the polynomial order, the coefficients ¢; must be determined
optimally such that the corresponding polynomial curve best fits the given data. This
can be accomplished by a least-squares fit, which chooses the c¢; that minimize the total
mean-square error. For example, in the quadratic case, we have the performance index:

2 2
T= > eh= > (ym— (co +c1m+ com?))’ = min (3.2.2)
m=-2

m=-2 _

#not to be confused with the ordinary Chebyshev polynomials.

120 3. Local Polynomial Filters

® = noisy values
o = smoothed values

Yo Y Yo Y Yo Y
Yo) Vo
—_ —O -
—o— —o— e -0 o~
wy| N wy| N w N
-2 -1 0 1 2 2 -1 0 1 2 -2 -1 0 1 2
constant linear quadratic

Fig. 3.2.1 Data smoothing with polynomials of degrees d = 0,1, 2.

where the fitting errors are defined as
em =Ym—Ym=Ym— (Co+cim+com®), m=-2,-1,0,1,2

It proves convenient to express Egs. (3.2.1) and (3.2.2) in a vectorial form, which
generalizes to higher polynomial orders and to more than five data points. We define
the five-dimensional vectors of data, estimates, and errors:

y-2 V-2 e
Y-1 Y1 e
y=|Y |, ¥=[Y |, e=|e |=y-¥
Y1 V1 e
Y2 V2 ez

Similarly, we define the five-dimensional polynomial basis vectors sg, S1, S2, whose
components are:

So(m)=1, s1(m)=m, So(m)=m?, —2<m<?

Vectorially, we have:

Sp =

—_ e e

4
1 1
, S = 01, sp=|(0 (3.2.3)
1 1
2 4

In this notation, we may write the third of Eq. (3.2.1) vectorially:

1 -2 4
1 -1 1
)A’fC() 1|+ 0f+co 0 = CpSp + C1S1 + C2S2
1 1 1
1 2 4

3.2. Local Polynomial Fitting 121
Therefore,
Co
¥ = CoSo + €181 + €282 = [Sq, 81, 821 €1 | =Sc (3.2.4)
C2

The 5X3 basis matrix S has as columns the three basis vectors s, s1, S». It is given
explicitly as follows:

1 -2 4
1 -1 1
S = [So, S1, Sz]: 1 0 0 (3.2.5)
1 1 1
1 2 4

Writing e = y — ¥ = y — Sc, we can express the performance index (3.2.2) as the dot
product:

J=ele=(y—-Sc)T(y - Sc)= min (3.2.6)
To minimize this expression with respect to c, we set the gradient 0.7/ 0c to zero:
%‘Z =-25Te=-28T(y-5Sc) = -2(STy - S7Sc) =0 (3.2.7)

Therefore, the minimization condition gives the so-called orthogonality equations
and the equivalent normal equations:

aa—‘z =0 N STe=0 N STsc=STy (3.2.8)
with optimal solution:
c= (ST 1sTy = Gy (3.2.9)

where we defined the 5%x3 matrix G by
G=S5(Ts) ! (3.2.10)

We note that the solution (3.2.9) is none other than the unique least-squares so-
lution of the full-rank overdetermined linear system Sc = vy, as given for example by
Eq. (15.4.10), c = STy, where ST = (STS)~1ST is the corresponding pseudoinverse.
Inserting the optimal coefficients c into Eq. (3.2.4), we find the smoothed values:’

v =8c=5GTy=5(5Ts)"'sTy =BTy (3.2.11)
where we defined the 5X5 matrix B by
B=BT =5GT = GST =5(sTs) 15T (3.2.12)

The symmetric 3x3 matrix F = STS, which appears in the expressions for G and
B, has matrix elements that are the dot products of the basis vectors, that is, the ijth
matrix element is Fj; = (STS),-J-: siTsj. Indeed, using Eq. (3.2.5), we find:

st stsy sisi sls;
F=S8Ts=| sT |[sg, s1,s:]=]| sTsg sTs; sTs, (3.2.13)
sT slsy sls, sls;

Talthough B is symmetric, we prefer to write y = BTy, which generalizes to the non-symmetric case of
minimum-roughness filters of Sec. 4.2.

122 3. Local Polynomial Filters

Using Eq. (3.2.5), we calculate F and its inverse F~!:

5 0 10 1 17 0 =5
F=|(0 10 0 [, F1= 35 3.5 0 (3.2.14)
10 0 34 -5 0 25

1 -2 4
1 1 -1 1 17 0 -5
G=SF'=—=-|1 0 0 0 3.5 0 or,
3511 1 1|5 o0 25
1 2 4
-3 -7 5
1 12 -3.5 -2.5
G = 35 17 0 =5 | = (8, &1, 8] (3.2.15)
12 3.5 =25
-3 7 5

As we see below, the three columns of G have useful interpretations as differentia-
tion filters. Next, using Eq. (3.2.12), we calculate the 5X5 matrix B:

3 -7 s
L2 o-ss -2 1 11 1 1
B=GST=—]| 17 0 -5]{[-2 -1 0 1 2 or,
35112 35 —25 4 1.0 1 4
-3 7 s

31 9 -3 -5 3
9 13 12 6 -5
B=-—|-3 12 17 12 =3 | =[b_s b_y, by, by, by] (3.2.16)
-5 6 12 13 9
3 -5 -3 9 31

Because B is symmetric, its rows are the same as its columns. Thus, we can write it
either in column-wise or row-wise form:

B=[b_y,b_y, by, b, bo]=| b |=8BT

The five columns or rows of B are the LPSM filters of length 5 and polynomial order
2. The corresponding smoothed values y can be expressed component-wise in terms of
these filters, as follows:

3.2. Local Polynomial Fitting 123
V-2 bzz bzzY
V-1 bl bly
Vo |=9=B"y=|bj |y=]|byy
V1 b bly
V2 bg szy
or, form=-2,-1,0,1, 2:
Vm=bly (3.2.17)
and more explicitly,
)A/Lz 31 9 -3 -5 3))
Vo1 1 9 13 12 6 -5 yo1
Yo =35 -3 12 17 12 -3 Yo (3.2.18)
)71 -5 6 12 13 9 V1
)72 3 -5 -3 9 31 Y2

Thus, the mth filter b, dotted into the data vector y generates the mth smoothed
data sample. In a similar fashion, we can express the polynomial coefficients c; as dot
products. Using the solution Eq. (3.2.9), we have

Co 8 gy
ca|=c=Gly=| g |y=| sy
c2 g gy
or, explicitly,
Y-2
Co N R LA C A R I P
al=—1-7 =35 0 35 7||w (3.2.19)
ol P s —25 =5 25 5 ||wm
Y2

Thus, the coefficients c¢; can be expressed as the dot products of the columns of G
with the data vector y:
ci = ngyy = 0, 1, 2 (3220)

Of the five columns of B, the middle one, by, is the most important because it
smooths the value y,, which is symmetrically placed with respect to the other samples
in y, as shown in Fig. 3.2.1.

In smoothing a long block of data, the filter by is used during the steady-state period,
whereas the other columns of B are used only during the input-on and input-off tran-
sients. We will refer to by and the other columns of B as the steady-state and transient
LPSM filters.

Setting m = 0 into Eq. (3.2.1), we note that the middle smoothed value y is equal to
the polynomial coefficient cy. Using Eqgs. (3.2.17) and (3.2.20), we find: Yo = cg = bgy =
gg y (the middle column of B and the first column of G are always the same, by = g,.)

124 3. Local Polynomial Filters

To express (3.2.18) as a true filtering operation acting on an input sequence y,, we
shift the group of five samples to be centered around the nth time instant, that is, we
make the substitution:

[y-2,¥-1, Y0, Y1, Y21 — [¥n-2, ¥n-1, ¥Yn, Yn+1, Yn+2]

The corresponding five smoothed values will be then:

Yn-2 31 9 -3 -5 3 Vn-2
Vn1) 9 13 12 6 -5 || yna
Vn =3 -3 12 17 12 -3 || ya (3.2.21)
Yn+1 -5 6 12 13 9 || yusa
Vni2 3 =5 =3 9 31 || Va2

In particular, the middle sample y,, is smoothed by the filter by:

1
—(—3Vn-2 + 12Vn_1 + 17¥n + 12Vns1 — 3Yn+2) (3.2.22)

R
" 35

where, in accordance with our assumed model of noisy observations y, = x, + Vi, we
denoted y, by X, i.e., the estimated value of x,,.

The other estimated values {Yn+m, m = +1,+2}, are not used for smoothing, ex-
cept, as we see later, at the beginning and end of the signal block y,. They may be used,
however, for prediction and interpolation.

The filter (3.2.22) corresponds to fitting every group of five samples {yn_2, Yn-1,
Yn, Yn+1, Yn+2} to a quadratic polynomial and replacing the middle sample y, by its
smoothed value X,,. It is a lowpass filter and is normalized to unity gain at DC, because
its coefficients add up to one.

Its NRR is the sum of the squared filter coefficients. It can be proved in general that
the NRR of any steady-state filter by is equal to the middle value of its impulse response,
that is, the coefficient by (0). Therefore,

2
17 17/7 2.43
R =blby= > bo(m)’=Dby(0)= 35 =5 = 5 =049

m=-2

By comparison, the length-5 FIR averager operating on the same five samples is:

(Vn—2 + Yn-1+ ¥Yn + Yns1 + Yn+2) (3.2.23)

Ul | =

Xn =

with R = 1/N = 1/5. Thus, the length-5 quadratic-polynomial filter performs 2.43
times worse in reducing noise than the FIR averager. However, the higher-order polyno-
mial filters have other advantages to be discussed later.

We saw that the coefficient ¢y represents the smoothed value of y, at m = 0. Simi-
larly, the coefficient c; represents the slope, the derivative, of yy at m = 0. Indeed, we
have from Eq. (3.2.1) by differentiating and setting m = 0:

_ Dm 5 _ dm

Yo = dm 0=Cly Yo = dm?

3.2. Local Polynomial Fitting 125

Thus, ¢; and 2c¢; represent the polynomial estimates of the first and second deriva-
tives at m = 0. Using Eqg. (3.2.20) we can express them in terms of the second and third
columns of the matrix G:)

Yo=C1= g1TY
) (3.2.24)
Yo =2¢2 = 28]y

Shifting these to the nth time sample, and denoting them by)Akn and X,,, we find the
length-5 local polynomial filters for estimating the first and second derivatives of x,:

N 1
Xn = g(_h’n—z —3.5Vn-1 + 3.5Vn+1 + 7Vn+2)
(3.2.25)

2
Xn = £(5)’n72 —2.5Vn-1 = 5Yn — 2.5Vn+1 + 5Yn+2)

The above designs can be generalized in a straightforward manner to an arbitrary
degree d of the fitted polynomial and to an arbitrary length N of the data vector y. We
require only that d < N — 1, a restriction to be clarified later. Assuming that N is odd,
say, N = 2M + 1, the five-dimensional data vectory = [y_2,¥_1,Y0, 1,217 is replaced
by an N-dimensional one, having M points on either side of yj:

V=[YoMye s Y-1,50, Y15, ¥l T (3.2.26)

The N data samples in y are then fitted by a polynomial of degree d:

Ym=Co+cim+---+cqm?, -M<m=<M (3.2.27)

In this case, there are d+1 polynomial basis vectors s;, i = 0,1,...,d, defined to
have components: '
si(m)=m', -M<m=<M (3.2.28)

The corresponding N X (d+1) basis matrix S is defined to have the s; as columns:
S = [s0,81,---,8d] (3.2.29)

The smoothed values (3.2.27) can be written in the vector form:

Co
d 1
y = Zcisi = [S0,S81,...,84d] . | =S8c (3.2.30)
i=0 :
Ca

The design steps for the LPSM filters can be summarized then as follows:
F=S'S e F;=sls;, i,j=0,1,...,d
G=SF'=1[gy8,---,84] (3.2.31)
B=GST =SF1ST = [b_y,...,bo,...,by]

126 3. Local Polynomial Filters

The corresponding coefficient vector ¢ and smoothed data vector y will be:

c=G'y = c¢=gly, i=0,1,...,d
(3.2.32)

v=B"y & Pm=bly, -M<m<M
The middle smoothed value Y is given in terms of the middle LPSM filter by:

M
Yo=bjy= > bo(k)yk
k=—M

The N-dimensional vectory = [Y_pm,...,Y-1,Y0,V1,--.,Ym] T can be shifted to the

nth time instant by the replacement:

Vs ooos Y1, Y0, Y1, oo, YM] — [Yn-My «oos Yn-1, Yny Y1y +++ 5 Ynim]

The resulting length-N, order-d, LPSM filter for smoothing a noisy sequence y, will
be, in its steady-state form (denoting again X, = yn):

M M
Xn=Yn= Z bo(K)yn+k = Z bo(—K)yn—k (3.2.33)
k=—M k=-M

The second equation expresses the output in convolutional form.T Because the filter
by is symmetric about its middle, we can replace by(—k)= by (k). The non-central
estimated values are obtained from the by, filters:

M M
Ynim= 2 bm(Kynik= > bL(Kynk|, - M<m=M (3.2.34)
k=—-M k=-M

These filters satisfy the symmetry property bR, (k)= by, (=k) = b_;; (k) and can be
used for prediction, as we discuss later.

The d+1 columns of the Nx (d+1)-dimensional matrix G give the LPSM differen-
tiation filters, for derivatives of orders i = 0,1,...,d. It follows by differentiating
Eq. (3.2.27) i times and setting m = 0:

o _ AdYm

—jlci =ilgl
0= gmi =ilci=1gyy

Shifting these to time n, gives the differentiation convolutional filtering equations:

M
& =it > glm)yn-m, i=0,1,....d (3.2.35)
m=-M

where, gR (m)= g;(—m) and as in Eq. (3.2.33), we reversed the order of writing the
terms, but here the filters g; are not necessarily symmetric (actually, they are symmetric
for even i, and antisymmetric for odd i.)

TWe use the notation bR to denote the reverse of a double-sided filter b, that is, bR (k)= b(—k).

3.2. Local Polynomial Fitting 127

Example 3.2.1: We construct the length-5 LPSM filters for the cases d = 0 and d = 1. For
d = 0, corresponding to the constant y,, = ¢¢ in Eq. (3.2.1), there is only one basis vector
so defined in Eq. (3.2.3). The basis matrix S = [so] will have just one column, and the
matrix F will be the scalar

F=5Ts=slsy=1[1,1,1,1,1]

_ = e
Il
9]

The matrix G will then be

1 1
G=SF!= S0 = 5[1,1,1,1,1]T

resulting in the LPSM matrix B:

B=GST = ésosg - [1,1,1,1,1]= é

= =
=
— e =
=== e
— e
e T R

Thus, the steady-state LPSM filter is the length-5 averager:

by = %[1,1,1,1,1?

For the case d = 1, corresponding to the linear fit y,, = co + cym, we have the two basis
vectors s, and sy, given in Eq. (3.2.3). We calculate the matrices S, F, and F~!:

1 -2
1 -1
5 0 111 0
_ _ _clTc_ -1 _ 1

S—[S(),Sl]— 1 0 ,F—SS—|:0 10:|,F —5|:0 0.5:|

1 1

1 2

This gives for G and B:

1 -1 3 2 1 0 -1
1 1 -0.5 1 2 15 1 0.5 0
G=SF’1=§ 1 of, B=GST=g 1 1 1 1 1
1 0.5 0 05 1 1.5 2
1 1 -1 0 1 2 3

Thus, the steady-state LPSM filter by is still equal to the length-5 FIR averager. It is a general
property of LPSM filters, that the filter by is the same for successive polynomial orders,
thatis, ford = 0,1,d = 2,3, d = 4,5, and so on. However, the transient LPSM filters are
different. m]

128 3. Local Polynomial Filters

Example 3.2.2: Here, we construct the LPSM filters of length N = 5 and order d = 3. The
smoothed estimates are given by the cubic polynomial:

Vm = co + c1m + com® + czm®

There is an additional basis vector s3 with components s3 (m) = m3. Therefore, the basis

matrix S is:
ro-2 4 -8 5 0 10 0
b-li=l 0 10 0 34
S:[So,51,52,53]: 1 0 0 0 = F:STS:
1 11 1 10 0 34 0
1 5 4 8 0 34 0 130

Because of the checkerboard pattern of this matrix, its inverse can be obtained from the
inverses of the two 2x2 interlaced submatrices:

5 10] 1] 34 -10 10 347" 1 [130 -34
10 34| 70| -10 51" |34 130] 144 -34 10

Interlacing these inverses, we obtain:

34/70 0 -10/70 0

Fl_ 0 130/144 0 —34/144
-10/70 0 5/70 0

0 —34/144 0 10/144

Then, we compute the derivative filter matrix G:

-3 35/12 5 —35/12
L | 12 703 —25 0 35/6
G=SF1=—-|17 0 -5 0
35112 70/3 —25 -35/6
-3 -35/12 5 35/12
and the LPSM matrix B:
345 2 -3 2 -05
2 27 12 -8 2
B—SGT = - -3 12 17 12 -3
35 2 -8 12 27 2

-0.5 2 =3 2 345

As mentioned above, the steady-state LPSM filter by is the same as that of case d = 2. But,
the transient and differentiation filters are different. m]

3.3 Exact Design Equations

In practice, the most common values of d are 0, 1, 2, 3, 4. For these ds and arbitrary filter
lengths N, the LPSM matrix B can be constructed in closed form; see references [36-99],

3.3. Exact Design Equations 129

as well as the extensive tables in [54]. Denoting the inverse of the (d+1) X (d+1) matrix
F =STSby ® = F~!, we can write

d d
B=SF ST =SoST = " > sis] & (3.3.1)
i=0j=0

which gives for the mkth matrix element

d d d d

Bk = . > sitm)sj(K) ;= > > m'kld;|, -M<mk=<M (3.3.2)
i=0j=0 i=0j=0

Because of symmetry, B,k = Bim, these matrix elements represent the kth compo-
nent of the LPSM filter b,, or the mth component of the filter by, that is,

d d
Bmk = Bim = bm (K)=br(m)= > > m'k/d;; (3.3.3)
i=0j=0
The matrix ¢ can be determined easily for the cases 0 < d < 4. The matrix F is a
Hankel matrix, that is, having the same entries along each antidiagonal line. Therefore,
its matrix elements Fj; depend only on the sum i +j of the indices. To see this, we write
Fj; as the inner product:

M M
Fj; = (STS)U: SI-TSJ' = Z si(m)sj(m) = Z m”j, or,
m=—-M m=—-M
M . .
Fj= > mY=Fy|, 0<ij=<d (3.3.4)
m=—-M

Note that because of the symmetric limits of summation, Fj,; will be zero whenever
i+ jis odd. This leads to the checkerboard pattern of alternating zeros in F that we saw
in the above examples. Also, because d < 4, the only values of i + j that we need are:
i+j=0,2,4,6,8. For those, the summations over m can be done in closed form:

M
Fo = ml=N=2M+1
m=-M
M 1
Fo= > m’= MM +1) M + 1)
m=—-M
M 1
Fy = m* = g(3M2 +3M - 1)F, (3.3.5)
m=-M
M 1
Fg= > m°= ~(3M* +6M° = 3M + D F

M
1
Fg= > mb= E(5M6+ 15M° + 5M* = 15M? — M* + 9M - 3)F

130 3. Local Polynomial Filters

We can express F in terms of these definitions for various values of d. For example,
ford = 0,1, 2, 3, the F matrices are:

Fob 0 F» 0
Fo © Fo 0 F 0 F, 0 F4

[FO]) I} 0 F2 0)
0 F, oo F F, 0 F, 0
2 4 0 F, 0 Fg

The corresponding inverse matrices ¢ = F~! are obtained by interlacing the inverses
of the checkerboard submatrices, as in Example 3.2.2. For d = 0,1, 2, we have for &:

F4/Dy 0 —F>/Dy

[1/F,], [I/OFO 1/(;] o 1F, o |,
2 —F2/Dy 0 Fy/Dy4
and for d = 3:
F4/Dy 0 —F,/Dy4 0
oo F - 0 F¢/Dg 0 —F4/Dg
- | —=F»/D,4 0 Fo/Ds4 0
0 —F,4/Dg 0 F,/Dg

where the D4 and Dg are determinants of the interlaced submatrices:

Dy =FoFy—F3 = 41—5M(M +1)(2M +1) (2M + 3) (4M? - 1)
(3.3.6)
Dg = FoFg — F3 = %M(M +2)(M*>-1)Dy
Inserting the above expressions for @ into Eq. (3.3.3), we determine the correspond-
ing LPSM filters. For d = 0, we find for —-M < m,k < M:

1
bm(k)=Bmk = - =

1
Fo N (3.3.7)
Ford = 1: . X
m
bm (k)— Bmk = FO + TZ (338)
Ford = 2: F 1 F F
= _fa L F2 2 g2y 0 00
bm (k)= Bk D, + F, mk D, (m- +k)+D4m k (3.3.9)
Ford = 3: . . F F
D (K) = Bmi =D—z + D—ka - D—i(m2 + k2)+D—im2k2
(3.3.10)

F,) . F» .
— 2 (km® + mk3) + —m’K3
8(m’ + mk?>) 8m

3.3. Exact Design Equations

The required ratios are given explicitly as follows:

Fy

D,

Fa
D,
Fo
D,
Fo
Dg
&
Dg
Fa
Dg

33M2 +3M - 1)
(2M +3) (4M2 — 1)
15
(2M + 3) (4M2 — 1)
B 45
T MM +1)(2M +3) (4M2 - 1)
_ 25(3M* + 6M3 —3M + 1)
T MM +2) (M2 —-1)(2M +3) (4M2 — 1)
B 35(3M2% +3M — 1)
T MM +2)(M2-1)(2M +3) (4M2 — 1)
B 175
T MM +2)(M2-1)(2M +3) (4M2 — 1)

In a similar fashion, we also find for the case d = 4:

D> Fs Do

E
b (K)= Bie =% + p-mk — =8 (m? +k2)+58m2k2

where

D ' Ds

_& 3 3 & 31,3 & 4 4
Ds(km +mk)+D8mk + D(m + k%)

_Ds (m%k* + k’m*) Jrl%m“k4

D
D¢ = FoFg — F2F,4 Eg = FoFg — F2
Dyo = FoFg — F4Fg Dy, = F4Fg — F§

D = FogD» — F2Dyg + F4Dg

These are given explicitly as follows:

1 .
= ;(GMZ +6M —5)Dy

= %M(M +2)(M?-1)(2M? +2M —3) Dy

1
g(4M“ +8M3 —4M? —8M +1)D,4

735
4
11025

= LM(M +2) (M? —1) (15M* + 30M3 — 35M% — 50M + 12) D,

MM +2)(M?-1)(2M + 5) (4M? — 9) (4M? —1)D,

131

(3.3.11)

(3.3.12)

(3.3.13)

(3.3.14)

132 3. Local Polynomial Filters

and the required ratios are:

D1 15(15M* + 30M3 - 35M2 - 50M + 12)

D 4(2M + 5) (4M2 — 1) (4M2 — 9)
Dy 525(2M? + 2M - 3)

D ~ 4(2M +5)(4M2 — 1) (4M2 - 9)

Es 2205 (4M* + 8M3 — 4M?% — 8M +5)

D 4M(M +2) (M2 —1)(2M +5) (4M2 — 1) (4M2 - 9) (3.3.15)
Ds _ 945 a

D ~ 4(2M +5)(4M2 — 1) (4M2 - 9)

Ds 1575(6M? + 6M - 5)

D 4M(M +2) (M2 —1)(2M +5) (4M2 — 1) (4M2 —9)

D, 11025

D~ 4AM(M +2) (M2 — 1) (2M + 5) (4M2 — 1) (4M2 — 9)
In this case, the matrix F and its two interlaced submatrices are:

Fy 0 F, 0 F,

0 F, 0 F4 O Fo F» Fu E. F
F=|F, 0 Fy 0 Fgl|, |F. Fis Fgl|, [FZ F4]
0 F, 0 Fg O F, Fg Fyg 476

F, 0 Fg 0 Fsg

Its inverse—obtained by interlacing the inverses of these two submatrices—can be
expressed in terms of the determinant quantities of Eq. (3.3.13):

Di»/D 0 —Dio/D 0 Dg/D
0 Fﬁ/Dg 0 _F4/D8 0
&=F1=|-Dy/D 0 Eg/D 0 —Dg/D
0 —F4/Dg 0 F>/Dg 0
Dg/D 0 -De/D 0 D4/D

Egs. (3.3.5)-(3.3.15) provide closed-form expressions for the LPSM filters by, (k) of
orders d = 0,1,2,3,4. Setting m = 0, we obtain the explicit forms of the steady-state
filters by (k), —-M <k < M. Ford = 0, 1:

1

b= onr 1

(3.3.16)

ford = 2,3:
3(3M2 +3M — 1 — 5k?)

bo (k)= (2M +3) (4M2 — 1)

(3.3.17)
and for d = 4, 5:

b (k) 15(15M* + 30M3 — 35M2 — 50M + 12 — 35(2M?2 + 2M — 3)k? + 63k?)
o= 4(2M +5) (4M2 — 1) (4M2 — 9)

(3.3.18)

3.4. Geometric Interpretation 133

Example 3.3.1: Determine the quadratic/cubic LPSM filters of lengths N = 5, 7,9. Using (3.3.17)
with M = 2, 3,4, we find (for —-M < k < M):

17 — 5k? 1
by(k)= —— = ——[-3,12,17,12,-3
o (k) 35 35[,12,17,12,-3]
7 —Kk? 1
by (k)= =—[-2 7)
0 (k) o1 21[,3,6,7,6,3,-2]
59 — 5k? 1
by (k)= 31 - 231 [-21,14,39,54,59, 54,39, 14, -21]
where the coefficients have been reduced to integers as much as possible. m]

Example 3.3.2: Determine the quartic and quintic LPSM filters of length N = 7,9. Using
Eq. (3.3.18) with M = 3,4, we find:

131 — 61.25k? + 5.25k* 1
by (k)= 31 = ﬁ[s,—so, 75,131,75,-30,5]
179 — 46.25k? + 2.25k* 1
by (k)= 129 = 4—29[15,—55,30,135,179,135,30,—55,15]

3.4 Geometric Interpretation

The LPSM filters admit a nice geometric interpretation, which is standard in least-squares
problems. Let Y be the vector space of the N-dimensional real-valued vectors vy, that
is, the space RN, and let S be the (d+1)-dimensional subspace spanned by all linear
combinations of the basis vectors s;, i =0,1,...,d.

Thus, the matrix S = [sg,s1,...,S4] is a (non-orthogonal) basis of the subspace S.
The smoothed vector y, being a linear combination of the s;, belongs to the subspace
S. Moreover, because of the orthogonality equations (3.2.8), ¥ is orthogonal to the error
vector e:

yTe=(Sc)Te=cTSTe=0

Then, the equation e = y — y can be rewritten as the orthogonal decomposition:
y = i] +e (341)

which expresses y as a sum of a part that belongs to the subspace S and a part that
belongs to the orthogonal complement subspace S+. The decomposition is unigue and
represents the direct sum decomposition of the full vector space Y:

Y=S&5*

This geometric interpretation requires that the dimension of the subspace S not
exceed the dimension of the full space V, that is, d + 1 < N. The component y that
lies in S is the projection of y onto S. The matrix B in Eq. (3.2.11) is the corresponding
projection matrix. As such, it will be symmetric, BT = B, and idempotent:

B®>=B (3.4.2)

134 3. Local Polynomial Filters

The proof is straightforward:
B? = (SE7'ST) (SF7'ST) = SFY(STS)F'ST = SF~'1sT =B

The matrix (I — B), where [is the N-dimensional identity matrix, is also a projection
matrix, projecting onto the orthogonal subspace S*. Thus, the error vector e belonging
to S+ can be obtained from y by the projection:

e=y-y=(I-B)y

Because (I — B) is also idempotent and symmetric, (I — B)2= (I — B), we obtain for
the minimized value of the performance index 7 of Eq. (3.2.6):

Jmin=eTe=y' (I-B)’y=y " (I-B)y=y'y—-y'By (3.4.3)

3.5 Orthogonal Polynomial Bases

Computationally, the non-orthogonal basis S = [sg,S1,...,S4] is not the most conve-
nient one. The Gram-Schmidt orthogonalization process may be applied to the columns
of S to obtain an orthogonal basis. This procedure amounts to performing the QR-
factorization't on S, that is,

S =0QR (3.5.1)

where Q is an Nx (d+1) matrix with orthonormal columns, that is, QTQ = I, and R is
a (d+1) x(d+1) non-singular upper-triangular matrix.

The columns of Q = [qg,q;,...,dy4], correspond to the (orthonormalized) discrete
Chebyshev or Gram polynomials g;(n),i = 0,1,...,d, constructed from the monomial
basis s; (n) = n' by the Gram-Schmidt process. Noting that STS = RT(QTQ)R = RTR,
the design of the filter matrices B, G can be formulated more efficiently as follows:

F=S8TS=RTR
G=SF'=QRT (3.5.2)
B=SF'sT =qQQ"

which lead to the explicit construction of the differentiation and LPSM filters in terms
of the Chebyshev polynomials g;(n):

gi=>aq RNy = gin=>qg;n) Ry
j=0 J=0
(3.5.3)
d d

B=>qal = bm(k)=Bm= > qik)qi(m)

=0 i=0

The expression for by, (k) can be simplified further using the Christoffel-Darboux
identity for orthogonal polynomials. We discuss these matters further in Sec. 4.3. The
MATLAB function 1psm implements (3.5.2). Its inputs are N, d and its outputs B, G:

Tsee Sec. 15.20.

3.6. Polynomial Predictive and Interpolation Filters 135

[B,G] = 1psm(N,d);

% local polynomial smoothing and differentiation filter design

The function constructs the basis matrix S with the help of the function 1pbasis and
carries out its QR-factorization with the help of the built-in function gr. The following
code fragment illustrates the computational steps:

S = Tpbasis(N,d); % construct polynomial basis

[Q,R] = gr(S, 0); % economy form, R is (d+1)x(d+1l) upper triangular
G = Q/R’; % differentiation filters

B = Q*Q’; % smoothing filters

3.6 Polynomial Predictive and Interpolation Filters

The case d + 1 = N ord = N — 1 is of special interest, corresponding to ordinary
polynomial Lagrange interpolation. Indeed, in this case, the basis matrix S becomes a
square non-singular NxN matrix with an ordinary inverse S~!, which implies that B
becomes the identity matrix,

B=SSTS) ST =s5(s7tsT)sT =1

or, equivalently, the subspace S becomes the full space Y. The optimal polynomial of
degree d = N — 1 fits through all the sample points of the N-dimensional vector y, that
is,e = 0ory = y = Sc, with solution ¢ = S~'y, and interpolates between those samples.
This polynomial is defined for any independent variable t by:

N-1 M
ye= > ctl =cur =y'STu;=y"b = 3 bi(k)yk (3.6.1)
i=0 k=-M
where we set,
N-1)
u;=| . , be=STur = bk)= D (STHgt (3.6.2)
. i=0
tN71 '

The polynomials b; (k) of degree (N—1) in t are the ordinary Lagrange interpolation
polynomials, interpolating through the points yx. To see this, we note that at each
discrete value of t, say t = m with —M < m < M, we have:

N-1 N-1
bm(K)= > (SHam' = > (S Smi= (S mk=Imk =5(m—k) (3.63)
i=0 i=0
so that the polynomial passes through the signal values at the sampling instants:

M M
Vieliem= > bm(®yk= > SM=Kyk=¥m
k=—M k=-M

136 3. Local Polynomial Filters

It is straightforward to show using the property (3.6.3) that b; (k) is given by the
usual Lagrange interpolation formula:

M

bik)= T[] (Ii*m), -M<k<M (3.6.4)
m=-M -m
m+k

Indeed, Eq. (3.6.4) states that the (2M) roots of b; (k) are the points t = m, for
—M < m < M and m # k, which fixes the polynomial up to a constant. That constant
is determined by the condition by (k) = 1.

Example 3.6.1: For N = 5and d = N — 1 = 4, the fourth degree Lagrange polynomials, con-
structed from Eqg. (3.6.4), can be expanded in powers of t:

b (-2) 0 2 -1 =2 1 1
be(=1) 0 -16 16 4 -4 ||¢
b0) |=X1]24 o0 =30 o0 6||e
be(1) 200 16 16 -4 -4 ||
b (2) 0 -2 -1 2 1||mo

The coefficient matrix is recognized as the inverse transposed of the basis matrix S:

1 -2 4 -8 16 0 2 -1 =2 1
1 -1 1 -1 1 0 -16 16 4 —4
Ss=|1 0 0 0 0 L P 0 -30 0 6
1 1 1 1 1 24 0 16 16 -4 -4
1 2 4 8 16 0 -2 -1 2 1
which verifies Eq. (3.6.2). [}

We note that b; (k) can be written in the following analytical form, which shows the
relation of the Lagrange interpolation filter to the ideal sinc-interpolation filter:

ITM+1+0)I(M+1-t) sin(m(t-k))

b= F s 1s M +1-k) -k (3.6.5)
Some alternative expressions are as follows:
2M
M+t m
_ (_1\M+k _1\m
be (k)= (-1) > (")<M+k>(1) (3.6.6)
m=M+k

B (-nMHkr(M+1-1)
be (k) = t-KI(-M-t)IM+1+Kk)I(M+1-k) (3.6.7)

and since the by (k) sum up to one, we also have [156]:

M -1 M -1
bt(k)=[S bt(n)} z{ S (e MR =K. tk] 568
n=— n=-M

v be (k) M+n)!(M-n)'t-—n

3.6. Polynomial Predictive and Interpolation Filters 137

For polynomial orders d < N—1, one can still interpolate approximately and smoothly
between the samples yy,. In this case, using c = GTy = (§7S) 15Ty, we have:

d M
Ye=>ctl=clu =y'Gur=y'bi = > bi(k)yk (3.6.9)
i=0
where now
1
el
w=| Y|, bi=Gu =86T)"u = bk)=> Gyt (3.6.10)
t'd

and shifting the origin k = 0 to the arbitrary time instant n, we obtain the interpolation
formula for a shift t relative to the time instant n:

A M M
2 M = Y bR ynac= Y bR Yn (3.6.11)
k=-M k=—M

where bR (k)= b;(—k). Such formulas can also be used for prediction by choosing
t > M sothatn +t > n + M, that is, it lies beyond the end of the filter range.

We can obtain closed-form expressions for the interpolation filters b; (k) for d =
0,1,2,3,4 and arbitrary M, by replacing in Egs. (3.3.7)-(3.3.12) the variable m in by, (k)
by the variable t. For example, for d = 1, 2, 3, 4, we have, respectively:

1tk
b (k) = I“To + Fz
b (k) = Fy —tk——(t2+k2)+ 0 22
D, F, D,
b (k) = LERE (tZ + k2)+ t2kZ (kt3 + tk3)+ 268K (3.6.12)
Dy Ds Dy Ds
Di2 | Fe Dio (12, 42 o2 _ Fa o3 3
b (k) = D +Dtk D(t +k)+Dtk 8(kt + tk?)
F233 84 4y_Ds o 2pa 104y Dy
Dtk (t* + k%) D(tk+kt)+Dtk
where the required coefficient ratios are given by Egs. (3.3.11) and (3.3.15). The inter-
polation filter (3.6.10) may be written in terms of the columns of G = [gy, &1,-.-,84]:
d o d _ d
bi(k)=> Gt = > gi(k)t! = by => gt (3.6.13)
i=0 i=0 =0

This representation admits a convenient realization, known as a Farrow structure,
which allows the changing of the parameter t on the fly without having to redesign the

138 3. Local Polynomial Filters

filter. It is essentially a block-diagram realization of Eq. (3.6.13) written in nested form
using Horner’s rule. For example, if d = 3, we have

b =gy + gt +8t°+g365 = ((gat +g)t+g))t+g (3.6.14)

Fig. 3.6.1 shows this realization where we replaced g; by their reversed versions gfz,
which appear in the convolutional filtering equations. The parameter t appears only in
the lower multipliers and can be independently controlled.

A
Yn+t

Fig. 3.6.1 Farrow structure for interpolating or predictive FIR filter.

The filtering equation (3.6.11) can also be written in a causal manner by setting
t = M + T and defining the causal filter, where N = 2M + 1:

|hT(k):bM+T(M—k)|, k=0,1,...,N—-1 (3.6.15)

Replacingn — n—M and k — k—M, Eq. (3.6.11) is transformed into a causal filtering
operation that predicts the future sample y, ;- from the present and past samples y,_k,
k = 0,1,...,N — 1. The mapping of the time indices is explained in Fig. 3.6.2. The
resulting filtering operation reads:

N-1
Vniv= 2 he(K)ynk|, T=0 (3.6.16)
k=0

A

‘ ‘ Yt = Yntr
n'-M n' n+M n+t
T
| ; ———
n—2M n—-M n n+T

Fig. 3.6.2 Double-sided and causal predictive FIR filters, withn’ =n—M and t = M + T.

Since T is any real number, the notation n + T corresponds to the actual time instant
(n+ T) T in seconds, where T is the sampling time interval. The filter h_+ (k) may also
be used for implementing a fractional delay as opposed to prediction, that is,

Vn-t = Z h_+(k)yn,—x| (fractional delay) (3.6.17)

3.6. Polynomial Predictive and Interpolation Filters 139

The filters b; (k) and h. (k) satisfy the following polynomial-preserving moment

constraints (being equivalent to STh; = u;), where i = 0, 1,...,d:
Mo ‘ N-1 oON-1 ‘
> kibi(k)=t = D kihe (k)= (-7), D kh_¢(k)=T (3.6.18)
-M k=0 k=0

These constraints imply that Egs. (3.6.16) and (3.6.17) are exact for polynomials of
degree r < d. For any such polynomial P (n), we have:

N-1
> h(k)P(n-k)=P(n-1) (3.6.19)
k=0

For example, we have for the monomial P (n)= n" with r < d:

ZhT(k (n-k)'= Zh (k)Z() -1k
k=0
=S (’;)nr"’(fl)"‘r" —m-1"

i=0

5 (v g

Itis in the sense of Eq. (3.6.19) that we may think of the transfer function of the filter
h_+ (k) as approximating the ideal fractional delay z~:

N-1
D h (kzk=zT (3.6.20)
k=

Further insight into the nature of the approximation (3.6.20) can be gained by con-
sidering the Lagrange interpolation case, d = N — 1. From the definition of h_ (k)=
by—+ (M — k) and Egs. (3.6.4) and (3.6.6), we obtain, for k = 0,1,...,N — 1:

N-1 . N-1 .
hor (k)= H(Z_;>= 2. (N 11 T><N_11_k><—1)"*w*1*k) (3.6.21)

i=0 i=N-1-k
i#k

The z-transform of h_+ (k) is then,

g NS (N-1-T i
th'r(k)zik Z Z (.)(N_l_k>(1)1 (N-1 k —k
k=0

k=0 i=N-1-k
N-1 N-1 .
N-1-1 i ;
—(N-1) Z Z (.)()(_1)1—(N—1—k)zN—1—k
i=0 k=N-1-i ! N-1-k

Changing summation variables and using the binomial expansion of (z— 1), we obtain,

N-1 N-1 m N-l-T i

k=0 i=0 j=0

N-1
Y (N_;_T> (z- 1)
i=0

(3.6.22)

140 3. Local Polynomial Filters
Applying the binomial identity,

1+x%= Y (",‘)xi (3.6.23)

m=0

withx=z—-1and x = N — 1 — T, we have,

N T = 1+ z-pN T Y (N_i_T) (z-1)! (3.6.24)
i=0

We recognize the sum in Eq. (3.6.22) to be the first N terms of (3.6.24). Thus, taking
that sum to approximately represent zV~1-7, we have,

N-1
D hor(k)z K=z WD N7 = 577 (3.6.25)
k=0

This approximation becomes exact whenever T is an integer, say T = m, with m =
0,1,...,N—1. Indeed in this case, the summation range O < i < N —1 in Eq. (3.6.22) can
be restricted to 0 < i < N—1—m because the binomial coefficient vanishes whenever its
(integer) arguments satisfy N — 1 —m < i < N — 1. We then have an ordinary binomial
expansion for an integer power:

N-1 N-1-m N-l-m)
D homk)zk=z N1 % (.)(z—l)’= z7 W=D (1 4 z_)N-1-m_ 5-—m
k=0 i=0

which implies the expected result h_y, (k)= 6 (k —m). Eq. (3.6.22) is equivalent to New-
ton’s forward interpolation formula. To see this, let us introduce the forward difference
operator A = z — 1, or, Afy, = fn+r1 — [n, and apply (3.6.22) in the time domain:

N-1 N-L/N_1—1\ .
Yn-t = Z h_+(K)yn-x = Z (.)AIYIF(N—I) (3.6.26)
k=0 i=0 L
This interpolates between the points [Vn—(N-1),- - s Yn—1,Yn] With T measured back-

wards from the end-point y,;. We may measure the interpolation distance forward from
the first point y,— (n-1) by defining x = N-1—-T7. Then, Eq. (3.6.26) reads,

N-1
N X i
Pn-(N-1yex = . (i)Alyn—(N—l) (3.6.27)
i=0

and setting n = N — 1 so that the data range is [Yo,Y1,...,Y~N-1], We obtain the usual
way of writing Newton’s polynomial interpolation formula:

N-1 N-1 .

N X : x(x=1)---(x—-1+1 ;

Iy <i>A’y0 oy XD i'() Ay, (3.6.28)
i=0 i=0 :

We note also that Eq. (3.6.21) is valid for either even or odd values of N. For N =
2, 3,4, we obtain for the corresponding filter coefficients:

3.6. Polynomial Predictive and Interpolation Filters 141

] h_-(0) 1 [(T-1(T-2)

[h_-(0)] [1 -7
= h-(1) == -2T(T-2)
e (1)] T h_+(2) 2| T(T-1)
[h-7(0)] —(T=1)(T-2)(T-3)] (3.6.29)
h(1) | _1 3T(T-2)(T-3)
h_-(2) | 6 37T(T-1)(T-3)
| h—-(3) | T(T-1)(T-2) |

and the corresponding interpolation formulas:

Vn-r =1 —=T)yn+ TVna1

N 1 1

Yn-t = E(T -D(T-2)yn—T(T=2)yn1+ ET(T - Dyno2

N 1 1 (3.6.30)
Yn-t = _E(T -D(T-2)(T=3)yn+ ET(T =2)(T-3)yYn

- %T(T -1 (T-3)yn2+ éT(T -1 (T-2)yn-3

Example 3.6.2: Fig. 3.6.3 shows in the top row an example of a Lagrange fractional-delay filter
with N = 3 and polynomial order d = N — 1 = 2 for the delay values T = m/10, m =
1,2,...,10.

The bottom row is the case N = 5 and d = N — 1 = 4 with delays T extending over the in-
terval 0 < T < 2. This filter interpolates between the samples [y,,—4,Vn-3,Yn-2,Yn-1,Vnl-
The chosen range of T’s spans the gaps between [y,-2,Yn-1,Yn]. For the subrange 0 <
T < 1 which spans [y,_1,Vn], the magnitude response is greater than one, while it is less
than one for the more central range 1 < T < 2 which spans [y,-2,Yn-1]. The following
MATLAB code segment illustrates the generation of the upper two graphs:

1 % frequencies 0 < w < T

nspace(0,1,1001); w= pi*f;
= % d = N—1 for Lagrange interpolation

f=1i
N=3; d=N-1; M = floor(N/2);

Hmag = []; Hdel = [];

for m=1:10,
tau = m/10; % desired delays
h = flip(lpinterp(N,d,M-tau)); % Ipinterp is discussed in Sec. 3.8
H = freqz(h,1l,w);

Hmag = [Hmag; 10*1ogl0(abs(H))];

Delay = -angle(H)./w; Delay(1l) = tau;

Hdel = [Hdel; Delay]; % phase delays
end

% magnitude responses in dB

figure; plot(f,Hmag); figure; plot(f,Hdel);

The filters were calculated with the function 1pinterp (from Sec. 3.8) with arguments d =
N-1,t = M -1, withreversed output to account for the definition h_+ (k) = by (M —k).

In both cases, we observe that the useful bandwidth of operation, within which both the
phase delays have the correct values and the magnitude response is near unity, is fairly
narrow extending to about w = 0.277, or f = fs/10 in units of the sampling rate f5.]

142 3. Local Polynomial Filters

Fractional-Delay Filters, N =3, d =2

Fractional-Delay Filters, N=3, d =2

1 o

0.9 .
0.8f- -~ STt [
0.1t S et

0.6 ----="""""

phase delay

0.4f-= ="
0.3 : e S
\‘\ 0.2f-- ===

. 0.1

magnitude (dB)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
o/m /T

Fractional-Delay Filters, N=5, d =4

magnitude (dB)
phase delay

0 0.2 0.4 0.6 0.8 1
o/m

Fig. 3.6.3 Lagrange fractional-delay filters with N = 3.

References [152-173] contain further information on predictive FIR and fractional-
delay filters. See also [174-187] for alternative implementations of fractional delay
using maximally-flat and allpass filters. Ref. [162] provides a nice review of various
approaches to the fractional-delay problem.

3.7 Minimum Variance Filters

Next we discuss the equivalence of the least-square polynomial fitting approach to the
minimization of the NRR subject to linear moment constraints. In the actuarial context,
such designs are referred to as “minimum R,” or “minimum variance” filters, as op-
posed to the “minimum R” or “minimum roughness” filters— the nomenclature being
explained in Sec. 4.2.

The projection properties of B may be used to calculate the NRR. For example, the
property mentioned previously that the NRR of the filter by is the equal to the middle
value by (0) follows from Eq. (3.4.2). Using the symmetry of B, we have

B"=B=B"=B"B

3.7. Minimum Variance Filters 143

Taking matrix elements, we have By, = (BT) k= (BTB)mk. But, Brm is the kth
component of the mth column by,. Using a similar argument as in Eq. (3.2.13), we also
have (BTB) mx= bl by. Therefore,

bl by = by (k)
For k = m, we have the diagonal elements of BTB = B:
R =blby, = by (m) (3.7.1)

These are recognized as the NRRs of the filters b,,. In particular, for m = 0, we have
R = bgbo = by (0). Setting k = 0 in Egs. (3.3.16)-(3.3.18), we find that the NRRs of the
casesd = 0,1,d = 2,3,and d = 4,5 are given by the coefficient ratios 1/Fg, F4/D4, and
D1,/D. Therefore:

1
=0.1 = —
(d=0,1) R N
3(3M? +3M - 1)
=2 =
d ,3) R 2M +3) @M% — 1) (3.7.2)
4 3 _ 2 _
d=4,5) R 15(15M* + 30M° — 35M*“ — 50M + 12)
4(2M +5) (4M?2 — 1) (4M?2 —9)
In the limit of large N or M, we have the approximate asymptotic expressions:
@=01 R=-—
o "N
9/4 2.2
= ~ 2D o T 3.7.3
d=23) R N N ()
225/64 3.52
=4 ~ = —
o +3) R N N

Thus, the noise reductions achieved by the quadratic/cubic and quartic/quintic cases
are 2.25 and 3.52 times worse than that of the plain FIR averager of the same length N.
Another consequence of the projection nature of B is:

B's=s, sTp=sT (3.7.4)
Indeed, BTS = BS = S(STS)~1STS = S. Column-wise the first equation states that:
BT [sg,81,.-.,84] = [S0,S1,--.,84] = BTsi=s;, i=0,1,...,d

Thus, the basis vectors s; remain invariant under projection, but that is to be ex-
pected because they already lie in S. In fact, any other linear combination of them, such
as Eq. (3.2.30), remains invariant under B, thatis, BTy = y.

This property answers the question: When are the smoothed values equal to the
original ones, ¥ = y, or, equivalently, when is the error zero, e = 0? Because e = y—BTy,
the error will be zero if and only if BTy = y, which means that y already lies in S, that is,
it is a linear combination of s;. This implies that the samples y,, are already dth order
polynomial functions of m, as in Eq. (3.2.27).

144 3. Local Polynomial Filters

The second equation in (3.7.4) implies certain constraints on the filters b,,, which
can be used to develop an alternative approach to the LPSM filter design problem in
terms of minimizing the NRR subject to constraints. To see this, we write the (d+1) XN
transposed matrix ST column-wise:

ST = [u_ps,...,u_q,up,uq,...,up] (3.7.5)

For example, in the N = 5, d = 2 case, we have:

1 1 1 1 1
sT=-2 -1 0 1 2|=[u, uy,ug,u,ul
4 1 0 1 4

It is easily verified that the mth column u,, is simply

2
up=| M|, -M<m=<M (3.7.6)

which is the same as u; at t = m, in terms of the definition (3.6.10). Using B = GST, we
can express the LPSM filters by, in terms of u,,, as follows:

[b_m,...,b_1,bo,by,...,by1= B = GST = Glu_p,...,u_1,up,uy, ..., upy]

which implies:
bm = Guy = SFluy, (3.7.7)

Multiplying by ST, we find $Tb,, = STSF~'u,, = up, or,

stbm 1
r slTbm m
S$'bm =um = . = . (3.7.8)
sibm md

These relationships are the column-wise equivalent of STB = ST. Thus, each LPSM
filter b,, satisfies (d+1) linear constraints:

sTby,=mi, i=0,1,...,d (3.7.9)

Writing the dot products explicitly, we have equivalently:

M
> nby(m=mt|, i=0,1,...,d (3.7.10)
n=-M

3.7. Minimum Variance Filters 145

In particular, for the steady-state LPSM filter by, we have ug = [1,0,0,...,0]7, with
ith component 6 (i). Therefore, the constraint STby = ug reads component-wise:

M
> nlby(n)=6(i), i=0,1,...,d (3.7.11)
n=-M

For i = 0, this is the usual DC constraint:

M
> bo(n)=1 (3.7.12)
n=-M
and fori=1,2,...,d:
M
> niby(n)=0 (3.7.13)
n=-M

The quantity in the left-hand side of Eq. (3.7.11) is called the ith moment of the
impulse response by (n). Because of the symmetric limits of summation over n and the
symmetry of by (n) about its middle, the moments (3.7.13) will be zero for odd i, and
therefore are not extra constraints. However, for even i, they are nontrivial constraints.

These moments are related to the derivatives of the frequency response at w = 0.
Indeed, defining,

M
Bo(w)= > bo(n)eon
n=-M
and differentiating it i times, we have:
i M
i (i) . d'Bo(w) : s
J'By (w)=J' T dwi ngMn’bo(n)e Jon
Setting w = 0, we obtain:
i M
r d'B)
J'B§ (0)=j 751(;()?)) = > n'by(n) (3.7.14)

Thus, the moment constraints (3.7.12) and (3.7.13) are equivalent to the DC con-
straint and the flatness constraints on the frequency response at w = 0:

Bo(0)=1, B (0)=0, i=1,2,...,d‘ (3.7.15)

The larger the d, the more derivatives vanish at w = 0, and the flatter the response
By (w) becomes. This effectively increases the cutoff frequency of the lowpass filter—
letting through more noise, but at the same time preserving more of the higher frequen-
cies in the desired signal.

Figure 3.7.1 shows the magnitude response |Bg(w)| for the cases N = 7,15 and
d = 0,2,4. The quadratic filters are flatter at DC than the plain FIR averager because
of the extra constraint By (0) = 0. Similarly, the quartic filters are even flatter because

146 3. Local Polynomial Filters

Magnitude Response, N = 7

Magnitude Response, N = 15

—d=0,1
d=23
d=45

E B
= =05
Q a
G /\/\\/\/
0 .05 1 0 .05 1
® in units of © ® in units of ©

Fig. 3.7.1 LPSM filters of lengths N = 7,15, and orders d = 0, 2, 4.

they satisfy two flatness conditions: By (0) = B(()4) (0)= 0. The cutoff frequencies are
approximately doubled and tripled in the cases d = 2 and d = 4, as compared to d = 0.

A direct consequence of the moment constraints (3.7.11) is that the moments of the
input signal y (n) are preserved by the filtering operation (3.2.33), that is,

> nik(n)=>nly(n), i=0,1,...,d (3.7.16)

This can be proved easily working in the frequency domain. Differentiating the
filtering equation X (w)= Bp(w)Y (w) i times, and using the product rules of differ-
entiation, we obtain:

X0 ()= (J’) By ()Y (w)

Jj=0

Setting w = 0 and using the moment constraints satisfied by the filter, Béj) 0)=
0 (j), we observe that only the j = 0 term will contribute to the above sum, giving:

XD0)=By(0)Y?(0)=YP(0), i=0,1,...,d

which implies Eq. (3.7.16), by virtue of Eq. (3.7.14) as applied to x(n) and y(n).

The preservation of moments is a useful property in applications, such as spectro-
scopic analysis or ECG processing, in which the desired signal has one or more sharp
peaks, whose widths must be preserved by the smoothing operation. In particular, the
second moment corresponding to i = 2 in Eq. (3.7.16) is a measure of the square of the
width [42-52,56,58,178].

The above moment constraints can be used in a direct way to design the LPSM filters.
We consider first the more general problem of designing an optimum length-N filter that
minimizes the NRR subject to d + 1 arbitrary moment constraints. That is, minimize

M
R=b'b= > b(n)’=min (3.7.17)
n=-M

3.7. Minimum Variance Filters 147
subject to the d + 1 constraints, with a given u = [ug, uy,...,ug]":
M .
sib= > n'b(n)=u;, i=0,1,....d = S'b=u (3.7.18)
n=-M

The minimization of Eq. (3.7.17) subject to (3.7.18) can be carried out with the help
of Lagrange multipliers, that is, adding the constraint terms to the performance index:

d
J=b"b+2> Ai(u;—s/b)=b"b+2AT(u-5Tb) (3.7.19)

i=0
The gradient of 7 with respect to the unknown filter b is:

oJ _
b =2b-2SA

Setting the gradient to zero, and solving for b gives:

Ao

Al d
b=SA=[so,81,....8a]| . |=2 Aisi

. i=0

Ad

Component-wise this means that b (n) has the polynomial form:

(Y

d
b(n)=> Aisi(n)=> A, -M<ns<M
i—0 i=0

The Lagrange multiplier vector A is determined by imposing the desired constraint:
u=5S"b=STSA=FA = A=Flu
resulting in the optimum b:

b=SA=SFlu=S5(57S)"'u=Gu (3.7.20)

Since the solution minimizes the norm b b, it is recognized to be the minimum-norm
solution of the (d+1)xN full-rank under-determined linear system STh = u, which
can be obtained by the pseudoinverse of ST, that is, b = (S§T)*u, where according to
Eq. (15.4.10), (ST)*= §(STS)~!. In MATLAB, we can simply write b = pinv(ST)u.

Comparing this solution with Egs. (3.7.7) and (3.7.8), we conclude that the LPSM filters
b, can be thought of as the optimum filters that have minimum NRR with constraint
vectors u = Uy, that is, the minimization problems,

R = b,Tnbm =min, subjectto STy = um (3.7.21)

have solutions,
by =SF'uy, = Guy, -M<m<M (3.7.22)

148 3. Local Polynomial Filters

and putting these together as the columns of B, we obtain Eq. (3.2.31):
B=1[...,bm,... 1= G[...,um,... |= GST = SF1sT (3.7.23)

In particular, the steady-state LPSM filter by minimizes the NRR with the constraint
vector u = ug = [1,0,...,0]7. This was precisely the problem first formulated and
solved using Lagrange multipliers by Schiaparelli [36].

