16:332:599-Advanced Topics in Electronics:
RF Integrated Circuit Design
(Cross-listed with Topics in ECE: 14:332:445)

Course Catalog Description:
16:332:599-Advanced Topics in Electronics: RF Integrated Circuit Design (3)
14:332:445: Topics in ECE: RF Integrated Circuit Design (3)
Basic concepts in RF design, analysis and design of RF circuits used in modern wireless systems

Pre-Requisite Courses:
14:332:463 (Analog Electronics)

Pre-Requisite by Topic:
Semiconductor devices, Transistor’s frequency response, Analog Circuits, Electromagnetics

Textbook & Materials:

References:

Overall Educational Objective:
The objective of this course is to present the concepts of design and analysis of modern RF and wireless communication integrated circuits. Topics covered are: basic concepts in RF design, scattering parameters, modern integrated circuit technologies, fundamental limitations of speed of operation of transistors, physics of noise, impedance matching, low-noise amplifiers, mixers, oscillators, phase noise, and phase locked loops.

Course Learning Outcomes:
It is expected that the students be able to apply the concepts and design techniques presented in this course to a wide range of applications including high-speed wireless communications and biomedical electronics.

How Course Outcomes are assessed:
Homework 15%
Mid-Term Exam 20%
Design Project 30%
Final exam 35%

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Proficiency Level assessed by</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) an ability to apply knowledge of Mathematics, science, and engineering</td>
<td>HW Problems, Exams, Project</td>
</tr>
<tr>
<td>(b) an ability to design and conduct experiments and interpret data</td>
<td>N</td>
</tr>
<tr>
<td>(c) an ability to design a system, component or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability</td>
<td>S Project</td>
</tr>
</tbody>
</table>
Tentative Topics Covered week by week:

Week 1: Basic Concepts in RF Design
Week 2: Scattering Parameters
Week 3: modern IC technologies (SiGe, CMOS), fundamental limitation of speed of transistors
Week 4: Physics of Noise
Week 5: Transceiver Architectures: Heterodyne/Direct Conversion Receivers
Week 6: Transceiver Architectures: Low-IF Receivers, Heterodyne Transmitters
Week 7: Impedance Matching, RF Filters
Week 8: Low Noise Amplifiers
Week 9: Passive Mixers
Week 10: Active Mixers
Week 11: RF Passive Components
Week 12: Oscillators: Basic Principles, Cross-Coupled, VCO
Week 13: Phase Noise
Week 14: Silicon-based receivers, Layout consideration, Packaging Issues
Week 15: PLL

Computer Usage:
Design and Simulations using Cadence Spectre Circuit Simulator
Design Experiences:
Course design project

Independent Learning Experiences:
1. Homework, 2. Design Project

Contribution to the Professional Component:
(a) College-level Mathematics and Basic Sciences: 0.25 credit hours
(b) Engineering Topics (Science and/or Design): 2.75 credit hours
(c) General Education: 0.0 credit hours
Total credits: 3