Contents

Preface ... xv

About the Author ... xvii

1. Introduction to Linear Systems 1
 1.1 Continuous and Discrete Linear Systems and Signals 2
 1.1.1 Continuous and Discrete Signals and Sampling 3
 1.1.2 Continuous- and Discrete-Time Systems 5
 1.2 System Linearity and Time Invariance 13
 1.2.1 System Linearity .. 13
 1.2.2 Linear System Time Invariance 16
 1.3 Mathematical Modeling of Systems 18
 1.4 System Classification 24
 1.5 MATLAB System Analysis and Design 26
 1.6 Organization of the Text 27
 1.7 Summary ... 28
 1.8 References ... 29
 1.9 Problems ... 30

2. Introduction to Signals .. 33
 2.1 Common Signals in Linear Systems 33
 2.1.1 Impulse Delta Signal 42
 2.2 Signal Operations .. 51
 2.3 Signal Classification .. 56
 2.4 MATLAB Laboratory Experiment on Signals 58
 2.5 Summary ... 59
 2.6 References ... 62
 2.7 Problems ... 63

PART I — FREQUENCY DOMAIN TECHNIQUES

3. Fourier Series and Fourier Transform 73
 3.1 Fourier Series .. 74
 3.3.1 From Fourier Series to Fourier Transform 84
 3.2 Fourier Transform and Its Properties 86
 3.2.1 Properties of the Fourier Transform 88
 3.2.2 Inverse Fourier Transform 104
3.3 Fourier Transform in System Analysis .. 106
 3.3.1 System Transfer Function and System Response 107
 3.3.2 Frequency Spectra .. 110
3.4 Fourier Series in System Analysis ... 116
 3.4.1 System Response to Periodic Inputs 116
 3.4.2 System Response to Sinusoidal Inputs 121
3.5 From Fourier Transform to Laplace Transform 124
3.6 Summary ... 128
3.7 References .. 131
3.8 Problems .. 132

4. Laplace Transform .. 143
 4.1 Laplace Transform and Its Properties 144
 4.1.1 Definitions and Existence Conditions 144
 4.1.2 Properties of the Laplace Transform 146
 4.2 Inverse Laplace Transform .. 157
 4.3 Laplace Transform in Linear System Analysis 165
 4.3.1 System Transfer Function and Impulse Response 166
 4.3.2 System Zero-State Response ... 170
 4.3.3 Unit Step and Ramp Responses 173
 4.3.4 Complete System Response .. 175
 4.3.5 Case Studies .. 179
 4.4 Block Diagrams ... 183
 4.5 From Laplace to the \mathcal{Z}—Transform 189
 4.6 MATLAB Laboratory Experiment .. 191
 4.7 Summary .. 192
 4.8 References .. 195
 4.9 Problems .. 196

5. The \mathcal{Z} Transform ... 209
 5.1 The \mathcal{Z} Transform and Its Properties 209
 5.2 Inverse of the \mathcal{Z} Transform .. 222
 5.3 The \mathcal{Z} Transform in Linear System Analysis 228
 5.3.1 Two Formulations of Discrete-Time Linear Systems 228
 5.3.2 System Response Using the Integral Formulation 232
 5.3.3 System Response Using the Derivative Formulation 242
 5.3.4 Case Study: An ATM Computer Network Switch 249
 5.4 Block Diagrams ... 254
 5.5 Discrete-Time Frequency Spectra ... 258
 5.5.1 System Response to Sinusoidal Inputs 260
6. Convolution and Correlation

6.1 Convolution of Continuous-Time Signals
 - 6.1.1 Graphical Convolution
6.2 Convolution for Linear Continuous-Time Systems
6.3 Convolution of Discrete-Time Signals
 - 6.3.1 Sliding Tape Method
6.4 Convolution for Linear Discrete-Time Systems
6.5 Numerical Convolution using MATLAB
6.6 MATLAB Laboratory Experiments on Convolution
 - 6.6.1 Convolution of Signals
 - 6.6.2 Convolution for Linear Dynamic Systems
6.7 Summary
6.8 References
6.9 Problems