Similarly, the interpolating filter b; = Gu; of Eq. (3.6.10) can be thought of as the
solution of the constrained minimization problem:

R =b'b=min, subjecttoS’b=u;, where u;=[1,t¢t%...,t9]7

3.8 Predictive Differentiation Filters

Going back to the polynomial fit of Eq. (3.6.9), that is,
d .
Ve = Z cit! = cTu; = yT'Guy = yTby, where b, = Guy, (3.8.1)
i=0

we recall that the differentiation filters (3.2.24) were derived by differentiating (3.8.1) at
t = 0, and therefore, they correspond to the center of the data vector y:

Vil =co=bgy =gy
);/t|t:0 =c =gy
Vilico =202 =gly, etc,
The first derivative at an arbitrary value of t is given by:
Ve=y"be, b =Gu,

where the differentiation operation can be expressed as matrix multiplication:

000 -+ 00
; (1) 1 00 00
.2 or 020 --- 0 0]]¢
u; = => ur = = L. . =Du; (3.8.2)
: : 00 0 0 o]
d d—1
t dt 0 0 0 d o]l

where D is the (d+1) X (d+1) matrix with the sequence of numbers {1, 2,...,d} along
its first subdiagonal and zeros everywhere else. Such a matrix can be constructed triv-
ially in MATLAB, for example, by:

D = diag(l:d, -1);

3.8. Predictive Differentiation Filters 149

It follows that the first-order differentiation filter is by = GDu;. In particular, the
differentiation filter at the sample point t = m is by, = GDuyy, and the corresponding
estimated derivative:

Pm=bry=ulDIGTy, -M<m=<M (3.8.3)
Stacking these together into a column vector, we obtain:
v =SDTGTy = BTy, where B=GDST = SF'DST (3.8.4)

so that B has the b, as columns. Higher-order derivatives correspond to higher powers
of the matrix D, for example, ii; = D?u,, and so on, with the highest non-trivial power
being D4, because D4+! = 0, or equivalently, because the elements of u,; are monomials
up to t9. Therefore, the order-i differentiation matrix will be:

BW = sF1pisT | i=0,1,...,d (3.8.5)

Centering the data vector y at time n and denoting the m-th column of B by b{?,
we obtain the filtering equation for the i-th estimated derivative:

M M
Vitm= > bPWynik= > bP(-K)ynk (3.8.6)
k=—M k=-M

We note that at the data-vector center m = 0, we have bé” = g;. For arbitrary t, we
have b([l) = GD'a; and we obtain the estimated/interpolated derivative:

M M
M= 2 bR yni= >, b (~K)ynk (3.8.7)
k=—M k=—M

As in Eq. (3.6.15), the redefinition h'’ (k)= b;\?”(M — k) will result into a causal
version of the predictive differentiator filter, with Eq. (3.8.7) transforming into:

N-1
)”/ﬁ,’lT = Z h(T")(k)yn,k (causal predictive differentiator) (3.8.8)

k=0

One can easily obtain closed-form expressions for the differentiation filters bt(i) (k)
ford = 0,1,2, 3,4 and arbitrary M, by replacing the variable m in Egs. (3.3.7)-(3.3.12) by
the variable t and differentiating i-times with respect to t. For example, ford = 1,2, 3,
4, we differentiate Egs. (3.6.12) once to get the first derivative:

150 3. Local Polynomial Filters

, k

b (k) = F

. _ 1., F & »

b (k) = sz D4()+D (2tk<)

be(k) = Fop _ F2 2 (21)+ (2th) (3t2k + k5)+ (3t1k3) (3.8.9)
Dsg D4

be(k) = %k - @(zm— 2tk?) — (k3t2 +Kk3)

D (3t2k3)+ 8 (413) - (2tk4+k24t3)+ 2 483kY)

For the causal versions, we have for d = 1:

1, M+T)(M-k) MM+1)+3(M+71)(M-k)
Fo F, - MM+1)(2M +1)
M-k _ 3(M - k)

F, ~ MM+1)2M+1)

he (k) =
(3.8.10)
hr (k) =

where k = 0,1,...,N — 1. We note that . can be obtained by differentiating h. with
respect to T. The derivative filter is independent of T because it corresponds to fitting
a first-order polynomial. For d = 2, we have similarly,

he (k) = 5—4 + —(M+T) (M - k)f—((M+T)2+(Mfk)2) + %(M‘FT)Z(M*I()Z
4
hT(k)——(M k)——2(M+T) 2(M + 1) (M —k)?
(3.8.11)

where, we recall from Eq. (3.3.11),

Fy _ 3(3M*+3M-1) F2 15

Dy (M +3)(4M2-1)" Dy (2M +3)(4M2 —1)

Fo 45 1 3

Di MM+1)(2M+3)(dM2—1)" F, MM+1)(2M +1)

Example 3.8.1: For the case N = 5, d = 2, we had found in Egs. (3.2.5) and (3.2.16) that:

1 -2 4 -3 -7 5
1 -1 1 1 12 -3.5 -=-2.5
S =[sp, s1,82]=1 1 0 0f, G=—-| 17 0 -5
1011 3112 35 -25
1 2 4 -3 7 5

3.8. Predictive Differentiation Filters 151

The corresponding first- and second-order differentiation matrices will be:

[—27 -17 -7 3 13
1 6.5 1.5 -3.5 -85 -13.5 0 0 0
B=GD'ST = — 20 10 0 -10 20|, D'=|11 0 O
351135 85 35 -1.5 -65 0 2 0

| -13 -3 7 17 27

10 10 10 10 10

=5) =5 -5 -5
10 10 10 10 10

1 -5 -5 -5 -5 -5 0 0
B=G6D?ST = i -10 -10 -10 -10 -10|, D?=[0 O
2 0

(==l
I

The central columns agree with Eq. (3.2.25). The interpolating smoothing and first-order
differentiation filters are given by:

-3 -7 5 —3 =7t + 52
1 12 -3.5 =25 1 1 12 — 3.5t — 2.5¢2
b,=Gu, = —| 17 0 -5 t | =— 17 - 5¢2
351 12 35 -25 t? 351 12 4 3.5t - 2.5¢2
-3 7 5 —3 + 7t + 5t2
-3 -7 5 -7+ 10t
_ R R 0 0 0 1 L | 35t
b;=GDu, = — | 17 0 -5 1 0 0 t | = —10t
3112 35 —25(lo 2 o] 3| 35-5¢
-3 7 5 7+ 10t

where b, can be obtained either by the indicated matrix multiplication or by simply differ-
entiating b, with respect to t. m]

The MATLAB function 1pdiff implements the design of the differentiation matrices:

= Tpdiff(N,d,i);

% differentiation filters

Like Tpsm, it carries out a Gram-Schmidt QR-transformation on the monomial basis
S and constructs the B® by:

S=QR, Q'Q=
G=S(5Ts)"'=QRT

R =upper triangular

B(i) — GDisT — Q(RfTDiRT)QT

The predictive/interpolating differentiation filters b(ri) are the minimum-norm solu-
tion of the under-determined linear system STb = D'u,, or, equivalently the solution
of the constrained minimization problem:

R =b’b=min, subjectto STb=D'u;

The MATLAB function Tpinterp implements the design of predictive and interpo-
lating differentiation filters, essentially carrying out the operation b = pinv(ST) Diu,:

152 3. Local Polynomial Filters

b = Tpinterp(N,d,t,i);

% local polynomial interpolation and differentiation filters

The case i = 0 corresponds to the predictive interpolation filters of Sec. 3.6. For the
integer values t = m, —M < m < M, the filter b agrees with the columns of B\,

Example 3.8.2: Fig. 3.8.1 illustrates the performance of the local polynomial differentiation
filters on noiseless and noisy signals.

noiseless signal differentiated signal

0.5
- - - true derivative

. — estimated
0]

_02 0.

0 2 4 6 8 10 0 50 2 4 6 8 10
t t
noisy signal differentiated signal
T T 0.5 T T

- -~ true
differenced
— estimated

Fig. 3.8.1 Differentiating noisy signals.

The noiseless signal is a raised cosine s(t)= 0.5 — 0.5cos(wt), with 0 < t < T and
w = 211/T, so that it spans one cycle. Choosing a sampling time interval At = T/L, we
can construct a noisy signal sampled at time instants t, = nAt = nT/L,n = 0,1,...,L,
by adding zero-mean white gaussian noise vy, of variance, say 2, so that the noisy obser-
vations are:

Yn=8p)+vy, n=0,1,...,L

The first derivative of s(t) is $(t) = 0.5w sin(wt) and its samples, $(t,) = 0.5 sin(wty).
The upper-left graph shows s(t,) versus t,, with T = 10 and L = 50. The upper-right
graph shows $(t,) (dashed line) together with the estimated derivative (solid line) of the
original signal s(t,) filtered through an LPSM differentiation filter designed with N = 31
and polynomial order d = 3. The output of the filter is divided by At in order to adjust its
dimensions.

3.9. Filtering Implementations 153

The bottom-left graph shows the noisy signal y,. In the bottom-right graph, the output
(solid line) of the same differentiation filter applied to the noisy signal y,, is compared with
the true noiseless differentiated signal $,,, as well as to the differenced signal diff(y) /At.
The following MATLAB code illustrates the generation of the bottom-right graph:

T =10; L = 50; Dt =T/L; w = 2*pi/T; sigma = 0.1;
t = 0:Dt:T;

s = 0.5 - 0.5*cos(w*t); % noiseless signal
seed=100; randn(’state’,seed);

y = s + sigma * randn(1l,length(s)); % noisy signal

N =31; d = 3; Bl = 1pdiff(N,d,1); % first-order differentiation filter

sd = 0.5*w*sin(w*t); % derivative of s (t)
xd = Tpfilt(Bl,s)/Dt; % estimated derivative of s (t)
x1 = 1pfilt(Bl,y)/Dt; % estimated derivative from the noisy signal

yd = diff(y)/Dt; td = t(2:end); % differenced signal estimates the derivative

plot(t,sd,’--", td,yd,’:’, t,x1,’-");

The differencing operation amplifies the noise and renders the estimated derivative use-
less, whereas the local-polynomial derivative is fairly accurate. The filtering operation is
carried out by the function Tpfi1t, which is explained in the next section.]

3.9 Filtering Implementations

In smoothing a length-L signal block y,, n = 0,1,...,L — 1, with a double-sided filter
hm, —M < m < M, the output signal X, is given by the convolutional form:

min(n,M)
> RmYn-m, -M<n<L+M-1 (3.9.1)

m=max(—M,n—L+1)

>
3
Il

The length of &, is L + 2M, and the first 2M and last 2M output samples correspond
to the input-on and input-off transients, while the central L — 2M points, M < n <
L—M -1, correspond to the steady-state output computed from the steady-state version
of Eq. (3.9.1):

hmYn-m, M<n<L-M-1 (3.9.2)
M

>
=S
Il
' M=

m

The range of the output index n and the limits of summation in (3.9.1) are determined
from the inequalities —-M <m < M and 0 < n—m < L — 1 that must be satisfied by the
indices of h,, and y,_,. However, only the subrange {X,, 0 < n < L — 1} is of interest
since these output samples represent the smoothed values of the corresponding input
samples {y,, n=0,1,...,L — 1}. This is illustrated in Fig. 3.9.1.

The first and last M samples in the subrange 0 < n < L — 1 are still parts of the
input-on and input-off transients. To clarify these remarks, we consider the case L = 8,
M = 2. The full output (3.9.1) may be represented by the usual convolution matrix of
the filter acting on the input signal block:

154 3. Local Polynomial Filters

X2 h_, 0
X h.y ho, O 0 0 0 0 0
?2() h() h.y h, O 0 0 0 0 i Yo 1
}21 hl ho h,l h,z 0 0 0 0 V1
X2 hz hl ho hfl hfg 0 0 0 Y2
?23 _ 0 hg h1 ho hfl]’172 0 0 V3
X4) 0 h, hy hy hy h O V4
Rs 0 0 0 h, hy hy h.y ho||ys
X6 0 0 0 0 h; h, ho h_, Y6
X7 0 0 0 0 0 h, hy ho | V7 |
Rs 0 0 0 0 0 0 h mn
% | Lo o o o o0 0 0 | h
l«—— inputblock) ——I
| | -1

0 L-1

<———— output block)/c\n |

| \ ‘ ‘ \ .

-M 0 M L-M-1 L-1 L+M-1
input-on steady-state input-off
b transients ——— output — transients e

Fig. 3.9.1 Input and output signal blocks from a double-sided filter.

This matrix can be constructed in MATLAB with the built-in function convmtx, or
with its sparse version convmat, or with the function datamat, the latter two being part
of the OSP toolbox. Defining h = [h_y, ..., ho,...,hp]T, we have the syntax:

H = convmtx(h,L); % built-in convolution matrix
H = convmat(h,L); % sparse version of convmtx
H = datamat(h,L-1); % used extensively in Chap. 15

3.9. Filtering Implementations 155

Dropping the first and last two outputs, we obtain the outputs in the subrange 0 < n < 7:

)20 ho hfl hfz 0 0 0 0 0 Yo
?21 hl ho hfl]’lfz 0 0 0 0 V1
X2 h, hy hy hy h, O 0 0 V2
5)23 _ 0 hz hl ho h_1 h_z 0 0 y3 _
x=)’&4 n 0 0 ”l2 hl ho h_l h_z 0 Y4 = HY (393)
)’25 0 0 0 hz hl ho h,l h,z Ys
)26 0 0 0 0 hz h1 h() hfl Ve
L ?A<7] | 0 0 0 0 0 ”12 hl h() {1LY7]

The first two and last two of these outputs are still transient and are being com-
puted with only a subset of the filter coefficients, and therefore, may not adequately
represent the corresponding smoothed values. This so-called “end-point problem” has
been addressed repeatedly with a number of solutions.

One method that is widely used by the government to process census and business-
cycle data (e.g., the X12-ARIMA method) is to backcast and forecast M estimated values
at the beginning and end of the length-L input block, so that y, is now defined over
—M <n <L -1+ M, and the desired output samples over the subrange 0 <n <L -1
will be steady-state outputs being computed with the full filter.

Another method is to use different filters for the first M and last M outputs. For
example, one can take the outputs ¥, .+, of the LPSM filters b, (k) to estimate the initial
and final M transients, while using the central filter by (k) for the steady-state outputs.
Indeed, the first time index when one can use the steady-state filter by (k) is n = M:

M
R =V = D bo(K)ymik
k=—M

Instead of calculating the previous output Xp;—; using the transient version of b (k),

M
R-1= > bo(K)ym-1+k
k=—(M-1)
one could estimate Xp_1 using Yy.m with m = —1, that is, using b_; (k), and using

b_>(k),b_3(k), ..., b_p (k) for the other initial M outputs:

M
Rn-1=Pm-1= > b (K)ymk
k=—M
M
K-z =Vm-2= > boa(K)ymik (3.9.4)
) k=—M

: M
Ro=Pm-m = D b_m(K)ymk
k=—M

156 3. Local Polynomial Filters

Similarly, one can use the filters b,, (k) for m = 1,2,...,M to calculate the last
M smoothed outputs, starting with the last steady-state outputatn = L — 1 — M and
proceeding to theend n = L — 1:

M
Ri-m =Vr-1-m+1 = >, bi(K)yr-1-mk
k=—M

M

Re-mar =Viimez= . ba(K)yr1-msk (3.9.5)
i k=—M

: M
Rec1=Proi-mam = D, by (K)yr-i-mk
k=—M

The following example illustrates the computational steps for the input-on, steady,
and input-off output samples, where we denoted by, x = by, (k) for simplicity:

Xo b2 boi1 bog bo bop 0 0 0 [»o
X1 b.y> b1 boipo by by 0 0 0 Y1
X2 bo,> bo-1 bop bo1 bop O 0 0 Y2
%= X3 [_ |0 bo,.> bo-1 boo bo1 bop O 0 V3| _ Hy
Ry 0 0 bo,—2 bo-1 boo bor bo2 O V4
Xs 0 0 0 bo,—2 bo-1 boo bo1 bop 5
X6 0 0 0 by, 2 b1 bip b1y bip Y6
X2 | [O 0 0 ba > ba-1 bao ba1 bap || y7 |

In particular, for N = 5 and d = 2, the convolutional filtering matrix will be:

%o 319 -3 -5 3 0 0 0][

% 9 13 12 6 -5 0 0 0]|n

%2 3 12 17 12 -3 0 0 0||y
5 ?25 _ i 0 -3 12 17 12 -3 0 0 V3 - H
=l |73 0 0 -3 12 17 12 -3 o]y |

%5 0 0 0 -3 12 17 12 -3 || s

X6 0 0 0 -5 6 12 13 9|y

%7 0o 0 0 3 -5 -3 9 31|y |

with entries obtained from the matrix B of Eq. (3.2.16):

3. 9 -3 -5 3
9 13 12 6 -5

B=—|-3 12 17 12 =3 |=[b_s b_y, by, by, by]
-5 6 12 13 9
3 -5 -3 9 31

More generally, given any smoothing (or differentiation) matrix B whose central col-
umn contains the (reversed) steady-state filter, and its other columns, the (reversed)

3.9. Filtering Implementations 157

filters to be used for the initial and final transients, one can uniquely construct the
corresponding L XL convolutional matrix H for filtering a length-L block of data y.

The procedure is straightforward. First construct the ordinary full (L+2M) XL con-
volution matrix for the central filter, then delete its first M and last M rows, and finally,
replace the first M and last M rows of the result by the transient filters.

The following MATLAB code segment illustrates the procedure, where the matrix B
is assumed to have size NxXN, with N = 2M + 1, with the central column being the
reversed steady-state filter and the other columns, the reversed transient filters:

H convmat(flip(B(:,M+1)), L);
H HM+1:L+M, :); % extract the LxL convolution submatrix
H(1:M, 1:N) = B(:,1:M)’; % redefine upper-left ML corner
H(L-M+1:L, L-N+1:L) = B(:,M+2:N)’; % redefine lower-right M xL corner

% ordinary (L+2M) XL convolution matrix

The function f11ip reverses the central column of B because convmat expects as
input the actual filter, not its reverse. The above steps have been incorporated into the
function Tpmat with syntax:

H = Tpmat(B,L); % local polynomial filter matrix of size LXL

Once the LXL matrix H is constructed, the actual filtering of a length-L input block
y is straightforward, that is, X = Hy, and efficient because H is defined as sparse.

An alternative way to structure the filtering operation is to directly use Egs. (3.9.4)
and (3.9.5) for the transient parts and the following equation for the steady part:

M
Rn= > bo(K)ynik, M<n<L-1-M (3.9.6)
k=-M

The following MATLAB code illustrates this approach:

y = B(:,1:M)" * x(1:N);
for n = M+1:L-M,
y = [y; BC:,M+1)’ * x(n-M:n+M)];
end
y = [y; B(:,M+2:N)’ * x(L-N+1:L)];

% first M transient outputs
% middle L—2M steady-state outputs
% filtered by central column of B

% last M transient outputs

These steps are implemented in the MATLAB function Tpfi1t2. A faster version
is the function 1pfilt, which uses MATLAB'’s built-in filtering functions. Thus, three
possible ways of computing the filtered output X given a smoothing matrix B are as
follows (assuming that y is a length-L column vector):

x_hat = Tpmat(B,L)*y; % use LXL convolution matrix constructed from B
x_hat = 1pfilt2(B,y); % use directly the filtering equations (3.9.4)~(3.9.6)
x_hat = Tpfilt(B,y); % fast version using the function filtdb1

The function 1pfilt internally calls the function fi1tdb1, which uses the built-in
function conv to implement the FIR filtering by the steady-state double-sided central
filter. The following code segment shows the essential part of 1pfilt:

x_hat = filtdb1(f1ip(B(:,M+1)), y); % filter with the central column of B
x_hat(1:M) = B(:,1:M)’ * y(1:N); % correct the first M transient outputs
x_hat(end-M+1l:end) = B(:,M+2:N)’ * y(end-N+l:end); % correct the last M transient outputs

158 3. Local Polynomial Filters

where the function fi1tdb1 has usage:

y = filtdb1(h,x); % filtering by double-sided FIR filter

The function fi1tdb1 is essentially the ordinary convolution of the length-(2M +1)
filter h and the length-L signal x, with the first M and last M output points discarded.
The result is equivalent to that obtained using the convolution submatrix, as for example,
in Eq. (3.9.3). We note, in particular, that the B matrix that gives rise to (3.9.3) is:

hy hi hy O 0

h_1 hy h, hy 0
B=|ho, h hy h, h»

0 h, hy hy h,
0 0 h, h.; hyg

and contains the reversed filter h in the central column and the transient subfilters in
the other columns.

There are other methods of handling the end-point problem, most notably Mus-
grave’s minimum-revision method that uses end-point asymmetric filters constructed
from a given central filter h. We will discuss it in detail in Sec. 9.8. Here, we note that
the output of this method is a B matrix, which can be passed directly into the filtering
function 1pfilt. The MATLAB function minrev implements Musgrave’s method:

B = minrev(h,R); 9% Musgrave’s minimum revision asymmetric filters

where R is a scalar parameter to be explained in Sec. 9.8. The method is widely used in
the X-11 method of seasonal adjustment and trend extraction.

Example 3.9.1: Schiaparelli was the first one to systematically pose and solve the minimum-
NRR filtering problem. He gave the solution to many specific cases, such as filter lengths
N = 5-13, and polynomial orders d = 3, 4.
Here, we reproduce the example from Schiaparelli’s paper on smoothing lunar obser-
vations, the signal y, being a measure of the moon’s influence on atmospheric effects.
Fig. 3.9.2 shows 30 noisy observations (one for each lunar day) and their smoothed ver-
sions produced with an LPSM filter of length N = 13 and polynomial order d = 3 on the
left, and d = 4 on the right (Schiaparelli’s case).

The central filters for the d = 3 and d = 4 cases are:

by = 1411—3[—11, 0, 9, 16, 21, 24, 25, 24, 21, 16, 9, 0, —11]

by = ﬁ[uo, —-198, —135, 110, 390, 600, 677, 600, 390, 110, —135, —198, 110]

The following program segment illustrates the computations:

% data file available in the OSP toolbox
% extract n and yp from the columns of Y

loadfile(’schiaparelli.dat’);
n=YCG,0D;5y=Y(,2);

N=13; d=3; M=floor(N/2); % filter length and polynomial order

B = Tpsm(N,d); 9% construct LPSM matrix B
x = 1pfilt(B,y); % filter noisy observations
b0 = B(:,M+1); % middle column of B

x0 = filtdb1(b0,y); % filter with by only

plot(n,y,’.’, n,x,’ =", n,x0,’--");

3.9. Filtering Implementations 159

N=13,d=3 N=13,d=4

0.4 * noisy data \ 0.4
smoothed \ * noisy data
- - - with transients \ smoothed
\
10 20 30 1 10 20 30
days, n days, n

Fig. 3.9.2 Schiaparelli’s smoothing example.

where the function Toadfile extracts only the numerical data from the data file. In the
left graph, we have also added the result of filtering with the steady-state filter by, which
illustrates the end-point problem. The two filtered curves differ only in their first 6 and
last 6 points. a
Example 3.9.2: Global Warming Trends. Fig. 3.9.3 shows the annual average temperature anoma-
lies (i.e., the differences with respect to the average of the period 1961-90) over the pe-
riod 1856-2005 in the northern hemisphere. The data are available from the web site:
https://crudata.uea.ac.uk/cru/data/crutem2/.
Five trend extraction methods are compared. In the upper left, a local polynomial smooth-
ing filter was used of length N = 65 and polynomial order d = 3. The following MATLAB
code illustrates the generation of that graph:

loadfile(’tavenh2v.dat’); % data file available in the OSP toolbox
n=YCG,D;y=Y(,14); % extract n and yp from Y

N = 65; d = 3; B = Tpsm(N,d); % design the LPSM matrix B
x = 1pfilt(B,y); % smooth the data vector y

figure; plot(n,y,’:’, n,x,’-");

In the upper-right graph, a minimum-roughness, or minimum-R;, Henderson filter was
used with length N = 65, polynomial order d = 3, and smoothing order s = 2. Such filters
are discussed in Sec. 4.2. The resulting trend is noticeably smoother than that of the LPSM
filter on the upper-left.

The middle-left graph uses the SVD signal enhancement method, described in Chap. 15,
with embedding order M = 10 and rank r = 2, with K = 40 iterations. The middle-
right graph uses the Whittaker-Henderson smoothing method, discussed in Sec. 8.1, with
smoothing order s = 2 and smoothing parameter A = 104

The lower left and right graphs use the Whittaker-Henderson method with the L, criterion
with differentiation orders s = 2 and s = 3 and smoothing parameter A = 10, implemented
with the CVX package.! The s = 2 case represents the smoothed signal in piece-wise linear
form, and the s = 3 case, in piece-wise parabolic form. This is further discussed in Sec. 8.7.

Thttp://cvxr.com/cvx/

160

anomalies (C°)

anomalies (C°)

0.8 0.8
06 actual 06 actual
. — trend : — trend
0.4
N N
2 o2 <
wn n
2 2
5 0 s
8 8
2 -0.2 1
s <
—-0.4]
-0.6 -0.6
-0, -0.8
1850 1875 1900 1925 1950 1975 2000 1850 1875 1900 1925 1950 1975 2000
years years
SVD enhancement, M =10, r =2 Whittaker-Henderson smoothing
0.8 - . - . . - 0.8 . . - . - -
actual actual
0.4 0.4

3. Local Polynomial Filters

LPSM filter, N = 65, d = 3 LPRS filter, N = 65, d =3, s = 2

!
o
o

anomalies (C°)
&
DD =3

!
N
=
|

=3
.

-0.6 -0.6

_01%50 1875 1900 1925 1950 1975 2000 _01%50 1875 1900 1925 1950 1975 2000
years years

Whittaker—-Henderson with L, s =3

actual
trend

Whittaker-Henderson with Ly, s =2

0.
rend

!
I
o

anomalies (C°)
S
Do =]

!
I
=
!

=)
S

-0.6 -0.6

0. -0.8
1850 1875 1900 1925 1950 1975 2000 1850 1875 1900 1925 1950 1975 2000
years years

Fig. 3.9.3 Temperature trends determined by five methods.

The following MATLAB code segment illustrates the computation of the corresponding
smoothed signals for these four methods:

N=65; d=3; s=2; x = 1pfilt(lprs(N,d,s), y);
M=10; r=2; K=40; x = svdenh(y,M,r,K);
Ta = 10000; s=2; x = whsm(y,1a,s);

% minimum-Rg Henderson filter
% SVD enhancement method
% Whittaker-Henderson smoothing

n
I

= 2; la = 10; N = length(y);
= diff(eye(N),s);

% Whittaker-Henderson with L1
% s-fold differentiation matrix

o
I

3.9.

anomalies (C°)

Filtering Implementations 161

cvx_begin
variable x(N)
minimize(sum_square(y-x) + la * norm(D*x,1))
cvx_end

% use CVX package

All methods adequately handle the end-point problem. Repeating the same filtering oper-
ation several times results in even smoother trend signals. For example, Fig. 3.9.4 shows
the result of repeating the filtering operation two additional times. The following MATLAB
code illustrates the generation of the left graph:

N = 65; d=3; B = Tpsm(N,d); x = vy;
for i=1:3, x = 1pfiTt(B,x); end
figure; plot(n,y,’:’, n,x,’-’);

LPSM filter, repeated twice Henderson filter, repeated twice

T 0.8 T T

actual
06 1

S
Do
anomalies (C°)

|
I
i~

-0.6 1 -0.61

_01%50 1875 1900 1925 1950 1975 2000 _01%50 1875 1900 1925 1950 1975 2000

years years

Fig. 3.9.4 Filtering repeated two additional times.

For the steady-state filters By (w), filtering a total of K times is equivalent to an overall filter
[Bo (w)]K, an operation which makes a flat passband even flatter and a small stopband
even smaller. The properties of iterated smoothing by local polynomial filters has been
studied by De Forest, Schoenberg, and Greville [67,83,86].

Fig. 3.9.5 shows the estimated derivatives (solid line) of the temperature signal obtained
by filtering it with the LPSM derivative filters, and compares them with the ordinary differ-
encing operation, diff(y), in MATLAB notation. Clearly, differencing is simply too noisy
to give any usable results.

The upper two graphs compute the first derivative of the input by X = Ipfilt(B,,y) with
the differentiator matrix obtained from B, = Ipdiff (N, d,i) with N = 65 and i = 1, and
with d = 1 in the upper-left, and d = 2 in the upper-right graph. During the two periods
of almost linear growth from 1910-1940 and 1970-2005, the derivative signal becomes an
almost flat positive constant (i.e., the slope). During the other periods, the temperature
signal has a very slow upward or downward trend and the derivative signal is almost zero.

We note the flat end-points in the the case d = 1, which are due to the fact that the
asymmetric derivative filters are the same at the end-points ranges as shown in the first
equation of (3.8.9). The case d = 2 estimates the end-point derivatives better and possibly
indicates a faster than linear growth in recent years.

162

first derivative

first derivative

3. Local Polynomial Filters

The lower-left graph uses a minimum-R derivative filter with N = 65, d = 2, and smooth-
ness order s = 3, resulting in a noticeably smoother estimated derivative than the LPSM
case (the W input in Tpd1i ff is discussed in the next section.) Finally, the lower-right graph
shows the second derivative computed with the filter B, = lpdiff (N, d, i) with i = 2, and
compares it with the second difference signal, diff (diff (y’)), which is even more noisy than
the first difference. The following MATLAB code illustrates the computations:

d=1; i=1; Bl = 1pdiff(N,d,i);

3.9. Filtering Implementations

163

can be simply computed as the difference signals, diff (X,;), with comparable results as the

local polynomial methods.

% LPSM differentiation filters

plot(n, Tpfilt(Bl,y), n(2:end), diff(y),’:’); % upper-left graph

d=2; i=1; Bl = 1pdiff(N,d,i);

plot(n, 1pfilt(Bl,y), n(2:end), diff(y),’:’'); % upper-right graph

s=3; W = diag(Chend(N,s));
d=2; i=1; Bl = Tpdiff(N,d,i,W);

% Henderson weighting matrix
% LPRS differentiation filters

plot(n, Tpfilt(Bl,y), n(2:end), diff(y),’:’); % lower-left graph

d=2; i=2; B2 = lpdiff(N,d,i);

% second derivative filters

plot(n, Tpfilt(B2,y), n(3:end), diff(y,2),’:’); % lower-right graph

N=65d=1,i=1

N=65d=2 i=1

— B = Ipdiff(N,d,i)
01l diffly, 1) ;
o g
2 H EE :
=} .
< B E
£ \/——\,_/
£ o B o
o : : i E
-
wn
~
)
-0.1 -0.1
1850 1900 1950 2000 1850 1900 1950 2000
years years
N=65d=1,i=1,5s=3 N=65d=2,i=2
— B =Ipdiff(N,d,i, W)
0.1 diffty, 1) 0.1
: - . o
2
el
<
>
g
0 3 0
]
=
=]
153
Q
w
-0.1 -0.1
1850 1900 1950 2000 1850 1900 1950 2000

years

years

Fig. 3.9.5 Differentiated temperature signal.

The second derivative is essentially zero, being consistent with piecewise linear trends.
Derivative signals can also be estimated for the SVD and Whittaker-Henderson methods.
Since the outputs &, of these methods are smooth signals, the corresponding derivatives

]

4

Minimum Roughness Filters

4.1 Weighted Local Polynomial Filters

The design of the LPSM filters was based on a least-squares criterion, such as (3.2.2),
where all error terms were equally weighted within the filter’s window:

M M M d _ 2
J= Z efnz Z (Ym_)}m)zz Z)/m—ZCiml = min
m=-M m=-M m=-M i=0
This can be generalized by using unequal positive weights, wy,, —-M < m < M:
M M d \°
T= D> Wmem= > Wm|Ym— > cm | =min (4.1.1)
m=-M m=—-M i=0
Introducing the diagonal matrix W = diag([w_p,..., Wo,...,Wn]), we may write

Eq. (4.1.1) compactly as:
J=elWe = (y-Sc)TW (y - Sc) = min (4.1.2)

where y, S, c have the same meaning as in Egs. (3.2.26)-(3.2.30). Differentiating with
respect to c gives the orthogonality and normal equations:

STWe=STW(y-Sc)=0 < (STWS)c=STwy (4.1.3)
with solution for c and the estimate y = Sc:

c= (STWS)"1STWy = GTy

(4.1.4)
v =S8c=S(STws)-1STwy = BTy
where we defined
G=wSsiSTws)!
() (4.1.5)
B=GST =wsS(STws)1sT

164

4.1. Weighted Local Polynomial Filters 165

The matrix B satisfies the following properties:

STB = 8T
BT = w-1BW (4.1.6)
BWBT = BW = WBT

The first implies the usual polynomial-preserving moment constraints STbh;, = un,
for —-M < m < M, where b, is the mth column of B. The second shows that B is no
longer symmetric, and the third may be used to simplify the minimized value of the
performance index. Indeed, using the orthogonality property, we obtain:

Jmin = €' We = y"Wy —y"BWy — y'WBTy + y'BWBTy = y' Wy — y'BWy

A fourth property follows if we assume that the weights w,, are symmetric about
their middle, w,; = w_,;, or more generally if W is assumed to be positive-definite,
symmetric, and centro-symmetric, which implies that it remains invariant under reversal
of its rows and its columns. The centro-symmetric property can be stated concisely as
JW = W], where J is the column-reversing matrix consisting of ones along its anti-
diagonal, that is, the reverse of a column vector is bR = Jb. Under this assumption on
W, it can be shown that B is also centro-symmetric:

JB=B] => bl =b,, -M<m<M (4.1.7)

This can be derived by noting that reversing the basis vector s; simply multiplies it
by the phase factor (—1){, so that JS = SQ, where Q is the diagonal matrix of phase
factors (=1){,i=0,1,...,d. This then implies Eq. (4.1.7). Similarly one can show that
JG = GQ, so that the reverse of each differentiation filter is gf = (-1)lg;.

The filtering equations (3.2.33) and (3.2.34) retain their form. Among the possible
weighting matrices W, we are interested in those such that the polynomial fitting prob-
lem (4.1.2) has an equivalent characterization as the minimization of the NRR subject
to the polynomial-preserving constraints STh,, = u,,. To this end, we consider the
constrained minimization of a generalized or “prefiltered” NRR:

R =b"Vb=min, subjectto S’b=u (4.1.8)

for a given (d+1)-dimensional vector u. The NXN matrix V, where N = 2M+1,
is assumed to be strictly positive-definite, symmetric, and Toeplitz. We may write
component-wise:

M ™
R=3 b(n)Vn_mb(m):iJ_WIB(w)IZV(w)dw 4.1.9)

nm=-M

where we set Vi, = Vn—m because of the Toeplitz property, and introduced the corre-
sponding DTFTs:

M o
B(w)= > b(n)e ", V(w)= > Vie wk (4.1.10)
n=-M k=—c0

166 4. Minimum Roughness Filters

One way to guarantee a positive-definite V is to take V (w) to be the power spectrum
of a given filter, say, D (w), that is, choose V(w)= |D(w)|?, so that R will be the
ordinary NRR of the cascaded filter F (w)= D(w)B(w) or F(z)= D(z)B(z):

1 (™ 1 (™
R= —J |B(w)]*V(w)dw = —J |B(w)D(w)|?dw (4.1.11)
21T —TT 21T —TT

The minimum-R; or minimum-roughness filters discussed in Sec. 4.2 correspond to
the choice D (z)= (1 — z~1)*, for some integer s. For a general V and u, the solution of
the problem (4.1.8) is obtained by introducing a Lagrange multiplier vector A:

J=b"Vb + 22T (u - $Tb) = min
leading to the solution:

A= (STv-1S)~lu

b=V7ISA =V-IS(STV1S) @112
If we choose u, = [1,m, m?,...,m9]7T as the constraint vectors and put together
the resulting solutions as the columns of a matrix B, then,
B=1[by 1=VISSTVIH - cupy---]
or,because ST = [- - - - - 1,
B=vlsiTvis)-ist (4.1.13)

This solution appears to be different from the solution (4.1.5) of the least-squares
problem, B = WS(STWS)~1ST. Can the two solutions be the same? The trivial choice
V = W = I corresponds to the LPSM filters. The choice V = W~! is not acceptable
because with V assumed Toeplitz, and W assumed diagonal, it would imply that all
the weights are equal, which is again the LPSM case. A condition that guarantees the
equivalence is the following [123,99]:

VWS=8SC = WS=V-lsC (4.1.14)
where C is an invertible (d+1) X (d+1) matrix. Indeed, then STWS = STV-1SC, and,
G=WSESTws)l=v-ls(sTy-1g) ! (4.1.15)

so that
B=wsSSTws)"1sT = yv-lgsTy-lg)~1sT (4.1.16)

For the minimum-R filters, the particular choices for W,V do indeed satisfy condi-
tion (4.1.14) with an upper-triangular matrix C. With the equivalence of the polynomial-
fitting and minimum-NRR approaches at hand, we can also derive the corresponding
predictive/interpolating differentiation filters. Choosing u = D'u, as the constraint
vector in (4.1.12), we obtain,

b = v1s(STV1S) 1D, = WS(STWS) ' Diu, 4.1.17)

4.1. Weighted Local Polynomial Filters 167

and at the sample values t = m, —-M < m < M, or, at u; = u,,, we obtain the differen-
tiation matrix having the bﬁ,lq) as columns, B® = [- - -bﬁ,’,) B

BD = ws(STwS) 1DisT =v-1s5(sTv-1s)1pisT (4.1.18)

Computationally, it is best to orthogonalize the basis S. Let W = UTU be the
Cholesky factorization of the positive-definite symmetric matrix W, where U is an N XN
upper-triangular factor. Then, performing the QR-factorization on the N x (d+1) matrix
US, the above computations become:

w=UTu
US = QoRy, with QOTQO =1, Rg= (d+1)x(d+1) upper-triangular
B=UTQoQlUu-T (4.1.19)

BO =UTQu(RyTDRDHQEU-T
b = UTQoR;" Dl
The MATLAB functions 1psm, 1pdi ff, Tpinterp have the weighting matrix W as an

additional input, which if omitted defaults to W = I. They implement Egs. (4.1.19) and
their full usage is:

[B,G] = 1psm(N,d,W);
B = Ipdiff(N,d,i,W);
b = Tpinterp(N,d,t,i,W);

The factorizations in Eq. (4.1.19) lead naturally to a related implementation in terms
of discrete polynomials that are orthogonal with respect to the weighted inner product:

M
a’wp = Z Wma(m)b(m) (4.1.20)
m=-M

Such polynomials may be constructed from the monomials s; (m) = m',i = 0,1,...,d
via Gram-Schmidt orthogonalization applied with respect to the above inner product.
The result of orthogonalizing the basis S = [sg, S1,.-.,84]1s Q = [qg,q;,---,dq] Wwhose
columns g; (m) are polynomials of order i in the variable m that are mutually orthogo-
nal, that is, up to an overall normalization:

a/Waq;=6;D;, i,j=0,1,....d = Q'WQ=D (4.1.21)

where D = diag([Dy, D1,...,D4]) is the diagonal matrix of the (positive) normalization
factors D;. These factors can be selected to be unity if so desired. For the minimum-
roughness filters, these polynomials are special cases of the Hahn orthogonal polyno-
mials, whose properties are discussed in Sec. 4.3. For unity weights w,, = 1, the poly-
nomials reduce to the discrete Chebyshev/Gram polynomials.

Numerically, these polynomials can be constructed from the factorization (4.1.19).
Since D is positive-definite, we may define D'/2 = diag ([D§/?, D2, ... ,D}i/z]) to be its
square root. Then we construct Q, R in terms of the factors U, Qq, Ro:

Q=U"'QyD"?, R=D7"?R, (4.1.22)

168 4. Minimum Roughness Filters

where R is still upper-triangular. Then, we have QTWQ = D and
QR =U'QyD'?D™ 2Ry = U 'QyRy = U 'US =S

which is equivalent to the Gram-Schmidt orthogonalization of the basis S, and leads to
the following equivalent representation of Eq. (4.1.19):

S=QR, with QTWQ =D, R = (d+1)x(d+1) upper-triangular
B=wQD QT

;] 4.1.23
B® = wQD ! (R-TDIRT)QT 4.1.23)
b’ = WQD 'R "D,
Since Q = [qy,4;,---,q4], the matrix B can be expressed as,
B=wQD QT =w Z D;y'q.ql (4.1.24)
r=0
and for diagonal W, we have component-wise:
k
b (K)= Bim = w Z ar (k) ar (m))qr(m) ~Ms<mks<M (4.1.25)
Y

The sum in (4.1.25) can be simplified further using the Christoffel-Darboux identity
discussed in Sec. 4.3. The polynomial predictive interpolation filters b(,') can also be
expressed in a similar summation form:

. i)
b (k)= Z q”(k)Dq ®) (4.1.26)

where qﬁ” (t) is the ith derivative of the polynomial g, (t) obtained from g, (m) by
replacing the discrete variable m by t. This can be justified as follows. The mth rows
of the matrices S and Q are the (d+1)-dimensional vectors:

um = [so(m),s1 (m),...,sa(m)]=[1,m,...,m%]

4.1.27)
= [go(m),q1(m),...,qq4(m)]

and since S = QR, they are related by u!, = p!' R. Replacing m by t preserves this
relationship, so that u? = p{R, or,
=R"p;, where p; = [qo(t),q:(1),...,qa()]" (4.1.28)

Differentiating i times, we obtain

DiUt = u(ti) = RTp(ti) ES p([i) = R_TDiu[(4.1.29)

4.2. Henderson Filters 169

and therefore b(ti) from Eq. (4.1.23) can be written in the following form, which implies
Eq. (4.1.26):

b =wQD 'p'? (4.1.30)

As in the case of the LPSM filters, for the special case d = N — 1, the interpolation
filters correspond to Lagrange interpolation. In this case Q becomes an invertible N XN
matrix satisfying the weighted unitarity property QTWQ = D, which implies

Q'=D"'Q'Ww 4.1.31)

from which we obtain the completeness property:

which shows that B = I. Similarly, using WQD~! = Q~T, we obtain from (4.1.23) the
usual Lagrange interpolation polynomials:

b:=WQD 'R Tu; = Q "R Tu; = S Tu, (4.1.33)

With d = N — 1, the matrix Q is an orthogonal basis for the full space RN. One of
the applications of Eq. (4.1.31) is the representation of signals, such as images or speech
in terms of orthogonal-polynomial moments [137-150].

Given an N-dimensional signal block y, such as a row in a scanned image, we define
the N-dimensional vector of moments with respect to the polynomials Q,

qarmwypy,, r=0,1,...,.N-1 (4.1.34)

Because of Eq. (4.1.31), we have g = Q 'y, which allows the reconstruction of y
from its moments:

N-1
y=Qu = yn=)> ar(mu,, -M<n<M (4.1.35)
r=0

4.2 Henderson Filters

All the results of the previous section find a concrete realization in the minimum-R
filters that we discuss here. Consider the order-s backward difference filter and its
impulse response defined by:

Di(z)=(1-z1)% & dg(k)z(_l)k<’i>, k=0,1,...,8 (4.2.1)

This follows from the binomial expansion:

(1-z1s= Z(1) () (4.2.2)

170 4. Minimum Roughness Filters

The operation of the filter D (z) on a signal f;,, with output g, is usually denoted
in terms of the backward difference operator Vf, = fn — fn-1 as follows:

Gn=Vfn=> di(K)fn-rk =D <—1>’<(S)fn_k (4.2.3)
k=0 k=0 k

If the signal f, is restricted over the range —M < n < M, then because 0 < k < §
and —M < n — k < M, the above equation can be written in the more precise form:

min(s,n+M)

Gn=Vfu= > (—1>’<<£)fn,k, M<n<M+s (4.2.4)
k=max (0,n—M)

Eq. (4.2.4) gives the full convolutional output g, = (ds * f)n, while (4.2.3) is the
corresponding steady-state output, obtained by restricting the output index n to the
range —M + s < n < M. Defining the (N+s)-dimensional output vector g and N-
dimensional input vector f, where N = 2M + 1,

g=19-m s 9m, . guis]”, £=1[f-pm,.. ful”,
we may write the full filtering equation (4.2.4) in matrix form:
g =D f 4.2.5)

where Dy is the full (N+s) XN convolutional matrix of the filter dg(k) defined by its
matrix elements:

Dg)pm=ds(n—-m), -M<n<M+s, -M<m=<M (4.2.6)

and subject to the restriction that only the values 0 < n —m < s will result in a non-zero
matrix element. The MATLAB functions binom and di ffmat allow the calculation of the
binomial coefficients d (k) and the convolution matrix Dg:

d
D

binom(s,k);
diffmat(s,N); % (N+s)xN difference convolution matrix

% binomial coefficients dg (k)

For example, the convolution matrix for N = 7 and s = 3 is:

S OO OOFH WWRK O
|
S OO O K WWH OO

D3 =

|
O OO WWwWwHrH O OO
| |
SO WWrHOOOoOO
|
|

O WWrFOOOOOo
—_wWww= O o000 oo

OO OO OO~ WWwWH

The function diffmat is simply a call to convmat:

4.2. Henderson Filters 171

D = convmat(binom(s),N);

A minimum-R; filter B(z) is defined to minimize the NRR of the cascaded filter
F(z)= Ds(z)B(z) subject to the d+1 linear constraints STb = u, for a given constraint
vector u, where b denotes the impulse response of B(z) assumed to be double-sided,
thatis, by, —-M <n < M.

The actual smoothing of data is carried out by the filter B (z) itself, whereas the filter
F(z) is used to design B(z). This is depicted in Fig. 4.2.1 in which the filtered output
is Xy, and the output of F(z) is the differenced signal V5%, whose mean-square value
may be taken as a measure of smoothness to be minimized.

Yn ﬂ B(z) }L{ Dy(2) }—» VIR

minimum
.~ F5) —»

Fig. 4.2.1 Design and smoothing by minimum-R; filter.
Letting f, = V%b, be the impulse response of the filter F(z), or in matrix form
f = Db, the corresponding cascaded NRR will be:
M+s M+s 1 ™
Re=1f= > f2= 3 (Vhn)’= —j 1D () B(w) |? dw
n=-M 21 Jom

n=-M

Since f7f = b’ (DSTDS)b, we can state the design condition of the minimum-R; filters as

M+s
Rs = Z (Vsbn)2 =b" (DIDs)b = min, subjectto STh=u (4.2.7)
n=-M

This has exactly the same form as Eq. (4.1.8) with V = DI D;. The minimization of
Rs justifies the name “minimum-R; ” filters. The minimum-R, LPSM filters of Sec. 3.7
correspond to s = 0. In the actuarial literature, the following criterion is used instead,
which differs from R¢ by a normalization factor:

_ b’ (DIDy)b R

R =
$ dldy ald

= min (4.2.8)

where Rj is referred as the “smoothing coefficient”, d; is the impulse response vector
of the filter Dy (z), and dSTdS is the NRR of Dg(z). Using a binomial identity (a special
case of (4.2.13) for k = 0), we have,

s s 2
dldg = > di(m)= > (S> = (28) 4.2.9)

m=0 m=0

172 4. Minimum Roughness Filters

The criterion (4.2.7) provides a measure of smoothness. To see this, let X, be the
result of filtering an arbitrary stationary signal y;, through the filter B(z). If Syy (w)
is the power spectrum of y, , then the power spectra of the filtered output %, and
of the differenced output V*&, will be |B(w)|2Syy (w) and |Ds(w)B(w)[%Sy, (w),
respectively. Therefore, the mean-square value of VX, will be:

E[(V5%,)°] = % LT IDs (w)B(w) |28y (w) dw (4.2.10)

If v, is white noise of variance 02, or if we assume that Sy, (w) is bounded from
above by a constant, such as Sy, (w) < 02, then we obtain:

E[(VS&,)°] < ij IDs(w)B(w) 20?2 dw = Rs0?2 4.2.11)
27T —TT

For white noise, Sy (w)= 02, Eq. (4.2.11) becomes an equality. Thus, minimizing
Rs will minimize E [(Vsﬁn)z] and tend to result in a smoother filtered signal X,,. This
property justifies the term “minimum-roughness” filters.

The choice s = 2 is preferred in smoothing financial and business-cycle data, and is
used also by the related method of the Whittaker-Henderson or Hodrick-Prescott filter.
The choice s = 3 is standard in the actuarial literature. The choice s = 4 is not com-
mon but it was used by De Forest [65-68] who was the first to formulate and solve the
minimum-R; problem in 1871. Others, like Hardy and Henderson have considered the
minimum-R3 problem, while Sheppard [76] solved the minimum-R problem in general.

Henderson [79] was the first to show the equivalence between the NRR minimization
problem (4.2.7) with V = DSTDS and the weighted least-squares polynomial fitting prob-
lem (4.1.1) using the so-called Henderson weights wy,. Therefore, the minimum-R filters
are often referred to as Henderson filters. They are used widely in seasonal-adjustment,
census, and business-cycle extraction applications. We discuss this equivalence next,
following essentially Henderson’s method.

The elements of the NxN matrix V = DI D are (DI'Ds) pm= Vium = Vi_m, where
Vi is the autocorrelation function of the power spectrum V (w) = |Ds(w) |2. Working
in the z-domain, we have the spectral density:

V(z)=Ds(z)Ds(z)= (1 -z H5(1 - 2)5= (-1)525(1 —z 1) * (4.2.12)
which shows that V (z) effectively acts as the (2s)-difference operation V25, Taking
inverse z-transforms of both sides of (4.2.12), we obtain:

min (s,k+S)
Vi = Z ds(m)ds(m — k)= (-1)%dps(k +8), —-s<k<s (4.2.13)

m=max (0,k)

or, explicitly in terms of the definition of dj:

min(s,k+s)
Vi=(-Dk Y (S)($):<—1)’<< 23), —s<k<s (4.2.14)

memax (0 \1M m-—k s+k

or,
(2s)!

_ (_1\k
Vie= G0 T s = ko1

-s<k<s (4.2.15)

4.2. Henderson Filters 173

The V matrix is a banded Toeplitz matrix with bandwidth +s, whose central row or
central column consist of the numbers Vi, —s < k < s, with V, positioned at the center
of the matrix. As an example,

20 -15 6 -1 0 0
-15 20 -15 6 -1 0
6 —-15 20 -15 6 -1
V=DID;=| -1 6 —-15 20 -15 6 -
0 -1 6 —-15 20 -15 6
0 0o -1 6 -15 20 -15
0 0 0 -1 6 —-15 20

— o O O

with central column or central row:
Vk = {-1, 6, —15, 20, —15, 6, -1} for k= {-2,-1,0,1,2}
To understand the action of V as the difference operator V25, let f be an N dimen-
sional vector indexed for —M < m < M , and form the output N-dimensional vector:

M
g=Vf = gn= > Vapmfm, -M<ns=M (4.2.16)
m=—-M

where n — m is further restricted such that —s < n — m < s. Next, consider an extended
version of f obtained by padding s zeros in front and s zeros at the end, so that the
extended vector £ will be indexed over, — (M + s)<m < (M + 5):

£ = [0,...,0, fors-vesforesfrry 0y.rn,0]7
— —

N S

Then, the summation in Eq. (4.2.16) can be extended as,

M+s
gn= D VpmfS, -M=n=M (4.2.17)
m=-M-s

But because of the restriction —s < n—m < s, the above summation can be restricted
tobe over n —s < m < n + s, which is a subrange of the range —(M +s)<m < (M +5)
because we assumed —M < n < M. Thus, we may write:

n+s
Gn= 2 VamfS, -M=n=M
m=-n-s§

or, changing to k = n — m,
K s 2s
gn= > Vil = (D% X dos(s + KX = (15D das(DfSY; (4.2.18)
k=-s k=-s i=0

but that is precisely the V25 operator:

gn=(—1)SVBFE . _M<n<M (4.2.19)

174 4. Minimum Roughness Filters

If £5 is a polynomial of degree (2s + i), then the (2s)-differencing operation will
result into a polynomial of degree i. Suppose that we start with the weighted monomial:

fn=wmm', -M<m=<M (4.2.20)

where the weighting function w,, is itself a polynomial of degree 2s, then in order for
the extended vector ;& to vanish over M < |[m| < M + s, the function w,,, must have
zeros at these points, that is,

Wm=0, for m=+xM+1),+(M+2),..., (M +5)

This condition fixes w,, uniquely, up to a normalization constant:

N
Wi =[[[(M +1)?-m?] (Henderson weights) (4.2.21)
i=1

These are called Henderson weights. Because the extended signal ;& is a polynomial
of degree (2s + i), it follows that the signal g, will be a polynomial of degree i.

Defining the NxN diagonal matrix W = diag([w_p,..., Wo, ..., Wa]), we can write
(4.2.20) vectorially in terms of the monomial basis vector s; as f = Ws;. We showed
that the matrix operation g = Vf = VWWs; results into a polynomial of degree i, which
therefore can be expanded as a linear combination of the monomials s, s1,...,S; up to
order i, that is,

i
VWsi = > s;Cji (4.2.22)
j=0

for appropriate coefficients Cj;, which may thought of as the matrix elements of an
upper-triangular matrix. Applying this result to each basis vector of S = [sg, S1,...,84]
up to order d, it follows that

VWS =SC, C = (d+1)x(d+1) upper-triangular (4.2.23)

But, this is exactly the condition (4.1.14). Thus, we have shown the equivalence of
the NRR minimization problem (4.2.7) with V' = DSTD ¢ and the weighted least-squares
polynomial fitting problem (4.1.1) with the Henderson weights w,,. The rest of the
results of Sec. 4.1 then carry through unchanged.

The MATLAB function Tprs implements the design. It constructs the W matrix from
the Henderson weights and passes it into the function Tpsm:

’ [B,G] = 1prs(N,d,s); | % local polynomial minimum-R filters

The Henderson weights wy,, —M < m < M are calculated by the function hend:

w = hend(N,s); 9% Henderson weights

In the next section, we derive closed-form expressions for the Henderson filters using
Hahn orthogonal polynomials. Analytical expressions can also be derived working with

4.2. Henderson Filters 175

the non-orthogonal monomial basis S. It follows from B = WS(STWS)~1ST that the
kth component of the mth filter will be:

d
bm (k)= Bxm = wk > kim/&;; = wiu] dup, (4.2.24)
ij=0

where ux = [1,k,k?,...,k9]T and & is the inverse of the Hankel matrix F = STWS
whose matrix elements are the weighted inner products:

M
Fij=(STWS)j=sIWsj= > wmm'™W =Fy;, ij=0,1,...,d (4.2.25)
m=—-M

Except for the factor wy and the different values of ¢;; the expressions are similar to
those of the LPSM filters of Sec. 3.3. The matrix ¢ has a similar checkerboard structure.
For example, we have for the commonly used case d = 3 and s = 3:

Dy 0 209 0 1
0 &dqq 0 dDq3 m

_ 2 13
bm (k)= wi [1, k, k%, k?] B 0 B O m? (4.2.26)
0 @31 0 ¢33 m3
where
wi = [(M +1)?>=k?][(M +2)*>=k?][(M + 3)*>—k?] (4.2.27)
and
Fpb 0 F> O Poo 0 Do O
| 0 F2 0 Fy a0 | 0 @11 0 &3
F=lp o F o = ®°F =lay 0 o&n o
0 Fy 0 Fg 0 b3 0 P33

where we obtain from the checkerboard submatrices:

-1 -1
Poo Doz | _ | Fo F2 P P3| _| F2 Fu (4.2.28)
P9 P22 F, Fy ’ P31 P33 Fy Fg -
The corresponding F-factors for s = 3 are:

Fo=%(2M+7)(2M+5)(2M+3)(2M+1)(M+3)(M+2)(M+1)

1
Fy = gM(M +4)F0

3M? + 12M — 4)F,

1
F,= —
4 11(

1) , ,
Fg = 3 (15M* + 120M3 + 180M? — 240M + 68) F>

176 4. Minimum Roughness Filters

which give rise to the matrix elements of &:

Poo = 315(3M? + 12M — 4) /D,
Py = —3465/D;

=
N
I

31185/D,

5
|

=1155(15M* + 120M3 + 180M? — 240M + 68) /D>
@13 = —15015(3M? + 12M — 4) /D,

S
\

=165165/D>

with the denominator factors:

Dy =8(2M +9)(2M +7) (2M +5) (2M +3) (M + 3) (M +2) (M + 1) (4M? — 1)

D, =8M(M-1)(M +4) (M +5)D;

In particular, setting m = 0 we find the central filter b (k), which for the case d = 3

and s = 3, is referred to as “Henderson’s ideal formula:”
bo (k)= wi (Pgo + k*Pq2)
or, with wy = [(M+1)?—k?][(M+2)2—k?|[(M+3)2-Kk?]:

315(3M2 + 12M — 4 — 11k?) wy

bo (k)=

8(2M+9) (2M+7) (2M+5) (2M+3) (M+3) (M+2) (M+1) (4M?2-1)

(4.2.29)

The corresponding predictive/interpolating differentiation filters b((i)(k) are given

by a similar expression:) _
b (k)= wiul D',

or, explicitly, for the d = s = 3 case and differentiation orderi = 0,1, 2, 3:

Do 0 P2 O i
0 ¢11 0 (1,513
P 0 P22 O

0 &3, 0 P33

b (k)= wyi [1, k, k2, k3]

(=N e e
o OO
w o O o
S O OO

(4.2.30)

t
2| @231
t3

Example 4.2.1: USD/Euro exchange rate. Consider four methods of smoothing the USD/Euro
foreign exchange rate for the years 1999-08. The monthly data are available from the web

site: http://research.stlouisfed.org/fred2/series/EXUSEU

The upper-left graph in Fig. 4.2.2 shows the smoothing by an LPSM filter of length N = 19
and polynomial order d = 3. In the upper-right graph a minimum-R; Henderson filter was

used with N = 19, d = 3, and smoothness order s = 3.

