Course Catalog Description: 14:332:418 Capstone Design – Systems and Digital Signal Processing (3)
Capstone design experience in control systems as well as digital signal processing. The course focuses on team-oriented design projects involving feedback control systems, and digital signal processing systems that process speech, image, audio, and discrete-time data signals. Students participate in a design process that incorporates standards and realistic engineering constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.

Pre-Requisite Courses: 14:332:417 or 14:332:447

Co-Requisite Courses: None

Pre-Requisite by Topic: Fundamentals of control system theory or digital signal processing.

OR

References: Technical literature from industry, journals and Internet.

Overall Educational Objective: Design projects in the implementation of feedback control systems or digital signal processing systems.

Course Learning Outcomes: A student who successfully fulfills the course requirements will have demonstrated:

1. An ability to design a system or process to meet given specifications with realistic engineering constraints.

2. An ability to function as a member of an engineering design team.

3. An ability to utilize technical resources both from prior relevant coursework, as well as from sources students must seek out on their own (e.g., various technical literature, data sheets, webinars, etc.)

4. An ability to write technical documents and give oral presentations related to design project results.

How Course Outcomes are Assessed:
Project proposal (20%)
Course description:

This capstone design course consists of open-ended design projects that incorporate fundamental and advanced concepts of feedback control systems or digital signal processing systems. The focus of the design projects is the implementation of control system and digital signal processing methodologies. Measurement, simulation, and/or characterization of system performance is performed so as to demonstrate that the design objectives and specifications have been met. Design projects are accomplished through team effort with teams comprised of two to six students. The final design project reports must address issues, as appropriate, that are related to manufacturability, engineering economics, environmental, social, as well as health and safety. Each design team must prepare and deliver oral presentations describing their design process and results. The objective of this course is to provide a comprehensive capstone design experience for students in a team-oriented format that is consistent with ABET requirements.

The course structure consists of weekly meetings throughout the semester with students that have been organized into design teams. Faculty participation in the design process involves mentoring and oversight in the following areas:

(1) guide students as they proceed with their project designs
(2) monitor the progress of project designs
(3) expose the students to various economic, ethical, and social effects related to their design projects
(4) present methods of writing technical reports and interact with students to enhance their writing skills
(5) assess the quality of presentation describing the team final design project results

At the conclusion of each design project the design team is required to submit a written technical report describing the details of the final design process and results, as well as highlight relevant conclusions. At
the end of the semester each design team is required to prepare and deliver publicly (especially to the class as a whole) an oral presentation describing the final design project.

Computer Usage: Simulations using CAD software packages. Technical reports and presentations are prepared using word processing and graphics software.

Laboratory Experiences: Extensive laboratory or simulation experience is required to achieve design project results.

Design Experiences: This is a capstone design course. The entire course is devoted to the solution of an open-ended engineering design project that is to meet stated specifications.

Independent Learning Experiences:
1. Extensive research to complete open-ended design as needed.
2. Formulate experiments or simulations and collect data to verify design steps.
3. Write technical reports.
4. Prepare and deliver oral presentations relating to the design process.

Contribution to the Professional Component:
(a) College-level mathematics and basic sciences: 0 credit hours
(b) Engineering Topics (Science and/or Design): 3 credit hours
(c) General Education: 0 credit hours
Total credits: 3

Prepared by: Z. Gajic and P. Sannuti

Date: May 2011