Chaos and bifurcation in Power Electronics

Medical Instruments Implications

Titi Trandafir, MSEE, Ph.D (abd), MBA
Chief Electrical Eng.
Juvent Inc.
http://www.juvent.com

Electrical Engineering Consultant
Microtrend Systems Inc.
http://www.microtrendsys.com
Number of Variables →

- **n = 1**
 - Growth, Decay, or Equilibrium
 - Exponential Growth
 - RC circuit
 - Radioactive decay
 - Oscillations
 - Linear oscillator
 - Mass and Spring
 - RLC circuit
 - 2-body problem (Kepler, Newton)

- **n = 2**
 - Civil engineering, Structures
 - Electrical Engineering
 - Coupled harmonic oscillators
 - Solid-state physics
 - Molecular dynamics
 - Equilibrium statistical mechanics

- **n ≥ 3**
 - Collective Phenomena
 - Coupled nonlinear oscillators
 - Chemical Kinetics (Feigenbaum)
 - Fractals (Mandelbrot)
 - Forced nonlinear oscillators

- **n >> 1**
 - Waves and patterns
 - Elasticity
 - Wave equations
 - Electromagnetism (Maxwell)
 - Quantum mechanics
 - Heat and diffusion
 - Acoustics
 - Viscous fluids

The frontier

- Chaos
 - Strange Attractors
 - Limit cycles
 - Biological oscillators (neurons, heart cells)
 - Predator-Prey cycles
 - Nonlinear electronics (van der Pol, Josephson)

- Practical uses of chaos
- Quantum chaos?

- Fixed points
- Bifurcations
- Overdamped systems, relaxation dynamics
- Logistic equation for single species

- Pendulum
- Anharmonic oscillators
- 3-body problem
- Chemical Kinetics (Feigenbaum)
- Fractals (Mandelbrot)
- Forced nonlinear oscillators

- Practical uses of chaos
- Quantum chaos?

- Coupled nonlinear oscillators
- Lasers, nonlinear optics
- Nonequilibrium statistical mechanics
- Nonlinear solid-state physics (semiconductors)
- Josephson arrays
- Heart cell synchronization
- Neural networks
- Immune system
- Ecosystems
- Economics

- Spatio-temporal complexity
- Nonlinear Waves (Shocks, Solitons)
- Plasmas
- Earthquakes
- General relativity (Einstein)
- Quantum field theory
- Reaction-diffusion, biological and chemical waves
- Fibrillation
- Epilepsy
- Turbulent fluids (Navier-Stokes)
- Life
Poincaré in 1899 first glimpsed the possibility of chaos

Dynamics, nonlinear oscillators

applied in radio
radar
PLL’s
Lasers

New Mathematical Techniques developed by:

- Van der Pol
- Andronov
- Littlewood
- Cartwright
- Levinson
- Smale
- Kawakami
Sources of nonlinearities in Power Electronics

1. Switching devices (intrinsically nonlinear).
2. Reactive and/or nonlinear energy storing components (inductors and capacitors).
3. Electrical Machines and drives.
Power switching devices

- Diode
- Thyristor (SCR)
- Bipolar junction transistor (BJT)
- Power MOSFET
- IGBT
1.) Iteration (feedback) + nonlinear elements \rightarrow Bifurcation \rightarrow Chaos

2.) Universality of Chaos

3.) (Strange) Attractors.

Attractor: Loose definition; A set to which all neighboring trajectories converge.

Strange attractor; an attractor that exhibits sensitive dependence on initial conditions.
DC/DC Buck converter
(Vc<Vin)

DC/DC Boost converter
(Vc>Vin)
Classical Analysis of a boost converters is performed by using a linear model shown below [3]
Period doubling route to chaos in DC/DC converters
Computer simulation [3]

-Computer generated bifurcation diagrams from a current-mode boost converter showing two different scenarios depending upon output capacitance size.

Period doubling bifurcation from a current-mode boost converter with relatively small output capacitance, output current level being the bifurcation parameter.

