
Java-Based Bandwidth Measurement Tool
for xDSL Networks

Liang Cheng and Ivan Mar�ić, Member, IEEE

Abstract -- In xDSL networks, accurate bandwidth
measurement is useful for network management and traffic
engineering, such as isolating line faults and verifying
guaranteed QoS specifications, where ISP and xDSL providers
may be involved. This paper presents a novel design and
implementation of Java based tools for accurately measuring
network bandwidth in xDSL networks, including asymmetric
upstream and downstream cases. Considering ATM traffic
shaping for ABR and UBR service classes in xDSL
deployments, a stepwise algorithm is designed to minimize its
effect on the bandwidth measurements. The algorithm is
lightweight in terms of traffic overhead introduced. The
accuracy of the algorithm is achieved by implementing an
original traffic generator with stable performance.

Index Terms -- xDSL networks, network management,
accurate bandwidth measurement, asymmetric network, Java,
quality of service.

I. INTRODUCTION

The growth in deployment of high bandwidth applications
over the Internet has created a need for reliable and fast
local loops for both home-user communities and corporate
communities, who connect to the Internet through a dial-in
ISP (Internet Service Provider). In most cases, a serial
modem solution that offers the maximum bandwidth of up
to 56 Kbps is not sufficient. Therefore, various
technologies, such as xDSL and cable TV modems, have
emerged to achieve high-speed connectivity to the Internet.

xDSL refers to different variations of DSL (Digital
Subscriber Line), such as ADSL (Asymmetric DSL), HDSL
(High bit-rate DSL), and RADSL (Rate Adaptive DSL). For
example, ADSL enables receiving data at rates up to 6.1
Mbps (of a theoretical 8.448 Mbps). More typically,
individual ADSL connections will provide from 512 Kbps
to 1.544 Mbps downstream and about 128 Kbps upstream.

In xDSL networks, accurate bandwidth measurement is
useful for network management and traffic engineering,
such as isolating line faults and verifying guaranteed QoS
(Quality of Service) specifications, where ISP and xDSL
providers may be involved. Traffic load can be balanced

Department of Electrical and Computer Engineering and
the Center for Advanced Information Processing (CAIP),
Rutgers University, Piscataway, NJ 08854-8058 USA.
{chengl, marsic}@caip.rutgers.edu

based on the measurements of available bandwidth in xDSL
networks. Moreover, once we identify a bottleneck link, we
can add extra capacity to enhance the network performance.

We present a bandwidth measurement algorithm that is
lightweight in terms of traffic overhead introduced. The
accuracy of the algorithm is achieved by implementing an
original traffic generator with stable performance.

The paper is organized as follows. Section II briefly
reviews the xDSL deployment architecture. Section III
introduces bandwidth measurement methodology. Next,
Section IV presents our stepwise bandwidth measurement
algorithm. Section V describes the Java implementation,
which is particularly suited for user-friendly deployment.
Section VI presents the evaluation results and Section VII
concludes the paper.

II. XDSL DEPLOYMENT ARCHITECTURE

Local phone companies in the United States are installing
xDSL lines since 1998. A DSL line can carry
simultaneously both data and voice signals and the data part
of the line is continuously connected. The deployment
architecture is abstracted in Figure 1.

In case of ADSL, the customer premises equipment is an
ATU-R (ADSL Termination Unit � Remote) or an ADSL
modem. An ATU-C (ADSL Termination Unit � Central
Office) is located at a Central Office end of the phone
company which provides the xDSL service. The ATU-C
terminates multiple subscriber loops and connects the
ATU-R to the Internet through a Gateway Router. The
deployment and maintenance of the line between the
ATU-R and the Gateway Router forms the responsibility of
the phone company and, as already mentioned, there is a
need to measure the actual physical line speed of the ADSL
link for the reasons of network management and traffic
engineering.

III. BANDWIDTH MEASUREMENT METHODOLOGY

A. General Methodology

The methodology for the bandwidth measurement in xDSL
networks is based on the packet-pair technique with FIFO

 2

queueing network model. Various forms of the packet-pair
technique are studied by Bolot [1], Carter and Crovella [2],
Paxson [3], and Lai and Baker [4]. Its essential idea is using
inter-packet time to estimate the characteristics of the
bottleneck link. If two packets, e.g., ICMP (Internet Control
Message Protocol) probe packets, travel together so that
they are queued as a pair at the bottleneck link with no
packet intervening between them, then their inter-packet
spacing is proportional to the processing time required for
the bottleneck link to transmit the second packet of the pair
(Figure 2). We modified this technique to apply it to xDSL
and asymmetric DSL (ADSL). In our method, the probing
packets can be the payload packets or the explicit ICMP
probe packets.