7. System Response in Time Domain

7.1 Solving Linear Differential Equations
7.2 Solving Linear Difference Equations
7.3 Discrete-Time System Impulse Response
 - 7.3.1 Direct Method for Finding the Impulse Response
 - 7.3.2 Impulse Response by Linearity and Time Invariance
7.4 Continuous-Time System Impulse Response
7.5 Complete Continuous-Time System Response
7.6 Complete Discrete-Time System Response
7.7 Stability of Continuous-Time Linear Systems
 - 7.7.1 Internal Stability of Continuous-Time Linear Systems
 - 7.7.2 The Routh-Hurwitz Stability Criterion
 - 7.7.3 Continuous-Time Linear System BIBO Stability
7.8 Stability of Discrete-Time Linear Systems
 - 7.8.1 Internal Stability of Discrete-Time Linear Systems
 - 7.8.2 Algebraic Stability Tests for Discrete Systems
 - 7.8.3 Discrete-Time Linear System BIBO Stability
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4</td>
<td>Discrete Fourier Transform (DFT)</td>
<td>485</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Fast Fourier Transform (FFT)</td>
<td>490</td>
</tr>
<tr>
<td>9.5</td>
<td>Discrete-Time Fourier Series (DFS)</td>
<td>491</td>
</tr>
<tr>
<td>9.6</td>
<td>Correlation of Discrete-Time Signals</td>
<td>493</td>
</tr>
<tr>
<td>9.7</td>
<td>IIR and FIR Filters</td>
<td>495</td>
</tr>
<tr>
<td>9.8</td>
<td>Laboratory Experiment on Digital Signal Processing</td>
<td>497</td>
</tr>
<tr>
<td>9.9</td>
<td>Summary</td>
<td>498</td>
</tr>
<tr>
<td>9.10</td>
<td>References</td>
<td>502</td>
</tr>
<tr>
<td>9.11</td>
<td>Problems</td>
<td>502</td>
</tr>
<tr>
<td>10.1</td>
<td>Signals in Communication Systems</td>
<td>507</td>
</tr>
<tr>
<td>10.2</td>
<td>Signal Transmission in Communication Systems</td>
<td>508</td>
</tr>
<tr>
<td>10.3</td>
<td>Signal Correlation, Energy and Power Spectra</td>
<td>512</td>
</tr>
<tr>
<td>10.4</td>
<td>Hilbert Transform</td>
<td>517</td>
</tr>
<tr>
<td>10.5</td>
<td>Ideal Filter</td>
<td>521</td>
</tr>
<tr>
<td>10.6</td>
<td>Modulation and Demodulation</td>
<td>522</td>
</tr>
<tr>
<td>10.7</td>
<td>Digital Communication Systems</td>
<td>529</td>
</tr>
<tr>
<td>10.8</td>
<td>Communication Systems Laboratory Experiment</td>
<td>530</td>
</tr>
<tr>
<td>10.9</td>
<td>Summary</td>
<td>532</td>
</tr>
<tr>
<td>10.10</td>
<td>References</td>
<td>535</td>
</tr>
<tr>
<td>11.1</td>
<td>Linear Electrical Circuits</td>
<td>539</td>
</tr>
<tr>
<td>11.2</td>
<td>Basic Relations</td>
<td>539</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Equivalence Between Voltage and Current Sources</td>
<td>542</td>
</tr>
<tr>
<td>11.2.1</td>
<td>First-Order Linear Electrical Circuits</td>
<td>543</td>
</tr>
<tr>
<td>11.2.2</td>
<td>RC Electrical Circuits</td>
<td>544</td>
</tr>
<tr>
<td>11.3</td>
<td>Second-Order Linear Electrical Circuits</td>
<td>549</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Cascade LC Circuit Driven by a Voltage Source</td>
<td>554</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Series Connection of R, L, and C Elements</td>
<td>557</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Parallel Connection of R, L, and C Elements</td>
<td>559</td>
</tr>
<tr>
<td>11.4</td>
<td>Higher-Order Linear Electrical Circuits</td>
<td>559</td>
</tr>
<tr>
<td>11.5</td>
<td>MATLAB Laboratory Experiment</td>
<td>563</td>
</tr>
<tr>
<td>11.6</td>
<td>Summary</td>
<td>563</td>
</tr>
<tr>
<td>11.7</td>
<td>References</td>
<td>564</td>
</tr>
<tr>
<td>11.8</td>
<td>Problems</td>
<td>564</td>
</tr>
<tr>
<td>12.1</td>
<td>Linear Control Systems</td>
<td>569</td>
</tr>
<tr>
<td>12.2</td>
<td>The Essence of Feedback</td>
<td>570</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Transient Response of Second-Order Systems</td>
<td>575</td>
</tr>
<tr>
<td></td>
<td>Transient Response of Higher-Order Systems</td>
<td>579</td>
</tr>
</tbody>
</table>