Robots for Ankle Rehabilitation

Grigore (Greg) Burdea PhD
Electrical and Computer Engineering Department

Rutgers Robotics Workshop, September 31 2011
Rutgers University
UMDNJ
Washington University in St. Louis

Research supported by NSF grants BES-9708020, BES-0201687 and NIH grant 5R21EB6533-2 and by a generous donation from Cristian and Andreea Francu.
Why robots in ankle rehabilitation

- The ankle is the most injured part of the body;
- Therapy after ankle injury involves regaining range of movement, strengthening, and improving control.
- Conventional therapy is repetitive, and boring.
- Robots can help by providing the repetition needed without tiring.
Human-Computer Interface Lab (now Tele-Rehabilitation Institute)

- Was first to develop an ankle rehabilitation robot, and to couple it with virtual reality games.
 - Virtual reality increases patient motivation and participation, while at the same time providing rich feedback on performance.
- Rutgers Ankle (circa 1999)
Rutgers Ankle test or chronic stroke patients

- A Stewart platform pneumatic robot developed in 2000-2002 to train adults post-stroke. Games were written in WorldToolKit. Allowed remote monitoring. Used embedded processor time-sequence piston control.
Compared training with a robot alone (control group) with an experimental group that trained with the robot and virtual reality.

![Graph showing % change in ankle moment, hip power, knee power, and ankle power between Robotic VR and Robotic conditions.]

Control study with Rutgers Ankle at Harvard University
Children with Cerebral Palsy

- Cerebral palsy (CP) is a non-progressive disorder with impaired motor function secondary to injury of the immature brain.
- The most prevalent physical disability originating in childhood.
Rutgers Ankle CP

- Redesigned robot attachment to allow easier control for children with cerebral palsy.

- Redesigned controller to increase computation parallelism by using Zbasic microcontrollers and Atom controllers which regulate the pneumatic valves.
The games

- 2 custom games written in Java 3D, Airplane (piloting plane through hoops) and Breakout3D (bouncing balls to destroy cubes)
Case Study

- 7 year old child diagnosed with mild ataxic cerebral palsy.
- He had difficulty with speech, no cognitive delays and ambulated independently.
- The participant wore bilateral shoe inserts for pronation and trips/falls were a daily occurrence.
- He received physical, occupational and speech therapy in school once weekly, which was allowed to continue during this study.
Intervention

- The child trained each ankle playing the Airplane and the Breakout 3D games, which alternated during a session, for 12 weeks, 3 times/week (36 sessions).
- Session training time was at least 40 minutes, and the difficulty of the games was progressed over the therapy.
<table>
<thead>
<tr>
<th>Assessment</th>
<th>Pre-intervention</th>
<th>Post-intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Dorsiflexion (Nm/kg)</td>
<td>0.21</td>
<td>0.50 (+238%)</td>
</tr>
<tr>
<td>Max Plantarflexion (Nm/kg)</td>
<td>2.10</td>
<td>2.37 (+13%)</td>
</tr>
<tr>
<td>Motor Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-Phase (s)</td>
<td>-0.69</td>
<td>0.10</td>
</tr>
<tr>
<td>Anti-Phase (s)</td>
<td>0.76</td>
<td>0.42</td>
</tr>
<tr>
<td>Gait</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorsiflexion @ initial contact (°)</td>
<td>-4</td>
<td>5</td>
</tr>
<tr>
<td>Speed (cm/s)</td>
<td>98.7</td>
<td>120.0 (+22%)</td>
</tr>
<tr>
<td>6 min walk (m)</td>
<td>508</td>
<td>556 (+9%)</td>
</tr>
<tr>
<td>GMFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-wrj (%)</td>
<td>94.4</td>
<td>98.6</td>
</tr>
<tr>
<td>Pediatric Quality Life</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child</td>
<td>85.7</td>
<td>91.4</td>
</tr>
<tr>
<td>Parent</td>
<td>79.3</td>
<td>85.0</td>
</tr>
</tbody>
</table>
Discussion

• Anti-phase lag time post- (0.42 sec) was about half of pre- value (pre- 0.76 sec), indicating the participant had improved coordination of right and left ankles.

• post-intervention gait speed was in the range of children without disability (113±18 cm/s)
Discussion

- Increase in strength of the dorsiflexors (0.29 Nm/kg) was slightly larger than those previously recorded for trained dorsiflexor muscles (0.22 Nm/kg) in children training on the Kincom dynamometer;
- The improvement in the child quality of life was clinically significant (score difference of 5.7 > 4.5 threshold of clinical significance for PedsQL);