B. Asymmetric DSL (ADSL) Case

The asymmetric nature of the ADSL network makes it
necessary to have different measurements methodologies
for upstream and downstream cases. The design is
predicated upon the assumption that the upstream
bandwidth is much lower that the downstream bandwidth.

1) Upstream Methodology
A fixed number, N, of UDP (User Datagram Protocol)
packets of uniform size, P bytes, are sent from the
customer�s computer (client) at a rate slightly higher than
the nominal bottleneck bandwidth of the ADSL network.
The slightly higher rate (about 10%) is necessary to saturate
the pipe. A server process on the Throughput Server (see
Figure 1), echoes back the packets as they arrive at the
server end. The time difference, T, between the arrival of
the first packet at the client end and the arrival of the last
packet at the client end is measured and the upstream
bottleneck speed is computed as: N×P×8/T Kbps.

2) Downstream Methodology

A traffic generator at the Throughput Server generates a
downstream traffic. A receiving process at the client
measures the arrival times of the packets. Because of the
asymmetric nature of ADSL (upstream bandwidth is
smaller than the downstream bandwidth), the client
computes the downstream bandwidth using the same
equations as for the upstream case instead of echoing the
traffic back.

C. Traffic Generator with Stable Performance

Since the accuracy of the bandwidth measurement depends

A
T
M

PSTN

C
o

p
p

e
r L

o
o

p

OSS

DSLAM Gateway
Routers

ISP
Routers

ATM

ATM

SMDS

FR

PO
TS

 S
p

lit
te

r

ATU-R

Client

Throughput
Server

Internet

Bell AtlanticCustomer ISP

Client

Gateway
Router

Gateway
Router

Firewall /
Gateway

Router

Server

Information
Servers

Corporate LAN(s) or
Information Providers

Telephone

ATU-C

Figure 1. xDSL deployment architecture.

Packets

Minimum packet spacing
at bottleneck link

Same spacing is preserved on higher speed links
∆ = Time to process P bytes packet

P

Link speed estimation = P/∆

Flow direction

Figure 2. Packet-pair technique for bandwidth
measurement.

 3

on whether the traffic generator can generate traffic at a rate
slightly higher than the nominal bottleneck bandwidth of
the xDSL network, it is crucial to implement it with stable
performance.

A straightforward method of generating packets at a known
rate employs the following algorithm:

// Initialize:
delay = # of packets * packet size in bits / rate;

for (k=0; k < # of packets; k++)
{

sendPacket();
sleep(delay);

}

The above pseudo-code though seems to be correct in
theory does not yield the expected behavior. Owing to the
scheduling mechanisms of operating systems and coarse
granularity of timers, the packets are not necessarily sent at
a uniform rate with uniform spacing. Consider a case when
the call to sleep() returns and the process is scheduled
out. Instead of sending a packet immediately, the packet is
sent only when the OS reschedules the process. This results
in bursts in traffic generating.

To overcome this problem an alternative way of generating
traffic at the desired rate was devised. The algorithm
achieves the expected behavior, i.e., it stably generates a
smooth flow of traffic at the expected rate. The pseudo-
code for the improved algorithm is as follows:

// Initialize:
fraction = 0;
stopSleep = getTimeMillis();

do
{

startSleep = stopSleep;
sleep(1); // sleep for 1 ms
stopSleep= getTimeMillis();

//pps: the # of packets to be sent per second
packetCount = (int) (fraction + pps *

(stopSleep – startSleep) / 1000);
fraction = (fraction + pps * (stopSleep –

startSleep) / 1000) - packetCount;

upLimit = i + packetCount;
if (upLimit > # of packets)

upLimit = # of packets;
for (; i < upLimit; i++)

sendPacket();
} while(i < # of packets)

In computing the number of packets to be sent we divide by
1000 and truncate the decimal part. Thus, we may end up
sending less number of packets than necessary to obtain the
accurate measurement. For this purpose we maintain
fraction and take the error into account in the next
round.

The packet size is computed as:

P = IP header + UDP header + MAC header + payload

The default payload size is 1400 bytes. The payload is a
ZIP-compressed file to avoid the effects of the compression
on the V90 analog modem.

IV. STEPWISE ALGORITHM FOR ATM NETWORKS

A. Effects of ATM Traffic Shaping

xDSL deployments are typically done over ATM to provide
guaranteed quality of service. The ATU-Cs in xDSL
network are grouped into a DSLAM (DSL Access Module)
unit that terminates the multiplexed traffic into an ATM
switch.

