
 Page 1

B.A.R. G.A.M.E.

Better Arithmetic
Reasoning Generated by
Acknowledging Minority

Experiences

http://www.bargame.info/

Group 7

Michael Chiosi

Andrew Conegliano
Patrick Gray

Christopher Jelesnianski
Marshall Siss
Siva Yedithi

Report 2

March 11, 2012

 Page 2

Breakdown

 Points Andrew
Conegliano

Christopher
Jelesnianski

Marshall
Siss

Michael
Chiosi

Patrick
Gray

Siva
Yedithi

Sec.1:
Interaction
Diagrams

30
15% 0% 15% 40% 15% 15%

Sec.2: Class
Diagram and

Interface
Specification

10

0% 42.5% 52.5% 0% 0% 5%

Sec.3: System
Architecture
and System

Design

15

0% 0% 20% 20% 15% 45%

Sec.4:
Algorithms and

Data
Structures

4

0% 0% 55% 0% 5% 40%

Sec.5: User
Interface

Design and
Implementation

11

64% 1% 18% 12.5% 0% 4.5%

Sec.6: Design
of Tests

12 0% 0% 0% 0% 80% 20%

Sec.7: Project
Management
and Plan of

Work

18

30% 70% 0% 0% 0% 0%

 Page 3

Responsibility Allocation

Points AC CJ MS MC PG SY
30 0.15 0 0.15 0.4 0.15 0.15
10 0 0.425 0.525 0 0 0.05
15 0 0 0.2 0.2 0.15 0.45

4 0 0 0.55 0 0.05 0.4
11 0.64 0.01 0.18 0.125 0 0.045
12 0 0 0 0 0.8 0.2
18 0.3 0.7 0 0 0 0

Total 16.94 16.96 16.93 16.375 16.55 16.245

15

15.5

16

16.5

17

17.5

18

ac cj ms mc pg sy

Points

 Page 4

Table Of Contents

Breakdown_ 2
Responsibility Allocation 3
Table Of Contents_ 4
Interaction Diagrams 5
Class Diagram and Interface Specification__ 11

Class Diagram__ 11
Data Types and Operation Signatures_ 12
Traceability Matrix___ 14

System Architecture and System Design_ 16
Architectural Styles___ 16

Identifying Subsystems_______ 17
Persistent Data Storage___ 18
Global Control Flow__ 19
Hardware Requirements__ 20

Algorithms and Data Structures___ 21
Algorithms_ 21

User Interface Design and Implementation____ 28
Design of Tests____ 32
Project Management and Plan of Work_______ 35

Merging the Contributions from Individual Team Members__ 35
Project Coordination and Progress Report______ 36
Plan of Work________ 37
Breakdown of Responsibilities___ 39

