Goals

- Design and implement a small format digital audio mixer using a SoC development board
- Four mono inputs with analog pre-amplification, line level stereo input
- Stereo output with variable digital gain
- Sample-by-sample processing
- Real time DSP functions per input:
 - 4-Band Parametric Equalization
 - High Pass Filtering
 - Compression
 - Expansion
 - Digital Gain

Conceptual Design

Single Channel Representation:

```
\[ x_1 \rightarrow \text{ADC} \rightarrow \text{DSP} \rightarrow \text{DAC} \rightarrow y \]
```

Input / Output Overview:

[Diagram showing input and output channels]

Digital Signal Processing:

```
\[ x_1 \rightarrow \text{MUTE} \rightarrow \text{HPF} \rightarrow \text{Expander} \rightarrow \text{Compression} \rightarrow \text{PEQ} \rightarrow \text{Digital Gain} \rightarrow y \]
```

Design Challenges

- SoC architecture and tools are rapidly evolving. Reference manuals, demos, and IP modules must match the toolset version to be considered useful.
- Effectively communicating between Programmable Logic and Processing System while meeting timing constraints
- Utilizing the limited amount of I/O to optimize the user interface while maintaining the desired channel count.
- DSP algorithm implementation in hardware

Simulation Examples, Results

- **Compression and Expansion**
 - [Graphs showing compression and expansion results]

- **Multi-Touch Display System**
 - Displays DSP function parameters and gain values
 - Parameter Selection
- **Digital Rotary Encoders**
 - Digital Gain Control
 - Parameter Modification
 - Channel Selection
- **Analog Pre-Amplification**
 - Potentiometer Controlled
- 12-bit, 96 kHz Sampling

Acknowledgement

Thank you to Prof. Philip Southard for guiding our project and industry engineers Jeremy Gorospe and David Ydoate for providing their expert insight. Additionally, we would like to offer a special thank you to Harris Corporation for providing the funds.

References