There are two service categories for best effort traffic in
ATM networks specified by ATM Forum: UBR
(Unspecified Bit Rate) and ABR (Available Bit Rate)
services. UBR service does not have any guarantee with
regard to the delay, loss or bandwidth but applications
should be able to handle the fluctuations in these
parameters by using error-correction and flow control
techniques. On the contrary ABR service guarantees the
loss rate, which is achieved by exchanging resource
management cells between the source and sink ATM nodes.

Based on the synchronization speed of ADSL modem, the
ATM switch sets the service class for the virtual circuit to a
class to which a particular customer has been mapped. In
general commercial xDSL deployments, the ABR service
class is chosen.

With the ABR service class setting, an increase in the data
rate beyond the provisioned bandwidth results in heavy
packet loss. This is caused by the ATM traffic shaping. Its
effect on the bandwidth measurement algorithm is that it
distorts the results because the accuracy of packet-pair
technique depends on the success of receiving back-to-back
packet pairs. Therefore, we designed a stepwise bandwidth
measurement algorithm to minimize the effect of ATM
traffic shaping.

B. Stepwise Bandwidth Measurement Algorithm

The algorithm consists of at least two steps. The same
algorithm presented in the previous section can be used for
both the downstream and upstream measurements. The
traffic generator should be stable to avoid bursty traffic.

During the first step, a small number of packet-pair
sequences, e.g., 5, are sent back-to-back from the client to
the server. This small number of packets will likely not
contribute significantly to packet loss, as most ATM
networks are capable of handling such small bursts. The

 4

computed result is used in the second step as the trial
bandwidth of the xDSL link.

The following step(s) assumes that the accurate xDSL
bandwidth is close to the trial result obtained from the first
step. In fact, only packet loss can impair the result. If the
packet loss in the first step is minimal or zero, which has
also been taken into account by our implementation, then
the result of the first trial is accurate.

The second and the following steps use larger number of
packet pairs in the measurement to ensure that the results
are convergent and in the end consistent. Had it not been for
the first step which approximately determined the
bandwidth, the sustained higher-than-provisioned traffic
would result in a considerable loss and would deteriorate
the results.

We run the algorithm several times and report the
maximum measured value as the bottleneck bandwidth.

V. JAVA IMPLEMENTATION

Our bandwidth measurement tool includes both server side
and client side implementation. The client side of the tool is

implemented as a Java applet, which can be loaded in a
Web browser. Java applet is used for client side
implementation so that (i) the client software does not need
to be physically installed on the user�s computer and it can
be downloaded and run from the user�s web browser, and
(ii) upgrades to the client software can be easily facilitated
by this feature.

On the server side, the Java programming language is used
for implementation because of its multi-platform inter-
operability.

Figure 3 illustrates the sequence of interactions between the
user, the client software, and the server software. The user
logs in, configures the tool, and initiates the upstream and
downstream bandwidth measurement of xDSL links.

A. Components of Client Software

1) Authentication
The client software asks the user for user name and
password and then validates the information from the server
to check whether the user is allowed to use this tool.
Figure 4 shows the login interface.

 : User

 : Login : Configuration client_m1 : Up
Blaster

server_m1 : Up
Receiver

server_m2 :
DownBlaster

client_m2 :
DownReceiver

login(password) setParameter()

measureUpstream() receivePackets()

receiveResult()

returnResult()

measureDownstream(argname) t riggerSend()

rec eivePackets()

lastPacket()

returnResult()

Figure 3. UML sequence diagram for interactions between the user and the bandwidth measurement system.

 5

2) Tool Configuration
The client software presents an interface for the user to
configure parameters for the bandwidth measurement, such
as probe packet size, number of probes packets per
measurement, number of stop packets, etc.

3) Traffic Generator
Since probe packets need to be generated and sent to the
server in the upstream bandwidth measurement, a stable
traffic generator using UDP is implemented.

4) Measurement
The measurement component implements stepwise
algorithm for upstream bandwidth measurement. The
measurement results are displayed in the user interface as
shown in Figure 5. The results are also reported back to the
server for further data analysis and history log maintenance.

B. Components of Server Software

1) Authorization
The server software receives user name and password from
the client software, checks this information against the user
database and, if confirmative, authorizes the user to start a
measurement session.

2) Traffic Generation

Since probe packets need to be generated and sent to the
client in the downstream bandwidth measurement, a stable
traffic generator needs to be implemented. Again, UDP
packets are used instead of ICMP packets because of Java�s
lack of support for raw sockets. The generator is activated
by a trigger packet from the client. The last packet from the
server is marked as the �stop packet� so the client knows
when the stream of packets from the server ends. Since
UDP is an unreliable protocol, the stop packet can be lost.
For this reason we also set a timer when the first packet is
received (default value is 5 sec), which will be used as
substitute for the time of the stop packet arrival.