References__ 40

https://docs.google.com/document/d/1x1CrLxNQWgsLHvEy3KcI24HEaGpOC_3R_nL9mqYsAkA/edit#heading=h.t9s34smfksm8
https://docs.google.com/document/d/1x1CrLxNQWgsLHvEy3KcI24HEaGpOC_3R_nL9mqYsAkA/edit#heading=h.ua4btklqh1ho
https://docs.google.com/document/d/1x1CrLxNQWgsLHvEy3KcI24HEaGpOC_3R_nL9mqYsAkA/edit#heading=h.446rom2iijkr
https://docs.google.com/document/d/1x1CrLxNQWgsLHvEy3KcI24HEaGpOC_3R_nL9mqYsAkA/edit#heading=h.udlnwk2b9dc
https://docs.google.com/document/d/1x1CrLxNQWgsLHvEy3KcI24HEaGpOC_3R_nL9mqYsAkA/edit#heading=h.wwn44fq9m4ru
https://docs.google.com/document/d/1x1CrLxNQWgsLHvEy3KcI24HEaGpOC_3R_nL9mqYsAkA/edit#heading=h.c69pfh11qdzl
https://docs.google.com/document/d/1x1CrLxNQWgsLHvEy3KcI24HEaGpOC_3R_nL9mqYsAkA/edit#heading=h.uad9d83mwcq0
https://docs.google.com/document/d/1x1CrLxNQWgsLHvEy3KcI24HEaGpOC_3R_nL9mqYsAkA/edit#heading=h.eocdlg82hs5e
https://docs.google.com/document/d/1x1CrLxNQWgsLHvEy3KcI24HEaGpOC_3R_nL9mqYsAkA/edit#heading=h.wi7yqhd01wva
https://docs.google.com/document/d/1x1CrLxNQWgsLHvEy3KcI24HEaGpOC_3R_nL9mqYsAkA/edit#heading=h.6eqldo1nyfeu
https://docs.google.com/document/d/1x1CrLxNQWgsLHvEy3KcI24HEaGpOC_3R_nL9mqYsAkA/edit#heading=h.uqkwkad78k3q
https://docs.google.com/document/d/1x1CrLxNQWgsLHvEy3KcI24HEaGpOC_3R_nL9mqYsAkA/edit#heading=h.fb1ylgtgi7n0
https://docs.google.com/document/d/1x1CrLxNQWgsLHvEy3KcI24HEaGpOC_3R_nL9mqYsAkA/edit#heading=h.15v6fx24egp0
https://docs.google.com/document/d/1x1CrLxNQWgsLHvEy3KcI24HEaGpOC_3R_nL9mqYsAkA/edit#heading=h.8m2unw7k8y0a
https://docs.google.com/document/d/1x1CrLxNQWgsLHvEy3KcI24HEaGpOC_3R_nL9mqYsAkA/edit#heading=h.9qlxewn7b5ud
https://docs.google.com/document/d/1x1CrLxNQWgsLHvEy3KcI24HEaGpOC_3R_nL9mqYsAkA/edit#heading=h.p9b66r1eqwmf
https://docs.google.com/document/d/1x1CrLxNQWgsLHvEy3KcI24HEaGpOC_3R_nL9mqYsAkA/edit#heading=h.2ct19o3kh103
https://docs.google.com/document/d/1x1CrLxNQWgsLHvEy3KcI24HEaGpOC_3R_nL9mqYsAkA/edit#heading=h.2ax7beadqt5u
https://docs.google.com/document/d/1x1CrLxNQWgsLHvEy3KcI24HEaGpOC_3R_nL9mqYsAkA/edit#heading=h.o90cse3d9veb
https://docs.google.com/document/d/1x1CrLxNQWgsLHvEy3KcI24HEaGpOC_3R_nL9mqYsAkA/edit#heading=h.picqaaexxu5r
https://docs.google.com/document/d/1x1CrLxNQWgsLHvEy3KcI24HEaGpOC_3R_nL9mqYsAkA/edit#heading=h.wt8rev9snnsa
https://docs.google.com/document/d/1x1CrLxNQWgsLHvEy3KcI24HEaGpOC_3R_nL9mqYsAkA/edit#heading=h.ea1eulrkg9wr
https://docs.google.com/document/d/1x1CrLxNQWgsLHvEy3KcI24HEaGpOC_3R_nL9mqYsAkA/edit#heading=h.2umvpostlgxq
https://docs.google.com/document/d/1x1CrLxNQWgsLHvEy3KcI24HEaGpOC_3R_nL9mqYsAkA/edit#heading=h.8h67qt2bpv08

 Page 5

Interaction Diagrams

Overview of Interactions

 Page 6

UC-1: Initialize

Responsibilities Associated:

1) Initialize is responsible for taking in the initial User Information.

2) It then generates the simulation for the user.

3) If errors are found, the initialization alerts the user and asked for valid input.

4) Everything starts here.

 Page 7

UC-2: RunGame

Responsibilities Associated:

1) RunGame is responsible for starting up the game and updating the GUI based on the

 current state of the game.

2) GUI is responsible for making sure that the display is updated by asking the system

 to provide the updates it needs to run the simulation.

3) Town is responsible for keeping track of the number of people in the Town, to see

 who is going to the bar, and to see the capacity of the bars.

4) Agent is responsible for the decision making to see if they should go to the bar, and

 their recent experiences.

 Page 8

Design Principles:

The principle behind run game is the Expert Doer Principle. When the game

starts to run the system is contacted and it makes sure to contact the methods that

need to get the information so that they know what to return in order to update the GUI

and keep the display and the charts accurate, also only the methods that are needed in

order to complete the task are the ones that learn the information, others are kept out of

it.

The High Cohesion Principle and Low Coupling Principle are applied here by

splitting up the task of computing by making the Town and Agent objects which have

separate responsibilities that communicate with each other. Each of them, combined

with the system, computes the results.

UC-3: StopGame

 Page 9

Responsibilities Associated:

1) GUI is responsible for taking user input and relaying that to the rest of the system and

 keeping track of which screen should currently be displayed.

2) System is responsible for giving out the final round of data and halting the simulation

 on request.

Design Principles:

 StopGame follows the High Cohesion Principle. High Cohesion Principle states

that an object should not take on too many responsibilities of computations. StopGame

has minimal computation responsibilities, rather it takes data that has already been

generated and makes sure it gets to where it needs to go before the simulation shuts

down. After it is sure that the data has gotten to where it needs to go the main

simulation file halts and the GUI switches displays to allow the user to continue viewing

graphs. After the User presses the second button the GUI changes again to show the

user the screen needed for initialize game.

 GUI does not follow Low Coupling Principle, but it does follow Expert Doer

Principle. It is the sole object that allows communication from the user to reach the

system as a whole and is the first object to know what the user has inputted and relay

messages to the system.

 Page
10

UC-4: Printgraphs

Responsibilities associated:

1) ChartAPI is responsible for outputting the graphs given data by the system.

