
Why W8 1

Why W8
Restaurant Automation

https://github.com/SE-Group-4/Why-W8

Group 4

Full Report

Stephan Dimitrovski

Michael Haas

Jimmy Jorge

Nikhil Jiju

Kyungsuk Lee

Yi Xie

https://github.com/SE-Group-4/Why-W8

Why W8 2

 Project Category
Team Member Name

Stephan Michael Jimmy Nikhil Kyungsuk Yi

Responsibility
Levels

Summary of Changes
5 Points

 100%

Sec 1. Customer Statement of
Requirements

6 Points
 100%

Sec 2. Glossary of Terms
4 points

 50% 20% 30%

Sec 3. System
Requirements

Functional
Requirements

2 Points
100%

Nonfunctional
Requirements

2 Points
 100%

UI Requirements
2 Points

 100%

Sec 4. Functional
Requirements
Specification

Stakeholders,
Actors, Goals

2 Points
30% 50% 20%

Use Case Casual
Descriptions

8 Points
50% 40% 10%

Use Case
Diagram
5 Points

100%

Use Case Full
Descriptions

10 Points
 100%

System
Sequence
Diagrams
5 Points

 15% 15% 70%

Sec 5. Effort Estimation Using UCP
4 Points

100%

Sec 6. Domain Concepts 20% 15% 15% 50%

Why W8 3

Analysis

10 Points

Associations
5 Points

 25% 75%

Attributes
5 Points

 25% 75%

Contracts
5 Points

 50% 50%

Sec 7.
Interaction
Diagrams

UML Diagrams
10 Points

66% 34%

Prose
Description of

Diagrams
10 Points

50% 50%

Alt. Solution
Descriptions

10 Points
50% 50%

Design Patterns
10 Points

 50% 50%

Sec 8.
Class Diagram
and Interface
Specification

Class Diagram &
Description

5 points
 100%

Signatures &
Traceability

Matrix
5 points

 50% 50%

OCL Contract
Specification

10 Points
 33% 33% 33%

Sec. 9
System

Architecture &
Design

Styles
5 points

 40% 60%

Package
Diagram
2 points

 100%

Map Hardware
2 points

50% 50%

Database
3 points

 20% 80%

Other
3 points

25% 25% 25% 25%

Why W8 4

Sec. 10 Alg’s & Data Structures
4 points

 70% 30%

Sec. 11
User Interface

Appearance
6 points

 40% 60%

Prose
Description

5 points
 100%

Sec. 12 Testing Design
12 points

 50% 50%

Sec 13. History of Work
5 Points

 100%

Project Management
13 Points

40% 40% 20%

Why W8 5

Table of Contents

Summary of Changes 7

1. Customer Statement of Requirements 8

1.1 Problem Statement 8

2. Glossary of Terms 11

3. System Requirements 14

3.1 Enumerated Functional Requirements 14

3.2 Enumerated Nonfunctional Requirements 16

3.3 On-Screen Appearance Requirements 17

4. Functional Requirements Specification 22

4.1 Stakeholders 22

4.2 Actors & Goals 22

4.3 Use Cases 23

4.3.1 Casual Description 23

4.3.2 Use Case Diagram 25

4.3.3 Traceability Matrix 25

4.3.4 Fully-Dressed Description 26

4.4 System Sequence Diagrams 29

5. Effort Estimation Using Use Case Points 32

5.1 Unadjusted Actor Weight 32

5.2 Unadjusted Use Case Weight 32

5.3 Technical Complexity Factors 34

5.4 Environmental Complexity Factors 35

5.5 Use Case Points 36

5.6 Duration 36

6. Domain Analysis 36

6.1 Domain Model 36

6.1.1 Concept Definitions 36

6.1.2 Association Definitions 37

6.1.3 Attribute Definitions 38

6.1.4 Traceability Matrix 40

6.1.5 Domain Model Diagram 41

6.2 System Operation Contracts 42

6.3 Mathematical Model 46

7. Interaction Diagrams 53

7.1 Design Patterns 56

Why W8 6

8. Class Diagram and Interface Specification 58

8.1 Class Diagram 58

8.2 Data Types and Operation Signatures 60

8.3 Traceability Matrix 71

8.4 Object Constraint Language (OCL) 73

9. System Architecture and System Design 75

9.1 Architectural Styles 75

9.2 Identifying Subsystems 76

9.3 Mapping Subsystems to Hardware 76

9.4 Persistent Data Storage 77

9.5 Network Protocol 78

9.6 Global Control Flow 78

9.7 Hardware Requirements 78

10. Algorithms and Data Structures 79

10.1 Algorithms 79

10.2 Data Structures 80

11. User Interface Design and Implementation 81

12. Design of Tests 90

12.1 Unit Testing 90

12.2 Integration Testing 97

13. History of Work 101

14. References 102

Why W8 7

Summary of Changes

- Updated Functional Requirements

- Updated User Statements and diagrams

- Updated more images of User Interface

- Added description to each use case traceability matrix

- Added Estimation using use case points

- Updated Interaction diagrams

- Added new customer portal features within application

- Added Object Constraint Language Contracts

- Added Design Patterns

- Updated History of Work and added Future Work

Why W8 8

1. Customer Statement of Requirements

1.1 Problem Statement

Actor - Host/Hostess:

By being the first person the customer sees, after coming through the front door, there is a

paramount of importance placed on hospitality that is served by the host. As a host, I have to try to

make the customer feel welcome, and have them seated in a calm and collected manner. However, this

feat can be more difficult than it sounds when factoring a large influx of customers and limited seating,

along with the confusion of people moving about. If there was a program that could keep track of the

open seats, and where they were located, I could serve newly entering customers much faster. What

would be even better is if the customer had reserved a seat for themselves prior to arrival. That way I

wouldn’t even have to search for an open seat, and all I would have to do is confirm that they did indeed

reserve a seat and guide them to it.

The Why W8 solution: Why W8 allows the customer to select their own table before even stepping foot

inside the restaurant. The process is simple, the customer will select their desired time and table. If

available, the customer will reserve said table at said time. Upon arrival the customer will simply give

their name and the hostess will see when and where to seat them.

Actor - Manager:

 Running a business is not easy by any means. If there is anything that could help minimize the

amount I have to spread myself across tasks, and help me keep the business profitable, then I’m all ears.

I was personally thinking about something that can help the restaurant keep track of the flow of

customers, and perhaps what they ordered. That way I know when to keep extra staff on hand, and

what to order more of in order to keep a stocked inventory.

 That being said, there is also the issue of my having to keep tabs on my employee, to make sure

that they are working in a timely manner. I hear that you have some kind of table tracker that you might

be able to implement. Well, if you could add in something that keeps track of how long it takes the

busboy to clean off the tables and how long it takes for the guests to be seated along with being served,

that would make my day. Saves me some time from having to look over the camera records to make

sure there isn’t any major slacking.

 However, while all of the aforementioned is nice and dandy, I really don't want to have to juggle

around another program. Sometimes I get so lost when I have to sift through so many different

programs in order to manage payrolls, inventory, shift management, expenditures, et cetera. If there is

any way you lot can combine all of these tools for me in one compact program, I would be eternally

grateful.

The Why W8 solution: The overall design of Why W8 keeps track of practically every action made in the

restaurant by both the employees and the customers. This makes relaying data back to the management

Why W8 9

much easier. For example, Why W8 will be able to recognize how many orders were placed, how many

dishes are ordered per order, how much of the inventory was used per order, and how many employees

are on staff between a given interval of time. With knowledge of this information, Why W8 can easily

create charts for management to keep track of the day to day running of the restaurant.

Actor - Busboy:

 Most people think living the life of a busboy is easy - and it is, for the most part. But, there are

some days that just have me turned about, with having so many customers and all. With the hostess

asking you for an informative layout of the tables in the restaurant, I was wondering if you could put in

some information that shows which tables have to be cleared off and cleaned. You know, that way I

could quickly come over and do whatever has to be done to make the place spiffy for the next customer.

The Why W8 solution: Why W8 offers an interactive display which will keep track of every step along the

way of a successful dining experience. With that being said, the Busboy(s) will know when a customer

has left the restaurant, which will trigger the Busboy(s) to clean the now unoccupied table, once the

table is clean the Busboy(s) will be able to set the table as a clean “Available” table.

Actor - Customer:

 I’m really picky about my food - I prefer knowing that the food I’m about to get is near

perfection, at least to most people. Some kind of rating system might help me with decisions regarding

just that. In consideration of the foregoing, I also want to know what exactly is in the food, in the case of

allergies and for calorie counting purposes. All this talk about food has made me hungry, so I’ll probably

call somewhere for food; actually, that gives me another idea! If there was a digital menu, I wouldn’t

have to go through the hassle of having to speak with someone and waste time trying to understand

them as they try to understand me - my phone isn’t especially good, so this is more of a problem than

you might think. And perhaps if I could order ahead of time, that would cut down my waiting to get the

food - fantastic! Speaking of waiting, if the menu also displayed how long an item would take to make,

then I would know when to arrive at the restaurant to pick up the food when it’s nice and hot. Although,

there are also occasions when I like to just eat at the restaurant, but the line goes through the door

sometimes! If only there was a way everyone already knew where to sit and could just get to it. What if

there was a way to combine some of those ideas! Hey, let’s say I order off of this menu, then maybe I

can also reserve a seat for myself, and pay the bill while I’m eating. That way, I already have a seat and

food ready to go - presto, time saved.

The Why W8 solution: Why W8 offers a digital touch menu with numerous features to ensure customer

satisfaction. An integrated rating system will show the customer what previous customers thought

about a specific dish, this will guide the customer into selecting a dish that will help them leaving

satisfied. The menu will also display what ingredients are in each dish which will avoid any allergy issues.

To remove the uncertainty of a wait time, Why W8 has the time it will take for each dish to be made

displayed on the menu. Another great feature Why W8 provides is a table selection option. This option

allows the customer to reserve a specific table at a specific time.

Actor - Chef:

Why W8 10

 Day in and day out, I work in the kitchen - being a chef isn't terrible, but boy is it stressful.

Having to make sure orders are filled out in a timely fashion and keeping track of dishes that have a few

modifications requested to them by the customer really does a number on me sometimes. Not to

mention, sometimes what the waiter writes down looks like downright chicken scratch, it all just makes

the job harder than it has to be. So, what I would like to get from you guys is something that will help

me read incoming orders clearly, with any possible modifications done to them in a different color. That

way, I don't have to rely on the waiter's chicken scratch, and I can clearly see what is different about this

meal from the standard. Next on my list would be something to help tell the waiter that the food is

ready to pick up - that's another one of my pet peeves; I have a fresh meal ready for a customer and it

just sits around for 5 minutes, taking up space on the counter for more dishes and getting cold all the

while.

 Now since that's all settled, there is one more idea that I have, but I'm not sure if it's worth the

effort. I was thinking about having the incoming orders laid out in such a way so that I could tell what

ingredients are common among them. That way, I could prepare larger batches of whatever it is that the

meals require, say sautéed mushrooms for instance. If an order for a burger with mushrooms came in,

and then an order of creamy mushroom on fettuccine, I would like to be able to see that they share

sautéed mushrooms in common, so I could make more in one go rather than having two sautéing

sessions. But, that's just my own little idea - I'm not even 100% sure it would work the way I think it

could.

The Why W8 solution: Because Why W8 is a connected application, when the customer places an order

it immediately goes into a queue until it is ready to be made. Once the order is ready to be made the

Chef will be able to click “Start Order.” This will bring up the recipe for each dish. Once the Chef

completes the order they will simply click “Order Complete” which will signal the server to pick up the

food.

Actor - Waiter/Waitress:

 Man do I hate when the chef yells at me - he gets so agitated when I don't pick up stuff from him

in the time he wants me to. It's not like I diddle-dally my way around the restaurant. I have customers to

attend to as well, taking their orders and, well, waiting on them. I hear you guys are already

implementing some sort of order ahead system - that is absolutely fantastic, since it will take a bit of the

load off of me. I was just wondering if there was some way you can have me fill out orders digitally, and I

would just send them off to the kitchen without even my having to go there. Also, if you guys could

have a little list for me indicating which meal is done, and to which table it should go to, that would be

fabulous. In fact, if you could have some way of indicating which table has yet to be served, or is in the

middle of eating, or is wanting to pay their bill, or … well, you get the idea. Something that tells me the

status of each table, so I know where to run to next that too would be extremely helpful. Maybe with all

of these things done, the chef would no longer have a reason to yell at me.

The Why W8 solution: Because of the integration of all components of the app, once the customer

orders their food it will be relayed directly to the kitchen eliminating the middleman where things can

get lost in translation. Once an order is ready, a notification will alert the server prompting them to

Why W8 11

deliver the food to the corresponding table. Once the food is delivered the server simple presses

“Delivered” for the corresponding table which will remove it from the list.

What Makes Why W8 Better?

Taking a look at [1], we see that this group’s proposed solution involves a tablet at the front of

the restaurant where they input their information. This can cause lines to form as people wait for others

to finish in front of them, defeating the purpose of trying to speed up the dining process. Why W8

addresses this problem by allowing customers to download our application directly to their phone and

select a table for a specific group size without having to use a tablet. Of course, there will be backup

tablets for the special occasions where customers do not own a smartphone.

Further, in [1] the payment is done through the tablet when the customers finish their meals,

which we believe can cause some dishonest customers to avoid paying their bill. We address this by

having the customer pay on their phone as soon as their order is placed, otherwise, the order does not

go through in our system for the chef to cook. We also added QR codes on the tables to allow customers

to confirm their table when they enter the restaurant, as well as scan the code when they are leaving

the restaurant to let our system know that the table has opened up. If for some reason the customers to

do not scan the QR code upon leaving, the waiter will be able to scan it to override the system.