3) Echo Server
The UDP Echo Server for upstream measurements waits for
Echo Request packets on a specific server port and echoes
back the received packet back to the client. Essentially it
acts as a rate generator generating packets at a rate closely
matching the upstream bandwidth. Since the standard port 7
service of Unix servers discards Echo Request packets
beyond a certain rate as a security measure, this standard
Echo server cannot be used in our application. A version of
the Echo Server has been coded to handle throughput rates
as high as 640Kbps which satisfies the Bell Atlantic ADSL
network Upstream Throughput rates.

Figure 4. Login interface of the bandwidth
measurement tool.

Figure 5. Bandwidth measurement result panel.

 6

4) Measurement

The measurement component implements the stepwise
bandwidth measurement algorithm described in Section IV.

5) Logging Information for Data Analysis
The Log Server collects upstream and downstream
measurement results and stores them into the database for
future data analysis. Logs also enable the technician at the
Central Office to instantaneously verify the results of the
test being performed by the customer.

VI. EVALUATION

Figure 6 compares the performance of our bandwidth
measurement tool to that of a popular tool called Pathchar
[5]. The latter uses ICMP error packets in estimating the
link characteristics and also relies on injecting UDP packets
to measure the link characteristics. For the purpose of
experiments the bottleneck link bandwidth was controlled
in a laboratory testbed network by introducing a High-
Speed Serial Interface (HSSI) between the two gateways.
The endpoints for the test were located across the two ends
of the ADSL link or the HSSI. Figure 6 shows an almost
linear curve for our tool whereas Pathchar shows
significant deterioration starting at about 1 Kbps.

VII. CONCLUSION

This paper presents a design and implementation of Java
based tools for accurately measuring network bandwidth in
xDSL networks, including asymmetric upstream and
downstream cases. Considering ATM traffic shaping for
ABR and UBR service classes in xDSL deployments, a
stepwise algorithm is designed to minimize its effect on the
bandwidth measurements. The algorithm is lightweight in
terms of traffic overhead introduced. Furthermore, the
accuracy of the algorithm is achieved by implementing an
original traffic generator with stable performance.
Evaluation experiments have proved that the tool can
achieve accurate bandwidth measurement in xDSL
networks.

Acknowledgments

This research is supported by grants from Verizon, Inc.
(formerly Bell Atlantic), Cisco, Inc., and DARPA Contract
No. N66001-96-C-8510, and by the Rutgers Center for
Advanced Information Processing (CAIP).

References

[1] J. C. Bolot, �End-to-End Packet Delay and Loss Behavior in the

Internet,� Proceedings of the ACM SIGCOMM '93 Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communications, 1993.

[2] R. L. Carter and M. E. Crovella, �Measuring Bottleneck Link Speed
in Packet-Switched Networks,� Technical Report TR-96-006,
Department of Computer Science, Boston University, March 1996.
http://www.cs.bu.edu/faculty/crovella/papers.html

[3] V. Paxson, Measurements and Analysis of End-to-End Internet
Dynamics, Ph.D. Thesis, University of California, Berkeley, April
1997.

[4] K. Lai and M. Baker, �Measuring Bandwidth,� Proceedings of IEEE
INFOCOM, 1999.

[5] A. Downey, �Using Pathchar to Estimate Internet Link
Characteristics,� Proceedings of the ACM SIGCOMM '99
Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, Cambridge, MA, pp.241-
250, August/September 1999.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Bottleneck link bandwidth in kb/s

M
ea

su
re

d
th

ro
ug

hp
ut

 in
 k

b/
s

Pathchar Tool
Rutgers Throughput Tool

Figure 6. Comparison of tools for throughput
estimation. The HSSI clock is only able to accurately set
the link speeds up to 4000 Kbps. Consequently there is a
gap from 4000 Kbps to 10000 Kbps, which is the link
speed for a 10Mbps Ethernet LAN.

	Introduction
	xDSL Deployment Architecture
	Bandwidth Measurement Methodology
	General Methodology
	Asymmetric DSL (ADSL) Case
	Upstream Methodology
	Downstream Methodology

	Traffic Generator with Stable Performance

	Stepwise Algorithm for ATM Networks
	Effects of ATM Traffic Shaping
	Stepwise Bandwidth Measurement Algorithm

	Java Implementation
	Components of Client Software
	Authentication
	Tool Configuration
	Traffic Generator
	Measurement

	Components of Server Software
	Authorization
	Traffic Generation
	Echo Server
	Measurement
	Logging Information for Data Analysis

	Evaluation
	Conclusion