Design Principles:
 ChartAPI follows the High Cohesion Principle. High Cohesion Principle states

that an object should not take on too many responsibilities of computations. ChartAPI

has no computation responsibilities; rather it takes in computed data. Low Coupling

Principle also applies to ChartAPI since it does not have a large amount of

communication responsibilities. ChartAPI is one of multiple objects that communicate

with system. Lastly, since ChartAPI only prints the graph, it does not follow Expert Doer

Principle, in that it doesn’t need to know anything, it only outputs graphs based on given

data.

 Page
11

Class Diagram and Interface Specification

Class Diagram

 Page
12

Data Types and Operation Signatures
Note: - private, + public, # protected

GUI: The GUI class is in charge of managing the graphs for the user and the input
variables
 - int graphA
 - int graphB
 - int speed
 - int isRunning

+ selectChartA (int) : void
 + selectChartB (int) : void
 + changeSpeed(int) : void
 + startSim() : void
 + stopSim() : void

Town: The Town collects data and acts as intermediaries for the other classes. It
returns data concerning the round to the GUI
 - int numBars
 - Bar[] bars
 - int numAgents
 - Agent[] agents
 - int randomEvents
 - int[] pastDays
 + pollAgents() : int[]
 + tellAgents(boolean[]) : void
 + tellBars(int[]) :boolean[]
 + turn() : int[]
 + configure() : void

Agent: The Agent contains the basic score and memory decisions
 - int age
 - int deathDay
 - int wins
 - Strategy[] strategies
 - int locWentTo
 + getAge() : int
 + getTurnLocation(int[]) : int
 + getWinPercent() : double
 + isDead() : boolean
 + finalizeTurn(boolean[]) : int[]
 + updateScores(boolean[]) : int[]
 + dropStrat(int) : void

Strategy: The Strategy is a logical unit for holding an Agents bank of strategies and
their success for a particular Agent.

 Page
13

 - int[] tactic:
 - int score:
 +scoreUpdate(boolean[]) : void
 + getScore() : int

Bar: The bar knows its capacity and if the people at the bar won.
 - int barCap
 + getCapacity() : int
 + wonThisTurn(int) : boolean

 Page
14

Traceability Matrix

Domain Concept Vs. Classes Classes

Concept Agent Town Strategy Bar GUI

Game Simulator X

Agent X X

GUIDisplay X

Town X X

Archiver X

 The GameSimulator is our system backing concept so to speak. It will be the

controller unit for this program in that it will be the HQ for the town class to interact with.

It is the entity which links the GUI to the statistics. There is no set class to exclusively

handle the data transfer from the GUI to the rest of the program. For now we are

allowing the Town class to be the controller unit and receive the data directly. If this

design choice brings up issues, we may later choose to implement a class to handle the

data transfer between our other modules within the program.

 An Agent is a complex concept. It not only has to exist to hold strategies but also

make use of the algorithms derived in the strategy class to make a choice. In addition,

depending on the death type model chosen by the user, a class should be in charge of

keeping track of Agent status's (i.e. are they dead?). The Agent class was derived from

this concept.

Similarly the GUIDisplay concept has directly influenced the creation of our GUI

class.

As previously explained in the Game Simulator Concept the Town class will act as the

controller unit. In addition, the town also has its own set of duties including setting up

and monitoring the town itself as the simulation progresses

 Page
15

The Archiver concept maps to a class we have not fully defined yet; for now we

will try to make the Town class manage this aspect. It will potentially handle the “hand-

off” of data from the program into storage including proper formatting of the data that is

generated by each simulation run. This includes writing out to a “.bg” which is described

more in detail later.

 Page
16

System Architecture and System Design

Architectural Styles
 The architectural style of the program can be seen as event-driven style. This

kind of architecture pattern corresponds with promoting the production, detection,

consumption of, and reactions to events. An event would mean a significant change in

state. For our program this would be whether an agent goes to the bar or not. This type

of architect consists of event emitters (event agents) or event consumers (event sinks).

Sinks are responsible for applying a reaction as soon as an event is presented.

 The B.A.R.G.A.M.E. program corresponds to this style of architecture. Every

round an event (Whether or not an agent goes to a bar) occurs in the simulation, this is

the production of an event. Based on this event, an agent will change their strategy for

the next round of the simulation (This is a reaction to events). An agent's strategy can

be seen as an event sink because sinks apply a reaction at the end of an event, just like

an agent's strategy is changed based on being the minority or not at the end of a round.

The event agents would be agents in the B.A.R.G.A.M.E. that are participating in the

simulation.

 Another way of looking at this kind of architecture is procedure driven. Due to the fact

the user starts with program with inputting data and boundaries. Also, the user only

controls the starting data of the program such as number of bars, agents, and game

speed. Another reason why this architecture can be seen as procedure driven is

because there is interaction between classes which reduces the complexity of the whole

problem. Creating an agent class separate from the town class and having them interact

with each other is a lot easier than having one large class for town. These two style of

architecture can explain our project the best. It is possible for other styles to be related

to our project because many of the styles are similar.

