VDC System: Vehicle Dynamics Stabilization Controller Design
Asif Mohyuddin, David Zamora, Salman Shahzad, Fuquan Zhang
{am2148, dez20, ss2761, fz75}@scarletmail.rutgers.edu
Advisor: Prof. Zoran Gajic

Goal

➢ Design a phase-lead controller that monitors the vehicle lateral dynamics and stabilizes its response
➢ Simulate the system response through Simulink and analyze the improvement in overshoot and settling time
➢ Implement the designed controller on an electronic board and observe the performance of the system

Motivations and Objectives

➢ Motivations
 ▪ Vehicle dynamics control system improves stability in difficult driving conditions, enhances the safety of driver and reduces the chances of an accident
➢ Objectives
 ▪ Analyze error dynamics from control engineering point of view and design an appropriate controller to improve the system response
 ▪ Derive the closed-loop transfer function for the system with controller using Bode diagram method and observe the stability robustness
 ▪ Design and build an electronic simulator modelling the transfer function of controlled system using operational amplifiers resistors and capacitors

Research and Design Challenges

➢ Minimizing error caused due to the high gains and non-ideal circuit component values
➢ Overcoming the operational amplifiers saturation and noise
➢ Reducing the circuit complexity by keeping the number of components at minimal

Acknowledgement

We would like to thank Prof. Zoran Gajic and Steve Orbine for their support and guidance throughout the project

Steps

- Closed-loop transfer function
- Observe step and ramp responses
- Phase/ Gain stability margins
- Controller design and circuit testing

Methodology

Figure 1: Synopsis of turning vehicle scenarios

Figure 2: Closed loop system with controller

Figure 3: Block diagram of system with controller

Figure 4: Diagram of tested circuit in LTSpice

For circuit design, 15 Op-Amps were used along with 5 capacitors and 30 resistors

Simulated System

➢ Overshoot for initial system was 38% while for controller system it was reduced to 15%
➢ Settling time with controller was 1.55s and for initial system it was 1.15s

Figure 5: Simulated results without(up) & with controller

Implemented System

➢ Overshoot for initial system was 52% while for controller system it was reduced to 25%
➢ Settling time with controller was 1.61s and for initial system it was 1.31s

Figure 6: Experimental results with tested circuit with controller

Conclusions

References