Why W8 also has its own features not seen in other apps, such as the rating and favorites

system. Customers are given the option to create an account on the app so that they can keep track of

their “favorite” foods for easy re-order and also rate foods that they have tried. This gives all customers,

even those who do not have an account, the ability to view the top rated foods as well as the most

favorited foods. These appear at the top of the menu when the customers get to the ordering screen.

2. Glossary of Terms

Admin

The restaurant owner/manager utilizing the reports generated by the application.

Application (App)

A software program designed to perform specific functions for a user.

Busboy

A busboy is a person who works in the restaurant and catering industry clearing tables, taking dirty

dishes to the dishwasher, setting tables. In this report, a busboy would get an alert when the customers

finished.

Chef

A chef is a trained professional cook who is proficient in food preparation, often focusing on a particular

cuisine. In this report, the chef is the person prepares the food after the customers confirm their order

in our app.

Cross-Platform

Why W8 12

An application that can be used on multiple types of devices, such as varying phone models.

Customer

A person or organization that buys goods or services from a store or business. In this report, the

customer is the person utilizing the application, and not the one requesting the proposed system.

Customer Account

A user account to access the application as a customer that allows them to reserve tables and stores

their preferred meals, ratings, etcetera.

Customer Service

Customer service is the process of ensuring customer satisfaction with a product or service. In this

report, customer can contact the restaurant or give some comments or complaint in the interface of

customer service.

Database

A structured set of data stored on the Why W8 network, certain parts of which are accessible to certain

user accounts.

Dine-In

To order and eat food within a restaurant.

Favorite Rating

A score that reflect customers’ satisfaction. The application shall allow the customer to rate and

“favorite” meals. “Favorite” meals will be highlighted in the customer’s account for future orders.

Floor Layout

Shows all tables in the restaurant along with their respective status for the customer’s viewing purposes.

Guest Account

An account almost identical to a customer account minus the features of storing information such as

favorite meals and personal ratings.

Host

Assigns seats to people who come to the restaurant, especially those who wish to not use the app.

Changes the status of tables from “Occupied” to “Vacant”.

Menu

In this report, a menu is a list of food with pictures and favorite rates. Customers can view or order food

in the menu.

Manager

Why W8 13

Manages inventory, payroll, employee list and charts, customer’s bills to override any issues, and the

log-in interface to prevent unauthorized access of admin panel.

Order Queue

A list of orders that are placed in first in, first out order (FIFO). The orders are sent to the chef’s PC,

where the chef can then view and prepare the meals. [6]

QR Code

QR code (abbreviated from Quick Response Code) is the trademark for a type of matrix barcode (or

two-dimensional barcode. In this report, the QR code is used for customers confirming their table

number. [5]

Rating

A position or standing of something, such as how popular some meal is amongst customers determined

by their feedback and stored on the Why W8 database.

Reservation

An arrangement to secure a table ahead of time.

Restaurant System

Customers can view all available tables and reserve a specific table at a specific time using the android

application.

Screen

A specific window displayed on the Why W8 user interface that provides convenient functionality for the

user.

Tablet

A portable thin computer that utilizes a touchscreen as its primary user interface.

Take-Out

Food that is sold at a restaurant and packaged so that the customer can eat it elsewhere.

Tip

A small percent of money to be given to the waiter/waitress.

User Account

A private location on a network server for an individual who utilizes the application to store information

such as their username, password, etcetera.

User Interface

Why W8 14

The visual aspect of the android application on the user’s phone that allows user interaction with the

system.

Waiter

A waiter is the person who works at a restaurant, attending customers—supplying them with food and

drink as requested. In this report, waiters are working on delivering food to tables and serving for the

special requirements.

Walk-in Queue

A list of table reservations that are placed in first in, first out order (FIFO). These reservations are made

on the customer’s end of our application, which is on their android phones.

3. System Requirements

3.1 Enumerated Functional Requirements

Table 3.1 Functional Requirements

Identifier Priority Requirement

REQ-1 5
The application shall allow customers to choose an open table based on
the restaurant’s seating chart. Once a table is chosen, customers shall
scan a QR Code at the selected table to confirm their seat.

REQ-2 5
The application shall provide a menu once the table is confirmed, where
the customer places their order.

REQ-3 5
The application shall send the order to the chef queue to be cooked once
the customer has paid for their meal.

REQ-4 4
The application shall provide the option to make a table reservation at
the restaurant.

REQ-5 3
The application shall show the customer an approximation of the
remaining wait time for their meal.

REQ-6 5
The application shall alert the waiter when an order has been completed.
The waiter will then be able to deliver the order to the designated table.

REQ-7 4
The application shall allow the customer to choose a take-out option,
where orders are placed and picked up.

REQ-8 2
The application shall allow the customer to rate and “favorite” meal
options. “Favorite” meals will be highlighted in the customer’s account
for future orders.

Why W8 15

REQ-9 1
The application shall display to the admin food, customer, and inventory
reports. Popularity of meals, number of customers, and remaining
supplies will be available to view for the admin.

REQ-10 1
The application shall allow the customer to view the menu options
without choosing a table or placing an order.

REQ-11 4
The application shall request the customer to scan the QR code found on
the table once they are ready to leave.

REQ-12 4
The application shall ask the customer if they would like to leave a tip
once they have confirmed they are leaving the restaurant. There will be
suggested tip percentages, as well as customer input.

REQ-13 5
The application shall alert the busboy when a table is to be cleaned.
When the customer scans the QR code at the table signalling that they
are leaving the restaurant, the busboy will receive a notification.

REQ-14 2
The application shall request a login, or ask the customer to use a guest
account to proceed.

In Section 1.1, we propose the solutions we believe to be the answer to the customer’s

statement of the problem. As we can see the host/hostess use case is satisfied by REQ-1, as the user is

able to select a table on our app even without having to step inside the restaurant. The manager use

case is satisfied by REQ-9, as the application gathers the data from the database of user ratings,

inventory, favorite foods, etc. and displays detailed reports for the day. The busboy use case is satisfied

by REQ-13, as the busboy receives a notification once the customer has left the restaurant that their

table is dirty. The most important use case, for the customer, is satisfied by REQ-1, REQ-2, REQ-4, REQ-5,

REQ-7, REQ-8, REQ-10, REQ-11, REQ-12 and REQ-13. All of these requirements give the customer the

options to use our application to speed up the dining process by using our app for every step of their

experience. The chef use case is satisfied by REQ-3, REQ-5, and REQ-6. Our app gives the chef the ability

to start an order and give updates on the progress of a customer’s meal. Finally, the waiter/waitress use

case is satisfied by REQ-3, REQ-6, and REQ-12. The waiter/waitress does not have to write down every

order or bring a receipt to the customer as everything is taken care of by our app. Find the acceptance

test cases for each of the requirements below.

Table 3.2 Acceptance Test Cases for Functional Requirements

Identifier Acceptance Test Case

REQ-1

If the user chooses to dine-in, the seating chart will be shown. A customer selects an

open table, designated by the color green. If a customer selects a green colored table,

they will be asked to scan a QR code, otherwise, they will not be sent to the next screen if

they choose a red colored table.

REQ-2
Once the table is confirmed, the customer is directed to a QR scanner where they must

scan the QR code given on their selected table. If the correct QR code is scanned, the

Why W8 16

menu screen shows where customers can place their order, otherwise, they will not be

able to proceed.

REQ-3

After placing their order, the customer will be asked to pay for their meal. If they make a

payment, the order will be sent to the chef queue to be cooked, otherwise theri meal will

remain on hold until a payment is made.

REQ-4

At the beginning screen, there will be a reservation option. Clicking this will show the

seating chart for available tables at certain times. Once a free table is chosen, our

database will be updated with the reservation.

REQ-5

After the chef starts cooking a customer’s meal, the status of the meal, from preparation

to completion will be displayed for the customer to see. There will also be an

approximate time remaining shown for the customer.

REQ-6
When the chef updates the status of a meal as done, the waiter should receive an alert to

pick up the meal and bring it to the appropriate table.

REQ-7

At the beginning screen, there will be a take-out option. Choosing this will bring the

customer to the order screen where they choose their meal. After receiving payment, the

order is sent to the chef and is prepared, giving the customer an estimated time to

pickup.

REQ-8

Rating a food on a scale from 1 to 5 adds the rating to the database and updates the

average rating for the food item. Favoriting a meal adds a heart next to the food and

highlights the food the next time the customer uses the app.

REQ-9
The application gathers data from the current day from the database and produces an

accurate report based on that data.

REQ-10
At the beginning screen, there will be a menu option. Choosing this allows the customer

to view the menu without having to make an order.

REQ-11

After making payment, the app will ask the customer when they are ready to leave. Once

ready, they will be taken to a QR scanner. Scanning the QR code marks the table as dirty

for the busboy and free the table in the seating chart.

REQ-12
Scanning the QR code to confirm leaving should bring up a tip screen. The customer can

choose to leave a tip by picking the suggested tips, or input their own tip.

REQ-13
Scanning the QR code to confirm leaving should send a notification to the busboy that the

table is dirty and should be cleaned.

REQ-14

The application uses a customer account to keep track of ratings and favorite foods, but if

the customer does not want an account, they can use a guest account. Picking either will

bring them to the same menu order screen.

Why W8 17

3.2 Enumerated Nonfunctional Requirements

Table 3.3 Nonfunctional Requirements [2]

Identifier Priority Requirement

REQ-15 1
The application should be cross-platform for maximum usability to the
general audience

REQ-16 5
The application should have a high mean time between failure (MTBF)
and high mean time to recovery (MTTR) to ensure reliability

REQ-17 3 The application should be intuitive and easy to use

REQ-18 3 The application should look aesthetically pleasing and modern

REQ-19 4 The application should have minimal transitions from each screen/action

REQ-20 5
The application should run as a service to save resources on the user’s
device

REQ-21 3
The application should be designed to handle an overestimated number
of users for consistent throughput and availability

REQ-22 3
The application should be designed to make updates and fixes easy to
implement

3.3 On-Screen Appearance Requirements

Why W8 18

Figure 3.1 User interface and path for the owner/admin

Table 3.4 On-Screen Requirements for the Owner/Admin

Identifier Priority Requirement

REQ-23 1

Two text fields are used to take in values for username and password. A button

is used to send the information to the system which determines the

authorization of the user.

REQ-24 1

On next screen, two buttons are used to determine type of information the

owner wants to look at. Clicking on the button takes owner to the page linked

with that button.

REQ-25 3
On the Inventory screen, there is a list of items in stock which is updated in real

time. Items running low are marked accordingly.

REQ-26 3

On the Customer info screen, there are statistics such as the current number of

people in the restaurant. There is also a graph showing the amount of customers

for each hour.

Why W8 19

Figure 3.2 User interface and path for the customer

Figure 3.2 (Cont.) User interface and path for the customer

Table 3.5 On-Screen Requirements for the Customer

Why W8 20

Identifier Priority Requirement

REQ-27 1
Two buttons appear for customer to choose to dine in or take out. Button leads

to corresponding pages.

REQ-28 1

If the takeout button is clicked, the menu page appears for customers to select

what they want to order. There is a list of food with specifications which show

when an item is clicked.

REQ-29 1

If the dine in button is clicked, the available tables appear. This shows the tables

available labeled as green. The customer can choose the table they want and sit

there.

REQ-30 2

Upon table selection, confirmation page appears. This requires customers to

scan the qr on the table to prove they are sitting in the correct table. There is an

on screen camera and the scan QR button takes the picture.

REQ-31 1 After confirmation, user is taken to menu page again as with take out.

REQ-32 5

Once food items are selected, this page appears. Contains a food progress bar

which is pre-programmed to a timer of expected time. There are also two

buttons each linked to corresponding screens.

REQ-33 2

If the payment button is selected, payment screen appears. This includes bill

total that is printed as text. There are also text fields that take in card

information. There are also buttons to add in tips to the total.

REQ-34 5

If the rate button is selected, the review page appears. Here customers can

leave a review for the food they ate. There is a text field for the customer to

write the review on as well as a button to submit the review.

Why W8 21

Figure 3.3 User interface and path for the employee (general)

Table 3.6 On-Screen Requirements for the Employee (General)

Identifier Priority Requirement

REQ-35 1

If the employee is a waiter, a screen with table info appears. These tables are

marked according to duties the waiter must perform. If the table is dirty, the

waiter needs to clean it. If the table has an order attached that is ready the

waiter will be informed to deliver the food there. The waiter also has the ability

to make tables available.

REQ-36 1

If the employee is a chef, this screen with incoming orders appear. It contains a

queue of what the customers ordered. The chef can select to get more

information which brings up the next screen.

REQ-37 2

If an order is expanded, it appears on this screen. This contains text information

about the order details which includes customer specification. The chef can

press a button to confirm he is currently making that dish.

Why W8 22

4. Functional Requirements Specification

4.1 Stakeholders

The following are the stakeholders who will have the most interest to design and run the system

efficiently.

➢ Restaurant owner

➢ Employees i.e Manager, Waitress, Busboy, Host, Chef, and other employees

➢ Software Developers i.e front-end, back-end, full-stack developers/programmers

Alongside the restaurant owner seeing their business become more efficient, all of the employees

simply would benefit from a streamlined process. On top of this, the customer, who is one of the most

important aspects of the restaurant world, would make great use of the all-in-one application for their

restaurant outings. Lastly, software developers on our team have a great interest in assuring our

application runs smoothly and makes the whole restaurant process truly efficient. With this in mind,

future software developers will be able to build and add more features in the future with the restaurant

owner/manager in mind; specific customizations, niche features, etc.

