Exploring Power Network Signatures for Information Forensics

Min Wu

Media and Security Team (MAST)
ECE Department / UMIACS
University of Maryland, College Park
http://www.ece.umd.edu/~minwu/research.html

Include joint research with Adi Hajj-Ahmad, Ravi Garg, Hui Su, Avinash Varna, Chau-Wai Wong; Kari Klaus, and Douglas Oard.

Forensic Questions on “Time” and “Place”

- When was the video actually shot? And where?
- Was the sound track captured at the same time as the picture? Or super-imposed afterward?
- Explore fingerprint influenced by power grid onto sensor recordings

Ubiquitous Forensic Fingerprints from Power Grid

- Electric Network Frequency (ENF): 50 or 60 Hz nominal
 - Change slightly due to demand-supply
 - Main trends consistent in same grid

Traces in the Environment: Exploring Power Network Signatures for Information Forensics

Min Wu

Media and Security Team (MAST)
ECE Department / UMIACS
University of Maryland, College Park
http://www.ece.umd.edu/~minwu/research.html

Include joint research with Adi Hajj-Ahmad, Ravi Garg, Hui Su, Avinash Varna, Chau-Wai Wong; Kari Klaus, and Douglas Oard.
Ubiquitous Forensic Fingerprints from Power Grid

- **Electric Network Frequency (ENF):** 50 or 60 Hz nominal
 - Change slightly due to demand-supply
 - Main trends consistent in same grid
- **ENF** can be “seen” or “heard” in sensor recordings
 - Power grid influences electronic sensing (E/M interference, vibration etc)
 - Help determine recording time/location, detect tampering, etc.

ENF matching result demonstrating similar variations in the ENF signal extracted from video and from power signal recorded in India

Light Sensing Circuitry

- Convert light intensity falling on the diode into current
- Use an amplifier with a high gain (10^6) to convert weak current to measurable voltage levels
- Digitize and record circuit output voltage (e.g. to a PC sound card)
 - Reference ENF signal recorded in parallel
 - Step down using a transformer and voltage divider

ENF Research Roadmap At-A-Glance

- **Estimate ENF Signal** (instantaneous freq.):
 - Robust, high resolution;
 - Exploit harmonics
- **Visual Modality:**
 - Handle aliasing – exploit rolling shutters;
 - Handle motion;
- **Modeling & Analysis:**
 - Statistically modeling of ENF signals;
 - Anti-Forensics.
- **Novel Applications:**
 - Location & integrity;
 - Stream alignment;
 - Digital humanity – on historical recordings, ...

Instantaneous Frequency Estimation

- **Time-domain** zero crossing method in early prior art
- **Spectrogram approach** (Short-Time Fourier Transform)
 - Maximum energy from signal around respective freq. range
 - Weighted energy by spectral strength to find freq. centroid over a given range:
 - => Robust to outliers, simple to compute, work well in practice
- **High-resolution subspace approach:** MUSIC, ESPRIT
 - Theoretical foundations in statistical signal processing
 - More sophisticated frequency tracking with stochastic models

Min Wu (UMD): ENF for Media Information Forensics
ENF Experiment on Photodiodes

A total of 50-minute recording
- A fluorescent lamp placed near the sensing circuitry
- Sensor recording started at a 15-sec. delay from reference signal

ENF Results: from Photodiodes

- Frequency fluctuations almost identical
- Photodiode ENF signal has twice the fluctuations of reference ENF
- Weighted energy method gives highest correlation peak

Aliasing Effect in Spectral View

- Example: A video camera at 29.97 fps used for indoor recording in a 50 Hz ENF geographical area
- Multiple copies of ENF signal appear at different frequencies
- Bandwidth of each replica is different, high bandwidth replica helps ENF extraction
- Some replicas of ENF signal are mirrored version of original ENF signal in spectrum
Verifying Time of Recording: India

- Video recording started at same time as reference ENF signal
 - Static video; measure change in average frame intensity
 - Observe: power frequency not tightly controlled

Verifying Time of Recording: China

- Video recording started at 50-sec delay with reference signal
- Correlation of 9.79Hz band is higher than 10.09Hz band
 - Came from higher harmonic with bigger spread
 => Can enhance ENF estimate by combining several harmonics

Verifying Time of Recording: USA

- Video recording was started of a delay of 35 seconds with power mains signal
- ENF signal appears close to DC (at 0.12 Hz)
 - ENF signal close to content frequencies
 - Challenging to extract for surveillance video

ENF Extraction: the Effect of Motion

- Video recording started at same time as reference ENF signal
 - 1st 5 minutes: camera is panning => avg frame intensity changes
 - Afterward: surveillance type of scenario