 Page
17

Identifying Subsystems

 There are three main subsystems which compose our application: the GUI,

ChartVisualization, and the Base. The GUI subsystem is in charge of getting input data

from the user (death, marriage, number of bars, etc); it is the sole communicator from

user to Base. It also displays data that the Base computes in the format of charts that

the ChartVisualization computes and handles. Therefore, the GUI subsystem is

dependant on the Base and ChartVisualization subsystems. ChartVisualization depends

on Base to receive data. The data is then outputted to graphs that are displayed in the

GUI. Base is the main subsystem, and therefore called appropriately. It has subsystems

within itself: Town, Bar, Agent, and Strategy. Town subsystem is responsible for

communication between Bar and Agent. It gets the number of agents who went to each

bar and calculates how many agents won. Bar knows its capacity and notifies Town if

the people at the bar won. Each agent has his own set of strategies, so the Strategy

subsystem is contained within Agent. This subsystem defines the strategies each agent

uses to make its decisions.

 Page
18

Persistent Data Storage
Our program will store the simulation information in plain text files appended with

the extension “.bg” in order to allow for easy reading and identification at a later time.

These will be useful for any analysis of the simulation that does not take place while the

program is running. There will be labeled lines for all the fields in the “.bg” file and

histories will be included. The plain text will be written in such a way that will allow it to

be easily imported into programs like Microsoft Excel. That is to say that it will use the

same formatting as a “.csv” file in order to support the most functionality and/or

extensibility.

When it comes to the graphs generated during simulation, there will be picture

files generated for user specified graphs. The files will be in a format that is easily

viewed such as “.jpg” or “.bmp”. These graph pictures will provide condensed

information that the user can then further utilize for various things such as simulation

write-ups or general understanding of simulation events. In addition the format of the

graph naming convention will be easy to understand quickly distinguish graphs for one

another. The naming convention will be as follows:

“X_Round_Statistictype.jpg”

In that “X” denotes the round that this picture file is for and “Statistictype” will denote the

statistics that this graph picture file portrays for round “X.”

Note: “simulation write-ups” refers to documents created by user after using the

application to simulate the minority game.

 Page
19

Global Control Flow
Execution Orderness

The El Farol Bar simulation is procedure driven, in the sense that all the user

needs to do is to input their preferred settings for the game and press ‘Simulate’ to

begin the simulation. Once the game is running, the rounds and the strategies are

executed in an iterative process and the GUI is updated. The speed at which this linear

procedure occurs is dependent on the slider bar at the bottom of the GUI screen which

can utilized to modify the speed at the simulation occurs. Once the user is satisfied with

the data generated and recorded so far or would like to enter another set of options for

the simulation, they may pause and stop the game. Thus there is minimal to interaction

between the user and the program once the program begins execution.

Time Dependency

The system is of the event-response type, in that there is no concern for real

time. Since each round happens very quickly, in that strategies and the amount of

people in a certain bar are computed very quickly, there is minimal waiting and could be

considered an instantaneous event. Even though the user is not waiting it is still

important that these calculations be carried out as quickly and as efficiently as possible

so as not waste other resources like memory.

The only time relevant aspect of our application concerns the slider while the

simulation is under way. The purpose of the slider bar is to set the speed of how fast the

round progresses. The time that the graphs are displayed for the current round in the

GUI is delayed by a certain amount depending on where the slider bar is placed. This

also delays the calculation for the next round in the background.

Concurrency

 The use of any type of concurrency such as threads is not expected to be

necessary.

 Page
20

Hardware Requirements

Hardware and Software Requirements Minimum Recommended

Display Resolution 800 x 600 1024 x 768

CPU 1GHz 2GHz

Size on Disk 1GB 1GB

RAM 512MB 1GB

.NET 3.5 4.0

Visual C++ 2008 2012

Operating System Windows XP Windows 7

 Page
21

Algorithms and Data Structures

Algorithms
 The algorithmic portion of our code centers on the decisions that the agent make

on which location to attend. Due to space constraints we decided that agent will have a

3 day “short term memory.” This means that the agent decision on which bar to go to

will be affected by what has happened in the past 3 days, specifically it will be affected

by the “most winning bar” the bar that had the least percent of its total capacitance. It is

generated using the following functions and placed in a int[] named STM in town.

Town class

The code below demonstrates the algorithm for the Town. Basically the loop goes

through an array of agent objects and checks to see how many people are going to the

bar using the getPeople() method in class agent. It then sets the agents short term

memory (STM) for the bar visit.

int[] tellBars(int[] people)

{

 int i;

int rtn[numBars];
double max=0;
int maxAt;
int temp;

 for(i=0;i<numBars;i++)
 {
 temp=bars[i].getPeople(people[i])
 if(temp<0)
 {
 rtn[i]=0;
 }

else
{
 rtn[i]=1;

if(temp>max)

 Page
22

 {
 maxAt=i;

 }

}

 }
 i=STM[2];
 STM[2]=maxAt;
 maxAt=STM[1];
 STM[1]=i;
 STM[0]=maxAt;
 return rtn;
}

Bar class

This method just does some error checking to see that the total capacity of any bar has

not been exceeded.

int getPeople(int people)
{
return (capacity-people)
}

 An agents “long term memory” is not, as it would seem, a recording of what has

happened since the beginning of time, rather it is the “feeling” agents have about which

strategies have been working. It is related to a strategy’s score. Also, if a strategy’s

score dips below half of its starting number; it is replaced.