The middle-left graph uses the SVD signal enhancement method with embedding order

M =8 and rank r = 2.

The middle-right graph uses the Whittaker-Henderson, or Hodrick-Prescott filter with smooth-

ing parameter A = 100 and smoothness order s = 3.

4.2. Henderson Filters

LPSM filter, N=19, d = 3

LPRS filter, N=19, d=3, s =3

16 — 16
+ actual A + actual
—— smoothed —— smoothed
1.4 1.4
1.2 1.2
1 1
. " e
0.8 0.8
1999 2001 2003 2005 2007 2009 1999 2001 2003 2005 2007 2009
monthly monthly
SVD enhancement, M =8, r=2 Whittaker-Henderson, A =100, s =3
1.6 T T T T T PP 1.6 T T T T T PP
* actual A * actual
—— smoothed — smoothed
1.4 1.4
1.2 1.2
1 1
. .
0.8— . ; ; ; ; 0.8— ; ; ; ; ;
1999 2001 2003 2005 2007 2009 1999 2001 2003 2005 2007 2009
monthly monthly
WHwith L, A=1, s=2 WHwith L, A=1, s=3
16 — 16 —
+ actual A + actual A
— L, trend o — L, trend
1.4 d 1.4
1.2 1.2
1 1
" e 7 .
0.8 0.8

1999 2001 2003 2005 2007 2009
monthly

1999 2001 2003 2005 2007 2009
monthly

Fig. 4.2.2 Smoothing of USD/Euro exchange rate.

177

The lower left and right graphs use the Whittaker-Henderson regularization filter with the
L, criterion with differentiation orders s = 2 and s = 3 and smoothing parameter A = 1,
implemented with the CVX package.”. The s = 2 case represents the smoothed signal in
piece-wise linear form. The L; case is discussed further in Sec. 8.7.

The following MATLAB code illustrates the generation of the four graphs:

Y = Toadfile(’exuseu.dat’);

Thttp://cvxr.com/cvx/

% data file available in the OSP toolbox

178 4. Minimum Roughness Filters

y = Y(:,4); t = taxis(y,12,1999); % extract signal yp from data file

% the function taxis defines the t-axis
N=19; d=3; x1 = 1pfilt(lpsm(N,d),y); % LPSM filter

s=3; x2 = 1pfilt(lprs(N,d,s),y); % LPRS filter

M=8; r=2; x3 = svdenh(y,M,r); % SVD enhancement

1a=100; s=3; x4 = whsm(y,1a,s); % Whittaker-Henderson

s

2; la = 1; N = length(y); % Whittaker-Henderson with L criterion

D diff(eye(N),s); % for x6,use s = 3

cvx_begin % use CVX package to solve the L1 problem
variable x5(N)
minimize(sum_square(y-x5) + la * norm(D*x5,1))

cvx_end

figure; plot(t,y,’.’, t,x1,’-"); figure; plot(t,y,’.’, t,x2,’-");

figure; plot(t,y,’.’, t,x3,’-"); figure; plot(t,y,’.’, t,x4,’-");

figure; plot(t,y,’.’, t,x5,’-’); figure; plot(t,y,’.’, t,x6,’-");

All methods have comparable performance and can handle the end-point problem. m]

The computational procedures implemented into the function 1prs were outlined in
Eq. (4.1.19). The related orthogonalized basis Q defined in Eq. (4.1.23) will be realized
in terms of the Hahn orthogonal polynomials.

A direct consequence of upper-triangular nature of the matrix C in Eq. (4.2.23) is
that the basis Q becomes an eigenvector basis for the matrix VW [123,99]. To see this,
substitute S = QR into (4.2.23),

VWQR =QRC = VWQ=QA, A=RCR! (4.2.32)
Multiplying both sides by QW and using the property Q7 WQ = D, we obtain:
QTWVWQ = QTWQA = DA (4.2.33)

Because R and C are both upper-triangular, so will be A and DA. But the left-hand
side of (4.2.33) is a symmetric matrix, and so must be the right-hand side DA. This
requires that DA and hence A be a diagonal matrix, e.g., A = diag([Ag,Aq,...,A4]).
This means that the rth column of Q is an eigenvector:

VWaq, = Arq,, r=0,1,...,d (4.2.34)

Choosing d = N — 1 would produce all the eigenvectors of V. In this case, we have
Q7' = D7'QTW and we obtain the decomposition:

VW =QAQ ' =QAD'Q™W = Vv =QADHQT
We also find for the inverse of V = DI Ds:
vi=wQA'D'Q™wW

There exist [93-95] similar and efficient ways to calculate V~! = (DIDs)~!. The
eigenvalues A, can be shown to be [123]:
(254 1) 2

Ar T=l_!(r+i), r=0,1,...,d (4.2.35)
i

4.3. Hahn Orthogonal Polynomials 179

As we see in the next section, the rth column g, (n) of Q is a Hahn polynomial of
degree r in n, and hence Wq,, or component-wise, w,q, (n), will be a polynomial of
degree 2s+r. Moreover, because of the zeros of w,, the polynomial f,, = w,q, (n) can
be extended to be over the range —M — s < n < M + s. Using the same reasoning as in
Eq. (4.2.19), it follows that (4.2.34) can be written as

(1 VEFA = Arar(n), -M<sns<M

Since this is valid as an identity in n, it is enough to match the highest powers of n
from both sides, that is, n”. Thus, on the two sides we have

nrs = Wnes@r(n+8)= (=D°[(n+8)*+---] [an(n+5)"+---1, or
W:;H QV(;-FS)
(-1 = @ n®*t + ..., andalso, q,(n)=apn" +---

where a,, is the highest coefficient of g, (n) and the dots indicate lower powers of n.
Dropping the a,, constant, the eigenvector condition then becomes:

vZS[nZS+r+ .]=/\r[nr+ .]

Each operation of V on n' lowers the power by one, that is, V(ni)= in~! + - . .,
Vinh=i(i-1n2+--.,V3(m)=i(i—-1)({i-2)n""3+ ..., etc. Thus, we have:

VSMST+]=Rs+r)(2s+r—1)(s+r—2)---(r+1)n" +---

which yields Eq. (4.2.35).

4.3 Hahn Orthogonal Polynomials

Starting with Chebyshev [104], the discrete Chebyshev/Gram polynomials have been
used repeatedly in the least-squares polynomial fitting problem, LPSM filter design, and
other applications [104-151]. Bromba and Ziegler [123] were the first to establish a simi-
lar connection between the Hahn orthogonal polynomials and the minimum-R problem.
For a review of the Hahn polynomials, see Karlin and McGregor [113].

The Hahn polynomials Q, (x) of a discrete variable x = 0,1,2,...,N — 1 and orders
r < N — 1 satisfy a weighted orthogonality property of the form:

N-1
> W) Qr (X)Qm (X) = DySpm, r,m=0,1,...,N -1
x=0

where the weighting function w(x) depends on two parameters «, 8 and is defined up

to a normalization constant as follows:

(x+x)! (B+N-1-x)!
X! (N-1-x)! ~’

w(x)= x=0,1,...,N—-1 (4.3.1)

The length N can be even or odd, but here we will consider only the odd case and
set as usual N = 2M + 1. The interval [0, N — 1] can be mapped onto the symmetric

180 4. Minimum Roughness Filters

interval [—M, M] by making the change of variables x = n + M, with -M < n < M.
Then, the weighting function becomes,

(x+M+n)! (B+M—-n)!

wim= =0 M-

-M<n=<M (4.3.2)

Defining g, (n) = Qr (X) | y_pp the orthogonality property now reads:

M
S w(m)ar(n)@m(n)=Dydpm|, r,m=0,1,...,N -1 4.3.3)
n=-M

The minimum-R; problem corresponds to the particular choice ® = = s. In this
case, the weighting function w(n) reduces to the Henderson weights of Eq. (4.2.21):
(s+M+n)! (s+M-

w(n)= e (an)' —H(M+n+1) ll_!(M—n-H) or,

N
wn)=[[[M+D)?-n?], -M<n<M (4.3.4)
i=1
For s = 0, the weights reduce to w(n)= 1 corresponding to the discrete Cheby-
shev/Gram polynomials. Because the weights are unity, the Chebyshev/Gram polyno-
mials can be regarded as discrete-time versions of the Legendre polynomials. In fact,
they tend to the latter in the limit N — oo [133]. Similarly, the Hahn polynomials may be
regarded as discrete versions of the Jacobi polynomials. At the opposite limit, s — oo,
the Hahn polynomials tend to the Krawtchouk polynomials [133], which are discrete ver-
sions of the Hermite polynomials [130]. We review Krawtchouk polynomials and their
application to the design of maximally flat filters in Sec. 4.4.
In general, the Hahn polynomials are given in terms of the hypergeometric function
3F>(ay,az,as;by,b2;z). For « = § = s, they take the following explicit form:

;
=>anm+MHM| —M<n=<M @“35)
x=n+M 7,

QI’(H) =Qr(x)= Z Ark X[k]

k=0

where x[XI denotes the falling-factorial power,

Kl _ oy e B X! _ I'x+1)
xM=x(x-1) (x k+1)_(xfk)!_F(x7k+1) (4.3.6)

The polynomial coefficients are:

k
ark = (-1)]_[[(r_m+1)(25+r+m)], k=01,...,r 4.3.7)

(N-m)(s+m)m

where a,oy = 1. Expanding the product we have:

“Dkr(r=1)---(r—-k+1)-Q2s+r+1)(2s+r+2)---(2s+r+k)
(N-1)(N=2)---(N=-Kk)-(s+1)(s+2)---(s+k)-k!

ark =
(4.3.8)

4.3. Hahn Orthogonal Polynomials 181

The polynomials satisfy the symmetry property ,
ar(-n)= (-1)"q, (n) (4.3.9)

The orthogonality property (4.3.3) is satisfied with the following values of D,:

(s rnEeM-n! @s+r+1)@s+r+2)---(2s+r+N)
Dr_(ZM)!' M)t 28 +2r + 1 (4.3.10)

For minimum-Rj filter design with polynomial order d < N — 1, only polynomials up
to order d are needed, that is, g, (n), ¥ = 0,1,...,d. Arranging these as the columns of
the Nx (d+1) matrix Q = [qg,qy,---,d4], the orthogonality property can be expressed
as QTWQ = D, where D = diag([Dg,D1,...,D4l).

The relationship to the monomial basis S = [sg,s1,...,S4] is through an upper-
triangular invertible matrix R, that is, S = QR. This can be justified by noting that
the power series of g, (n) in n is a linear combination of the monomials s; (n) = n' for
i=0,1,...,r. Infact, R can be easily constructed from the Hahn coefficients a,x and
the Stirling numbers.

Thus, the construction of the minimum-Rj filters outlined in Eq. (4.1.23) is explicitly
realized by the Hahn polynomial basis matrix Q:

B=wQD'QT (4.3.11)

or, component-wise,

w(n) Z ar(n)qr(m) n)‘?r(m)

l’

bm(n)= Buym = , —-M<nm=<M (4.3.12)

A more direct derivation of (4.3.11) is to perform the local polynomial fit in the
Q-basis. The desired degree-d polynomial can be expanded in the linear combination:
d - d
m = > cim' = > arq,(m) = y=Sc=Qa
i=0 r=0

Then, minimize the weighted performance index with respect to a:
J= (y—-Qa)"W(y - Qa)= min
Using the condition QTWQ = D, the solution leads to the same B:
a=D'Q"wWy = y=Qa=QD 'Q"wy=BTy (4.3.13)

The computation of the basis Q is facilitated by the following MATLAB functions. We
note first that the falling factorial powers are related to ordinary powers by the Stirling
numbers of the first and second kind:

K k
XK =35 (kX < = > Sa(k,i)x!1 (4.3.14)
i=0 i-0

182 4. Minimum Roughness Filters

These numbers may be arranged into lower-triangular matrices S; and S», which are
inverses of each other. For example, we have for k = 0,1, 2, 3:

x10l 1 0 0 07[x° x0 1 0 0 077«
X o 1o o fbxt o o fxtE_f0 10 0)X
xPIL1 710 -1 1 0]« X210 1 1 of]x
x31 0 2 -3 1][=x8 x3 0 1 3 1][|«xB!

1 0 00 1 0 00

0 1 00 . 01 00

Si=lo 21 1 0|0 2750 =|o 11 0

0 2 -3 1 01 3 1

The MATLAB function stirling generates these matrices up to a desired order:

S = stirling(d,kind); % Stirling numbers up to order d of kind = 1,2

A polynomial can be expressed in falling factorial powers or in ordinary powers. The
corresponding coefficient vectors are related by the Stirling numbers:

d d
Px)=> axx™ =>cxt = c=5Ta, a=5lc
k=0 i=0

The function polval allows the evaluation of a polynomial in falling (or rising) fac-
torial powers or in ordinary powers at any vector of x values:

P = polval(a,z,type); % polynomial evaluation in factorial powers

The functions hahncoeff, hahnpol, and hahnbasis allow the calculation of the
Hahn coefficients (4.3.7), the evaluation of the polynomial Q, (x) at any vector of x’s,
and the construction of the Hahn basis Q = [qq,d;,---,d4]:

[a,c] = hahncoeff(N,r,s); % Hahn polynomial coefficients a, g
Q = hahnpol(N,r,s,x); 9% evaluate Hahn polynomial Qr (x)
[Q,D,L] = hahnbasis(N,d,s); %HahnbasisQ = [dg,q1,---, a4l

Like all orthogonal polynomials, the Hahn polynomials satisfy a three-term recur-
rence relation of the form:

ngr(n) = &yqr+1(N) +Brqy (n) +yrqr-1(n) (4.3.15)

that starts with ¥ = 0 and g-; (n)= 0 and ends at ¥ = N — 2. The recurrence relation
is a direct consequence of the property (which follows from (4.3.3)) that the order-r
polynomial g, (n) is orthogonal to every polynomial of degree strictly less than r. Let
us denote the weighted inner product by

M
(a,b)= > w(n)a(n)b(n) (4.3.16)

n=-M

4.3. Hahn Orthogonal Polynomials 183

Then, since the polynomial ng, (n) has degree r+1, it can be expanded as a linear
combination of the polynomials g;(n) up to degree r+1:

r+1
ngr(n)= > ciqi(n)
i=0

The coefficients are determined using the orthogonality property by

r+1 r+1 (nq q_)
(nar,a= > cj(@j,a)= Y. ciDisij = Dic; = c¢j=-—"% 4.3.17)

j=0 j=0 Di

This implies that ¢; = 0 for i < r — 2, therefore, only the terms i = r+1,r,r—1 will
survive, which is the recurrence relation. Indeed, we note that (nq,, q;)= (g, ng;) and
that ng; (n) has degree (i + 1). Therefore, as longasi+ 1 < r,or, i < r — 2, this inner
product will be zero. It follows from (4.3.17) that:

(4.3.18)

o, = Mdrsrs1) B, = (ngr,ar) _ (ngr,ar-1)

Dy’ D, 77 Dy

Because the weights w(n) are symmetric, w(n)= w(—n), and the polynomials sat-
isfy, g, (—=n)= (=1)"q, (n), it follows immediately that 8, = 0. The coefficient y, can
be related to «,-; by noting that

(ngr-1,aqr) _ (nqr,qr-1)

Kypoq = D, = D, = (ngr,qr-1)= Dyxy—1, and hence,
(HQHQr—l) Dyoy_1
= = 4.3.19
yr Dr—l Dr—l ()

Moreover, «, is related to the leading coefficients a,, of the g, (n) polynomial. From
the definition (4.3.5), we can write

qr(n)= arrn” + pr-1(n), grii(n)= ar+1,r+lnr+1 +pr(n)

where p,_;(n) and p,(n) are polynomials of degree r—1 and r, respectively. Since
Dyi1 = (Gr+1,qr+1), we have,

_ (nqr,qr+1) _ (@™ + npyr_y1, Gre1) arr ("1, qri1) _ Qpr
(Gr+1,dr+1) (atw—l,r-v-l"l”'1 + Pr, Gr+1) ar+1,r+1(nr+1y dr+1) Ay+1,r+1

r

where we used the orthogonality of g, (n) with np,_, (n) and p, (n), both of which

have order r. Thus,
dry

oy = —— (4.3.20)
Ar+1,r+1
Using Egs. (4.3.7) and (4.3.10), the expressions for «, and y, simplify into:
2M — 2s+r+1 2M +2s+r+1
o M-p@s+r+l) K s+r+l) (4.3.21)

2(2s+2r+1) 2(2s+2r+1)

184 4. Minimum Roughness Filters

These satisfy the constraint «, + y, = —M, which follows from the recurrence
relation and the conditions g, (—M) = a,o = 1 for all r. Next, we derive the Christoffel-
Darboux identity which allows the simplification of the sum in (4.3.12). Setting 8, = 0,
replacing y, = &,-1D,/D,_; and dividing by D,, the recurrence relation reads:

ngr(n) _ o

Xr-1
il +
D, D, qr+1(n) Dy,

qr-1(n) (4.3.22)

Multiplying by g, (m), interchanging the roles of n, m, and subtracting, we obtain:

PO, 8 gy may)+ L gy (g (m)
AL B g, m)ay)+ 5= g (m)as ()
(n = m)quin)qr(m) = %:[Qr+1(n)QY(m)_QY(n)qr+l (m)] -
Xy—1
D [gr (M) Gr-1 (M) —qr-1 (n) g, (M)]
r-1

Summing up over r, and using g_; (n) = 0, the successive terms on the right-hand
side cancel except for the last one, resulting in the Christoffel-Darboux identity:

d
(n-m ar(ma,(m) _ 1 Ga1 (1) qa(m)—qa(n)qa.1 (m)], or,

r=0 Dy Da
i ar(n)gr(m) _ &a qa1(n)ga(m)—qa(n)qga (m) 4.3.23)
= D, Dy n-m .
Using this identity into the filter equations (4.3.12), we find
b ()= w(n) &d qa+1(n)qa(m)—qq (n)ga+1 (m) (4.3.24)
Dy n-m

This is valid for —-M < n,m < M and for orders 0 < d < N-2. At n = m, the
numerator vanishes, so that the numerator and denominator have a common factor
n — m, which cancels resulting in a polynomial of degree d in n and m. In particular,
the central Henderson filters are:

bo(n)= w(n) &4 qa+1(n)qa(0)—qa (n)ga+1(0) (4.3.25)
Dy n

where either g4 (0) or gq+1(0) is zero depending on whether d is odd or even. In fact
for the two successive values d = 2r and d = 2r + 1, while the asymmetric filters b, (n)
are different, the central filters are the same and given by:

gir Gor (0) 3221 (n) _ a&orn Gorea (0) 92741 (n)
.

b =
o(m) n Doy n

(4.3.26)

4.3. Hahn Orthogonal Polynomials 185

the equality of the coefficients following by setting d = 2r + 1 and n = 0 in Eq. (4.3.22).
Next, we derive explicit formulas for some specific cases. The first few Hahn poly-
nomials of orders d = 0,1, 2, 3,4, 5 and arbitrary M and s are, for —-M < n < M:

qo(n) =1
gi(n) = —%

(n) = (2s+3)n® — M (M+s+1)
2= M eM=1) (s + 1)

) = — (2s+5)n3 — [3M? + (s+1) BM-1)]n
4zt = M(M-1) (2M—-1) (s+1)

() = (25+5) (2s+7)n* — (25+5) (6M? + 6(s+1)M — 45—5) n? (4.3.27)
44tn) = M(M—1) (2M—1) (2M—3) (s+1) (s+2)

SM(M-1) (s+M+1) (s+M+2)
M(M-1)(2M—1) (2M=3) (s+1) (s+2)
(28+7) (2s+9)n°> — 5(25+7) (2M? + 2(s+1)M — 2s-3)n?

qs(n) = —

M(M-1) (M-2) (2M-1) (2M-3) (s+1) (s+2)

[15M% + 30(s+1) M3 + 5(383+s—7)M? — (s+1) (s+2) (25M—6) |n
M(M-1)(M-2) (2M—-1) (2M-3) (s+1) (s+2)
They are normalized such that g, (—M) = 1. Setting s = 0, we obtain the correspond-
ing discrete Chebyshev/Gram polynomials:

qo(n) =1
gi(n) = —%

() — 3n2 — M(M+1)
a2t = "y reM-1)

() = 5n3 — (3M2+3M—1)n (4.3.28)
AU = = (M=1) 2M=1)

35n* — 5(6M2+6M—5)n? + 3M (M?—1) (M+2)

qs(n) =

2M (M-1) (2M-1) (2M-3)
63n° — 35(2M?*+2M-3)n3 + (15M*+30M3-35M?-50M+12)n
2M(M-1) (M-2) (2M-1) (2M-3)

The central Henderson filters for the cases d = 0,1, d = 2,3, and d = 4,5 are as
follows for general M and s. For d = 0, 1:

(2s+1)! (2M)! W
(sh2 (2M +2s+1)!
where w(n) is given by Eq. (4.3.4). For d = 2, 3, we have:

(M+s+1) (2s+3)! (2M)!(3M? + (s+1) (3M—1)—(2s+5)n?)
(2M-1) (s!)2 (2M+2s+3)!

qs(n) = —

by (n)= (n) (4.3.29)

bo(n) =

w(n) (4.3.30)

186 4. Minimum Roughness Filters

This generalizes Henderson’s ideal formula (4.2.29) to arbitrary s. For s = 1,2, it
simplifies into:

15(3M2 + 6M — 2 — 7n®)wi (n)
2(M +1)(2M +3) (2M + 5) (4M2 - 1)
_ 105(M? +3M — 1 - 3n®)w, (n)
C2(M+1) (M +2)(2M +3) (2M +5) (2M + 7) (4M2 — 1)
where w; (n) and w» (n) correspond to (4.3.4) with s = 1 and s = 2. The case s = 0 is,
of course, the same as Eq. (3.3.17). For the case d = 4, 5, we find:

bo(n) = (M+s+1) (M+s+2) (25 + 5)! (2M)!

0 2(2M-1) (2M—3) ((s + 2)1)% (2M +25+5)!

S:1, bo(n) =

s=2, bo(n)

w(n)-

. [(2s+7) (2s+9)n* — 5(2s+7) (2M? + 2(s+1)M — 2s-3)n* + (4.3.31)

+15M* +30(s+1)M3 + 5(35°+s—7)M? + (s+1) (s+2) (25M—6)]

Egs. (4.3.29)-(4.3.31), as well as the case d = 6,7, have been implemented into the
MATLAB function 1prs2, with usage:

b0 = 1prs2(N,d,s); | % exact forms of the Henderson filters by (n) for0 < d < 6

The asymmetric interpolation filters b; (n) can be obtained by replacing the discrete
variable m by t in Egs. (4.3.12) and (4.3.24):

ar(mgr(t) _ w(n) &4 Ada+1(n)qa (1) —qa (n) ga+1 (1)

4.3.32
D, Dy n-t 4.3.32)

d
bi(n)=w(n) >
r=0

Some specific cases are as follows. For d = 0, we have:

s+ 1) (2M)!
bi(n)= (s)2 (2M + 25 + 1)] w(n) (4.3.33)

Ford =1,
_4@s+1)!(2M-1)! 5
bi(n)= (s)? (2M+2542)1 w(n)[M? + (s+1)M + (2s+3) nt] (4.3.34)
Ford = 2:

be(n) = % w(n) [M(M+s+1) [3M2 + 3(s+1)M — 1]

+ (s+1) (2M-1) 2M+2s+3)nt — M (M+s+1) (2s+5) (n% + t?) (4.3.35)
+ (s+1) (2M-1) (2M+2$+3)n2t2]

The corresponding predictive differentiation filters are obtained by differentiating
with respect to t.

The above closed-form expressions were obtained with the following simple Maple
procedures that define the Hahn coefficients a,k, the Hahn polynomials g, (n) and their
norms D, and the interpolation filters b (n):

4.4. Maximally-Flat Filters and Krawtchouk Polynomials 187

factpow := proc(x,k) product((x-m), m=0..k-1); end proc;

a := proc(M,r,s,k)
(-DAk * product((r-m+1)*(2*s+r+m)/(2*M+1-m)/(s+m)/m, m=1..k);
end proc;

Q := proc(M,r,s,n) if r=0 then 1; else
sum(a(M, r,s,k)*factpow(n+M,k), k=0..r);
end if; end proc;

Dr := proc(M,r,s) GAMMA(s+1)A2 * GAMMA(r+1) * GAMMA(2*M+1-r)
* product(2*s+r+i, i=1..(2*M+1)) / GAMMA(2*M+1)A2 / (2*s+2*r+1);
end proc;

B := proc(M,d,s,n,t)
sum(QM,r,s,n)/Dr(M,r,s)*QM, r,s,t), r=0..d);
end proc;

where factpow defines the falling-factorial powers, and it is understood that the result
from the procedure B(M,d, s, n, t) must be multiplied by the Henderson weights w(n).
There are other useful choices for the weighting function w(n), such as binomial,
which are similar to gaussian weights and lead to the Krawtchouk orthogonal poly-
nomials, or exponentially decaying w(n)= A", withn > 0 and 0 < A < 1, leading
to the discrete Laguerre polynomials [135,136] and exponential smoothers. However,
these choices do not have an equivalent minimum-NRR characterization. Even so, the
smoothing filters are efficiently computed in the orthogonal polynomial basis by:

B=wsSTws)"1sT =wob'QT, Q™wQ =D (4.3.36)

4.4 Maximally-Flat Filters and Krawtchouk Polynomials

Greville [84] has shown that in the limit s — oo the minimum-Rj filters tend to maximally
flat FIR filters that satisfy the usual flatness constraints at dc, that is, B (w) }w:o =
o (i), fori =0,1,...,d, but also have monotonically decreasing magnitude responses
and satisfy (2M—d) additional flatness constraints at the Nyquist frequency, w = TT.
They are identical to the well-known maximally flat filters introduced by Herrmann [174].
Bromba and Ziegler [123,178] have shown that their impulse responses are given in terms
of the Krawtchouk orthogonal polynomials [109,130,133]. Meer and Weiss [140] have
derived the corresponding differentiation filters based on the Krawtchouk polynomials
for application to images. Here, we look briefly at these properties.

The Krawtchouk polynomials are characterized by a parameter p such that0 < p < 1
and are defined over the symmetric interval —-M < n < M by [133]

(n + M) (4.4.1)

o~ (Dkrr-1-- - (r—k+1)p K
q”(”)‘go (N—1)(N=2)--- (N —k) -k!

where N =2M +1and r = 0,1,...,N — 1. They satisfy the orthogonality property,

M

> W(n)dr(n)dm(n)=DySrm (4.4.2)
n=-M

188 4. Minimum Roughness Filters

with the following binomial weighting function and norms, where g = 1 — p:

w(n) =(2M >pM+n M-n _ (2M)! pM+n M-n

M+n 4" " T 2M (M 4+) (M —n)! qa
(4.4.3)
s _rn@eM-n'q"
br="tmn pr

In the limits — oo, the Hahn polynomials tend to the special Krawtchouk polynomials
with the parameter p = g = 1/2. To see this, we note that the Hahn polynomials are
normalized such that g, (—M) = 1, and we expect that they would have a straightforward
limit as s — o. Indeed, it is evident that the limit of the Hahn coefficients (4.3.8) is

(-D*r(r—1)--- (r—k+1)-2k

rk = LAk = SN S (N = 2)- - (N = k) kI 44

and therefore, the Hahn polynomials will tend to

(-Dkr(r=1)--- (r—k+1)-2
=2

(k]
N-D(N-2)---(N—K) K (n+M) (4.4.5)

k=0

which are recognized as a special case of (4.4.1) with p = 1/2. The Henderson weights
(4.3.4) and norms (4.3.10) diverge as s — oo, but we may normalize them by a common
factor, such as s2M (s1)2, so that they will converge. The limits of the rescaled weights
and norms are:

(n) = [(ZM)!w(n)]_ . [(2M)!(s+M+n)!(s+M—n)!]
v | Samgant (g2 | = B0 | 5oMgaM (51)2 (M +)1 (M =)
- . M)!'D,
Dy = lim [ZZMSZM(Sl)Z]

i [r!(ZM—r)!] (23+r+1)(2s+r+2)---(23+r+N)]
s (2M)! 22Mg2M (25 + 21 + 1)

They are easily seen to lead to Eqgs. (4.4.3) with p = 1/2, that is,

vomy = L (2M) _ (2M)!
WA= omi\M+n) =~ 22M(M + n)t (M - n)!

- r'(2M —r)!

(4.4.6)

Dr= (2M)!

4.4. Maximally-Flat Filters and Krawtchouk Polynomials 189

The first few of the Krawtchouk polynomials are:

do(n) =1

a1 (n) = —%

70 () = 2nt - M

a2t = yroM-1)

ds(n) = -2 = BM_L)n @

M(M-1) (2M-1)
n* - (12M-8)n? + 3aM(M-1)
M(M-1) (2M-1) (2M-3)
4n® - 20(M-1)n3 + (15M?-25M+6)n
M(M-1)(M-2)(2M-1) (2M-3)

Ga(n) =

gs(n) = -

These polynomials satisfy the three-term recurrence relation:

_ . _ _ 2M —r _ r
ngr(n)= &rqre1 (M) +yrqr-1(n), & = — 5 Yr=73 (4.4.8)

with the coefficients &, y, obtained from Eq. (4.3.21) in the limit § — o. The three-term
relations lead to the usual Christoffel-Darboux identity from which we may obtain the
asymmetric predictive filters:

d .
_ zq n)qr(t) Win)% Ja+1(n)Ga () —ga(n)ga+1 (t) 4.4.9)

n-t

g.

Differentiation with respect to t gives the corresponding predictive differentiation
filters. Some examples are as follows. For d = 0 and d = 1, we have, respectively

bi(n)=w(n), bi(n)=w(n) W (4.4.10)

For d = 2, the smoothing and first-order differentiation filters are:

4n%t? = 2M (n? + t*)+2(2M-1)nt + M (3M-1)

bi(n) = w(n) MQM-1)
(4.4.11)
b (n) = w(n) 2(2M—-1)n — 4Mt + 8n?t
I M(2M-1)
and setting t = 0, the central filters simplify into:
. _3M-1-2n? - . .2n
bo(m)=w(n) = =, bo(m=wmn - (4.4.12)
For d = 3, we have:
2 _ w(n) [343 _ _ 3 3 1V 242
b¢(n) = 3M(M—-1) (2M 1) 8n’t’ —4(3M-1) (n°t + nt’°)+12(M—-1)n“t a1

—6M (M~-1) (n® + t*) + (30M?-30M+8)nt — 3M (M—1) (3M—1)]

190 4. Minimum Roughness Filters

As expected, setting t = 0 produces the same result as the d = 2 case. Numerically,
the smoothing and differentiation filters can be calculated by passing the Krawtchouk
weights W (n) into the functions Tpsm, 1pdiff, and 1pinterp:

W = diag(hend(N,inf)); % Krawtchouk weights
B = Tpsm(N,d,W); % smoothing filters
Bi = lpdiff(N,d,i,W); % i-th derivative filters

b = 1pinterp(N,d,t,i,W); % interpolation filters b;

The function hend (N, s), with s = o0, calculates the Krawtchouk weights of Eq. (4.4.6).

In turn, the filter matrices B or BY). may be passed into the filtering function 1pfilt.
Alternatively, one can call Tprs with § = oo:

B = Tprs(N,d,inf); | % LPRS with Krawtchouk weights, maximally-flat filters

It is well-known [84,174-187] that the maximally-flat FIR filters of length N = 2M +1
and polynomial order d = 2r + 1 have frequency responses given by the following
equivalent expressions:

r M
Bo(w)=z<1\;[>xi(1—x)M”=1— > (?)x"u—x)M*f

i=0 i=r+1

r .
M-r+i-1)_;
= _X)M*VZ(r' !)x’, where x = sin® <9>
i=0

(4.4.14)

i 2

Near w = 0 and near w = T, the second and third expressions have the following
expansions that exhibit the desired flatness constraints [123]:

2r+2

w=0 = By(w)=1- (const.) w =1 - (const.) !

(4.4.15)

)ZM—ZV_

= (const.) (w — 7)2M~-d+1

w=1m = By(w) = (const.)(w — 1T

The first implies the flatness constraints at dc, Béi) (0)=6(i),fori=0,1,...,d,and
the second, the flatness constraints at Nyquist, B(()” (r)=0,fori=0,1,...,2M—d.

Example 4.4.1: Ford = 2 or ¥ = 1, the z-transform of b, (n) in Eq. (4.4.12) can be calculated
explicitly resulting in:

a+zha+2 """ .
Bo()= | S 2+ =M= (z+ 7))
With z = e/® we may write
X_Sinz(g)_(l—z’l)(l—z)_2—z—z’1 - z+z’1_1_x
- - 4 - 4 4 2

-1
1—x:c032(%): 1+z 4)(1+z)

Thus, we may express B (z) in terms of the variable x:

Bo(z)= (1 —=x)M7 11+ (M - 1)x]

which corresponds to Eq. (4.4.14) for r = 1. m]

4.5. Missing Data and Outliers 191

Example 4.4.2: Fig. 4.4.1 shows the frequency responses By (w) for the values N = 13, r = 2,
(d = 4,5), and the smoothness parameter values: s = 3,8 = 6,5 =9, and s = oo.

Because by (n) is symmetric about n = 0, the quantities By (w) are real-valued. In the
limit § — oo, the response becomes positive and monotonically decreasing. The following
MATLAB code illustrates the generation of the bottom two graphs and verifies Eq. (4.4.14):

N=13; r=2; d = 2*r+1; M = floor(N/2);

B Tprs(N,d,9); b9 B(:,M+1); % LPRS filter with s = 9
B = 1prs(N,d,inf); binf = B(:,M+1); % LPRS with Krawtchouk weights

f = Tinspace(0,1,1001); w = pi*f; x = sin(w/2).A2;
B9 = real(exp(G*w*M) .* freqz(b9,1,w));
Binf = real(exp(3*w*M) .* freqz(binf,1,w));

% frequency responses

Bth = 0;
for i=0:r,

Bth = Bth + nchoosek(M,i) * x.Ai .* (1-x).AM-1); % Eq. (4.4.14)
end

norm(Bth-Binf) % compare Eq. (4.4.14) with output of LPSM

figure; plot(f,B9); figure; plot(f,Binf);

The calls to Tprs and Tpsm return the full smoothing matrices B from which the central
column by is extracted.

The frequency response function freqz expects its filter argument to be causal. The factor
e/®M compensates for that, corresponding to a time-advance by M units. m]

Finally, we note that the Krawtchouk binomial weighting function w(n) tends to a
gaussian for large M, which is a consequence of the De Moivre-Laplace theorem,
(2M)! 1 e
o~ e , -M<n<M 4.4.16
22M(M +n)! (M —-n)! M ()

w(n)=

In fact, the two sides of (4.4.16) are virtually indistinguishable for M > 10.

4.5 Missing Data and Outliers

The presence of outliers in the observed signal can cause large distortions in the smoothed
signal. The left graph of Fig. 4.5.1 shows what can happen. The two vertical lines indi-
cate the region in which there are four strong outliers, which cause the smoothed curve
to deviate drastically from the desired signal.

One possible solution [53,165] is to ignore the outliers and estimate the smoothed
values from the surrounding available samples using a filter window that spans the out-
lier region. The same procedure can be used if some data samples are missing. Once the
outliers or missing values have been interpolated, one can apply the weighted LPSM fil-
ters as usual. The right graph in Fig. 4.5.1 shows the four adjusted interpolated samples.
The resulting smoothed signal now estimates the desired signal more accurately.

192

N=13,r=2,s=3

4. Minimum Roughness Filters

N=13,r=2,s=6

1 1
0.8 0.8
~ 0.6 ~ 06
S)
= =
qa 0.4 A 0.4
0.2 0.2
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
® in units of © ® in units of ©
N=13,r=2,s=9 N=13,r=2, s=
1 1
0.8 0.8
~ 0.6 ~ 0.6
g)
=3 =
A o4 M4
0.2 0.2
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
® in units of © ® in units of ©
Fig. 4.4.1 Frequency responses of minimum-R and maximally-flat filters.
Noisy Signal with Outliers Smoothed with Adjusted Outliers
1.5 T 1.5 T
- - - desired filter span - == desired filter span
— smoothed | je————+| smoothed | +———=
© noisy © noisy
I 095"~ %0 1 * adjusted

0.51

outliers —= 000 o

0.5

0 25
time samples, ¢

0 25
time samples, ¢

Fig. 4.5.1 Smoothing with missing data or outliers.

This solution can be implemented by replacing the outliers or the missing data by
zeros (or, any other values), and assign zero weights to them in the least-squares poly-

nomial fitting problem.

4.5. Missing Data and Outliers 193

Given a long observed signal y;, n = 0,1,...,L — 1, let us assume that in the vicinity
of n = ny there is an outlier or missing sample at the time instant ny+m, where m lies
in the interval —-M < m < M, as shown in Fig. 4.5.2. Several outliers or missing data
may be present, not necessarily adjacent to each other, each being characterized by a
similar index m.

missing sample

4 or outlier
f— 771 —~
| | ; | e
0 ny—M ny nytm ng+M L-1

t+—— fitting window ——
Fig. 4.5.2 Missing sample or outlier and the data window used for estimating it.

The outlier samples yy,+m can be replaced by zeros and their estimated values,
Yno+m, can be calculated from the surrounding samples using a filter of length N =
2M+1. The corresponding least-squares polynomial-fitting problem is defined by

M

d 2
J= Z PmWm ()’noer - Zcim’) = min
i=0

(4.5.1)
m=—-M

where w,, are the usual Henderson weights and the p,, are zero at the indices for the
missing data, and unity otherwise. Lety = [Vng—M, .-+, Vngs---»YVno+M] T and denote by
W, P the corresponding diagonal matrices of the weights wy;, p;. Then, (4.5.1) reads:

J= (y—-Sc)TPW (y — Sc) = min, (4.5.2)
leading to the orthogonality conditions and the solution for c:
STWP(y-Sc)=0 = c=(STPWS)'sTwPpy (4.5.3)
where we assumed that STPWS is invertible.t The estimated samples will be:
v =Sc=S(STPWS)"1STWPy =BTy (4.5.4)
with the filter matrix,
B =PwWS(STPws) st (4.5.5)

We note that P is a projection matrix (PT = P and P2 = P) and commutes with W,
PW = WP, because both are diagonal. Defining Q@ = I — P to be the complementary
projection matrix, the estimated signal can be decomposed in two parts: y = Py + Qy,
with QY being the part that contains the estimated missing values or adjusted outliers.

The quantity Py represents the samples that are being used to make the estimates,
whereas Qy corresponds to the missing samples and can be set to zero or to an arbitrary
vector Qy,mp, in other words, we may replace y by Py + Qy., without affecting the
solution of Eq. (4.5.4). This so because P (Py + Qy.p,) = Py.

T This requires that the number of outliers within the data window be at most N —d — 1.

194 4. Minimum Roughness Filters

Once the estimated missing values have been obtained, we may replace Qy, by
Qy and recompute the ordinary W-weighted least-squares estimate from the adjusted
vector Py + Qy. This produces the same ¥ as in (4.5.4). Indeed, one can show that,

¥ = S(STPWS) 1STWPy = S(STWS) "'STW (Py + QF) (4.5.6)
To see this, start with the orthogonality equation (4.5.3), and replace Py =y — Qy:
STWP(y-9)=0 = STwPy=S"Twry=STwy-9y), or
STW(Py + Q9)= STWy = STWS(STPWS) " 'WPy

from which Eq. (4.5.6) follows by multiplying both sides by S(STWS) 1. The MATLAB
function 1pmissing implements the calculation of B in (4.5.5):

B = Tpmissing(N,d,m,s);

% filter matrix for missing data

The following MATLAB code illustrates the generation of Fig. 4.5.1:
t = (0:50)"; x0 = (1-cos(2*pi*t/50))/2; % desired signal

seed=2005; randn(’state’,seed);
y = x0 + 0.1 * randn(51,1); % noisy signal

n0 = 25; m=[-101 3];
y(n0+m+1) = 0;

% four outlier indices relative to ng
% four outlier or missing values

N= 13; d = 2; s = 0; M=(N-1)/2; % filter specs
x = Tpfilt(lprs(N,d,s),y); % distorted smoothed signal
B = 1pmissing(N,d,m,s); % missing-data filter B

yhat
ynew

B’ *y(n0-M+1:n0+M+1);
y; ynew(nO+m+1) = yhat(M+1+m);

% apply B to the block no—M < n < ng+M
% new signal with interpolated outlier values

xnew = Tpfilt(Tprs(N,d,s),ynew); % recompute smoothed signal

figure; plot(t,x0,’--", t,y,’o’, t,x,’-’); % left graph
figure; plot(t,x0,’--", t,y,’o’, t,xnew,’-’); % right graph
hold on; plot(nO+m,yhat(M+1+m),’.’);

The above method of introducing zero weights at the outlier locations can be auto-
mated and applied to the entire signal. Taking a cue from Cleveland’s LOESS method
[192] discussed in the next section, we may apply the following procedure.

Given a length-L signal y,, n = 0,1,...,L — 1, with L > N, an LPSM or LPRS filter
with design parameters N, d, s can be applied to y,, to get a preliminary estimate of the
smoothed signal X,,, and compute the error residuals e, = y,, — X, that is,

B =1prs(N,d,s)
X = Ipfilt(B,y) (4.5.7)

e=y—X

4.5. Missing Data and Outliers 195

From the error residual e, one may compute a set of “robustness” weights r, by
using the median of |e,| as a normalization factor in the bisquare function:

€n

u = median(ley|), rn= W(Ku

), n=0,1,...,L -1 (4.5.8)

where K is a constant such as K = 2-6, and W (u) is the bisquare function,

(1-u®?, if lul<1
W(u)= _ (4.5.9)
0, otherwise

If a residual e, deviates too far from the median, that is, |e,| > Ky, then the ro-
bustness weight r, is set to zero. A new estimate X, can be calculated at each time n
by defining the diagonal matrix P in terms of the robustness weights in the neighbor-
hood of n, and then calculating the estimate using the ¢y component of the vector c in
Eq. (4.5.3), that is,

Py = diag([rn-m,---s¥ny- s Pneml)
(4.5.10)
Rn = co =u} (STP,WS)'STWP,y (n)

where uyp = [1,0,...,0]T and y(n)= [Vn-ay-..sVn,+-., Ynemll. Eq. (4.5.10) may be
usedforM <=n<L-1-M.ForO<n<MandL—-1-M <n < L —1 the values

of X, can be obtained from the first M and last M outputs of ¥ in (4.5.4) applied to the
first and last length-N data vectors and robustness weights:

y=oyi,...,ynal", P =diag([ro,r1,...,rn-1])
Y = Wi-N, Yi-N+1, -, vialT, P =diag([ri-n, rr-n+1, ..., Fr-1])
From the new estimates X,, one can compute the new residuals e, = y, — X,;, and
repeat the procedure of Egs. (4.5.8)-(4.5.10) a few more times. A total of 3-4 iterations
is typically adequate. The MATLAB function r1pfi1t implements the above steps:

[x,r] = rlpfilt(y,N,d,s,Nit) % robust local polynomial filtering

Its outputs are the estimated signal X, and the robustness weights r,,. The median
scaling factor K is an additional optional input, which otherwise defaults to K = 6.

If the residuals e, are gaussian-distributed with variance o2, then u = 0.67450. The
default value K = 6 (Cleveland [192]) corresponds to allowing through 99.99 percent of
the residuals. Other possible values are K = /6 = 2.44 (Loader [224]) and K = 4
allowing respectively 90 and 99 percent of the values.

Fig. 4.5.3 shows the effect of increasing the number of robustness iterations. It is
the same example as that in Fig. 4.5.1, but we have added another four outliers in the
vicinity of n = 10. The upper-left graph corresponds to ordinary filtering without any
robustness weights. One observes the successive improvement of the estimate as the
number of iterations increases.

The following MATLAB code illustrates the generation of the lower-right graph. The
signal y, is generated exactly as in the previous example; the outlier values are then
introduced around n = 10 and n = 25:

196 4. Minimum Roughness Filters

Robust smoothing, N;; =0 Robust smoothing, N;; =1

1.5p T 1.5 T
- - - desired - - - desired
— smoothed smoothed
© noisy ° nois:
1} outliers 000 0 =— _--Q 1 000 o _--Q =
006 o * adjusted

0.5 0.5

outliers —s 000 o

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
time samples, ¢ time samples, ¢

Robust smoothing, Nj; =2 Robust smoothing, Nj; =4

1.5 T T T T 1.5 T
- == desired - == desired
smoothed smoothed
© noisy © noisy
1 * adjusted 1 ¢ adjusted

0.5 0.5

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
time samples, ¢ time samples, ¢

Fig. 4.5.3 Robust smoothing with outliers.

nl=10; n2=25; m = [-1 0 1 3]; % outlier indices relative to nl and n2

y(nl+m+1)=1; y(n2+m+1)=0; % outlier values
Nit=4; K=4; x = rlpfilt(y,N,d,s,Nit,K); % robust LP filtering
plot(t,x0,’--", t,y,’o’, t,x,’-’, nl+m,x(nl+m+1),’.’, n2+m,x(n2+m+1),’.");

4.6 Problems

4.1 Using binomial identities, prove the equivalence of the three expressions in Eq. (4.4.14) for
the maximally-flat filters. Then, show Eq. (4.4.15) and determine the proportionality con-
stants indicated as (const.).

5)
Local Polynomial Modeling

5.1 Weighted Local Polynomial Modeling

The methods of weighted least-squares local polynomial modeling and robust filtering
can be generalized to unequally-spaced data in a straightforward fashion. Such methods
provide enough flexibility to model a wide variety of data, including surfaces, and have
been explored widely in recent years [188-231]. For equally-spaced data, the weighted
performance index centered at time n was:

M d
Tn="> Vnim—p(m)’wim)=min, pm)= > c;m’ (5.1.1)
m=-M r=0
The value of the fitted polynomial p (i) at m = 0 represents the smoothed estimate
of yy, that is, X, = cp = p(0). Changing summation indices to k = n + m, Eq. (5.1.1)
may be written in the form:

n+M d
In= > k-pk-m)’wk-n=min, pk-n=> ck-n" (1.2
k=n-M r=0

For a set of N unequally-spaced observations {tx,y(tx)}, k = 0,1,...,N — 1, we
wish to interpolate smoothly at some time instant t, not necessarily coinciding with one
of the observation times ty, but lying in the interval ty < t < ty_;. A generalization
of the performance index (5.1.2) is to introduce a t-dependent window bandwidth hg,
and use only the observations that lie within that window, |ty — t| < h¢, to perform the
polynomial fit:

d
Jo= > t)-pltx—0)’wtx—t)=min, ptx—t)= > ¢ty —)" (5.1.3)
r=0

[te—t|<h;

The estimated/interpolated value at t will be &; = cg = p(0), and the estimated first
derivative, X; = c; = p(0), and so on for the higher derivatives, with r!c, representing
the rth derivative. As illustrated in Fig. 5.1.1, the fitted polynomial,

d
px-t)=> c,(x-0", t-hsx<t+h
r=0

197

198 5. Local Polynomial Modeling

islocal in the sense that it fits the observations only within the local window [t —h¢, t+h¢].

The quantity yx = p(tx — t) represents the estimated value of the kth observation yi
within that window.

fitted
fitted value X, D J.’k pOlyn.ommlp(x_t)
v e - . \\ /.‘,.;. S
. . % o § T * i i i i i .
>

A Lo Xtk - by
—— fitting window ——

Fig. 5.1.1 Local polynomial modeling.
The weighting function w(tx — t) is chosen to have bandwidth +h;. This can be

accomplished by using a function W (u) with finite support over the standardized range
—1<u<1,andsetting u = (tx — t)/hg:

witk—t)=W (tkh_t t) (5.1.4)

Some typical choices for W (u) are as follows [224]:

1. Tricube, W)= (1-|ul?)3

2. Bisquare, W(u)= (1 —u?)?

3. Triweight, W(u)= (1 —u?)3

4. Epanechnikov, W (u)=1— u? (5.1.5)
5. Gaussian, W (u)= e~ &°u/2

6. Exponential, W (u)= e~xlul

7. Rectangular, W(u)=

where all types have support |u| < 1 and vanish for |u| > 1. A typical value for « in the
gaussian and exponential cases is &« = 2.5. The curve shown in Fig. 5.1.1 is the tricube
function; because it vanishes at u = +1, the observations that fall exactly at the edges
of the window do not contribute to the fit. The MATLAB function Tocw generates the
above functions at any vector of values of u:

W = Tocw(u,type); % local polynomial weighting functions W (u)

where type takes the values 1-7 as listed in Eq. (5.1.5). The bisquare, triweight, and
Epanechnikov functions are special cases of the more general W (u) = (1 — u?)$, which
may be thought of as the large-M limit of the Henderson weights; in the limit s — oo
they tend to a gaussian, as in the Krawtchouk case. The various window functions are
depicted in Fig. 5.1.2.

5.1. Weighted Local Polynomial Modeling 199

‘Window Functions

1r
0.8f
0.6}
3
=
0.4f
~'|- - - bisquare .
E triweight
0.2F - - epanechnikov
- - - gaussian
" exponential
0 . . 2
-1 -0.5 0 0.5 1

u

Fig. 5.1.2 Window functions.

Because of the assumed finite extent of the windows, the summation in Eq. (5.1.3)
can be extended to run over all N observations, as is often done in the literature:

N-1 d
Ji= >) -ptx =)Wty —)=min, ptx—0=> ¢ (tx—0" (5.1.6)
k=0 r=0

We prefer the form of Eq. (5.1.3) because it emphasizes the local nature of the fitting
window. Let N; be the number of observations that fall within the interval [t —h;, t+h¢].
We may cast the performance index (5.1.3) in a compact matrix form by defining the
N;x1 vector of observations y;, the N: X (d+1) basis matrix S;, and the N;xN; diagonal
matrix of weights by

ye=[--,yte), -+ 17, fort-—h <tyx<t+h

St = 1 (tk'—t) (tk;t)r (tk;t)d = uT(t,;—t) (5.1.7)

W, =diag([---,w(tx—1t),--- 1)

where u”(ty —t) is the k-th row of S;, defined in terms of the (d+1)-dimensional vector
ul(t)=[1,7,72%,...,74]. For example, if t—h; < t3 <ty <t5 < tg < t+h;, then N; = 4
and for a polynomial order d = 2, we have:

y(t3) 1 (-1 (t5-07

_ | y(ts) g |1 -0 (t-0°
YiZlyws) |0 2T 1 s-0 (t5-0)2
y(ts) 1 (ts—1t) (te—1)?

w(ty —t) 0 0 0

0 w(ty —t) 0 0

We = 0 0 w(ts — 1) 0

0 0 0 W(tﬁ_t)

200 5. Local Polynomial Modeling

With these definitions, Eq. (5.1.3) can be written as

\ Ji = (yi = $:0) " Wiy, = See) = min‘ (5.1.8)
with solution for the coefficient vector ¢ = [cg,C1,...,cq]7:
= (STWiS) ST Wy | (5.1.9)

The quantity y; = S;c represents the polynomial estimate of the local observation
vector y;. It can be written as

’?t =Bly., Bi=W:S; (StTWtSt)”StT’ (5.1.10)

where the N; X N matrix B; generalizes (4.1.5), and satisfies a similar polynomial-preserving

property as (4.1.6),
BIS, =S, (5.1.11)

Defining the usual (d+1)-dimensional unit vector ug = [1,0,...,0]7, we obtain the
estimated value at time t by X; = ¢g = ugc, and the first derivative by x; = ¢; = u]Tc,
where u; = [0, 1,0,...,0]7,

Re = ul (STWiS0) ST Wy,

R (5.1.12)
X =ul (STWiS)) 'SI Wy,
Thus, the effective estimation weights are:
h(t)= WS (STWeSe) Ttag, % =hT(Dy, (5.1.13)
Component-wise, we can write:
Xe=h'(Oy = 2 h®yx (5.1.14)
[tx—tl<hq
where yx = y(tx) and
‘ hi (6)= w(tx — Hul(tx — t) (STWeSe) "tug (5.1.15)

We note that ug,u; are related to the vector u(t) and its derivative by ug = u(0)
and u; = u(0). We also have,

SIWsSi = > ultx—vul(txr—Owltx - 1) (5.1.16)

[ty —t|<h;

or, component-wise,

(SIwSo= > - w(tx-0, i,j=0,1,...,d (5.1.17)
|ty —t|<h¢

The solution is particularly easy in the special cases d = 0, corresponding to local
constant fitting, and d = 1, corresponding to local linear fits. The case d = 0 leads to the

5.1. Weighted Local Polynomial Modeling 201

so-called kernel smoothing approach first proposed by Nadaraya and Watson [188,189].
In this case u(t)= [1] and we find:

STWes = S wite—t), b= — =D
Ite—tl<h, 2 witi=1)
lte—t <h,
> wiltk—yx
R= > h(Oyk = etl=he (kernel smoothing) (5.1.18)
lte—tI<he 2. witk=1)
Ity <h;

Ford = 1, we have u(7) = [1, T]7, and we obtain

T B 1 (tx =) _ | S0 s1(1)
St Wede = tk_%%[(-0 (- 1)? } wile—0 = [slm 52(1) }

_ 1 $2(0) —=s1()
SIWiS) =

(St WiSt) S0 (1) 82 (1) =82 (1) [—s1(t) so(1) }
which gives for the filter weights hy (t):

S2 (1) — (tx — 1) 51 (0)
So(t) 82 (1) —s7 (1)

hi(t)=w(ty — t) (locally linear fits) (5.1.19)

In general, the invertibility of S7 W;S; requires that N; > d + 1. The QR factorization
can be used to implement the above computations efficiently. If the weight function
W (u) vanishes at the end-points u = +1, as in the tricube case, then the window interval
must exclude those end-points. In other words, the diagonal entries of W; are assumed
to be strictly positive. Defining U to be the diagonal square root factor of W; and carrying
out the QR factorization of the matrix US;, we obtain the efficient algorithm:

U = sqrt(W;), U is diagonal so that UT =Uand W, =UTU = U?
US;=QR, QTQ =1I4:1, R=(d+1)x(d+1) upper-triangular (5.1.20)
c=R'QTUuy,

The above steps are equivalent to reducing the problem to an ordinary unweighted
least-squares problem, that is, c is recognized to be the unique least-squares solution of
the full-rank, overdetermined, N X (d+1)-dimensional system (US;)c = Uy;. Indeed,
it follows from Eq. (15.4.10) of Chap. 15 that c is given by:

c=[USHTWS)] USHT Uy = (STW(S) I ST Wy, (5.1.21)

where [(US)T(US,)] - (USy)T is the pseudoinverse of US;. The corresponding per-
formance indices are equivalent:

\7[= (Yr - StC)TWt (Yt - StC): ”UYI — US[C”2 = min

202 5. Local Polynomial Modeling

In MATLARB the least-squares solution (5.1.21) can be obtained by the backslash oper-
ation: ¢ = (US;) \ (Uy,). The construction of the quantities y;, S;, W is straightforward.
Given the column vectors of observation times and observations,

T

tobs = [To, 1,y tno11T, Yobs = [Y(t0),y(t1),...,y(tn-1)] (5.1.22)

we may determine, with the help of Tocw, the column vector of indices k for which tx
lies in the local window, and then carry out the procedure (5.1.21):

w = locw((tobs - t)/h_t, type); % weights of all observation times relative to a given t and h¢
k = find(w); % column vector of indices of nonzero weights within window
yt = yobs(k); % column vector of corresponding local observations y;
Wt = diagw(k)); % diagonal matrix of nonzero local weights W¢
St = [1;
for r=0:d,
St = [St, (tobs(k) - t).Ar]; % construct local polynomial basis St column-wise
end
U = sqrt(Wt); % diagonal square root of W¢

c = (U*St)\U*yt); % least-squares solution

Most of the w’s obtained from the first line of code are zero, except for those tx that
lie within the local window t = h;. The second line, k = find(w), finds the latter. These
steps have been incorporated into the MATLAB function Tocpol:

[xhat,C] = locpol(tobs,yobs,t,h,d,type);

% local polynomial modeling

where tobs,yobs are as in (5.1.22), t,h are L-dimensional vectors of times and band-
widths at which to carry out the fit, and d, type are the polynomial order and window
type, with default values d = 1, type = 1. The output xhat is the L-dimensional vector
of estimates X;, and Cis an Lx (d+1) matrix, whose ith row is the vector [co, c1,...,C4q]
of polynomial coefficients corresponding to the ith fitting time and bandwidth t (i), h (i).
Thus, the first column of C is the same as xhat, while the second column contains the
first derivatives. Separating the first column of C into xhat is done only for convenience
in using the function.