4.2 Actors & Goals

Table 4.1 Initiating Actors

Actor Role Goal

Customer

The customer uses the application to
either choose to order food for take-out,
or dine in and select their table before
entering the restaurant. The customer
also places their order in the system.

The goal of the customer is to have an
excellent experience with minimal wait
times for all aspects of the restaurant dining
process.

Guest

The guest is a special type of customer
which does not have an account. The
guest has the same role as the customer,
without being able to favorite food.

The goal of the guest is to have an excellent
experience with minimal wait times for all
aspects of the restaurant dining process.

Manager

The manager uses the application to
review the daily reports associated with
their restaurant, including trends, ratings,
inventory, customer peak times, etc.

The goal of the manager is to understand
the important aspects of their restaurant as
easily and quickly as possible.

Table 4.2 Participating Actors

Actor Role

Why W8 23

Chef

The chef waits for the customer to place their order(s) if there are no orders in the
queue. Otherwise, the chef begins cooking the top meal in the queue. The chef also
updates the status of the customer’s meal so that an estimate for the remaining
cooking time can be relayed to the customer.

Waiter/
Waitress

The waiter/waitress receives notifications from the database that a customer’s order is
ready. Once notified, the waitress retrieves the customer’s meal and brings it to their
table.

Busboy
The busboy receives notifications from the database that a customer has left their
table, thus marking the table dirty. Once notified, the busboy goes to the appropriate
table to clean up.

Database The database records a customer’s orders, table selection, favorite foods, and ratings.

4.3 Use Cases

4.3.1 Casual Description

The summary use cases are as follows:

UC-1: Dine-in - Allows the customer to dine inside the restaurant.

Derived from requirement REQ-1, REQ-2, REQ-3, REQ-5, REQ-6, REQ-8, REQ-11, REQ-12, and REQ-13.

UC-2: Take Out - Allows the customer to order food from their home for pick-up.

Derived from requirement REQ-7.

UC-3: Reservation - Allows the customer to reserve a table for a later date or time without having to call

the restaurant.

Derived from requirement REQ-4.

UC-4: View Menu - Allows the customer to view the menu (mandatory sub use case, «include» from

UC-1: Dine-in and UC-2: Take Out). Extension Point: the customer is able to rate food items. Extension

Point: the customer is able to favorite a food item.

Derived from requirement REQ-2, REQ-8, and REQ-10.

UC-5: Table Selection - Allows the customer to select an open table in the seating chart (mandatory sub

use case, «include» from UC-1: Dine-in and UC-3: Reservation).

Derived from requirement REQ-1 and REQ-4.

UC-6: QR Scan - Allows the customer to confirm their table by scanning the QR code associated with the

table they chose in UC-5 (mandatory sub use case, «include» from UC-1: Dine-in).

Derived from requirement REQ-11

Why W8 24

UC-7: Payment - Allows the customer to pay for their meal, after which the chef will begin cooking

(mandatory sub use case, «include» from UC-1: Dine-in and UC-2: Take Out).

Derived from requirement REQ-3.

UC-8: Rate Food - Allows the customer to rate food they have eaten at the restaurant on a scale from 1

to 5 (optional sub use case, «extend» UC-4: View Menu).

Derived from requirement REQ-8.

UC-9: Favorite Food - Allows the customer to favorite a food on the menu so that it is highlighted the

next time they order at the restaurant (optional sub use case, «extend» UC-4: View Menu).

Derived from requirement REQ-8.

UC-10: Login - Allows the customer to utilize the restaurant options and track their rated and favorited

foods (mandatory sub use case, «include» from UC-1: Dine-in).

Derived from requirement REQ-14.

UC-11: Generate Report - Allows the manager to view important aspects about the restaurant generated

from the daily customers in easy to follow charts and graphs.

Derived from requirement REQ-9.

UC-12: Register - Allows a guest to create an account so that he or she can access the application

features.

Derived from requirement REQ-14.

UC-13: Estimate Time - Allows the chef to estimate the remaining cooking time for a customer’s meal.

Derived from requirement REQ-5.

It is important to note how the waiter/waitress and busboy are not given their own use cases because

they are not initiating actors. They only participate in the actions which the customers initiate, and the

database relays notifications to them. Dismissing notifications is not shown here for simplicity.

Why W8 25

4.3.2 Use Case Diagram

Figure 4.1 Use Case Diagram for the Why W8 application

4.3.3 Traceability Matrix

Why W8 26

Req’t PW UC-1 UC-2 UC-3 UC-4 UC-5 UC-6 UC-7 UC-8 UC-9 UC-10 UC-11 UC-12 UC-13

REQ-1 5 X X

REQ-2 5 X X

REQ-3 5 X X

REQ-4 4 X X

REQ-5 3 X X

REQ-6 5 X

REQ-7 4 X

REQ-8 2 X X X X

REQ-9 1 X

REQ-10 1 X

REQ-11 4 X X

REQ-12 4 X

REQ-13 5 X

REQ-14 2 X X

Max PW 5 4 4 5 5 4 5 2 2 2 1 2 3

Total PW 38 4 4 8 10 4 5 2 2 2 1 2 3

Figure 4.2 Traceability matrix mapping the system requirements to use cases

4.3.4 Fully-Dressed Description

UC-1 : Dine-in

Related Requirements:
● REQ-1, REQ-2, REQ-3, REQ-5, REQ-6, REQ-8, REQ-11, REQ-12, REQ-13

Initiating Actor:
● Customer, Guest

Actor’s Goal:
● To choose to dine-in at the restaurant

Participating Actors:
● Waiter/waitress, busboy, database

Why W8 27

Preconditions:
● User has application loaded

Postconditions:
● User is shown available tables

Flow of Events for Main Success Scenario:
1. → The customer opens the application to the homepage for login/guest user
2. → The customer clicks login
3. ← The system prompts for account information
4. → The customer inputs account ID/PW
5. ← The system displays option for dine-in, take out, reservation, view menu
6. → The customer clicks dine-in

Flow of Events for Alternate Success Scenario:
1. → The customer opens the application to the homepage for login/guest user
2. → The customer clicks guest user
3. ← The system displays option for dine-in, take out, reservation, view menu
4. → The customer clicks dine-in

UC-5 : Table Selection

Related Requirements:
● REQ-1, REQ-4

Initiating Actor:
● Customer, Guest

Actor’s Goal:
● To select an open table for dining in

Participating Actors:
● Database

Preconditions:
● User has application loaded
● User has chosen to dine-in

Postconditions:
● User is prompted to confirm table

Flow of Events for Main Success Scenario:
1. → The customer opens the application to the homepage for login/guest user
2. → The customer clicks login
3. ← The system prompts for account information
4. → The customer inputs account ID/PW
5. ← The system displays option for dine-in, take out, reservation, view menu
6. → The customer clicks dine-in
7. ← The system checks database to find available tables
8. ← The system displays available tables for customer
9. → The customer clicks an available table
10. ← The system confirms table, updates database

Why W8 28

Flow of Events for Alternate Success Scenario:
1. → The customer opens the application to the homepage for login/guest user
2. → The customer clicks guest user
3. ← The system displays option for dine-in, take out, reservation, view menu
4. → The customer clicks dine-in
5. ← The system checks database to find available tables
6. ← The system displays available tables for customer
7. → The customer clicks an available table
8. ← The system confirms table, updates database

UC-4 : View Menu

Related Requirements:
● REQ-2, REQ-8, REQ-10

Initiating Actor:
● Customer, Guest

Actor’s Goal:
● To view the menu of food/drinks

Participating Actors:
● Database

Preconditions:
● User has application loaded

Postconditions:
● N/A

Flow of Events for Main Success Scenario:
1. → The customer opens the application to the homepage for login/guest user
2. → The customer clicks login
3. ← The system prompts for account information
4. → The customer inputs account ID/PW
5. ← The system displays option for dine-in, take out, reservation, view menu
6. → The customer clicks view menu
7. ← The system displays the menu

Flow of Events for Alternate Success Scenario:
1. → The customer opens the application to the homepage for login/guest user
2. → The customer clicks guest user
3. ← The system displays option for dine-in, take out, reservation, view menu
4. → The customer clicks view menu
5. ← The system displays the menu

Why W8 29

4.4 System Sequence Diagrams

UC-1: Dine-in is the most important use case, however it contains a combination of other use cases

through inclusions and extensions, so it is not demonstrated here due to the system sequence diagrams

showing the flow of the system components. Since UC-1: Dine-in includes other use cases, we show

those important use cases instead, as they show the flow of the components in our system.

Figure 4.2: UC-4 View Menu

Why W8 30

Figure 4.3: UC-5 Table Selection

Why W8 31

Figure 4.4: UC-10 Log In

Why W8 32

5. Effort Estimation Using Use Case Points

5.1 Unadjusted Actor Weight

Actor type Description of how to recognize the actor type Weight

Simple
The actor is another system which interacts with our system through a
defined application programming interface (API).

1

Average
The actor is a person interacting through a text- or numeric-based user
interface, or another system interacting through a protocol, such as a
network communication protocol.

2

Complex The actor is a person interacting via a graphical user interface (GUI). 3

Actor name Description of Relevant Characteristics Complexity Weight

Customer
Customer is interacting with the system via a graphical
user interface.

Complex 3

Guest Same as Customer. Complex 3

Manager Same as Customer. Complex 3

Chef Same as Customer. Complex 3

Waiter/Waitress Same as Customer. Complex 3

Busboy Same as Customer. Complex 3

Database
Database is another system interacting through a
protocol.

Average 2

UAW(Why W8) = 1 × Average + 6 × Complex = 1 × 2 + 6 × 3 = 20

5.2 Unadjusted Use Case Weight

Use case
category

Description of how to recognize the use-case category Weight

Simple Simple user interface. 5

Why W8 33

Up to one participating actor (plus initiating actor).
Number of steps for the success scenario: ≤ 3.
If presently available, its domain model includes ≤ 3 concepts.

Average

Moderate interface design.
Two or more participating actors.
Number of steps for the success scenario: 4 to 7.
If presently available, its domain model includes between 5 and 10
concepts.

10

Complex

Complex user interface or processing.
Three or more participating actors.
Number of steps for the success scenario: ≥ 7.
If available, its domain model includes ≥ 10 concepts.

15

Use Case Description Category Weight

UC-1: Dine-in
Simple user interface. 6 steps for the main success
scenario. Two participating actors (Customer,
Database).

Average 10

UC-2: Take Out
Simple user interface. 6 steps for the main success
scenario. Two participating actors (Customer,
Database).

Average 10

UC-3: Reservation
Simple user interface. 6 steps for the main success
scenario. Two participating actors (Customer,
Database).

Average 10

UC-4: View Menu
Simple user interface. 7 steps for the main success
scenario. Two participating actors (Customer,
Database).

Average 10

UC-5: Table Selection
Simple user interface. 10 steps for the main
success scenario. Two participating actors
(Customer, Database).

Average 10

UC-6: QR Scan
Simple user interface. 1 step for the main success
scenario. Two participating actors (Customer,
Database).

Simple 5

UC-7: Payment
Simple user interface. 4 steps for the main success
scenario. Two participating actors (Customer,
Database).

Simple 5

UC-8: Rate Food Simple user interface. 1 step for the main success Simple 5

Why W8 34

scenario. Two participating actors (Customer,
Database).

UC-9: Favorite Food
Simple user interface. 1 step for the main success
scenario. Two participating actors (Customer,
Database).

Simple 5

UC-10: Login
Simple user interface. 4 steps for the main success
scenario. Two participating actors (Customer,
Database).

Simple 5

UC-11: Generate Report
Simple user interface. 9 steps for the main success
scenario. Two participating actors (Manager,
Database).

Average 10

UC-12: Register
Simple user interface. 4 steps for the main success
scenario. Two participating actors (Guest,
Database).

Simple 5

UC-13: Estimate Time
Simple user interface. 2 steps for the main
success scenario. Two participating actors
(Customer, Database).

Simple 5

UUCW(Why W8) = 7 × Simple 6 × Average = 7 × 5 + 6 × 10 = 95

5.3 Technical Complexity Factors

Technical

factor
Description Weight

Perceived

Complexity

Calculated Factor

(Weight × Perceived

Complexity)

T1
Users expect good performance but

nothing exceptional
1 3 1×3 = 3

T2
End-user expects efficiency but there

are no exceptional demands
1 3 1×3 = 3

T3 Internal processing is relatively simple 1 1 1×1 = 1

T4 No requirement for reusability 1 0 1×0 = 0

T5 Ease of use is very important 0.5 5 0.5×5 = 2.5

Why W8 35

T6

No portability concerns beyond a

desire to keep database vendor

options open

2 2 2×2 = 4

T7
Easy to change required (different

restaurants)
1 3 1×3 = 3

T8 Concurrent use is required 1 4 1×4 = 4

T9 No direct access for third parties 1 0 1×0 = 0

T10 No unique training needs 1 0 1×0 = 0

Technical Factor Total: 20.5

TCF = 0.6 + 0.01 × Technical Factor Total = 0.6 + 0.01 × 20.5 = 0.805

5.4 Environmental Complexity Factors

Environmental

factor
Description Weight

Perceived

Impact

Calculated Factor

(Weight×

Perceived Impact)

E1
Beginner familiarity with the

UML-based development
1.5 1 1.5×1 = 1.5

E2
Some familiarity with application

problem
0.5 2 0.5×2 = 1

E3
Some knowledge of object-oriented

approach
1 2 1×2 = 2

E4 Beginner lead analyst 0.5 1 0.5×1 = 0.5

E5 Stable requirements expected 2 5 2×5 = 5

E6 No part-time staff will be involved -1 0 -1×0 = 0

E7
Programming language of average

difficulty will be used
-1 3 -1×3 = -3

Why W8 36

Environmental Factor Total: 7

ECF = 1.4 - 0.03 × Environmental Factor Total = 1.4 - 0.03 × 7 = 1.19

5.5 Use Case Points

UCP = UUCP × TCF × ECF

From the above calculations, the UCP variables have the following values:

UUCP = UAW + UUCW = 20 + 95 = 115

TCF = 0.805

ECF = 1.19

For the case study, the final UCP is the following:

UCP = 115 × 0.805 × 1.19 = 110.16 or 110 use case points.