Feigenbaum’s Number

\[\delta = \frac{A_n - A_{n-1}}{A_{n+1} - A_n} \]

\[\delta = 4.6692016091029906718532038204662016172581855774757686327456513430 \]

013433021131473713868974402394801381716598485518981513440862714202
7932522312442988890890859944935463236713411532481714219947455644365
8237932020095610583305754586176522220703854106467494942849814533917
26200568755665952339875603825637225
Typical attractors from current programmed DC/DC Converters. Upper left: period -1, upper right period- 2
Lower left period- 4: lower right : chaos

\[V(v) \text{ versus } i(A) \text{ phase portrait} \]
Phase portraits, fixed points, existence, uniqueness and topological consequences

General form of a vector field on a phase plane

\[
\frac{dx_1}{dt} = f_1(x_1, x_2) \\
\frac{dx_2}{dt} = f_2(x_1, x_2)
\]

By flowing along the vector field, a phase point traces out a solution \(x(t) \), corresponding to a trajectory winding through the phase plane

- fixed points \(f(x^*) = 0 \) correspond to steady states or equilibrium
- closed orbits \(x(t+T) = x(t) \)

Numerical computation of phase portraits (Runge Kutta)

- Poincare-Bendixson theorem: If a trajectory is confined to a closed, bounded region and there are no fixed points in the region, then the trajectory must eventually approach a closed orbit.
Computer methods to determine stability and bifurcation phenomena

- Methods applicable to discrete –time systems obtained from continuous-time systems by suitable sampling (Poincaré section).
 NOTE: There are no general methods to construct a Poincaré map.
- Nonlinear Systems and Stability of Periodic Solutions
 - Obtain the periodic solution (Newton-Raphson)
 - Compute the Jacobian matrix of the Poincaré map at the periodic solution.
 - Evaluate the eigenvalues of the Jacobian.
- Nonlinear Systems and Bifurcation of Periodic Solutions
 Kawakami method to calculate the bifurcation values.
 Example: Calculate values of a Class E amplifier.
Techniques of Numerical Investigation in Power Systems

1. Simulation of nonlinear switching systems give rise to some distinctive problems:
 - Numerical integration of ODE’s assume that
 a) The solution \(x(t) \) is smooth and
 b) By choosing the integration step small, few terms are sufficient for required accuracy.
 Both these assumptions are routinely violated in power electronic circuits.

2. Problems arising from varying topology. This requires “a priori” knowledge of circuit operation or use of non-ideal switches in simulation (PSPICE).

3. Problems arising from Incompatible Boundary Conditions
 In certain circuits \(x(t) \) is itself discontinuous. This can happen at the closing of a switch across a capacitor. If the cap has an initial voltage \(v \neq 0 \), then an infinite current flows at the switching instant, dissipating energy \(\frac{1}{2}Cv^2 \). To reduce such loss, a major Class of power converters (S,DE,F,E/F) has been proposed such that when the switch closes there is no voltage across it (ZVS switching).
 Microtrend Systems has developed a software package to determine circuit values such that ZVS switching is achieved even in the startup and transient conditions.
Consider a dynamic circuit (Class E amplifier) described by a differential Equation

\[\dot{x} = f(t, x, \lambda) \quad (1) \]

Where \(t \in \mathbb{R}, x \in \mathbb{R}^n, \lambda \in \mathbb{R}^m \)

- \(t = \) time
- \(n = \) n dimensional state
- \(m = \) m dimensional system parameter

We consider

\[f: \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}^n(t, x, \lambda) \rightarrow f(t, x, \lambda) \]

Which is assumed a \(C^\infty \) mapping and periodic with \(t_T \):

\[f(t+t_T, x, \lambda) = f(t, x, \lambda) \]
We also assume that (1) has a solution
\[x(t) = \phi(t, x_0, \lambda) \]
defined on
\[-\infty < t < +\infty \]
with every initial condition
\[x \in \mathbb{R}^n \text{ and every } \lambda \in \mathbb{R}^m: x(0) = \phi(0, x_0, \lambda) = x_0 \]

A diffeomorphism \(T \) from space \(\mathbb{R}^n \) into itself (Poincaré mapping)
\[T: \mathbb{R}^n \to \mathbb{R}^n \quad x_0 \to T(x_0, \lambda) = \phi(t_T, x_0, \lambda). \]

If a solution \(x(t) = \phi(t, p_0, \lambda) \) is periodic
The point \(p_0 \in \mathbb{R}^n \) is a fixed point of \(T \)
\[T(p_0, \lambda) = p_0 \quad (2) \]
If \(p_0 = x_0 \), (2) correspond to a transient condition
Class E amplifier and typical waveforms
Logistic map and Power Electronics.