The choice of the bandwidth h; is an important consideration that influences the
quality of the estimate X;. Too large an h; will oversmooth the signal but reduce the
noise (i.e., increasing bias but lowering variance), and too small an h; will undersmooth
the signal and not reduce the noise as much (i.e., reducing bias and increasing variance).

Two simple bandwidth choices are the fixed and the nearest-neighbor bandwidths.
In the fixed case, one chooses the same bandwidth at each fitting time, that s, h; = h, for
all t. In the nearest-neighbor case, one chooses a fixed number, say K, of observations to
lie within each local window, where K is a fraction of the total number of observations N,
thatis, K = [«N], truncated to an integer, where & < 1. Typical values are « = 0.2-0.8.
Given K, one calculates the distances of all the observation times from t, that is, |ty —t|,
k = 0,1,...,N — 1, then sorts them in increasing order, and picks h; to be the Kth
shortest distance, and therefore, there will be K observations satisfying |ty — t| < h;. In
summary, the fixed case selects h; = h but with varying N, and the nearest-neighbor
case selects varying h; but with fixed N; = K.

The MATLAB function Tocband may be used to calculate the bandwidths h; at each
t, using either the fixed method, or the nearest-neighbor method:

5.1. Weighted Local Polynomial Modeling 203

h = locband(tobs,t,alpha,h0);

% bandwidth for local polynomial regression

where if @ = 0, the fixed bandwidth h is selected, and if 0 < & < 1, the K-nearest
bandwidths are selected, where t is a length-L vector of fitting times.

Example 5.1.1: As an example, consider the following 16 observation times tps, and 5 fitting
times t, and choose & = 0.25 so that K = xN = 0.25%X16 = 4:

tons = [0.5, 0.8, 1.1, 1.2, 1.8, 2.4, 2.5, 3.4, 3.5, 3.7, 4.0, 4.2, 4.9, 5.0, 5.1, 6.2]
t=[0.5, 1.5, 2.9, 3.6, 5.1]

then one finds the corresponding bandwidths for each of the five t’s

h = locband(tobs,t,0.25,0) = [0.7, 0.7, 0.6, 0.6, 0.9]

and the corresponding local intervals, each containing K = 4 observation times:

he t—hy t t+h included tgs

0.7 -0.2 0.5 1.2 0.5, 0.8, 1.1, 1.2
0.7 0.8 1.5 2.2 0.8, 1.1, 1.2, 1.8
0.6 23 29 3.5 2.4, 2.5, 3.4, 3.5
0.6 3.5 4.1 4.7 3.5, 3.7, 4.0, 4.2
0.9 4.2 5.1 6.0 4.2, 4.9, 5.0, 5.1

By contrast, had we chosen a fixed bandwidth, say h = 0.7 (the average of the above five),
then the corresponding intervals and included observation times would have been:

he t—hy t t+h included tgs

0.7 -0.2 0.5 1.2 0.5, 0.8, 1.1, 1.2

0.7 0.8 1.5 2.2 0.8, 1.1, 1.2, 1.8

0.7 22 29 3.6 2.4, 2.5, 3.4, 3.5

0.7 2.9 3.6 4.3 3.4, 3.5, 3.7, 4.0, 4.2
0.7 44 5.1 5.8 4.9, 5.0, 5.1

where now the number N; of included observations depends on t. As can be seen from
this example, both the nearest-neighbor and fixed bandwidth choices adapt well at the
end-points of the available observations.]

Choosing t to be one of the observation times, t = t;, Eq. (5.1.12) can be written in
the simplified notation:

Xi=ug (STWiSHT'SIWiyi =hly;, hi =uf(STWis)'STW; (5.1.23)
where %;, S;, W;,y; are the quantities &, St, W, y, evaluated at t = t;. Component-wise,

Xi = Z ug (SITWI'Si)flu(tJ‘ - ti)W(tj - ti))’j = Z Hijy; (5.1.24)

[tj—til<h; [tj—til<h;
where the matrix elements Hj; are,

Hij = hj(ti) = ug (S,-TWI'Si)flu(tj — ti)W(tj —ti) (5.1.25)

204 5. Local Polynomial Modeling

Similarly, one may express ST W;S; and ST Wy, as,

S,TWI'SI‘ = Z u(tj—ti)uT(tj—ti)W(tj—H‘)
[ti—til<h;
(5.1.26)
SIwiyi= > u-t)w(ty - t)y;
[tj—til<hi

Because the factor w(tj — t;) vanishes outside the local window t; = h;, the sum-
mations in (5.1.24) and (5.1.26) over t; can be extended to run over all N observations.
Defining the N-dimensional vectors X = [Ro, &1,...,&v_1]T andy = [Vo,V1,...,yn-117,
we may write (5.1.24) in the compact matrix form:

% = Hy (5.1.27)

The filtering matrix H is also known as the “hat” matrix or the “smoothing” matrix.
Its diagonal elements H;; play a special role in bandwidth selection, where wo = w(0),t

Hii = hi(t;) = woud (STW;Si) "'uo (5.1.28)

5.2 Bandwidth Selection

There exist various automatic schemes for choosing the bandwidth. Such schemes may
at best be used as guidelines. Ultimately, one must rely on one’s judgment in making
the final choice.

A popular bandwidth selection method is the so-called cross-validation criterion that
selects the bandwidth h that minimizes the sum of squared prediction errors:

1 N-1
CV(h)= = > (vi—&)’=min (5.2.1)
N5

where X; is the estimate or prediction of the sample x; = x(t;) obtained by deleting the
ith observation y; and basing the estimation on the remaining observations, where we
are assuming the usual additive-noise model y (t;) = x(t;) +Vv (t;) with x(t;) representing
the desired signal to be extracted from y (t;) . We show below that the predicted estimate
X; is related to the estimate X; based on all observations by the relationship:

o _ Xi—Hiyi

X =——-—7-— 5.2.2

i 1— H; ()

where Hj; is given by (5.1.28). It follows from (5.2.2) that the corresponding estimation
errors will be related by:

o Yi—Xi
% =
Vi ! 1 - Hji

(5.2.3)

Twg = 1 for all the windows in Eq. (5.1.5), but any other normalization can be used.

5.2. Bandwidth Selection 205

and therefore, the CV index can be expressed as:

N-1

_o.N\2
S (%) = min (5.2.4)
i=0 it

1 N 1

CV(h)= — i —R7)2= —

(M= % Vi =&)7=

Arelated selection criterion is based on the generalized cross-validation index, which
replaces Hj; by its average over i, that is,

covim= LS (A i A LN - e 5.2.5
()_Nigo(l_ﬁ) = min, —N% ”_Ntr() (5.2.5)

If the bandwidth is to be selected by the nearest-neighbor method, then, the CV
and GCV indices may be regarded as functions of the fractional parameter &« and min-
imized. Similarly, one could consider minimizing with respect to the polynomial order
d, although in practice d is usually chosen to be 1 or 2.

Eq. (5.2.2) can be shown as follows. If the t; = t; observation is deleted from
Eq. (5.1.23), the corresponding optimum polynomial coefficients and optimum estimate
will be given by

c_ = (SiTWiSi>:1 (SiTWiYi)_ , X = ugc_
where the minus subscripts indicate that the t; = t; terms are to be omitted. It follows
from Eq. (5.1.26) that
SI-TW,'S,' = (SiTW,-S,-),-s-wououg
(5.2.6)
STWiyi = (STWiy)) —+wouoyi

and then,
c_ = [SI-TWI'SI' — W()u()u(])-]f1 [SiTW,'Y,- — Wolloyi] (5.2.7)

Setting F; = ST W;S; and noting that ¢ = F;'ST Wy, or STW,y; = Fic, we may write,
c_ = [F; — woupu} 17! [Fic — woupyi]
Using the matrix inversion lemma, we have,

woF; fugud it

Ty-1 -1
[Fj—W()llol_lO] :Fi + To-1
1 - wouy F;y "ug

(5.2.8)
Noting that Hy; = woud F; 'ug, we obtain,

w Fjl TF_fl
c = |Ft 4+ PO BT E ¢ - wougyi]
1 - Hii

-1 T
woF; “upu
[I+70‘ 00

- Hy] [c — woF; tugy;]

-1 T Tr-1
woF; ug[uf ¢ — woud Filugy;]
1 - Hi

c - woF; tugyi +

and since X; = ugc, we find,

woF; 'uo [Ri — Hizyi]
1 - Hj;

Xi — Vi

:C+W0F;1u0 1-H.
- 1

C.=C— WQF{luOyi +

206 5. Local Polynomial Modeling

from which we find for &7 = ulc_,

H,‘i(}?,‘ -)/1))A{,' — Hjiy,'
) PR = 2.
L 1— Hj; (529

>

In practice, the CV and GCV indices are evaluated over a certain range of the smooth-
ing parameter h or « to look for a minimum. The MATLAB function Tocgcv evaluates
these indices at any vector of parameter values:

[GCV,CV] = locgcv(tobs,yobs,d,type,b,btype); % CV and GCV evaluation

where type is the window type, b is either a vector of hs or a vector of «s at which
to evaluate CV and GCV, and the string btype takes the values ’f’ or nn’ specifying
whether the parameter vector b corresponds to a fixed or nearest-neighbor bandwidth.

5.3 Local Polynomial Interpolation

The primary advantage of local polynomial modeling is its flexibility and ease of smooth-
ing unequally-spaced data. Its main disadvantage is the potentially high computational
cost, that is, the calculations (5.1.12) must be performed for each t, and generally a
dense set of such t’s might be required in order to get a visually smooth curve.

One way to cut down the cost is to evaluate the smoothed values X; at a less dense
grid of ts, and then interpolate smoothly between the computed points. This is akin
to what plotting programs do by connecting the dots by straight-line segments (linearly
interpolating)—the result being a visually continuous curve. But here, we can do better
than just connecting the dots because we have available the slopes at each grid point.
These slopes are contained in the second column of the fitting matrix C resulting from
Tocpol, assuming of course that d > 1.

Consider two time instants 1, t> at which the fitted signal values are a;, a, with
corresponding slopes b1, b,, as shown below. The lowest-degree polynomial P (t) inter-
polating between the two points t;, t; that matches the fitted values and their slopes at
t; and t» is a cubic polynomial—the method being known as cubic Hermite interpolation.
The four polynomial coefficients are fixed uniquely by the four conditions:

P(ty) =ar, P(ty)=b
P(t;) =ax, P(t;)=b;

which result into the cubic polynomial, where T = t, — 1,

P(t)= (t}“)Z [a1 + (Thy + 2al)<t’Tt1)]

H(50) [a-zan (5]

(5.3.1)

5.3. Local Polynomial Interpolation 207

For local-polynomial orders d > 1, we use Eq. (5.3.1) to interpolate at a denser grid
of points between the less dense grid of fitted points. For the special case, d = 0, the
slopes are not available and we can only use linear interpolation, that is,

t—t
PO=a+(a-a) (") (5.3.2)

The MATLAB function Tocval takes the output matrix C from lTocpol corresponding
to a grid of fitting points t, and computes the interpolated points ygiq at the denser grid
of points tgrig:

| ygrid = Tocval(C,t,tgrid); | % interpolating local polynomial fits

The auxiliary function Tocgrid helps establish a uniform grid between the t points:

| tgrid = Tocgrid(t, Ngrid); | 9% uniform grid with respect to t

which is simply a shorthand for,

tgrid = linspace(min(t), max(t), Ngrid);

Example 5.3.1: The motorcycle acceleration dataset [231] has served as a benchmark in many
studies of local polynomial modeling and spline smoothing. The ordinate represents head
acceleration (in units of g) during impact, and the abscissa is the time (in msec).

Fig. 5.3.1 shows a plot of the GCV index as a function of the nearest-neighbor fractional
parameter « on the left, and as a function of the fixed bandwidth h on the right, for the
two polynomial orders d = 1, 2.

GCV score GCV score

—d=1
---d=2

800

7001
6001

500¢

400

300 300,
0.1 0.2 0.3 0.4 0.5 2

. 4 6 10
NN parameter, o bandwidth, &
Fig. 5.3.1 GCV score for nearest-neighbor (left) and fixed bandwidths (right).

The “optimal” values of these parameters that minimize the GCV (and indicated by dots
on the graphs) are as follows, where the subscripts indicate the value of d:

x; =0.16, «» =0.33, h1 =3.9, hz =7.8

The graphs (for d = 1) were produced by the MATLAB code:

208

5. Local Polynomial Modeling

% file included in the OSP toolbox
% 133 data points

Y = loadfile(’mcyc.dat’);

tobs = Y(:,1); yobs = Y(:,2);
alpha = Tinspace(0.1, 0.5, 51); % vary over 0.1 < « < 0.5
d=1; type=1;

gcv = Tocgev(tobs,yobs,d,type,alpha,’nn’);
[F,i] = min(gcv); alphal = alpha(i);

% GCV as function of «
% minimum at & = x1
figure; plot(alpha,gcv); % left graph
h = linspace(2, 10, 51);

gcv = locgev(tobs,yobs,d,type,h,’f’);
[F,i] = min(gcv); hl = h(i);

%vary over 2 < h < 10
% GCV as function of h
% minimum at h = hy

Fig. 5.3.2 shows the local polynomial fits corresponding to the above optimal parameter
values. The left graph shows the nearest-neighbor cases for d = 1, 2, and the right graph,
the fixed bandwidth cases. The tricube window was used (type=1).

motorcycle acceleration motorcycle acceleration

100 100

50 50

-50 -50 1
-100 -100 1
-150 -150

0 10 20 30 40 50 60 0 10 20 30 40 50 60
t (msec) t (msec)

Fig. 5.3.2 Nearest-neighbor (left) and fixed bandwidths (right).

In all cases, the actual fitting was performed at 100 equally-spaced points t within the
observation range t,,s and were connected by straight-line segments by the plotting pro-
gram, instead of being interpolated by Tocval. Continuing with the above MATLAB code,
the graphs were generated by

t = Tocgrid(tobs,101); % equally-spaced fitting times

% NN bandwidths at each t
% fit at times t with d = 1

h locband(tobs, t, alphal, 0);
x1 = Tocpol(tobs,yobs,t,h,1,type);

h = locband(tobs, t, alpha2, 0);
x2 = locpol(tobs,yobs,t,h,2,type); % fit at times t with d = 2

figure; plot(tobs,yobs,’.’, t,x1,’-’, t,x2,’--"); %left graph
h = locband(tobs, t, 0, hl);

x1 = locpol(tobs,yobs,t,h,1,type);

% tixed bandwidths at each t
% fit at times t withd = 1

h = locband(tobs, t, 0, h2);

5.3. Local Polynomial Interpolation 209

x2 = locpol(tobs,yobs,t,h,2,type); % fit at times t with d = 2

figure; plot(tobs,yobs,’.’, t,x1,’-", t,x2,’--"); % right graph

Fig. 5.3.3 demonstrates the Hermite interpolation procedure. The fitting times are 20
equally-spaced points spanning the observation interval t,,s. The 20 fitted points are then
interpolated at 100 equally-spaced points over tyns. The interpolated curves are essentially

identical to those fitted earlier at 100 points.

motorcycle acceleration motorcycle acceleration

100

50

T 100 T

—50f 1 -50f 1
_100} R * data) 1 _100F '(* data) 1
. O fit points . O fit points
e — interpolated v — interpolated
~150 ~150
0 10 20 30 40 50 60 0 10 20 30 40 50 60
t (msec) t (msec)

Fig. 5.3.3 Nearest-neighbor (left) and fixed bandwidths (right).

The polynomial order was d = 1 and the bandwidth parameters were ; = 0.21 for the left
graph and h; = 4.4 for the right one. The left graph was generated by the code segment:

tf = locgrid(tobs,21); % fitting times

h = locband(tobs, tf, alphal, 0);
[xf,C] = locpol(tobs,yobs,tf,h,1,type);

% NN bandwidths at tf
% fitted values and derivatives

% interpolation times
% interpolated values

tint Tocgrid(tf,101);
xint = locval(C, tf, tint);

figure; plot(tobs,yobs,’.’, tf,xf,’0’, tint,xint,’-’);

Example 5.3.2: The ethanol dataset [230] is also a benchmark example for smoothing tech-

niques. The ordinate NOy represents nitric oxide concentrations in the engine exhaust
gases, and the abscissa E is the equivalence ratio, which is a measure of the richness of
the ethanol/air mixture.

The GCV and CV bandwidth selection criteria tend sometimes to result in undersmoothed
signals. This can be seen in Fig. 5.3.4 in which the GCV criterion for fixed bandwidth selects
the values h; = 0.039 and h, = 0.058, for orders d = 1, 2.

As can be seen, the resulting fits are jagged, and can benefit form increasing the fitting
bandwidth somewhat. The minima of the GCV plot are fairly broad and any neighboring
values of the bandwidth would be just as good in terms of the GCV value. A similar effect
happens in this example for the nearest-neighbor bandwidth method, in which the GCV
criterion selects the value « = 0.19 corresponding to jagged graph (not shown). Fig. 5.3.5

210 5. Local Polynomial Modeling

GCV score ethanol data, h; =0.038, hy=0.058

* data
—d=1
---d=2

0.2}~
N 3F
el
o
Z
of
1t
0.02 0.04 0.06 0.08 0 0.6 0.8 1 1.2
bandwidth, A E
Fig. 5.3.4 GCV and local polynomial fits with d = 1, 2.
ethanol data, d =1, h =0.08 ethanol data, d =1, o= 0.3
5 5 : :
4

0.6 0.8 1 1.2 0.6 0.8 1 1.2
E E

Fig. 5.3.5 Fits with fixed (left) and nearest-neighbor (right) bandwidths.

shows the fits when the fixed bandwidth is increased to h = 0.08 and the nearest-neighbor
one to & = 0.3. The resulting fits are much smoother.

The MATLAB code for generating the graphs of Fig. 5.3.4 is as follows:

Y = Toadfile(’ethanol.dat’); % file available in OSP toolbox
tobs = Y(:,1); yobs = Y(:,2); % data

t Tlocgrid(tobs,101); % uniform grid of 101 fitting points
h = Tinspace(0.02, 0.08, 41); % vary h over 0.02 < h < 0.08
gcvl = locgev(tobs,yobs,1,1,h,’f’); % GCV as function of h

gcv2 = locgev(tobs,yobs,2,1,h,’f’)

’

figure; plotCh,gcvl,’-’, h,gcv2,’--"); % left graph

h = locband(tobs, t, 0, hl);
x1 = locpol(tobs,yobs,t,h,1,1);

% fixed bandwidths at t
% it with d = 1 and tricube window

h = locband(tobs, t, 0, h2);

5.4. Variable Bandwidth 211

x2 = locpol(tobs,yobs,t,h,2,1); % fit with d = 2 and tricube window

figure; plot(tobs,yobs,’.’, t,x1,’-", t,x2,’--"); % right graph
The MATLAB code for generating Fig. 5.3.5 is as follows:

hO = 0.08; h = Tocband(tobs, t, 0, h0);
x1 = locpol(tobs,yobs,t,h,1,1);

% fixed bandwidth case
% order d = 1, tricube window

figure; plot(tobs,yobs,’.’, t,x1,’-’); % left graph

alpha = 0.3; h = locband(tobs, t, alpha, 0); % nearest-neighbor bandwidth case
x1 = locpol(tobs,yobs,t,h,1,1); x1 = C(:,1); % order d = 1, tricube windowm
figure; plot(tobs,yobs,’.’, t,x1,’-"); % right graph

Fig. 5.3.6 shows a fit at 10 fitting points and interpolated over 101 points. The fitting
parameters are as in the right graph of Fig. 5.3.5. The following code generates Fig. 5.3.6:

tf = locgrid(tobs,10); % fitting points

alpha = 0.3; h = locband(tobs, tf, alpha, 0); % nearest-neighbor bandwidths
[xf,C] = Tocpol(tobs,yobs,tf,h,1,1); % order 1, tricube window

ti = locgrid(tf,101); yi = Tocval(C,tf,ti); % interpolated points

figure; plot(tobs,yobs,’.’, ti,yi,’-", tf,xf,’0");

ethanol data, d=1, a=0.3

data
— interp
O fitted

0.6 0.8 1 1.2
E

Fig. 5.3.6 Interpolated fits.

5.4 Variable Bandwidth

The issue of selecting the right bandwidth has been studied extensively, with approaches
ranging from finding an optimum bandwidth that minimizes a selection criterion such as
the GCV to using a locally-adaptive criterion that allows the bandwidth to automatically
adapt to the local nature of the signal with different bandwidths being used in different
parts of the signal [188-231].

212 5. Local Polynomial Modeling

There is no selection criterion that is universally successful or universally agreed
upon and one must use one’s judgment and visual inspection to decide how much
smoothing is satisfactory. The basic idea is always to reduce the bandwidth in regions
where the curvature of the signal is high in order not to oversmooth.

The function Tocpol can accept a different bandwidth h; for each fitting time t. As
we saw in the above examples, the function Tocband generates such bandwidths for
input to Tocpol. However, Tocband generates either fixed or or nearest-neighbor band-
widths and is not adaptive to the local nature of the signal. One could manually, divide
the range of the signal in non-overlapping regions and use a different fixed bandwidth
in each region. In some cases, as in the Doppler example below, this is possible but in
other cases a more automatic way of adapting is desirable.

A mnaive, but as we see in the examples below, quite effective way is to estimate the
curvature, say K¢, of the signal and define the bandwidth in terms of a suitable decreasing
function hy = f (k;). We may define the curvature in terms of the estimate of the second
derivative of the signal and normalize it to its maximum value:

|X¢

Kp= —— (5.4.1)
mgXIXrI

The second derivative X; can be estimated by performing a local polynomial fit with
polynomial order d > 2 using a fixed bandwidth h or a nearest-neighbor bandwidth «.
If one could determine a bandwidth range [Amin, hmax] such that hpyax would provide
an appropriate amount of smoothing in certain parts of the signal and hp,;, would be
appropriate in regions where the signal appears to have larger curvature, then one may
choose Nyin < hg < hpax, With hg = hpax as an initial trial value. An ad hoc but very
simple choice for the bandwidth function f (k;) then could be

Himin \ Xt
ht = Rmax (m‘") (5.4.2)

h max

Other simple choices are possible, for example,

h, = hmathin
‘ hmin + (hmax - hmin) K?

for some power p. Since K; varies in 0 < k; < 1, these choices interpolate between hmax
at k¢ = 0 when the curvature is small, and hpi, at K¢ = 1 when the curvature is large.

We illustrate the use of (5.4.2) with the three examples in Figs. 5.4.1-5.4.3, and we
make a different bandwidth choice for Fig. 5.4.4. All four examples have been used
as benchmarks in studying wavelet denoising methods [821] and we will be discussing
them again in that context in Sec. 10.7.

In all cases, we use a second-order polynomial to determine the curvature, and then
perform a locally linear fit (d = 1) using the variable bandwidth. Fig. 5.4.1 illustrates
the test function “bumps” defined by

11

ai
S(t)=z—, 0<t=<l1
i-1 [1 + ‘f—ti|/W,’]4

5.4. Variable Bandwidth 213
noise free noisy signal curvature, K,

50| 50| 1
40| 40 0.8

30 30|
0.6/

20 20|
0.4/

10 10
0.2

0| 0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t t 2

smoothed with adaptive bandwidth

0 0.
‘ 0 | 0.6
\ ‘

smoothed with fixed bandwidth, A, adaptive bandwidth, %,/%

-
S
IS

@
g
@

|
\H ‘ I ‘ ‘
H‘u WAl
0 0.2 0.4 0.6 0.8 1 0 0.2 0.

¢ ¢ ' ¢

w0
3
o

0|

S

0|

H“ I »‘M

e
i

|

U‘ 1
~

)

Fig. 5.4.1 Bumps function.

with the parameter values:

= [10,13,15, 23, 25,40, 44, 65,76,78,81]/100
a; = [40,50, 30,40, 50,42,21,43,31,51,42]-1.0523
w; = [5,5,6,10,10,30,10,10,5,8,5]/1000

The function s(t) is sampled at N = 2048 equally-spaced points ¢, in the interval
[0,1) and zero-mean white gaussian noise of variance o? = 1 is added so that the noisy
signal is y,, = s, + VvV, where s, = s(t,,). The factor 1.0523 in the amplitudes a; ensures
that the signal-to-noise ratio has the standard benchmark value os/0, = 7, where oy
is the standard deviation of s,, that is, oy = std(s). The bandwidth range is defined
by hmax = 0.01 and hpin, = 0.00025. The value for hp,,x was chosen so that the flat
portions of the signal between peaks are adequately smoothed.

The curvature k¢, estimated using the bandwidth hy = hpax, is shown in the upper
right graph. The corresponding variable bandwidth h; derived from Eq. (5.4.2) is shown
in the bottom-right graph. The bottom-left graph shows the resulting local linear fit
using the variable bandwidth h¢, while the bottom-middle graph shows the fit using
the fixed bandwidth hpax. Although hpax is adequate for smoothing the valleys of the
signal, it is too large for the peaks and results in broadened peaks of reduced heights. On
the other hand, the variable bandwidth preserves the peaks fairly well, while achieving
comparable smoothing of the valleys. The MATLAB code for this example was as follows:

N=2048; t=linspace(0,1,N); s=zeros(size(t));

F = inline(’1./(1 + abs(t)).A4’); % bumps function

214 5. Local Polynomial Modeling

ti [10 13 15 23 25 40 44 65 76 78 81]/100;
ai [40,50,30,40,50,42,21,43,31,51,42] * 1.0523;
wi = [5,5,6,10,10,30,10,10,5,8,5]/1000;

for i=1:1length(ai),
s =5 + ai()*FCCL-tiG))/wi(i));

end

% construct signal
hmax=10e-3; hmin=2.5e-4; hO=hmax; % bandwidth limits

seed=2009; randn(’state’,seed); % noisy signal
y = s + randn(size(t));

d=2; type=1; % fit with d = 2 and tricube window
[x,C] = Tocpol(t,y,t,h0,d,type); % using fixed bandwidth hg
kt = abs(C(:,3)); kt = kt/max(kt); % curvature, Kt

ht = hmax * (hmin/hmax).Akt; % bandwidth, he

d=1; type=1; % fit withd = 1
xv = locpol(t,y,t,ht,d,type); % use variable bandwidth h¢
xf = locpol(t,y,t,h0,d,type); % use fixed bandwidth hg

figure; plot(t,s); figure; plot(t,y); figure; plot(t,kt); % upper graphs
figure; plot(t,xv); figure; plot(t,xf); figure; plot(t,ht/hmax); % lower graphs
Fig. 5.4.2 shows the “blocks” function defined by

11
s(t)=> aiF(t—-t;), F()=

i=1

(1 +signt), 0<t<l1

N | =

with the same delays t; as above and amplitudes:
a; = [40,-50, 30, —40, 50, —42,21,43,—-31,21,—-42]-0.3655

The noisy signal is y, = s, + vV, with zero-mean unit-variance white noise. The
amplitude factor 0.3655 in a; is adjusted to give the same SNR as above, std(s) /o = 7.
The MATLAB code generating the six graphs is identical to the above, except for the part
that defines the signal and the bandwidth limits hpax = 0.03 and hpi, = 0.0015:

N=2048; t=linspace(0,1,N); s=zeros(size(t));

ti [10 13 15 23 25 40 44 65 76 78 81]/100;
ai = [40,-50,30,-40,50,-42,21,43,-31,21,-42] * 0.3655;

for i=1:length(ai),

s=s+aii) * (1 + sign(t - ti(i)))/2; % blocks signal
end
hmax=0.03; hmin=0.0015; hO=hmax; % bandwidth limits

We observe that the flat parts of the signal are smoothed equally well by the variable
and fixed bandwidth choices, but in the fixed case, the edges are smoothed too much.
The “HeaviSine” signal shown in Fig. 5.4.3 is defined by

s(t)= [4sin(4mt)—sign(t — 0.3) —sign(0.72 —t)] - 2.357, 0<t<1

5.4. Variable Bandwidth 215
noise free noisy signal curvature, ¥
1
20| 20
15 15 08
10 10 0.6l
5 5
0.4
0 0
i i 0.2
5 -5|
o 02 04 06 08 1 0 02 0.4 0.6 08 1 0 02 04 0.6 0.8 1

t t t

smoothed with adaptive bandwidth adaptive bandwidth, h,/h .

‘max

20 20
M M
15 | M 15 [08
f [[
10f ” m ‘\ M 10 ‘/“‘ ’(—"“\ “‘ \ 0.6
[iWa | | |
5 | : RYAN | i |
VJ ‘H\ | — ‘ i J V “‘.1‘ | — \ 04
ol [l | (S o v |/ (S
\/
. U ‘u . v 02
- -5
o 02 04 06 08 [0z 04 06 08 1 0 02 04 06 08 1

Fig. 5.4.2 Blocks function.

where the factor 2.357 is adjusted to give std (s) = 7. The graphs shown in Fig. 5.4.3 are
again generated by the identical MATLAB code, except for the parts defining the signal
and bandwidths:

s = (4*sin(4*pi*t)-sign(t-0.3)-sign(0.72-t))*2.357; % HeaviSine signal

hmax=0.035; hmin=0.0035; hO=hmax; % bandwidth limits

We note that the curvature K, is significantly large—and the bandwidth h; is signif-
icantly small—only near the discontinuity points. The fixed bandwidth case smoothes
the discontinuities too much, whereas the variable bandwidth tends to preserve them
while reducing the noise equally well in the rest of the signal.

In the “doppler” example shown in Fig. 5.4.4, noticing that the curvature k; is sig-
nificantly large only in the range 0 < t < 0.2, we have followed a simpler strategy to
define a variable bandwidth (although the choice (5.4.2) still works well). We took a fixed
but small bandwidth over the range 0 < t < 0.2 and transitioned gradually to a larger
bandwidth for 0.2 < t < 1. The signal is defined by

211
=24 1- i —_—, <t<l1
s(t) At (t) sin (P, 0.05) o<t

The auxiliary unit-step function ustep was used to define the two-step bandwidth
with a given rise time. The MATLAB code generating the six graphs was as follows:

N

2048; t = linspace(0,1,N);

©n
|

= 24*sqrt(t.*(1-t)) .* sin(2.1*pi./(t+0.05)); % doppler signal

5.5. Repeated Observations 217
hmax=0.02; hmin=0.002; hO=hmax; % bandwidth limits
d=2; type=1; % fit with d = 2 and tricube window
[x,C] = Tocpol(t,y,t,h0,d,type); % using fixed bandwidth hq
kt = abs(C(:,3)); kt = kt/max(kt); % curvature, Kt
ht = hmin + (hmax-hmin) * ustep(t-0.2, 0.1); % two-step bandwidth, h¢
% ustep is in the OSP toolbox
d=1; type=1;
xv = locpol(t,y,t,ht,d,type); % fixed bandwidth hg
xf = locpol(t,y,t,h0,d,type); % fixed bandwidth hg
figure; plot(t,s); figure; plot(t,y); figure; plot(t,kt); % upper graphs

figure; plot(t,xv); figure; plot(t,xf); figure; plot(t,ht/hmax); % lower graphs

The local polynomial fitting results from these four benchmark examples are very
comparable with the wavelet denoising approach discussed in Sec. 10.7.

5.5 Repeated Observations

Until now we had implicitly assumed that the observations were unique, that is, one
observation y (tx) at each time tx. However, in experimental data one often has repeated
observations at a given ty, all of which are listed as part of the data set. This is in fact
true of both the motorcycle and the ethanol data sets. For example, in the motorcycle
data, we have six repeated observations at t = 14.6,

k tk Yk

22

14.6 -13.3

23 146 54
24 146 54
25 146 -9.3
26 14.6 -16.0
27 14.6 -22.8

216 5. Local Polynomial Modeling
noise free noisy signal curvature, K
1
1
10 10
5| 5 0.8
0 0 0.6
-5 -5
0.4]
-10 -10]
0.2]
-15 =15
o 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
t t t
smoothed with adaptive bandwidth smoothed with fixed bandwidth, Ay, adaptive bandwidth, 7,/ .y
1
10 /\ 10
N\ s
5 \ 5 / \
)
0| \ I\ / or \ \ / 1 0.6
\ \ \ \ /
5 -5 \ \
\ \ \ / \ / 0.4
-10 K -10) \ /
\\/ 0.2
-15 -15]
- 0 0.2 0.4 0.6 0.8 1 7 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
¢ t t
Fig. 5.4.3 HeaviSine function.
seed=2009; randn(’state’,seed); % noisy signal
y = s + randn(size(t));
noise free noisy signal curvature, K;
15 15
1
10 10
0.8
5| 5
0.6
0| 0
_s| 5 0.4
-10 ~10 0.2]
1 0.2 0.4 0.6 0.8 1 70 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
¢ t ¢
smoothed with adaptive bandwidth smoothed with fixed bandwidth, 7,y variable bandwidth, A,/h gy
1
1
10 10| 0.9]
'l 0.8
5 5 N I “ 07,
N \‘ \ | } ‘ 0.6]
0 op) \ [l | 05
5 _ U “ || “‘ 0.4
Ul 03
A
-1 ~10| Y 0.2]
0.1
B 0.2 0.4 0.6 0.8 TP 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
t t t
Fig. 5.4.4 Doppler function.

and there other similar instances within the data set. In fact, among the 133 given
observations, only 94 correspond to unique observation times.

To handle repeated observations one possibility is to simply keep one and ignore the
rest—but which one? A better possibility is to allow all of them to be part of the least-
squares performance index. It is easy to see that this is equivalent to replacing each
group of repeated observations by their average and modifying the weighting function
by the corresponding multiplicity of the group.

Let ng denote the multiplicity of the observations at time t, that is, let y;(tx), i =
1,2,...,ng be the observation values that are given at the unique observation time t.
Then, the performance index (5.1.3) must be modified to include all of the y; (tx):

Nk

> S yi(t) —uT(tx —)]’ w(tx — t) = min
[tx—t|<h; i=1

NS (5.5.1)

218 5. Local Polynomial Modeling

Setting the gradient with respect to c to zero, gives the normal equations:

ng Nk
> Swtk-dultxk-0ul(te-e= > wtk-dDultk = 0> yi(t)
|[tx—tl<h; i=1 |tx—t|<h¢ i=1

Defining the average of the ni observations,
1 &
y(t)=— D vi(ty)
Nk 1; !

and noting that the left-hand side has no dependence on i, we obtain:

> mwtk-dulty —Dul (e —te= > mw(ty — Dulty — P () (5.5.2)
[tx—tI<h¢ [tx—tI<h;

This is recognized to be the solution of an equivalent least-squares local polyno-
mial fitting problem in which each unique ty is weighted by ngxwy (tx — t) with the kth
observation replaced by the average y (tx), that is,

o= > [t —u’(tx —)] mw(tx — t)= min (5.5.3)
|[tx—tl<h

Internally, the function Tocpo1 calls the function avobs, which takes in the raw data
tobs, yobs and determines the unique observation times ta, averaged observations ya,
and their multiplicities na:

[ta,ya,na] = avobs(tobs,yobs); % average repeated observations

For example, if

tobs=[1 1 1 3 3 5 5 3 4 7 9 9 9 9];
yobs = [20 22 21 11 12 13 15 19 21 25 28 29 31 32];

the function first sorts the ts in increasing order,

tobs=[1 1 1 3 3 3 4 5 5 7 9 9 9 09];
yobs = [20 21 22 11 12 19 21 13 15 25 28 29 31 32];

and then returns the output,

ta=[1 3 4 5 7 9];
ya = [21 14 21 14 25 30];
na=1[3 3 1 2 1 4];

5.6 Loess Smoothing

Loess, which is a shorthand for local regression, is a method proposed by Cleveland
[192] for handling data with outliers. A version of it was discussed in Sec. 4.5. The
method carries out a local polynomial regression using a nearest-neighbor bandwidth
and the tricube window function, and then uses the resulting error residuals to iteratively
readjust the window weights giving less importance to the outliers.

5.6. Loess Smoothing 219

The method is described as follows [192]. Given the N-dimensional vectors of obser-
vation times and observations tops, Yobs, the nearest-neighbor bandwidth parameter «,
and the polynomial order d, the method begins by performing a preliminary fit to all the
observation times. For example, in the notation of the Tocband and Tocpo1 functions:

h = Tocband (typs, tops, &, 0); (find local bandwidths at t,ps)

A .6.1
X = TocpoT (tobs, Vobs, tobs, 1, d, 1); (perform fit at all topg) (>.6.1)

where the last argument of Tocpol designates the use of the tricube window. From the
resulting N-dimensional signal X, k = 0,1,...,N — 1, we calculate the corresponding
error residuals ey and use their median to calculate “robustness” weights r:

ex=Yk—X, k=0,1,...,N-1

= median (|ek]|
H OsksN—l() (5.6.2)

_ Ck
rk_W(Gu)

where W (u) is the bisquare function defined in (5.1.5). The local polynomial fitting is
now repeated at all observation points tq,s, but instead of using the weights w (tx —
tons) for the kth observation’s contribution to the fit, one uses the modified weights
W (tx — tops). The new residuals are then computed as in (5.6.2) and the process is
repeated a few more times or until convergence (i.e., until the estimated signal Xx no
longer changes).

After the final iteration resulting in the final values of the r¢s, one can carry out the
fit at any other time point t, but again using weights ryw (tx — t) for the contribution of
the kth observation, that is, the weight matrix W in Eq. (5.1.7) is replaced by

W =diag([- -+, nw(txk—10),---])

The MATLAB function Toess implements these steps:

[xhat,C] = loess(tobs,yobs,t,alpha,d,Nit); | % Loess smoothing

where t are the final fitting times and xhat and C have the same meaning as in Tocpo1.
This function is similar in spirit to the robust local polynomial filtering function r1pfilt
that was discussed in Sec. 4.5.

Example 5.6.1: Fig. 5.6.1 shows the same example as that of Fig. 4.5.3, with nearest-neighbor
bandwidth parameter &« = 0.4 and an order-2 polynomial. The graphs show the results of
Nj = 0,2,4,6 iterations—the first one corresponding to ordinary fitting with no robust-
ness iterations. The MATLAB code for the top two graphs was:

t = (0:50); x0 = (1 - cos(*pi*t/50))/2; % desired signal
seed=2005; randn(’state’,seed);
y = X0 + 0.1 * randn(size(x0)); % noisy signal

m=[-1013];
n0=25; y(n0+m+l) =
nl=10; y(nl+m+l) = 1;

% outlier indices
% outlier values

o

220 5. Local Polynomial Modeling

Loess smoothing, N;; =0 Loess smoothing, N =2

15 1.5
- - - desired - - - desired
* noisy ¢ noisy
outliers —— smoothed outliers — smoothed
1 oo o JCLELNY 1 rran PSRN

0.5 0.5

outliers outliers

0 5 10 15 20 25 30 35 40 45 50
time samples, ¢

0 5 10 15 20 25 30 35 40 45 50
time samples, ¢

Loess smoothing, Nj; =4 Loess smoothing, N;; =6

L5 1.5
- - - desired - - - desired
* noisy * noisy
— smoothed — smoothed

outliers outliers

0.5 0.5

outliers outliers

0 5 10 15 20 25 30 35 40 45 50
time samples, ¢

0 5 10 15 20 25 30 35 40 45 50
time samples, ¢

Fig. 5.6.1 Loess smoothing with d = 2, & = 0.4, and different iterations.

alpha=0.4; d=2; % bandwidth parameter and polynomial order

Nit=0; x = loess(t,y,t,alpha,d,Nit); % loess fit at t
figure; plot(t,x0,’--", t,y,’.”, t,x,’-’); % left graph

Nit=2; x = loess(t,y,t,alpha,d,Nit); % loess fit at t
figure; plot(t,x0,’--", t,y,”.”, t,x,’=’); % right graph

The loess fit was performed at all . We observe how successive iterations gradually di-
minish the distorting influence of the outliers. m]

5.7 Problems

5.1 Prove the matrix inversion lemma identity (5.2.8). Using this identity, show that

H;; _ _ _
Hii = 1 +;{H , where H; = woul Ffuy, F; = (STW;S;)_

then, argue that 0 < H; < 1.

6

Exponential Smoothing

6.1 Mean Tracking

1

The exponential smoother, also known as an exponentially-weighted moving average
(EWMA) or more simply an exponential moving average (EMA) filter is a simple, effective,
recursive smoothing filter that can be applied to real-time data. By contrast, the local
polynomial modeling approach is typically applied off-line to a block a signal samples
that have already been collected.

The exponential smoother is used routinely to track stock market data and in fore-
casting applications such as inventory control where, despite its simplicity, it is highly
competitive with other more sophisticated forecasting methods [232-279].

We have already encountered it in Sec. 2.3 and compared it to the plain FIR averager.
Here, we view it as a special case of a weighted local polynomial smoothing problem
using a causal window and exponential weights, and discuss some of its generalizations.
Both the exponential smoother and the FIR averager are applied to data that are assumed
to have the typical form:

Yn =04an + Vn (6.1.1)

where a, is a low-frequency trend component, representing an average or estimate of
the local level of the signal, and v,, a random, zero-mean, broadband component, such
as white noise. If a, is a deterministic signal, then by taking expectations of both sides
we see that a, represents the mean value of yy, that is, a, = E[yn]. If y, is stationary,
then a, is a constant, independent of n.

The output of either the FIR or the exponential smoothing filter tracks the signal a,,.
To see how such filters arise in the context of estimating the mean level of a signal, con-
sider first the stationary case. The mean m = E[y,] minimizes the following variance
performance index (e.g., see Example 1.3.5):

J=E[(yn—a)?] =min = dep = m = E[yy,] (6.1.2)

with minimized value Jnin = 0')2,. This result is obtained by setting the gradient with
respect to a to zero:

0T o
S = —2Elyn—al=0 (6.1.3)

221

222 6. Exponential Smoothing

In general, given a theoretical performance index .7, one must replace it in practice
by an experimental one, say 7, expressible in terms of the actual available data. The
minimization of J provides then estimates of the parameters or signals to be estimated.

theoretical
= min optimum
solution

.
!

|

) L
estimated
data [—= 7=min optimum
solution

Depending on the index j, the estimates may be calculated in a block processing
manner using an entire block of data, or, on a sample-by-sample basis with the estimate
being updated in real time in response to each new data sample. All adaptive filtering
algorithms follow the latter approach.

We illustrate these ideas with the help of the simple performance index (6.1.2). We
will apply this approach extensively in Chap. 16. Four possible practical definitions for

J that imitate (6.1.2) are:

L-1
J= > (yn—a)*=min (6.1.4a)
n=0
n
J=> (yk—ad)*=min (6.1.4b)
k=0
n
J= > (-a?’=min (6.1.4¢)
k=n-N+1
n
J=> A"¥(yx - @)%=min (6.1.4d)
k=0
The first assumes a length-L block of data [yg,Y1,...,Yr-1]. The last three are

suitable for real-time implementations, where n denotes the current time. The second
and fourth use the first n+1 data [yq, Y1, ..., Yn], while the third uses a length-N sliding
window [Yn-N+1,---,¥Yn-1,¥n]. The third choice leads to the FIR averager, also known
as the simple moving average (SMA), and the fourth, to the exponential smoother, or,
exponential moving average (EMA), where we require that the exponential “forgetting
factor” A be in the range 0 < A < 1. These time ranges are depicted below.

0 1 - pnN+1 - n1 n -+ []

In order for the Js to be unbiased estimates of 7, the above expressions should
have been divided by the sum of their respective weights, namely, the quantities L,

6.1. Mean Tracking 223

(n+1),N,and (1+ A+ - - -+ A"), respectively. However, such factors do not affect the
minimization solutions, which are easily found to be:

_Yotyit -t Yia

1 6.1.5
a I (a)
a, =0ttt A yn (6.1.5b)
n+1
G, = Lnt Y1t F YnoNs (6.1.50)
N
. + AVn-1 + A2ypp + - - - AT
n = Yn Yn-1 Yn-2 Yo (6.1.5d)

1+A+A2+---+AN

We have tacked on a subscript n to the last three to emphasize their dependence
of their performance index on the current time instant n. Egs. (6.1.4c) and (6.1.5c)
tentatively assume that n > N — 1; for 0 < n < N — 1, one should use the running
average (6.1.4b) and (6.1.5b). Initialization issues are discussed further in Sections 6.6
and 6.19.

All four estimates are unbiased estimators of the true mean m. Their quality as esti-
mators can be judged by their variances, which are (assuming that y,, — m are mutually
independent):

0-2

of=E[(a-m?] = - (6.1.62)
0-2

03, = Elan-m?] = == (6.1.6b)
. 2

03, = El(an—m)?] = = (6.1.60)

) 1—A 14Ant!
05, = E[(@n—m)?*] = o3 - (6.1.6d)

The first two, corresponding to ordinary sample averaging, are asymptotically con-
sistent estimators having variances that tend to zero as L — oo or n — co. The last two
are not consistent. However, their variances can be made as small as desired by proper
choice of the parameters N or A.

The exponential smoothing filter may also be derived from a different point of view.
The estimates (6.1.5) are the exact least-squares solutions of the indices (6.1.4). An
alternative to using the exact solutions is to derive an LMS (least-mean-square) type of
adaptive algorithm which minimizes the performance index iteratively using a steepest-
descent algorithm that replaces the theoretical gradient (6.1.3) by an “instantaneous”
one in which the expectation instruction is ignored:

0J T _

%=—2E[Yn—a] - da

The LMS algorithm then updates the previous estimate by adding a correction in the
direction of the negative gradient using a small positive adaptation parameter p:
07

M 2a’

—2[yn—an1] (6.1.7)

Aa = an = dn-1 + Aa (6.1.8)

224 6. Exponential Smoothing

The resulting difference equation is identical to that of the steady-state exponential
smoother (see Eq. (6.1.11) below),

dn = dn-1 + 2 (yn — dn-1)

In adaptive filtering applications, the use of the exponentially discounted type of
performance index (6.1.4d) leads to the so-called recursive least-squares (RLS) adaptive
filters, which are in general different from the LMS adaptive filters. They happened to
coincide in this particular example because of the simplicity of the problem.

The sample mean estimators (6.1.5a) and (6.1.5b) are geared to stationary data,
whereas (6.1.5¢) and (6.1.5d) can track nonstationary changes in the statistics of y.
If y, is nonstationary, then its mean a, = E[y,] would be varying with n and a good
estimate should be able to track it well and efficiently. To see the problems that arise
in using the sample mean estimators in the nonstationary case, let us cast Egs. (6.1.5b)
and (6.1.5d) in recursive form. Both can be written as follows:

an = (1—&p)pn-1+ &nYn = dn-1 + & (Yn — An-1) (6.1.9)
where the gain parameter «, is given by

1 1 1-A
I = = 1.1
ne1’ XTI A+. - +An T 1oand (6.1.10)

XKp =

for (6.1.5b) and (6.1.5d), respectively. The last side of Eq. (6.1.9) is written in a so-
called “predictor/corrector” Kalman filter form, where the first term d,_; is a tentative
prediction of d, and the second term is the correction obtained by multiplying the
“prediction error” (y, — dn—1) by a positive gain factor «,. This term always corrects
in the right direction, that is, if d,-; overestimates/underestimates y, then the error
tends to be negative/positive reducing/increasing the value of d,_1.

There is a dramatic difference between the two estimators. For the sample mean,
the gain &, = 1/(n+1) tends to zero rapidly with increasing n. For stationary data, the
estimate d, will converge quickly to the true mean. Once n is fairly large, the correction
term becomes essentially unimportant because the gain is so small. If after converging
to the true mean the statistics of y, were to suddenly change with a new value of the
mean, the sample-mean estimator d, would have a very hard time responding to such
a change and converging to the new value because the new changes are communicated
only through the already very small correction term.

On the other hand, for the exponential smoother case (6.1.5d), the gain tends to a
constant for large n, that is, &, — « = 1 — A. Therefore, the correction term remains
finite and can communicate the changes in the statistics. The price one pays for that is
that the estimator is not consistent. Asymptotically, the estimator (6.1.5d) becomes the
ordinary exponential smoothing filter described by the difference equation,

an = Adp-1 + ®yn = dp-1 + & (yn — dp-1) (6.1.11)
Its transfer function and asymptotic variance are:

« 02 = E[(dn—m)?] =

H(z)= (6.1.12)

— Az 1’

6.1. Mean Tracking 225

The quantity 0’2” /(7)2, is the NRR of this filter. The differences in the behavior of
the sample-mean and exponential smoother can be understood by inspecting the corre-
sponding performance indices, which may be written in an expanded form:

T=n =)+ Wn-1 =@+ (2 =@+ -+ (v - @)°
N (6.1.13)
T=n =" +AYn-1 =D A% (Yp2 = @)+ - + A" (yo — @)

The first index weighs all terms equally, as it should for stationary data. The second
index emphasizes the terms arising from the most recent observation y, and exponen-
tially forgets, or discounts, the earlier observations and thus can respond more quickly
to new changes. Even though the second index appears to have an ever increasing num-
ber of terms, in reality, the effective number of terms that are significant is finite and
can be estimated by the formula:

a="20 - S (6.1.14)

This expression is only a guideline and other possibilities exist. For example, one
can define 7 to be the effective time constant of the filter:

Ine In(e™!)
mA 1-A"°

AMM=¢ = n= for A s1 (6.1.15)
where € is a small user-specified parameter such as € = 0.01. The sliding window esti-
mator (6.1.5¢) is recognized as a length-N FIR averaging filter of the type we considered
in Sec. 2.4. It also can track a nonstationary signal at the expense of not being a consis-
tent estimator. Requiring that it achieve the same variance as the exponential smoother
gives the conditions:

lo.zfl_Aaz
N7Y 1+a7

N-1 2
=

_ —1-A= 11
N+1 « N+1 (6.1.16)

Such conditions are routinely used to set the parameters of FIR and exponential
smoothing filters in inventory control applications and in tracking stock market data. A
similar weighted average as in Eq. (6.1.14) can be defined for any filter by:

Znhn
— n
S hy

n

=

(effective filter lag) (6.1.17)

where hy is the filter’s impulse response. Eq. (6.1.17) may also be expressed in terms
of the filter’s transfer function H (z)= >,, h,z~™ and its derivative H' (z)= dH (z) /dz
evaluated at DC, that is, at z = 1:
_H'(2)
H(z) 1,4

n= (effective filter lag) (6.1.18)

226 6. Exponential Smoothing

Alternatively, 1 is recognized as the filter’s group delay at DC, that is, given the
frequency response H (w) = Y, hne/®" = |H (w) |e/@&H (@) we have (Problem 6.1):

n=-— d arg H (w)

do oo (group delay at DC) (6.1.19)

The exponential smoother is a special case of (6.1.17) with h,, = «xA"u(n), where
u(n) is the unit-step function. We may apply this definition also to the FIR averager
filter that has h,, = 1/N, forn =0,1,...,N -1,

The FIR averager can be mapped into an “equivalent” exponential smoother by equat-
ing the n lags of the two filters, that is,

n=———=—- (6.1.20)

This condition is exactly equivalent to condition (6.1.16) arising from matching the
NRRs of the two filters. The two equations,

1-4 . _ 1 f1=L=E (6.1.21)

E[(an-m)*] = -0y = goy., 1-A 2

capture the main tradeoff between variance and speed in using an exponential smoother
or an equivalent FIR averager, that is, the closer A is to unity or the larger the N, the
smaller the variance and the better the estimate, but the longer the transients and the
slower the speed of response.

We summarize the difference equations for the exact exponential smoother (6.1.5d)
and the steady-state one (6.1.11),

o A — AN+l « A X a
An =t An-rt T Yn = Anant ey e = dnc1) (6.1.22)
dn = Adnfl + XYn = aI’l*l + O((Yn - an*l)

Clearly, the second is obtained in the large-n limit of the first, but in practice the
steady one is often used from the start at n = 0 because of its simplicity.

To start the recursions at n = 0, one needs to specify the initial value d-;. For
the exact smoother, d_; can have an arbitrary value because its coefficient vanishes at
n = 0. This gives for the first smoothed value dg = 0-d_; + 1 - Yo = Yo. For the steady
smoother it would make sense to also require that dy = Yo, which would imply that
a-1 = yo because then

do =Ad-1 + &y = AYo + &XYo = Yo

There are other reasonable ways of choosing d_1, for example one could take it to
be the average of a few initial values of y,. The convolutional solution of the steady
smoother with arbitrary nonzero initial conditions is obtained by convolving the filter’s

6.1. Mean Tracking 227

impulse response xA"u (n) with the causal input y, plus adding a transient term arising
from the initial value:

n
dn = o > A" Ky Ama (6.1.23)
k=0
The influence of the initial value disappears exponentially.

Example 6.1.1: Fig. 6.1.1 illustrates the ability of the sample mean and the exponential smoother
to track a sudden level change.

non-stationary signal, y,

sample mean, m,

0 500 1000 1500 2000 0 500 1000 1500 2000
n n
exponential smoother, A =0.98 exponential smoother, A =0.995
1.5
1
0.5
FIR
0 0
0 500 1000 1500 2000 0 500 1000 1500 2000
n n

Fig. 6.1.1 Mean tracking with sample mean, exponential smoother, and FIR averager.

The first 1000 samples of the signal y, depicted on the upper-left graph are independent
gaussian samples of mean and variance m; = 1, 035 = 1. The last 1000 samples are
gaussian samples with m, = 1.5 and 0, = 0.5.

The upper-right graph shows the sample mean computed recursively using (6.1.9) with
&, = 1/(n + 1) and initialized at d-; = 0 (although the initial value does not matter
since ¢y = 1). We observe that the sample mean converges very fast to the first value
of m; = 1, with its fluctuations becoming smaller and smaller because of its decreasing
variance (6.1.6b). But it is extremely slow responding to the sudden change in the mean.