5.6 Duration

Duration = UCP × PF = 110 x 28 = 3,080 hours

6. Domain Analysis

6.1 Domain Model

6.1.1 Concept Definitions

Table 6.1 Concept Definitions

Responsibility Type Concept

R1: Coordinate activity between the customer, chef, waiter, busboy,
etc.

D Controller

R2: Keep the record of customer accounts with favorites and rated
foods

K Customer Profile

R3: Display the options for the customers, waiters, managers, chef,
etc.

D Interface

Why W8 37

R4: Prompt the customer to select a table, scan the QR code, make a
payment, etc.

D Controller

R5: Store the customer order in the database K Communicator

R6: Queue incoming orders for the chef to complete K Order Queue

R7: Select order and send to a specific chef for cooking D Communicator

R8: Manage interactions with the database K DB Connection

R9: Record daily statistics for manager report D Analytic Calc

R10: Prevent invalid table selections D Table Status

R11: Allow chef to update estimated food time D Food Status

R12: Input to receive payment type and amount D Payment System

R13: Display change of table status when customer reserves or
leaves and when busboy cleans

D Table Status

R14: Display customer favorites and high rated foods at top of user
profile for easy access

D Interface

R15: Conclude the failed negotiations for selecting invalid options D Communicator

6.1.2 Association Definitions

Table 6.2 Association Definitions

Concept Pair Association Description Association Name

Customer Profile ⇔ DB
Connection

Fetch customer’s data from the
database

QueryDB

Customer Profile ⇔ Interface Display customer’s option Display

Interface ⇔ Controller Allow the user to interact with the
option the application (select a table,
scan QR code, estimate food time etc…)

User Action

Communicator ⇔ DB Connection Inject or modify data in the database UpdateDB

Communicator ⇔ Order Queue Send order and queue for the chef Send Order

Why W8 38

Controller ⇔ Analytic Calc Display statistic for specific user Display Statistic

Analytic Calc ⇔ DB Connection Extract data from database for
calculation

QueryDB

Controller ⇔ Food Status Allow user to update or view the food
status

Update Food Status
View Food Status

Controller ⇔ Table Status Allow user to view table status View Table Status

Controller ⇔ Payment System Allow user to complete the payment Pay

Payment System ⇔ DB
Connection

Store payment record to the database Record Payment

Interface ⇔ DB Connection Get the data from the database for the
user

QueryDB

6.1.3 Attribute Definitions

Table 6.3 Attribute Definitions

Concept Attribute Description

Customer Profile accountUsername Associated username of the
customer. Guest account is
assigned if no account.

accountPassword Password of user account.

accountFavorites Contains all the reviews and
favorites left by the customer.

Interface currentInterface Depending on what account
type is logged in, show interface
for that type of account only.

rateMeal Allows the user to rate a meal,
and then have that rating stored
and displayed.

Controller tableList Shows the customer the current
tables available.

tableConfirm Allows the customer to confirm
the table they sit at via scanning

Why W8 39

the QR code.

paymentMade Once the customer pays, the
table is then confirmed and the
chef begins to cook the meals.

Communicator customerMeal Each meal that the customer
orders is stored in the database.

customerMealOrder The meals in the queue are
ordered and sent to a specific
chef, to balance the chef work
load.

Order Queue chefQueue Contains information about the
order that has been placed by
the customer.

Analytic Calc inventoryStats Records statistics about
restaurant inventory to alert
manager when stock is low
(daily, weekly, monthly).

customerStats Records statistics about peak
customer times, most ordered
meals, etc.

Table Status tableStatus Provides and updates status of
each table, whether it is
available, occupied, or dirty.

Food Status orderStatus Allows chef to update the status
on currently being cooked
meals, i.e time remaining.

orderReady Allows chef to update waiter
and customer that food is
cooked and ready.

Payment System paymentMade Updates the system whether or
not the payment has been
made.

Why W8 40

6.1.4 Traceability Matrix

Table 6.4 Traceability matrix mapping the use cases to domain concepts

Use
Case

PW

Domain Concepts

UC-1 38 X X X

UC-2 4 X X X

UC-3 4 X X X X

UC-4 8 X X

UC-5 10 X X X X

UC-6 4 X X X X

UC-7 5 X X X X X X

UC-8 2 X X X X

UC-9 2 X X X

UC-10 2 X X

UC-11 1 X X X X X

UC-12 2 X

UC-13 3 X X X X X X

Max PW 38 38 10 3 5 3 10 5 5

Total PW 79 81 23 8 8 48 19 9 12

Why W8 41

6.1.5 Domain Model Diagram

Figure 6.1 Domain Model Diagram

Why W8 42

6.2 System Operation Contracts

Name: Dine in

Responsibilities: To dine inside the restaurant

Use Case: UC - 1

Exception: None

Preconditions: Customer needs to be in the restaurant physically

Postcondition: Customer will occupy one of the available table

Name: Take out

Responsibilities: To dine outside of the restaurant

Use Case: UC - 2

Exception: None

Preconditions: Customer needs to order the food thru the
application

Postcondition: Food is packed and ready to go

Name: Reservation

Responsibilities: To reserve a table

Use Case: UC - 3

Exception: None

Preconditions: None

Postcondition: A table is reserved for a later date / time

Name: View Menu

Responsibilities: Display the menu to the user

Use Case: UC - 4

Why W8 43

Exception: None

Preconditions: None

Postcondition: None

Name: Table Selection

Responsibilities: To select a table

Use Case: UC - 5

Exception: None

Preconditions: Table must be available

Postcondition: Table is marked as reserved in the database

Name: QR Scan

Responsibilities: To select an open table

Use Case: UC -6

Exception: None

Preconditions: Table must be available

Postcondition: Table will be display as occupy

Name: Payment

Responsibilities: To pay for the meal

Use Case: UC -7

Exception: None

Preconditions: Order a meal

Postcondition: Payment is completed

Name: Rate Food

Responsibilities: To rate the food

Why W8 44

Use Case: UC -8

Exception: None

Preconditions: Food must be ordered by the customer

Postcondition: Store the rating into database

Name: Favorite Food

Responsibilities: To favorite the food

Use Case: UC -9

Exception: None

Preconditions: Food must appear in the menu

Postcondition: Favorited food will be highlighted

Name: Login

Responsibilities: Login

Use Case: UC -10

Exception: None

Preconditions: User must register an account before

Postcondition: Login to the user’s page

Name: Generate Report

Responsibilities: Generate report

Use Case: UC -11

Exception: None

Preconditions: Data must be available in the database

Postcondition: Display the graph and chart

Name: Register

Why W8 45

Responsibilities: Create an account

Use Case: UC -12

Exception: None

Preconditions: Account has not existed in the database

Postcondition: Account is registered

Name: Estimate Time

Responsibilities: Estimate the remaining cooking time

Use Case: UC -13

Exception: None

Preconditions: Food starts preparing by the chef

Postcondition: Display the remaining cooking time

Why W8 46

6.3 Mathematical Model
Table Designation Algorithm

The algorithm that allows customers to either reserve or immediately sit at a table of their choosing.

Pseudo code:

Table selection algorithm: //Modeled in Java format

//Reservation Object Class

public class Reservation{

private Time checkIn;

private Time checkOut;

//Object constructor

public Reservation(Time checkIn, Time checkOut){

this.checkIn = checkIn;

this.checkOut = checkOut;

}

//Returns check-in time

public Time getCheckIn(){

return checkIn;

}

//Returns check-out time

public Time getCheckOut(){

return checkOut;

}

}

//Table Object Class

public class Table{

private int tableNumber;

private int currentTableState;//0=Empty , 1=Occupied,

//2=Reservation made for w/in 60 min, 3=Customer late for reservation, 4=Dirty

private QRCode qr;

private ArrayList<Reservation> reservationArray = new ArrayList<Reservation>();

//Object constructor

public Table(int tableNumber, QRCode qr){

this.tableNumber = tableNumber;

this.qr = qr;

currentTableState = 0;

}

//Returns table number

public int getTableNumber(){

return tableNumber;

}

//Returns table state

public int getCurrentTableState(){

return currentTableState;

Why W8 47

}

//Updates the current table state based on the time

public void tableUpdate(Time currentTime){

if(reservationArray.size() > 0){

Reservation rEarliest = reservationArray.get(0);

Time rInEarliest = rEarliest.getCheckIn();

Time rOutEarliest = rEarliest.getCheckOut();

if(currentTableState == 0){

if(currentTime.isLaterThan(rInEarliest)){

if(currentTime.isEarlierThan(rOutEarliest))

currentTableState = 1;

}

else{

Time nextHour = currentTime.addHour();

if(nextHour.isLaterThan(rInEarliest))

currentTableState = 2;

}

}

if(currentTableState == 2){

Time lateBy10Min = rInEarliest.add10Minutes();

if(currentTime.isLaterThan(lateBy10Min)

currentTableState = 3;

}

if(currentTableState == 3){

if(currentTime.isLaterThan(rOutEarliest){

currentTableState = 0;

reservationArray.remove(0);

}

}

}

}

//Returns the QR code of the table

public QRCode getQRCode(){

return qr;

}

//Sets the value of the table state

public void setCurrentTableState(int state){

currentTableState = state;

}

//Stores new reservations onto the reservation array

private void storeReservation(int i, Time in, Time out){

Reservation newRes = new Reservation(in, out);

reservationArray.add(i, newRes);

}

//Checks to see if desired reservation time is available, and if so calls upon

storeReservation()

public boolean addReservation(Time in, Time out){

int s = reservationArray.size();

Why W8 48

if(s == 0){

storeReservation(0, in, out);

return true;

}

int i;

for(i = 0; i < s; i++){

Reservation rCurrent = reservationArray.get(i);

Time rInCurrent = rCurrent.getCheckIn();

Time rOutPrev;

if(i == 0)

rOutPrev = null;

else{

Reservation rPrev = reservationArray.get(i-1);

rOutPrev = rPrev.getCheckOut();

}

if(rInCurrent.isLaterThan(out){

if(i == 0){

storeReservation(0, in, out);

return true;

}

else if(rOutPrev.isEarlierThan(in){

storeReservation(i, in, out);

return true;

}

else

return false;

}

}

Reservation rLatest = reservationArray.get(s-1);

Time rOutLatest = rLatest.getCheckOut();

if(rOutLatest.isEarlierThan(in){

Reservation newRes = new Reservation(in, out);

reservationArray.add(newRes);

return true;

}

else

return false;

}

//Removes the inputted reservation from the reservation array

public void cancelReservation(Reservation r){

for(int i = 0; i < reservationArray.size(); i++){

Reservation rCurrent = reservationArray.get(i);

if(r.equals(rCurrent)){

reservationArray.remove(i);

break;

}

}

}

//Removes the earliest reservation from the reservation array

Why W8 49

public void clearEarliestReservation(){

reservationArray.remove(0);

}

}

//Restaurant Object Class

public Class Restaurant{

private int tableTotal;

private ArrayList<QRCode> qrCodeArray; //A set of given QR codes

private ArrayList<Table> tableArray;

//Restaurant constructor

private Restaurant(ArrayList<QRCode> qrCodeArray){

this.qrCodeArray = qrCodeArray;

tableTotal = qrCodeArray.size();

for(int i = 0; i < tableTotal; i++){

QRCode currentQRCode = qrCodeArray.get(i);

Table newTable = new Table(i, currentQRCode);

tableArray.add(newTable);

}

}

//Returns the total number of tables in the restaurant

public int getTableTotal(){

return tableTotal;

}

//Returns the array of table objects within the restaurant object

public ArrayList<Table> getTableArray(){

return tableArray;

}

}

//A class in which runs in the restaurant network

public Class NetworkUpdater{

private Restaurant restaurant;

//Continuously runs, checking if the state of any tables need to be updated

public void tableUpdater(){

int tableTotal = restaurant.getTableTotal();

Time currentTime;

Time prevMinuteTime = Time.getTimeOnComputer();

while(true){

currentTime = Time.getTimeOnComputer();

currentTimeMinusMinute = currentTime.subtractMinute();

if(prevMinuteTime.isEarlierThan(currentTimeMinusMinute)){

for(int i = 0; i < tableTotal; i++){

restaurant.getTableArray().get(i).tableUpdate(currentTime);

}

prevMinuteTime = currentTime;

}

}

Why W8 50

}

}

//A class in which customers have access to

public Class CustomerInterface{

private Restaurant restaurant;

private int tableNumber;

private Reservation reservation;

private boolean firstScan = false;

//Allows a customer to reserve a desired table at a desired time

public void reserveTable(Time in, Time out, int tableIndex){

boolean b = restaurant.getTableArray.get(tableIndex).reserveTable(in, out);

if(b){

System.out.println("Table reserved, see you at "+in.toString()+"!");

tableNumber = restaurant.getTableArray.get(tableIndex).getTableNumber();

reservation = new Reservation(in, out);

}

else

System.out.println("Sorry, the desired table is unavailable for this time.");

}

//Allows a customer to cancel a previously made reservation

public void cancelTableReservation(){

restaurant.getTableArray.get(tableNumber).cancelReservation(reservation);

}

//Allows a customer whom enteres the restaurant without a reservation to be seated at a desired

table

public void getTableNoReservation(int tableIndex){

int state = restaurant.getTableArray.get(tableIndex).getCurrentTableState();

if(state == 0){

tableNumber = restaurant.getTableArray.get(tableIndex).getTableNumber();

System.out.println("Please take your seat!");

}

else if(state == 3){

boolean noOtherTable = true;

for(int i = 0; i < restaurant.getTableArray().size(); i++){

if(i != tableIndex){

int s = restaurant.getTableArray.get(i).getCurrentTableState();

if(s == 0){

noOtherTable = false;

break;

}

}

}

if(noOtherTable){

tableNumber =

restaurant.getTableArray.get(tableIndex).getTableNumber();

System.out.println("Please take your seat!");

}

else

System.out.println("Please select one of the other current tables at

this time,\n...