From Logistic map

\[F(x) = \mu x(1-x) \]

Consider iterative function

\[x_{n+1} = F(x_n, \mu) \quad \text{(} V_{n+1} = F(V_n, d) \text{)} \]

Mechanism of Period doubling.

\[
\frac{F''(x)}{F'(x)} - \left[\frac{3 F''(x)}{2 F'(x)} \right]^2 < 0
\]

Schwarzian \((S_f)(x)\)

\((S_f)(x)<0\) - a necessary condition for period doubling to occur
Modeling a DC/DC converter as a first order iterative map [3]

\[V_{n+1} = \alpha V_n + \beta \left(n^2 \frac{V_{in}}{Q} (V_{in} - V_n) \right) \] buck converter

\[V_{n+1} = \alpha V_n + C n^2 V_{in}^2 \] boost converter

\[\alpha = 1 - \frac{T}{CR} + \frac{T^2}{2c^2R^2} \]

\[\beta = \frac{1}{2LC} \]

\[H(x) = \begin{cases}
0 & x < 0 \\
1 & x > 1 \\
x & \text{Otherwise}
\end{cases} \]
Experimental investigation of nonlinear phenomena in Power Electronics [3]

Focus on the following aspects:

1. Displaying time domain waveforms
2. Phase portraits
3. Frequency spectra
4. Poincaré section
5. Bifurcation diagram
Experimental circuit of free running autonomous Ćuk converter
Phase portraits from autonomous Ćuk converter
Showing (a) fixed point: (b) limit cycle (c) quasi-periodic orbit, (d) chaotic orbit. The Poincaré section are highlighted in (b), (c) and (d). The output voltage across the 20Ω load is used as input to the Poincaré section detector circuit.
Experimental waveform, phase portrait and frequency spectrum for Ćuk converter operating under current-mode control showing chaotic operation. (a) Inductor current, (b) phase portrait of inductor current against a capacitor voltage, (c) FFT of inductor current.
Circuit for detecting intersection of attractor and Poincaré section.
Experimental waveform, phase portrait and frequency spectrum for Ćuk converter operating under current-mode control showing Period-2 operation. (a) Inductor current, (b) phase portrait of inductor current against a capacitor voltage (c) FFT of inductor current [2].
Class E/F Power Amp followed by the KLM model of a loaded PZT5-H transducer
MCU based typical instrument

MCU

DC/DC converter, ex. Linear Tech LTC34

Class A, B, C, D, E, F
Power Amp.

MRI coil, P2T, PVDF, CMUT XDCR

Load
Some questions:

- Does a Class E,F DC/AC inverter have a chaotic region?
- What is the electrical/acoustical signal profile during chaotic behavior?
- What are the physiological effects, if any, of the energy delivered during chaotic behavior?
- Is there a formalism describing the general conditions of operation and transition to chaotic behavior?
- Can such a system be brought back into a stable state?
- Conjecture ?. In non HIFU applications, namely therapy and imaging, the effect of chaotic operation is lower efficiency of energy transfer.
- Based on the design values of a DC/AC Class E inverter is a chaotic behavior predictable [6]
References:

D. Dai, Chi K. Tse, IEEE Tran. on CAS vol.52, no 8, August 2005

[3] "Complex behavior of switching power converters"

T. S. Parker, and L. O. Chua New York, Springer Verlag 1989

[5] "New attempt in tissue characterization: decreased chaos in myocardial echo in patients with dilated cardiomyopathy"

[6] "Prediction of chaotic behavior"
T. Oguchi, H. Nijmeijer
Useful links:

http://www-chaos.umd.edu/index.html
http://www.student.math.uwaterloo.ca/~pmat370/JavaLinks.html
http://www.maths.strath.ac.uk/research/postgrad/industrial.html#9
http://www.apmaths.uwo.ca/~bfraser/nll/version1/bifurcation.html
http://www.apmaths.uwo.ca/~bfraser/nll/version1/links.html
http://www.cevis.uni-bremen.de/fractals/nsfpe/Chaos_Lab/biffamily.html