The bottom two graphs show the steady-state exponential smoother initialized at d_; = 0
with the two values of the forgetting factor A = 0.98 and A = 0.995. For the smaller A
the convergence is quick both at the beginning and after the change, but the fluctuations

228 6. Exponential Smoothing

quantified by (6.1.21) remain finite and do not improve even after convergence. For the
larger A, the fluctuations are smaller, but the learning time constant is longer. In the
bottom-right graph, we have also added the equivalent FIR averager with N related to A by
(6.1.16), which gives N = 399. Its learning speed and fluctuations are comparable to those
of the exponential smoother. m]

Example 6.1.2: Fig. 6.1.2 shows the daily Dow-Jones Industrial Average (DJIA) from Oct. 1, 2007
to Dec. 31, 2009. In the left graph an exponential smoothing filter is used with A = 0.9.
In the right graph, an FIR averager with an equivalent lengthof N = (1+A)/(1 —-A)=19
is used. The data were obtained from http://finance.yahoo.com.

EMA with A = 0.9 equivalent FIR with N = 19

15 15
14 — smoothed 14} — smoothed
A\ data B data
13f° 13
w12 12
E ki
511 g1
@ @
210 310
< <
= =
9 9
8 8
7 7
0 100 200 300 400 500 0 100 200 300 400 500
trading days trading days

Fig. 6.1.2 Dow-Jones industrial average from 10-Oct-2007 to 31-Dec-2009.

The following code fragment generates the two graphs:

Y = loadfile(’dow-oct07-dec09.dat’); % data file in OSP toolbox
y = Y(:,4)/1000; % extract closing prices
n = (0:1ength(y)-1);

la = 0.9; al = 1-1a;

s0 = la*y(1);
m = filter(al, [1,-1a], y, s0);
% m = stema(y,0,7a, y(1));

% S0 is the initial state
% filter with initial state
% equivalent calculation

figure; plot(n,m,’-", n,y,’:");
N = round((1+1a)/(1-1a));

h ones(N,1)/N; % FIR averager
x = filter(h,1,y);

figure; plot(n(N:end),x(N:end),’-’, n,y,’:’); % discard first N—1 outputs

The initial value was set such that to get o = Y, for the EMA. The built-in function filter
allows one to specify the initial state. Because filter uses the transposed realization, in
order to have dy = Yy, the initial state must be chosen as s;; = Ayy. This follows from
the sample processing algorithm of the transposed realization for the EMA filter (6.1.12),

6.1. Mean Tracking 229

which reads as follows where s is the state:

for each input sample y do:
a=s+ay or
s=Aa

an = Sp + XYn
Sn+1 = Adn

Thus, in order for the first pass to give do = Yy, the initial state must be such that sq =
aog — ®yo = Ayp. The FIR averager was run with zero initial conditions and therefore, the
first N — 1 outputs were discarded as transients. After n > N, the EMA and the FIR outputs
are comparable since they have the same 7. m]

Example 6.1.3: It is evident by inspecting the graphs of the previous example that both the
EMA and the FIR filter outputs are lagging behind the data signal. To see this lag more
clearly, consider a noiseless signal consisting of three straight-line segments defined by,

20 + 0.8n, 0<n<75
sh=180-0.3(n-75), 75=<n<225
35+ 0.4(n—225), 225<n <300

Fig. 6.1.3 shows the corresponding output from an EMA with A = 0.9 and an equivalent
FIR averager with N = 19 as in the previous example. The dashed line is the signal s, and
the solid lines, the corresponding filter outputs.

EMA with A = 0.9
100, 100

equivalent FIR with N = 19

0 75 150 225 300

Fig. 6.1.3 Lag introduced by EMA and FIR averager filters.

The EMA was run with initial value d-; = so = 20. The FIR filter was run with zero
initial conditions, and therefore, its first N—1 outputs are transients. The amount of delay
introduced by the filters is exactly equal to the quantity 7 of Eq. (6.1.20).]

The delay 71 is a consequence of the causality of the filters. Symmetric non-causal
filters, such as the LPSM or LPRS filters, do not introduce a delay, that is, 1 = 0.

To see how such a delay arises, consider an arbitrary causal filter h, and a causal
input that is a linear function of time, x, = a + bn, for n > 0. The corresponding
convolutional output will be:

n n n n
Yn= > hxnk = > hxla+bm—k)] = (a+bn)> hg—b > khg
k=0 k=0 k=0 k=0

230 6. Exponential Smoothing
For large n, we may replace the upper limit of the summations by k = oo,

yn=(a+bn)> hx—b > khy=(a+bn)> hy—bn> hg=[a+bn-n)] > hy
k=0 k=0 k=0 k=0 k=0

where we used the definition (6.1.17) for . For filters that have unity gain at DC, the
sum of the filter coefficients is unity, and we obtain,

Yn=a+bn-n)=x,_n (6.1.24)

Such delays are of concern in a number of applications, such as the real-time mon-
itoring of financial data. For FIR filters, the problem of designing noise reducing filters
with a prescribed amount of delay 7 has already been discussed in Sec. 3.8. However, we
discuss it a bit further in Sec. 6.10 and 6.15 emphasizing its use in stock market trading.
The delay 1 can also be controlled by the use of higher-order exponential smoothing
discussed in Sec. 6.5.

6.2 Forecasting and State-Space Models

We make a few remarks on the use of the first-order exponential smoother as a forecast-
ing tool. As we already mentioned, the quantity d,-; can be viewed as a prediction of
v, based on the past observations {yg,)1,...,Yn-1}. To emphasize this interpretation,
let us denote it by Y,,/n-1 = dn-1, and the corresponding prediction or forecast error by
en/n-1 = ¥Yn — Yn/n—1- Then, the steady exponential smoother can be written as,

Yn+1/n = Yn/n-1+ Xenm-1 = Yn/n-1+ «Yn = Yn/n-1) (6.2.1)

As discussed in Chapters 1 and 12, if the prediction is to be optimal, then the pre-
diction error e,;;,,—1 must be a white noise signal, called the innovations of the sequence
vn and denoted by &, = e, n—1. It represents that part of y, that cannot be predicted
from its past. This interpretation implies a certain innovations signal model for y,. We
may derive it by working with z-transforms. In the z-domain, Eq. (6.2.1) reads,

zY(2)= Y (2)+xE(z)= Y (2)+x(Y(z2)-Y(2)) = AY (2) +xY (2) (6.2.2)
Therefore, the transfer functions from Y (z) to Y (z) and from Y (z) to E(z) are,

N oz ! 1-z71

In the time domain, using the notation Vy, =y, — y,-1, we may write the latter as
Vyn=&n—A&p_q (6.2.4)

Thus, y, is an integrated ARMA process, ARIMA(0,1,1), or more simply an integrated
MA process, IMA(1,1). In other words, if y, is such a process, then the exponential
smoother forecast y,,,—1 is optimal in the mean-square sense [242].

6.3. Higher-Order Polynomial Smoothing Filters 231

The innovations representation model can also be cast in an ordinary Wiener and
Kalman filter form of the type discussed in Chap. 11. The state and measurement equa-
tions for such a model are:

Xn+1 = Xn + Wn 6.2.5)
Yn =Xn+Vn
where wy, v, are zero-mean white-noise signals that are mutually uncorrelated. This
model is referred to as a “constant level” state-space model, and represents a random-
walk observed in noise. The optimal prediction estimate X,,;,,—1 of the state x,, is equiv-
alent to dp-1. The equivalence between EMA and this model results in the following
relationship between the parameters « and g = 03,/ 0"2,:
2 b e \Vg*+49-q (6.2.6)
1-« 2
We defer discussion of such state-space models until chapters 11 and 13.

q:

6.3 Higher-Order Polynomial Smoothing Filters

Werecall that in fitting a local polynomial of order d to alocal block of data {yn_p, ..., Vn,
.., Yn+M}, the performance index was

M M
J= Z [y"+k7p(k)]2: Z [yn+k*u}Z-C]2:min
k=-M k=—M

where p (k) is a dth degree polynomial, representing the estimate y,.x = p (k),

Co
(4] d .
p(k)=ulc=[1k,....,k?]| . | =D cik!
i=0

Ca
and we defined the monomial basis vector uy = [1,k,k?,..., kd]T. The higher-order
exponential smoother is obtained by restricting the data range to {yo,V1,...,¥n} and
using exponential weights, and similarly, the corresponding FIR version will be restricted
to {Yn-N+1,--+,¥n-1,¥n}. The resulting performance indices are then,

0

Ja= 2 A ync-ufc]’ =min p——

k=-n 0 n
2 2
Jn= > [ynk—ufc]” =min
k=-N+1 0 n-N+1 --- n

or, replacing the summation index k by —k, the performance indices read,

n
(EMA) Jp = Z AR [ynx - ufkc]2 = min
k=0
(6.3.1)
N-1
(FIR) Jn = [Ynk — uzkc]2 = min
k=0

232 6. Exponential Smoothing

In both cases, we may interpret the quantities p(+T) = ul_c as the estimates yy.r.
We will denote them by ¥,,++/, to emphasize their causal dependence only on data up to
the current time n. In particular, the quantity ¢y = ug c = p(0) represents the estimate
Yn, OF Yn/n, that is, an estimate of the local level of the signal. Similarly, c; = p(0)=
uzclTZO represents the local slope, and 2¢, = p(0), the local acceleration. Egs. (6.1.4d)
and (6.1.4c¢) are special cases of (6.3.1) corresponding to d = 0.

Both indices in Eq. (6.3.1) can be written in the following compact vectorial form,

whose solution we have already obtained in previous chapters:

J=y-S)TW(y-Sc)=min = c=(STws) sTwy (6.3.2)

where the data vector y is defined as follows in the EMA and FIR cases,

Yn Yn
Yn-1 Yn-1

y(m=1 . »oy(m=1 . (6.3.3)
Yo Yn-N+1

with the polynomial basis matrices S,

uj
uzl
T T
Sn = [wo,u-1,.un]’, Sy = [upuey, . una]t = | (6.3.4)
—k
L u]:NH n
with, ul,, = [1, (=k), (=k)?,..., (=k)?] , and weight matrices W in the two cases,
W, = diag([1,A,...,A"]), or, W=Iy (6.3.5)
The predicted estimates can be written in the filtering form:
‘ N _ T _ T
Pnirin = uke(m) = hhmy(n | (6.3.6)
where in the exponential smoothing case,
c(n) = (SEWnSn) "' SyWny (n)
T (EMA) (6.3.7)
h:(n) = WnSn(SanSn)_luT

We will see in Eq. (6.5.19) and more explicitly in (6.6.5) that c(n) can be expressed
recursively in the time n. Similarly, for the FIR case, we find:

c(n) = (SkSn) 1sky(n)
(FIR) (6.3.8)

h: =5Sn (S]([SN)_luT

6.4. Linear Trend FIR Filters 233

We note also that the the solution for ¢ in Eq. (6.3.2) can be viewed as the least-squares
solution of the over-determined linear system, W1/2Sc = W1/2y, which is particularly
convenient for the numerical solution using MATLARB'’s backslash operation,

c= (W'28)\ (W''%y) (6.3.9)

In fact, this corresponds to an alternative point of view to filtering and is followed
in the so-called “linear regression” indicators in financial market trading, as we discuss
in Sec. 6.18, where the issue of the initial transients, that is, the evaluation of c(n) for
0 <n < N — 1 in the FIR case, is also discussed.

In the EMA case, the basis matrices S, are full rank for n > d. For 0 < n < d, we may
restrict the polynomial order d to to d, = n and thus obtain the first d, coefficients of
the vector c(n), and set the remaining coefficients to zero. For the commonly used case
of d = 1, this procedure amounts to setting c(0) = [yo, 0]7. Similarly, in the FIR case,
we must have N > d + 1 to guarantee the full rank of Sy.

6.4 Linear Trend FIR Filters

The exact solutions of the FIR case have already been found in Sec. 3.8. Thed =1
and d = 2 closed-form solutions were given in Egs. (3.8.10) and (3.8.11). The same
expressions are valid for both even and odd N. For example, replacing M = (N —1)/2
in (3.8.10), we may express the solution for the d = 1 case as follows,

2(N-1)2N-1-3Kk)+6(N-1-2K)T
N(N2-1) ’

he (k)= k=0,1,...,N-1 (6.4.1)

A direct derivation of (6.4.1) is as follows. From the definition (6.3.4), we find:

N-1 e
Shov= Sualy- 3| 4
k=0 k=0 |

-N(N-1)/2 } 6.4.2)

N
- [—N(N—l)/z N(N-1)(2N-1)/6

(ST = [

(N-1)(2N-1) 3(N-1)
T N(N2-1)

3(N-1) 6

then, from Eq. (6.3.8), because the kth row of Sy is uzk, we obtain the kth impulse
response coefficient:

e (k)= T (SESN) ur = [Lfk][(N*l)(ZN*” 3(N*1)H1]

N(N2-1) 3(N-1) 6 T
which leads to Eq. (6.4.1). Thus, we obtain,
ht (k)= hg(k)+hp(k)T, k=0,1,...,N—-1 (6.4.3)

with

234 6. Exponential Smoothing
_2(2N -1 -3k) _ 6(N—-1-2k)
hat)= =G+ mW="gr (6.4.4)

These are the FIR filters that generate estimates of the local level and local slope of
the input signal. Indeed, setting c(n) = [an, bn]T, where ay, b, represent the local level
and local slope’ at time n, we obtain from (6.3.8),

N-1
a
[b:] = (SESN) ISRy (M= (SESN) ' Y wkyn
k=0

which is equivalent, component-wise, to the filtering equations:

N-1
ay = Z hg (K)yn—k = local level
k=0
(6.4.5)
N-1
b, = Z hyp (k)yn—x = local slope
k=0

Since, Yn+1/n = an + by T, it is seen that the local level a, is equal to yy,,. Similarly,
the sum ay, + b, is the one-step-ahead forecast y,,.1,, obtained by extrapolating to time
instant n + 1 by extending the local level a, along the straight line with slope b,,. This
is depicted in the figure below. The sum, a, + b,, can be generated directly by the
predictive FIR filter, hy (k) = h, (k) +hp (k), obtained by setting T = 1 in (6.4.1):

2(2N -2 -3k)

h (k)= NN-1)

, k=0,1,...,N—1]| (predictive FIR filter) (6.4.6)

a, = local level ’forccast
\ -

by, = local slope

¥
|
|
|

straight line fit

filter span -

n—N+1 n n+t

The filters h,(k), hp(k), and h; (k) find application in the technical analysis of
financial markets [280]. Indeed, the filter h, (k) is equivalent to the so-called linear
regression indicator, hy (k) corresponds to the linear regression slope indicator, and
hy (k), to the time series forecast indicator. We discuss these in more detail, as well as
other indicators, in Sections 6.14-6.24.

ta, b are the same as the components cg, ¢; of the vector c.

6.5. Higher-Order Exponential Smoothing 235

More generally, for order d polynomials, it follows from the solution (6.3.8), that the
FIR filters h satisfy the moment constraints SI,hT = U, Or, component-wise:

N-1
> (=k)hr(k)=1", r=0,1,...,d (6.4.7)
k=0

In fact, the solution h = Sy (S{,SN)*luT is recognized (from Chap. 15) to be the
minimum-norm, pseudoinverse, solution of the under-determined system Sth = ur,
that is, it has minimum norm, or, minimum noise-reduction ratio, ® = h'h = min. A
direct derivation is as follows. Introduce a (d + 1) X1 vector of Lagrange multipliers,
A = [Ag,A1,...,A4]7, and incorporate the constraint into the performance index,

J=hTh+2AT (u; — S§h) = min
Then, its minimization leads to,

0
£=2h—ZSNA=O = h=SN)\

and, imposing the constraint S,{]h = u leads to the solutions for A and for h,
ur=Sth=SIiSyA = A= (SiSy)'ur = h=SyA=SN(SESN) tur

Returning to Eq. (6.4.3) and setting T = 0, we note that the d = 1 local-level filter
h, (k) satisfies the explicit constraints:

N-1 N-1
S ha(k)=1, > kha(k)=0 (6.4.8)
k=0 k=0

The latter implies that its lag parameter 71 is zero, and therefore, straight-line inputs
will appear at the output undelayed (see Example 6.5.1). It has certain limitations as a
lowpass filter that we discuss in Sec. 6.10, but its NRR is decreasing with N:

_2(2N-1)

R= N(N+1)

(6.4.9)

A direct consequence of Eq. (6.4.7) is that the filter h+ (k) generates the exact pre-
dicted value of any polynomial of degree d, that is, for any polynomial P (x) with degree
up to d in the variable x, we have the exact convolutional result,

N-1
> P(n-k)hr(k)=P(n+7)|, with deg(P)<d (6.4.10)
k=0

6.5 Higher-Order Exponential Smoothing

For any value of d, the FIR filters h; have length N and act on the N-dimensional data
vector y(n)= [Vn,Vn-1,--.,¥n-n+1] L. By contrast, the exponential smoother weights
h(n) have an ever increasing length. Therefore, it proves convenient to recast them

236 6. Exponential Smoothing

recursively in time. The resulting recursive algorithm bears a very close similarity to the
so-called exact recursive-least-squares (RLS) adaptive filters that we discuss in Chap. 16.
Let us define the quantities,

n
Ry =SIWpSy = > Aku_guly = (d+1)x (d+1) matrix

k=
. 6.5.1)
I = SIWay(n)= > Afu_gyp-k = (d+1)x1 vector
k=0
Then, the optimal polynomial coefficients (6.3.7) are:
c(n)=Ry'ry (6.5.2)

Clearly, the invertibility of R, requires that n > d, which we will assume from now
on. The sought recursions relate c(n) to the optimal coefficients c(n — 1) = R;}lrn,l
at the previous time instant n—1. Therefore, we must actually assume that n > d.
To proceed, we note that the basis vector u; = [1,T,75,..., 7417 satisfies the time-
propagation property:

ury = Fug (6.5.3)

where F is a (d+1) X (d+1) unit lower triangular matrix whose ith row consists of the
binomial coefficients:

J

This follows from the binomial expansion:

(T+Di=> (JI)T’

Jj=0

FiJ-:(l,), O<i<d, 0<j<i (6.5.4)

Some examples of the F matrices are ford = 0, 1, 2:

1 0 1 0 0
F =[1], F=[1 1:|, F=|1 10 (6.5.5)
1 2 1

It follows from Eq. (6.5.3) that u; = Fu;_1, and inverting ur_; = F~'u,. The inverse
matrix G = F~! will also be unit lower triangular with nonzero matrix elements obtained
from the binomial expansion of (T — 1)

G,-J-=(—1)f*f<J’_), 0O<i<d, O<j<i (6.5.6)

For example, we have ford = 0,1, 2,

1 0 1 0 0
G=[1], G= , G=| -1 1 0 (6.5.7)
-1 1 5 1

6.5. Higher-Order Exponential Smoothing 237
It follows from ur_; = Gu; thatu_x_; = Gu_g. This implies the following recursion
for Ry:

n n
Rn =D Auuly =upud + > Aku_jul,
k=0 k=1

n
=uoul +A > Ak lu gl

k=1
n-1
= uoug +A Z /\ku_k_luzk_l
k=0
n-1
= u()ug +AG (Z AkukuTk) GT = uoug +AGR,_1GT
k=0

where in the third line we changed summation variables from k to k—1, and in the fourth,
we used u_x—; = Gu_g. Similarly, we have for ry,

n n
k k
rn= > Auynk =uoyn + > Augyn i
k=0 k=1
n-—1

=uyn +A D> Au_1yn_ik-1
k=0

n-1

=ugyn +AG (> /\kuk)’(nl)k) =ugyn + AGr,_
k=0

Thus, R,), satisfy the recursions:
n =uou) + AGR,_,GT

(6.5.8)
Iy = UoYn + AGrp-;

and they may be initialized to zero, R_; = 0O and r_; = 0. Using Y, 4r/n = uzc(n), we
may define the smoothed estimates, predictions, and the corresponding errors:

en/n = Yn — Yn/n
€nii/n = Ynil — Yn+l/n (6.5.9)
Yn/n-1 = ulTC(n -1)= ugFTC(n -1), enn-1=Yn—Yn/n-1

Ynim =ugc(n),
Pnsim =ulc(n)=ulFlc(n),

where we used u; = Fup. In the language of RLS adaptive filters, we may refer to
Yn/n-1 and Y, as the a priori and a posteriori estimates of y,, respectively. Using the
recursions (6.5.8), we may now obtain a recursion for c(n). Using c(n — 1) = R;}lrn,l
and the matrix relationship GF = I, we have,

Ruyc(n) =r, =ugyn + AGryp—1 =upynp + AGRy_1c(n—1)
=uoyn + AGR,_1GTFTc(n—1)=ugyn + (Ry, —uoul)Flec(n - 1)
=RyFTc(n—1)+uy(yn —ulF'c(n-1)) = RyFTc(n - 1) +uo(Yn — Pn/n-1)

= RyFTc(n — 1) +ugen/n1

238 6. Exponential Smoothing

where in the second line we used AGR,_1GT = R,, — uoug . Multiplying both sides by
R;;!', we obtain,
c(n)=FTc(n—1)+R; 'wpen/n-_1 (6.5.10)

Again, in the language of RLS adaptive filters, we define the so-called a posteriori
and a priori “Kalman gain” vectors k, and k;/»-1,

kn = Ry'ug, Kpmor = A'FTR;L Fug (6.5.11)

and the “likelihood” variables,

1
1+ vy

Vi =W knmoy = AT FTR, Y Fug = A"l Ry, pp = (6.5.12)

Starting with the recursion R,, = uoug + AGR,,_1GT and multiplying both sides by
R;;! from the left, then by FT from the right, then by R,,1; from the left, and then by F
from the right, we may easily derive the equivalent relationship:

ATFTRLF = Ry'ug A~ 'ul FTR, L F + Ry (6.5.13)
Multiplying on the right by uy and using the definitions (6.5.11), we find
Knn-1 =knvn +kn = (1 + v)ky, or,

Ky = nKkn/n-1 (6.5.14)

Substituting this into (6.5.13), we obtain a recursion for the inverse matrix R; ', which
is effectively a variant of the matrix inversion lemma:

Ry' = AVFTRLF — unkpyn—1KE g (6.5.15)
This also implies that the parameter u, can be expressed as
Up=1-ulR;'ug =1 -ulky, (6.5.16)

The a priori and a posteriori errors are also proportional to each other. Using (6.5.16),
we find,

)A’n/n = ugc(n): ug (FTC(n_1)+knen/n—1) =)A’n/n—l +(1 _IJn)en/n—l =Yn—HMn€n/n-1

which implies that
€n/n = Un€n/n-1 (6.5.17)

The coefficient updates (6.5.10) may now be expressed as:
c(n)=FTe(n-1)+knen/n-1 (6.5.18)

We summarize the complete set of computational steps for high-order exponential
smoothing. We recall that the invertibility conditions require that we apply the recur-
sions for n > d:

6.5. Higher-Order Exponential Smoothing 239
1. kpmo1 = A7'FTR, Y Fug = A7V FTR
2. vn=uiknn-1, Hn=1/(1+Vp)
3. Kkn = tnKnmn-1
4. Yum-1= ulTC(n -1), enmn-1=Yn—Ynn-1 (6.5.19)
5. enin=Hnenin-1, Yn=Yn—e€nn
6. c(n)=FTc(n—1)+knenn-1
7. R;' = AFTR, L F — pnknin-1kE oy

For 0 < n < d, the fitting may be done with polynomials of varying degree d,, = n,
and the coefficient estimate computed by explicit matrix inversion, ¢(n)= R;'r,. The
above computational steps and initialization have been incorporated into the MATLAB
function ema with usage:

% exponential moving average - exact version

|C = ema(y,d,lambda);

The input y is an L-dimensional vector (row or column) of samples to be smoothed,
with a total number L > d, and Cis an Lx (d+1) matrix whose nth row is the coefficient
vector c(n)T. Thus, the first column, holds the smoothed estimate, the second column
the estimated first derivative, and so on.

To understand the initialization process, consider an input sequence {yo, Y1, Y2,...}
and the d = 1 smoother. At n = 0, we use a smoother of order dy = 0, constructing the
quantities R, 1 using the definition (6.5.1):

Ro=111, ro=[y0] = c(0)=Ry'ro=yo

Next, at n = 1 we use a d; = 1 smoother, and definition (6.5.1) now implies,
1 0 1 -1 1+A -A
Rl:[o 0}“[—1 1]:[—/\ /\]
|1 L[+
1“1—[0})/1"'7\[_1])’0—[Ao

Starting with Ry, 1, the recursion (6.5.8) may then be continued forn > d + 1 = 2.
If we had instead d = 2, then there is one more initialization step, giving

_ Y1
1)= Ry, =
c(1) 10 [)’1—)’0}

1+A+A%2 —A—-2A% A +4A2 Y2 + Ay1 + A2y
R, = —A —2A? A+4A% —A —-8A2 , Ip = -Ay; — 2)\2)/()
A+4A2 —A—8A2 A +16A2 Ay1 + 42y,

resulting in
Y2
c(2)=Ry'ry = | 1.5y2 — 2y1 + 0.5y (6.5.20)
0.5y2 —y1 + 0.5y
We note that the first d + 1 smoothed values get initialized to the first d + 1 values
of the input sequence.

240 6. Exponential Smoothing

Example 6.5.1: Fig. 6.5.1 shows the output of the exact exponential smoother with d = 1 and
A = 0.9 applied on the same noiseless input s, of Example 6.1.3. In addition, it shows the
d =1 FIR filter h, (k) designed to have zero lag according to Eq. (6.4.4).

Because d = 1, both filters can follow a linear signal. The input s,, (dashed curve) is barely
visible under the filter outputs (solid curves). The length of the FIR filter was chosen
according to therule N = (1 +A)/(1 —A).

The following MATLAB code generates the two graphs; it uses the function upulse which
is a part of the OSP toolbox that generates a unit-pulse of prescribed duration

0:300;

s = (20 + 0.8*n) .* upulse(n,75) + ...

(80 - 0.3*(n-75)) .* upulse(n-75,150) + ...
(35 + 0.4%(n-225)) .* upulse(n-225,76);

=]
I

% upulse is in the OSP toolbox

C = ema(s,d,1a); % exact exponential smoother output

x = C(:,1);
N = round((1+1a)/(1-1a)); % equivalent FIR length, N=19
k=0:N-1;

ha = 2*(2*N-1-3*k)/N/(N+1); % zero-lag FIR filter

xh = filter(ha,1,s); % FIR filter output

figure; plot(n,s,’--", n,x,’-’); % left graph
figure; plot(n,s,’--’, n,xh,’-"); % right graph

exact EMA withd =1, A =0.9
100, 100

zero-lag FIR with equivalent N = 19

0 75 150 225 300 0 75 150 225 300

Fig. 6.5.1 Exact EMA with order d = 1, and zero-lag FIR filter with equivalent length.

Next, we add some noise y, = s, +4v,, where v, is zero-mean, unit-variance, white noise.
The top two graphs of Fig. 6.5.2 show the noisy signal y, and the response of the exact
EMA withd = 0 and A = 0.9.

The bottom two graphs show the exact EMA with d = 1 as well as the response of the same
zero-lag FIR filter to the noisy data. m]

6.6. Steady-State Exponential Smoothing 241

noisy input exact EMA withd =0, A=0.9
100 100,

20 1 20
nput - - - noise—free
- - - noise—free — output
0 0
0 75 150 225 300 0 75 150 225 300
n n

exact EMA withd =1, A=0.9
100 100

zero—lag FIR with equivalent N = 19

20 i 1 20

- - - noise—free| - - - noise—free
output output
G0 75 150 225 300 OO 75 150 225 300
n n

Fig. 6.5.2 EMA with order d = 1, and zero-lag FIR filter with equivalent length.

6.6 Steady-State Exponential Smoothing

Next, we look in more detail at the cases d = 0, 1, 2, which are the most commonly used
in practice, with d = 1 providing the best performance and flexibility. We denote the
polynomial coefficients by:

c(n)=lan], c(n)= [g:} c(n)=| bn (6.6.1)

Then, with ur = [1], ur = [1,7]7, and ur = [1, T, T2]7, the implied predicted
estimates will be for arbitrary T:

VYnirm =ulc(n)=ay
Vnstin = u?c(n) =an+ byt (6.6.2)

Yn+t/in = uzc(n)= an + byt + CnT2

Thus, an, by, represent local estimates of the level and slope, respectively, and 2¢j,

242 6. Exponential Smoothing

represents the acceleration. The one-step-ahead predictions are,

Ynin-1 = u—{c(”l —1)=an—
Pnm-1 =ulc(n—1)=an_1 + bn_y (6.6.3)

Ynin-1 = uch(n —1)=an-1 + bn-1 + cn
Denoting the a posteriori gains k;, by,
1 (n)
o1 (n
ke =[], ko= | P | k= | coin) (6.6.4)
o2 (n)
3 (n)
then, the coefficient updates (6.5.18) take the forms, where e,,/n-1 = Yn — Yn/n-1,

ap = anp-1 + & (N)ep/n-1

[an} [1 1][an_1}+[m(n)}e
= n/n-1
by, 0 1 || bn oz (n) (6.6.5)

an 1 1 17[an «q (n)
by |=10 1 2||bp |+]| c2(n) |enn
Cn 0 0 1 Cn-1 «3(n)

Since k, = Ry;'up, the gains depend only on A and n and converge to steady-state
values for large n. For example, for d = 0, we have,

n
1—Antl 1-A

- k_~—% _p-1_ -4 —

Rn—kZOA = 1A => kn—Rn —l_An_H_.l_)\:o(

Thus, the steady-state form of the d = 0 EMA smoother is as expected:

enin-1=Yn~—VYnin-1=Yn— An-1

(single EMA, d = 0) (6.6.6)
an = an-1+ (1 = A)enn-1 &

initialized as usual at a_; = yy. The corresponding likelihood variable u, = 1 — ug kn
tendstou =1 — (1 — A)= A. Similarly, we find for d = 1,

] 1y ek 1 ok T_[Reo(m Rer(m)
Ro- 3 [_k]n, k-3 [_k kz}-[Rm(m an)]

where

_ An+l1 _ n+1 _
Roo(“):%, Roi ()= Ryo ()= —2 A (1[1;:)2(1 A)]
_An+1 _ B 201 12
Ruy (= AAFD AL A = 2n (1= A)+n? (1= 4)°)]

(1-2)3

6.6. Steady-State Exponential Smoothing 243
which have the limit as n — oo,

_ 2 _ _
R, =R = 1 [(1 A) Al 2\)]

(1-2)3 -A1-=-A) A(Q+A)

R-1 — 1-A2 (1-2)2
T A-2)2 ATta-a)3

(6.6.7)

It follows that the asymptotic gain vector k = R~ ug will be the first column of R~!:

1-A2
knak:[z;}:[(kmz] (6.6.8)

and the steady-state version of the d = 1 EMA smoother becomes:

enin-1=Yn—Ynn-1=Yn— (@n-1+bn_1)

dn 1 1 An-1 1— AZ (double EMA, d= 1) (669)
o]0 e Lo Jew

with estimated level ¥,,, = a, and one-step-ahead prediction Y,.1/n = an + by. The
corresponding limit of the likelihood parameteris g = 1 —ulk = 1 — (1 — A%)= A2,
The difference equation may be initialized at a_, = 2yy —y; and b_; = y; — Y, to agree
with the first outputs of the exact smoother. Indeed, iterating up to n = 1, we find the
same answer for c(1) as the exact smoother:

HEE SRR
HEE B RN

Of course, other initializations are possible, a common one being to fit a straight line
to the first few input samples and choose the intercept and slope as the initial values.
This is the default method used by the function stema (see below). For the d = 2 case,
the asymptotic matrix R is

o o 1 -k k?

R=> Aujulp = > Ak -k k> —k3

k=0 k=0 k2 —k3 k4

which may be summed to

1 A A(1+A)

1-A (1-A)2 (1-A)3

rRo|— A A(1+A) _2\(1+42\+2\2)

B (1-A)2 (1-A)3 (1-A)4

A +A) A1 +4A+2A%) A0 +A)(1+10A +2A%)
(1-2A)3 (I-2a)4 (1-2)°

244 6. Exponential Smoothing

with an inverse

1-23 %(HA)(MA)? %(17)\)3
a_ |3 T2 A+ -20)30+90) (1-2)*(1+3A)
R = 2(1+/\)(1 A) ne 2

1 3 (1-2)*(1 +3A) (1-2)°

p (1N 4A2 4A2

The asymptotic gain vector k = R~'ugy and u parameter are,

1-A3
X 3 ,
k=| x> | = 5(1+2\)(1—A> H=1-0; =2A3 (6.6.10)
3 1 -~ 3
2(1 A)

and the steady-state d = 2 EMA smoother becomes:

enin-1=Yn—Ynin-1=yYn— (@n-1 +bp_1+cn-1)

an 1 1 1 an-1 o1 (triple EMA, d =2) (6.6.11)
by =10 1 2 || bna |+]| 2 [enn
Cn 0 0 1 Cn-1 X3

They may be initialized to reach the same values at n = 2 as the exact smoother,
that is, Eq. (6.5.20). This requirement gives:

a- Y2 =31+ 3y0 a Y2
b, |= —1.5y2 + 4y, — 2.5y = b, | = 1.5y — 2y; + 0.5y
C_1 0.5y2 —y1 + 0.5y C2 0.5y2 —y1 + 0.5y

Alternatively, they may be initialized by fitting a second degree polynomial to the first
few input samples, as is done by default in the function stema, or they may be initialized
to a zero vector, or to any other values, for example, [a_1,b_1,c-1]= [0, 0,0].

For arbitrary polynomial order d, the matrix R, converges to a (d+1) X (d+1) matrix
R that must satisfy the Lyapunov-type equation:

R =uou} + AGRGT (6.6.12)

where G is the backward boost matrix, G = F~1. This follows by considering the limit
of Eq. (6.5.1) as n — oo and using the property u_x—; = Gu_k. Multiplying from the left
by F, and noting that Fuy = u;, we have

FR =uu} + ARGT (6.6.13)

Taking advantage of the unit-lower-triangular nature of F and G, this equation can
be written component-wise as follows:
i J
> FiRyj = w1 (Duo () +A D, RG, 0<ij<d (6.6.14)
k=0 k=0

6.6. Steady-State Exponential Smoothing 245

Noting that u; (i)= 1 and ug (j) = 6 (j), and setting first i = j = 0, we find

1
Ry =1+ AR()() = Ry = m (6.6.15)
Then, settingi=0and 1 <j <d,
J Jj-1
Roj = A Z RixGjk = ARgj + A Z RokGjx
k=0 k=0
which can be solved recursively for Ry;:
Al
Roj=Rjo =+ > RxGjx, j=1,2,...,d (6.6.16)
1-A o
Next, take i > 1 and j > i, and use the symmetry of R:
i-1 Jj-1
Rij+ > FiRij = ARyj + A 3 RcGj
k=0 k=0
or,for i=1,2,...,d, j=1ii+1,...,d,
1 j-1 i-1
Rij=Rji=——~ | A D RixGjx — D FixRy; (6.6.17)
1-A k=0 k=0

To clarify the computations, we give the MATLAB code below:

R(1,1) = 1/(1-1ambda);
for j=2:d+1,
R(1,7) lambda * R(1,1:j-1) * G(j,1:j-1)’ / (1-Tambda);
R(G,1) = R(L,9);
end
for i=2:d+1,
for j=i:d+1,
R(i,j) = (Qambda*R(i,1:j-1)*G(j,1:5-1)’ - F(i,1:i-1)*R(1:i-1,3))/(1-1ambda);
R(@,1) = RG,3);5
end
end

Once R is determined, one may calculate the gain vector k = R 'ug. Then, the
overall filtering algorithm can be stated as follows, for n > 0,

Ynm-1 =ujc(n—1)
en/n-1=Yn — Ynin-1 (steady-state EMA) (6.6.18)

c(n)=FTc(n—-1)+kenn

which requires specification of the initial vector ¢(—1). The transfer function from the
input y, to the signals c(n) can be determined by taking z-transforms of Eq. (6.6.18):

C(z)=z""FTC(2) +k (Y (2) -z "ulC(2)), or,

246 6. Exponential Smoothing

_ C(2)
T Y(2)

H(z) =[1-(FT —xu])z'] 'k (6.6.19)

The computational steps (6.6.18) have been incorporated in the MATLAB function
stema, with usage,

’ C = stema(y,d,lambda,cinit); | % steady-state exponential moving average

where C,y,d, Tambda have the same meaning as in the function ema. The parameter
cinitisa (d+1) X1 column vector that represents the initial vector c(—1). If omitted,
it defaults to fitting a polynomial of order d to the first L input samples, where L is
the effective length corresponding to A, thatis, L = (1 + A)/(1 — A). The fitting is
carried out with the help of the function 1pbasis from Chap. 3, and is given in MATLAB
notation by:

cinit = Tpbasis(L,d,-1)\y(1:L); % fit order-d polynomial to first L inputs

where the fit is carried out with respect to the time origin n = —1. The length L must be
less than the length of the input vector y. If not, another, shorter L can be used. Other
initialization possibilities for cjyj; are summarized in the help file for stema.

To clarify the fitting operation, we note that fitting the first L samples y,, n =
0,1,...,L — 1, to a polynomial of degree d centered at n = —1 amounts to the mini-
mization of the performance index:

-1 d
J=> (Yyn—pn)’=min, pp=> (n+1)ic=ul,c
n=0 i=0

which can be written compactly as
J=lly-Scl? =min, S=[u,u,...,u1,...,ur]’

with solution ¢ = (S7S)~1§Ty = S\y in MATLAB notation.! The actual fitted values
p = [po,P1,-..,pr-1]T are then computed by p = Sc.

Selecting n = —1 as the centering time, assumes that the filtering operation will
start at n = 0 requiring therefore the value c(—1). The centering can be done at any
other reference time n = ng, for example, one would choose ng = L — 1 if the filtering
operation were to start at n = L. The performance index would be then,

L-1 d
J= Z(Yn_pn)2=miny Dn=Z(n—n0)'Ci=uLnoé
n=0 i=0
with another set of coefficients ¢. The MATLAB implementation is in this case,

cinit = Tpbasis(L,d,n0)\y(1:L); % fit order-d polynomial to first L inputs

From u,11 = Fu,, we obtain uy41 = F"lu,_p,. By requiring that the fitted poly-
nomials be the same, p, = ul ¢ = u%,noé, it follows that,

¢ = (FT)ymtlc (6.6.20)

Tassuming that S has full rank, which requires L > d.

6.7. Smoothing Parameter Selection 247

In Sec. 6.8, we discuss the connection to conventional multiple exponential smooth-
ing obtained by filtering in cascade through d + 1 copies of a single exponential smooth-
ing filter H(z) = /(1 — Az~!), that is, through [H(z)]dﬂ. Example 6.11.1 illustrates
the above initialization methods, as well as how to map the initial values of c(n) to the
initial values of the cascaded filter outputs.

6.7 Smoothing Parameter Selection

The performance of the steady-state EMA may be judged by computing the covariance of
the estimates ¢ (n), much like the case of the d = 0 smoother. Starting withc(n)= R, 'ry,
and r, = SIW,y(n), we obtain for the correlation matrix,

E[c(n)c’(n)] = R,'STWLE[y(n)yT(n)]WnSnR;;!
and for the corresponding covariance matrix,
See = RyISIW LS, W,ShR;,! (6.7.1)

Under the typical assumption that y; is white noise, we have %, = 0'51 n+1, where
I,,+1 is the (n+1)-dimensional unit matrix. Then,

Sce = 05 R,'QuRyY, Qu = SEWiSK (6.7.2)
In the limit n — oo, the matrices R, Q, tend to steady-state values, so that

Sce =03 RT'QR™! (6.7.3)

where the limit matrices R, Q are given by

R=> Aujuy, Q=> A%*uju (6.7.4)

0 k=0

[Me

k

Since Yn/n = ugc(n) and Yyi1/n = uch(n), the corresponding variances will be:

o2

T 2 T — 2
um = W0 Zcclo, O, = U Zeclly = O, (6.7.5)

Yn+1/n
Because y, was assumed to be an uncorrelated sequence, the two terms in the pre-
diction error e,+1/n = ¥Yn+1 — Yn+1/n Will be uncorrelated since 5.1/, depends only on
data up to n. Therefore, the variance of the prediction error e,1,, will be:
o; =03+ 05 =051 +u{R'QR "uy] (6.7.6)

For the case d = 0, we have

248 6. Exponential Smoothing

For d = 1, we have as in Eq. (6.6.7),

1 [(1—2\)2 —A(1—/\)]

R=0235] -aa-a aa+a

with the Q matrix being obtained from R by replacing A — A2,

1 [(1—2\2)2 —2\2(1—2\2)]

Q="T-A3 | -A2(1-22) AZ(1+A)

It follows then that

1-2A 1+4A+5A%2 (1-A)(1+3A)
_ o 2p-lop-1 _
e = Oy REQRT = (1+A)3[<1—A><1+3A) 2(1-4)? €77
The diagonal entries are the variances of the level and slope signals a,, by:
(1 —A)(1+4A+5A?%) >, 2(1-2)3
2 2 2 2
= - = —" 7.
T (1+2)3 e S Ve (6.7.8)
For the prediction variance, we find
> 2 Tip-1Ap-1 _(1—/\)()\2+47\+5) 5
0y =0oyu; (RT"QR u; = 112)3 oy (6.7.9)
which gives for the prediction error:
2 2. 2 A-2)@A>+4A+5) | , 2(3+A) ,
O, =0y +0; = [1 110 YT 1A (6.7.10)

In order to achieve an equivalent smoothing performance with a d = 0 EMA, one
must equate the corresponding prediction variances, or mean-square errors. If Ay, A;
denote the equivalent d = 0 and d = 1 parameters, the condition reads:

2 _2B+A) o (+A)?
1+ (1+4;)3 O T34,

(6.7.11)

Eq. (6.7.11) may also be solved for A in terms of A,

1 1+ Ag
A1 = Do+
173707 T p,

1/3
-1, Do= [27(1+2\0)+\/27(1+2\0)2(26—?\0)] (6.7.12)

Setting Ag = 0 gives Dy = (27 +3+/78)1/3 and A = 0.5214. Forall A; > 0.5214, the
equivalent A is non-negative and the NRR 05/0'5 of the prediction filter remains less
than unity.

The corresponding FIR averager would have length Ng = (1 +A¢) /(1 —Ag), whereas
an equivalent zero-lag FIR filter should have length N; that matches the corresponding
NRRs. We have from Eq. (6.4.9):

202N 1) 1-2
Ni(N; +1) B 1+A0

6.7. Smoothing Parameter Selection 249

which gives,
N? —3N; +2 3+ 5A0 ++/33A3 + 300 + 1
0= 372, enr. _ o 1= (6.7.13)
N1+5N1—2 Z(I—AO)

The MATLAB function emap implements Eq. (6.7.12),

1al = emap(l1a0); % mapping equivalent A’s between d = 0 and d = 1 EMAs

The computed A; is an increasing function of Ay and varies over 0.5214 < A; <1
as Ag varies over 0 < Ag < 1.

Example 6.7.1: The lower-right graph of Fig. 6.7.1 shows a zero-lag FIR filter defined by Eq. (6.4.4)
with length N; = 100 and applied to the noisy signal shown on the upper-left graph. The
noisy signal was y, = 20 + 0.2n + 4v,, for 0 < n < 300, with zero-mean, unit-variance,
white noise vy,.

noisy data steady EMA withd =0, A =1,
100 100

20

- - - noise-free
— output

0 75 150 225 300 0 75 150 225 300
n n

steady EMA withd =1, A=),
100 100

zero-lag FIR with equivalent length N,

80 80

60 60 _z

40 40

20 1 201
- - - noise—free| - - - noise—free
— output — output
0 0
0 75 150 225 300 0 75 150 225 300
n n

Fig. 6.7.1 Comparison of two equivalent steady-state EMAs with equivalent zero-lag FIR.

The equivalent EMA parameter for d = 0 was found from (6.7.13) to be Ay = 0.9242,
which was then mapped to A; = 0.9693 of an equivalent d = 1 EMA using Eq. (6.7.12).
The upper-right graph shows the d = 0 EMA output, and the lower-left graph, the d = 1
EMA. The steady-state version was used for both EMAs with default initializations. The
following MATLAB code illustrates the calculations:

250 6. Exponential Smoothing

t =0:300; s = 20 + 0.2*%t;
randn(’state’, 1000);

y =s + 4 * randn(size(t)); % noisy input
N1 = 100;

Ta0 = (N1A2-3*N1+2)/(N1A2+5*N1-2);
Tal = emap(1a0);

% equivalent Aq
% equivalent A1

C = stema(y,0,7a0); x0 = C(:,1);
stema(y,1,7al); x1 = C(:,1);

% steady EMA withd = 0, A = Aq
% steady EMA withd = 1, A = A

n
[}

% zero-lag FIR of length N

k=0:N1-1; h = 2*(2*N1-1-3*k)/N1/(N1+1);
h % alternative calculation

% h = Tpinterp(N1,1,-(N1-1)/2)’;
xh = filter(h,1,y);

figure; plot(t,y,’-’, t,s,’-"); figure; plot(t,s,’--", t,x0,’-");
figure; plot(t,s,’--’, t,x1,’-’); figure; plot(t,s,’--", t,xh,’-");
We observe that all three outputs achieve comparable noise reduction. The d = 0 EMA
suffers from the expected delay. Both the d = 1 EMA and the zero-lag FIR filter follow the
straight-line input with no delay, after the initial transients have subsided. m]

The choice of the parameter A is more of an art than science. There do exist, however,
criteria that determine an “optimum” value. Given the prediction Y,,n—1 = uch(n -1)
of yy, and prediction error e,/,-1 = ¥n — Yn/n-1, the following criteria, to be minimized
with respect to A, are widely used:

MSE = mean(e?,,_1) , (mean square error)

MAE = mean(|ep/n-1l) , (mean absolute error) (6.7.14)

MAPE = mean(100|en/n-1/ynl), (mean absolute percentage error)

where the mean may be taken over the entire data set or over a portion of it. Usually,
the criteria are evaluated over a range of A’s and the minimum is selected. Typically,
the criteria tend to underestimate the value of A, that is, they produce too small a A to
be useful for smoothing purposes. Even so, the optimum A has been used successfully
for forecasting applications. The MATLAB function emaerr calculates these criteria for
any vector of A’s and determines the optimum A in that range:

[err,lopt] = emaerr(y,d,lambda,type); % mean error criteria

where type takes one of the string values "mse’, ’mae’, ’mape’ and err is the criterion
evaluated at the vector Tambda, and Topt is the corresponding optimum A.

Example 6.7.2: Fig. 6.7.2 shows the same Dow-Jones data of Example 6.1.2. The MSE criterion
was searched over the range 0.1 < A < 0.9. The upper-left graph shows the MSE versus A.
The minimum occurs at Agp; = 0.61.

The upper-right graph shows the d = 1 exact EMA run with A = Ayp. The EMA output
is too rough to provide adequate smoothing. The other criteria are even worse. The MAE
and MAPE optima both occur at Aop; = 0.56. For comparison, the bottom two graphs show
the d = 1 exact EMA run with the two higher values A = 0.90 and A = 0.95. The MATLAB
code generating these graphs was as follows:

6.7. Smoothing Parameter Selection

MSE, Ay = 0.61

251

EMA withd = 1, A=Ay

0.07 15
14 data
— smoothed
0.06 13
12
£
11
0.05 g
2 10
=
=
9
0.04 8
7
0.03 6
0 0.2 0.4 0.6 0.8 1 0 200 300 400 500
A trading days
EMA withd =1, A=0.9 EMA withd =1, A=0.95
15 15
14k data 14} data
— smoothed — smoothed
13 13
w12 w12
E E
g1 g1
» »
2 10 2 10
<= <
= =
9 9
8 8
7 7
0 100 200 300 400 500 0 200 300 400 500

trading days

trading days

Fig. 6.7.2 MSE criterion for the DJIA data.

=<
I

Toadfile(’dow-oct07-dec09.dat’);
y = Y(:,1)/1000; n = (0:length(y)-1)’;

d =1; ul = ones(d+1,1);

la = linspace(0.1, 0.9, 81);
[err,Topt] = emaerr(y,d,la,’mse’);

figure; plot(la,err, lopt,minCerr),’.’);

C = ema(y,d,lopt); yhat = C*ul;
figure; plot(n,y,’:’, n,yhat,’-’);

1a=0.90; C = ema(y,d,1a); yhat = C*ul;
figure; plot(n,y,’:’, n,yhat,’-’);

% read data

% polynomial order for EMA

% range of A’s to search
% evaluate MSE at this range of A’s

% upper-left graph

% upper-right graph

% bottom-left graph
% use 1a=0.95 for bottom-right

We note that the d = 1 smoother is more capable in following the signal than the d = 0 one.
We plotted the forecasted value P41/, = c!(n)u; versus n. Because the output matrix C
from the ema function has the cI(n) as its rows, the entire vector of forecasted values can
be calculated by acting by C on the unit vector uy, that is, yhat = C*ul. [}

252 6. Exponential Smoothing

6.8 Single, Double, and Triple Exponential Smoothing

Single exponential smoothing is the same as first-order, d = 0, steady-state exponential
smoothing. We recall its filtering equation and corresponding transfer function:

(64
af!) = Aap’y + ayn, HYW(2)=H(2)=

s (6.8.1)

where @« = 1 — A. Double smoothing refers to filtering a,[f] one more time through
the same filter H(z); and triple smoothing, two more times. The resulting filtering
equations and transfer functions (from the overall input y,, to the final outputs) are:

2
X
aif) = Aaty + eall), HE2)= (m)
(6.8.2)

3
, , , I
a3 = aal® + xal?, HB(z)= (71 - Az*1>

yn —[H]— all! —[IT]— af?) —[H}— a

Thus, the filter H(z) acts once, twice, three times, or in general d+1 times, in cas-
cade, producing the outputs,

ynﬁ_,agn_,ﬁa}lz]ﬁ_,ar[f]_, . __ar[ld]_,_,a£1d+1] (6.8.3)

The transfer function and the corresponding causal impulse response from y,, to the

r-th output al,r] are, forr = 1,2,...,d+1 with u(n) denoting the unit-step function:
r
[l _ o o [_ pann+r-1)!
H'" (z)=[H(2)]" = (71 —AZ‘1> s h'"(n)=a"A ETCESN u(n) (6.8.4)

Double and triple exponential smoothing are in a sense equivalent to the d = 1 and
d = 2 steady-state EMA filters of Eq. (6.6.9) and (6.6.11). From Eq. (6.6.19), which in this
case reads H(z)= [H,(z),Hyp (z)]7, we may obtain the transfer functions from y,, to
the outputs a, and by:

(1-2)Q+A-2az"1) _ (1-20)201-2z7YH

H, = , H 6.8.5
a(z) 1-Az1)2 v(2) 1-Az1)2 (6.8.5)
It is straightforward to verify that H, and Hj, are related to H and H? by
Ho=2H-H*=1-(1-H)*| (local level filter)
(6.8.6)

Hy

(local slope filter)

&Ko g2
/\(H H?)

In the time domain this implies the following relationships between the a,, by, signals
and the cascaded outputs a,[f] , aLZ :

an = 2al — al? =local level
(6.8.7)

I
by = X(a,[ql] —a!?) =local slope

6.8. Single, Double, and Triple Exponential Smoothing 253
which can be written in a 2x2 matrix form:

an | _| 2 -1 ap' - ap' |1 A/ || an (6.8.8)
bo | | /A —a/A || P alZV | T |1 =2A/x || bn -

Similarly, for the d = 2 case, the transfer functions from yy, to an, bn, c,, are:

X[1+A+A%2=3A(1+A)z7! +3A°%272]

H, = -
a(z) (1-Az1)3
1 6?>(1-z"H[30+A)=(A+1)z71]
= — 6.8.9
Hy(2) 5 (1-Az-1)3 ()
1 a3(1-2z71)2
He(@) =5 " 2az1)3
which are related to H, H2, H? by the matrix transformation:
H 1 -Alx AA+1)/a? H,
H? =1 —2A/x 2A(2A+1)/a? || Hp (6.8.10)
H3 1 -3A/x 3ABA+1)/x? H.
implying the transformation between the outputs:
ay"! 1 -AMa AA+1D /e[an
al’ =1 —2A/a 2A(2A +1)/e? by (6.8.11)
aly 1 —3A/a 3AGBA+1)/a® || cn
with corresponding inverse relationships,
H, 1 6A2 —6A? 272 H
Hy | = Az o (1+5A) —20(1+4A) «(1+3A) || H? (6.8.12)
H. o? -2 o’ H3
an . 6A2 —6A2 2A2 all
bn | = 55 | @150 —20(1+40) a(1+3}) ai?! (6.8.13)
Cn o2 —ox2 o2 aﬁf]
In particular, we have:
H,=3H-3H>+H*=1- (1-H)? (6.8.14)
and
Ynm = an =3at —3al + al¥ (6.8.15)
More generally, for an order-d polynomial EMA, we have [243],
Hy=1-(1-H)! (6.8.16)
d+1
N d+1
Pnm=an=—- (—1)r(y)a,[{] (6.8.17)
r=1

254 6. Exponential Smoothing

6.9 Exponential Smoothing and Tukey’s Twicing Operation

There is an interesting interpretation [255] of these results in terms of Tukey’s twic-
ing operation [257] and its generalizations to thricing, and so on. To explain twicing,
consider a smoothing operation, which for simplicity we may assume that it can be rep-
resented by the matrix operation y = Hy, or if so preferred, in the z-domain as the
multiplication of z-transforms Y (z)= H(2)Y (2).

The resulting residual error is e =y —y = (I — H)y. In the twicing procedure, the
residuals are filtered through the same smoothing operation, which will smooth them
further, ¢ = He = H(I — H)vy, and the result is added to the original estimate to get an
improved estimate:

Vimpr =V +&=[H+H(I-H)]y=[2H-H%]y (6.9.1)

which is recognized as the operation (6.8.6). The process can be continued by repeating
it on the residuals of the residuals, and so on. For example, at the next step, one would
compute the new residualr = e —é = (I — H)e = (I — H)?y, then filter it through H,
f = Hr = H(I — H)?%y, and add it to get the “thriced” improved estimate:

Vimpr =V +&+f=[H+HI-H)+H(I-H)*]y=[3H-3H*+H]ly (6.9.2)
which is Eq. (6.8.14). The process can be continued d times, resulting in,
Vimpr = H[I+ I —H)+(I —H)*+---+ (I -H)y=[I-U-H¥"]y (693)

Twicing and its generalizations can be applied with benefit to any smoothing oper-
ation, for example, if we used an LPRS filter designed by B = lprs(N, d, s), the compu-
tational steps for twicing would be:

y =Ipfilt(B,y) = e=y-y = é=Ipfilt(B,e) = V=V +é

A limitation of twicing is that, while it drastically improves the passband of a lowpass
smoothing filter, it worsens its stopband. To see this, we write for the improved transfer
function, Himpr (2)= 1— (1 -H(2))d“. In the passband, H is near unity, say H ~ 1 —¢€,
with |€| < 1, then,

Himpr =1 (1 - (1-)" =1 - ¢!

thus, making the passband ripple (d+1) orders of magnitude smaller. On the other
hand, in the stopband, H is near zero, say H = +¢, resulting in a worsened stopband,

Hinpr=1- 1 Fe)'=1- (15 (d+1)€) = x(d+1)e

The twicing procedure has been generalized by Kaiser and Hamming [258] to the
so-called “filter sharpening” that improves both the passband and the stopband. For
example, the lowest-order filter combination that achieves this is,

Himpr = H*(3 — 2H)= 3H? - 2H® (6.9.4)

6.10. Twicing and Zero-Lag Filters 255

where now both the passband and stopband ripples are replaced by € — €2. More
generally, it can be shown [258] that the filter that achieves pth order tangency at H = 0
and gth order tangency at H = 1 is given by

i !
Himpr = HP™1 >’ (CARSLTRSIY (6.9.5)
= Pk

The multiple exponential moving average case corresponds to p = 0 and g = d,
resulting in Himpr = 1 — (1 — H)4+! whereas Eq. (6.9.4) corresponds top = g = 1.

6.10 Twicing and Zero-Lag Filters

Another advantage of twicing and, more generally, filter sharpening is that the resulting
improved smoothing filter always has zero lag, that is, 1 = 0.