Bar Class

void tellAgents(int[] winners)
{
 int i;
 int STMNum= STM[0]^3+STM[1]^2+STM[0];
 for(int i=0;i<numBars;i++)

 Page
23

 {
 agent[i].tellWinners(winners, STM)
 }
 return;
}

Agent Class

void tellWinners(int[] winners, int STM)
{
 int i;
 for(i=0;i<3;i++)
 {
 if(winners[Strategies[i].getStrat(STM)])
 {
 Strategies[i].updateScore(1);
 }
 else
 {

if(Strategies[i].updateScore(0))
 {

Strategies[i]=createStrat(len(winners))
 }
 }
}

Strategy Class

int getStrat(int STM)
{
 return (int) Strat[STM];
}

int updateScore(int win);
{
 score=(score+win)*.95;
 if(score<25)
 {
 return 1;

 Page
24

 }
 return 0;
}

 Both of these topics were mentioned in the mathematical model, but are

expanded upon here.

 At an agent creation they are given 3 strategies which consist of a char array of

length 4096 and an integer. This array is then populated with numbers ranging from 0

to (numBars-1) and the score is set to some value.

Agent Class

Agent createAgent(int numBars)
{
 int i;
 Agent rtn= new Agent;
 for(i=0;i<3;i++)
 {
 rtn.Strats[i]=createStrat(numBars);
 }
}

Strats class

Strat createStrat(int numBars)
{

Strat ptr a=new Strat;
int i;

 for(i=0;i<4096;i++)
 {
 a->array[i]=(int)(rand()*numBars);
 }
 a->score=50;
 return a;
}

On a given turn each agent is asked which bar it would like to go to and all of those

choices are added up to make the int[] people array above.

 Page
25

Town Class

int[] askPeople()
{
 int STMNum= STM[0]^3+STM[1]^2+STM[0];
 int i=0;

int rtn[numBars];
for(i=0;i<numBars;i++)
{
 rtn[i]=0;
}

 for(i=0;i<numAgents;i++)
 {
 rtn[agent[i].askBar(STMNum)]++;
 }
 return STMNum;
}

Agent Class

int askBar(int STM)
{
 int i;
 double g=0;
 for(i=0;i<3;i++)
 {
 g+=Strat[i].getscore();
 }
 g=g*rand();
 if(g<Strat[0].getScore())
 {
 return Strat[0].getStrat(STM)
 }
 else if(g<(Strat[0].getscore()+Strat[1].getscore())
 {
 return Strat[1].getStrat(STM)
 }
 else
 {
 return Strat[2].getStrat(STM)
 }
}

 Page
26

Strategy Class

int getScore()
{
 return score;
}

This clearly outlines all of the algorithms necessary for the first demo. The ones for the

second are less clearly defined.

For groups of individuals we plan to have two sets of strategies. The individual ones

and the group ones. The idea is that everyone will tell the group what they would do

and then decide where the group would go based on every member of the group’s

choice.

For deaths and births, we plan to give each agent a “death day” based off of a Gaussian

distribution and have each agent check to see if it has died on that turn. For simple

deaths, the agent will simply be reborn dropping its 2 lowest scoring strategies. A more

complex system is possible depending on time constraints.

These detail strategies that have not been given much thought as they will not be

included in the upcoming demo.

 Page
27

Data Structures:

 The design uses data structures such as a hash table. A hash table is a data

structure that is very similar to an array in the sense that it has a key and a value

associated with it, the difference is that multiple values can me mapped to the same key

and also a hash table can store different types of objects to it. The hash table is used to

store the strategies that each agent will employ. The hash table is used due to the fact

that the size of the table will be at least 3000 slots, and this takes advantage of the fact

that hash tables are very fast especially when the size becomes apparent. Also since on

average most operations are about constant time, accessing and updating any of the

necessary data becomes convenient and so the flexibility and the performance are both

better. Since each index of the table only holds one item, a random bar number, there is

no need for any sort of collision detection.

Also the implementation uses arrays to keep track of the number of agents in each

simulation, up to 100,000. The advantage of this is that since the array is of all agent

objects looping through the array and calling the necessary method will not be very

difficult and will allow for easier access to the data returned by the agents when they are

updated.

 Page
28

User Interface Design and Implementation

Fig. 1 Initial GUI user screen

 The main GUI window, as shown in Fig. 1, has not changed from our previous

model with the exception of a label rename. We decided to change our previous label,

“Environment” to “Population Variables” which better describes the options below it.