Camera panning

Highest corr. at k=0
ENF Extraction: Outdoor Night Scene

- CMOS Sensors ~ exploit rolling shutter
 - Start with static video; then adapt to handle motion
 - Simple case: estimate visual scene by average of all frames
- **Experiment:** Night outdoor video of a lighted parking lot

![Video Screenshot](image1)

<table>
<thead>
<tr>
<th>Time (seconds)</th>
<th>Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>59.99</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>40</td>
<td>60.01</td>
</tr>
<tr>
<td>60</td>
<td>60.02</td>
</tr>
</tbody>
</table>

Reference ENF from power

ENF estimated from video

Tampering Detection

- Adding a clip into original video leads to **discontinuity** in ENF
 - Clip insertion can also be detected by comparing the video ENF signal with the power ENF at corresponding time

![ENF signal from Video](image2)

From Time Stamps to Location

- **High correlation** of ENFs in audio & video captured at same time
 - => can extend to synch multiple media streams

![ENF signal from Video](image3)

- **Anti-Forensic Study:** possible to remove narrow-band ENF; but much harder to tamper/transplant a valid ENF w/o being caught

![Audio and Video ENF](image4)

“Forensic Binding” of Audio and Visual Tracks

- **From Time Stamps to Location**
 - Match with ENF references over times + grids
 - Verify or exhaustively search for the matching location on grid level

- What if no concurrent references available?
 - Explore overall characteristics of ENF in a grid
 - Also reduce computation of exhaustive search

Source: US Grid image is from InTech online
Explore Machine Learning to Infer Location

- Inter-Grid location-of-recording estimation from sensing signals containing ENF traces
 - Identified useful features for recognizing from power and audio

Proposed Features

- Apply operations on equal-sized ENF signal segments (8mins) to extract quantitative feature values.

I. Mean, Variance, Range of ENF segment.

II. Statistical properties from applying a Wavelet transform
 - Use variances of final Approximation, and Detail signals as feature values.

Proposed Features (cont’d)

III. Features related to statistical modeling of ENF signals.
 - We showed that a US ENF signal can be modeled as AR(2) process.
 - Use AR parameters and variance of innovation \(\nu[n] \) as features.
 \[
 s[n] = a_1 s[n-1] + a_2 s[n-2] + \nu[n]
 \]

<table>
<thead>
<tr>
<th>Index</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mean of ENF segment</td>
</tr>
<tr>
<td>2</td>
<td>log(range) of ENF segment</td>
</tr>
<tr>
<td>3</td>
<td>log(variance) of approx. after wavelet analysis</td>
</tr>
<tr>
<td>4-7</td>
<td>log(var.) of 4 detail signals after wavelet analysis</td>
</tr>
<tr>
<td>8-9</td>
<td>AR(2) modeling parameters</td>
</tr>
<tr>
<td>10</td>
<td>log(var) of innovation signal after AR(2) modeling</td>
</tr>
</tbody>
</table>

Classification Accuracy on 11 grids:
- Power signal: 90%
- Audio signal: 83%

Sample Feature Values
From Time Stamps to Location

- Match with ENF references over times + grids
 - Verify or exhaustively search for the matching location on grid level

Can ENF Pinpoint to Locations Within a Grid?

- Main trend of ENF is known to be the same in a grid
- “Microscopic” traces
 - Aggregated effect of local events and propagations from elsewhere

Can we determine where within a grid?

- E.g. DC or NYC in US East?
- Look at subtle traces in ENF
- Relate ENF correlation with distance

Determine Location Using ENF (cont’d)

- Signal details of ENF can help locate signal origin in a grid
- Results of concurrent data from five U.S. east locations
- On-going: more data & validation; from noisy media signals

![US Grid image](inTech-online)

Can ENF Pinpoint to Locations Within a Grid?

- Main trend of ENF is known to be the same in a grid
- “Microscopic” traces
 - Aggregated effect of local events and propagations from elsewhere

Example:

- 3 east-coast locations on U.S. Eastern interconnection grid
- Conduct simultaneous power recordings, two per location
- Use 2-sec frames with 1-sec overlap
- Use ESPRIT for instantaneous ENF frequency estimation

![Graphs](examples.jpg)

Can ENF Pinpoint to Locations Within a Grid?

- Main trend of ENF is known to be the same in a grid
- “Microscopic” traces
 - Aggregated effect of local events and propagations from elsewhere

Can we determine where within a grid?

- E.g. DC or NYC in US East?
- Look at subtle traces in ENF
- Relate ENF correlation with distance

![US Grid image](inTech-online)

Can ENF Pinpoint to Locations Within a Grid?

- Main trend of ENF is known to be the same in a grid
- “Microscopic” traces
 - Aggregated effect of local events and propagations from elsewhere

Example:

- 3 east-coast locations on U.S. Eastern interconnection grid
- Conduct simultaneous power recordings, two per location
- Use 2-sec frames with 1-sec overlap
- Use ESPRIT for instantaneous ENF frequency estimation

![Graphs](examples.jpg)

Can ENF Pinpoint to Locations Within a Grid?