Indeed, assuming unity DC gain for the original filter, H (z) | ,_; = 1, it is straight-
forward to show that the general formula (6.9.5) gives for the first derivative:

Hinpe(2) |21 =0 (6.10.1)

which implies that its lag is zero, i = 0, by virtue of Eq. (6.1.18). The twicing procedure,
or its generalizations, for getting zero-lag filters is not limited to the exponential moving
average. It can be applied to any other lowpass filter. For example, if we apply it to an
ordinary length-N FIR averager, we would obtain:

= Ha(z)=2H(z)-H?(2) (6.10.2)

N-1 _N

1 11-2z
Hiz= 2 Y gn= L1220
N = N1-z1

The impulse response of H, (z) can be shown to be, where 0 <n <2(N - 1),

2N -1 -
ha(n) = (T”) [u(n)—2u(n - N)+u(n-2N+1)] (6.10.3)
It is straightforward to show that i1; = 0 and that its noise-reduction ratio is
2 _
g 8N"—6N+1 (6.104)

3N3

Because of their zero-lag property, double and triple EMA filters are used as trend
indicators in the financial markets [297,298]. The application of twicing to the modified
exponential smoother of Eq. (2.3.5) gives rise to a similar indicator called the instanta-
neous trendline [285], and further discussed in Problem 6.8. We discuss such market
indicators in Sections 6.14-6.24.

The zero-lag property for a causal lowpass filter comes at a price, namely, that al-
though its magnitude response is normalized to unity at w = 0 and has a flat derivative
there, it typically bends upwards developing a bandpass peak near DC before it attenu-
ates to smaller values at higher frequencies. See, for example, Fig. 6.10.1.

This behavior might be deemed to be objectionable since it tends to unevenly amplify
the low-frequency passband of the filter.

256 6. Exponential Smoothing

To clarify these remarks, consider a lowpass filter H (w) (with real-valued impulse
response hj,) satisfying the gain and flatness conditions H(0)= 1 and H' (0)= 0 at
w = 0. The flatness condition implies the zero-lag property n = 0. Using these two

conditions, it is straightforward to verify that the second derivative of the magnitude
response at DC is given by:

2 [o]
diz |H(w)|%_y=2Re[H"(0)] +2|H' (0)|2 = 2Re[H"'(0)] = -2 > n’hy
n=0

(6.10.5)

Because 71 = >.,, nh, = 0, it follows that some of the coefficients h, must be nega-

tive, which can cause (6.10.5) to become positive, implying that v = 0is alocal minimum

and hence the response will rise for ws immediately beyond DC. This is demonstrated
for example in Problem 6.7 by Eq. (6.25.1), so that,

d? 2 S 472
dw? |H((U) |w=0 =-2 Z nzh” = (1=2)2
n=0
A similar calculation yields the result,
d? s 1
doz | H(@ o= =2 3 nthy = SN -1 (N =2)
n=
for the optimum zero-lag FIR filter of Eq. (6.4.4),
2(2N -1 - 3k)
hg(k)=—F——-—-, k=0,1,...,N-1 .10.
a(k) NN+1) 0,1,..., (6.10.6)

We note that the first derivative of the magnitude response |H (w) |? is always zero at
DC, regardless of whether the filter has zero lag or not. Indeed, it follows from H (0) = 1
and the reality of h,, that,

% |H(w) |%_o = 2Re[H' (0)] =0 (6.10.7)

Example 6.10.1: Zero-Lag Filters. In Problem 6.7, we saw that the double EMA filter has transfer
function and magnitude response:

(1-A)(1+A-2Az1)
(1-Az1)2
(1 —A)2[1+2A +5A2—4A(1 +A)cosw]
[1—-2Acosw +A2]?

Hg(z) =

|Ha(w)|* =

and that a secondary peak develops at,

_ a2 , 2
14+4A-A |Hoy (W) |2 = (1+A)

€08 Wmax = =5 1778 1+2A

The left graph of Fig. 6.10.1 shows the magnitude responses for the two cases of A = 0.8
and A = 0.9. The calculated peak frequencies are (Wmax = 0.1492 and Wmax = 0.0726
rads/sample, corresponding to periods of 277/ wmax = 42 and 86 samples/cycle. The peak
points are indicated by black dots on the graph.

6.10. Twicing and Zero-Lag Filters 257

double EMA filters zero-lag FIR filters

— =08 . —N-=15
---2=09 o ---N=33
o max Iy
15 15f
Bl I T
e el /)
= = 1]
0.5
0 S e oo oo 0 M AR [7
0 02 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

® in units of © @ in units of &

Fig. 6.10.1 Double EMA and zero-lag FIR filter responses.

The right graph shows the magnitude responses of the optimum zero-lag FIR filter h, (k)
of Eq. (6.10.6) for the two lengths N = 15 and N = 33. The lengths N were calculated to
achieve equivalent behavior in the vicinity of DC, i.e., equal second derivatives at w = 0,

4A2 1 3
m:g(N—l)(N—Z) => N:§+

12a° L1
(1-2)2 4

The magnitude responses were computed from the above formulas for the double EMA
cases, and by the following MATLAB code in the FIR cases:

w = linspace(0,1,1001); % (in units of 1
N = 15; k = (0:N-1);
h = 2%(2*N-1-3%k) /N/(N+1);

H2 = abs(freqz(h,1,pi*w)).A2; % magnitude response squared
We observe from these examples that the zero-lag filters have less than desirable pass-

bands. However, they do act as lowpass filters, attenuating the high frequencies and
thereby smoothing the input signal. m]

Local Level, Local Slope, and Local Acceleration Filters

Since the twicing operation can be applied to any lowpass filter H (z) resulting in the
zero-lag local-level filter, H, (z) = 2H (z) —H? (z), it raises the question as to what would
be the corresponding local-slope filter Hy, (z), in other words, what is the generalization
of Egs. (6.8.6) for an arbitrary filter H (z), and similarly, what is the generalization of
Eq. (6.8.12) for the thricing operations.

Starting with an arbitrary causal lowpass filter H (z), with impulse response h (n),
and assuming that it has unity gain at DC, the local level, slope, and acceleration filters
depend on the following two filter moments:

nh(n), wp»= > n*h(n) (6.10.8)

0 n=0

Me

U =n=
n

258 6. Exponential Smoothing

In terms of these parameters, the generalization of Eq. (6.8.6) is then,

Ha(z) =2H(2)-H*(2) (local level filter)

1 , (6.10.9)
Hy(z) = E[H(Z) —H*(2)] | (local slope filter)
while the generalization of (6.8.12) is,
Hy(2)) 63 —6u7 2u3 H(z)
Hy(z) | = o | He T 4 —2(pp +3u3) o +2ud H% (2) (6.10.10)
He(2) Hi i -24 i H3(2)
and in particular,
H,=3H-3H>+H>=1-(1-H)3 (6.10.11)

For an EMA filter, h (n)= (1 — A)A"u(n), we have,

o RS
“l_l—A’ IJZ—(I_A)Z

and Egs. (6.10.9) and (6.10.10) reduce to (6.8.6) and (6.8.12), respectively. To justify
(6.10.9), consider a noiseless straight-line input signal, y, = a + bn. Since it is linearly
rising and noiseless, the local-level will be itself, and the local-slope will be constant,
that is, we may define,

ap=a+bn, b,=b

Following the calculation leading to Eq. (6.1.24), we can easily verify that the two
successive outputs, a,[ql] , a,[qz], from the twice-cascaded filter h (n), will be,

all=a+b(n-—p)=(a-mb)+bn=a+bn—ub=a, - uby,
al?) = (a— b - u1b)+bn = (a — 2u1b) +bn = a, — 21 by,

These may be solved for ay, by, in terms of aLH , aLZ], leading to the following time-

domain relationships, which are equivalent to Egs. (6.10.9),
an = 2alt! — al?

bn = i (ar[ql] - aLZ])
H1
For the thricing case, consider a noiseless input that is quadratically varying with
time, y, = a + bn + cn?, so that its local level, local slope, and local acceleration may
be defined as,t
dp,=a+bn+cn®, b,=b+2chn, ch=c

Ttrue acceleration would be represented by 2c.

6.11. Basis Transformations and EMA Initialization 259

Upon passing through the first stage of h(n), the output will be,

all = >'[a+b(n-k)+c(n-k)?]h(k)
k

=>[a+b(n-k)+c(n?-2nk + k%]h(k)
k

=a+bn-p)+c(n® —2np + uz)

= (a— by + cup)+(b - 2cuy)n + cn®

and applying the same formula to the second and third stages of h(n), we find the
outputs,
alll = (a—buy + cuz) + (b - 2cuy)n + cn?

al?l = (a - 2bpy + 2cus + 2cu3) + (b — 4cpy)n + cn®
al}l = (a - 3buy + 3cpz + 6cud) + (b — 6cp) n + cn?
which can be re-expressed in terms of the ay, by, ¢, signals,
aﬁl] =dp — Mbn + p2cn
al?l = ap — 2p1by + 2 (2 + p2)cn
alP’ = ap —3p1bn + 3 (u2 +2p3) cn

Solving these for a,, by, ¢, leads to the time-domain equivalent of Eq. (6.10.10),

. . . .
an| [om —6u 2pf ay!
bu | =5 5| M2+ dut =2k +3ud) w2+ 2uf ai’!
c H M1 -2 mn ai!

and in particular,
an = 3al = 3al? + al3

6.11 Basis Transformations and EMA Initialization

The transformation matrix between the c(n)= [co(n),c(n),...,ca(n)17 basis and

the cascaded basis a(n)= [aﬁ,l] , a;,z], ey a,[qd“] 1T can be written in the general form:

d
a(n)=Mc(n) = all=> Muci(n), r=1,2,...,d+1 (6.11.1)
i=0

The matrix elements M,; can be found by looking at the special case when the input
is a polynomial of degree d,

d
Xnir = > Tici(n)
i=0

260 6. Exponential Smoothing

The convolutional output of the filter H!"! (z) is then,

© © d
al/l'= > h" (k) xp-k = D W (k) D (=k)ei(n)

k=0 k=0 i=0
It follows that,
)) had _ | .
M, = Z hlrl (k) (=k)i= Z oAk w (=k)! (6.11.2)
= o k!(r —1)!

withl <r <d+1and 0 <i < d. The matrices ford = 1 and d = 2 in Egs. (6.8.8) and
(6.8.11) are special cases of (6.11.2). The function emat calculates M numerically,

’ M = emat(d, Tambda); % polynomial to cascaded basis transformation matrix

One of the uses of this matrix is to determine the initial condition vector in the a;,r]

basis, ainit = MCinit, Wwhere Cjyit is more easily determined, for example, using the default
method of the function stema.

The function mema implements the multiple exponential moving average in cascade
form, generating the individual outputs aLr]:

‘ [a,A] = mema(y,d,la,ainit); % multiple exponential moving average

where A is an Nx (d + 1) matrix whose nthrowisa(n) = [a#] cal?l L aldy]],and a
is the a, output of Eq. (6.8.17). The (d+1) X1 vector ainit represents the initial values
of a(n), thatis, apy = [al),al2) ..., al% " If the argument ainit is omitted, it
defaults to the following least-squares fitting procedure:

L = round((1+1a)/(1-Ta));

cinit = Ipbasis(L,d,-1)\y(1:L);
M = emat(d,1a);

ainit = M*cinit;

% effective length of single EMA

% fit order-d polynomial to first L inputs
% transformation matrix to cascaded basis
% (d+1) x1 initial vector

The function mema calculates the filter outputs using the built-in function filter
to implement filtering by the single EMA filter H (z)= /(1 — Az~!) and passing each
output to the next stage, for example, with aﬁo] = Vn,

a"l = filter(x, [1,-A1, a1 Aallly, r=1,2,...,d+1 (6.11.3)

The last argument of filter imposes the proper initial state on the filtering op-
eration (the particular form is dictated from the fact that fiTlter uses the transposed
realization.) Eq. (6.11.3) is equivalent to the operations:
r=12,...,d+1

all = aal”, + xall ", (6.11.4)

Example 6.11.1: EMA Initialization. To clarify these operations and the initializations, we con-
sider a small example using d = 1 (double EMA) and A = 0.9, « =1 — A = 0.1. The data
vector y has length 41 and is given in the code segment below.

The top two graphs in Fig. 6.11.1 show the default initialization method in which a linear
fit (because d = 1) is performed to the first L = (1 +A)/(1 — A)= 19 data samples. In the

6.11.

Basis Transformations and EMA Initialization
bottom two graphs, the initialization is based on performing the linear fit to just the first
L = 5 samples.
In all cases, the linearly-fitted segments are shown on the graphs (short dashed lines). In
the left graphs, the initialization parameters Cini;,ainir Were determined at time n = —1
and processing began at n = 0. In the right graphs, the ciuit, ainit Were recalculated to
correspond to time n = L—1 (i.e., n = 18 and n = 4 for the top and bottom graphs), and
processing was started at n = L. The table below displays the computations for the left
and right bottom graphs.
For both the left and right tables, the same five data samples {y,,0 < n < 4} were used to
determine the initialization vectors ci;;, which were then mapped into ainir = MCinit. The
transformation matrix M is in this example (cf. Eq. (6.8.8)):
1 A/« 1 -9
M= =
1 -2A/«x 1 -18
initialize at n = -1, filter forn >0 initialize at n = L-1, filter forn >L
60 60
— double EMA . — double EMA .
50f - - - linear fit, L = 19 . 501 - - - linear fit, L = 19
e data . < . e data
* 0t
30t P
200 4"':,4' . .
10¢7° !

5 10 15 20 25 30 35

5 10 15 20 25 30 35 40

0 40 0
n n
initialize at n = -1, filter for n >0 initialize at n = L-1, filter forn >L
60 60
— double EMA . — double EMA .
50f |- -~ linear fit, L =5 . 50f |- - linear fit, L= 5
e data . o e data
: 40t
301
201 7
it o
10
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

Fig. 6.11.1 Double-EMA initialization examples.

262 6. Exponential Smoothing

[1] [2] [1] [2]
n

n yp an an n yn a an
-1 —5.2000 —18.7000 -1

0 7 -3.9800 —17.2280 0 7

1 14 -2.1820 -15.7234 1 14

2 12 -0.7638 —14.2274 2 12

3 19 1.2126 -12.6834 3 19

4 12 2.2913 -11.1860 4 12 2.3000 —11.2000

5 14 3.4622 -9.7211 5 14 3.4700 -9.7330

6 16 4.7160 —8.2774 6 16 4.7230 —8.2874
39 44 39.2235 30.5592 39 44 39.2237 30.5596
40 47 40.0011 31.5034 40 47 40.0013 31.5037

For the left table, the data fitting relative to n = —1 gives:

- _[s3 e v o83 [52
clnlt - 1.5 = alnlt - clnlt - 1 _18 1.5 - _18.7

obtained from cinit = S\y(1:L), indeed, with S = Ipbasis(L,d, —1), we find

0.8 0.5 0.2 -0.1 —0.4] 1 B [8.3]

12
-0.2 -0.1 0.0 0.1 0.2 19 1.5

12

= Cinit = (STS)ilSTYI:L = |:

%)

Il
— ==
[O A

These initial values are shown at the top of the left table. The rest of the table entries are
computed by cranking the difference equations for n > 0,

all = aalt, + ay,
a? = 2aal?, + xal!
for example,
all = aa + ayo = (0.9) (=5.2)+(0.1) (7) = —3.980

al? = aa" + xal = (0.9) (-18.7)+(0.1) (-3.98) = —17.228

For the right table, the initialization coefficients relative ton = L —1 = 4 may be determined
by boosting those for n = —1 by L = 5 time units:

5
11 8.3 1 57783 15.8
Cinir = TyLe. o — = =
Cinit = (F7)" Cinic [0 1] [1.5] [0 1][1.5} [1.5}
) . 1 -97[158 2.3
Ainit = M = [1 —18] [L5] - [—11.2]

6.11.

Basis Transformations and EMA Initialization 263

Alternatively, €y can be computed from cinit = Ipbasis(L,d,L-1)\y(1:L),i.e,

1 -4 7
1 -3 14
02 0.0 0.2 04 0.6 15.8
= — Cinir = Tgy-1gT = =
S=|1 2] = o= (5797 yi [70.2 ~0.1 0.0 0.1 0.2] 12 [1.5]
1 -1 19
1 0 12

The ajn;; values are shown on the right table at the n = 4 line. The rest of the table is
computed by cranking the above difference equations starting at n = 5. For example,

all = aal + ays = (0.9) (2.3)+(0.1) (14) = 3.47
al?’ = aal?! + xal! = (0.9) (-11.2) +(0.1) (3.47) = —9.733

We note that the filtered values at n = L — 1 = 4 on the left table and the initial values on
the right table are very close to each other, and therefore, the two initialization methods
produce very comparable results for the output segments n > L. The following MATLAB
code illustrates the generation of the bottom graphs in Fig. 6.11.1:

y=1[7 14 12 19 12 14 16 26 24 22 13 22 26 15 22 28 28 29 34 23 26 ...
39 29 34 32 38 40 40 40 35 32 41 45 41 41 48 42 44 52 44 47 17,
n = (0:length(y)-1)’;

d=1; F=binmat(d,1); L=5;
la = 0.9; al = 1-Ta;
% L = round((1+1a)/(1-1a));

cinit = Tpbasis(L,d,-1\y(1:L);
M = emat(d,1a);

ainit = M*cinit;

C = stema(y,d,la,cinit);
[a,A] = mema(y,d,la,ainit);

N1 = norm(A-C*M’) + norm(a-C(:,1));

t = (0:L-1)’; p = Ipbasis(L,d,-1)*cinit;

figure; plot(n,y,’.’, n,a,’-’, t,p,’--’", n,y,’:

cinit = Ipbasis(L,d,L-D\y(1:L);
ainit = M*cinit;
nL = n(L+1l:end); yL = y(L+1l:end);

C = stema(yL,d,la,cinit);
[a,A] = mema(yL,d,Ta,ainit);

N2 = norm(A-C*M’) + norm(a-C(:,1));

t = (0:L-1)’; p = Ipbasis(L,d,L-D*cinit;

figure; plot(n,y,’.’, nL,a,’-’, t,p,’--", n,y,’

Ntot = N1 + N2

% F = boost matrix - not needed

% use this L for the top two graphs
% fit relative ton = -1

% transformation matrix

% initial values for cascade realization

% needed for testing purposes only
% filter forn = 0

% compare stema and mema outputs

% initial L fitted values

)5 % bottom left graph

% fit relativeton = L — 1
% or, multiply previous cinit by (F’)AL
% initial values for cascade realization

% restrict inputton > L

% needed for testing purposes only
% filter forn > L

% compare stema and mema outputs

% initial L fitted values

:’); % Dbottom right graph

% overall test - should be zero

264 6. Exponential Smoothing

The first initialization scheme (finding c i, @inic at 1 = —1 and starting filtering at n = 0)
is generally preferable because it produces an output of the same length as the input. 0O

An alternative initialization scheme that is more common in financial market trading
applications of EMA is discussed in Sec. 6.17.
6.12 Holt’s Exponential Smoothing

We recall that the d = 1 steady-state EMA was given by

an 11 An-1 X1
[b”}z[o 1}[bn—1:|+[(x2}(y”_anfl_bnfl) (6.12.1)

with asymptotic gain factors «; = 1 —A2 and &, = (1 —A)?, which are both computable
from a single A parameter.

Holt [240] has generalized (6.12.1) to allow arbitrary values for o, x>. The addi-
tional flexibility has been found to be effective in applications. There is an alternative
way of writing (6.12.1). From the first equation, we have

1
an = dp-1+byp1+o1(yn—an-1—-bn-1) = Yn—an-1-bp-1= oT(an_an—l_bn—l)
1
and substituting into the second,
[2¥]
by =bpn1+c2(Yn—an-1 —bn-1)=bn1+ OT(an —an-1—bn-1)
1

Defining &> = &2/, we may write the new system as follows:

an =dnp-1+by1+ &1 (Yn—an-1 —bn-1)

] (6.12.2)
by =bp_1 + &2(an — an-1 — bu-1)
and defining the effective A-parameters A; = 1 — &; and A» = 1 — &»,
an = A1 (Ap-1 + bn-1) +x1yn
B (Holt’s exponential smoothing) (6.12.3)
by = Aobp_1 + &2 (an — an-1)

Eq. (6.12.1) is referred to a exponential smoothing with “local trend”. The first equa-
tion tracks the local level a,, and the second, the local slope by, which is being deter-
mined by smoothing the first-order difference of the local level a,, — a,-1.

The predicted value is as usual Y,,;n—1 = an-1 + b1, and for the next time instant,
Yn+1/n = an + by, and T steps ahead, Yn+1/n = dn + by T. The MATLAB function holt
implements Eq. (6.12.1):

C = holt(y,al,a2,cinit); % Holt’s exponential smoothing

6.13. State-Space Models for Holt’s Method 265

where C has the same meaning as stema, its nth row c’(n) = [ay,, b,] holding the local
level and slope at time n. The initialization vector cinit can be chosen as in stema by
a linear fit to the first L samples of y, where L = (1 + A) /(1 — A), with A determined
from o from the relationship &; = 1 — A2 or A = /T — ;. Another possibility is to
choose cinit = [y0,017, or, [Yo,y1 — ¥olT.

Like emaerr, the MATLAB function holterr evaluates the MSE/MAE/MAPE errors over
any set of parameter pairs (i, ®2) and produces the corresponding optimum pair
((xl,opta az,opt):

% mean error measures

|[err,alopt,a20pt] = holterr(y,al,a2,type,cinit);

By taking z-transforms of Eq. (6.12.1), we obtain the transfer functions from y, to
the two outputs an, by:

&1 + (0 — 0(1)271

Ha(z) = 1+ (1 +0—-2)z7 1+ (1 —x;)z2

(6.12.4)
o (1—2z71)

Hy (2) = 1+ (1 +0—2)z71+ (1 —0x1)z2

The transfer function from y,, to the predicted output Yn+1/nisH(z)= Hy(z) +Hp (2).
Making the usual assumption that y, is a white noise sequence, the variance of Y,,11/n
will be O')g, = 'RO')Z,, where R is the NRR of H(z):

20 + oo+ 200
S oo (4-200 — o)

R=> h’(n) (6.12.5)
n=0
This reduces to Eq. (6.7.9) in the EMA case of &; = 1 — A2 and a» = (1 — A)?,
while Eq. (6.12.4) reduces to (6.8.5). It can be shown that R remains less than unity
for0 < ¢y <land 0 < &2 <21 (1 — 1) /(1 + 1), with R reaching unity at &; =
V2—-1=0.4142 and & = 20¢1 (1 — 1) /(1 + o) = 2(3 — 2+/2) = 0.3431.

6.13 State-Space Models for Holt’s Method

Just like the d = 0 local level case could be represented by an innovations model, so
can the linear trend model. We may define the model by assuming that the prediction
is perfect and thus, the prediction error e,,n—1 = Yn — Yn/n-1 = &n iS a white noise
signal. The state vector may be defined as x,, = [an, bn]7, leading to the innovations
state-space model,

Yn = [1,1]xp-1 + &n

[e (6.13.1)
n — O 1 n-1 0(2 n

Eliminating the state vector, we may obtain the transfer function from the innova-
tions sequence &, to the observation yy,

Y(z) 1+ (i+ae—2)z7 +(1-ay)z?
E(z) (1-2z1)2

266 6. Exponential Smoothing

which leads to an ARIMA(0,2,2) or IMA(2,2) equivalent signal model:
Vin=Yn—2Vn2+Yn2=¢En+ (@1 + 02 —2)en1+ (1 -1)énz (6.13.2)
For &y =1 — A% and & = (1 — A)?, we obtain the special case [253],

Y(z) (1-Az™1)?
E(z) ~ (1-z"1H2’

V2Yn = &n — 2AEn1 + A%En_s (6.13.3)

The following more conventional formulation of the linear trend state-space model
has steady-state Kalman filtering equations that are equivalent to Holt’s method:

an+1 11 an Wn an
|:bn+1:|:|:0 1][bn]+[un], Yn=[1,0]|:bn:|+vn (6.13.4)

where a,, b, represent the local level and local slope, respectively, and wy,, uy,, v, are
zero-mean, mutually uncorrelated, white-noise signals of variances 02, 03, 2. Denot-
ing the state vector and its filtered and predicted estimates by,

| an .| an . |1 1] an
Xp = by | Xn/n = i’n y Xn+l/n = 0 1 Bn

it turns out that the steady-state Kalman filtering equations take exactly the innovations
form of Eq. (6.13.1):

. o a 11 dn- «
&n =Yn — (an—l +bn—1), |:l;n:| = |:0 1:| |:l;n 1 :| + |: 0(; :| &n (6135)
n n—

where «, x; are related to the noise variances by:

oy od+oioe—202 03 o (6.13.6)
ol 1-o0g ot 1-0g o

State-space models provide a modern way of thinking about exponential smoothing
and will be explored further in Chap. 13.

There is an extensive literature on exponential smoothing, a small subset of which
is [232-279]. There are many other variants (no less than 15), such as multiplicative,
seasonal, adaptive versions. A recent review of all cases that emphasizes the state-space
point of view is found in [239].

We finish by mentioning the Holt-Winters generalization [241] of Holt’'s method to
seasonal data. In addition to tracking the level and slope signals a,, b, the method also
tracks the local seasonal component, say s,. For the additive version, we have:

an =A1(an-1+bn-1)+a1(Yn — Sn-p)

by =Aobn_1 + &2 (an — An-1) (Holt-Winters) (6.13.7)

Sn = A3Sp-p + &3 (Yn — An-1 — bn-1)

where D is the assumed periodicity of the seasonal data, and o3 and A3 = 1 — 3 are the
smoothing parameters associated with the seasonal component. The predicted estimate
is obtained by Yn+1/n = an + by + Sp—p.

6.14. Filtering Methods in Financial Market Trading 267

6.14 Filtering Methods in Financial Market Trading

Technical analysis of financial markets refers to a family of signal processing methods
and indicators used by stock market traders to make sense of the constantly fluctuating
market data and arrive at successful “buy” or “sell” decisions.

Both linear and nonlinear filtering methods are used. A comprehensive reference on
such methods is the Achelis book [280]. Some additional references are [281-347].

Here, we look briefly at some widely used indicators arising from FIR or EMA filters,
and summarize their properties and their MATLAB implementation. In order to keep
the discussion self-contained, some material from the previous sections is repeated.

6.15 Moving Average Filters - SMA, WMA, TMA, EMA

Among the linear filtering methods are smoothing filters that are used to smooth out
the daily fluctuations and bring out the trends in the data. The most common filters are
the simple moving average (SMA) and the exponentially weighted moving average (EMA),
and variations, such as the weighted or linear moving average (WMA) and the triangular
moving average (TMA). The impulse responses of these filters are:

(SMA) h(n)=%, 0<n=<N-1

2(N —n)

(WMA) hiny=———%-, 0<n<N-1
NN +1) (6.15.1)
(TMA) h(n)= W 0<n<2N-2
(EMA) h(in)=(1-A)A", 0<n<ow
with transfer functions,
l+z 7 +z 2+ 42z N1 112N
(SMA) H(z)= N = T,
B 2 N-(N+1)z !4z N1t
WMA - 2= g5 (1-z1)2
, (6.15.2)
11-zN
(EMA) H(Z)—m, x=1-

where N denotes the filter span for the SMA and WMA cases, while for the EMA case, A is

a forgetting factor such that 0 < A < 1, which is usually specified in terms an equivalent

FIR length N given by the following condition, which implies that the SMA and the EMA

filters have the same lag and the same noise reduction ratio, as discussed in Sec. 6.1,

1+A N-1 2
=

A=

N=1-2 N+1 * N+1

(6.15.3)

268 6. Exponential Smoothing

The TMA filter has length 2N — 1 and is evidently the convolution of two length-N
SMAs. Denoting by y, the raw data, where n represents the nth trading day (or, weekly,
monthly, or quarterly sample periods), we will denote the output of the moving average
filters by a,, representing the smoothed local level of y,. The corresponding I/0 filtering
equations are then,

_Ynt¥Yn1tYnot -+ Yn-N+1

(SMA) dn N
5 N-1
(WMA) ap = m kgo (N —Kk) yn-k
= (6.15.4)
1 2N-2
(TMA) an = 5 kzo (N = k=N +1[) yn-x

(EMA) anp =Adn-1+ (1 =A)yn

The typical trading rule used by traders is to “buy” when a, is rising and y, lies
above ay, and to “sell” when aj, is falling and yj, lies below ay,.

Unfortunately, these widely used filters have an inherent lag, which can often result
in false buy/sell signals. The basic tradeoff is that longer lengths N result in longer
lags, but at the same time, the filters become more effective in smoothing and reducing
noise in the data. The noise-reduction capability of any filter is quantified by its “noise-
reduction ratio” defined by,

R = > h*(n) (6.15.5)
n=0

with smaller R corresponding to more effective noise reduction. By construction, the
above filters are lowpass filters with unity gain at DC, therefore, satisfying the constraint,

> h(n)=1 (6.15.6)
The “lag” is defined as the group delay at DC which, after using Eq. (6.15.6), is given by,

n= nh(n) (6.15.7)

=S
1M

One can easily verify that the noise-reduction ratios and lags of the above filters are:

1 N-1
MA == A=
(SMA) R N n 2
4N +2 N-1
MA T
WMA - R=svov+n: T3
(6.15.8)
2N% +1 _
(TMA) R—W, n=N-1
1-A 1 _ A N-1 .
(EMA) R = 1+A = N, n= ﬁ = T, for equivalent N

6.15. Moving Average Filters - SMA, WMA, TMA, EMA 269

The tradeoff is evident, with R decreasing and 1 increasing with N.

We include one more lowpass smoothing filter, the integrated linear regression slope
(ILRS) filter [307] which is developed in Sec. 6.16. It has unity DC gain and its impulse
response, transfer function, lag, and NRR are given by,

6(n+1)(N—-1-n)

(IRLS) h(n)= n=0,1,...,N-1

N(N2-1) '
3 6 Nl-zH1+zM-1-zMU+zY
H(z)= NNZZT) =73 (6.15.9)
_ N-2 _ 6(N%+1)
=y REsne oy

Fig. 6.15.1 compares the frequency responses of the above filters. We note that
the ILRS has similar bandwidth as the WMA, but it also has a smaller NRR and more
suppressed high-frequency range, thus, resulting in smoother output.

frequency responses, N =19, A =0.90 frequency responses, N =39, L =0.95

---SMA ---SMA

0 WMA]] WMA|
TMA TMA
-6 — ILRS ||
--- EMA
-12 1
\
\
g -18 .
¥
-24 '
. et
-30 Fobed v A
_36 oo
[
0 0.1 0.4 0.5

Fig. 6.15.1 Frequency responses of SMA, WMA, TMA, ILRS, and EMA filters.

As a small example, we also give for comparison the impulse responses, h = [hg, h1,...],
of the SMA, WMA, TMA, and ILRS filters for the case N = 5,

(SMA) h==[1,1,1,1,1]

Ul | =

(WMA) h=-[5,4,3,2,1]

1
15

1
(TMA) h=-[1,2,3,4,5,4,3,2,1]

1
(ILRS) h = E[Z’ 3,3,2,0]

with the SMA having constant weights, the WMA having linearly decreasing weights, the
TMA has triangular weights, and the last coefficient hx_; of the ILRS always being zero.

270 6. Exponential Smoothing

The following MATLAB functions implement the SMA, WMA, TMA, and ILRS moving
averages. The input array y represents the financial data to be filtered.

a = sma(y,N,yin); % simple moving average

a = wma(y,N,yin); % weighted moving average

a = tma(y,N,yin); % triangular moving average

a = ilrs(y,N,yin); % integrated linear regression slope

The string variable yin specifies the way the filters are initialized and can take on
the following values as explained further in Sec. 6.19,

yin = 'f’, % progressive filtering (default method)
yin = 'n’, % initial transients are NaNs (facilitates plotting)
yin = 'c’, % standard convolutional transients

Some comparisons of these and other moving average indicators are presented in
Figures 6.18.2 and 6.21.1.

6.16 Predictive Moving Average Filters

The predictive FIR and double EMA filters discussed in Sects. 6.4 and 6.8 find application
in stock market trading. Their main property is the elimination or shortening of the
lag, which is accomplished by tracking both the local level and the local slope of the
data. More discussion of these filters and their application in the trading context may
be found in Refs. [297-308].

The local-level and local-slope FIR filters h, (k) and hy, (k) were given in Eq. (6.4.4),
and their filtering equations by (6.4.5). They define the following market indicators:

N-1
an = Z hg (K) yn—x = linear regression indicator
k=0

N-1
b, = Z hp (k) yn—k = linear regression slope indicator (6.16.1)
k=0
N-1
dan + b, = Z h; (k) yn—x = time-series forecast indicator
k=0

where h; (k)= hg, (k) +hp (k). The quantity a, + b, denoted by ¥,+1/n, represents the
one-step ahead forecast or prediction to time n + 1 based on the data up to time n. More
generally, the prediction T steps ahead from time n is given by the following indicator,
which we will refer to as the predictive moving average (PMA),

N-1

Pnirm =dn+ Thp = > hr(K)yn—k | (PMA) (6.16.2)
k=0

where, as follows from Eq. (6.4.4), we have forn = 0,1,...,N — 1,

6.16. Predictive Moving Average Filters 271

(2N —-1-3n) N 6(N —1-2n)
N(N +1) N(NZ2-1)

he (1) = ha (1) +Thy (n) = 2 6.16.3)

The time “advance” T can be non-integer, positive, or negative. Positive Ts corre-
spond to forecasting, negative Ts to delay or lag. In fact, the SMA and WMA are special
cases of Eq. (6.16.3) for the particular choicesof T = —(N—-1)/2and T =—-(N—-1)/3,
respectively.

The phrase “linear regression indicators” is justified in Sec. 6.18. The filters h(n)
are very flexible and useful in the trading context, and are actually the optimal filters that
have minimum noise-reduction ratio subject to the two constraints of having unity DC
gain and lag equal to —T, that is, for fixed N, h+ (n) is the solution of the optimization
problem (for N = 1, we ignore the lag constraint to get, h(n)= 1, for n = 0, and all 7):

N-1 N-1 N-1
R = > h®’(n)=min, subjectto » h(n)=1, > nhc(n)=-T (6.16.4)
n=0 n=0 n=0

This was solved in Sec. 6.4. The noise-reduction-ratio of these filters is,

1 3(N-1+271)°

N*ONNZDD (6.16.5)

N-1
Re= D> hi(n)=
n=0

We note the two special cases, first for the SMA filter having T = — (N — 1) /2, and
second, for the zero-lag filter h, (n) having T = 0,
1 4N -2
—, Rag=—"-
N TTNIN+1)

The transfer functions of the FIR filters h, (n), hy (n) are not particularly illuminat-
ing, however, they are given below in rational form,

Rsma =

N-1
Hu(z) = Z ha(n)z™"
n=0

_ 2 NAQ-zYeR+zN-1+2zH)a-zN)
T N(N+1) (1—z1)2

_ 6 N1l-zbHQ+zM-Q+zHa-z7N)
T N(N2-1) (1-2z"1)2

N-1
Hp(z) = > hp(n)z™"
n=0
By a proper limiting procedure, one can easily verify the unity-gain and zero-lag
properties, Hy (2) | ,_, = 1,and, i = —H(2) | ,_; = 0.
The ILRS filter mentioned in the previous section is defined as the integration, or
cumulative sum, of the slope filter, which can be evaluated explicitly resulting in (6.15.9),

= (6.16.6)

i L6(N—-1-2k) 6(n+1)(N-1-n)
=2 he0=2 “Gna 1) T N(NE - 1)

k=0 k=0
where 0 < n < N — 1. For n > N, since hy (k) has duration N, the above sum remains
constant and equal to zero, i.e., equal to its final value,

N-1

> hp(k)=0

k=0

272 6. Exponential Smoothing

The corresponding transfer function is the integrated (accumulated) form of Hy (z)
and is easily verified to be as in Eq. (6.15.9),

Hy (z)
1-2z1

H(z)=

The following MATLAB function, pma, implements Eq. (6.16.2) and the related indi-
cators, where the input array y represents the financial data to be filtered. The function,
pmaimp, implements the impulse response of Eq. (6.16.3).

at = pma(y,N,tau,yin); % at = a + tau*b, prediction distance tau

a = pma(y,N,0,yin); % local-level indicator

b = pma(y,N,1,yin)-pmaCy,N,0,yin); % local-slope indicator

af = pma(y,N,1,yin); % time-series forecast indicator, af = a + b
ht = pmaimp(N,tau); % impulse response of predictive filter

ha = pmaimp(N,0); % impulse response of local level filter

hb = pmaimp(N,1)-pmaimp(N,0); % impulse response of local slope filter

and again, the string variable yin specifies the way the filters are initialized and can take
on the following values,

yin = 'f’, % progressive filtering (default method)
yin = 'n’, % initial transients are NaNs (facilitates plotting)
yin = 'c’, % standard convolutional transients

A few examples of impulse responses are as follows, for N = 5,8,11,

1
N=5, hs=_[3,2,1,0,-1] (local level)
1
hy = o [2,1,0, -1, -2] (local slope)
1
h, = B[gl 5,2, -1, —4] (time-series forecast)

1
N=8, ho=_,[5,4,3,2,1,0 -1, -2]

1
h,=-1[7,5,3,1, -1, -3, -5, -7
b 84[]

1
hy = o[14,11,8,5,2, -1, —4, -7]

1
N=11, hs=[7,6,5,4,3,2,1,0, -1, -2, -3]

1
hy=-—15,4,3,2,1,0, -1, -2, -3, -4, -
b=1gl5. 4.3 0 3 5]

1
h, = E[ZO’ 17, 14, 11, 8,5, 2, -1, -4, -7, —10]

Some comparisons of PMA with other moving average indicators are shown in Figures
6.18.2 and 6.21.1.

6.17. Single, Double, and Triple EMA Indicators 273

6.17 Single, Double, and Triple EMA Indicators

As discussed in Sec. 6.6, the single EMA (SEMA), double EMA (DEMA), and triple EMA
(TEMA) steady-state exponential smoothing recursions are as follows,

enin-1=Yn—Yn/n-1 =Yn — dn-1

(SEMA) (6.17.1)
an = an-1+ (1 = A)en/n_1

enin-1=Yn—Ynn-1=yYn— (@n-1 +bn_1)
an 1 1 An-1 1-2A2 (DEMA) (6.17.2)
bo | 710 1| bas || @=a)2 |Cnmt

enin-1=Yn—Ynin-1=Yn— (An-1 +bn_1 +cn_1)

an 1 1 1 an-1 (08! (TEMA) (6.17.3)
by |=[0 1 2 bp1 | +| &2 | enna
Cn 0 0 1 Cn—1 3

where 3 1
o =1-2A3%, 0(2:5(17?\)(172\2), 0(315(17A)3

and Yy,n-1 represents the forecast of y, based on data up to time n—1. More generally,
the forecast ahead by a distance T is given by,

(SEMA))7n+T/n =dan)7n/n—1 = dn-1
(DEMA) Ynit/in = an +bnT = Yu/m-1 = An-1 +bn1 (6.17.4)

(TEMA) Ynyrn = dn +bnT + cnT? Ynin-1=dn-1+bn_1 +cn

We saw in Sec. 6.8 that an alternative way of computing the local level and local slope
signals ay, by, in the DEMA case is in terms of the outputs of the cascade of two single
EMAs, that is, with x = 1 — A,

1
e | el = Aal e,
1 | EMA | L (6.17.5)

a2l = aa? 4 xall

In |

‘EMA‘

an = 2al!! — al?! = local level DEMA indicator

« (6.17.6)

b, = 3 (al'! — al?!) = local slope DEMA indicator

The transfer functions from y, to the signals a,, b, were given in Eq. (6.8.5), and
are expressible as follows in terms of the transfer function of a single EMA, H(z) =
«/(1—-2az71y,

274 6. Exponential Smoothing

x(l+A-2Az71

_ - _H2()=1-1[1— 2
H,(z) = (1_Az1)2 =2H(z)-H*(z)=1-[1-H(z)]
21zl & (6.17.7)
_xl- _X 2
Hp(2) =559 = 3 [H(2)-H*(2)]

Similarly, in the TEMA case, the signals an, by, ¢, can be computed from the outputs
of three successive single EMAs via the following relationships,

all = aalt! + ay,
" all al ¥)
o } EMA } ” } EMA } " } EMA } n a2l = aal + xalll | (6.17.8)
3
all = aall + wal?
an) 6A2 ~6A2 272 ay"!
bn | = 55 | @1450) 201 440) a1 +33) a?! (6.17.9)
Cn 2 22 o2 aLS]

where & = 1 — A. See also Egs. (6.8.9)-(6.8.13). In particular, we have,

an = 3al = 3alA + al?! (local level TEMA indicator) (6.17.10)

Initialization issues for the single EMA, DEMA, and TEMA recursions are discussed
in Sec. 6.19. The following MATLAB functions implement the corresponding filtering
operations, where the input array y represents the financial data to be filtered.

a = sema(y,N,yin); % single exponential moving average
[a,b,al,a2] = dema(y,N,yin); % double exponential moving average
[a,b,c,al,a2,a3] = tema(y,N,yin); % triple exponential moving average

The variable yin specifies the way the filters are initialized and can take on the
following possible values,

yin = y(1) % default for SEMA

yin = ’'f’ % fits polynomial to first N samples, default for DEMA, TEMA

yin = 'c’ % cascaded initialization for DEMA, TEMA, described in Sect. 6.19
yin = any vector of initial values of [a], [a;b], or [a;b;c] at n=-1

yin = [0], [0;0], or [0;0;0] for standard convolutional output

Even though the EMA filters are IIR filters, traders prefer to specify the parameter A
of the EMA recursions through the SMA-equivalent length N defined as in Eq. (6.1.16),
N-1 1+A
= N =
N+1 < 1-A

(6.17.11)

The use of DEMA and TEMA as market indicators with less lag was first advocated
by Mulloy [297,298]. Some comparisons of these with other moving average indicators
are shown in Fig. 6.18.2.

6.18. Linear Regression and R-Square Indicators 275

6.18 Linear Regression and R-Square Indicators

In the literature of technical analysis, the PMA indicators of Eq. (6.16.1) are usually not
implemented as FIR filters, but rather as successive fits of straight lines to the past N
data from the current data point, that is, over the time span, [n — N + 1, n], for each n.
This is depicted Fig. 6.18.1 below.

A
a, = local level

straight line fit

b,, = local slope
data - n Y

filter span
N

n—N+1 n o+t

T

Fig. 6.18.1 Local linear regression and prediction.

They have been rediscovered many times in the past and different names given to
them. For example, Lafferty [300] calls them “end-point moving averages”, while Rafter
[303] refers to them as “moving trends.” Their application as a forecasting tool was
discussed first by Chande [299].

Because of the successive fitting of straight lines, the signals a,, b, are known as
the “linear regression” indicator and the “linear regression slope” indicator, respectively.
The a, indicator is also known as “least-squares moving average” (LSMA).

For each n > N — 1, the signals a,, by, can be obtained as the least-squares solution
of the following N x2 overdetermined system of linear equations in two unknowns:

an—kb,=yn-x, k=0,1,...,N-1 (6.18.1)

which express the fitting of a straight line, a + bT, to the data [Yp-N+1,---,VYn-1,Ynl,
that is, over the time window, [n — N + 1, n], where a is the intercept at the end of the
line. The overdetermined system (6.18.1) can be written compactly in matrix form by
defining the length-N column vectors,

1 0 Yn
1 1 Yn-1
1 2 Yn-2
. . an
u=|:1|, k= : . Yn= : > [u, k][b }=yn (6.18.2)
1 k Yn-k "
[1] LN-1] L Yn-N+1 |

with the least-squares solution expressed in the following MATLAB-like vectorial nota-
tion using the backslash operator,

276 6. Exponential Smoothing

[g“} = [u, -k] \ 'y, (6.18.3)

Indeed, this is the solution for the local level and local slope parameters a, b that
minimize the following least-squares performance index, defined for each n,

N-1
In= > (a—-bk—yn)° =min (6.18.4)
k=0

In order to account also for the initial transient period, 0 < n < N — 1, we may
change the upper limit of summation in Eq. (6.18.4) to,

min(n,N—1)
Jn= > (a—bk-yni)®=min (6.18.5)
k=0

which amounts to fitting a straight line to a progressively longer and longer data vector
until its length becomes equal to N, that is, starting with ag = y¢ and by = 0,F we fit a
line to [yo,y1] to get a;, by, then fit a line to [y, y1,y2] to get a», b,, and so on until
n = N — 1, and beyond that, we continue with a length-N data window.

Thus, we may state the complete solution for all 0 < n < L —1, where L is the length
of the data vector y,, using the backslash notation,*

for each, n=0,1,2,...,L — 1, do:
K, = min(n,N — 1) +1 = fitting length, K, = Nwhenn >N — 1
k= [0 : K, —1]" = column vector, length K,

= y(n — k)= column vector, [Vn,Yn_1,-++,Yn-K,+1)
Yn =Y() [Vn,Yn-1 Yn-Kp+1] (6.18.6)

u = ones (K, 1) = column vector

a
[b" } = [u, —k] \'y,, = linear regression indicators
n

R%(n)= (corr(-k,y,))* = 1 — det(corrcoef (-k, y,)) = R? indicator

where we also included the so-called R-square indicator,* which is the coefficient of
determination for the linear fit, and quantifies the strength of the linear relationship,
that is, higher values of R? suggest that the linear fit is statistically significant with a
certain degree of confidence (usually taken to be at the 95% confidence level).

The MATLAB function, r2crit in the OSP toolbox, calculates the critical values R% of
R? for a given N and given confidence level p, such that if R? (n)> R2, then the linear
fit is considered to be statistically significant for the nth segment. Some typical critical
values of R% at the p = 0.95 and p = 0.99 levels are listed below in Eq. (6.18.7), and
were computed with the following MATLAB commands (see also [280]),

tho = 0 is an arbitrary choice since by is indeterminate for N = 1.
*the backslash solution also correctly generates the case n = 0, i.e., dg = Yo and by = 0.
*where, corr, det, and corrcoef, are built-in MATLAB functions.

6.18. Linear Regression and R-Square Indicators 277

N = [5, 10, 14, 20, 25, 30, 50, 60, 120];
R2c = r2crit(N,0.95);
R2c = r2crit(N,0.99);

N p=095 p=0.99
5 07711 0.9180
10 0.3993 0.5846
14 02835 0.4374
20 0.1969 0.3152
25 0.1569 0.2552
30 0.1303 0.2143
50 0.0777 0.1303
60 0.0646 0.1090
120 0.0322 0.0549

The standard errors for the successive linear fits, as well as the standard errors
for the quantities a,, by, can be computed by including the following lines within the
for-loop in Eq. (6.18.6),

(6.18.7)

a
en =y, — [u,—K] [b:] = fitting error, column vector

ele,
oe(n) = X3~ standard error
"

(6.18.8)
_ [2(2Kx-1) B
oq(n) = K, Kyt 1) 0, (n) = standard error for a,
op(n) = 12 0. (n) = standard error for b
P TN Kk - T "

The derivation of the expressions for 0., 04, 0} follows from the standard theory
of least-squares linear regression. For example, linear regression based on the K pairs,
(Xk,Yk), k =0,1,...,K — 1, results in the estimates, Yx = a + bXxy, and error residuals,
ex = Yk — Yk, from which the standard errors can be calculated from the following
expressions [349],

2 1 2 2), X2 2 o
O = ——— ey, 0,=05—>—, O, = 6.18.9
e K-2 kgo k a e KO';? b KO';% ()
For our special case of equally-spaced data, xy = —k, we easily find,
K-1
- 1 K-1
X=-Kk=—— - _
X X Z k >
pan) , 20K-1) ,

4 K(K+1) ¢

K-1
— 5 1 K-1)(2K -1
xizkzz_zkzzg() () > 1>
Kk:O 6 o2 = o2
b K(K2-1) ¢
o 2 _
af:0£:k2—k2:K !

12

278 6. Exponential Smoothing

Standard error bands [329], as well as other types of bands and envelopes, and their
use as market indicators, are discussed further in Sec. 6.22. The MATLAB function, Ireg,
implements Egs. (6.18.6) and (6.18.8) with usage,

[a,b,R2,se,sa,sb] = Treg(y,N,init); % linear regression indicators

y = data a = local level se = standard error
N = window Tength b = Tocal slope sa = standard error for a
init = initialization R2 = R-square sb = standard error for b

where init specifies the initialization scheme and takes on the following values,

init = 7f7,
:

init = 'n

progressive linear fitting of initial N-1 samples, default
, replacing initial N-1 samples of a,b,R2,se,sa,sb by NaNs

The local level and local slope outputs a,, b, are identical to those produced by the
function pma of Sec. 6.16.

Generally, these indicators behave similarly to the DEMA indicators, but both indica-
tor types should be used with some caution since they are too quick to respond to price
changes and sometimes tend to produce false buy/sell signals. In other words, some
delay may miss the onset of a trend but provides more safety.

Example 6.18.1: Fig.6.18.2 compares the SMA, EMA, WMA, PMA/linear regression, DEMA, TEMA
indicators. The data are from [305] and represent daily prices for Nicor-Gas over 130
trading days starting on Sept. 1, 2006. The included excel file, nicor.xls, contains the
open-high-low-close prices in its first four columns. The left graphs were produced by
the following MATLAB code, in which the function, ohlc, from the OSP toolbox, makes an
OHLCT' bar chart,

Y = xlIsread(’nicor.x1s’); % read Nicor-Gas data

Y = Y(1:130,:); % keep only 130 trading days

y = Y(,4); % closing prices

t = 0:Tength(y)-1; % trading days

N = 20; % filter length

figure; % SMA, EMA, WMA

plot(t,sma(y,N),’r-", t,sema(y,N), k--", t,wma(y,N),’g-."); hold on;

ohlc(t,Y(:,1:4)); % add OHLC bar chart

figure; % PMA/1reg, DEMA, TEMA
plot(t,pma(y,N,0),’r-’, t,dema(y,N),’k--", t,tema(y,N),’g-."); hold on;
ohlc(t,Y(:,1:4)); % add OHLC bar chart

The filter length was N = 20. The right graphs are an expanded view of the range [45,90]
days and show more clearly the reduced lag of the PMA, DEMA, and TEMA indicators. At
about the 57th trading day, these indicators turn downwards but still lie above the data,
therefore, they would correctly issue a “sell” signal. By contrast, the SMA, EMA, and WMA
indicators are rising and lie below the data, and they would issue a “buy” signal.

T Open-High-Low-Close

6.18. Linear Regression and R-Square Indicators 279
NICOR, N =20 NICOR, N =20
52 : : 51 : : ‘
— SMA — SMA
--- EMA --- EMA
soff -~ WMA 1 goll - - WA
— data

| HJ
47t J 7

42O 20 40 60 80 100 120 4%0 40 50 60 70 80 90
trading days trading days
NICOR, N =20 NICOR, N =20
52 51
— PMA — PMA
--- DEMA

50

TEMA

40 60 80 100 120 30 40 50 60 70 80 90
trading days trading days

Fig. 6.18.2 Comparison of SMA, EMA, WMA with PMA/LREG, DEMA, TEMA indicators.

Fig. 6.21.1 in Sec. 6.21 compares the PMA with two other indicators of reduced lag, namely,
the Hull moving average (HMA), and the exponential Hull moving average (EHMA).

The R-squared and slope indicators are also useful in determining the direction of trend.
Fig. 6.18.3 shows the PMA/linear regression indicator, a,, for the same Nicor data, together
with the corresponding R?(n) signal, and the slope signal b, using again a filter length
of N = 20. They were computed with the MATLAB code:

[a,b,R2] = Treg(y,N); % local Tlevel, Tocal slope, and R-squared

% equivalent calculation:
% a = pma(y,N,0);
% b = pmaCy,N,1)-pma(y,N,0);

For N = 20, the critical value of R? at the 95% confidence level is R% = 0.1969, determined
in Eq. (6.18.7), and is displayed as the horizontal dashed line on the R? graph.

280 6. Exponential Smoothing

linear regression indicator, N = 20

R-squared, N =20

0 20 40 60 80 100 120

linear regression slope, N =20

0.3 T T T T T T

0.2 b

0.1F i

0
—0.1} i
—0.2} i
03 | | | | 1 |
0 20 40 60 80 100 120
trading days

Fig. 6.18.3 PMA/linear regression, R-squared, and linear regression slope indicators.

When R? (n) is small, below R?, it indicates lack of a trend with the data moving sideways,
and corresponds to slope b, near zero.

When R? (n) rises near unity, it indicates a strong trend, but it does not indicate the direc-
tion, upwards or downwards. This is indicated by the slope indicator b,, which is positive
when the signal is rising, and negative, when it is falling. More discussion on using these
three indicators in conjunction may be found in [305]. [m}

6.19 Initialization Schemes

In Eq. (6.18.6), one solves a shorter linear fitting problem of progressively increasing
length during the transient period, 0 < n < N — 1, and then switches to fixed length N
forn>=N - 1.

6.19. Initialization Schemes 281

The same idea can be applied to all FIR filters, such as the SMA, WMA, TMA, and the
PMA filter, h+ (n), that is, to use the same type of filter, but of progressively increasing
length, during the period 0 < n < N — 1, and then switch to using the filters of fixed
length N for n > N — 1. The first N — 1 outputs computed in this manner are not the
same as the standard convolutional outputs obtained from the built-in function filter,
because the latter uses the same length-N filter and assumes zero initial internal states.