 The user is still only able to modify one at a time of either “Percent Based” or “Static

Based” inputs. For error handling, we decided to go with a more user friendly approach.

 An improved UI feature we implemented is that instead of an annoying pop-up box

telling you an error, i.e. “number is out of bounds”, a small red exclamation icon will be

displayed next to the appropriate input box. When a user hovers over it, a small pop-up

text box will be displayed telling the user an appropriate range for input. Whenever

there is an error present, the simulate button will be disabled so the user can not click it

until there are no more errors. This can be seen in Fig. 2

 Page
29

Fig. 2 Invalid data prompt

 When the user clicks simulate, a new window will pop, Fig. 3, up displaying two

graphs and having a drop down box on top with different choices of graphs. While the

graph window is displayed, the user will be unable to access the main window until the

user exits the graphs window. All of our design choices minimizes the need for user

clicks and input and is very user friendly. By using native Windows user interface

elements, users are already familiar with their function and will not feel lost while

navigating our program.

 Page
30

Fig. 3 Running Simulation Graph Window

 The only thing that needs to be implemented is the chart functionality.

 Everything described above has already been coded into a skeleton and we now need

to add our base code to the appropriate sections.

 Page
31

Fig. 4 Help Menu

 Lastly, in keeping with the user friendliness of using native Windows

components, we have created a help menu using a Windows help file format. As can

be seen in Fig.4, the file is organized by category, and clicking a topic displays a page

to the right with a description. To access this help file, you can either click F1, which is

a universal Windows shortcut for help, or click the question mark on the top right of the

window.

 Page
32

Design of Tests

 These are test cases for determining the correctness of implemented structures
in the program:

Test case id: GUI Error Messages
Unit to test: GUI Input
Assumptions: The program has displayed the input screen and is waiting for user
action
Test data: Invalid data values in each field
Steps to be executed:
1. Input invalid values into each test field
2. Check to see that a red exclamation point shows up next to the field
Expected result: For any invalid value in a field, a red exclamation point should appear
next to said field
Pass/Fail: Passes if all fields return an error message. Fails if any fields accept invalid
input/don’t have an exclamation point next to them.
Comments: This test is to make sure the GUI interaction of the user handles errors
well.

Test case id: Simulation Run
Unit to test: Simulation Button/Function
Assumptions: Valid data values for simulation fields have been input into the GUI
Test data: Default Simulation Data
Steps to be executed:
1. Check to make sure no exclamation points exist next to input fields
2. Press the Simulate button
3. Observe the update of graphs and generation of data
Expected result: Graphs should start to update automatically and data generation
should begin
Pass/Fail: Passes if system begins execution and graphs start to update. Fails if
simulation does not start and/or data fails to begin generation and/or graphs don’t start
to show data as it gets created.
Comments: This test is probably the most important to the whole system. If this test is
failed, the whole logic of the system is failing and thus requires a lot of work in order to
fix.

Test case id: Stop Simulation Button
Unit to test: GUI Stop Input
Assumptions: The simulation is currently running with valid data having been input into
the program.
Test data: Mouse Click
Steps to be executed:
1. Click on the stop button on the GUI
2. Check to make sure the simulation has ceased running

 Page
33

Expected result: The simulation should cease running and all data creation should halt
Pass/Fail: Passes if the system exits its run functions and stops updating graphs. Fails
if the program continues execution and/or keeps generating data and/or keeps updating
graphs.
Comments: This test should be rather easy to satisfy because of the ease in which a
computer can be asked to exit a loop. This logic is therefore simple and the test should
only fail when somehow the button press is disassociated from its responding function
in the code.

Test case id: Slider Button Function
Unit to test: GUI Slider Button
Assumptions: The simulation is currently running with valid data having been input into
the program
Test data: Results from a successful simulation
Steps to be executed:
1. Move the slider one way or the other depending upon its current position
 1a. One should notice the simulation slow down if one has moved the slider to the left
 1b. One should notice the simulation speed up if one has moved the slider to the right
2. Move the slider back to its original position
3. One should notice the return of the simulation to the same execution speed as before
step 1.
Expected result: The speed at which the simulation executes should change according
to the direction in which it is slid.
Pass/Fail: The test is passed if moving the slider to the left results in the slowing down
of the execution of the program and moving the slider to the right results in the speeding
up. If any other result occurs, the test is failed.
Comments: This adds a user friendly option to the interface in that it allows the user to
slow down the simulation and watch as the data is generated right before their eyes.
This may allow the user to pick up on certain patterns that might otherwise be hard to
see when looking at the complete data set all together.

