Humane Animal Repellent V1 (HARV1)
Christopher Pagliaro, Edward McClain, Hinal Patel, Harry Malhi, Tom Baclawski, Stephan Dimitrovski, Dr. Assimina Pelegri, Dr. Hana Godrich.
Department of Mechanical and Aerospace Engineering
Department of Electrical and Computer Engineering
Rutgers University, Piscataway, New Jersey 08854

Project Background

- HARV1: a consumer product meant to prevent squirrels from damaging your garden
 - Scans for squirrels.
 - If squirrel is detected, robot will shoot squirrel with an automated water gun (humanely).
 - Portable and low maintenance.
 - Only need power outlet and garden hose.
 - No user input required

Design Objectives

- Autonomous squirrel detection and repelling:
 - Shoot squirrels before any damage is done.
 - Only shoot squirrels.

- Small and portable form factor:
 - Can be placed in various areas around a yard
 - Easily movable

- Low maintenance for user:
 - Minimal involvement from use after initial setup.

Design Challenges

- Structural Challenges:
 - Ensure adaptability to different environments.
 - Effectively shoot water at least 20 ft.

- Computer Vision Challenges:
 - Efficiently identify squirrels.
 - Identify target
 - Communicate with electronics.

- Electronic challenges:
 - Shoot target before it causes damage.
 - Rotate motors and open solenoid valve quickly.
 - Must do so in less than 5 seconds

Principles of Operation

- Camera
- Raspberry-Pi
- Caffe Model
- Results
- Raspberry-Pi
- Stepper motors
- Solenoid Valve

- Takes picture
- Passes current frame through Caffe objection recognition model (0.25 seconds)
- Analyzes video to determine if there is a squirrel (1 second)
- If squirrel is detected location is determined (0.25 seconds)
- If no squirrel is detected, loop starts over (0.25 seconds)
- Turns motors to position sent from computer (~0.5 seconds)
- Valve is actuated to shoot water (~1 second)
- Once squirrel has been sprayed, loop starts over (0.25 seconds)

Future Direction

- HARV1 is specifically designed to recognize and spray squirrels.
 - Computer program code can be altered for different animals, such as deer and rabbits.
 - Can also be altered for use in security industry.

Results

- Raspberry-Pi
- Camera
- Steps 1
- Raspberry-Pi
- Camera
- Steps 2
- Raspberry-Pi
- Camera
- Steps 3
- Raspberry-Pi
- Camera
- Steps 4a
- Raspberry-Pi
- Camera
- Steps 4b
- Raspberry-Pi
- Camera
- Steps 5
- Raspberry-Pi
- Camera
- Steps 6
- Raspberry-Pi
- Camera
- Steps 7

Timeline:

- September 2017: Research existing products and draft preliminary designs
- October 2017: Initiated squirrel detection program code, CAD model, and circuit diagram
- November 2017: Create parts list and refine CAD model
- January 2018: Create prototype, integrate electronics, and test valve.
- March 2018: Testing and troubleshooting of all integrated subsystems