- Main trend of ENF is known to be the same in a grid
- “Microscopic” traces
 - Aggregated effect of local events and propagations from elsewhere

Can we determine where within a grid?

- E.g. DC or NYC in US East?
- Look at subtle traces in ENF
- Relate ENF correlation with distance

![US Grid image](inTech-online)

Can ENF Pinpoint to Locations Within a Grid?

- Main trend of ENF is known to be the same in a grid
- “Microscopic” traces
 - Aggregated effect of local events and propagations from elsewhere

Can we determine where within a grid?

- E.g. DC or NYC in US East?
- Look at subtle traces in ENF
- Relate ENF correlation with distance

![Graphs](examples.jpg)
Beyond Adversarial Settings:
- Exploring ENF in Historic Recordings
- Synchronize multiple A/V streams

ENF in Historical Recordings
- Two ENFs may appear in digitized tape recordings
 1. original ENF; and
 2. ENF at time of digitization
- => Provide digital preservation guidelines to better utilize invisible traces
- Distortions and artifacts
 - Drifting; low SNR; etc.
- Ongoing: create a historical ENF database
 - Timestamp recordings of historic importance

Speed Restoration: ENF as Intrinsic Freq. Reference
- NASA Apollo 11 Mission recording

<table>
<thead>
<tr>
<th>Before Restoration</th>
<th>After Restoration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrogram</td>
<td>Spectrogram</td>
</tr>
</tbody>
</table>

ENF for Video Synchronization
- Few tools to stitch video but many for images – Why?
- Using ENF to align multi video: simple & efficient
 - Less constraints on viewing angle, camera calibration, etc

- Estimate ENF signals from videos (either sound or visual track)
- Calculate correlation coefficient as a function of lag
- Find lag with peak correlation
Video Synch. Using Intrinsic ENF in Audio

- Demo-1: Videos in the gym before synchronization
- Demo-2: Videos at different locations of Kim Lab Building before synchronization

Video after synchronization

<table>
<thead>
<tr>
<th>Video Clip</th>
<th>5 min</th>
<th>10 min</th>
<th>15 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Av. abs. error</td>
<td>0.21 sec</td>
<td>0.16 sec</td>
<td>0.14 sec</td>
</tr>
</tbody>
</table>

2 synched stopwatches (as ground truth)

More on ENF Aliasing: CMOS Rolling Shutter

- CMOS imaging sensors: Low cost; low power
- Rolling shutter in CMOS sensor: sequential row readout
 - Different rows exposed at different time
 - Often considered bad: distortions on fast moving scenes (see wiki)

Can we exploit row sampling to overcome ENF aliasing?

Align Visual Streams using ENF Row Signals

- Video signal: combination of visual component and ENF component.

1. Estimate visual component
2. Subtract visual component
3. Take row averages as source signal
4. Frequency estimation from source signal
Motions and Brightness Changes

- **Address motions in video:**
 1. Find and use only static regions.
 2. Estimate motion vector & carry out motion compensation.

- **Compensate for brightness changes:**
 - Brightness changes occur due to camera’s automatic gain control.
 - Model brightness change as a linear transform
 - Carry out linear compensation.

ENF Research & References

Estimate ENF Signal (instantaneous freq.):
- Robust, high resolution;
- Exploit harmonics
- SPL’13, APSIPA ’12, ACM MM’11, TIFS’13

Visual Modality:
- Handle aliasing – exploit rolling shutters;
- Handle motion
- TIFS’13, ICIP’14, ACM MM’14 Immersive Media

Modeling & Analysis:
- Statistically modeling of ENF signals;
- Anti-Forensics.
- WIFS’12, CCS’12, twoTIFS’13

Novel Applications:
- Location & integrity;
- Stream alignment;
- Digital humanity (historic audio)
- ICASSP’12-13, WIFS’13 / TIFS’15, iConf’14, ACM MM’14 Immersive

THANKS to many who paved ways ...

- Use static regions when possible
- Compensate for object & camera motion
- Compensate for brightness changes
- Estimate ENF

Demos: ENF from Visual Track

- **Align ENF signals estimated from video for sync.**
 - Use 2 cameras equipped with rolling shutter.
 - Hallway video with motion & auto brightness change.
Include joint work with colleagues, graduate & REU students

Kari Klaus, Doug Oard; Wei-Hong Chuang, Ravi Garg, Adi Hajj-Ahmad, Hai Su, Avinash Varna, Chau-Wai Wong; Michael Luo (MERIT REU), Maggie Xiong (Cyber Security REU)

To Explore More