Why W8 51

...the person who reserved this table is running late.");

}

}

//Returns an integer depending on whichever QR code was scanned and the state of the table the

QR code resides

private int qrCodeCheck(QRCode qr){

for(int i = 0; i < restaurant.getTableArray().size(); i++){

Table t = restaurant.getTableArray().get(i);

if(qr.equals(t.getQRCode()){

if(tableNumber == t.getTableNumber()){

if(t.getCurrentTableState == 0 || t.getCurrentTableState == 2

|| t.getCurrentTableState == 3)

return 0;

else

return 1;

}

else

return 2;

}

}

return -1;

}

//The method that runs when a user scans a QR code prior to being seated

public void firstQRScan(){

QRCode currentQR = QRCode.scan();

int qrResult = qrCodeCheck(currentQR);

if(qrResult == 0){

restaurant.getTableArray().get(tableNumber).setCurrentTableState(1);

firstScan = true;

System.out.println("Welcome!");

}

else if(qrResult == 1)

System.out.println("Sorry, your table is currently unavailable.");

else if(qrResult == 2)

System.out.println("This is table #"+t.getTableNumber().toString()+", not table

#"+tableNumber+".");

else

System.out.println("ERROR");

}

//The method that runs when a user scans a QR code when they are ready to leave the restaurant

public void secondQRScan(){

QRCode currentQR = QRCode.scan();

int qrResult = qrCodeCheck(currentQR);

if(qrResult == 0){

restaurant.getTableArray().get(tableNumber).setCurrentTableState(4);

restaurant.getTableArray().get(tableNumber).clearEarliestReservation();

firstScan = false;

System.out.println("Thank you, please come again!");

}

Why W8 52

else if(qrResult == 2)

System.out.println("This is the table you initially sat at.");

else

System.out.println("ERROR");

}

}

//A class in which workers have access to

public Class workerInterface(){

private Reservation restaurant;

//Allows a worker to update the state of a table after being cleaned

public void clearTable(int tableIndex){

if(restaurant.getTableArray().get(tableIndex).getCurrentTableState) == 4){

restaurant.getTableArray().get(tableIndex).setCurrentTableState(0);

restaurant.getTableArray().get(tableIndex).tableUpdate(Time.getTimeOnComputer());

}

}

}

Order Queue Algorithm

As the order comes in, it is enqueued onto a queue. It is dequeued onto the Order Queue screen for the

chef to interact with. However, only a set amount of orders are shown on this screen so as not to

overwhelm the chef. So a certain amount of orders are dequeued from the queue into a list and more

dequeued only after an order is confirmed to be done and taken out from the list.

Pseudo code:

Order anOrder= new Order()
orderQueue.enqueue(anOrder)

Int displayed=0
while(!orderQueue.isEmpty()){

if(count<limit){
display(orderQueue.dequeue())

displayed++;

}

if(isDone()){ //an order is marked
displayed--;

}

}

Why W8 53

7. Interaction Diagrams

Figure 7.1 UC-1: Dine-In

This diagram demonstrates the interactions between classes for UC-1: Dine-In. After logging in to our

app, the customer is given a dining options screen, where they would choose to “Dine-In”. This takes us

to the table reservation screen where the user selects the time for reservation and then is shown the

free tables available in the restaurant. After selecting their table, the customer is asked to scan the QR

code for the table they have selected. Once scanned, The customer may view the menu and select all

food items desired for their meal. Clicking on the order button brings the customer to the payment

screen, where they enter their credit card information. Once paid for, the customer’s order is sent to

the Chef in order to be cooked.

The design principles employed in the process of assigning responsibilities to objects were the expert

doer principle and high cohesion principle. The expert doer principle is employed because each class is

an expert for specific functions. For example, the TableReservation object only handles selecting a time

and table for the customer, and once done, it pass on responsibility to the QRScan object to handle

scanning the QR code located on a table. The high cohesion principle is used because each class only

handles computations for its specific functionality, and does not attempt to handle more than needed.

This goes hand in hand with the expert doer principle. Finally, the low coupling principle is not used here

because it conflicts with our expert doer and high cohesion principles. In order to employ the low

coupling principle, we would need to reduce the amount of communication we have in the interactions

Why W8 54

between objects. We opted for more communication and less computations for each object in order to

reduce the amount of work each class would be responsible for.

The alternative solutions considered for UC-1: Dine-In consisted of payment for the customer’s meal as

one of the last steps for the process. We decided that this would not be a favorable idea since some

customers might be motivated to attempt to get a free meal by placing an order and not paying.

Originally, the customer would order their meal, and the chef would immediately start cooking it. Once

the customer was ready to leave the restaurant, they would then be asked to pay for their meal. We

decided that in order to fix this issue, we would have the customer pay for their meal right after hitting

the order button. This way, the order does not get sent to the chef before payment is received and we

know that the customer won’t try to get out of paying their bill.

Figure 7.2 UC-5: Table Selection

This diagram demonstrates the interactions between classes for UC-5: Table Selection. After logging in

to our app, the customer is given a dining options screen, where they would choose to “Dine-In”. This

takes us to the table selection screen where the customer is asked to pick a time to make a table

reservation, and then select the table they would like to sit at, provided that the table is not taken. Once

the table selection process is completed, the customer is asked to scan the QR code provided on the

table where they chose to sit, confirming their reservation.

The design principles employed in the process of assigning responsibilities to objects were the expert

doer principle and high cohesion principle. The expert doer principle and the high cohesion principle are

employed for the same reasons as in UC-1: Dine-In.

Why W8 55

The alternative solutions considered for UC-5: Table Selection consisted of only asking the user to select

a table without a time for reservation. We realized that customers might want to make a reservation for

other days or for more than a couple hours away from their planned meal. We fixed this by first asking

the customer the day/time they would like to make a reservation for and then ask them to choose a free

table. The database holds all the information about free tables and will show the customer in real-time

the tables which are taken or untaken for that day/time.

Figure 7.3 UC-4: View Menu

This diagram demonstrates the interactions between classes for UC-4: View Menu. After logging in to

our app, the customer is given a dining options screen, where they would choose to “View Menu”. This

takes us to the menu screen where we can see all of the food items available at the restaurant. From

this screen, the customer is able to rate a food item by clicking the number of stars (1 to 5 stars) and

also favorite a food item by clicking on the heart icon next to it. This screen is also available when the

Why W8 56

customer picks the “Dine-In” option after selecting their table. The user is able to select the food items

desired for their meal.

The design principles employed in the process of assigning responsibilities to objects were the expert

doer principle and high cohesion principle. The expert doer principle and the high cohesion principle are

employed for the same reasons as in UC-1: Dine-In.

The alternative solutions considered for UC-1: Dine-In consisted of only allowing the user to rate foods

after having purchased them. We realized that this would require the menu screen to be brought up

again at the end of the customer’s meal, at which point the customer may not be interested in rating the

food items. Our solution was to allow the customer to interact with the menu as they are ordering,

allowing them to rate or favorite foods they have eaten before.

7.1 Design Patterns

Since we are building an Android application with a touch screen user interface that receives

inputs/parameters from the user we found that the Command Pattern design pattern facilitated

decoupling of a parameters from the business logic that is associated with the code. Specifically, the

command pattern lets us localize parameters in a command object and encapsulate them for when the

client, which in this case is our database server, may need to utilize the parameters by a different object.

Our user interface will be receiving the parameters and then calling the correct methods that will utilize

the data.With this pattern, we can log all requests to add inputs from the user and execute them

through a command invoker. By having this ability our commands can be reversed/undone with rollback

requests from the user whenever a parameter needs to be changed. Although, we used a public

interface to create all of the receivers a disadvantage of using this design pattern is that we need to

create a list of many small classes that store lists of these commands.

For our project optional features were continuously being added for the user such as a social

media platform built inside the app. Since some of these functions were more important than others,

we used the decorator pattern to separate the essential functions and the non essential functions. In

order to avoid the client code, otherwise known as the caller of the methods or the users of the given

classes, from changing every time a feature was added we used the decorator pattern to remove the

dependence between the client and feature.

We also utilized the Low Coupling Principle in our application. The Low Coupling Principle

requires that objects should not take on too many communication responsibilities. Our design meets the

requirement since we have minimized the number of unnecessary interactions between objects/classes

to just the necessary ones. Our application utilizes object-oriented design principles that showcase

aspects of both the High Cohesion and Low Coupling principles. This allowed our Be Healthy application

to operate smoothly, satisfy the user's needs, and create a sophisticated design model for our

application.

Why W8 57

Figure 7.4: This is an example of the Command design pattern. For its use, an invoker object manages

the different modes for commands without the need for the client to be aware of the different modes as

seen from the UML diagram above.

Why W8 58

8. Class Diagram and Interface Specification

8.1 Class Diagram

Why W8 59

Why W8 60

Figure 8.1: Class Diagram

8.2 Data Types and Operation Signatures

NoBackActivity:

Attribute: Type:

Method: Return Type:

onBackPressed() void

BusBoy:

Attribute: Type:

Why W8 61

lv ListView

Method: Return Type:

onCreate(Bundle) void

MangerOptions:

Attribute: Type:

ib ImageButton

editItem Button

editEmployee Button

statistics Button

Method: Return Type:

onCreate(Bundle) void

Chef:

Attribute: Type:

Method: Return Type:

onCreate(Bundle) void

MainScreen:

Attribute: Type:

customer Button

chef Button

waiter Button

manager Button

Why W8 62

busboy Button

privateKey String

username String

Method: Return Type:

onCreate(Bundle) void

clickBusboy() void

clickCustomer() void

clickChef() void

clickWaiter() void

clickManager() void

ManagerEditEmployee:

Attribute: Type:

add Button

delete Button

Method: Return Type:

onCreate(Bundle) void

ManagerInventory:

Attribute: Type:

chart BarChart

barWidth float

barSpace float

groupSpace float

Why W8 63

Method: Return Type:

onCreate(Bundle) void

ManagerTraffic:

Attribute: Type:

chart BarChart

barWidth float

barSpace float

groupSpace float

Method: Return Type:

onCreate(Bundle) void

ManagerEditItem:

Attribute: Type:

add Button

delete Button

Method: Return Type:

onCreate(Bundle) void

Waiter:

Attribute: Type:

Method: Return Type:

onCreate(Bundle) void

Why W8 64

Menu:

Attribute: Type:

placeOrder Button

listViewMenu ListView

Method: Return Type:

onCreate(Bundle) void

clickPlaceOrder() void

ManagerProfits:

Attribute: Type:

chart BarChart

barWidth float

barSpace float

groupSpace float

Method: Return Type:

onCreate(Bundle) void

TableImage:

Attribute: Type:

Method: Return Type:

onCreate(Bundle) void

TableAvailability:

Attribute: Type:

Why W8 65

Method: Return Type:

onCreate(Bundle) void

Payment:

Attribute: Type:

button Button

Method: Return Type:

onCreate(Bundle) void

clickButton() void

MenuAdapter:

Attribute: Type:

Method: Return Type:

getView(int, View,ViewGroup) View

Message:

Attribute: Type:

toSpinner Spinner

messageSpinner Spinner

send Button

Method: Return Type:

onCreate(Bundle) void

clickButton() void

Why W8 66

ThreeDiningOptions:

Attribute: Type:

dineIn Button

Method: Return Type:

onCreate(Bundle) void

clickDineIn void

FoodItem:

Attribute: Type:

rating float

name String

Method: Return Type:

getRating() float

setRating(float) void

getName() String

setName(String) void

ListViewAdapter:

Attribute: Type:

activity AppCompatActivity

foodItemList List<FoodItem>

Method: Return Type:

getItem(int) FoodItem

Why W8 67

getView(int,View,ViewGroup) View

onRatingChangedListener void

ViewHolder:

Attribute: Type:

ratingBar RatingBar

movieName TextView

Method: Return Type:

RatingPage:

Attribute: Type:

listView ListView

adapter ArrayAdapter<FoodItem>

arrayList ArrayList<FoodItem>

Method: Return Type:

onCreate(Bundle) void

onItemClickListener() OnItemClickListener

setListData() void

ReservationTime:

Attribute: Type:

lv ListView

tv TextView

Why W8 68

Method: Return Type:

onCreate(Bundle) void

clickText() void

LoginServerRequest:

Attribute: Type:

username String

password String

Method: Return Type:

ReservationTime:

Attribute: Type:

lv ListView

Method: Return Type:

onCreate(Bundle) void

SignUpActivity:

Attribute: Type:

emailText EditText

addressText EditText

phoneText EditText

passwordText EditText

reEnterPasswordText EditText

signupButton Button

Why W8 69

loginLink TextView

Method: Return Type:

onCreate(Bundle) void

signUp() void

onSignUpSuccess() void

checked() boolean

CustomAdapterReservation:

Attribute: Type:

field type

Method: Return Type:

getView(int,VIew,ViewGroup) View

LoginActivity:

Attribute: Type:

TAG String

REQUEST_SIGNUP int

progressBar ProgressBar

password String

auth FirebaseAuth

emailText EditText

passwordText EditText

loginButton Button

signUpLink TextView

Why W8 70

Method: Return Type:

onCreate(Bundle) void

login() void

onActivityResult(int, int, Intent) void

onBackPressed() void

onLoginFailed() void

passwordChecked() boolean

Why W8 71

8.3 Traceability Matrix

Classes

Domain Concepts

MenuAdapter X

RatingPage X

ReservationTime X

Message X

SignUpActivity X

ThreeDinningOptions X

FoodItem X

LoginServerRequest X

CustomAdapterReservation X

ViewHolder X

ListViewAdapter X

LoginActivity X

MainScreen X

ManagerStatistics X

ManagerEditEmployee X

ManagerEditItem X

ManagerProfits X

ManagerInventory X

ManagerOptions X

Waiter X

Why W8 72

TablesImage X

TableAvailability X

ManagerTraffic X

Menu X

Payment X

NoBackActivity X

Chef X

Busboy X

● Customer Profile: the initial design features of this domain concept were implemented into

other classes, such as implementing the ‘ReservationTime’ class and utilizing the ‘RatingPage’

● Interface

○ MenuAdapter: Allows users to few menu via interface

○ RatingPage: Allows customers to interact with ratings

○ SignUpActivity: Allows users to interact in creating new accounts

○ ViewHolder: Is shown via interface

○ ListViewAdapter: Can be interacted with through the interface

○ LoginActivity: Can be accessed through the interface

○ MainScreen: Can be interacted with through the interface

○ ManagerOptions: Manager accesses options through interface

○ Waiter: Waiter can interact with their UI via interface

○ TablesImage: Can be seen via interface

○ Chef: Chef can interact with their UI via interface

○ Busboy: Busboy can interact with their UI via interface

● Controller

○ ReservationTime: Controller requires customer to set reservation

○ ThreeDinningOptions: Only permits customers three options upon login

○ CustomAdapterReservation: Allows reservations to be made

○ Menu: Allows customers to pick meals from menu

○ NoBackActivity: Allows users to log into their designated accounts

● Communicator

○ Message: Communicator allows manager to contact employees

○ LoginServerRequest: Allows accounts to acquire information from the server

○ ManagerEditEmployee: Allows manager to modify employee info via communicator

● Order Queue: the initial design features of this domain concept were implemented into other

classes, such as in ‘FoodItem’ to place orders from and in ‘Chef’ for cooks to view and make said

orders

● Analytic Calc

Why W8 73

○ ManagerStatistics: Calculates statistics in manager account

○ ManagerProfits: Calculates profits in manager account

○ ManagerInventory: Allows manager to view inventory

● Table Status

○ TableAvailability: No changes were made; all features described in the ‘Table

Status’ concept were implemented into the ‘TableAvailability’ class

● Food Status

○ FoodItem: No changes were made; all features described in the ‘Food Status’

concept were implemented into the ‘FoodItem’ class

● Payment System

○ Payment: No changes were made; all features described in the ‘Payment System’

concept were implemented into the ‘Payment’ class

8.4 Object Constraint Language (OCL)

MainScreen:

Context MainScreen::clickBusboy

Invariant: privateKey, username ,busboy

Pre-conditional: findViewById(R.id.busboyButton)

Pre-conditional: Intent intent = new Intent(MainScreen.this, Busboy.class)

Post-conditional: MainScreen.Busboy.startActivity()

Context MainScreen::clickCustomer

Invariant: privateKey, username, customer

Pre-conditional: findViewById(R.id.customerButton)

Pre-conditional: Intent intent = new Intent(MainScreen.this, ThreeDiningOptions.class)

Post-conditional: MainScreen.Busboy.startActivity()

Context MainScreen::clickWaiter

Invariant: privateKey, username, waiter

Pre-conditional: findViewById(R.id.waiterButton)

Pre-conditional: Intent intent = new Intent(MainScreen.this, Waiter.class)

Post-conditional: MainScreen.Busboy.startActivity()

Context MainScreen::clickChef

Invariant: privateKey, username, chef

Pre-conditional: findViewById(R.id.chefButton)

Why W8 74

Pre-conditional: Intent intent = new Intent(MainScreen.this, Chef.class)

Post-conditional: MainScreen.Busboy.startActivity()

Context MainScreen::clickManager

Invariant: privateKey, username, manager

Pre-conditional: findViewById(R.id.managerButton)

Pre-conditional: Intent intent = new Intent(MainScreen.this, ManagerOptions.class)

Post-conditional: MainScreen.Busboy.startActivity()

LoginActivity:

Context: LoginActivity::passwordChecked:boolean

Invariant: auth, loginButton, signupLink,

Pre-conditional: mailId = emailText.getText().toString()

Pre-conditional: pass = passwordText.getText().toString()

Post-conditional: return isValid

SignupActivity:

Context: SignupActivity::signup

Invariant: progressDialog

Pre-conditional: name = nameText.getText().toString();.

Pre-conditional: address = addressText.getText().toString()

Pre-conditional: email = emailText.getText().toString()

Pre-conditional: mobile = phoneText.getText().toString()

Pre-conditional: password = passwordText.getText().toString()

Post-conditional: onSignUpSuccess()

Post-conditional: onSignUpFailed()

Context: SignupActivity::onSignUpSuccess

Invariant: signupButton

Pre-conditional: If sign up success

Post-conditional: setResult(RESULT_OK, null)

Context: SignupActivity::onSignUpFailed

Invariant: signupButton

Pre-conditional: If sign up failed

Post-conditional: Toast.makeText(getBaseContext(), "MainScreen Failed", Toast.LENGTH_LONG).show()

Context: SignupActivity::checked:boolean

Invariant: name, address, email, mobile, password, reEnterPassword

Pre-conditional: name.isEmpty() || name.length() < 3

Pre-conditional: address.isEmpty()

Why W8 75

Pre-conditional: email.isEmpty() || !Patterns.EMAIL_ADDRESS.matcher(email).matches()

Pre-conditional: mobile.isEmpty() || mobile.length()!=10

Pre-conditional: password.isEmpty() || password.length() < 4 || password.length() > 10

Pre-conditional: reEnterPassword.isEmpty() || reEnterPassword.length() < 8 ||

reEnterPassword.length() > 12 || !(reEnterPassword.equals(password))

Post-conditional: return isValid

9. System Architecture and System Design

9.1 Architectural Styles

The function of a system architecture is to provide mechanisms and an abstraction of the underlying

process of our entire framework. Our system uses a 3-layer architecture consisting of a presentation

layer, an application layer, and a data layer. This is analogous to the frontend/backend in website

development, where the presentation layer is what is seen by the user, and the application and data

layers work behind the scenes.

This scheme is the most logical as the layers are abstracted from each other and will run parallel into the

code. The differences in UI design, application code, and database calls are apparent. Our project is

constructed through Android Studio, where the UI is designed through the program’s graphical

interface. The application will be “connected” where different parts of UI are matched with the

application code. Within the code, database calls will be made via using an API, which will help pull

information real-time in order to aid the user in their day-to-day actions. This structure is easy to follow

and implement.

Our application also utilizes a client/server architectural style in which the server is consistently updating

the database of our application. This architectural style segregates the system into two applications,

where the client makes requests to the server. In our case, the server is a database with application logic

represented as stored procedures. The database is responsible for a list of all menu items, their prices,

wait times, and even ratings each item. Also, the statistics such as inventory tracking, customer peak

times, and total profits are also stored. On top of all of this, the database also holds all information

regarding user logins and account permissions, leading to an efficient user experience after logging in.

Why W8 76

9.2 Identifying Subsystems

Figure 9.1: UML Package Diagram

The subsystem shows our three layer system of an application layer, presentation layer, and

data layer. The data layer consists of the database which stores information of different user profiles,

menu, customer metrics, and transactions. The presentation layer holds the different screens that the

user will see depending on their profile. This layer can pull information from the database when

displaying the screens. The presentation layer consists of the waiter/busboy, chef, manager, and

customer will have their own interface system with their own unique screens. The application layer

contains what will call and manage the whole operation. The controller will facilitate the tasks between

the packages. It uses the communicator which will handle the authorizations between packages. It also

assigns tasks to the handler which is responsible for loading events which it is told to from the

communicator.

Why W8 77

9.3 Mapping Subsystems to Hardware

Our application works with a native device (Android) and a database server. Our application will utilize a

database with a public API and will run as long as it is active. The application can run on various android

devices that meet the minimum operating system requirements as listed in Section 3.7 Hardware

Requirements. The Database subsystem will naturally run the database with the Application subsystem

interacting with it. To store a user's personal data, the application needs an external database that is

hosted on a different server to send the information to the application in real time. The application

subsystem will run on Android devices using Android operating systems that are version 4.0 and above

since they meet the minimum software requirements to run the application. The server subsystem runs

on a external online server called Firebase which hosts all necessary database information for the all the

users and can transfer information to the application. Each instance of the client will be on different

mobile devices, with each mobile device communicating with the database of the system.

9.4 Persistent Data Storage

The system does store persistent data which need to be accessed after logging out of the app. These

data include customer profiles which needs to store each customer’s ratings as well as favorites.

Customer profile information will be stored in the database provided by Firebase, which also acts as a

realtime database with cloud storage. The database will be set up such that each customer username is

the key for the database and all ratings and foods will be stored as entries under this name. When a

customer logs in, his entry will be pulled from the database and written into a list for ratings and a

seperate one for favorites.The restaurant itself will also have a lot of information consisting of inventory

and other information which the manager needs to know. All this data will be stored in Firebase as well

but in a different format. We will have a table for inventory, customer peak times, and other

information which the manager requires. For the inventory, we will have an entry for each item as well

as a corresponding amount of that item. This list will be constantly updated as the orders are placed. It

will be loaded into the app when the manager logs in and views the inventory. The customer peak times

will be stored in the database periodically. Every hour, the app will send information to the database of

how many customers confirmed a table for that hour. Each hour will be its own entry. This data will be

pulled into the app on manager request as well.

Customer :: {

name:String,

username:String

password:String

orders:[Order]

}

Order :: {

customer:Customer

items:[Item]

Why W8 78

date:Date

}

Item :: {

name:String

quantity:Number

price:Number

rating:Double

}

Menu :: {

items:[Item]

}

9.5 Network Protocol

The network protocol to be used for our purposes is normal sockets. The purpose for going about

transmitting information in this manner is that all the backend information processing will be done on

the server computer, while the app will mainly serve as little more than a graphical frontend for the end

user. The types of messages and message format are thus similarly as simple to reflect this design

decision, with type of messages reflecting the type of information requested, and message format being

that one entry is sent per line, and if that entry has multiple items they will be separated with delimiters.

9.6 Global Control Flow

Execution Orderness

This project will be an event-driven system. The user will have complete control over how they use the

application. There is no linear procedure for the user to take, and they do not even have to use all of the

features that the app provides. The user can use the app’s interface to use any function at any time.

Time Dependency

The system depends on real time. In order to keep track of the customer traffic, inventory, and profits

the system must know when to reset its daily timer as well as when to notify managers of shortages, etc.

There is a 24 hour timer for daily resets and a weekly timer to show the progress over a week. Along

with this, there are timers within the system for daily tasks. These include the countdown to when an

order is prepared by the chef, and when a reservation for a specific table is made for dining in. The

customers will be able to view both of these timers in real-time, to be alert of how much time has

passed.

Concurrency

As we utilize different threads per request to our database, synchronization is automatically enforced via

Firebase because of the fact that there is a level of mutual exclusion that occurs when the data is called

or manipulated.

Why W8 79

9.7 Hardware Requirements

This software will be run on mobile smartphones with touch screen display and network/WiFi

support. The required operating system will be Android, with a minimum and target API 23:

Marshmallow. By targeting API 23, the application is set to run on approximately 62.6% of devices. This

platform is accessible and the requirements are met through most Android phones. The amount of

space needed to download the application on an Android phone is at least 1MB while the space needed

to install the app is .5 MB. The minimum resolution to properly display the images in the application and

view them is 640 x 480 pixels. The minimum bandwidth required to access the server and database is 56

kbps. The minimum RAM requirements to display and render the graphics and images of the application

is 1 GB. To allow the user to use the QR scanning functionality, the phone must have an inbuilt camera

that is at least 1 megapixel.

10. Algorithms and Data Structures

10.1 Algorithms
Customer: The customer has the option of choosing whether he/she wants to dine in, takeout, or simply

just view the menu. After this, they can select items from the menu and to maximize efficiency, the

items selected are added to an expandable arraylist as they are selected by the customer. If the

customer un-selects an item, the item will be removed from the arraylist. This process will be O(n) time

and O(n) space. For the customers choosing to dine in, the table selecting algorithm will come into play.

For reserved tables, as the time nears the time of reservation selected by the customer, an alert will be

given. For the tables that are currently unavailable (taken by others), or dirty from previous customers,

the algorithm will only free up the tables for new customer selection after the busboy or waiter chooses

the option to do so, on their end of the portal. This would be based off of how much traffic is occurring

within the restaurant, but a timing of O(n) would be efficient for most customers.

Manager: The manager end of the application will be quite straightforward. The statistics of the

different information stored daily will be pushed to our front end to form visual graphs for ease of use.