To clarify this, consider the SMA case with N = 5, then the above procedure and
the standard convolutional one compute the outputs in the following manner, agreeing
only aftern > N — 1 = 4,

progressive convolutional
1

dp = Yo ap = g)’o

1 1
01=E(Y1+)’0) al=§()/1+)’o)

1 1
azig()’z+)’1+)’0) azig()’z+)’1+)’0)

1 1
az=—(y3+y2+y1+yo) as = -3 +y2+y1+yo)

4 5

1 1
as = g(y4+ys +Y2+Y1+Yo0) | as = g(y4+y3 + Y2+ Y1 +Yo)

1 1
as = g()’s +Y4+y3+y2+y1) | as = g()’s +Ya+y3+y2+y1)

Similarly, the local level PMA filters, h,, of lengths up to N = 5 can be determined
from Eq. (6.16.3), leading to the following progressive initializations,

N=1, hy;=1[1], ao = Yo
N=2, h;=1[1,0], a =1
1 1
N =3, ha=é[5,2,—1], az=6(5)/2+2)’1—)/0)

1 1
N=4, h; = 5[7,4,1,—2], az = E(7Y3+4)/2 +y1 = 2Y0)

N=5, hg

1 1
5 (3,2,1,0,-1], a4= §(3)/4 +2y3+ Y2 — Vo)

and for the local slope filters hy,

N:l’ hb:[o]! b():O
N=2, hy=[1,-1], bi=yi1-yo
1 1
N=3, thE[LO,—l], bZZE(YZ_YO)
1 1
N =4, hh:E[3,1,*1,*3], b3:E(3y3+y27y173y0)

1 1
N=5, hy= E[Z,l,O,—l,—Z], b, = E(ZM +¥3=Y1-2Y0)

282 6. Exponential Smoothing

where, we arbitrarily set hy, = [0] for the case N = 1, since the slope is meaningless
for a single data point. To see the equivalence of these with the least-square criterion
of Eq. (6.18.5) consider, for example, the case N = 5and n = 2,

Jo=(a-y2)*+(@—-b-y))*+(a—2b—yy)?=min

with minimization conditions,

0J2

2q = 2la-y2)+2a-b-y)+2(a-2b-yo)=0 3a-3b=y,+y1 + Yo
=

%:_Z(Q—b_YI)_4(a_2b_YO):0 3a=5b =yl +2yo

resulting in the solution,
a:%(S)’erZYl*)’o), b:%()’zf)/o)
Similarly we have for the casesn =0and n =1,
Jo = (a—yo)?= min = a=yy, b =indeterminate
Ji=(@-y)*+@-b-y)*=min = a=y;, b=y -y

EMA Initializations

The single, double, and triple EMA difference equations (6.17.1)-(6.17.3), also need to
be properly initialized at n = —1. For the single EMA case, a good choice is a_; = Yy,
which leads to the same value at n = 0, that is,

ap=Ad-1 + &yg = Ayg + XY = Yo (6.19.1)

This is the default initialization for our function, sema. Another possibility is to
choose the mean of the first N data samples, a_; = mean([yo,Y1,...,YN-11).
For DEMA, if we initialize both the first and the second EMAS as in Eq. (6.19.1), then

we must choose, a[,ll] = Yo, which leads to a([)l] = Yo, which then would require that,

a[721] = a([)” = Yy, thus, in this scheme, we would choose,

aty] Yo a- 2 -1][a"} Yo
o | = = = o | = (6.19.2)
a Yo b_, /A —x/A a 0

This is the default initialization method for our function, dema. Another possibility
is to fit a straight line to a few initial data [297,348], such as the first N data, where
N is the equivalent SMA length, N = (1 + A)/(1 — A), and then extrapolate the line
backwards to n = —1. This can be accomplished in MATLAB-like notation as follows,

n=[1:N] = column vector
vy = [Vo,Y1,...,¥N-1]"= column vector

u = ones (size(n)) (6.19.3)

[Z:j = [wn]\y

6.19. Initialization Schemes 283

If one wishes to use the cascade of two EMAs, then the EMA signals, a,[ql] , a,&”, must

be initialized by first applying Eq. (6.19.3), and then using the inverse matrix relationship

of Eq. (6.17.6), i.e.,
a') 1 Al || aa
2| = (6.19.4)
aty 1 -2A/«x b_,

A third possibility [280] is to initialize the first EMA with a[,ll] = Yy, then calculate

the output at the time instant n = N — 1 and use it to initialize the second EMA at

n = N, that is, define a[[\,zll = a][\}ll. This value can be iterated backwards ton = -1 to

determine the proper initial value a[,zl] such that, if iterated forward, it would arrive at

the chosen value a][\jzll = a][\]lll. Thus, the steps in this scheme are as follows,

[y _ [2] [1]

a_y =Yo ay-1 = aN-y
forn=0,1,...,N -1, forn=N-1,...,1,0,
= (6.19.5)
: 1
an = Nay + oo al?l; = ~(af?! - xalll)

A
end end

Upon exit from the second loop, one has a[,zl] , then, one can transform the calculated

a[,ll] , a£21] to the an, by, basis in order to get the DEMA recursion started,

a- 2 —1|[a
b_, oA~/ a[,zl]

Such cascaded initialization scheme for DEMA (and TEMA below) is somewhat ad
hoc since the EMA filters are IIR and there is nothing special about the time n = N;
one, could just as well wait until about n = 6N when typically all transient effects have
disappeared. We have found that the schemes described in Egs. (6.19.2) and (6.19.3)
work the best.

Finally, we note that for ordinary convolutional output, one would choose zero initial

values,
a1 B 0 a [_11] _ 0
b.,| |o a [_21] 1o

All of the above initialization choices are incorporated in the function, dema. For
TEMA, the default initialization is similar to that of Eq. (6.19.2), that is,

a[,ll] Yo a- Yo
a¥ =y | = |[ba]|=]|0 (6.19.6)
a[j] Yo C1 0

Alternatively, one can fit a second-order polynomial to the first few data samples,
such as the first 2N samples [297], and extrapolate them back to n = —1. The fitting
can be done with the following MATLAB-like code,

284 6. Exponential Smoothing

n=[1:2N-1]" = column vector
y = Vo, Y1,...,Y2n-1]"= column vector
u = ones(size(n))

a-1
b_y | =[u,n n’]\y
C-1

The cascaded initialization scheme is also possible in which the output of the first
EMA at time n = N — 1 serves to initialize the second EMA at n = N, and the output
of the second EMA at n = 2N — 1 serves to initialize the third EMA at n = 2N. This,
as well as the second-order polynomial fitting initialization schemes are incorporated
in the function, tema.

A special case of the EMA indicator is “Wilder’s Exponential Moving Average” [281],
known as WEMA. It is used widely and appears in several other indicators, such as the
“Relative Strength Index” (RSI), the “Average True Range” (ATR), and the “Directional
Movement System” (+DMI and ADX), discussed in Sec. 6.23. An N-point WEMA is defined
to be an ordinary EMA with A, @ parameters,

x=—, A=1-«a=1-—| (WEMA parameters) (6.19.7)

It is equivalent to an EMA with effective length, N, determined as follows,

N, -1 1
Ne+1 N ¢ ()

The corresponding filtering equation for calculating the smoothed local-level signal
a, from the input data y,, will be,

an =Aap-1+ &Yn = an-1+ X (Yn — dn-1)

or, forn > 0,

1
dp = dp-1 + N (Yn — an-1) | (WEMA) (6.19.9)

The required initial value a_; can be chosen in a variety of ways, just as in EMA.
However, by convention [281], the default way of fixing it is similar to that in Eq. (6.19.5).
It is defined by choosing the value of a, at time n = N—1 to be the mean of first N input
values, then, ay—_; is back-tracked to time n = —1, thus, we have,

1
an-1 = N(Vo +y1+--+YN-1)

forn=N-1,...,1,0,
(6.19.10)

(@n — &yn)

> =

ap-1 =

end

6.20. Butterworth Moving Average Filters 285

Upon exit from the loop, one has the proper starting value of a_;. The following
MATLAB function, wema, implements WEMA with such default initialization scheme,

a = wema(y,N,ain); % Wilder's EMA
y = signal to be smoothed
N = effective length, (EMA alpha = 1/N, lambda = 1-1/N)

ain = any initial value
=’'m’, default, as in Eq.(6.19.10)
= 0, for standard convolutional output

a = smoothed version of y

6.20 Butterworth Moving Average Filters

Butterworth moving average (BMA) lowpass filters, are useful alternatives [285] to the
first-order EMA filters, and have comparable smoothing properties and shorter lag. Here,
we summarize their properties and filtering implementation, give explicit design equa-
tions for orders M = 1, 2, 3, and derive a general expression for their lag.

Digital Butterworth filters are characterized by two parameters, the filter order M,
and the 3-dB cutoff frequency fy in Hz, or, the corresponding digital frequency in units
of radians per sample, wq = 271fy/fs, where fs is the sampling rate in Hz. We may also
define the period of fj in units of samples/cycle, N = fs/fo, so that, wg = 271/N.

We follow the design method of Ref. [30] based on the bilinear transformation, al-
though the matched z-transform method has also been used [285]. If the filter order is
even, say, M = 2K, then, there are K second-order sections, and if it is odd, M = 2K + 1,
there is an additional first-order section. Both cases can be combined into one by writing,

M=2K+r, r=0,1 (6.20.1)

Then, the transfer function can be expressed in the following cascaded and direct forms,

H(Z)z[Go(l-&-Z’l)]rﬁ[Gi(1+2z1)?]

1+ agz! i1 +anzl +apz?

=1 (6.20.2)
B G +z HM
T lt+aizl+apz2+---+ayz M

where the notation [|” means that the first-order factor is absent if ¥ = 0 and present
if ¥ = 1. The corresponding first-order coefficients are,

Qg Q-1
= — = .20.
Go Qo+ 1’ do1 Qo+l (6.20.3)
The second-order coefficients are , fori =1,2,...,K,

286 6. Exponential Smoothing
QZ
Gi = 0 5
1-2Qgcos0;+ Q
(6.20.4)
2((2(2)—1) 1+2(20c050i+(2(2)
ap = 7, Q42 = 2
1 —290C0891+Q() 1 — 20, cos 9i+.Q()
where the angles 0; are defined by,
0= (M-1+2i), i=12,...,K (6.20.5)
11— 2M) - y Ly iy - .
and the quantity Q is the equivalent analog 3-dB frequency defined as,
Q *tan<ﬂ) = tan mfo *tan<z) (6.20.6)
0T 2 /)" fo) TN o
We note that the filter sections have zeros at z = —1, that is, at the Nyquist frequency,

f =fs/2,0or, w = 1. Setting Q = tan(w/2), the magnitude response of the designed
digital filter can be expressed simply as follows:

1 - 1
1+ (2/920)*M 1+ (tan(w/2) /Q

|H(w)? = (6.20.7)

) 2M
Each section has unity gain at DC. Indeed, setting z = 1 in Eq. (6.20.2), we obtain the
following condition, which can be verified from the given definitions,

74& =1 and 7260 =1
1+ap +ap 1+am

Moreover, the filter lag can be shown to be (cf. Problem 6.12), forany M > 1 and N > 2,

7= 1 - !) (lag) (6.20.8)

. U T . T
20 sm(2M> 2tan<N>sm(2M
For M 2 2 and N % 5, it can be approximated well by [284],

MN
2

n=
The overall numerator gain in the direct form is the product of gains,
G =Gy{G Gy - - - Gk

and the direct-form numerator coefficients are the coefficients of the binomial expansion
of (1 + 2z 1)M times the overall gain G. The direct-form denominator coefficients are
obtained by convolving the coefficients of the individual sections, that is, setting,a = [1]
if M is even, and, a = [1, ag;] if M is odd, then the vector, a = [1,a;,d>,...,apy], can
be constructed recursively by,

fori=1,2,...,K

a=conv(a, [1,a;1,4a;2]) (6.20.9)

6.20. Butterworth Moving Average Filters 287

For example, we have,

M=2, a=/[1,a,dal]
M =3, a=conv([l, anl, [1, ai1,ai2]) = [1, an + a1, di2 + ap1 a1, do1di2]

From these, we obtain the following explicit expressions, for M = 2,

G- Qf o = 2(Q5-1) Q200+ 1
Q2+2Q0+1° ! Q3+2Q0+1° z Q3+ 200 +1
.) (6.20.10)
G(1+2zt+z79) N 1
H(z)= =
() l+aiz7' +apz=2’ n V2 Qo
and, for M = 3,
C - 3 o = (Q0-1) (325 + 5020 +3)
T Qo+ D (@R + Q0+ T (Qo+ 1) (2 +Q0+1)
2 _ 2 _
a, = 398 5Q0+3 5= (QO 1)(~Q(Z) QO+1) (62011)
Q5+ Q0 +1 (Qo+1)(Q5+Q20+1)
-1 -2 -3
H(z)= G(1+3z'+3z7°+27°) . 1

a 1+ alz‘l + [122_2 + 613Z_3 ’ Qio
We note also that the M = 1 case has lag, n = 1/(2€Q), and is equivalent to the
modified EMA of Eq. (2.3.5). This can be seen by rewriting H (z) in the form,

Go(l+z™\) 3(1-A)A+z" 1-Q
i l+anz ! 1-Az1 » A=-ao =

where 0 < A < 1 for Qp < 1, which requires N > 4.
The MATLAB function, bma, implements the design and filtering operations for any
filter order M and any period N > 2,7 with usage,

bma(x,N,M,yin); % Butterworth moving average
bma(x,N,M);

[y,nlag,b,al
[y,nlag,b,al

where

X = input signal

N = 3-dB period, need not be integer, but N>2

M = filter order

yin = any Mx1 vector of initial values of the output y
default, yin = repmat(x(1),M,1)

yin = "¢’ for standard convolutional output

y = output signal

nlag = filter lag

b = [b0, bl, b2, ..., bM], numerator filter coefficients

a=1[1, al, a2, ..., aM], denominator filter coefficients

Tthe sampling theorem requires, fo < fs/2, or, N = fs/fo > 2

288 6. Exponential Smoothing

Fig. 6.20.1 shows the BMA output for Butterworth orders M = 2,3 applied to the
same Nicor-Gas data of Fig. 6.18.2. It has noticeably shorter lag than SMA. The graphs
were produced by the MATLAB code,

Y = xIsread(’nicor.x1s’); % load Nicor-Gas data

Y = Y(1:130,1:4); % 130 trading days, and [0,H,L,C] prices
y = Y(:,4); % closing prices

t = 0:length(y)-1; % trading days

N = 20; % period, SMA lag = (N-1)/2 = 9.50
[y2,n2] = bma(y,N,2); % order-2 Butterworth, Tlag n2 = 4.46
[y3,n3] = bma(y,N,3); % order-3 Butterworth, 1lag n3 = 6.31

figure; plot(t,sma(y,N), t,y2, t,y3); % plot SMA, y2, y3
hold on; ohlc(t,Y,’color’,’b’); % add OHLC bar chart

NICOR, N = 20, Butterworth M =23
52 51

NICOR, N = 20, Butterworth M = 2,3

— SMA — SmA
— M=2 — M=2
O o 190 Gma|
— data — data H}}“}
I
4sf

1y

. 4
20 40 60 80 100 120 30 40 50 60 70 80 90
trading days trading days

42
0

Fig. 6.20.1 Comparison of SMA and Butterworth filters of orders M = 2, 3.

6.21 Moving Average Filters with Reduced Lag

The PMA/linear regression and the DEMA/TEMA indicators have zero lag by design.
There are other useful indicators that are easily implemented and have zero or very
much reduced lag. Examples are twicing and Kaiser-Hamming (KH) filter sharpening
[60], the Hull moving average (HMA) [309], the zero-lag EMA indicator (ZEMA) [284],
the generalized DEMA (GDEMA) [307], and their variants. Here, we discuss a general
procedure for constructing such reduced-lag filters, including the corresponding local-
slope filters.

Consider three lowpass filters H;(z), H» (z), H3 (z) with unity DC gains and lags,
ni, iz, N2, respectively, and define the following filters for estimating the local level and
local slope of the data, generalizing the twicing operations of Eq. (6.10.9),

6.21. Moving Average Filters with Reduced Lag 289

Hy(z) =Hi(z)[(1 +V)H,(z)—VH3(z)] = local level

1 (6.21.1)

Hyp(z) = Ea— Hi(z)[H»(z)-H3(z)] = local slope

where Vv is a positive constant. One may view H,; (z) as the smoothed, by H; (z), version
of (1 +Vv)H,(z)—VH3(z). The filter H, (z) will still have unity DC gain as follows by
evaluating Eq. (6.21.1) at z = 1, that is,

Ha(1)= (1+v)H1(1)H2(1)-vH1 (1)H3(1)= (1 +Vv)-v =1

Using the fact that the lag of a product of filters is the sum of the corresponding
lags (cf. Problem 6.2), we find that the lag of H,; (z) is,

ng = (1+V)(f11+f12)—\/(fl1+fl3), or,

Mg =M + (1 +Vv)Ap, —vis (6.21.2)

By appropriately choosing the parameters v, ni, iy, i3, the lag nn,; can be made very
small, even zero. Indeed, the following choice for v will generate any particular ng,

y=—+""¢ "a (6.21.3)

Below we list a number of examples that are special cases of the above constructions.
In this list, the filter H (z), whose lag is denoted by 7, represents any unity-gain lowpass
filter, such as WMA, EMA, or SMA and similarly, Hy (z) represents either a length-N FIR
filter such as WMA or SMA, or an EMA filter with SMA-equivalent length N. Such filters
have a lag related to N via a relationship of the form, 7 = r - (N — 1), for example,
r = 1/3, for WMA, and, r = 1/2, for EMA and SMA.

reduced-lag filters lag
(twicing) Hga(z)=2H(z)-H?%(z), g =0
(GDEMA) H,(z)= (1 +V)H(z)-vH?(z), g = (1-v)n
(KH) Ha(z)= (1+Vv)H?(2)-vH3(2), fig = (2-v)ni (6.21.4)
(HMA) Hq(2)=H jy(2) [2HNj2(2)-HN(2)], #q=r[VN -2]
(ZEMA) Ha(z)=2H(z)-z9H(z), fla=1—d
(ZEMA) Hg(z)= (1+V)H(z)-vz 9H(z), g =n-vd

The corresponding local-slope filters are as follows (they do not depend on v),

290 6. Exponential Smoothing

local-slope filters

(DEMA/GDEMA) Hy(z)= %[H(Z) —-H?*(2)]

1
(KH) Hb(Z)= E[Hz(z)_Ha(z)] (6215)
(HMA) Hy (2)= 2 H 1 (2) [z (2)—Hy (2)]
(ZEMA) Hyp(z)= %[H(z) -z9H (z)]

The standard twicing method, H, (z) = 2H (z) —H?(z), coincides with DEMA if we
choose H (z) to be a single EMA filter,
N-1 N-1

n=——— (6.21.6)

a=1-A, A=y >

Hpua (2) = 1%;\(2_1 ;
but the filter H (z) can also be chosen to be an SMA, WMA, or BMA filter, leading to what
may be called, “double SMA,” or, “double WMA,”, or, ‘double BMA.”

The generalized DEMA, Hgpewma (2) = (1 + v)H(z) —vH?(z), also has, H = Hgua,
and is usually operated in practice with v = 0.7. It reduces to standard DEMA for v = 1.
The so-called Tillson’s T3 indicator [307] is obtained by cascading GDEMA three times,

Hr3(z)= [HGDEMA ()] 3 (T3 indicator) (6.21.7)

The Kaiser-Hamming (KH) filter sharpening case is not currently used as an indicator,
but it has equally smooth output as GDEMA and T3. It reduces to the standard filter
sharpening case with zero lag for v = 2.

In the original Hull moving average [309], Hq (z) = H /5 (2) [2HN/2 (2) —HN (2)], the
filter Hy is chosen to be a length-N weighted moving average (WMA) filter, as defined in
Egs. (6.15.1) and (6.15.2), and similarly, Hy/» and H /5 are WMA filters of lengths N/2
and +/N respectively. Assuming for the moment that these filter lengths are integers,
then the corresponding lags of the three WMA filters, H /n, Hn/2, Hn, will be,

VN -1 _ N/2-1 _ N-1
, Mp=—7—, N3=—>",
3 3 3

iy =
and setting v = 1 in Eq. (6.21.2), we find,

\/N—1+N—27N—17\/N—2
3 3 3 3

Ng =n; + 2Ny — n3 = (6.21.8)

Thus, for larger Ns, the lag is effectively reduced by a factor of +/N. The extra
filter factor H /y (z) provides some additional smoothing. In practice, the filter lengths
N; = /N and N, = N/2 are replaced by their rounded values. This changes the lag
N, somewhat. If one wishes to maintain the same lag as that given by Eq. (6.21.8), then
one can compensate for the replacement of N, N» by their rounded values by using a

6.21. Moving Average Filters with Reduced Lag 291

slightly different value for v. It is straightforward to show that the following procedure
will generate the desired lag value, where the required v is evaluated from Eq. (6.21.3),

N; =round(v/N), & = N; — /N = rounding error

N N
N> = round (—) , & =Np-— > = rounding error

71711-"-1712—171(1 N/2+¢&+ &

V= =
nz — A N/2-¢& (6.21.9)

-1 N, -1 -1 -2
ﬁa=N1T+(1+v) 23 —VN3 =m3

N - N,
3

=

3— My =
with transfer functions,

Hy(z)=Hyn,(2)[(1 + V)HN, (2) —VHy (2)] = local level

(6.21.10)
Hy(z)=

- — Hy, (z) [Hn, (z) —Hn (2)] = local slope

n3 — np

The WMA filters in the HMA indicator can be replaced with EMA filters resulting in

the so-called “exponential Hull moving average” (EHMA), which has been found to be

very competitive with other indicators [347]. Because N does not have to be an integer

in EMA, it is not necessary to round the lengths Ny = +/N and N> = N/2, and one can
implement the indicator as follows, where Hy denotes the single EMA of Eq. (6.21.6),

~ UN-2 _ N

Ng = >) ns—nz—z

Hq(z)=H /5(2)[2HN/2(2)—HN (2)]
4

Hy(z)= N H /5 (2) [Hn/2(z)—Hy (2)]

One can also replace the WMA filters by SMAs leading to the “simple Hull moving
average” (SHMA). The filter Hy now stands for a length-N SMA filter, resulting in 71, =
(v/N —=1)/2,and i3 — i, = (N — N») /2. Except for these changes, the computational
procedure outlined in Eq. (6.21.9) remains the same.

The following MATLAB code illustrates the computation of the local-level output
signal a, from the data yy, for the three versions of HMA and a given value of N > 1,

N1 = round(sqrt(N)); el = N1 - sqrt(N);
N2 round(N/2); e2 N2 - N/2;

v=(_(N/2+el+e2) / (N2 - e2);

a = wma((1+v)*wma(y,N2) - v*wma(y,N), N1); % HMA
a = sma((1+v)*sma(y,N2) - v*sma(y,N), N1); % SHMA
a = sema(2*sema(y,N/2) - sema(y,N), sqrt(N); % EHMA

292 6. Exponential Smoothing

The functions, hma, shma, ehma, which are discussed below, implement these op-
erations but offer more options, including the computation of the slope signals.

In the zero-lag EMA (ZEMA or ZLEMA) indicator [284], H, (z)= 2H(z) -z 9H (z),
the filter H (z) is chosen to be a single EMA filter of the form of Eq. (6.21.6), and the
delay d is chosen to coincide with the filter lag, thatis,d = A = (N — 1) /2. It follows
from Eq. (6.21.4) that the lag will be exactly zero, n; = 1 — d = 0. This assumes that 7
is an integer, which happens only for odd N. For even N, the delay d may be chosen as
the rounded-up version of 7, that is,

N-1

d = round (71) = round (T) = N = even

N
5

Then, the lag n, can still be made to be zero by choosing the parameter v such that
g =n-vd =0,or,v =n/d= n/round(71). Thus, the generalized form of the ZEMA
indicator is constructed by,

QS

d =round(n), v=
Ha(z)= (1+V)H(2)-vz 9H(z) (6.21.11)
Hy(2)= 2 [H(z) -2 H(2)]

The code segment below illustrates the computation of the local-level ZEMA signal.
It uses the function, delay, which implements the required delay.

nbar = (N-1)/2;

d = round(nbar);
v = nbar/d;
a = (1+v)*sema(y,N) - v*delay(sema(y,N), d); % ZEMA

The following MATLAB functions implement the reduced-lag filters discussed above,
where the input array y represents the financial data to be filtered, and the outputs a, b
represent the local-level and local-slope signals.

[a,b] = hma(y,N,yin);
[a,b] = ehma(y,N,yin);
[a,b] = shma(y,N,yin);

[a,b] = zema(y,N,yin);
y = delay(x,d);
a = gdema(y,N,v,yin);

a = t3(y,N,v,yin);

R R

R R

S

R R

Hull moving average
exponential Hull moving average
simple Hull moving average
zero-lag EMA

d-fold delay, y(n) = x(n-d)
generalized DEMA
Tillson’s T3

The input variable yin defines the initialization and defaults to progressive filtering
for hma, shma, and zema, yin="f’, and to, yin = y,, for ehma.

Fig. 6.21.1 compares the PMA/linear regression indicator with HMA, EHMA, and
ZEMA on the same Nicor-Gas data, with filter length N = 20. Fig. 6.21.2 compares the
corresponding slope indicators. The MATLAB code below illustrates the computation.

6.21.

52

50

481

461

44}

Moving Average Filters with Reduced Lag 293
NICOR, N =20 NICOR, N =20
T T 51 T T T
— PMA — PMA
--- EHMA --- EHMA

42 - - - - - - 46 - - - -
0 20 40 60 80 100 120 30 40 50 60 70 80 90
trading days trading days
NICOR, N =20 NICOR, N =20
52 51
— ZEMA — ZEMA
--- EHMA --- EHMA
soll— data 1 s0ll— data]
4 49 - 4
4 48 - 4
1 a7h]
42 - - - - - - 46 ‘J L - - - -
0 20 40 60 80 100 120 30 40 50 60 70 80 90
trading days trading days

Fig. 6.21.1 Comparison of PMA/LREG, HMA, EHMA, and ZEMA indicators.

Y = xlIsread(’nicor.x1s’); % Tload Nicor-Gas data

Y = Y(1:130,1:4); % keep 130 trading days, and [O,H,L,C] prices
y = Y(:,4); % closing prices

t = 0:Tength(y)-1; % trading days

N = 20; % filter length

[al,b1] = Treg(y,N); % PMA/LREG

[ah,bh] = hma(y,N); % HMA

[ae,be] = ehma(y,N); % EHMA

[az,bz] = zema(y,N); % ZEMA

figure; plot(t,al, t,ae, t,ah);

hold on; ohlc(t,Y);

figure; plot(t,az, t,ae);
hold on; ohlc(t,Y);

PMA/LREG, EHMA, HMA
add OHLC chart

R R

R

ZEMA, EHMA

% add OHLC chart

3

294 6. Exponential Smoothing

figure; plot(t,bh, t,be); hold on; % HMA, EHMA slopes
stem(t,bl1, ’marker’,’none’); % plot LREG sTope as stem

figure; plot(t,bh, t,bz); hold on; % HMA, ZEMA slopes
stem(t,b1, ’marker’,’none’);

We note that the reduced-lag HMA, EHMA, and ZEMA local-level and local-slope filters
have comparable performance as the PMA/linear regression and DEMA/TEMA filters,
with a comparable degree of smoothness.

0.3 T T T T T T
0.2H
0.1f
0
-0.11
0.2
—0.30

0.3
0.2
0.1f

-0.1}t

-0.2}

_0 3 1 1 1 1 1 1
0

20 40 60 80 100 120
trading days

Fig. 6.21.2 Slope indicators, linear regression (stem) vs. HMA, EHMA, ZEMA.

6.22 Envelopes, Bands, and Channels

Moving averages help market traders discern trends by smoothing out variations in
the data. However, such variations can provide additional useful information, such as
gauging volatility, or, identifying extremes in the data that provide trading opportunities,
or observing how prices settle into their trends.

Trading envelopes or bands or channels consist of two curves drawn above and below
a moving average trendline. The two bounds define a zone of variation, or volatility,
about the average, within which most of the price fluctuations are expected to lie.

The typical trading rule is that when a price closes near or above the upper bound,
it signals that the stock is overbought and suggests trading in the opposite direction.
Similarly, if a price moves below the lower bound it signals that the stock is oversold
and suggests an opposite reaction.

6.22. Envelopes, Bands, and Channels 295

In this section we discuss the following types of bands and their computation,

- Bollinger bands - Standard-error bands
- Projection bands - Donchian channels
- Fixed-width bands - Keltner bands

- Starc bands - Parabolic SAR

Examples of these are shown in Figs. 6.22.1 and 6.22.2 applied to the same Nicor
data that we used previously. Below we give brief descriptions of how such bands are
computed. We use our previously discussed MATLAB functions, such as SMA, LREG,
etc., to summarize the computations. Further references are given in [323-334].

Bollinger Bands

Bollinger bands [323-327] are defined relative to an N-day SMA of the closing prices,
where typically, N = 14. The two bands are taken to be two standard deviations above
and below the SMA. The following MATLAB code clarifies the computation,

M = sma(y,N); % N-point SMA of closing prices y
S = stdev(y,N); % std-dev relative to M

L=M- 2%S; % Tower bound

U=M+ 2%S; % upper bound

where the function, stdev, uses the built-in function std to calculate the standard devi-
ation over each length-N data window, and its essential code is,

for n=1:length(y),
S(n) = std(y(max(1,n-N+1):n));
end

where the data window length is N for n > N, and n during the initial transients n < N.

Standard-Error Bands

Standard-error bands [329] use the PMA/linear-regression moving average as the middle
trendline and shift it by two standard errors up and down. The calculation is summa-
rized below with the help of the function Ireg, in which the quantities, y, a, se, represent
the closing prices, the local level, and the standard error,

[a,~,~,se] = Treg(y,N); % N-point linear regression
L =a- 2*%se; % lower bound
U= a + 2%se; % upper bound

296 6. Exponential Smoothing
NICOR, Bollinger bands, N =20 NICOR, standard-error bands, N =20
52 T T T T 52 T T T T
—— sma — lIreg
- - - bands - - == bands .
5olL— data DTSSR | soll——_data DR

1 48}

N 46

1 44}

4 y y - - 42 - y ’ - -
2O 20 40 60 80 100 120 “0 20 40 60 80 100 120
trading days trading days
NICOR, projection bands, N =20 NICOR, Donchian channels, N =20

52 52

— lreg - — sma

- == bands SN - - - - bands
50|l _data A s | poll—data

6.22. Envelopes, Bands, and Channels

NICOR, 3% fixed bands, N =10

297

NICOR, Keltner bands, N =10

52 52
- == bands - - - bands
—— middle FUEIaN —— middle
soll—_data . N 5oll— data

20 40 60 80 100 120

60 80
trading days

trading days

Fig. 6.22.1 Bollinger bands, standard-error bands, projection bands, and Donchian channels.

Projection Bands

Projection bands [328] also use the linear regression function Ireg to calculate the local
slopes for the high and low prices, H, L. The value of the upper (lower) band at the n-th
time instant is determined by considering the values of the highs H (lows L) over the
look-back period, n — N + 1 < t < n, extrapolating each of them linearly according to
their slope to the current time instant n, and taking the maximum (minimum) among
them. The following MATLAB code implements the procedure,

trading days trading days
NICOR, STARC bands, N =10 NICOR, parabolic SAR
52 52
- - - bands PSAR
— middle _ — data
5oL —— data TN 50¢ -
H .
}MW Wuﬁ
148 W /1}1 h}
\ i Jill . A |
46 HMT | m Jtﬁmj M’. N‘
I 1l R
i W ﬁj HJJ.
{ s s -
K S, I il ..'
Eu“.uﬁ i
42— - - y - - - 42 L= ’ y y - -
0 20 40 60 80 100 120 0 20 40 60 80 100 120
trading days trading days

Fig. 6.22.2 Fixed-width bands, Keltner bands, STARC bands, and parabolic SAR.

[~,bL] = 1reg(L,N);
[~,bH] = Treg(H,N);
for n=0:Tength(H)-1,
t = (max(0,n-N+1) : n)’; % Took-back interval
Lo(n+1) = min(L(t+1) + bL(n+1)*(n-t)); % lower band
Up(n+1) = max(H(t+1) + bH(n+1)*(n-t)); % upper band
end

% linear regression slope for Low
% linear regression slope for High

Donchian Channels

Donchian channels [331] are constructed by finding, at each time instant n, the highest
high (resp. lowest low) over the past time interval, n — N <t < n — 1, that is, the value
of the upper bound at the n-th day, is the maximum of the highs over the previous N

298 6. Exponential Smoothing

days, not including the current day, i.e., max[Hy,—1, Hy-2,..., Hn-n]. The code below
describes the procedure,

for n = 2:Tength(H) % n is MATLAB index
t = max(1,n-N) : n-1; % past N days
Lo(n) = min(L(t)); % lower band
Up(n) = max(H(t)); % upper band
end
Mid = (Up + Lo)/2; % middle band
Fixed-Width Bands

Fixed-width bands or envelopes [330] shift an N-point SMA of the closing prices by a
certain percentage, such as, typically, 3 percent,

M = sma(C,N); % N-point SMA of closing prices C
L=M- p*M; % lower band, e.g., p = 0.03
U=M+ p*M; % upper band

Keltner Bands

Keltner bands or channels [330], use as the middle trendline an N-point SMA of the
average of the high, low, and closing prices, (H + L + C) /3, and use an N-point SMA of
the difference (H — L) as the bandwidth, representing a measure of volatility. The code
below implements the operations,

M = sma((H+L+C)/3,N); % SMA of (H+L+C)/3
D = sma(H-L,N); % SMA of (H-L)
L=M-D; % lower band
U=M+ D; % upper band

The typical value of N is 10, and the trading rule is that a “buy” signal is generated
when the closing price C lies above the upper band, and a “sell” signal when C lies below
the lower band.

Starc Bands

In Starc’ bands [330] all three prices, high, low, and closing, H,L, C, are used. The
middle band is an N-point SMA of the closing prices C, but the bandwidth is defined
in terms of an N,-point of the so-called “average true range” (ATR), which represents
another measure of volatility. The code below describes the computation,

M = sma(C,N); % SMA of closing prices

R = atr([H,L,C],Na); % ATR = average true range
L =M- 2*R; % Tower and

U=M+ 2*%R; % upper band

TStoller Average Range Channels

6.22. Envelopes, Bands, and Channels 299

The ATR [281] is an N, -point WEMA of the “true range”, defined as follows, at each
time n,

Tn = max[Hy — Ly, Hy — Cy-1, Cn—1 — L,| = true range in n-th day
(6.22.1)
R, = wema(T,,N,)= ATR

and is implemented by the function atr, with the help of the delay function. Its essential
MATLAB code is as follows, where H, L, C are column vectors,

T = max([H-L, H-delay(C,1), delay(C,1)-L], [1, 2);
R = wema(T,N);

% row-wise max

MATLAB Functions

The following MATLAB functions implement the band indicators discussed above, where
the various parameters are fully explained in the help files for these functions,

[L,U,M] = bbands(y,N,d); BolTlinger bands

[L,U,a] = sebands(y,N,d,init); % standard-error bands
[L,U,R,Rs] = pbands(Y,N,Ns); projection bands & oscillator
[L,U,M] = donch(Y,N); Donchian channels

[L,U,M] = fbands(Y,N,p); % fixed-width bands

[L,U,M] = kbands(Y,N); Keltner bands

[L,U,M] stbands(Y,N,Na); % Starc bands

S = stdev(y,N,flag);
[R,TR] = atr(Y,N);

xR

R R

|
3

B

3

standard deviation
average true range

R R

The essential MATLAB code for generating Figs. 6.22.1 and 6.22.2 is as follows,

Y = xIsread(’nicor.x1s’); % Toad Nicor-Gas data

Y = Y(1:130,1:4); % 130 trading days, and [O,H,L,C] prices
y = Y(:,4); % closing prices

t = 0:Tength(y)-1; % trading days

N = 20; % used in Fig.6.22.1

[L,U,M] = bbands(y,N);
figure; ohlc(t,Y); hold on;
plot(t,M,’g-", t,U,"r--", t,L,’r--");

Bollinger
make OHLC bar chart

R R

R

[L,U,a] = sebands(y,N); standard-error
figure; ohlc(t,Y); hold on;

plot(t,a,’g-’, t,U,’r--", t,L,’r-=");

a = Treg(y,N);

[L,U] = pbands(Y,N);

figure; ohlc(t,Y); hold on;
plot(t,a,’g-’, t,U,’r--", t,L,’ r--");

B

projection

[L,U,M] = donch(Y,N);

figure; ohlc(t,Y); hold on;
plot(t,M,’r--", t,L,’r--", t,U,’r--");
plot(t,sma(y,N),’g-");

S

Donchian

300 6. Exponential Smoothing

N=10; % used in Fig.6.22.2
p=0.03;

[L,U,M] = fbands(Y,N,p); % fixed-width
figure; ohlc(t,Y); hold on;

plot(t,M,’g-", t,U,’r--", t,L,’r--");

[L,U,M] = kbands(Y,N); % Keltner
figure; ohlc(t,Y); hold on;

plot(t,M,’g-", t,U,’r--", t,L,’r--");

[L,U,M] = stbands(Y,N); % Starc

figure; ohlc(t,Y); hold on;

plot(t,M,’g-", t,U,’r--", t,L,’r--");

H=Y(,2); L =Y(,3); ni=l; Ri=1; % parabolic SAR

S = psar(H,L,Ri,ni);
figure; ohlc(t,Y); hold on;
plot(t,S,’r.”);

Parabolic SAR

Wilder’s parabolic stop & reverse (SAR) [281] is a trend-following indicator that helps a
trader to switch positions from long to short or vice versa.

While holding a long position during a period of increasing prices, the SAR indicator
lies below the prices and is also increasing. When the prices begin to fall and touch the
SAR from above, then a “sell” signal is triggered with a reversal of position from long
to short, and the SAR switches sides and begins to fall, lying above the falling prices. If
subsequently, the prices begin to rise again and touch the SAR from below, then a “buy”
signal is triggered and the position is reversed from short to long again, and so on.

The indicator is very useful as it keeps a trader constantly in the market and works
well during trending markets with steady periods of increasing or decreasing prices,
even though it tends to recommend buying relatively high and selling relatively low—
the opposite of what is the ideal. It does not work as well during “sideways” or trading
markets causing so-called “whipsaws.” It is usually used in conjunction with other indi-
cators that confirm trend, such as the RSI or DML Some further references on the SAR
are [335-340].

The SAR is computed in terms of the high and low price signals Hy, L, and is defined
as the exponential moving average of the extreme price reached within each trending
period, but it uses a time-varying EMA parameter, A, = 1 — &y, as well as additional
conditions that enable the reversals. Its basic EMA recursion from day n to day n+1 is,

Sni1 = AnSn + opEp = (1 — &n) Sy + ayEy, or,

Sn+1 =Sn + &n(En —Sn) | (SAR) (6.22.2)

where Ej, is the extreme price reached during the current trending position, that is, the
highest high reached up to day n during an up-trending period, or the lowest low up to
day n during a down-trending period. At the beginning of each trending period, S is
initialized to be the extreme price of the previous trending period.

6.22. Envelopes, Bands, and Channels 301

The EMA factor «j, increases linearly with time, starting with an initial value, «;, at
the beginning of each trending period, and then increasing by a fixed increment A, but
only every time a new extreme value is reached, that is,

(6.22.3)
Kn, if Eny1 =En

{an +Ax, if Eny # En
Xn+1 =

where we note that E,,+1 # E, happens when E, . is strictly greater than E, during an
up-trend, or, E, 1 is strictly less than E, during a down-trend. Moreover, an additional
constraint is that &, is not allowed to exceed a certain maximum value, ;,. The values
recommended by Wilder [281] are,

x; =0.02, Ax=0.02, omy=0.2

Because of the increasing o, parameter, the EMA has a time-varying decreasing lag,
thus, tracking more quickly the extreme prices as time goes by. As a result, S, has a
particular curved shape that resembles a parabola, hence the name “parabolic” SAR.

The essential steps in the calculation of the SAR are summarized in the following
MATLAB code, in which the inputs are the quantities, H, L, representing the high and low
price signals, Hy, L,;, while the output quantities, S,E,a,R, represent, S,, En, &n, Rp,
where R, holds the current position and is equal to +1 for long/short.

Hi = max(H(1:ni)); % initial highest high, default

Li = min(L(1:ni)); % initial Towest Tow
R(ni) = Ri; % initialize outputs at starting time n=ni
a(ni) = ai;

S(ni) = Li*(Ri==1) + Hi*(Ri==-1);
E(ni) = Hi*(Ri==1) + Li*Ri==-1);

for n = ni : Tength(H)-1

S(n+1) = S(n) + a(n) * (E(n) - S(n)); % SAR update

r = R(n); % current position
if (r==1 & L(n+1)<=S(n+1)) | (r==-1 & H(n+1)>=S(n+1)) % reversal
r=-r; % reverse r
S(n+l1) = E(n); % reset new S
E(n+1) = H(n+1)*(r==1) + L(n+1)*(r==-1); % reset new E
a(n+l) = ai; % reset new a
else % no reversal
if n>2 % new S
S(n+1) = min([S(n+1), L(n-1), LM D*(r==1) ... % additional
+ max([S(n+1), H(-1), H(n)])*(r==-1); % conditions
end
E(n+1) = max(E(n),H(n+D))*(r==1) ... % new E
+ min(E(n),L(n+1))*(r==-1);
a(n+l) = min(a(n) + (E(n+1)~=E(n)) * Da, am); % new a
end
R(n+1) = r; % new R

end % for-Toop

TThe EMA equivalent length decreases from, Nj = 2/&; — 1 =99, down to, Ny = 2/, — 1 = 9.

302 6. Exponential Smoothing

If the current trading position is long (r = 1), corresponding to an up-trending
market, then, a reversal of position to short (r = —1) will take place at time n+1 if the
low price L, touches or becomes less than the SAR, that s, if, Ly+1 < S;+1. Similarly, if
the current position is short, corresponding to a down-trending market, then, a reversal
of position to long will take place at time n+1 if the high price H,.; touches or becomes
greater than the SAR, that is, if, Hy+1 = S,+1. At such reversal time points, the SAR is
reset to be equal to the extreme price of the previous trend, that is, S,+1 = Ej, and the
Ej+1 is reset to be either L, if reversing to short, or H,+, if reversing to long, and the
EMA parameter is reset to, Xp+1 = ;.

An additional condition is that during an up-trend, the SAR for tomorrow, Sj+1, is
not allowed to become greater that either today’s or yesterday’s lows, L,, L,-1, and in
such case it is reset to the minimum of the two lows. Similarly, during a down-trend, the
Sn+1 is not allowed to become less that either today’s or yesterday’s highs, Hy, Hp—1,

and is reset to the maximum of the two highs. This is enforced by the code line,
Sn+1 =min([Sp+1,Ln-1,Ln]) - (r==1) + max([Sn+1, Hn-1,Hnl) - (r==-1)

The parabolic SAR is implemented with the MATLAB function psar, with usage,

[S,E,a,R] = psar(H,L,Ri,ni,af,Hi,Li); % parabolic SAR

6.23. Momentum, Oscillators, and Other Indicators 303
parabolic SAR parabolic SAR
59 97 ‘ : ‘
. SAR
5 ; i
Hi/Lo I 95 I |
57t | | *e] ‘ .
.
'| M
55} | . | 1 o1 ‘ - .%’ ‘ T ‘ ’
L] . |
| | 8o : "
s N |l -
Tl .
52 Ill || | .-'" | 1 81t ‘ =]
517|| - ||‘ gs|| o SAR]
50t PRTX LR 1 o reversal
— Hi/Lo
49 — 83 : : : : : : :
4 8 12 16 20 24 28 32 36 40 O 3 6 9 12 15 18 21 24 27

days

days

Fig. 6.22.3 Parabolic SAR examples from Wilder [281] and Achelis [280].

Y
t=Y(,D; H

x1sread(’psarexb.x1s’);

H = vector of High prices, column
L = vector of Low prices, column, same length as H
Ri = starting position, Tong Ri = 1, short Ri = -1

data from Ref.[208]

ni = starting time index, default ni = 1,
af = [ai,da,am] = [initial EMA factor,
default, af = [0.02, 0.02, 0.2]
Hi,Li = initial high and Tow used to initialize S(n),E(n) at n=ni,
default, Hi = max(H(1:ni)), Li = min(L(1:ni))

all outputs are NaNs for n<ni
increment, maximum factor]

parabolic SAR, same size as H

extremal price, same size as H

vector of EMA factors, same size as H

= vector of positions, R = +1/-1 for Tong/short, same size as H

D~ o mwn
I

The SAR signal S}, is usually plotted with dots, as shown for example, in the bottom
right graph of Fig. 6.22.2. Fig. 6.22.3 shows two more examples.

The left graph reproduces Wilder’s original example [281] and was generated by the
following MATLAB code,

=Y(:,2)5 L =Y(:,3);
Ri =1; ni =1; % initialize
[S,E,a,R] = psar(H,L,Ri,ni); % compute SAR
num2str([t ,H, L, a, E, S, R], '%9.4f"); % reproduces table from Ref.[280]
figure; ohlc(t,[H,L], t,S,’r.’); % make OHLC plot, including SAR

The first up-trending period ends at day n = 9 at which the would be SAR, shown
as an opened-circle, lies above the low of that day, thus, causing a reversal to short
and that SAR is then replaced with the filled-circle value that lies above the highs, and
corresponds to the highest high of the previous period that had occurred on day n = 6.

The second down-trending period ends at n = 15 at which point the SAR, shown
as an opened-circle, is breached by the high on that day, thus causing a reversal to
long, and the SAR is reset to the filled-circle value on that day lying below the data, and
corresponds to the lowest low during the previous period that had been reached on day
n = 12. Finally, another such reversal takes place on day n = 27 and the SAR is reset to
the highest high that had occurred on day n = 18. To clarify, we list below the values
of the SAR at the reversal points before and after the reversal takes place,

Y = xlIsread(’psarexa.x1s’); % data from Wilder [281]
t=Y(C,D; H=Y(,2); L=Y(:,3); % extract H,L signals
Ri =1; ni = 4; % initialize SAR

[S,E,a,R] = psar(H,L,Ri,ni);

num2str([t, H, L,

a, E, S, RI,

%8.2f7);

figure; ohlc(t,[H,L], t,S,’r.");

% reproduces table on p.13 of [281]

% make OHLC plot, including SAR

n Shetore (1) Satter (1)

9 91.5448 95.1875 = Hg
15 92.3492 85.0625 = Lq»
27 89.8936 95.2500 = H;g

The right graph is from Achelis [280]. The SAR is plotted with filled dots, but at the
end of each trending period and shown with open circles are the points that triggered
the reversals. The MATLAB code for this example is similar to the above,

6.23 Momentum, Oscillators, and Other Indicators

There exist several other indicators that are used in technical analysis, many of them
built on those we already discussed. The following MATLAB functions implement some

304 6. Exponential Smoothing

of the more popular ones, several are also included in MATLABR’s financial toolbox. Ad-
ditional references can be found in the Achelis book [280] and in [281-347].

R = rsi(y,N,type); % relative strength index, RSI
R = cmo(y,N); % Chande momentum oscillator, CMO
R = vhfilt(y,N); % Vertical Horizontal Filter, VHF

[Dp,Dm,DX,ADX] = dirmov(Y,N);

R

directional movement system, +-DI,DX,ADX

[y,yr,ypr] = mom(x,d,xin); % momentum and price rate of change

[y,ys,ypr]l = prosc(x,N1,N2,N3);
[pK,pD] = stoch(Y,K,Ks,D,M);

= accdist(Y);
= chosc(Y,N1,N2);
= cmflow(Y,N);
= chvol(Y,N);

[P,N] = pnvi(Y,P0);

B

price oscillator & MACD
stochastic, %K, %D oscillators

accumulation/distribution Tine
Chaikin oscillator
Chaikin money flow
Chaikin volatility

positive/negative volume indices, PVI/NVI

R = cci(Y,N);
R = dpo(Y,N);
[R,N] = dmi(y,Nr,Ns,Nm);
[R,Rs] = forosc(y,N,Ns);

B

commodity channel index, CCI
detrended price oscillator, DPO
dynamic momentum index, DMI
forecast oscillator

R R R

N

[R,Rs] = trix(y,N,Ns,yin); TRIX oscillator
a = vema(y,N,Nv); % variable-length EMA

Below we discuss briefly their construction. Examples of their use are included in
their respective help files. Several online examples can be found in the Fidelity Guide
[345] and in the TradingView Wiki [346].

Relative Strength Index, RSI

The relative strength index (RSI) was introduced by Wilder [281] to be used in conjunction
with the parabolic SAR to confirm price trends. It is computed as follows, where y is the
column vector of daily closing prices,

x = diff(y);

XU = +X.*(x>0);
xd = -x.*(x<=0);
su = wema(xu,N);
sd = wema(xd,N);

RSI = 100*su/(su+sd); % RSI

EN

price differences
upward differences
downward differences
smoothed differences

R R R

Chande Momentum Oscillator, CMO

If the wema function is replaced by sma, one obtains the Chande momentum oscillator,

6.23. Momentum, Oscillators, and Other Indicators 305
x = diff(y); % price differences
XU = +x.*(x>0); % upward differences
xd = -x.*(x<=0); % downward differences
su = sma(xu,N); % smoothed differences

sd = sma(xd,N);
CMO = 100*(su-sd)/(su+sd); % CMO

Thus, the SMA-based RSI is related to CMO via,

CMO + 100

CMO =2RSI-100 < RSI= >

Vertical Horizontal Filter, VHF

The vertical horizontal filter (VHF) is similar to the RSI or CMO and helps to confirm a
trend in trending markets. It is computed as follows, where the first N outputs are NaNs,

x = [NaN; diff(y)]; % y = column of closing prices

% x = price differences

for n=N+1:length(y),
yn = y(n-N+1:n);
xn = x(n-N+1:n);
R(n) = abs(max(yn)-minCyn)) / sum(abs(xn)); % VHF
end

% length-N look-back window

Directional Movement System

The directional movement system was also proposed by Wilder [281] and consists of
several indicators, the plus/minus directional indicators, (+DI), the directional index
(DX), and the average directional index (ADX). These are computed as follows,

R = atr(Y,N); % average true range

DH = [0; diff(H)]; % high price differences

DL = [0; -diff(L)]; % low price differences

Dp = DH .* (DH>DL) .* (DH>0); % daily directional movements

Dm = DL .* (DL>DH) .* (DL>0); %

Dp = wema(Dp,N); % averaged directional movements
Dm = wema(Dm,N); %

Dp = 100 * Dp ./ R; % +DI,-DI directional indicators
Dm = 100 * Dm ./ R;

DX = 100*abs(Dp - Dm)./(Dp + Dm); % directional index, DI

ADX = wema(DX,N); % average directional index, ADX

Momentum and Price Rate of Change

In its simplest form a momentum indicator is the difference between a price today,
x(n), and the price d days ago, x(n — d), but it can also be expressed as a ratio, or as a

306 6. Exponential Smoothing

percentage, referred to as price rate of change,

y(n) = x(n)—x(n — d) = momentum

x(n))
yy(n) =100 - xn-d - momentum as ratio
_ x(n)-x(n-d)
yp(n) =100 T xin-d) price rate of change

It can be implemented simply with the help of the function, delay,

y x - delay(x,d);
yr x/delay(x,d) * 100;
yp = (x-delay(x,d))/delay(x,d) * 100;

Price Oscillator and MACD

The standard moving average convergence/divergence (MACD) indicator is defined as
the difference between two EMAs of the daily closing prices: a length-12 shorter/faster
EMA and a length-26 longer/slower EMA. A length-9 EMA of the MACD difference is also
computed as a trigger signal.

Typically, a buy (sell) signal is indicated when the MACD rises above (falls below)
zero, or when it rises above (falls below) its smoothed signal line.

The MACD can also be represented as a percentage resulting into the price oscillator,
and also, different EMA lengths can be used. The following code segment illustrates the
computation, where x are the closing prices,

yl = sema(x,N1); % fast EMA, default N1=12

y2 = sema(x,N2); % slow EMA, default N2=26

y =yl - y2; % MACD

ys = sema(y,N3); % smoothed MACD signal, default N3=9
ypr = 100 * y./y2; % price oscillator

Stochastic Oscillator

H=Y(,D; L=Y(,2); C=Y(,3); % extract H,L,C inputs
Lmin = NaN(size(C)); Hmax NaN(size(Q));
for n = K:length(Q),

Lmin(n) = min(L(n-K+1:n));

Hmax (n) max(H(n-K+1:n));
end

R

NaNs for n<K

R

Took-back period K
begins at n=K

R

pK = 100 * sma(C-Lmin, Ks) ./ sma(Hmax-Lmin, Ks); % percent-K
pD = sma(Pk, D);

% percent-D

Fast Stochastic has K = 1, i.e., no smoothing, and Slow Stochastic has, typically, Ks = 3.

6.23. Momentum, Oscillators, and Other Indicators 307

Accumulation/Distribution

H=Y(:,1); L=Y(:,2); C=Y(:,3); V=Y(:,4); % extract H,L,C,V
R = cumsum((2*C-H-L)./(H-L).*V); % ACCDIST

Chaikin Oscillator

y = accdist(Y); % Y = [H,L,C,V] data matrix
R = sema(y,N1) - sema(y,N2); % CHOSC, default, N1=3, N2=10
Chaikin Money Flow

H=Y(:,1); L=Y(:,2); C=Y(:,3); V=Y(:,4); % extract H,L,C,V
R = sma((2*C-H-L)./(H-L).*V, N) ./ sma(V,N); % CMFLOW

Chaikin Volatility

sema(H-L,N); % H,L given
(S - delay(s,N)) ./ delay(S,N) * 100; % volatility

Positive/Negative Volume Indices, PNVI

These are defined recursively as follows, in MATLAB-like notation, where C,, V), are the
closing prices and the volume,

Cr—Ch_ C (Vp>Vy-1)
Pn=Pn—1+(Vn>Vn—1)'n7nl'Pn—l=Pn—1< n) = PVI
Cn_1 Cn—l
Cr—Cn_ C (Vn<Vn-1)
Nn=Nn—1+(Vn<vn—1)'n7nl'Nn—l=Nn—l(-) = NVI
Cnfl Cn—l

and initialized to some arbitrary initial value, such as, Pp = Ny = 1000. The MATLAB
implementation uses the function, delay,

PO * cumprod((C./delay(C,1)) .A (V>delay(V,1))); % PNVI
PO * cumprod((C./delay(C,1)) .A (V<delay(V,1)));

Commodity Channel Index, CCI

T = (H+L+O)/3; % H,L,C given
M = sma(T,N);
for n=N+1:length(Q),
D(n) = mean(abs(T(n-N+1:n) - M(n))); % mean deviation
end
R = (T-M)./D/0.015; % CCI

308 6. Exponential Smoothing 6.24. MATLAB Functions 309

Detrended Price Oscillator, DPO TRIX Oscillator
S = sma(y,N,’n’); % y = column of closing prices [~,~,~,~,~,a3] = tema(y,N,cin); % triple EMA
M = floor(N/2) + 1; % advancing time R = 100*(a3 - delay(a3,1))./a3; % TRIX
=y - delay(S,-M,’n’); % DPO, i.e., R(n) = y(n) - S(n+M) Rs = sma(R,Ns); % smoothed TRIX
Dynamic Momentum Index, DMI Variable-Length EMA
x = [NaN; diff(y)]1; % y = column of closing prices Ta = (N-1)/(N+1); al = 1-1a; % EMA parameter
Xu = x .* (x>0); % updward differences switch lower(type)
xd = -x .* (x<=0); % downward differences case ’cmo’ % CMO volatility
S = stdev(y,Ns); % Ns-period stdev v =’ab?(cmo(y,Nv))/100; o RA .
V=S ./ sma(S,Nm); % volatility measure case 'r2 % RA2 volatility
N = floor(Nr ./ V); % effective length J [~~, VI = Treg(y,Nv);
en
N(N>Nmax) = Nmax; % restrict max and min N . X
N(N<Nmin) = Nmin; for n=Nv+1.1.ength(y), . % default s1=.y(Nv)
s(n) = si + al*V(n)*(y(n)-si); % EMA recursion
Nstart = Nr + Ns + Nm; si = s(n);
sul = mean(xu(2:Nstart)); % initialize at start time end
sdl = mean(xd(2:Nstart));
switch Tower(type) .
case 'wema’ % WEMA type 6.24 MATLAB Functions
for n = Nstart+l:length(y), We summarize the MATLAB functions discussed in this chapter:
su(n) = sul + (xu(n) - sul) / N(n); sul = su(n);
sd(n) = sdl + (xd(n) - sdl) / N(n); sdl = sd(n); 0 e o e
end % Exponential Moving Average Functions
case ’sma’ % SMA type K mmmmm s mmmm oo
for n = Nstart+1l:length(y), % ema - exponential moving average - exact version
_ B . . % stema - steady-state exponential moving average
S:(n) : mean(x:(n :(n)+1:n))j % lpbasis - fit order-d polynomial to first L inputs
sd(n) = mean(xd(n-N(n)+1:n)); % emap - map equivalent lambdas’s between d=0 and d=1 EMAs
end % emaerr - MSE, MAE, MAPE error criteria
end % emat - transformation matrix from polynomial to cascaded basis
R = 100 * su./(su+sd); % DMI % mema - multiple exponential moving average
) ’ % holt - Holt’s exponential smoothing
% holterr - MSE, MAE, MAPE error criteria for Holt
Forecast Oscillator) . i
The technical analysis functions are:
yp = pma(y,N,1); % time series forecast .
x =y - delay(yp,1); % Technical Analysis Functions
R = 100 * x./y; % forecast oscillator % —ommmoommmoomooooooooeooo oo
i . % accdist - accumulation/distribution Tine
Rs = sma(R,Ns); % trigger signal % atr - true range & average true range
% cci - commodity channel index
% chosc - Chaikin oscillator
% cmflow - Chaikin money flow
% chvol - Chaikin volatility
% cmo - Chande momentum oscillator
% dirmov - directional movement system, +-DI, DX, ADX

% dm1i - dynamic momentum index (DMI)

310

dpo
forosc
pnvi
prosc
psar
rsi
stdev
stoch
trix
vhfilt

bma
dema
ehma
gdema
hma
ilrs
delay
mom
Treg
pma
pmaimp
pma2
pmaimp2
sema
shma
sma
t3
tema
tma
vema
wema
wma
zema

bbands
donch
fbands
kbands
pbands
sebands
stbands

ohlc
ohlcyy
yylim

r2crit
terit
tdistr

6. Exponential Smoothing

detrended price oscillator
forecast oscillator

positive and negative volume indices, PVI, NVI

price oscillator & MACD

Wilder’s parabolic SAR

relative strength index, RSI

standard deviation index

stochastic oscillator, %K, %D oscillators
TRIX oscillator

Vertical Horizontal Filter

moving averages -----------=—=----———————————

Butterworth moving average

steady-state double exponential moving average

exponential Hull moving average

generalized dema

Hull moving average

integrated Tinear regression slope indicator
delay or advance by d samples

momentum and price rate of change

Tinear regression, slope, and R-squared indicators

predictive moving average, linear fit
predictive moving average impulse response

predictive moving average, polynomial order d=1,2
predictive moving average impulse response, d=1,2

single exponential moving average
SMA-based Hull moving average

simple moving average

Tillson’s T3 indicator, triple gdema
triple exponential moving average
triangular moving average

variable-Tength exponential moving average
Wilder’s exponential moving average
weighted or linear moving average

zero-lag EMA

Bollinger bands

Donchian channels

fixed-envelope bands

Keltner bands or channels

Projection bands and projection oscillator
standard-error bands

STARC bands

make Open-High-Low-Close bar chart
OHLC with other indicators on the same graph
adjust left/right ylim

R-squared critical values
critical values of Student’s t-distribution
cumulative t-distribution

6.25. Problems 311

6.25 Problems

6.1

6.2

6.3

6.4

6.5
6.6
6.7

Consider a filter with a real-valued impulse response h,. Let H(w)= M (w)e /%@ be
its frequency response, where M (w)= |H(w)| and 6 (w)= —arg H(w). First, argue that
60 (0)=0and M’ (0)= 0, where M’ (w)= dM (w) /dw. Then, show that the filter delay i of
Eq. (6.1.18) is the group delay at DC, that is, show Eq. (6.1.19),

do (w)

=
dw lw=0

The lag of a filter was defined by Egs. (6.1.17) and (6.1.18) to be,

hn
% " H'(z)

=

> hy H(z)

n

z=1

If the filter H(z) is the cascade of two filters, H(z)= H,(z) H,(z), with individual lags,
A1, Ny, then show that, regardless of whether H; (z), H, (z) are normalized to unity gain at
DC, the lag of H (z) will be the sum of the lags,

i =i + o

Consider a low-frequency signal s (n) whose spectrum S (w) is limited within a narrow band
around DC, |w| < Aw, and therefore, its inverse DTFT representation is:

1 Aw .
s(n)= —J S(w)e’*"dw
21 JAw

For the purposes of this problem, we may think of the above relationship as defining s(n)
also for non-integer values of n. Suppose that the signal s(n) is filtered through a filter
H (w) with real-valued impulse response whose magnitude response |H (w)| is approxi-
mately equal to unity over the +Aw signal bandwidth. Show that the filtered output can be
written approximately as the delayed version of the input by an amount equal to the group
delay at DC, that is,

Aw

y(n)= 1 H(w)S(w)e'"dw ~ s(n — i)
27T J-aAw

Show that the general filter-sharpening formula (6.9.5) results in the following special cases:
p=0,g=d = Hpmp=1-(1-H)!
p=1,g=d = Hump=1-1-H[1+ (d+1)H]

Prove the formulas in Egs. (6.10.5) and (6.10.7).