Test case id: Data Retention
Unit to test: Output Data function
Assumptions: A simulation has been run and data is ready to be written/recorded.
Test data: The ".bg" or image file that should be returned by the output function in the
program
Steps to be executed:
1. Finish the simulation and make sure that the data from the simulation is still present
in the program (the program has not exited/crashed)
2. Press the Output button on the final screen of the simulation
3. Open the ".bg" file and make sure that the contents is written in a format that can be
read by other programs (ex. excel, word, picture viewer)
Expected result: The file that was generated should be stored and be readable by
some outside program
Pass/Fail: This test is passed if the data generated by the simulation can be read by an
outside program such as excel or picture viewer. This test is failed if the data isn’t

 Page
34

readable or becomes corrupt in any way.
Comments: This test if important in that it assures the user’s time has not been wasted
in running the simulation and assuring the retention and preservation of the data
generated.

These above tests cover all of the high level/user testing that can be done. Other

testing such as determining correctness of every single line of code will be carried

out/has already been carried out by each software developer as they are writing each

section of code.

As far as integration testing goes, as we combine the modules and separate

code of each developer, we will make sure that any discrepancies that arise are

flattened out in an orderly manner. Commenting our code excessively around places

where other people’s implementations fit in is what will help the process of combining

everything together go much more smoothly than if we just handed each other pure

code.

 Each section of code will be double checked for correctness of implementation

and also correctness of the actual algorithms being employed. If any vague or

nonstandard implementations are used, they must first be justified by an explanation in

comments in order to pass the correctness test each person writing code will perform.

Vague or nonstandard means structures that don’t show their purpose or function in a

manner that is obvious enough to a proficient user of the programming language in

which we are working.

 After checking the soundness of the code, the checking of the algorithms will be

first conducted outside of the system, and then inside if the outside testing is passed.

Functions that return certain data types and perform specific operations can be

implemented in “dumby” programs. “Dumby” programs are effectively empty programs

except for the required code to test the correctness of a function/object and the

function/object’s code.

 Page
35

Project Management and Plan of Work

Merging the Contributions from Individual Team Members
 One of the first problems we encountered was that when we had done our

specified parts, everyone had their own part on a separate Microsoft word document for

example. To combat this headache, one person suggested that we use Google

documents. Only a few of the group members had experience with Google Docs, so the

rest of us had to learn how to share documents, a specific part for example with the rest

of the group. A problem we are still having is that Google Docs is still not as good for

formatting etc. and missing some specific actions we constantly rely on in Microsoft

word. For example, the ability to work with tables in Google Docs is fairly limited in

manipulating them. To handle this, we still rely on importing the finished Report to

Microsoft Word to add the finishing touches and do what we cannot in Google Docs

before submitting our work.

 Another issue that arose near the end of the first report was when I was reading

through Report 1 as a whole before submitting it. Although subtle, the problem of

consistency in the flow of dialogue in Report 1 as a whole presented itself as I read

more and more of the report. It is a given that everyone has their own style of writing. As

I moved through each section, I saw that the change in language was noticeable and

disrupted the cohesion of the document. To fix this, I suggested that we all skim over

each others sections of work to make sure that what we are saying is factually accurate

and makes sense. In addition, it was appointed as a job for the Co-Leaders to go

through the document completely once it is compiled to check for readability and fluidity.

Since there are two of us, it has been easy to double check with one another to make

sure every detail in the document is precise and edited if needed.

 Google Docs helped with a lot of the formatting issues in maintaining consistency

so that aspect of the document was not really troublesome to deal with.

 Page
36

 Another reason we rely on Google Docs is version control. Here on the web

everyone has access to the same document and can edit at will. Not that this also

caused some problems where editing set us back when something was edited in the

wrong way, but it has done more right than wrong. Finally, a really good point about

using Google Docs for this semester long project is that everyone can keep track of

each other’s progress. At the start of the next deliverable, the Co-leaders begin by

formatting an empty document with all the sections that need to be completed when the

deliverable is due. By being able to access and view the same document that we all

should be working on, a missing section is pretty self-evident. This allows us to catch

this simple yet destructive problem early on to motivate our team member to do his part

and has been vital to our success so far!

Project Coordination and Progress Report

As of the due date of this Report 2, we have the majority of UC-1: Initialize

completed. Andrew is currently working on the integration between the GUI and actual

initializations that occur when inputs from the user are given to set up the simulation as

well as working with the GUI’s for the final use case of UC-4: Print Graphs. In addition,

we have simple pieces of the other use cases completed. We have fully integrated the

cooperation between the Town Class and the Agent Class. This is vital for the use case

UC-2: Run Game to function at all since the calculated simulation data that is outputted

to the user is dependent on the successful communication between the Town, the

population of the Agents and the Bars.

Chris and Andrew have been managing the group as a whole to make sure

everyone is on the same page and focusing their efforts in the right direction. As a

group we are pretty open to each other about discrepancies and so far any that arose

were resolved fairly quickly. Since most of our group members are in the same classes,

it has not been really that hard to coordinate meeting times except in the case of

random obligations which are given to occur in every ones life at some point. Even then

we have still been able to logistically coordinate at least one group meeting a week

since the beginning of the semester to keep everyone informed.

 Page
37

Andrew has been posting those updates to the blog on our project website to

keep everyone in the loop of things. In addition Patrick has the responsibility of

maintaining our project website since he built the majority of it.