For this to happen fluently, the database, which has constant updates from the customer’s end (for each

meal ordered), will be queried for the information whenever the manager enters the portal. Accessing

the particular table will be O(1) time. When it comes to waiting for the updated information from the

database and outputting it into the proper table/chart, the Big O time will be closer to O(n). This

algorithm is still being worked on to help optimize the timings.

Chef: The chef will be able to view all of the orders placed by every customer within their portal. After

the customer’s order is placed into the arraylist, the chef will have the updated list in real time. When

the chef begins cooking a specific meal, he will be able to alert the system (and the customer) that he

has begun, with an approximate timer for how much time he needs to finish cooking the meals. The

algorithm will be constantly querying for any new items in the arraylist within the loop. When a specific

Why W8 80

meal is finished cooking, it is removed from the arraylist and the chef is left with only the next meals he

must cook. The big O timing for this all is O(n^2).

10.2 Data Structures

The primary data structure we are using is arraylist. This is because it has a simple O(n) look up time

which does not add much delay to our performance. More so, this data structure is very flexible. It is

very easy to add onto an arraylist as it only takes O(1) time.

Arraylists are also compatible with listview. This is very important as we are constantly using listviews to

display menu, ordered items, and other information. An arraylist can be easily passed into an

arrayadapter to be displayed in a listview. Other data structures such as hash tables or linked lists

require more work to convert.

We wanted a list type structure also due to the compatibility with the database. Since our database is

SQL based, it can be looked at as a list. The values on the tables in our database can be very easily read

into lists. It also does not take much effort to write the list back into the database.

Why W8 81

11. User Interface Design and Implementation

Customer Interface:

The customer is first asked to select one of the three options: Dine In, Takeout, and View Menu. If

Takeout or View Menu are selected, the user is taken to the main menu, where they can view the entire

menu, ratings, and how long each food takes to cook. If Dine In is selected, the user is directed to the

Reservation Page.

Figure 11.1: Dining Options Screen

Why W8 82

As mentioned, if the customer selects Dine In, they are brought to the Reservation Page. This is an

interactive scroll menu that is populated with times in 15 minute intervals. Once the user selects a time,

the user is directed to the Table Selection page.

Figure 11.2: Table Reservation Screens

After selecting a time the user is brought to the table selection page, this is an interactive scroll menu

that lists all of the tables in the restaurant. If a table is crossed out, this means that the table is

unavailable at the current time. For the new customers that are unsure of which tables are which, they

can view the table seating chart at the top of the page, which shows an image of an overhead view of

the entire restaurant. Once they know which table they want to sit at, they choose the corresponding

table number. The table is then reserved for the user at that time selected.

Why W8 83

Once the customer sits at the table, they will be prompted to confirm their seat with the in-app QR

scanner. The customer will then scan the QR code swiftly, and the table seating will be confirmed. The

customer will then be brought to the full menu page.

Figure 11.3: QR Scan and Menu Screens

The full menu page will be yet another interactive scrolling list. Each food item will have a rating, a time

it takes to cook, and an adjustable quantity to order. The customer will also be able to hold down on the

menu item to input any specific notes to the chef, such as any allergies/requests. Once the customer is

satisfied with their order, they can confirm the order is accurate with the real-time receipt being

populated on the right side. After that, they can click place order to fully confirm their order. After the

order is confirmed, the customer can pay with Credit Card or Cash, and can also rate their meal

afterwards, 1-5 stars. These ratings will be inputted into our system and averaged into our menu page

for future customers to view.

Why W8 84

Chef Interface:

The chef’s interface will always contain the same page, but will have a lot of information being

constantly updated and populated. The table number display shows the specific table’s order in a queue

that it was received in. Once the table is selected by the chef, the chef can click the Start button to begin

working on that specific order. This notifies the customer that their order has commenced cooking. As

the timer ticks down, the chef can then pre-maturely select the Complete button to notify the waiter

that the order has been finished. The order is then removed from the chef’s queue, and the server is

able to pick up the order and distribute it to the correct table.

Figure 11.4: Chef Queue Screen

Why W8 85

Server Interface:

The server interface is the most simple interface. The server Order Status is derived from the Chef’s

interface. When a chef starts cooking an order, it appears on the server’s interface as “cooking”. This

lets the server know that the chef has begun cooking that specific order. Once the chef is finished

cooking and changes the status to Ready, the server is notified. The server can pick up the food and

bring it to the customer flawlessly. After the customer has eaten, paid, and left, the table is removed

from the Server’s table list, and then a notice is sent to the busboy’s interface for cleaning.

Figure 11.5: Order Status Screen

Why W8 86

Busboy Interface:

Once the busboy receives the message from the Server that a customer has paid and left, the

corresponding table appears on the Table Status list. This notifies the busboy which tables are available

for cleaning. After the table has been cleaned and prepped for future customers to use, the busboy

simply selects the table that was cleaned and clicks the “Ready” button. This will remove the table from

the list and sets the table as available for all future customers.

Figure 11.6: Table Status Screen

Why W8 87

Manager Interface:

The first options available for the manager are Edit Item, Edit Employee, and Statistics. If the manager

chooses to edit an item or an employee, they will be forwarded to an interactive page with text boxes to

edit the chosen information. If the statistics page is selected, the manager will be forwarded to the

Statistics Selection page.

Figure 11.7: Manager Edit Item & Employee Screens

If Edit Item is selected, the manager simply inputs the information for the item and selects Add or

Delete. These buttons will query our database for the menu item, and if it is not found after the Add

button was selected, it will add that item to the arraylist of our menu.

If the manager selects the Edit Employee button, the manager simply has to input the information for

the employee and selects Add or Delete. This will add or remove the employee from the corresponding

employee system. This is directly tied to the clocking in and payroll features that we plan to implement

in the future. Also, to give waiter, chef, or busboy permissions to a certain account, that employee must

be in the system via the manager’s portal.

Why W8 88

If the manager selects Statistics, they will be forwarded to the Statistics selection page. This is where all

of the manager statistics are displayed. The manager can then choose specifically which statistics he or

she wants to view.

Figure 11.8: Manager Options Screen

Inventory, traffic, and profits interfaces:

Why W8 89

Figure 11.9: Statistics Screens

Within all of these interfaces, if the user wishes to go navigate back to a previous page, the user can

simply swipe right on the edge of their screen. Also, with most android phones, there is a dedicated

backwards navigate button that they can also use.

Our design has improved a lot since the beginning stages of our initial ideas. From the original GUI

drawings to now, there has been a lot of optimizations within the menu, the manager portal, and even

the backend algorithms and database. We have streamlined the design to help guide the user through

the entire process--which really helps optimize the app and make users want to use it again in the

future. This also keeps the user on task which results in a faster transaction time which in the end,

benefits the restaurant and customers, alike.

As mentioned, there have been many design alterations from our original GUI drawings to our current

layouts. In the initial GUI design, the restaurant owner was only able to view statistics such as inventory

and customer info. Now in addition to statistics, our design allows the owner to send messages to their

employees and edit employee and menu information. Initially chefs could only view incoming orders,

but now they can interact with these orders, being able to set once they’ve started on a meal and when

they’ve completed a meal. They can also view meals based on what tables the orders came from and

what priority the tables have based on time an order was placed and how long each meal from a table

will take to complete. The only other type of employee specified in the initial drawings was a waiter,

whom could only view the status of tables. Now we have both busboys and servers; a busboy is notified

when a table needs to be cleaned and can set a table’s status as ‘open’ upon cleaning a table, and a

server is notified when to take out an order and can set an order to ‘paid’ after it’s paid (in the case the

payment is in cash) and can set an order as ‘delivered’ after being delivered to a table. As for the

Why W8 90

customer user interface, a customer from the main window can view the restaurant’s menu in addition

to selecting ‘Dine In’ and ‘Takeout’. Also, upon selecting ‘Dine In’ the customer is asked to select a time

in which they would like to dine prior to being taken to the table selection window. Another

modification is from the payment window, the customer is automatically taken to the rate meal window

as opposed to making the viewing of the rate meal window optional; the customer is not required to

rate their meal, however having the rate meal window viewing automated encourages them to make a

rating, which in turn helps the restaurant improve customer satisfaction.

The new and improved design rewards regular customers with a faster and more efficient interface, but

at the same time, has optimizations to make it easier for the first time users who choose to use our

application. Overall, the interface is very simple and user friendly. Each interface was constructed

specifically to reduce the amount of user effort. Which, in the end, creates an overall easy to use,

all-in-one application that will appeal to many users, employees, and managers across the restaurant

industry.

12. Design of Tests

12.1 Unit Testing

The following are the test cases to be used for unit testing:

TC - 1: Tests login functionality and accuracy

TC - 2: Tests user ability to select dine in

TC - 3: Tests users ability to takeout food from the menu

TC - 4: Tests user ability to reserve table before hand

TC - 5: Tests menu viewability

TC - 6: Tests ability to select an available table

TC - 7: Tests that user sat at the correct table by scanning QR

TC - 8: Tests payment is implemented correctly and that the order is confirmed

TC - 9: Tests users ability to rate food

TC-10: Tests managers ability to view reports regarding restaurant

TC-11: Tests users ability to register for an account

TC-12: Tests estimation time for food arrival

Test-Case Identifier: TC - 1

Why W8 91

Use Case Tested: UC - 10

Pass/Fail Criteria: Test passes if the user is able to login to their account with their combination of email and

password. Test fails if the user is able to login to their account with the wrong username or password.

Input Data: email, password

Test Procedure: Expected Result: Actual Result:

Step 1: Enter a username and
password combination that is valid
for customers and select login.

Step 2: Enter a username and
password combination that is valid
for manager and select login.

Step 3: Enter a username and
password combination that is valid
for chef and select login.

Step 4: Enter a username and
password combination that is
invalid and select login

The app sees that the enter
credentials are valid and takes the
user to the user’s main page.

The app sees that the entered
credentials are valid for manager
and displays the manager main
page.

The app takes the user to the main
page for the chef after confirming
that information is valid.

The app stays at the main page and
displays an error message.

The app displays the customer
home page.

The app displays the main page for
the manager.

The app displays the main page for
the chef

App states that the login was not
successful.

Test-Case Identifier: TC - 2

Use Case Tested: UC - 1

Pass/Fail Criteria: The test passes if the available tables screen is shown on button click. The test fails if no

screen is loaded or the wrong screen is loaded.

Input Data: Button selection

Test Procedure: Expected Result: Actual Result:

Step 1: Click on Dine In button. The available table screen is loaded
for the user to select from.

The available table screen is loaded
for the user to select from.

Test-Case Identifier: TC - 3

Use Case Tested: UC - 2

Pass/Fail Criteria: Test passes if the take out menu button is clicked and it opens up the takeout menu options

for the customers to pick from. Customer can then click to add items and click confirm to confirm order. Test

will fail if the takeout menu does not open or the items are not added.

Why W8 92

Input Data: Button click

Test Procedure: Expected Result: Actual Result:

Step 1: Click on takeout button.

Step 2: Add item and check that it
appears on the ordered list

Step 3: Delete item from the list
and check ordered list is properly
updated

Step 4: Confirm purchase and click
order.

Takeout menu screen opens.

Ordered item appears on ordered
list with quantity and price
displayed along the side.

Items are deducted in quantity and
the price is adjusted accordingly.

Order is sent to the queue for the
chef to select and make.

Takeout menu screen opens

Ordered item appears on the list
with price and quantity shown.

Items are deducted in quantity and
the price is adjusted accordingly.

This has yet to be implemented

Test-Case Identifier: TC - 4

Use Case Tested: UC - 3 and UC -5

Pass/Fail Criteria: This test will pass if a customer can select an unreserved table. This test will fail if the

customer is able to reserve a table that is previously reserved or if the table the customer reserved is not

marked as reserved.

Input Data: Button selection

Test Procedure: Expected Result: Actual Result:

Test 1: Select time for which the
table is to be reserved.

Test 2: Select an available table to
reserve in advance.

Test 3: Select a table that is marked
as reserved or taken.

Test 4: Select a table for the
current time (not reserving table)

Only tables that are available
during this are shown as available
while the rest are marked as taken.

Table is set to be reserved for time
the user has chosen.

Table cannot be selected by the
user.

Table screen is taken to the QR
scan code page to confirm that the
user is sitting at the selected table.

All tables in the restaurant is shown
without any distinctions.

This feature has yet to be
implemented.

This feature has yet to be
implemented.

The screen with the QR code
confirmation is loaded.

Why W8 93

Test-Case Identifier: TC - 5

Use Case Tested: UC - 4

Pass/Fail Criteria: This test will pass if menu items are all seen but cannot be selected. The test will fail if the

item can be ordered from the view menu or if the menu is not displayed correctly.

Input Data: Button selection

Test Procedure: Expected Result: Actual Result:

Step 1: Click on View Menu button.

Step 2: Select items on the menu.

A screen with the full menu
appears

No items in the menu are
selectable.

A screen with a menu appears

Items can be selected and a
purchase can be made which links
to confirm payment page.

Test-Case Identifier: TC - 6

Use Case Tested: UC - 6

Pass/Fail Criteria: The test will pass if the camera is able to be opened, camera detects the correct QR and then

loads the next screen. The test will fail if the camera cannot open or if the QR cannot read the correct QR code

or reads the wrong code as correct.

Input Data: Button Selection

Test Procedure: Expected Result: Actual Result:

Step 1: Load the scan QR page on
the app.

Step 2: Steady the camera over the
QR code of the table the user has
selected.

Step 3: Steady the camera over the
QR code of a table that does not
correspond with the table that is
selected.

The camera opens within the app
and is ready to scan the QR code.