Prove Eq. (6.4.10).
Consider the single and double EMA filters:

1-A
HO= 3

(1-A)(1+A-2Az71)

_ 2 () —
H,(z)=2H(z)-H"(z) (1-2Az"1)2

a. Show that the impulse response of H, (z) is:

ha(n)= (1-A)[1+A - (1-A)n]A"u(n)

312 6. Exponential Smoothing

b. Show the relationships:

> o S - 2N
nz::(]nha(n)—o, g)n ha(m) = =750 6.25.1)

c. Show that the NRR of the filter H, (Z) is:

(1= A) (1 +4A +5A2)
(1+A)3

R=> hin)=
n=0

d. Show that the magnitude response squared of H, (z) is:

(1 =A)%[1+2A+5A2-4A(1 +A)cosw]|

Ha(w)|? =
Ha | [1-2Acosw +A2]?

(6.25.2)

e. Show that Eq. (6.25.2) has local minima at w = 0 and w = 77, and a local maximum at

W = Wmax:
1+4A — A2
COS Wmax = m (6253)
and that the corresponding extremal values are:
, (1-2A)2(1+3A)2
H,(0))>=1, |H 2 27 AT OA)
|Ha(0)[2 =1, |Ha(m)| T
, (6.25.4)
> (1+24)
[Ha (Wmax) |© = 1+2A

6.8 Consider the modified EMA of Eq. (2.3.5) and its twicing,

_a-0a+zh _ o _1-0)A+zHB+A-z1(1+31)
H(z)= oAzl Hgq(z)=2H(z)-H(2)= 11 _Az1)?
a. Show the relationships:
S B o, _ (1+2)2
n;)nha(n)— 0, ngon ha(n)= A -2)2

b. Show that the NRR of the filter H, (z) is:

R=Y hym=(1-2)BA+7)
n=0

6.9 Consider the optimum length-N predictive FIR filter h (k) of polynomial order d = 1 given
by Eq. (6.4.1).
a. Show that its effective lag is related to the prediction distance T by 1 = —T.
b. Show that its NRR is given by
N-1

R=> hik)=

k=0

1, 3(N-1+27)?
N~ NWN:-1)

Thus, it is minimized when T = — (N — 1) /2. What is the filter h (k) in this case?

6.25. Problems 313

c. Show that the second-derivative of its frequency response at DC is given by:

2

dw?

H(@)wmo= — > K2he (k)= é(Nf 1) (N =2 +67)
n=0

Determine the range of Ts for which |H (w) |2 is sloping upwards or downwards in
the immediate vicinity of w = 0.

d. It is evident from the previous question that the value T = — (N — 2) /6 corresponds
to the vanishing of the second-derivative of the magnitude response. Show that in this
case the filter is simply,

3N(N -1)-2k(2N - 1)
N(N2-1) ’

h (k)=

and verify explicitly the results:

7N2 —4N -2
3N(N?2-1)

N-1 N-1 N-2 N-1 N-1
D hl)=1, > kh(k)=—=s=, 2 Khk)=0, > h*Kk=
k=0 k=0 k=0 k=0

e. Show that h. (k) interpolates linearly between the T = 0 and T = 1 filters, that is,
show that fork = 0,1,...,N — 1,

hr (k)= (1 = T)ha (k) +Thy (k)= ha (k) +[h1 (k) =ha (K)] T

f. Another popular choice for the delay parameter is T = — (N — 1) /3. Show that,

2(N - k)

o= SN+1)

k=0,1,...,N—-1
and that,

N Nl N-1 NI NN-1) X 22N +1)
hk)=1, kh (k)= ——, Kh(k)= ———=, h2 (k)= ==~
k%() kZO k)= = kzo (k) G kZO (k) IN(NT D)

In financial market trading, the cases T = —(N—1)/2and T = —(N—1) /3 correspond,
respectively, to the so-called “simple” and “weighted” moving average indicators. The
case T = —(N — 2)/6 is not currently used, but it provides a useful compromise
between reducing the lag while preserving the flatness of the passband. By comparison,
the relative lags of three cases are:

1 1 1
6(N72)< g(N71)< E(Nfl)

6.10 Computer Experiment: Response of predictive FIR filters. Consider the predictive FIR filter
h+ (k) of the previous problem. For N = 9, compute and on the same graph plot the magni-
tude responses |H (w) |? for the following values of the prediction distance:

N-1 N-2
T=— 5 '1':—76 , T=0, T=1
Using the calculated impulse response values h+ (k), 0 < k < N — 1, and for each value of T,
calculate the filter lag, i1, the NRR, R, and the “curvature” parameter of Eq. (6.10.5). Recall
from part (d) of the Problem 6.9 that the second T should result in zero curvature.

Repeat all the questions for N = 18.

314 6. Exponential Smoothing

6.11 Moving-Average Filters with Prescribed Moments. The predictive FIR filter of Eq. (6.16.3) has
lag equal to n = —7 by design. Show that its second moment is not independently specified
but is given by,

N-1
- . 1
n? = Znih(n):—€<N—1)(N—2+67) (6.25.5)
n=0
The construction of the predictive filters (6.16.3) can be generalized to allow arbitrary spec-

ification of the first and second moments, that is, the problem is to design a length-N FIR
filter with the prescribed moments,

. N-1 ~Na1 Na1
n=> h(n)=1, n'=> nh(n)=-1;, n2= > nPh(n)=1, (6.25.6)
n=0 n=0 n=0

Show that such filter is given by an expression of the form,
h(n)=co+cin+cn®>, n=0,1,...,.N—1

where the coefficients cg, c1, c> are the solutions of the linear system,

So S1 S Ao 1
S1 S 853 A [=] -7
S2 53 54 /\2 T
where
N-1
Sp=>n", p=0,1,2,3,4
n=0

Then, show that the S}, are given explicitly by,

So=N, SlzéN(Nfl), SzzéN(Nfl)(ZNfl)
1

S3 = iNZ(N —-1)?%, S4= %N(N— 1) (2N - 1) BN =3N -1)
and that the coefficients are given by,

_ 3(3N2—3N +2)+18(2N —1)T; + 307>

o= NN+ (N+2)

o~ 1BIN-D(N-2)N-1)+12(2N - 1) (8N ~11)T, + 180(N -)T,
te N(N2-1) (N2 —4)

o, 30N~ 1) (N ~2) +180(N -~ 1), + 180T,

)=

N(N2-1)(N2-4)
Finally, show that the condition ¢, = 0 recovers the predictive FIR case of Eq. (6.16.3) with
second moment given by Eq. (6.25.5).

6.12 Consider the Butterworth filter of Eq. (6.20.2). Show that the lag of the first-order section

and the lag of the ith second-order section are given by,

1 _ cos 0
— . A=-
20 Qq

ny = , 1=1,2,...,K

Using these results, prove Eq. (6.20.8) for the full lag 1, and show that it is valid for both
even and odd filter orders M.

7

Smoothing Splines

7.1 Interpolation versus Smoothing

Besides their extensive use in drafting and computer graphics, splines have many other
applications. A large online bibliography can be found in [350]. A small subset of
references on interpolating and smoothing splines and their applications is [351-404].

We recall from Sec. 4.2 that the minimum-R; filters had the property of maximizing
the smoothness of the filtered output signal by minimizing the mean-square value of
the s-differenced output, that is, the quantity E[(V$Xy)?] in the notation of Eq. (4.2.11).
Because of their finite span, minimum-Rj filters belong to the class of local smoothing
methods. Smoothing splines are global methods in the sense that their design criterion
involves the entire data signal to be smoothed, but their objective is similar, that is, to
maximize smoothness.

We assume an observation model of the form y (t)= x(t)+Vv(t), where x(t) is a
smooth trend to be estimated on the basis of N noisy observations y,, = y (t,;) measured

at N time instants t,, forn =0,1,...,N — 1, as shown below.
Yo
y YN-1
2 YN-2
I)’l c {
ta 1y T) VS VN R 79

The times t,, called the knots, are not necessarily equally-spaced, but are in increas-
ing order and are assumed to lie within a slightly larger interval [t,, tp], that is,

tly<ly<ti<tr<---<tn_1 <ty

A smoothing spline fits a continuous function x (t), taken to be the estimate of the
underlying smooth trend, by solving the optimization problem:

N-1 . ty .
T=> Wnlyn—x(ta))* + AI [x® (t)]°dt = min (7.1.1)
n=0 la

where x) (t) denotes the s-th derivative of x (), A is a positive “smoothing parameter,”
and w, are given non-negative weights.

315

316 7. Smoothing Splines

The performance index strikes a balance between interpolation and smoothing. The
first term attempts to interpolate the data by x(t), while the second attempts to min-
imize the roughness or maximize the smoothness of x(t). The balance between the
two terms is controlled by the parameter A; larger A increases smoothing, smaller A
interpolates the data more closely.

Schoenberg [357] has shown that the solution to the problem (7.1.1) is a so-called
natural smoothing spline of polynomial order 2s—1, that is, x(t) has 2s—2 continuous
derivatives, it is a polynomial of degree 2s—1 within each subinterval (tj,t,+1), for
n=0,1,...,N — 2, and it is a polynomial of order s—1 within the end subintervals
[ta,to) and (tn-1,1p].

For discrete-time sampled data, the problem was originally posed and solved for
special cases of s by Thiele, Bohlmann, Whittaker, and Henderson [405-412], and is
referred to as Whittaker-Henderson smoothing. We will consider it in Sec. 8.1. In this
case, the performance index becomes:

N-1 N-1
T=> Wnlyn —xn)°+A > [V5xn]® = min (7.1.2)
n=0 n=s

In this chapter, we concentrate on the case s = 2 for the problem (7.1.1), but allow
an arbitrary s for problem (7.1.2). For s = 2, the performance index (7.1.1) reads:

N-1 ty
J=> Wn(yn—x(tn))2+/\J [%(0)]°dt = min (7.1.3)
n=0 ta

Eq. (7.1.3) will be minimized under the assumption that the desired x (t) and its first
and second derivatives X (t), X (t) are continuous over [tg,tp].

In the next section we solve the problem from a variational point of view and derive
the solution as a natural cubic spline.

7.2 Variational Approach

We begin with a short review of variational calculus [354]. Consider first a Lagrangian
L(x,%) that depends on a function x (t) and its first derivative x (¢).

A prototypical variational problem is to find the function x(t) that maximizes or
minimizes the “action” functional:

L]
Jx)= ! L (x,%)dt = extremum (7.2.1)
ta

The optimum function x (t) is found by solving the Euler-Lagrange equation for (7.2.1):

oL d oL

— - = = 7.2.2
ox dt ox ()
This can be derived as follows. Consider a small deviation from the optimum solu-

tion, X (t) — x(t) +5x(t). Then, the corresponding first-order variation of the functional

L can also have an explicit dependence on t, but we suppress it in the notation.

7.2. Variational Approach 317

(7.2.1) will be:

0T =TJ(x+6x)-T(x)= J:b [L(x+ 6x,% + %) —L(x,%)]dt
- J: [Z—féx+ Z—f_jax] dt = J: [Z—fjéx— (%>,5x+ (%6)()1 dt

where we used the differential identity*

oL AL . oLy’
(aéx) = §6x+ (a) ox (7.2.3)

Integrating the last term in 6.7, we obtain:

broL doL oL oL
5j— J{a [a — Ea] oxdt + aéx o - aéx . (7.2.4)
The boundary terms can be removed by assuming the condition:
%& - %M =0 (7.2.5)
ox ty ox ta
It follows that wror 4 or
b
6j: . I:a - Ea] oxdt (726)
which defines the functional derivative of J(X):
0F 0L _doL (7.2.7)

ox 0x dtox

The Euler-Lagrange equation (7.2.2) is obtained by requiring the vanishing of the
functional derivative, or the vanishing of the first-order variation 6.7 around the opti-
mum solution for any choice of dx subject to (7.2.5).

The boundary condition (7.2.5) can be achieved in a number of ways. The typical
one is to assume that the variation dx (t) vanish at the endpoints, dx(t;)= 6x(tp)= 0.
Alternatively, if no restrictions are to be made on 6x(t), then one must assume the
so-called natural boundary conditions [354]:

oL
ox

o

LT ek =0 (7.2.8)

tp

A mixed case is also possible in which at one end one assumes the vanishing of 6x
and at the other end, the vanishing of 0.L/0x.

The above results can be extended to the case when the Lagrangian is also a function
of the second derivative %, that is, £ (x, X, X). Using Eq. (7.2.3) and the identity,

oL . (oL .. (ocy .\ oLy’
§5X— (a(sx—(a) 6X> +<a) 6X

#primes and dots denote differentiation with respect to t.

318 7. Smoothing Splines

the first-order variation of 7 becomes

t
5T = T(x + 5x) -J(x) = J "LL(x + 8% X+ 6%, %+ 6%) —L (%%, %)]dt

ta

braL oL .. oL _. WloL doL d*oL
= J;a I:a X+ géXJr &5?{] dt = Ita [& — Ea + ﬁa} oxdt
oL d oL boooL ™
(5%~ arax) o), * 250,
To eliminate the boundary terms, we must assume that
oL d oL booaL "
(a*aa) X taJr aéx tafo (7.2.9)

Then, the first-order variation and functional derivative of 7 become:

WloL doL d*oL 8J oL doL d*oL
07 = f [a Tdrox t ﬁﬁ}ém' ox ~ ox dtox Tacox 7210
Their vanishing leads to the Euler-Lagrange equation for this case:
2
oL doL d oL _ 7.2.11)

ox dtox Tdeox
subject to the condition (7.2.9). In the spline problem, because the endpoints t,, tp
lie slightly outside the knot range, we do not want to impose any restrictions on the
values of 6x and 0x there. Therefore, to satisfy (7.2.9), we will assume the four natural
boundary conditions:

oL doL oL oL doL oL
ox “dtoxl, O ol % ox dtoxly O axl, 0 P
The spline problem (7.1.3) can be put in a variational form as follows,
N-1 » ty > ty
T= > wn(yn—x(tn)) +2\J [%(1)] dt=J Ldt = min (7.2.13)
n=0 ta la
where the Lagrangian depends only on x and X,
N-1
L= wnlyn—x(0))8(t —tn) + A[R(D)]° (7.2.14)
n=0

The Euler-Lagrange equation (7.2.11) then reads:

oL doL d®ocC Nt
a—aﬁ-rﬁﬁ——Zan(yn—x(t))é(t—tn)+27\x(t)—0, or,

n=0

N-1
RKO=2"1> wnlyn—x(tn))S(t — ty) (7.2.15)
n=0

where we replaced (y, —x(t)) 8 (t —ty,) by (yn —x(ty)) 8 (t —ty,) in the right-hand side.
The natural boundary conditions (7.2.12) become:

X(ta)=0, X(ta)=0, X(tp)=0, X(tp)=0 (7.2.16)

7.3. Natural Cubic Smoothing Splines 319

7.3 Natural Cubic Smoothing Splines

Eq. (7.2.15) implies that X (t)= 0 for all t except at the knot times t,,. This means
that x(t) must be a cubic polynomial in t. Within each knot interval [ty,ty+1], for
n=0,1,...,N-2, and within the end-point intervals [t,, to] and [ty_1, tp], the function
x(t) must be a cubic polynomial, albeit with different coefficients in each interval.

Specifically, the boundary conditions (7.2.16) imply that within [, to] and [tn-1, tp],
the third-degree polynomials must actually be polynomials of first-degree. Thus, x(t)
will have the form:

pa(=a,1+b 1 (t—-1ta), la<t=<t

x(t)= pn(t):an+bn(t—tn)+%c,,(t—t,,)%éd,,(t—t,,)3, th <t<tpy (731

pn-1(D)=an-1 + by (t —tn-1), IN-1ST<T
where n = 0,1,...,N-2 for the interval [t,, t,,+1], and we have referred the time origin
to the left end of each subinterval. We note that a, = x(t,)= pn(tn), bn = Pn(tn),
Cn =Pn(ty),and d, = Pn(tn),forn =0,1,...,N—1. The a, are the smoothed values.
The polynomial pieces join continuously at the knots. The term “natural” cubic
spline refers to the property that x(t) is a linear function of t outside the knot range,
and consists of cubic polynomial pieces that are continuous and have continuous first
and second derivatives at the knot times. Fig. 7.3.1 illustrates the case of N = 5 and the
numbering convention that we follow.

e = noisy data
o = smoothed

Fig. 7.3.1 Smoothing with natural cubic splines.

Although x(t), x(t), X(t) are continuous at the knots, Eq. (7.2.15) implies that the
third derivatives X (t) must be discontinuous. Indeed, integrating (7.2.15) around the
interval [t, — €,t, + €] and taking the limit € — 0, we obtain the N discontinuity
conditions:

X(tp) s —X(tp)-=A""'wpoyp—an), n=0,1,...,N—-1 (7.3.2)

where X (t,;) « = lim¢_o X (t, =€), and a, = x(t,). Expressed in terms of the polynomial
pieces, the continuity and discontinuity conditions can be stated as follows:

320 7. Smoothing Splines

Pn(tn)=pn-1(ty), n=0,1,...,N—-1

pn (tn) = f’n—l (tn)
(7.3.3)
ijn (tn) = ﬁn—l (tn)

.ﬁn (tn) _.ﬁn—l (th) =)\7an (Yn — an)

These provide 4N equations. The number of unknown coefficients is also 4N. In-
deed, there are N—1 strictly cubic polynomials plus the two linear polynomials at the
ends, thus, the total number of coefficients is 4(N — 1) +2 - 2 = 4N.

In solving these equations, we follow Reinsch’s procedure [358] that eliminates by, dp,
in favor of a,, c,. We begin by applying the continuity conditions (7.3.3) at t = t,

ap=a-1+b_1(ty—tg)

by =b_,
(7.3.4)
co=0
do = A" wo (yo — ao)
where in the last two we used c_; = d_; = 0. From the first two, it follows that the

left-most polynomial can be referred to time origin ¢y, and written alternatively as,
p1(O=a-1 +b_1(t —ta)=ao + bo(t —ty) (7.3.5)

Forn =1,2,...,N — 1, defining h,,—; = t, — ty—1, conditions (7.3.3) read:

1 1
an = dp-1 + bn—lhn—l + ECnflhElfl + Bdn,lh;:l,l

1
by =bp_y + cn_thp_y + —dn_1h%_
n n=1+ Cn-1fin-1 + 5 dn-11y (7.3.6)
Cn =Cn-1+dn-1hn-1

dp—dp-1 = A71Wn (yn — an)

Since cy-1 = dn-1 = 0, we have atn = N — 1:

1 1
an-1 =an-2 + by _2hy 2 + ECN,ghIZ\,_2 + édethS\/_z

1
by-1 =bN-2+cn2hN2 + §dN72h12\/72

0=cN—2+dn-2hN-2

0—dn-2=A""wn_1(yn-1 — an-1)

7.3. Natural Cubic Smoothing Splines 321
Using the third into the first two equations, we may rewrite them as,
1 2
an-1 = an-2 + by2hny-2 + §CN—2hN72

1
bn-1=bn-2+ ECN—ZhN—Z

(7.3.7)
CcN-2 = —dn-2hn_»
dn-2 = —=A 'wyn_1 (YN-1 — an-1)
From the third of Eq. (7.3.6), we have
dpoy ="t 1,2, N—1 (7.3.8)
hn—l
In particular, we obtainatn =1 andn =N — 1,
c1—cC c _
do=""—"2="1 =2 wy(yo — ao)
ho ho
c e c (7.3.9)
—dyp = — LT EN=2 INZ2 Ay (U1 — an-1)
hy_» hy_»

where we used Egs. (7.3.4) and (7.3.7). Inserting Eq. (7.3.8) into the last of (7.3.6), we
obtain forn =1,2,...,N — 2:

Cnt1 — C Cn — Cn—
dp—dpy = —on_2n—onel 3=y (yn — an) (7.3.10)
hn hn-1
Thus, combining these with (7.3.9), we obtain an Nx (N—2) tridiagonal system of
equations that relates the (N—2)-dimensional vector ¢ = [cy,C2,...,cn_2]T to the N-
dimensional vector a = [ag, d1,...,an—_1]17:

c
L= A" wo (v — ao)

ho
1 1 1 1
——Cpo1 — +—)en+ —cps1 =A71 —a n=1,2,...,N-2
h, . n-1 (hn—l hn> n h, n+1 Wn (Vn n) y £y ,
CN-
hN—Z =A"'wyoy (Vo1 — an-1)
N-2
(7.3.11)
where we must use ¢y = cy—1 = 0. These may be written in a matrix form by defining
the vector y = [y, 1,...,¥~N-1]17 and weight matrix W = diag([wo, W1,...,Wn-11),
Qc=A"'"W(y-a) (7.3.12)
The NX (N-2) tridiagonal matrix Q has non-zero matrix elements:
1 1 1 1
- , - _ + =1, = — 7.3.13
Qn 1,n hn—l Qn,n (hn—l hn) Qn+1,n hn ()

322 7. Smoothing Splines

forn =1,2,...,N—2. Wenote that the matrix elements Q,; were assumed to be indexed
suchthat0 <n <N —-1land 1 <i < N — 2. Next, we determine another relationship
between a, and c,. Substituting Eq. (7.3.8) into the first and second of (7.3.6), we obtain:

1
an — dp-1 = bnflhnfl + 6 (cn + 2Cn71)hi_1 , n=12,...,N—-1

1 (7.3.14)
bn - bn—l = E(Cn + Cn—l)hn—l
The first of these can be solved for b,_; in terms of ay:
—dpn- 1
by = 4=t L o Dhpe, n=1,2,...,N -1
hy1 6
1 (7.3.15)
a —-a
by =T~ (cper +2¢0)hn, n=0,1,...,N—2
hy, 6

Substituting these into the second of (7.3.14), we obtain forn = 1,2,...,N — 2:

1 1 1 1 1 1 1
man—l - (}11771 + E) an + Ean+l = éhn—lcn—l + g(hn—l +hp)cn + ghncn+1
(7.3.16)

This an (N—2) XN tridiagonal system with the transposed of Q appearing on the
left, and the following (N—2) x (N—2) symmetric tridiagonal matrix on the right,

1
Tyun =~ (hpo1 + hn), l1<n<N-2

; 1 (7.3.17)
Tnsin = Thne1 = éh”' l<n<N-3

Thus, the system (7.3.16) can be written compactly as,
QTa=Tc (7.3.18)

To summarize, the optimal coefficients a, ¢ are coupled by

QTa=Tc

0c - A Wiy —a) (7.3.19)

To clarify the nature of the matrices Q, T, consider the case N = 6 with data vector
v = [Vo,V1,¥2,¥3, V4, y51 L. The matrix equations (7.3.19) read explicitly,

do
hy! —(hgt + Y hit 0 0 0 7|a
0 hit —(hy!t+hy!) hy! 0 0 ||a2
0 0 hy! —(hy! + h3!) h3! 0 ||as
0 0 0 h3! —(h3' +hyY) hitl|ag
as

2(”10 + hl) hl 0 0 Cq

1 h, 2(hy + h») h» 0 C»

T 6 0 h; 2(hz + h3) h3 C3

0 0 hy 2(hs+hy) ||y

7.3. Natural Cubic Smoothing Splines 323

h61 0 0 0 Wo()/() —ao)
—(hg' + hiH hit 0 0 wy(y1 —ay)
hy! —(h7t + hyh) h;! 0 Wo (Yo — as)

0 h;! —(hy" +h3h) h3! ws(y3 —az)

0 0 hgl —(hgl +h;1) W4(y_1 —day)

0 0 0 hy! ws(ys — as)

In order to have a non-trivial vector ¢, we will assume that N > 3. Egs. (7.3.19) can
be solved in a straightforward way. Since T is square and invertible, we may solve the
first for c = T-'QTa and substitute into the second,

QT 'QTa=A""W(y—-a) = W+AQT'QT)a=Wy or,

a= W+AQT'Q")'wy (7.3.20)

so that the filtering (the so-called “hat”) matrix for the smoothing operation a = Hy is
H=W+AQT'QT)'w (7.3.21)

Although both Q and T are banded matrices with bandwidth three, the inverse T~!
is not banded and neither is (W + AQT'QT). Therefore, the indicated matrix inverse
is computationally expensive, requiring O (N?3) operations. However, there is an alter-
native algorithm due to Reinsch [358] that reduces the computational cost to O(N)
operations. From the second of (7.3.19), we have after multiplying it by QT W1,

AW lQc=y-a = AQTW'Qc=QTy-QTa=QTy-Tc
which may be solved for ¢
(T+AQ"W'Qe=Q"y = c¢=(T+AQ"W'Q)'Q"y

where now because W is diagonal, the matrix R = T + AQTW~1Q is banded with band-
width five, and therefore it can be inverted in O (N) operations. This leads to Reinsch’s
efficient computational algorithm:

R=T+AQTw1Q
c=R1QTy (7.3.22)
a=y-AWlQc

This implies an alternative expression for the matrix H. Eliminating ¢, we have,
a=y-AW'QR'QTy = a=(I-AW'QR'QT)y, or,

H=I-AWTQR'QT =1 -AW'Q(T + AQTW'Q)~'QT (7.3.23)

The equivalence of Egs. (7.3.21) and (7.3.23) follows from the matrix inversion lemma.
Once the polynomial coefficients ¢ = [c1,C2,...,cn-2]1T and a = [ag,a1,...,an-117

324 7. Smoothing Splines

have been computed, the b, and d, coefficients can be obtained from Egs. (7.3.8) and
(7.3.14), and (7.3.7), with ¢y = cy-1 = 0,

Cn+1 —Cn
d, = ———

, n=0,1,...,N—-2, and dny-1 =0
hy,

by = dn+1 — dn

1
h —g(cn+1+2cn)hn, n=01,...,.N=-2 (7.3.24)
n

1
bn-1 =bn2+ ECN—ZhN—Z

Egs. (7.3.22) and (7.3.24) provide the complete solution for the coefficients for all the
polynomial pieces. We note two particular limits of the solution. For A = 0, Eq. (7.3.22)
gives R = T and

c=T"'QTy, a=y (7.3.25)

Thus, the smoothing spline interpolates the data, that is, x(t,) = a, = y,. Interpo-
lating splines are widely used in image processing and graphics applications.
For A — oo, the solution corresponds to fitting a straight line to the entire data set.
In this case, Eq. (7.3.23) has a well-defined limit,
H=I-AW1'Q(T+AQTw Q) 'QT - 1-w1'QQ™w Q) 'QT (7.3.26)
and Egs. (7.3.22) become:
c=0, a=y-w'o@'w'Q)'Q'y (7.3.27)

Since ¢ = 0, Egs. (7.3.24) imply that d,, = 0, therefore, the polynomial pieces p, (t)
are first-order polynomials, and we also have b, = (an+1 — an) /h,. The vector a lies in
the null space of Q7. Indeed, multiplying by Q7, we have from (7.3.27),

Q'a=Q'y-@@'wW'Q'w'e)'Q'y=Q'y-Q'y=0
Component-wise this means that the slopes by, of the p, (t) polynomials are the same,

a —-a an — an-

(QTa),= =2 _Tn Bl by —byy =0 (7.3.28)

hn hp-1

Thus, the polynomials pj,(t) represent pieces of the same straight line. Indeed,
setting b, = B, and using a, = a,-1 + fh,—1, we obtain,

Pn (t): ap + B(t - tn)= dp-1 + Bhn—l + B(t - tn)= ap-1 + B(t - tn—l)z Pn-1 (t)
This line corresponds to a weighted least-squares straight-line fit through the data
Vn, that is, fitting a polynomial p (t) = « + Bt to

N-1
T=> Wanyn—ptn)* = (y =9 "W(y - §) = min
n=0

Itis easily verified that the coefficients and fitted values y = [p (to),p(t1),...,p(tn)] T
are given by

[‘;‘ } — (STWS)'STWy, v =S(STWS) 'sTwy (7.3.29)

7.4. Optimality of Natural Splines 325

where § is the N X2 polynomial basis matrix defined by

T
S= 7.3.30
[fo p - INa] ()

The fitted values y are exactly equal to those of (7.3.27), as can be verified using the
following projection matrix identity, which can be proved using the property QTS = 0,

wlQQTW'Q)'QT + S(STWS)'STw =1 (7.3.31)

7.4 Optimality of Natural Splines

The smoothing spline solution just derived is not only an extremum of the performance
index (7.1.3), but also a minimum. To show this, consider a deviation from the optimum
solution, x (t) +f (t), where x(t) is the solution (7.3.1) and f (t) an arbitrary twice dif-
ferentiable function. Then, we must show that J(x +) > J(x). Noting that a,, = x(t,,)
and denoting f,, = f (t,) , we have,

N-1 ty .
TXAL) =S Wan — @n — fa)2+A L [() +f (1)]%dt

n=0
N-1 ty

TX = 3 walyn = an? A | [k de
n=0 a

and by subtracting,

N-1 W .
TAD TN = S Walf2 —2(vn — anfal +AL [F (02 +28 (0 F (0] dt
n=0 a

N-1 th . N-1 ty .
= ZanﬁJr?\J f(t)zdt—zan()/n—an)fn"'ZAJ X(Of (t) dt
ta oy ta

n=0

The first two terms are non-negative. Therefore, the desired result 7(x + f) > J(x)
would follow if we can show that the last two terms that are linear in f cancel each
other. Indeed, this follows from the optimality conditions (7.3.3). Splitting the integra-
tion range as a sum over the subintervals, and replacing X (t) by p,(t) over the nth
subinterval, we have,

ty

ty . to . N=2 tn . ..
|"sofwac=["pwfoas S [pwfod [1 gy of oa
a n=0

ta tn N1
N=2 ctpp i)
= ,Zo Ln [(Pn(t)f(t)) - Dn(t)f(t)] dt

where we dropped the first an last integrals because p—; (t) and py—1 (1) are linear and
have vanishing second derivatives, and used the identity p,f = (Pnf)’ —Pnf. The first

326 7. Smoothing Splines

term is a complete derivative and can be integrated simply. In the second term, we may
use P, (t) = d, over the nth subinterval to obtain,

ty .) . N-2 th+1 .
L KOF@Odt = Py (ty-1) f (tv-1) —Po(to) f(t)) = S J duf (O dt
a n=0

tn

N-2
= Pn—2 (tn=1) f (tn=1) —Po (t0) f (to) = D dn (Fas1 — fn)
n=0
From the continuity at t = ty and t = ty—_1, we have py_2 (tny-1)= Pn-1(tn-1)= 0
and py (to) = p_1 (to) = 0. Thus, we find,

N-2

ty - N-2
L KOFWdt == dn(farr —)= dofo+ S (dn — dn-1)fn — dx—2fx—1
a n=0 n=1

Using Egs. (7.3.4), (7.3.6), and (7.3.7), we obtain

ty . N-1
j{ R(OF (Odt = A" S Wi (Vn — an)
a n=0

Thus, these two terms cancel in the difference of the performance indices,

N-1

b,
TJx+)-Tx)= > wnfa+2 L f(t)2dt (7.4.1)

n=0

Hence, J(x +)= J(x), with equality achieved when f (t)= 0 and fn = f(tn)= 0,
which imply that f (t) = 0.

Although we showed that the interpolating spline case corresponds to the special
case A = 0, it is worth looking at its optimality properties from a variational point of
view. Simply setting A = 0 into the performance index (7.1.3) is not useful because it
only implies the interpolation property X (t,)= y,. An alternative point of view is to
consider the following constrained variational problem:

ty
J=| [%®)]°dt = min
ta

(7.4.2)
subject to x(ty)=yn, n=0,1,...,N—-1
The constraints can be incorporated using a set of Lagrange multipliers p,,
N-1 t ,
J= Z 2Un (Yn — x(tn)) + J [%(t)]°dt = min (7.4.3)
n=0 la
The corresponding effective Lagrangian is,
N-1 ,
L= 2Up(yn—x(0)8(t = ta) +[%(1)] (7.4.4)
n=0

7.5. Generalized Cross Validation 327

The Euler-Lagrange equation (7.2.11) then gives,

N-1
X(O)= D> unb(t—tn) (7.4.5)
n=0

which is to be solved subject to the same natural boundary conditions as (7.2.16),
X(ta)=0, X(ta)=0, X(tp)=0, X(tp)=0 (7.4.6)

This is identical to the smoothing spline case with the replacement of A~ (y,, — an)
by un, or, vectorially A=W (y — a) — u. Therefore, the solution will be a natural spline
with Eq. (7.3.19) replaced by

Q'y=Tc, Qc=u

which is the same as the A = 0 smoothing spline case. Thus, the interpolating spline
solution is defined by a = y and ¢ = T-'QTy, with the equation Qc = p fixing the
Lagrange multiplier vector.

7.5 Generalized Cross Validation

The cross-validation and generalized cross-validation criteria are popular ways of choos-
ing the smoothing parameter A. We encountered these criteria in sections 4.5 and 5.2.

The cross-validation criterion selects the A that minimizes the weighted sum of
squared errors [352]:

N-1
CV(A)= % > wilyi—aj)?=min (7.5.1)
i=0

where a; is the estimate of the sample y; obtained by deleting the ith observation y; and

basing the spline smoothing on the remaining observations. As was the case in Sec. 5.2,
we may show that

__Yi—ai

g =AY

Vitdi = TH i

where H;; is the ith diagonal element of the filtering matrix H of the smoothing problem

with the observation y; included, and a;, the corresponding estimate of y;. Thus, the

CV index can be expressed as:

(7.5.2)

1 N-1 1 N-1 Vi — a; 2
V= LS wiy —ar)2= L (;> — mi 7.5.3
(A) Ng(:)wl(yl a;) Ni;)w, 1 - Hy min ()

The generalized cross-validation criterion replaces H;; by its average over i, that is,

* _q:i\?2
GCVA) = — > w (y' ‘31) —min, H=— > Hj = %tr(H) (7.5.4)

The GCV can be evaluated efficiently with O (N) operations for each value of A using
the algorithm of [377]. Noting that 1 - H = (N—tr(H))/N = tr(I— H) /N, and defining
e=y—a= (I — H)y, the GCV can be written in a slightly different form,

328 7. Smoothing Splines

N1, (v: — g:)2 T
lGCV(A): 21:0 wi (Vi gl) _ e'We > = min
N [tr(I - H)] [tr(I - H)]
To show Eq. (7.5.2), consider the index (7.1.3) with the i-th observation y; deleted:

(7.5.5)

N-1 ty
T => Wn(yn—x(tn))2+AJ [%(t)]°dt = min (7.5.6)
=0 la
o
The i-th term can be included provided we attach zero weight to it, that is, we may
define w;, = wy, if n # i, and w; = 0:

N-1 ¢
To= > Wy (vn—x(tn)* + A ’ [%(t)]°dt = min (7.5.7)
n=0 la

It follows from Eq. (7.3.20) that the optimum solutions with and without the i obser-
vation are given by

a=Hy=F Wy, F=W+AQT'QT

a=H.y=F'W.y, F.=W_+AQT'QT (7.5.8)

where W_ is the diagonal matrix of the w;,. Defining the i-th unit vector that has one in
its i-th slot, u; = [0,...,0,1,0,...,0]7, then W_ is related to the original W by

W_=W-wiuu! = F_=F—wuul
It follows from Eq. (7.5.8) that,
Fa=W.y = (F-wuul)a = (W -wuu))y
Noting that y; = ul-Ty and a; = uiTa‘, we have after multiplying by F~1,
a —-wiFluyar =a-wiFlwy; = a-a =wFlu(y;—a;)
Multiplying by u/ and noting that H;; = ul Hu; = u/ F-'Wu; = (u] F~1u;) w;, we find,
ai—a; =Hii(yi—a;) (7.5.9)

which is equivalent to (7.5.2). An intuitive interpretation [352] of a™ is that it is obtain-
able by the original filtering matrix H acting on a modified observation vector y* whose
i-th entry has been replaced by the estimated value y;* = a;, and whose other entries
agree with those of y. To show it, we note that Wy* = W_y + w,-uiyl-*. Then, we have
Fa=W.y = (F-wiuula =Wy*-wmwy = Fa =Wy —wuw(yf-a;)

Thus, if we choose y}* = a;, we have Fa~ = Wy*, which gives a- = F-!Wy* = Hy*.
A similar result was obtained in Sec. 4.5.

7.6. Repeated Observations 329

7.6 Repeated Observations

We discussed how to handle repeated observations in local polynomial modeling in
Sec. 5.5, replacing the repeated observations by their averages and using their multi-
plicities to modify the weighting function. A similar procedure can be derived for the
spline smoothing case.

Assuming that at each knot time t, there are m, observations, y,; with weights wy;,

i=1,2,...,my, the performance index (7.1.3) may be modified as follows:
N-1my 5 ty 5
J= z Zwm-(ym—x(tn)) +2\L [%(t)]°dt = min (7.6.1)
n=0i=1 a

Let us define the weighted-averaged observations and corresponding weights by:

1 mp mp
Yn=_—— Z WhiYni, Wn = Z Whi (7.6.2)
Wn o i1

If the weights wy,; are unity, y, and w,, reduce to ordinary averages and multiplicities.
It is easily verified that 7 can be written in the alternative form:
N-1 . ty]
J= Z Wn (Pn — x(l‘n))Z +A . [)'&(t)]zdt + const. = min (7.6.3)
n=0 a
up to a constant that does not depend on the unknown function x (t) to be determined.
Thus, the case of multiple observations may be reduced to an ordinary spline smoothing
problem.

7.7 Equivalent Filter

The filtering equation of a smoothing spline, a = Hy, raises the question of whether it
is possible to view it as an ordinary convolutional filtering operation. Such a viewpoint
indeed arises if we replace the performance index (7.1.3) with the following one, which
assumes the availability of continuous-time observations y (t) for —oco < t < oo,

J= J_m ly () =x(t) [*dt + A J_w |%(t) | *dt = min (7.7.1)

The solution can be carried out easily in the frequency domain. Using Parseval’s
identity and denoting the Fourier transforms of y (t),x(t) by Y (w), X (w), and noting
that the transform of % (t) is —w?X (w), we obtain the equivalent criterion,

« d @ d
j:j }Y(w)—X(w)|2—w+AJ 0 X (w) |2 4L = min (7.7.2)
oo 27T — 21T
Setting the functional derivative of ;7 with respect to X* (w) to zero,™ we obtain the
Euler-Lagrange equation in this case:*
0T
0X* (w)

T X (w) and its complex conjugate X * (w) are treated as independent variables in Egs. (7.7.2) and (7.7.3).
#The boundary conditions for this variational problem are that X (w) — 0 for w — *co.

= -[Y(w)-X(w)] + Aw? X (w)=0 (7.7.3)

330 7. Smoothing Splines

which leads to the transfer function H (w)= X (w) /Y (w) between the input Y (w) and
the output X (w):

H(w)= (equivalent smoothing filter) (7.7.4)

1
1+ Aw?
Its impulse response (i.e., the inverse Fourier transform) is

a
h(t)= E(s.ina|t| +cosat)e™ | —oo <t< oo (7.7.5)

where a = (4A) '/4, The impulse response h(t) is double-sided, and therefore, it
cannot be used in real-time applications. However, it is evident that the filter is a lowpass
filter with a (6-dB) cutoff frequency of wo = A~1/4. Fig. 7.7.1 depicts h(t) and H (w)
for three values of the smoothing parameter, A = 1, A = 1/5,and A = 5.

effective impulse response A(t) effective frequency response H(®)

-10 -5 0 5 10

Fig. 7.7.1 Effective impulse and frequency responses in spline smoothing.

One can also work in the time-domain with similar results. The Euler-Lagrange equa-
tion (7.2.11) leads to,

Xy +AX1)=0 = xO+AX()=y() (7.7.6)

Fourier transforming both sides we obtain (1 + Aw*) X (w) = Y (w), which leads to
Eq. (7.7.4) by solving for H(w)= X (w) /Y (w).

A similar approach will be used in the Whittaker-Henderson discrete-time case dis-
cussed in Sec. 8.1 The resulting filter is often referred to in the business and finance
literature as the Hodrick-Prescott filter.

Variants of the Whittaker-Henderson approach were first introduced in 1880 by
Thiele [405,406] and in 1899 by Bohlmann [407]. Bohlmann considered and solved both
the discrete- and continuous-time versions of the performance index,

N-1 N-1
T= > n—Xn)2+A D (Xn — Xp_1)°= min
n=0 n=1

(7.7.7)
t) t)

J= J ’ ly (6)—x(t) |°dt + /\J ’ |%(t) | *dt = min
tg ta

7.8. Stochastic Model 331

In the continuous-time case, the Euler-Lagrange equation, transfer function, and im-
pulse response of the resulting smoothing filter are:

x(O-Ax(O)=y(@®) = H(oU)=1 L

1
Tiiws Mo= —Zﬁe*““ﬁ (7.7.8)

Thiele considered the unequally-spaced knot case and the weighted performance index:

N-1 1 N-1 1
T=> Sl —xtn)]*+ > — [x(tn) ~X(ty-1)]* = min (7.7.9)
n=0 On n=1 Wn

It is remarkable that Thiele formulated this problem as a state-space model—to use
modern parlance—and solved it recursively using essentially the Kalman filter and asso-
ciated smoother. Moreover, he showed how to estimate the unknown model parameters
using the EM algorithm. We will be discussing these ideas later on.

7.8 Stochastic Model

Like the exponential smoothing case, spline smoothing can be given a stochastic state-
space model interpretation [397-404]. The spline function solution x(t) of Eq. (7.3.1)
can be regarded as an optimum linear estimate of the underlying stochastic process
based on the N observations {yg, y1,...,Y~N-1} subject to some additional assumptions
on the initial conditions [399].

The state-space model allows the use of Kalman filtering techniques resulting in
efficient computational algorithms, which like the Reinsch algorithm are also O (N). But
in addition, the state-space model allows the estimation of the smoothing parameter.

The basis of such a stochastic model (for the cubic spline case) is the stochastic
differential equation:

xX(t)=w(t) (7.8.1)
where w(t) is a zero-mean white-noise process of variance 0'&,, that is, its autocorrela-
tion function is E[w () w(T)] = 02,6 (t — T).

In the observation model y (t) = x(t) +Vv (t), we may assume that v (t) is uncorrelated
with w (t) and is white noise with variance 2. It turns out that the smoothing parameter
can be identified as the ratio A = 02/02. The N actual observed values are y, =
x(ty) +v(ty). Integrating Eq. (7.8.1) over the interval [t,,t], we obtain,

t
x(t) =X(tn)+J w(T)dTt
y . (7.8.2)
x(t) =x(tn)+(t—t,,)>'<(tn)+J (t—-T)w(T)dT
th

The process X (t) is integrated white noise, or a Wiener or Brownian process. The
process X(t) is an integrated Wiener process. We may write these in vector form by
defining the state and noise vectors,

x(1) x(tn) tlt_T
Xt=|:X(t):|' X":[X(tn)]’ Wz=Ln[1]W(T)dT (7.8.3)

332 7. Smoothing Splines
and the state transition matrix,
1 t—-1ty
At ty) = [0 1] (7.8.4)

Then, Eq. (7.8.2) can be written compactly as
Xt =A(t ty)Xn + W (7.8.5)

The covariance matrix of the noise component wy is:

t ot _
Elwwl] = L L [t IT} [t — T/, 1] E[w(T)w(T")] dtdT’

tetle—7
J J [1] [t—7,1] 02 6(T—T)dtdT
tw Jtn

(7.8.6)
1 1
St—tn)? S (t—ty)?
_ 2|3 2
g(t—tn)2 (t—tn)
At t = ty+1, we obtain the state equation,
tns1 i1 — T
Xnt1 = A(tne1, tn)Xn + Wne1, Wpep = J 1 w(T)dTt (7.8.7)
[
where, using h,, = th+1 — tp,
1 1
1 h sha oM
A(tpsr, th) = |:0 ln :| y E[wnﬂle]: 0'5, (7.8.8)

1
Shh

In terms of the spline coefficients, we have a, = x(t,) and b, = X(t,) att = ty,
and similarly at t = t,;+;. Following [28], we would like to show the following estimation
result. Given the state-vectors X, Xn+1 at the two end points of the interval [ty, ty+1],
the spline function x(t) of (7.3.1), and its derivative X (t), can be regarded as the mean-
square estimates of the state-vector x; based on x,,Xy+1, that is, assuming gaussian
noises, given by the conditional mean,

X = E[X¢1Xn,Xn+1] (7.8.9)

If we orthogonalize x,,.1 with respect to x,, that is, replacing it by the innovations
vector €,4+1 = Xp+1 — E[Xp+1/Xn], then we may use the regression lemma from Chap. 1
to write (7.8.9) in the form:

Xt = E[X¢|Xn,Xn+1]= E[X¢[Xn] +2xt5n+12;n1+15n+1£n+1 (7.8.10)
We have from Eq. (7.8.5) and (7.8.7),

E[x¢|xn]= A6, tn)Xn, E[Xni1l1xn]= A(tni1,th)Xn (7.8.11)

7.8. Stochastic Model 333

the latter implying,
Env1 = Xn1 — E[Xn11Xn]= Xne1 — A(tns1, th) Xn = Wit (7.8.12)
and therefore, we have for the covariance matrices:
_ T q_ T q_ T _ T
Sxienn = E[Xt€qi 1= E[xXewp g 1= Elwewiq], Zee0 = ElWniawnq]

The latter has already been calculated in (7.8.7). For the former, we split the integra-
tion range of w1 as follows,

thel _ t th+1 —
Wni1 = J tne1 =T w(T)dT = J +J tne1 =T w(T)dTt
th 1 th t 1

and note that only the first term is correlated with wy, thus, resulting in

t t t— 7 ’ 7
Sxiens = E[wewl, 1= L L [1T} [tne1 — T, 1] E[w(T)w(T')] dtdT

t¢—
:U‘EVJ [lT:|[l’n+17T,1]dT

th (7.8.13)

1 2 1 2

é(t_tn) (tn +2hp — 1) E(t_tn)

1
E(t—tn)(tn+2hn—t) (t—tn)
We may now calculate the estimation matrix Hp4+1 = x,¢,,,2. ;HEIEM,

1 2 1 2

h—g(t—tn) (2ty + 3hy — 21) h—Z(t—tn) (t—tn—hpn)

Hpo=| " " (7.8.14)

6 1
hig(t*tn)(thrhn*t) hig(t*tn)(3t*3tn*2hn)
n n

It follows that the estimate X, is

X = E[x¢|Xn] +Hni1€n41 = At tn)Xn + Hy1 (Xns1 — A(tnsr, th)Xn) (7.8.15)

%, = %(t) X = dan X _ | An+1
CTLx@ |0 T ke |0 T T | ba

1 .
X(t) = an +by(t— tn)+h*3(t - tn)Z(Ztn +3hy = 2t) (ans1 — an — bnhp)
n

Setting

we obtain

1
+ 7“ - tn)z(t_ tn — hn) (bn+1 _bn)
hn

2 6
x(t) =bp + hT(t_ tn) (tp + hy — O) (@ns1 — an — bnhy)

n

1
+ hT(t —tn) 3t = 3ty — 2hy) (bpi1 — bn)
n

334 7. Smoothing Splines

Using the continuity relationships (7.3.6),

1 1
dps1 = an + bphy + ECnhi + gdnhfl

1
bpi1 =bn + cphn + Ednhﬁ
it follows that the expressions for X(t) and X (t) reduce to those of Eq. (7.3.1),
X 1 , 1 3
X(t) = an+by(t - tn)""ECn (t—tn) +6dn(t —tn)

?}(t) =bn +Cn(t_tn)+%dn(t_tn)2

the second being of course the derivative of the first. The asymptotic filter (7.7.4) may
also be given a stochastic interpretation in the sense that it can be regarded as the
optimum double-sided (i.e., unrealizable) Wiener filter of estimating x (t) from y (t) of
the signal model,

y(t)=x(t)+v(t), X({t)=w(t) (7.8.16)

We will see in Chap. 11 that for stationary signals x(t),y (t), with power spectral
densities Sxy (w) and Syy (w), the optimum double-sided Wiener filter has frequency
response:

_ Sxy (W)

Hlw)=¢ (@)

(7.8.17)
Because x(t) is an integrated Wiener process, it is not stationary, and therefore,

Sxy (w) and Sy, (w) do not exist. However, it has been shown [643-649] that for cer-

tain types of nonstationary signals, which have the property that they become stationary

under a suitable filtering transformation, Eq. (7.8.17) remains valid in the following mod-

ified form:

_ Sy (w)

H(w)= Sy ()

(7.8.18)

where X (t),y(t) are the stationary filtered versions of x(t),y(t). For the model of
Eq. (7.8.16), the necessary filtering operation is double differentiation, x(t)= X(t)=
w (t), which can be expressed in the frequency domain as X (w)= D (w)X (w), with
D(w)= (jw)%= —w?. For the observation signal, we have similarly y (t)= y = X + V.
Since w(t), v (t) are uncorrelated, we find

Sxy(w) = Sww(w)= 0\24/
Syy(w) = Sww (W) +Syy (W) |D (w) |2 = 0‘24, + 0_‘2) w?

which leads to

Sxy((l)) O'2 1 0'2
H = = L = A=— 7.8.19
(w) Syp(w) oh+0iw* 1+Awt’ % ()

This can be written in the form,

02,/ w*

H(w)= O
(@) 0%/ wt + o}

(7.8.20)

7.9. Computational Aspects 335

which is what we would get from Eq. (7.8.17) had we pretended that the spectral densities
did exist. Indeed it would follow in such a case from Eq. (7.8.16) that Sy, (W)= 02,/ w*
and Syy (w) = 0% /w?* + o2.

7.9 Computational Aspects

Egs. (7.3.22) and (7.3.24) describing the complete spline solution have been implemented
by the MATLAB function spTsm,

P = splsm(t,y,lambda,w); % spline smoothing

where t,y are the knot times [ty, t1,...,tN-1] and data [y, Y1,...,Y~N-1] (entered as
row or column vectors), Tambda is the smoothing parameter A, and w the vector of
weights [wg, w1,...,Wwn_1], which default to unity values. The output P is an Nx4
matrix whose n-th row are the polynomial coefficients [ay, by, Cn, d,]. Thus, the vector
a is the first column of P. Internally, the matrices T, Q are computed as sparse banded
matrices with the help of the function spImat,

[T,Q] = spImat(h);

% spline sparse matrices T, Q

where h is the vector of knot spacings [hg, h1,...,hn-1], which is simply computed by
the diff operation on the knot times t, that is, h=diff(t). The smoothing spline may
be evaluated at any value of t in the range t; < t < t} using Eq. (7.3.1). The function
splval performs the evaluation of x(t) at any vector of t’s,

ys = splval(P,t,ts); % spline evaluation at a vector of grid points tg

where ys is the vector of values x(t;), and P, t are the spline coefficients and knot times.
The GCV criterion (7.5.5) (with the 1/N factor removed) may be calculated for any vector
of A values by the function splgcv:

gcv = splgev(t,y,lambda,w); % GCV evaluation at a vector of A’s

The optimum A may be selected by finding the minimum of the GCV over the com-
puted range. Alternatively, the optimum A may be computed by the related function
splambda, which performs a golden-mean search over a given interval of A’s,

% determine optimum A

‘ [Topt,gcvopt] = splambda(t,y,la,Tb,Nit,w);

The starting interval is [A4, Ap] and Nit denotes the number of golden-mean itera-
tions (typically, 10-20). The function sp1sm2 is a “robustified” version of spTsm,

‘ [P,ta] = splsm2(t,y,la,w,Nit); % robust spline smoothing

The function starts with the original triplet [t,y,w] and uses the LOESS method of
repeatedly modifying the weights (with a total of N7t iterations), with the outliers being
given smaller weights. Because of the modification and zeroing of some of the weights,
the output matrix P will have dimension N,x4 with N; < N. The function also outputs

336 7. Smoothing Splines

the corresponding knot times ta (also N,-dimensional) that survive the down-weighting
process.

All of the above functions assume that the observations y, are unique at the knot
times t,. If there are repeated observations, then the weighted observations and their
weights given by Eq. (7.6.2) must be the inputs to the above functions. They may be
determined with the function splav, which is similar in spirit to the function avobs,
except that it computes weighted averages instead of plain averages:

[ta,ya,wa] = splav(t,y,w); % weighted averages of repeated observations

where the outputs [ta,ya,wa] are the resulting unique knot times, observations, and
weights.

Example 7.9.1: Motorcycle data. The usage of these functions is illustrated by the motorcycle
data that we conside