 As a group we regularly have been commenting and looking over each

other’s work on Google Docs to give constructive criticism. This has been a good

implicit tool for everyone as it has caught a lot of bugs in our reports ranging from

simple typos to the misinterpretation of an idea described by another group member.

Plan of Work

As of the due date of Report 2, we will have completed three deliverables

including the Proposal, Report 1, and Report 2. A brief of overview of the three

deliverables are as follows:

• The Proposal was a brief overview of the group members working on this project

as well as a short description of the El Farol Bar Problem with a detailed

explanation of our proposed changes

• Report 1 was compiled as our Systems Specification document. It included more

specific details of our project such as the Customer Statement of Requirements,

enumerated Functional Requirements, Use Case descriptions, and Use Case

Diagrams. This included an initial mock-up of the potential User Interface and the

Domain Analysis of our problem.

• Report 2 encompasses our System Design of the El Farol Bar Problem. This

report holds key design aspects such descriptions to how the classes and

modules will interact with each other in the interaction diagrams and Class

Diagram and Interface Specification. In addition it also holds our Design of Tests

to perform unit as well as integration testing once the coding of each module has

been completed.

The following are tentative dates that the El Farol Bar Team has decided upon:

 Page
38

Projected Milestones Expected Completion Date

Second Report March 11, 2012

First Demo March 27, 2012

Working Agents March 21, 2012

Working Simple Graphs March 24, 2012

Working GUI March 17, 2012

Multiple Bars Implementation March 25, 2012

Agents will age March 26, 2012

Agents will die March 26, 2012

Third Report April 27, 2012

Demo 2 May 1, 2012

Agents can marry April 22, 2012

Agents can give birth April 22, 2012

Random Events April 29, 2012

Improved Agent Strategies April 29, 2012

Output Data April 29, 2012

Improved Graph Manipulation April 22, 2012

Electronic Project Archive May 3, 2012

 Page
39

Breakdown of Responsibilities

Developing, Coding, & Unit Testing

The following describes the modules currently under development, and the member

primarily responsible for the development of said module:

GUI class: Andrew Conegliano / Mike Chiosi

Town class: Siva Yedithi

Agent class: Christopher Jelesnianski

Strategy class: Marshall Siss / Siva Yedithi

Bar class: Patrick Gray / Mike Chiosi

Coordination of Integration

This coordination effort will be overseen by Marshall. Marshall has contributed

greatly in producing an efficient scheme of the organization of our simulation program.

Integration Testing

Integration testing will be performed by Mike and Patrick to make sure that the

code modules combined so far behave and interact properly. The testing will utilize the

test cases generated by Patrick and Mike. Patrick and Mike will portray as standard

users and follow a simple outlined procedure as it was envisioned by us of how to use

our software. The simple procedure will be available to everyone in the help section of

the GUI, which a user can navigate to from the initial GUI screen.

 By performing the integration testing and going through sample cases that would

usually be performed by our stakeholders, Patrick and Mike will be able to easily gauge

our applications ease of use (2) and check whether user effort is comparable to what we

projected it to be. Our goal is for users to be able to use our application with little to no

training. To encourage this, users will be provided with access to documentation such

as a FAQs and detailed algorithm explanation in the general help section if they would

want to find out more about the workings of the application.

 Page
40

References
1. Test case. Wikipedia. March 3, 2012. http://en.wikipedia.org/wiki/Test_case
2. What Does Usability Mean:Looking Beyond ‘Ease of Use’. WQusability. March 7,

2012. http://www.wqusability.com/articles/more-than-ease-of-use.html
3. How to write effective Test cases, procedures and definitions. March 7, 2012

http://www.softwaretestinghelp.com/how-to-write-effective-test-cases-test-cases-
procedures-and-definitions/

	Breakdown
	Table Of Contents
	Interaction Diagrams
	Overview of Interactions
	UC-1: Initialize
	UC-3: StopGame
	UC-4: Printgraphs

	Class Diagram and Interface Specification
	Class Diagram
	Data Types and Operation Signatures
	Traceability Matrix

	System Architecture and System Design
	Architectural Styles
	Identifying Subsystems
	Persistent Data Storage
	Global Control Flow
	Hardware Requirements

	Algorithms and Data Structures
	Algorithms
	The algorithmic portion of our code centers on the decisions that the agent make on which location to attend. Due to space constraints we decided that agent will have a 3 day “short term memory.” This means that the agent decision on which bar to go...
	Town class
	Bar class
	Bar Class
	Agent Class
	Strategy Class
	Agent Class
	Strats class
	Town Class
	Agent Class
	Strategy Class

	User Interface Design and Implementation
	Design of Tests
	Project Management and Plan of Work
	Merging the Contributions from Individual Team Members
	Project Coordination and Progress Report
	Plan of Work
	Breakdown of Responsibilities
	Developing, Coding, & Unit Testing
	Coordination of Integration
	Integration Testing