The system recognizes that the QR
code corresponds with the table
and loads the next screen.

The system does not confirm the
QR code and prompts the user to
go to the correct table.

If the app is not allowed to use the
camera, the user must first allow
access and then manually reload
the page. Otherwise the camera
opens properly.

The system recognizes the QR code
and makes a Scan QR button
visible. Clicking on this button loads
the next page.

The system does not confirm the
QR code and prompts the user to
go to the correct table.

Why W8 94

Test-Case Identifier: TC - 7

Use Case Tested: UC - 7

Pass/Fail Criteria: The test will pass if the customer can pay with credit or cash and the order is sent to the chef

afterwards. The test will fail if customer cannot pay or if the chef does not receive the order.

Input Data: Button selection and numerical input for credit card

Test Procedure: Expected Result: Actual Result:

Step 1: Select to pay with cash.

Step 2: Select to pay by card.

Step 3: Select the submit payment
button.

The system continues and someone
will come later to retrieve the cash.

The app will provide fields for the
person to type credit card
information in and enter.

The app will send the order the
customer has paid for to the chef’s
queue.

The system continues but there is
nothing in place to notify a worker
to come and collect the cash.

This feature has not been
implemented.

This feature has not been
implemented.

Test-Case Identifier: TC - 8

Use Case Tested: UC - 8

Pass/Fail Criteria: The test will pass if the review the user is able to review and that review is stored for the user

to use later on. The test will pass if the review does not work properly or if the review is not stored.

Input Data: User Star Selection

Test Procedure: Expected Result: Actual Result:

Step 1: Load the confirm payment
page.

Step 2: Select a number of stars
corresponding to what to rate the
food.

Step 3: Submit the review

Foods that are ordered should
appear along with a star rating
system next to each type of food
the user has ordered.

The appropriate number of stars
can be selected out of the
maximum number of stars there
are.

Foods that are ordered appear
along with a star rating system next
to each type of food the user has
ordered.

The stars cannot be selected or
changed.

This feature has not been

Why W8 95

Step 4: Load the menu page

Step 5: Select a number of stars
corresponding to what to rate the
food.

Step 6: Order food which are rated.

The submitted reviews are stored
in the user profile.

The menu should be appear with a
star rating system next to each
item.

The appropriate number of stars
can be selected out of the
maximum number of stars there
are.

The rated objects should be stored
in the user profile.

implemented yet.

The menu appears with a star
rating system next to each item.

The appropriate number of stars
can be selected out of the
maximum number of stars there
are.

This feature has not been
implemented yet.

Could not be implemented

Test-Case Identifier: TC - 9

Use Case Tested: UC - 9

Pass/Fail Criteria: The test will pass if the user can favorite food items and these food items appear in their

profile for the next time they order. If this does not happen then the test fails.

Input Data: Button selection

Test Procedure: Expected Result: Actual Result:

Step 1: Load the confirm payment
page.

Step 2: Select the favorite button

Step 3: Submit the review

Step 4: Load the menu page

Step 5: Select a favorite button
next to the food item.

Step 6: Select confirm payment
page.

Foods that are ordered should
appear along with a favorite button
next to each type of food the user
has ordered.

The food item next to the selected
button is shown as favorited.

The food items the user clicked the
favorite button on are stored in the
user profile.

The menu should be appear with a
favorite button next to each item.

The button displays that the food
item is favorited.

The food items the user clicked the
favorite button on is selected.

These features have not been
implemented.

Why W8 96

Test-Case Identifier: TC - 11

Use Case Tested: UC - 11

Pass/Fail Criteria: The test will pass if the manager can view the reports on clicking view reports button. Test will

fail if this does not occur.

Input Data: Button selection

Test Procedure: Expected Result: Actual Result:

Step 1: Select category inventory

Step 2: Login as a customer and
order an item. Log back in as a
manager and select category
inventory.

Display the current inventory in a
graph.

The inventory should be updated
with the ordered item using up
some inventory.

An older version of the inventory is
displayed.

The same version of the inventory
as before is displayed.

Could not implement

Test-Case Identifier: TC - 12

Use Case Tested: UC - 12

Pass/Fail Criteria: Test passes if the user is able to register account when the user enters a username that is not

in use already and password that is at least six characters long. Test fails if the user users a username and

password combination that is already in use to register.

Input Data: email and password

Test Procedure: Expected Result: Actual Result:

Step 1: Type in username that is
already in use and an invalid
password

Step 2: Type in new email address
and valid password

System will not allow the user to
register an account. System will ask
user to choose a username that not
in use or a valid password.

System will notify user that a new
account has been created to
indicate a successful registration;
access to user enabled to use other
features

These features have not yet been
implemented.

Why W8 97

Test-Case Identifier: TC - 13

Use Case Tested: UC - 13

Pass/Fail Criteria: The test passes if the chef is able to update the wait time for food arrival. The test fails if this is

not so.

Input Data: Wait time

Test Procedure: Expected Result: Actual Result:

Step 1: Login to Chef account and
navigate to the Order Queue.

Step 2: Update the status of one of
the dishes.

The Order queue is displayed along
with the percentage of each dish
the chef has completed.

The wait time for the order should
now decrease.

This has yet to be implemented.

12.2 Integration Testing

● Login Screen to…

○ Manager UI: cannot go back to login screen from this UI

■ Can edit…

● Employee list: currently no functionality

● Item list: currently no functionality

○ Chef UI: cannot go back to login screen from this UI

■ Views orders of tables

■ Can set an order as ‘started’; currently no functionality

■ Can set an order as ‘completed’; currently no functionality

○ Busboy UI: cannot go back to login screen from this UI

■ Can view the statuses across all tables

● Can set tables to ‘ready’ after being cleaned; currently no

functionality

○ Server UI: cannot go back to login screen from this UI

■ View order status

● Can set order as ‘paid’; currently no functionality

● Can set order as ‘delivered’; currently no functionality

○ Customer UI: can logout and return to login screen

■ View menu

■ Takeout selection: goes straight to ‘Menu’

■ Dine In Selection

Why W8 98

● Select Time; currently no functionality

● Select Table; stores the desired table and sends the selection to

the next window

● Scan QR Code; will only allow the customer to proceed to the

‘Menu’ screen if they scan the QR Code at their selected table

■ Menu: either accessed via the ‘Dine In’ or ‘Takeout’ options

● Select food to be ordered

● After selection, the user can either pay with ‘cash’ or ‘credit’;

currently either option leads the user to the ‘Submit Rating’

window

● Submit Rating: allows user to rate 0-5 stars on what they ordered;

currently the user can rate anything on the menu despite whether

or not they ordered it, and currently the inputted ratings are not

stored into a database and thus currently have no functionality

● After rating, the user is sent back to the Costumer UI page

Integration Tests:

1. Q: Can a user return to the previous window from any window on the app?

A: No; neither manager, chef, busboy, nor server accounts can currently log off and

return to the login page. As of every other window, yes.

2. Q: After a customer scans the QR code of their selected table, if they accidently go

back to the QR scanner page, will the app recall what their selected table was if

they rescan the QR code?

A: Currently yes, however in the future it should be implemented to not allow the

customer to return to the QR scanner after having already sat at their table; it

may cause glitches in the system

3. Login:

1. Enter the email of your account

2. Enter your associated password

3. Press the ‘LOGIN’ button

4. Create Account:

1. From the ‘LOGIN’ page, press “No account yet? Create one”

2. Enter your name

3. Enter your address

4. Enter your email

5. Enter your phone number

Why W8 99

6. Enter your password

7. Re-enter your password for confirmation

8. Press ‘CREATE ACCOUNT’

5. Select ‘TAKEOUT’ as a Customer:

1. Logic as a customer (go through integration test 3)

2. Select ‘TAKEOUT’

3. Press the plus button on each item desired to be ordered the number of times

equivalent to the desired quantity of each item

4. Press ‘CONFIRM ORDER’

5. Either select ‘PAY WITH CASH’ or ‘PAY WITH CREDIT’ depending on one’s payment

preferences

6. Optional: To provide feedback, rate each ordered item from 0-5 stars

7. Press ‘SUBMIT RATING’

8. Select ‘Yes’ when asked “Are you sure?”

6. Select ‘DINE IN’ as a customer:

1. Login as a customer (go through integration test 3)

2. Select ‘DINE IN’

3. Select a desired time

4. Select a desired table

5. Select ‘SCAN BARCODE’

6. Scan the QR code on the desired table

7. Select ‘HAVE A SEAT!’

8. Follow steps 3-8 of integration test 5

7. Logout as a Customer:

1. Login as a customer (go through integration test 3)

2. Select ‘LOGOUT’

8. View Menu as a Customer:

1. Login as a customer (go through integration test 3)

2. Select ‘VIEW MENU’

9. Send Message to Employee as Manager

1. Login as a manager (go through integration test 3)

2. Select the message icon

3. Select what employee to send a message to in the ‘To’ section

4. Select the pre-generated message to send in the ‘Message’ section

Why W8 100

5. Select ‘SEND’

10. Edit Item as Manager

1. Login as a manager (go through integration test 3)

2. Select ‘EDIT ITEM’

3. Enter the name of the item

4. Enter the price of the item

5. Enter the time of the item

6. Either select ‘ADD’ or ‘DELETE’

11. Edit Employee as Manager

1. Login as a manager (go through integration test 3)

2. Select ‘EDIT Employee’

3. Enter the name of the employee

4. Enter the salary of the employee

5. Enter the SSN of the employee

6. Either select ‘ADD’ or ‘DELETE’

12. Start Order as Chef

1. Login as a chef (go through integration test 3)

2. Select table of order

3. Select ‘START’

13. Complete Order as Chef

1. Login as a chef (go through integration test 3)

2. Select table of order

3. Select ‘COMPLETE’

14. Clean Table as Busboy

1. Login as a busboy(go through integration test 3)

2. Select table to clean

3. Select ‘READY’

15. Set Status of Order as Server

1. Login as a server (go through integration test 3)

2. Select order

3. Select either ‘PAID’ or ‘DELIVERED’

Why W8 101

13. History of Work

September 9-18:

We got together in class during this team to form a team to move forward with on a project.

Finding a project was no difficulty for us as one of our members had a family friend that worked in the

restaurant business. As such, we found it would be fitting if we chose the Restaurant automation idea as

this would solve a problem that a member felt especially connected to. And thus, we moved on to

writing the proposal. The proposal was written as a collaboration effort over google drive as is the case

for most of our reports.

September 19-October 7:

We used the feedback from the proposal to plan our steps during this period. Our main

feedback was to make sure to implement novel ideas to add on to our current proposal. And so we

spent time on developing new ideas. Also during this time, we met a couple of times to discuss how to

allocate who does what for the first report. Everyone contributed their assigned parts throughout this

period over the shared drive. A couple of us also got together to begin work on setting up the menu

screen in the app.

October 8-31:

During this time, we spent our time setting up the app for the upcoming demo. We split up parts

for each person to work on and met every week to make sure everyone was on track. The features we

mostly focused on were the menu, rating system, reservation list, and food time. These features were

implemented in android studio. We connected the firebase database to handle logins for different users

and keep track of inventory. The week leading up to the demo, we met almost every day to make an

extra push to complete. On the last day, we merged all the branches and ran final tests to make sure our

features worked. We then set up our presentation and finished our preparations.

November 1-11:

Following the demo, we looked into how we can use the feedback to improve on our project. At

the same time, we continued to add on the second report. This report was influenced heavily by the

demo feedback as well as the feedback we got from the reviews written by our peers in this class. We

made the appropriate changes and allocated for people to work on the new sections for this report. We

worked remotely on this project and combined our work through google drive once again.

November 12-December 9:

After finishing the second report, we went straight into working on our last report. As soon as

the peer reviews our classmates wrote on our report 2 was available, we went to work reading their

input. We kept their suggestions in mind while working on our last report. And so, we spent a good deal

of time going through and fixing the issues from report 2. Again for this report, we all contributed on our

own time into a shared drive. Also during this time, we worked on features suggested to us during our

demo. We met various times throughout this period to work together on our app and to make sure we

were not falling behind.

Why W8 102

December 9-12:

We will be putting our finishing touches on the app during this time. Most of the main features

have already been implemented. However, we are pushing ourselves to showcase new features on our

app. We will be spending this time making sure that our app functions properly through detailed tests.

14. References

[1]
Bandarpalle, Sujay, et al. “Report 3 Part 1: Restaurant Automation.”
http://www.ece.rutgers.edu/
 ~marsic/books/SE/projects/Restaurant/2015-g3-report3.pdf

[2]

“Concepts: Requirements.” Razor Tie Artery Foundation Announce New Joint Venture Recordings

 | Razor & Tie, Rovi Corporation, web.archive.org/web/20180402153505/http://www.uped

 u.org/process/gcncpt/co_req.htm

[3] “Creately - Online Diagram Editor - Try It Free.” Creately Blog, creately.com/app/#

[4]
“Go: Implement a FIFO Queue.” Go: Implement a FIFO Queue | Programming.Guide,
programming.guide/go/implement-fifo-queue.html.

[5] Marsic, Ivan. Software Engineering. New Brunswick: Ivan Marsic, 2012. Print.

[6]

“QR Code Features | QR Code.com.” Razor Tie Artery Foundation Announce New Joint Venture

 Recordings | Razor & Tie, Rovi Corporation,

web.archive.org/web/20130129064920/http://

 www.qrcode.com/en/qrfeature.html

[7]
“UML 2 Sequence Diagrams: An Agile Introduction.” UML 2 Sequence Diagrams: An Agile Introdu

 ction, www.agilemodeling.com/artifacts/sequenceDiagram.htm.

