Goals & Objectives

- Design and develop a digitized chess board to help players with any skill to learn to play chess
- A physical 8 x 8 will be augmented with components such as Raspberry Pi 3, I2C Multiplexer and Reed Switches for digitizing player input

Hardware Design

- Raspberry Pi 3 is connected to the Arduino Teensy 2.0 via RS-232 serial connection
- All other components are interfacing with Inter-Integrated Circuit (I2C) Protocol, allows for multiple slave chips to link with a single master chip
- The N/O Reed Switches are connected to the Port Expander. With the presence of a magnetic field from the magnets, the reed switches snap closed, conducting current/signal to the Port Expander
- Port Expander communicates with LED Driver & microcontroller to implement algorithm

Research & Design Challenges

- Interfacing and interacting with Arduino (C code) communicating with Raspberry Pi 3 (Python Code) to create a digitized prototype of an 8 x 8 LED matrix
- Accounting for time delay of Read/Write Signals (especially with Reed Switches and LED Driver) due to serial connection

Acknowledgement

Our team would like to convey their sincere gratitude for having Prof. Phillip Southard as our mentor throughout this adventurous capstone journey. Our thanks to John Scafidi for allowing late hour lab access.

Schematic

Future Vision

- **Short-Term**
 - Implement voice commands and mechanical conveyance to autonomously move pieces

- **Long-Term**
 - Re-target the technology to apply for other applications

Results

- **Initial Prototype:** 3 x 3 Led Matrix/Reed Switch grid to simulate a tic tac toe game for troubleshooting purposes
- **Large scale Design:** 64 Square Grid with LED Matrix/Reed Switches
 - 4 mini breadboards soldered to 4 separate port expanders, which grounds one end of each reed switch and the other end connects with pins of expander.
 - LED Driver Connection: Anode & Cathode of LED all connected within the grid; rows represent Anode (+) and Columns represent Cathode(-) and they are soldered to the pins of the HT16k33 Driver.
 - Arduino implements the python code and acts as data controller for other hardware by processing output signals from the Pi 3.
 - Terminal is used to track the current states of the chess pieces

References
